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1 Introduction

Van der Pol differential equation is given by
" (t)—c(l—a*) 2’ (t) + kz(t) =0

In this analysis, we will consider the case only for positive ¢, k. We will analyze the stability of this
equation and generate a phase diagram.

2 Stability

The first step in examining stability of a non-linear differential equation is to convert it to state space by
introducing 2 state variables.
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Equilibrium points are found by solving ( /) = (0), hence from the above, we see that x5 = 0 and
)
from ¢ (1 — 2%) 9 — kx; = 0 we conclude that x; = 0 as well. Hence
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Therefore



The system matrix is now found. First we note that %’1 = 0, 59—:; =1, 8‘9—3{1 = —2crox; — k, and
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a; = —Cr1+ ¢, hence

Hence A at x., becomes

Now we find the characteristic equation
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Hence A\ o = %b + %\/ b? —4ac=c=+ %\/ c2 — 4k, therefore
1
)\1’2 =c* 5\/62 —k
If ¢ > k then both roots are on the RHS, hence system is unstable (equilibrium point is a repelling

point).
If ¢ < k then we have \; 5 = ¢ + jf3, and we have spiral out equilibrium point, unstable.

3 Phase diagram

We need to obtain a relation between x5 and x;. From the differential equation
2" (t) —c(1—a®) 2’ (t) + kz (t) =0

rewrite in state space variables, we obtain
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Hence the above is in the form 922 = f (2, 2,), therefore the lines can be found by setting

dxq

f(zr,m2) =¢

Where £ is a constant. Hence we obtain the parameterize equation to use to plot the gradient lines as

c(l—a?)zy — kxy
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4 Phase diagram

To generate the phase diagramﬂ a program was written which allows one to adjust the initial conditions
and the parameters k and ¢ and observe the effect on the shape of the limit cycle. We see that starting
from different initial conditions, the solution trajectory always ends up in a limit cycle.

The following is a screen shot of the program written for this project.

Phase Plane Plot of the Van der Pol Differential
Equation
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