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Abstract

For a homogeneous system of differential equations with a con-
stant coefficient matrix, the fundamental matrix can be computed by
using the eigenpairs of the coefficient matrix. However, for a homoge-
neous system of differential equations with a periodic coefficient ma-
trix, another approach is needed to obtain the fundamental matrix.
Floquet’s theorem offers a canonical form for each fundamental ma-
trix of these periodic systems. Moreover, Floquet’s theorem provides a
way to transform a system with periodic coefficients to a system with
constant coefficients. The monodromy matrix is very useful for sta-
bility analyses of periodic differential systems, in particular for Hill’s
differential equation. In this thesis, Floquet’s theorem will be proven,
and the aforementioned transformation and stability analyses will be
discussed.
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1 Introduction

Differential equations are equations that describe the relation between a
function and its derivatives. They are often used in physics, where the
derivative represents the rate of change of a certain physical quantity. Ex-
amples of differential equations are Newton’s law in classical mechanics, the
heat equation in thermodynamics and the wave equation in fluid dynamics.

An nth order differential equation can be written in the following general
form

f(t, y, y′, . . . , y(n)) = 0. (1)

A solution y = y(t) to (1) is defined to be an n-times differential function
such that (1) is satisfied when substituting y and its derivatives into f [13].
The unknown function y depends on a single independent variable t, so (1)
is called an ordinary differential equation. If the unknown function depends
on two or more independent variables, the equation is called a partial dif-
ferential equation.

A first order linear differential system is of the form

x′(t) = A(t)x(t) + b(t) (2)

where the matrix A ∈ Cn×n is called the coefficient matrix. The system (2)
is called homogeneous if b = 0 [8].
A set of n linearly independent solutions x1, . . . , xn of (2) is called a funda-
mental system of solutions. We write

X(t) = (x1, . . . , xn)

and call this the fundamental matrix [13].

If (λi, vi), with i = 1, . . . n, is an eigenpair for the constant coefficient matrix
A, then

xi(t) = vie
λit (3)

defines a solution of the first order linear differential system

x′(t) = Ax(t) (4)

as proved by [1]. The fundamental matrix of (4) is given by

X(t) = (x1, . . . , xn)

provided that {v1, . . . , vn} are linearly independent.
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In this thesis, we are interested in differential equations with periodic coef-
ficients. Periodic coefficients arise in problems in the fields of technology,
natural and social sciences [5]. For example in mathematical biology, we
encounter problems that deal with periodic factors such as seasonal effects
of weather and mating habits of birds. In the field of social sciences, periodic
factors appear for instance in problems like scheduling of public transport
and regulating traffic lights. In physics, one can think of periodic prob-
lems as a pendulum or a body in uniform circular motion. Consider the
homogeneous system

x′(t) = A(t)x(t) (5)

with the periodic coefficient matrix A(t), that is, A(t) = A(t + T ) for all
t ∈ R, for some period T > 0. We want to find an expression for the
fundamental matrix in this case. Unlike the case of a constant coefficient
matrix, the fundamental matrix cannot be expressed as X(t) = (x1, . . . , xn)
where the xi are given by (3). This will be made clear by the following
counterexample.

Example 1.1. Consider the system

x′(t) =

(
sin(t) 0
0 2

)
x(t).

The coefficient matrix is periodic with period 2π. If we use the eigenpairs

(sin(t),

(
1
0

)
) and (2,

(
0
1

)
) and the expression in (3), the fundamental matrix

is of the form

X̃(t) =

(
et sin(t) 0

0 e2t

)
.

Denote x̃1(t) = (et sin(t), 0)T . Then

x̃′1(t) =

(
et sin(t)(sin(t) + t cos(t))

0

)
but (

sin(t) 0
0 2

)(
et sin(t)

0

)
=

(
sin(t)et sin(t)

0

)
̸= x̃′1(t).

So the first column of X̃(t) is not a solution of the problem, which means
that X̃(t) is not a fundamental matrix. Hence, we cannot use the eigenpairs
to obtain the fundamental matrix for the periodic differential system.

Therefore, we need another approach to find the fundamental matrix.
In his paper of 1883, Gaston Floquet introduces a canonical decomposition
of the fundamental matrix of (5) [4]. It is given by the following result.
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Theorem 1.2. (Floquet) The fundamental matrix X(t) of (5) with
X(0) = I has a Floquet normal form

X(t) = Q(t)eBt

where Q ∈ C1(R) is T -periodic and the matrix B ∈ Cn×n satisfies the
equation C = X(T ) = eBT . We have Q(0) = I and Q(t) is an invertible
matrix for all t.

Proving Floquet’s theorem will be part of this thesis. To be able to do
this, we need three assertions regarding the fundamental matrix and one
result on the logarithm of a nonsingular matrix. These four statements will
be discussed in Sections 2.2 and 2.3. The proof of Floquet’s theorem will be
given in Section 2.4.

Section 3 will be devoted to applications of Floquet’s theorem. The Flo-
quet normal form is used to transform the periodic differential equation into
a system with a constant coefficient matrix. This is called the Lyapunov-
Floquet transformation and will be the subject of Section 3.1. In the case of
a one-dimensional coefficient matrix, this transformation can make it easier
to find the solution. Limitations of the Lyapunov-Floquet transformation
for higher dimensions of the coefficient matrix will be discussed shortly.

The last part of this thesis is dedicated to a stability analysis of periodic
differential systems. We will make use of the eigenvalues of the monodromy
matrix, the so-called Floquet multipliers. The solution to the system is
stable if all its Floquet multipliers lie within the unit circle. An example
of a periodic differential system is Hill’s equation and will be discussed in
Section 3.4. We will develop another stability criterion for Hill’s equation
based on the trace of the monodromy matrix. This knowledge will be used to
analyze the stability of a particular example of Hill’s equation: the inverted
pendulum. By making use of Matlab, a stability region can be drawn for
the corresponding periodic differential equation.
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2 Floquet Theory

2.1 Definitions and preliminaries

Before we dive into Floquet Theory, first some basic concepts from ordinary
differential equations and linear algebra are described.

