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Liapunov-Floquet
Transformation: Computation
and Applications to

Periodic Systems

S. C. Sinha In this paper, a new analysis technique in the study of dynamical systems with
Protessor. periodically varying parameters is presented. The method is based on the fact that
Mem. ASME all linear periodic systems can be replaced by similar linear time-invariant systems

through a suitable periodic transformation known as the Liapunov-Floquet (L-F)
transformation. A general technique for the computation of the L-F transformation
matrices is suggested. In this procedure, the state vector and the periodic matrix of
the linear system equations are expanded in terms of the shifted Chebyshev polynomi-
als over the principal period. Such an expansion reduces the original differential
problem to a set of linear algebraic equations from which the state transition matrix
(STM ) can be constructed over the period in closed form. Application of Floquet
theory and eigenanalysis to the resulting STM yields the L-F transformation matrix
in a form suitable for algebraic manipulations. The utility of the L-F transformation
in obtaining solutions of both linear and nonlinear dynamical systems with periodic
coefficients is demonstrated. It is shown that the application of L-F transformation
to free and harmonically forced linear periodic systems directly provides the condi-
tions for internal and combination resonances and external resonances, respectively.
The application of L-F transformation to quasilinear periodic systems provides a
dynamically similar quasilinear systems whose linear parts are time-invariant and
the solutions of such systems can be obtained through an application of the time-
dependent normal form theory. These solutions can be transformed back to the origi-
nal coordinates using the inverse L-F transformation. Two dynamical systems,
namely, a commutative system and a Mathieu type equation are considered to demon-
strate the effectiveness of the method. It is shown that the present technique is
virtually free from the small parameter restriction unlike averaging and perturbation
procedures and can be used even for those systems for which the generating solutions
do not exist in the classical sense. The results obtained from the proposed technique
are compared with those obtained via the perturbation method and numerical solu-
tions computed using a Runge-Kutta type algorithm.
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1 Introduction

The study of systems governed by a set of ordinary differen-
tial equations with periodic coefficients is of great importance
in diverse branches of science and engineering. The stability
problem associated with these equations involves analysis of a
set of linear ordinary differential equations with periodic coef-
ficients. The same mathematical problem also arises in the study
of nonlinear autonomous systems in the event when the stability
of a particular periodic solution needs to be investigated. Be-
sides the stability issues, the linear control problems associated
with rotating systems also lead to the same type of equations.

Hill’s method ( Yakubovich and Starzhinski, 1975), perturba-
tion techniques (Nayfeh and Mook, 1979) and Floquet theory
(Coddington and Levinson, 1955) are some of the most com-
monly used mathematical methods in the analysis of linear peri-
odic systems. It is well-known that the Hill’s approach is only
suitable for determining the stability boundaries for such sys-
tems. The perturbation and averaging methods have their own
limitations due to the fact that they can only be applied to
systems where the periodic coefficients can be expressed in
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terms of a small parameter. Also, they are suitable for relatively -

smaller systems. Therefore, Floquet analysis coupled with a
numerical integration code has served as the main tool in various
applications (Friedmann et al., 1977). Most commonly a fourth
or higher-order Runge-Kutta type numerical code is employed
in a “‘single pass’’ scheme for an efficient computation of the
state transition matrix (Peters et al., 1971; Friedmann et al.,
1977). Recently, Sinha and his associates (Sinha and Wu,
1991a; Sinha et al., 1993; Joseph et al., 1993) have developed
a new technique for the stability and control analysis of linear
periodic systems through an application of the Chebyshev poly-
nomials in conjunction with the Floquet theory.

