Manipulate[ (*by Nasser M. Abbasi, June,17,2014*) tick; Module[{data, eq, y, t, pos, vel, sol, graph}, data = rugo[-3, 0, -3, y0 - massThickness]; graph = makeGraph[currentTime, y0, massThickness, L1, data, False]; If[(runningState == "RUNNING" || runningState == "STEP"), eq = (m y''[t] + c y'[t] + k (y[t] - L0) == -m g); sol = NDSolve[{eq, y[0] == y0, y'[0] == v0}, {y, y'}, {t, 0, deltT}]; {pos, vel} = {y, y'} /. First@sol; currentTime = currentTime + deltT; y0 = pos[deltT]; v0 = vel[deltT]; If[(y0 - massThickness) < (L1 + 0.25), v0 = -v0; graph = makeGraph[currentTime, y0, massThickness, L1, data, True] ] ]; If[currentTime > 999.9, currentTime = 0]; If[runningState == "RUNNING", tick = Not[tick] ]; graph ], Grid[{ {"damping", Manipulator[Dynamic[c, {c = #, currentTime = 0, v0 = 0, y0 = L0} &], {0, 1, 0.01}, ImageSize -> Small], Style[Dynamic@padIt2[c, {3, 2}], 11] }, {"stiffness", Manipulator[Dynamic[k, {k = #, currentTime = 0, v0 = 0, y0 = L0} &], {1, 100, 0.01}, ImageSize -> Small], Style[Dynamic@padIt2[k, {5, 2}], 11] }, {"mass", Manipulator[Dynamic[m, {m = #, currentTime = 0, v0 = 0, y0 = L0} &], {1, 10, 0.01}, ImageSize -> Small], Style[Dynamic@padIt2[m, {4, 2}], 11] }, {Text@Style["slow", 11], Manipulator[Dynamic[deltT, {deltT = #} &], {0.001, .1, 0.001}, ImageSize -> Small, ContinuousAction -> False], Text@Style["fast", 11] }, {Grid[{ { Button[Style["run", 12], {runningState = "RUNNING"; tick = Not[tick]}, ImageSize -> {55, 35}], Button[Style["step", 12], {runningState = "STEP"; tick = Not[tick]}, ImageSize -> {55, 35}], Button[Style["stop", 12], {runningState = "STOP"; currentTime = 0, v0 = 0, y0 = L0}, ImageSize -> {55, 35}] } } ] } } ], {{wasHit, False}, None}, {{y0, 10}, None}, {{v0, 0}, None}, {{m, 8}, None}, {{k, 26}, None}, {{c, 0}, None}, {{runningState, "STOP"}, None}, {{currentTime, 0}, None}, {{deltT, 0.01}, None}, {{tick, True}, None}, TrackedSymbols :> {tick}, Initialization :> ( g = 9.8; L0 = 10; massThickness = 0.5; L1 = 2.5; makeGraph[currentTime_, y0_, massThickness_, L1_, data_, hit_] := Module[{splash}, splash = If[hit, {Red, Text[Style["Bang!!", 16], {5, L1 + 0.6}]}, Sequence @@ {} ]; Grid[{ { Row[{"Time ", padIt2[currentTime, {5, 2}]}]}, { Graphics[ { {EdgeForm[Black], LightGray, Rectangle[{-4, y0 - massThickness}, {4, y0 + massThickness}]}, Line[{{2, 0}, {2, 1}, {2.5, 1}, {2.5, 1.5}}], Line[{{2, 1}, {1.5, 1}, {1.5, 1.5}}], Line[{{1.6, 1.2}, {2.4, 1.2}}], Line[{{1.6, 1.3}, {2.4, 1.3}}], Line[{{2, 1.3}, {2, y0 - massThickness}}], {EdgeForm[Black], Red, Rectangle[{2.5, L1}, {5, L1 + 0.25}]}, splash, {Thick, Line[{{-6, 0}, {6, 0}}]}, Line[data] }, PlotRange -> {{-5, 5.5}, {-1, 11}}, Axes -> False, ImageSize -> 300, ImagePadding -> 5 ]} } ] ]; (*definitions used for parameter checking*) integerStrictPositive = (IntegerQ[#] && # > 0 &); integerPositive = (IntegerQ[#] && # >= 0 &); numericStrictPositive = (Element[#, Reals] && # > 0 &); numericPositive = (Element[#, Reals] && # >= 0 &); numericStrictNegative = (Element[#, Reals] && # < 0 &); numericNegative = (Element[#, Reals] && # <= 0 &); bool = (Element[#, Booleans] &); numeric = (Element[#, Reals] &); integer = (Element[#, Integers] &); padIt1[v_?numeric, f_List] := AccountingForm[Chop[v], f, NumberSigns -> {"-", "+"}, NumberPadding -> {"0", "0"}, SignPadding -> True]; padIt2[v_?numeric, f_List] := AccountingForm[Chop[v], f, NumberSigns -> {"", ""}, NumberPadding -> {"0", "0"}, SignPadding -> True]; padIt2[v_?numeric, f_Integer] := AccountingForm[Chop[v], f, NumberSigns -> {"", ""}, NumberPadding -> {"0", "0"}, SignPadding -> True]; rugo[xkezd_, ykezd_, xveg_, yveg_] := Module[{step = 20, szel = 1(*spring width*), hx, hy, veghossz = 0.3, hossz, dh, i}, {hx = xveg - xkezd; hy = yveg - ykezd; hossz = Sqrt[hx^2 + hy^2]; dh = (hossz - 2*veghossz)/step; {xkezd, ykezd}}~Join~{{xkezd + hx*(dh + veghossz)/hossz, ykezd + hy*(dh + veghossz)/hossz}}~Join~ Table[If[OddQ[i], {xkezd + hx*(i*dh + veghossz)/hossz + hy*szel/hossz, ykezd + hy*(i*dh + veghossz)/hossz - hx*szel/hossz}, {xkezd + hx*(i*dh + veghossz)/hossz - hy*szel/hossz, ykezd + hy*(i*dh + veghossz)/hossz + hx*szel/hossz}], {i, 2, (step - 2)}]~ Join~{{xkezd + hx*((step - 1)*dh + veghossz)/hossz, ykezd + hy*((step - 1)*dh + veghossz)/hossz}}~Join~{{xveg, yveg}} ] ) ]