Consider the following homogeneous system of n differential equations:

x′1(t) = a11(t)x1(t) + a12(t)x2(t) + . . .+ a1n(t)xn(t),

...

x′n(t) = an1(t)x1(t) + an2(t)x2(t) + . . .+ ann(t)xn(t).

We can write this system as

x′(t) = A(t)x(t), (6)

where

x(t) =

x1(t)...
xn(t)

 and A(t) =

a11(t) · · · a1n(t)
...

...
an1(t) · · · ann(t)

 .

In [13], the following definition of a fundamental matrix is given:

Definition 2.1. A set of n linear independent solutions x1, . . . , xn to (6) is
called a fundamental system of solutions. We write

X(t) = (x1, . . . , xn)

and call this the fundamental matrix.

2.2 The fundamental matrix for periodic coefficients

For a homogeneous system of differential equations with a constant coeffi-
cient matrix, the fundamental matrix can be computed by using the eigen-
pairs for the coefficient matrix. However, for a homogeneous system of
differential equations with a periodic coefficient matrix, another approach is
needed to obtain the fundamental matrix, as we have seen in Example 1.1.
Floquet’s theorem offers a canonical form for each fundamental matrix of
these periodic systems.

In this section, we will prove three statements about the fundamental system
of a periodic homogeneous system. These assertions will be used to prove
Floquet’s theorem.
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Definition 2.2. A matrix A is a periodic matrix with period T > 0 if
A(t+ T ) = A(t) for every t.

From now on, let A(t) always be a periodic matrix with period T . Con-
sider the Floquet system

x′ = A(t)x. (7)

In [15], the following is stated.

Lemma 2.3. IfX(t) is a fundamental matrix of (7), then so is Y (t) = X(t)B
for any nonsingular constant matrix B.

Proof. Write Y (t) = X(t)B, where B is any nonsingular constant matrix.
By definition of a fundamental matrix, X(t) is nonsingular. Hence, Y (t) is
nonsingular. We have

Y ′ = (XB)′ = X ′B = AXB = AY

so that Y ′(t) = AY (t). Therefore, Y (t) is a fundamental matrix of (7).

Not only multiplying a fundamental matrix by a nonsingular constant
matrix results in a fundamental matrix, also shifting a fundamental matrix
by a period gives this result [2].

Lemma 2.4. If X(t) is a fundamental matrix of (7), then so is X(t+ T ).

Proof. Let Z(t) = X(t+ T ). Note that

Z ′(t) = X ′(t+ T ) = A(t+ T )X(t+ T ) = A(t)Z(t).

Also, detZ(t) = detX(t + T ) ̸= 0 for all t, because X(t) is a fundamental
matrix. Hence, Z(t) is a fundamental matrix of (7).

The shifted fundamental matrix can be written in a particular form.

Lemma 2.5. If X(t) is a fundamental matrix of (7), then there exists a
nonsingular constant matrix C with X(t+ T ) = X(t)C.

Proof. Assume that X(t) is a fundamental matrix of (7). By Lemma 2.4,
Y (t) := X(t+ T ) is a fundamental matrix of (7). Define the matrix

C(t) = X−1(t)Y (t)

for all t. Then
Y (t) = X(t)C(t). (8)

Fix t0 and let C0 = C(t0). By Lemma 2.3,

Y0(t) = X(t)C0 (9)

is a fundamental solution of (7). So we have two fundamental solutions of
(7), namely Y (t) and Y0(t) with Y (t0) = Y0(t0). By uniqueness of solutions,
the matrices in (8) and (9) must be equal. This means that C0 = C(t) for all
t. In other words, C is a constant matrix. Hence, there exists a nonsingular
constant matrix C with X(t+ T ) = X(t)C.
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Remark. Since C is a constant matrix, we can compute it by taking
t = 0. We then have

C = C(0) = X−1(0)Y (0) = X−1(0)X(T ). (10)

If we take the initial condition X(0) = I, then C = X(T ). In conclusion,
we can write

X(t+ T ) = X(t)X(T ) if X(0) = I. (11)

2.3 The logarithm of a nonsingular matrix

Every nonsingular matrix can be written as the exponential of one other
matrix [12, 14].

Lemma 2.6. If C is an n×n nonsingular matrix, then there exists a n×n
(complex) matrix B such that eB = C.

Proof. Write C in the Jordan canonical form

J = P−1CP

where P is a nonsingular matrix consisting of (generalized) eigenvalues of
C. If eB = C were true, then

eP
−1BP = P−1eBP = P−1CP = J.

Therefore, it is sufficient to prove the statement for C having the form of a
Jordan block. Let λj , with j = 1, . . . , r and r ≤ n, denote the eigenvalues
of C. Since C is nonsingular, λj ̸= 0 for all j = 1, . . . , r. Suppose that
C = diag(C1, C2, . . . , Cr) where Cj is of the form

Cj =


λj 1

λj
. . .
. . . 1

λj

 , j = 1, . . . , r.