Although the linearized equations play an important role in
the stability analyses, they fail to provide answers to many
questions associated with the nonlinear systems. For a better
understanding, one must investigate the nonlinear equations of
the perturbed motion. For obvious reasons solutions of such
equations have not been treated extensively in the literature.
Averaging (Sanders and Verhulst, 1985) and perturbation tech-
niques (Nayfeh and Mook, 1979) have been found applicable
to such systems under rather restrictive conditions. In both
methods it is tacitly assumed that a generating solution exists
and the periodic terms as well as the nonlinearities can be
expressed in terms of a suitable small parameter. On the other
hand, one can always apply standard numerical techniques such
as shooting methods (Seydel, 1981) and provide strategies for
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calculating branch points, etc. But such methods are certainly
not free from numerical instabilities and require vast amount of
computations in order to obtain global information. An alternate
method is to construct the Poincaré map by which the original
nonautonomous differential equation is replaced by a set of
difference equations which do not explicitly depend on time.
However, in order to obtain the corresponding difference equa-
tions, one must construct an exact, an approximate or a numeri-
cal solution of a system of nonlinear time-varying equations.
Since most of the time one must settle for an approximate or a
numerical representation of the point mapping, recent studies
(Hsu, 1987; Guttalu and Flashner, 1990) have suggested the
use of a combination of Runge-Kutta and perturbation technique
or a purely numerical scheme for obtaining a truncated version
of the Poincaré map. It should be noted that such mappings can
be computed to an arbitrary degree of precision and play an
important role in global analysis. However, the computational
problems associated with such techniques once again cannot be
ignored.

Another school of thought in dealing with such systems has
been to use the Liapunov-Floquet Theorem so that the linear
periodic systems can be transformed to a new set of similar
equations which are totally time-invariant. However, to this date
there are no methods available to compute this transformation
matrix for general periodic systems as indicated by Verhulst
(1990) and Bellman (1970a). For certain special classes of
linear systems, called the commutative systems, it is possible
to obtain the Liapunov-Floquet transformation in a closed form,
as shown in the literature (Wu, 1978; Lukes, 1982). In order
to determine such a transformation for a general periodic system
one must compute the state transition matrix (STM) as an ex-
plicit function of time. Recently Sinha and his coauthors (Sinha
and Wu, 1991a; Sinha et al., 1993; Wu and Sinha, 1994) have
been successful in obtaining the state transition matrices of
general linear periodic systems in numerical as well as symbolic
forms using the shifted Chebyshev polynomials of the first kind.
These studies have shown that the STMs can be computed to
a desired accuracy by including the appropriate number of terms
in Chebyshev expansion. The method is computationally effi-
cient when compared with the standard numerical schemes and
suitable for relatively large problems (see Sinha and Wu, 1991a
and Wu and Sinha, 1994, where systems up to dimensions 20
X 20 have been analyzed). Further, while analyzing a 16 X 16
periodic system, Joseph et al. (1993 ) have studied the conver-
gence of the exponents of the monodromy matrix (which im-
plies the convergence of the elements of the STM) as a function
of the number of terms in Chebyshev expansion. Sinha and Wu
(1991) also presented an error bound analysis for this technique.
The extension to parametrically excited nonlinear problems has
been undertaken by Sinha et al. (1993). The objective of this
paper is to exploit the Chebyshev expansion technique for the
computation of the L-F transformation matrix associated with
a general periodic system and to demonstrate its application in
the analyses of linear and quasilinear dynamical systems. A
perturbation solution is also included following the approach
suggested by Yakubovich and Starzhinski (1975). It is demon-
strated that for a parametrically excited free and forced linear
system, the conditions for resonance can be explicitly obtained
from the transformed equations. As an example, the responses
of a free and forced Mathieu equation under resonance condi-
tions are computed and compared with numerical solutions. In
the second part, it is shown that the original quasilinear periodic
system can be transformed via the L-F transformation to a dy-
namically similar form in which the linear part is time-invariant.
The analysis of the transformed equations has been carried out
through the use of time-dependent normal form theory. The
solutions thus obtained can be mapped back to the original
coordinates by applying the inverse L-F transformation and
compared with the numerical results obtained by a Runge-Kutta
type algorithm. A nonlinear Mathieu type equation is chosen
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to demonstrate the procedure. The proposed technique is appli-
cable to a wide class of problems including the situations where
the generating solutions do not exist and/or the parameter multi-
plying the linear periodic terms are no longer small. It is also
shown that in many cases it is possible to obtain approximate
analytical solutions which compare extremely well with the
numerical solutions. The authors believe that the solutions of
this nature for a quasilinear periodic systems have been pre-
sented for the very first time.

