Modal Analysis for 3 pendulum with springs problem

by Nasser M Abbasi

This small note computes the eigenvectors of a 3 degrees freedom by modal analysis and without modal analysis and analysis the difference between the aproaches.

This digram below describes the problem. We use Lagrangian formulation to determine the equation of motions, then use modal analysis to decouple the system and solve it. In this system , the springs are attached at a distant α From the edge. Each pendulum has length L and has masses m1,m2,m3 attached to the end. To obtain a numerical solution, we assume some initial conditions such as  θ(0)={Pi/4,Pi/4,Pi/4} and note1_1.png={0,0,0}

note1_2.gif

Modal analysis by decoupling

First define some notations to use

note1_3.png

note1_4.gif

Define a function which accepts the kinetic and potential energy and return back the stiffness and the mass matrix

note1_5.png

Now define the kinetic and potenatial energy

note1_6.gif

Now call the above function to generate the stiffness and mass matrix. It also prints the 3 equations of motion

note1_7.png

note1_8.png

note1_9.png
note1_10.png
note1_11.png

Now print the STIFFNESS and MASS matrix

note1_12.gif

note1_13.png

Now that we have the stiffness and mass matrix, we can perform modal analysis. Start by doing the first transformation

note1_14.gif

note1_15.png

Now define some numerical values to use for the rest of the analysis amd generate note1_16.png

note1_17.gif

note1_18.png

note1_19.png

note1_20.gif

note1_21.png

note1_22.png

note1_23.gif

note1_24.png

Now find Λ matrix

note1_25.png

note1_26.png

Hence the decoupled system of differential equations is

note1_27.gif

note1_28.png

Now convert the IC from θ (t) space to r (t) space

note1_29.png

note1_30.png

note1_31.gif

note1_32.png

Now solve the r (t) system

note1_33.gif

note1_34.png

note1_35.gif

note1_36.png

note1_37.gif

note1_38.png

Now convert solution from r (t) to θ (t)

note1_39.png

note1_40.png

note1_41.gif

Now plot the solutions

note1_42.png

note1_43.png

note1_44.png

note1_45.png

note1_46.png

note1_47.png

note1_48.png

note1_49.gif

Modal analysis without decoupling

note1_50.png

note1_51.png

note1_52.png

note1_53.png

Created with the Wolfram Language