Let sj × sj be the size of Cj . We have

Cj = λjIj +Nj , j = 1, . . . , r

with the sj × sj identity matrix Ij and the sj × sj matrix

Nj =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0
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having the property N
sj
j = O. We have

∑r
k=1 sk = n, so we constructed

a matrix C of size n × n. If we can prove that for every Cj , there exists a
matrix Bj such that eBj = Cj , then e

B = C. Write

Cj = λj(Ij +
Nj

λj
)

so that we can use the expression

log(1 + x) =

∞∑
k=0

(−1)k

k + 1
xk+1, |x| < 1

for the logarithm of Cj . We can use this expansion for the case x =
Nj

λj
, since

Nj is nilpotent, so that (
Nj

λj
)k = 0 for k large enough. For every j = 1, . . . , r,

we can define

log Cj = Ij log(λj) + log(Ij +
Nj

λj
)

= Ij log(λj) +

∞∑
k=0

(−1)k

k + 1

(Nj

λj

)k+1
.

Having N
sj
j = O, yields

log Cj = Ij log(λj) +

sj−2∑
k=0

(−1)k

k + 1

(Nj

λj

)k+1

:= Ij log(λj) +Mj .

We need to verify that Cj = exp(log(Cj)), in order to get Cj = eBj . We can
write

exp(log(Cj)) = exp(Ij log(λj) +Mj)

= exp(Ij log(λj)) · exp(Mj)

=

λj . . .

λj

 · exp(Mj).

The matrix Mj is nilpotent, since every upper triangular matrix with zeros
on the diagonal is nilpotent. Hence, we can use the expression

exp(Mj) =

sj−1∑
k=0

1

k!
Mk

j .
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We will compute exp(Mj) for the case that Mj is a 4× 4 matrix. For larger
matrices, the proof is analogous.

exp(Mj) =

sj−1∑
k=0

1

k!
Mk

j =


1 0

1
. . . 0

1

+


0 1

λj
− 1

2λ2
j

1
3λ3

j

0 0 1
λj

− 1
2λ2

j

0 0 0 1
λj

0 0 0 0



+


0 0 1

2λ2
j

− 1
2λ3

j

0 0 0 1
2λ2

j

0 0 0 0
0 0 0 0

+


0 0 0 1

6λ3
j

0 0 0 0
0 0 0 0
0 0 0 0



=


1 1

λj
0 0

0 1 1
λj

0

0 0 1 1
λj

0 0 0 1


Computing exp(Mj) with dimension higher than 4, gives the same structure.
Therefore,

exp(log(Cj)) =

λj . . .

λj

 ·


1 1

λj

1
. . .
. . . 1

λj

1



=


λj 1

λj
. . .
. . . 1

λj

 = Cj

Letting Bj = Ij log(λj) +Mj yields

Cj = exp(log(Cj))

= exp(Ij log(λj) +Mj)

= eBj .

Hence, if we define B = diag(B1, . . . , Br) ∈ Cn×n where Bj = Ij log(λj) +
Mj , then

eB = diag(eB1 , . . . , eBr)

= diag(C1, C2, . . . , Cr)

= C

which is what we wanted to prove.
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Remark. The matrix B in Lemma 2.6 is not uniquely determined. For
example, let

eB = C.

Consider B̂ = B + 2πmi · I, with m ∈ Z. Since e2πmi = 1,

eB̂ = eB+2πmi·I = eB · I = C

Example 2.7. We want to find the logarithm of the rotation matrix

R =

(
cos(t) − sin(t)
sin(t) cos(t)

)
.

Since R is diagonalizable, we can find a nonsingular matrix S and a diagonal
matrix D such that R = SDS−1. Then the logarithm of R is given by

logR = S(logD)S−1.

The eigenvalues of R are λ1 = cos(t)− i sin(t) and λ2 = cos(t) + i sin(t) and
the corresponding eigenvectors are v1 = (−i, 1)T and v2 = (i, 1)T . Hence,

R = SDS−1 =

(
−i i
1 1

)(
cos(t)− i sin(t) 0

0 cos(t) + i sin(t)

)(
i
2

1
2

− i
2

1
2

)
.

Then

logR =

(
r11 r12
r21 r22

)
,

with

r11 = r22 =
1

2
log[cos(t)− i sin(t)] +

1

2
log[cos(t) + i sin(t)]

=
1

2
log[(cos(t)− i sin(t))(cos(t) + i sin(t))]

=
1

2
log[cos2(t) + sin2(t)]

=
1

2
log[1] = 0

and

r12 = − i

2
log[cos(t)− i sin(t)] +

i

2
log[cos(t) + i sin(t)],

r21 =
i

2
log[cos(t)− i sin(t)]− i

2
log[cos(t) + i sin(t)].

In Figure 1, the graphs of r12 and r21 are given on the interval [−6.3, 6.3].
The lines in these figures intersect the t-axis at 2πn for every n ∈ Z and the
slope of the graph of r12 and r21 is -1 and 1 respectively. We can conclude
that

logR =

(
0 −t− 2πn

t+ 2πn 0

)
.
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Figure 1: Plots of r12 and r21.

2.4 Floquet’s Theorem

Using the previous results, the following can be proven.

Theorem 2.8. (Floquet) The fundamental matrix X(t) of (7) with
X(0) = I has a Floquet normal form

X(t) = Q(t)eBt

where Q ∈ C1(R) is T -periodic and the matrix B ∈ Cn×n satisfies the
equation C = X(T ) = eBT . We have Q(0) = I and Q(t) is an invertible
matrix for all t.

Proof. By Lemma 2.5, there exists a nonsingular constant matrix C with

X(t+ T ) = X(t)C.

Using (11) and Lemma 2.6 gives

C = X(T ) = eBT

for some matrix B. If Q(t) = X(t)e−Bt, then for all t,

Q(t+ T ) = X(t+ T )e−B(t+T )

= X(t)Ce−Bte−BT

= X(t)eBT e−Bte−BT

= X(t)e−Bt

= Q(t).

