Manipulate[ (*by Nasser M. Abbasi, June,17,2014*) tick; Module[{y, data}, (*solution of eq=m y''[t]+c y'[t]+k y[t]\[Equal] -m g;*) y = Chop[1/(2 k Sqrt[c^2 - 4 k m]) g m (-c E^(((-c - Sqrt[c^2 - 4 k m]) t)/(2 m)) + c E^(((-c + Sqrt[c^2 - 4 k m]) t)/(2 m)) - 2 Sqrt[c^2 - 4 k m] + E^(((-c - Sqrt[c^2 - 4 k m]) t)/(2 m)) Sqrt[c^2 - 4 k m] + E^(((-c + Sqrt[c^2 - 4 k m]) t)/(2 m)) Sqrt[c^2 - 4 k m])]; If[y < -7, If[wasHit, wasHit = False; y = -6.95, wasHit = True; y = -7] ]; data = rugo[-3, 0, -3, L0 + y - massThickness]; If[runningState == "RUNNING", t = t + delta; If[t > 999.9, t = 0]; tick = Not[tick] ]; Grid[{ { Row[{"Time ", padIt2[t, {5, 2}]}]}, { Graphics[ { {EdgeForm[Black], LightGray, Rectangle[{-4, L0 + y - massThickness}, {4, L0 + y + massThickness}]}, Line[{{2, 0}, {2, 1}, {2.5, 1}, {2.5, 1.5}}], Line[{{2, 1}, {1.5, 1}, {1.5, 1.5}}], Line[{{1.6, 1.2}, {2.4, 1.2}}], Line[{{1.6, 1.3}, {2.4, 1.3}}], Line[{{2, 1.3}, {2, L0 + y - massThickness}}], {Thick, Line[{{-6, 0}, {6, 0}}]}, Line[data] }, PlotRange -> {{-5, 5}, {-1, 11}}, Axes -> False, ImageSize -> 300, ImagePadding -> 5 ] } } ] ], Grid[{ {"damping", Manipulator[Dynamic[c, {c = #, t = 0} &], {0, 1, 0.01}, ImageSize -> Small], Style[Dynamic@padIt2[c, {3, 2}], 11] }, {"stiffness", Manipulator[Dynamic[k, {k = #, t = 0} &], {1, 100, 0.01}, ImageSize -> Small], Style[Dynamic@padIt2[k, {5, 2}], 11] }, {"mass", Manipulator[Dynamic[m, {m = #, t = 0} &], {1, 10, 0.01}, ImageSize -> Small], Style[Dynamic@padIt2[m, {4, 2}], 11] }, {Text@Style["slow", 11], Manipulator[Dynamic[delta, {delta = #} &], {0.01, .1, 0.01}, ImageSize -> Small, ContinuousAction -> False], Text@Style["fast", 11] }, {Grid[{ { Button[Style["run", 12], {runningState = "RUNNING"; tick = Not[tick]}, ImageSize -> {55, 35}], Button[Style["stop", 12], {runningState = "STOP"; t = 0; tick = Not[tick]}, ImageSize -> {55, 35}] } } ] } } ], {{wasHit, False}, None}, {{m, 1}, None}, {{k, 10}, None}, {{c, 0}, None}, {{runningState, "STOP"}, None}, {{t, 0}, None}, {{delta, 0.01}, None}, {{tick, True}, None}, TrackedSymbols :> {tick}, Initialization :> ( g = 9.8; L0 = 10; massThickness = 0.5; (*definitions used for parameter checking*) integerStrictPositive = (IntegerQ[#] && # > 0 &); integerPositive = (IntegerQ[#] && # >= 0 &); numericStrictPositive = (Element[#, Reals] && # > 0 &); numericPositive = (Element[#, Reals] && # >= 0 &); numericStrictNegative = (Element[#, Reals] && # < 0 &); numericNegative = (Element[#, Reals] && # <= 0 &); bool = (Element[#, Booleans] &); numeric = (Element[#, Reals] &); integer = (Element[#, Integers] &); padIt1[v_?numeric, f_List] := AccountingForm[Chop[v], f, NumberSigns -> {"-", "+"}, NumberPadding -> {"0", "0"}, SignPadding -> True]; padIt2[v_?numeric, f_List] := AccountingForm[Chop[v], f, NumberSigns -> {"", ""}, NumberPadding -> {"0", "0"}, SignPadding -> True]; padIt2[v_?numeric, f_Integer] := AccountingForm[Chop[v], f, NumberSigns -> {"", ""}, NumberPadding -> {"0", "0"}, SignPadding -> True]; rugo[xkezd_, ykezd_, xveg_, yveg_] := Module[{step = 20, szel = 1(*spring width*), hx, hy, veghossz = 0.3, hossz, dh, i}, {hx = xveg - xkezd; hy = yveg - ykezd; hossz = Sqrt[hx^2 + hy^2]; dh = (hossz - 2*veghossz)/step; {xkezd, ykezd}}~Join~{{xkezd + hx*(dh + veghossz)/hossz, ykezd + hy*(dh + veghossz)/hossz}}~Join~ Table[If[OddQ[i], {xkezd + hx*(i*dh + veghossz)/hossz + hy*szel/hossz, ykezd + hy*(i*dh + veghossz)/hossz - hx*szel/hossz}, {xkezd + hx*(i*dh + veghossz)/hossz - hy*szel/hossz, ykezd + hy*(i*dh + veghossz)/hossz + hx*szel/hossz}], {i, 2, (step - 2)}]~ Join~{{xkezd + hx*((step - 1)*dh + veghossz)/hossz, ykezd + hy*((step - 1)*dh + veghossz)/hossz}}~Join~{{xveg, yveg}}]; ) ]