(*simple illustration of low pss filter. Nasser M. Abbasi, oct 13, \ 2015*) Manipulate[ h[k_, e_] := 1/(1 + e*s)^k; Module[{tf, w, p}, tf = h[k, e, s]; p = BodePlot[tf, {0.1, range}, PlotLayout -> "List", ImageSize -> 400, GridLines -> Automatic, GridLinesStyle -> LightGray, ImageMargins -> 30, FrameLabel -> {{{"magnitude (db)", None}, {"\[Omega] (rad/sec)", "H(s) Magnitude plot"}}, {{"phase(deg)", None}, {"Frequency (rad/sec)", None}}}, PlotRange -> {{{0.1, range}, Automatic}, {{0.1, 100}, Automatic}}, BaseStyle -> 14]; Text@Grid[{ {Style[ Row[{"H(s)=\!\(\*FractionBox[\(\(1\)\(\\\ \)\), \ SuperscriptBox[\((\(\(1\)\(+\)\) \[Element] \\\ s)\), \(k\)]]\) = ", tf}], 16]}, { p[[1]] (* LogPlot[1/(1+e^2*w^2)^(k/2),{w,0.1,range},PlotRange\[Rule]All, ImageSize\[Rule]300,Frame\[Rule]True, FrameLabel\[Rule]{{"|H(s)|",None},{"\[Omega]", "Low pass filter"}},ImageMargins\[Rule]10, GridLines\[Rule]Automatic,GridLinesStyle\[Rule]LightGray, Epilog\[Rule]{Dashed,Line[{{1/e,0},{1/e,1/2^(k/2)}}],Line[{{1/e, 1/2^(k/2)},{0,1/2^(k/2)}}]}] *) } }, Alignment -> Center, Frame -> All, FrameStyle -> LightGray, Spacings -> {1, 1} ] ], {{k, 4, "k"}, 1, 20, 1, Appearance -> "Labeled"}, {{e, .1, "\[Epsilon]"}, 0.01, 1, .01, Appearance -> "Labeled"}, {{range, 1000, "max \[Omega]"}, 1, 1000, 1, Appearance -> "Labeled"}, TrackedSymbols :> {k, e, range} ]