This means that
X(t) = Q(t)eBt

where Q ∈ C1(R) is T -periodic and Q(0) = X(0)e0 = I. The matrix e−Bt

is invertible for all t, because exponentials of square matrices are invertible,
and X(t) is invertible. Hence, Q(t) is invertible.
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3 Applications

3.1 The Lyapunov-Floquet transformation

The fundamental matrix X(t) of (7) satisfies X(t)′ = A(t)X(t). Using its
Floquet normal form X(t) = Q(t)eBt with the given conditions in Theorem
2.8, we can rewrite it as

Q′(t)eBt +Q(t)BeBt = A(t)Q(t)eBt

Dividing eBt on both sides and leaving out the independence on t gives

Q′ +QB = AQ.

Next, we multiply this equation on both sides by the n × 1 vector y. This
yields

Q′y +QBy = AQy. (12)

Making the substitution x = Qy in x′ = Ax gives

Q′y +Qy′ = AQy (13)

Combining (12) and (13) yields

Q′y +Qy′ = Q′y +QBy

implying that
y′ = By.

Hence, the substitution x = Q(t)y transforms the system x′ = A(t)x with
a periodic coefficient matrix A, to the system y′ = By with the constant
coefficient matrix B. In short, once we have obtained Q(t) and solved the
(easier) system y′ = By for y, we know the solution x for x′ = A(t)x by
computing the Lyapunov-Floquet transformation x = Q(t)y. This can be
done easily when the system of differential equations is one-dimensional. To
make it more clear, consider the following example.

Example 3.1. Let us solve the one-dimensional differential equation

x′ = sin(t)x (14)

by finding a Lyapunov-Floquet transformation

x = q(t)y (15)

where q is 2π-periodic, so that (14) reduces to

y′ = by (16)
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where b is a constant. Differentiating equation (15) and setting this equal
to (14) gives

q′(t)y + q(t)y′ = sin(t)q(t)y

This implies

q′(t)y = q(t)
(
sin(t)y − y′

)
.

Dividing by y on both sides and using that b = y′

y results in the following
differential equation

dq(t)

dt
=
(
sin(t)− b

)
q(t). (17)

We want to solve this for q(t). We do this by separating variables and
integrating both sides.

(17) =⇒
∫
dq(t)

q(t)
=

∫ (
sin(t)− b

)
dt

=⇒ log|q(t)| = − cos(t)− bt+ c1

=⇒ q(t) = c2e
− cos(t)−bt

for some real constant c2. Using q(0) = q(2π) yields c2e
−1 = c2e

−1−2bπ,
implying that b = 0. Hence,

q(t) = c2e
− cos(t)

is the solution to (17). We can solve (16) by the same procedure. The
solution is y = c3e

bt = c3 (since b = 0), for some real constant c3. Therefore,
the solution to (14) is

x = q(t)y = c2c3e
− cos(t) := ce− cos(t).

Of course, we could have solved (14) by also separating variables and in-
tegrating both sides, but this was to illustrate how one could use a Lyapunov-
Floquet transformation to solve a periodic differential equation.

For a system of differential equations x′ = A(t)x with dimension higher
than 1, the computation of the unknown x is not so easy. If we want to
use the Lyapunov-Floquet transformation, we have to compute B and Q.
These matrices cannot be found without knowing the fundamental matrix
solution for x′ = A(t)x, because it follows from Theorem 2.8 that B =
1
T log(X(T )) and Q(t) = X(t)e−Bt. In the following example, X(t) and B
will be computed so that the matrix Q can be found by using the Lyapunov-
Floquet transformation.
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Example 3.2. We want to compute the Floquet-normal form for the two-
dimensional differential equation

x′ =

(
cos(t) − sin(t)
sin(t) cos(t)

)
x. (18)

Step 1. We wish to find a fundamental matrix X(t) satisfying X(0) = I.
Take x = (x1, x2)

T and write z = x1 + ix2. Then

z′ = x′1 + ix′2

= cos(t)x1 − sin(t)x2 + i(sin(t)x1 + cos(t)x2)

= cos(t)(x1 + ix2) + i sin(t)(x1 + ix2)

= (cos(t) + i sin(t))(x1 + ix2)

= eitz.

Hence, we are left with a one dimensional differential equation. We can solve
this by separating variables and integrating both sides.

dz

dt
= eitz =⇒

∫
dz

z
=

∫
eitdt

=⇒ log|z| = −ieit + c1

=⇒ z(t) = c2e
−ieit

for some complex number c2. Writing c2 = a+ bi yields

z(t) = (a+ bi)e−i(cos(t)+i sin(t))

= (a+ bi)esin(t)e−i cos(t)

= (a+ bi)esin(t)(cos(cos(t))− i sin(cos(t)))

= x1(t) + ix2(t)

implying that{
x1(t) = aesin(t) cos(cos(t)) + besin(t) sin(cos(t))

x2(t) = −aesin(t) sin(cos(t)) + besin(t) cos(cos(t)).

Hence, a fundamental matrix for (18) is given by

X̃(t) =

(
esin(t) cos(cos(t)) esin(t) sin(cos(t))

−esin(t) sin(cos(t)) esin(t) cos(cos(t))

)
.

Let X(t) := X̃(t)X̃(0)−1 to assure that X(0) = I. We have

X̃(0) =

(
cos(1) sin(1)
− sin(1) cos(1)

)

16



so that

X̃−1(0) =

(
cos(1) − sin(1)
sin(1) cos(1)

)
.

Therefore, a fundamental matrix satisfying X(0) = I is given by

X(t) =

(
esin(t) cos(1− cos(t)) −esin(t) sin(1− cos(t))

esin(t) sin(1− cos(t)) esin(t) cos(1− cos(t))

)
=

(
esin(t) 0

0 esin(t)

)
︸ ︷︷ ︸

:=S(t)

(
cos(1− cos(t)) − sin(1− cos(t))
sin(1− cos(t)) cos(1− cos(t))

)
︸ ︷︷ ︸

:=R(t)

.