2 Dynamical Equations of Time-Periodic Systems

In many engineering applications time-periodic dynamic sys-
tems appear naturally. Such systems may be represented by
differential equations of the form

X=A()X + ex(x,t) +es(x,t) + ...+ exx,t)
+ O(x]**L, ) + F(Q, t) (1)

where the n X n matrix A(t) and the n X [ nonlinear terms
e,(x, t) are T-periodic functions of z. The forcing vector F({2,
t) is a periodic function of period 27/€2. It is to be noted that
the nonlinear terms e,(+) in Eq. (1) represent homogeneous
monomials in x; of order k. For later use, we rewrite the above
equation as

x=A(t)x + E(x,t) + F(Q, t) (2)

where E(-) is appropriately defined in terms of e.(-)’s. The
linear homogeneous part of Eq. (2) is, of course, given by

x=A()x; AW)=A(t+T) 3)

The stability and response of Eq. (3) can be discussed using
the well-known Floquet theory. Using the transformation (Lia-
punov, 1896)

x(t) = L(t)z(t); L(t)=L(t+T) 4)
Eq. (3) can be transformed to a time-invariant system
z=Cz (5)

where C is a constant matrix, and L(t) is known as the Liapu-
nov-Floquet (L-F) transformation matrix. Application of this
transformation to Eq. (2) results in

z=Cz+ LY ()E(z,t) + L"Y(t)F(Q, t) (6)

In general, matrices C and L are complex. For a real representa-
tion, one may use the 2T periodic real L-F transformation matrix
Q(t) such that x(t) = Q(t)z(t) yields

z2=Rz + Q'()E(z, t) + Q' ()F(Q, t) @)

It is evident that the internal resonant conditions for Eq. (3)
are characterized by the eigenvalues of matrix C (or R). Simi-
larly, the external resonance conditions of the linear forced
problem (i.e., when E(x, t) = 0 in Eq. (2)) can be easily
obtained from Eq. (6). Also the nonlinear free vibration of Eq.
(2) (i.e., when F(£, t) = 0) can be analyzed using the theory
of time-dependent normal forms. But first, the computation of
L-F transformations is discussed.

3 Computation of the Liapunov-Floquet Transfor-
mation Matrix

3.1 Computation of L-F Transformation Matrix for a
Commutative System. For a very special class of periodic
systems called the commutative systems, it is possible to obtain
the L-F transformation matrices in closed forms. The main prop-
erties of such systems are described below.

Transactions of the ASME



The periodic matrix A(t) in Eq. (3) is called commutative
if there exists a matrix B(t) such that

dB(t)/dt = A(1) (8)

satisfying the relation A (t)B(t) — B(t)A(t) = 0. Such aB(t)
is called a commuting antiderivative of A (t). The differential
Eq. (3) is called commutative if the coefficient matrix A (t) is
commutative.

Let B(t) be a commutative antiderivative of the T-periodic
matrix A(t) appearing in Eq. (3) such that B(T)B(0) —
B(0)B(T) = 0. Then the state transition matrix ®(t) of system
(3) has the factorization

B(t) = e®V = e”Ve" = L(t)e®" 9)
where Br(t) = B(t) — Ct is the T-periodic matrix and C is
the average matrix given by

1 T
c-1[ awa (10)

Since B(t) = A(t),
B(t) =B<0)+foA(c>dc (a1

Therefore, in this case the L-F matrix L(t) = e?" and one
can see that it can be computed in a closed form.
As an example, consider

x(t) = A(t)x(t) (12)
where
A(t)=[c°.8t~ sint] (13)
—sint cost

In this case there exists a commuting antiderivative for the
mafrix A(t) given by

B(t)=J:A(C)dC=[ sin t 1—‘cost] (14)

cost—1 sint
The state transition matrix can be calculated as
i(t) = esi.n t—sin T

[cos (cost — cos 1)