Step 2. Now we want to find the constant matrix B. By Theorem
2.8, it satisfies X(T ) = eBT with period T . From this, it follows that
B = 1

T log(X(T )). By example 2.7, the logarithm of the rotation matrix
R(t) is given by

log R(t) = (1− cos(t) + 2πn)

(
0 −1
1 0

)
for any integer n. Since S and R commute

log(X(t)) = log(S(t)R(t))

= log S(t) + log R(t)

=

(
sin(t) 0
0 sin(t)

)
+ (1− cos(t) + 2πn)

(
0 −1
1 0

)
=

(
sin(t) −1 + cos(t)− 2πn

1− cos(t) + 2πn sin(t)

)
.

Hence,

B =
1

2π
log(X(2π)) =

(
0 −n
n 0

)
for any integer n. We observe that B is a constant matrix, as was derived
at the beginning of this section.

Step 3. The next step is to find the fundamental matrix Y (t) for the
system y(t)′ = By(t). Taking y = (y1, y2)

T results in the following system
of equations: {

y′1 = −ny2
y′2 = ny1.

(19)

The solution to this system is given by

y1(t) = c1 cos(nt) + c2i sin(nt)

y2(t) = c1 sin(nt)− c2i cos(nt)
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If we let c1 = 1 and c2 = i, a fundamental matrix solution for the problem
y(t)′ = By(t) is given by

Y (t) =

(
cos(nt) − sin(nt)
sin(nt) cos(nt)

)
.

Step 4. The periodic matrix Q(t) can be computed using the fundamen-
tal matrix form of the Lyapunov-Floquet transformation, X(t) = Q(t)Y (t).
Multiplying on the left by the inverse of Y (t) yields

Q(t) = X(t)Y −1(t)

=

(
esin(t) cos(1− cos(t)) −esin(t) sin(1− cos(t))

esin(t) sin(1− cos(t)) esin(t) cos(1− cos(t))

)(
cos(nt) sin(nt)
− sin(nt) cos(nt)

)
:=

(
q11(t) q12(t)
q21(t) q22(t)

)
where

q11(t) = esin(t) cos(1− cos(t)) cos(nt) + esin(t) sin(1− cos(t)) sin(nt)

q12(t) = esin(t) cos(1− cos(t)) sin(nt)− esin(t) sin(1− cos(t)) cos(nt)

q21(t) = esin(t) sin(1− cos(t)) cos(nt)− esin(t) cos(1− cos(t)) sin(nt)

q22(t) = esin(t) sin(1− cos(t)) sin(nt) + esin(t) cos(1− cos(t)) cos(nt).

In this example, Q was computed by using the Lyapunov-Floquet trans-
formation. This was done in step 3 and step 4. If finding the fundamental
matrix for y′(t) = By(t) is difficult, one can try to find Q(t) in a different
way, namely, by using the relation Q(t) = X(t)e−Bt.

In conclusion, if the periodic system x′(t) = A(t)x(t) is one-dimensional, the
Lyapunov-Floquet transformation is useful for finding the solution x(t). In
this case, the 1×1 matrices B and Q(t) can be found without knowing x(t).
If the dimension of the system is higher than 1, the Lyapunov-Floquet trans-
formation is useful when one wants to compute the Floquet normal form
X(t) = Q(t)eBt explicitly. Unfortunately, in this case, the fundamental
matrix solution is needed in order to find the matrices B and Q(t). The
constant matrix B can be found by the formula B = 1

T log(X(T )) and the
periodic matrix Q(t) can be computed by applying the Lyapunov-Floquet
transformation.

3.2 Floquet multipliers

We continue using the fundamental matrix X(t) for (7). In Lemma 2.5, we
proved that

X(t+ T ) = X(t)C
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where C is a nonsingular constant matrix. In (10), it was mentioned that
we can write C = X−1(0)X(T ). This matrix C is known as the monodromy
matrix.

Definition 3.3. The eigenvalues of the monodromy matrix are called the
Floquet multipliers of (7).

Definition 3.4. The eigenvalues of the matrix B of the Floquet normal
form X(t) = Q(t)eBt, are called the Floquet exponents of (7).

Since the monodromy matrix is nonsingular, its eigenvalues are nonzero.
Therefore, we can state the following.

Corollary 3.5. Let λ1, . . . , λn be the Floquet multipliers and µ1, . . . , µn be
Floquet exponents for (7). We can write

λj = eµjT

for all j = 1, . . . , n.

Proof. Write the matrix B ∈ Cn×n of the Floquet normal form in the Jordan
canonical form

J = P−1BP,

where P is some nonsingular matrix. We have J = diag(J1, . . . , Jr), with
r ≤ n, where

Jk =


µk 1

µk
. . .
. . . 1

µk

 , k = 1, . . . , r.

Then

C = X(T ) = eBT = ePJP−1T = PeJTP−1 = P diag(eJ1T , . . . , eJrT )P−1.

This means that the eigenvalues of C, given by λj , are the same as the
eigenvalues of eJT , which are given by eµjT . Hence,

λj = eµjT

for all j = 1, . . . , n.

Remark. The Floquet exponents are not uniquely determined by (7).
To see this, assume eµjT = λj and let µ̂j = µj +

2πmi
T where m ∈ Z. Since

e2πmi = 1,

eµ̂jT = e(µj+
2πmi

T
)T = eµjT e2πmi = λj
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3.3 Stability of the Floquet system

Floquet multipliers are very useful in stability analyses of periodic systems.
Recall the following definitions [7].

Definition 3.6. An eigenvalue λ of A is simple if its algebraic multiplicity
equals 1.

Definition 3.7. Let λ be an eigenvalue of a matrix A. The geometric
multiplicity of λ is dim(Null(A−λI)), in other words, the number of linearly
independent eigenvectors associated with λ.

Definition 3.8. An eigenvalue λ of A is semisimple if its geometric multi-
plicity equals its algebraic multiplicity.

A simple eigenvalue is always semisimple, but the converse is not true.
Recall the following definition [13].

Definition 3.9. Consider the system

x′ = A(t)x in V = [t0,∞) (20)

and assume A(t) is T -periodic and continuous in V . The solution ψ(t) to
the system (20) is

1. stable on V if for every ϵ > 0, there exist a δ > 0, such that

|ψ(t0)− x(t0)| < δ =⇒ |ψ(t)− x(t)| < ϵ, ∀t ≥ t0

and the solution x(t) is defined for all t ∈ V .

2. asymptotically stable on V if it is stable and if in addition

lim
t→∞

|ψ(t)− x(t)| → 0.

3. unstable if it is not stable on V .

It can be proven that the following stability conditions hold for the Flo-
quet system [1, 12].

Theorem 3.10. Assume λ1, . . . , λn are Floquet multipliers of system (7).
Then the zero solution of (7) is

1. asymptotically stable on [0,∞) if and only if |λj | < 1 for all i =
1, . . . , n.

2. stable on [0,∞) if |λj | ≤ 1 for all i = 1, . . . , n and whenever |λj | = 1,
λj is a semisimple eigenvalue.

3. unstable in all other cases.
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Note that for the Floquet exponents, the condition |λj | < 1, |λj | ≤ 1
and |λj | > 1 is equivalent to Re µj < 0, Re µj ≤ 0 and Re µj > 0.

Example 3.11. We want to find the Floquet multipliers and Floquet ex-
ponents for the following system

x′(t) =

(
−1 1

0 1 + cos(t)− sin(t)
2+cos(t)

)
x. (21)

Let x = (x1, x2)
T . We want to find the fundamental matrix for (21) so

that we can compute the monodromy matrix. Start with solving the second
ODE,

dx2
dt

=
(
1 + cos(t)− sin(t)

2 + cos(t)

)
x2. (22)

Separating variables and integrating both sides yields∫
dx2
x2

=

∫
1 + cos(t)− sin(t)

2 + cos(t)
dt.

We obtain
log(x2) = t+ sin(t) + log(2 + cos(t)) + c1,

implying that

x2 = et+sin(t)+c1(2 + cos(t)) := c2e
t+sin(t)(2 + cos(t))

is the solution to (22). Now solve the first ODE,

dx1
dt

= −x1 + c2e
t+sin(t)(2 + cos(t)). (23)

It is of the form x′1+P (t)x1 = R(t), where R(t) = c2e
t+sin(t)(2+cos(t)) and

P (t) = 1. Therefore, we can use the integrating factor M(t) = e
∫ t
0 P (s)ds =

e
∫ t
0 ds = et. Then d

dt [x1M(t)] = R(t)M(t) gives

d

dt
[x1e

t] = c2e
2t+sin(t)(2 + cos(t)).

Integrating both sides with respect to t yields

x1e
t = c2e

2t+sin(t) + c3.

We obtain the solution to (23) by multiplying both sides with e−t,

x1 = c2e
t+sin(t) + c3e

−t.
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If we let c2 = c3 = 1, a fundamental matrix for the system in (21) is given
by

X(t) =

(
et+sin(t) e−t

et+sin(t)(2 + cos(t)) 0

)
.

We get

X(T ) = X(2π) =

(
e2π e−2π

3e2π 0

)
and the inverse of X(t) is

X−1(t) =

(
0 e−t−sin(t)

2+cos(t)

et − et

2+cos(t)

)

so that

X−1(0) =

(
0 1

3
1 −1

3

)
.

Hence, the monodromy matrix is

C = X−1(0)X(T ) =

(
e2π 0
0 e−2π

)
.

Thus the Floquet multipliers are λ1 = e2π and λ2 = e−2π and the Floquet
exponents are µ1 = 1 and µ2 = −1. We have |λ1| > 1, so by Theorem 3.10,
the solution is unstable.

3.4 Hill’s differential equation

A widely used periodic differential equation is the second order homogeneous
equation

y′′ + g1(t)y
′ + g0(t)y = 0. (24)

where gi(t) = gi(t + T ), for i = 0, 1 with T > 0 [9]. We want to write this
system in the form of a Floquet system so that we can use Floquet multipliers
to investigate its stability. The two-dimensional first order system associated
with (24) is given by

x′ = A(t)x with A(t) =

(
0 1

−g0(t) −g1(t)

)
where x = (y, y′)T .

The first detailed theory about time-dependent periodic systems was
developed by the French mathematician Émile Léonard Mathieu in 1868 [9].
He introduced the Mathieu equation,

y′′ + (a− 2q cos(2t))y = 0,
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(a) Vibration of a homo-
geneous drumhead

(b) The inverted pendu-
lum

Figure 2: Applications of Mathieu’s equation

where a is a constant parameter and 2q a parameter which represents the
magnitude of the time variation. It is commonly used in vibration problems
such as [9, 11]

• the vibration of a homogeneous elliptic drumhead (see Figure 2a);

• the inverted pendulum, such as the Segway (see Figure 2b);

• the stability of a floating body, for instance a vessel;

• quadrupole mass analyzers and quadrupole ion traps for mass spec-
trometry.

In particular, we are interested in a generalization of Mathieu’s equation,
called Hill’s equation:

y′′ + f(t)y = 0,

f(t) = f(t+ T ) ∀t ∈ R,
(25)

where f(t) is piecewise continuous and T > 0. It is named after the American
astronomer and mathematician George William Hill (1838-1914). His most
important work was the study of the 4-body problem to analyze the motion
of the moon around the earth (1886).

The equation in (25) is equivalent to the two-dimensional first order
system

x′ = A(t)x with A(t) =

(
0 1

−f(t) 0

)
. (26)

where x = (y, y′)T . We want to investigate the stability of Hill’s equation.
As discussed in Section 3.3, we can do this by looking at the Floquet mul-
tipliers of system (26). Assume that a fundamental matrix for (26) is given
by

X(t) =

(
x11(t) x12(t)
x21(t) x22(t)

)
.
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To satisfy X(0) = I, let x11(t) = x22(t) = 1 and x12(t) = x21(t) = 0. Since
X−1(0) = I, the monodromy matrix is of the form

C = X−1(0)X(T ) =

(
x11(T ) x12(T )
x21(T ) x22(T )

)
.

The Floquet multipliers are given by the solutions of the equation

det(C − λI) = λ2 − (trC)λ+ detC = 0.

Lemma 3.12. The monodromy matrix C of Hill’s differential equation sat-
isfies detC = 1.

Proof. Let X(t) be the fundamental matrix and define W (t) = detX(t).
Then

W (0) = x11(0)x22(0)− x12(0)x21(0) = 1. (27)

Using (26) and the fundamental matrix, we get the following system of
equations: {

x′11 = x21
x′21 = −f(t)x11

{
x′12 = x22
x′22 = −f(t)x12.

(28)

Therefore,

dW

dt
= x′11(t)x22(t) + x11(t)x

′
22(t)− x′21(t)x12(t)− x21(t)x

′
12(t)

= x21(t)x22(t)− x11(t)f(t)x12(t) + f(t)x11(t)x12(t)− x21(t)x22(t)

= 0.

This implies that W (t) is constant, namely W (t) = 1 for all t, as computed
in (27). Hence,

detC = detX(T ) =W (T ) = 1.

Consequently, we get

det(C − λI) = λ2 − (trC)λ+ 1

so that the Floquet multipliers are given by

λ± =
trC ±

√
trC2 − 4

2
.

Using Theorem 3.10, the following conclusions can be drawn [6].
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Case 1: | trC| > 2. If trC > 2, then λ+ > 1, and if trC < −2, then
λ− < −1. In either case, the magnitude of the eigenvalue is larger than 1,
so the zero solution is unstable.

Case 2: | trC| < 2. Then λ± = trC
2 ± iβ with β > 0. Because the

determinant of C equals the product of its eigenvalues, that is, λ+λ− = 1,
it follows that |λ+| = |λ−| = 1. The algebraic multiplicity of both λ+ and
λ− is 1, so the eigenvalues are simple, and hence, semisimple. We conclude
that the zero solution is stable, but not asymptotically stable.

Case 3: | trC| = 2. If trC = 2, then λ± = 1, and if trC = −2, then
λ± = −1. If the eigenvalue is semisimple, then the zero solution is stable.
Otherwise, the zero solution is unstable.

The theory discussed in this section can be used for stability analyses
of a Hill equation. The ODEs with the initial conditions satisfying X(0) =
I can be solved numerically. Setting t = T , one can compute the value
for trC = x11(T ) + x22(T ). If | trC| < 2, the solution is stable and if
| trC| > 2, the solution is unstable. By only solving the system for one
forcing period, conclusions can be drawn about larger time behavior of the
solution. Without using Floquet theory, one would have to numerically solve
the system for a larger time t to investigate the behavior of the solution [10].
A particular example of a Hill equation will be treated now [3].

Example 3.13. The stability of the inverted pendulum, illustrated in Fig-
ure 3, is determined from the Hill equation (25). Let us find an expression
for the periodic function f(t) assuming that the pendulum is frictionless and
has a massless rod. By Newton’s second law of linear motion and circular
motion, we have

Fpivot = ma = m
d2y

dt2
, (29)

τnet = I
d2θ

dt2
= ml2

d2θ

dt2
, (30)

where Fpivot is the force acting on the pivot, τnet the netto external torque
and I the moment of inertia. Without any help, the mass above the pivot
point will fall over. In order to remain upright, a torque can be applied
at the pivot point. The formula of the torque τ is given by τ = rF sin(θ),
where F is the force acting on the particle and r is the distance from the
axis of rotation to the particle. So in our case, the gravitational torque is

τgrav = rFgrav sin(θ) = mgl sin(θ).

The harmonic motion of the pendulum can be expressed as y(t) = A cos(ωt)
so that the force Fpivot in (29) is given by

Fpivot = −mω2A cos(ωt).
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Figure 3: Inverted pendulum

The torque exerted by the pivot point is given by

τpivot = rFpivot sin(θ) = −mlω2A cos(ωt) sin(θ).

Hence, the total torque τnet = τgrav + τpivot yields the equation

ml2
d2θ

dt2
= mgl sin(θ)−mlω2A cos(ωt) sin(θ)

implying that

d2θ

dt2
+ (

g

l
− ω2A

l
cos(t)) sin(θ) = 0. (31)

Taking sin(θ) ≈ θ for small oscillations, (31) takes the form of a Hill equation

θ′′ + f(t)θ = 0, (32)

where f(t) = a+ b cos(t) is 2π-periodic and a = g
l and b = −ω2A

l .

We can use the stability analysis of Hill’s equation to check for which val-
ues of a and b the pendulum equation (32) is stable. We do this by nu-
merically solving the monodromy matrix M and storing the values for a
and b for which | trM | < 2. The computations are done by the program
stability diagram.m which makes use of the function file hill equation.m.
The codes can be found in Appendix A. In Figure 4, the results are given,
where a dot represents a stable solution for the corresponding values for a
and b.

26



-2 0 2 4 6 8 10

a

0

1

2

3

4

5

6

7

8
b

Stable

Figure 4: Stability diagram for θ′′ + (a+ b cos(t))θ = 0

The sign of b does not influence the stability of the motion of the pendu-
lum. That is because a change of sign in b = −ω2A

l corresponds to a change
of sign in A. Therefore, the stability diagram is symmetric around the a-axis.

Consider the inverted pendulum with length l = 1.64m , rotational speed
ω = 3 rad/sec and amplitude A = −0.9m. Then a ≈ 5.98 and b ≈ 4.94,
so according to Figure 4 we expect a stable solution θ = (θ1, θ2)

T . Indeed,
when we look at Figure 5a and 5b, the solution is stable.
When we change the amplitude to A = −1.3m, we get b ≈ 7.13, and expect
an unstable solution. Indeed, when we look at Figure 5c and 5d, the solution
is unstable.
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(a) Plot of θ1 when A = −0.9
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(b) Plot of θ2 when A = −0.9
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(c) Plot of θ1 when A = −1.3
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(d) Plot of θ2 when A = −1.3

Figure 5: Graphs of solutions θ for varying amplitude

In conclusion, the stability of a Hill equation can be analyzed by looking at
the trace of the corresponding monodromy matrix. In this case, the Floquet
multipliers need not be computed, which saves quite some computational
cost.
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A Matlab code

Hill equation hill equation.m

1 % H i l l equat ion y ’ ’+ f ( t ) y=0 where f ( t )=a+bcos ( t )
2 % Written in to two f i r s t order d i f f e r e n t i a l equat ions
3 % y ’(1)=y (2)
4 % y’(2)=−(a+b∗ cos ( t ) )∗ y (1 )
5 f unc t i on [ dy dt ] = h i l l e q u a t i o n ( t , y , a , b )
6 dy dt = [ y ( 2 ) ; −(a+b∗ cos ( t ) )∗ y ( 1 ) ] ;

Making a stability diagram for Hill’s equation stability diagram.m

1 % To p lo t the s t a b i l i t y diagram f o r the Mathieu Equation
2 % of the form y ’ ’+( a+b∗ cos ( t ) ) y = 0
3

4 %c l e a r a l l
5 c l o s e a l l
6 format long
7

8 a= [ −1 : 0 . 5 : 10 ] ;
9 b = [ 0 : 0 . 5 : 8 ] ;

10

11 f o r i =1: l ength ( a )
12 f o r j =1: l ength (b)
13 % so l v e H i l l ’ s equat ion with i n i t i a l c ond i t i on s
14 % (1 ,0 )ˆT and (0 ,1 )ˆT f o r 0 <= t <= 2 pi
15 tspan = [ 0 . 0 2∗ pi ] ;
16 [ t1 , y1 ] = ode45 (@( t , y ) h i l l e q u a t i o n ( t , y , a ( i ) ,
17 b( j ) ) , tspan , [ 1 . 0 ; 0 . 0 ] ) ;
18 [ t2 , y2 ] = ode45 (@( t , y ) h i l l e q u a t i o n ( t , y , a ( i ) ,
19 b( j ) ) , tspan , [ 0 . 0 ; 1 . 0 ] ) ;
20

21 [ nrows1 , nco l s1 ] = s i z e ( y1 ) ;
22 [ nrows2 , nco l s2 ] = s i z e ( y2 ) ;
23

24 % computation o f monodromy matrix
25 M = [ y1 ( nrows1 , : ) ’ , y2 ( nrows2 , : ) ’ ] ;
26 trM( j )= t ra c e (M) ;
27

28 % computation o f f l o qu e t mu l t i p l i e r s
29 e i gv ( j , : )= e i g (M) ;
30 end
31
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32 % crea t e l i s t o f t r a c e (M)
33 TrM(1+( i −1)∗ l ength (b ) : i ∗ l ength (b))=trM ;
34

35 % crea t e l i s t o f f l o qu e t mu l t i p l i e r s
36 Eigv (1+( i −1)∗ l ength (b ) : i ∗ l ength (b ) , : )= e igv ;
37

38 % crea t e l i s t o f a l l p o s s i b l e combinat ions o f a and b
39 [A,B] = meshgrid ( a ( i ) , b ) ;
40 c=cat (2 ,A’ ,B ’ ) ;
41 d=reshape ( c , [ ] , 2 ) ;
42 abco l (1+( i −1)∗ l ength (b ) : i ∗ l ength (b ) , : )=d ;
43 end
44 aco l=abco l ( : , 1 ) ;
45 bco l=abco l ( : , 2 ) ;
46

47 % overview o f a and b with corre spond ing f l o qu e t mu l t i p l i e r s
48 T=tab l e ( aco l , bcol , Eigv ) ;
49 T. Prope r t i e s . VariableNames = { ’ a ’ ’ b ’ ’ f l o q u e t mu l t i p l i e r s ’ } ;
50

51 % l i s t the va lue s f o r a and b when TrM<2
52 f o r k=1: l ength ( Eigv )
53 i f abs (TrM(k))<2
54 Stab (k , 1 : 2 )= [ aco l ( k ) bco l ( k ) ] ;
55 end
56 end
57

58 % make s t a b i l i t y diagram
59 p lo t ( Stab ( : , 1 ) , Stab ( : , 2 ) , ’ . ’ )
60 g r id on ;
61 g r id minor ;
62 ax = gca ;
63 ax . GridColor = [ 0 0 0 ] ;
64 ax . GridAlpha = 0 . 2 ;
65 hold on ;
66 t i t l e ( ’ S t a b i l i t y diagram f o r x ’ ’ ’ ’+(a+bcos ( t ) ) x=0 ’ )
67 ax i s on
68 x l ab e l ( ’ a ’ ) ;
69 y l ab e l ( ’b ’ ) ;
70 l egend ({ ’ S tab le ’ })
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