‘ —sin (cos t — cos T) (15)
sin (cost — cos 1)

cos (cost — cos T)

where T is a normalization constant. In order to normalize the
principal period T to unity, we sett = 2nt’ and 7 = 2, yielding

Q(t') = e[(l/h)s'm(:ﬂ')]

sin (-1— [cos (2nt’) — 1]) cos (L {cos (2nt’) ~ 1])
2n 2

Evaluating the STM at the end of the principal period one

obtains
B(1) = e = [1 0] an

01

This is a unique situation where the STM itself is periodic with
initial condition ®(0) = ®(T) = I. As a result we find that

Joumal of Vibration and Acoustics

cos (L [cos (2nt’) — 1]) —sin (L [cos (2nt') — 1])
2% 2

the constant matrix C is in fact real over the principal period

T, ie.,
Inl 0
C=
[ 0 lnl]

e!lnl 0
eCl:[ 0 et\nl]=l

The L-F transformation matrix then reduces down identically
equal to the state transition matrix, i.e.,

L(t) = &(t) (20)

3.2 Computation of .L-F Transformation Matrix via
Chebyshev Polynomials. Following the works of Sinha and
‘Wu (1991a), Sinha et al. (1993 ) and Sinha and Juneja (1991b),
the solution vector x(t) and the periodic matrix A(t) in Eq.
(3) are expanded in terms of the shifted Chebyshev polynomials
in the interval [0, T] as

(18)
Thus

(19)

()=~ ¥ bis*(t) =s*T(t)b!, i=1,2...,n (21)
r=0
m~1
A= Y disx(t)y=s*T(t)d%, i, j=1,2,....,n (22)

r=0
where
b= {bibi...b. )T, d¥={dbd?...d% )7, and
s*T(t) = {so()sT(t) ... sx ,(1)}.

Here b! are unknown expansion coefficients of x;(t), d¥ are
known expansion coefficients of Ay(t) and s¥(t) are the shifted
Chebyshev polynomials of the first kind. {-}7 represents the
transpose of the quantity {-}. For convenience in algebraic
manipulation an (n X nm) Chebyshev polynomial matrix is
defined as

S(t) =I®s*7(1) (23)

where ® represents the Kronecker product (Bellman, 1970b)
(also see Appendix-A), and I is an (n X n) identity matrix.
Using the representations given by Eqgs. (21), (22) and (23),
x(t) and A (t) can be rewritten as

x(t) =8§()b; A(t) =S(t)D and
A)x(t) = S(t)Qb (24)

where b = {b'b%* ... b"}7 ‘isan (nm X 1) vector, D
= [d'@*d®...d%], i, j=1,2,3,...nis an (nm X n)

(16)

matrix and Q is an (nm X nm) product operation matrix given
in the Appendix-A (for details see Sinha and Wu, 1991a).
The integral form of Eq. (3) is

x® - x0 = [ A©x©de (25)
where £ represents a dummy variable. Substituting Eq. (24) in
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(25) and following the approach of Sinha and Wu (1991a),
one can obtain a set of linear algebraic equations of the form

I - Z1b = x(0) (26)

where Z is an (nm X nm) constant matrix defined in Appendix-
A by Eq. (A2) and b is the vector of unknown Chebyshev
coefficients. Once the b’ are obtained from Eq. (26), the solu-
tion for x(t) is given by Eq. (21) which simply represents a
super convergent power series in ¢ (see Fox and Parker, 1968).

In order to compute the L-F transformation matrix, L(t),
one needs to find the state transition matrix ®(t) associated
with the linear system given by Eq. (3). This requires a set of
solutions of Eq. (3) with » initial conditions: x;(0) = (1, 0, 0,
...,0),(0,1,0,...,0),(0,0,1,0,...,0),...,(0,0,...,
1). It is to be noted that all b;’'s corresponding to the above
set of initial conditions can be determined simultaneously by
defining the right hand side of Eq. (26) in the matrix form.
Then the STM is given by

d(t) = S(HB 7

where B = [b,b,b; ... b,] and ®(0) = I. It has to be noted
that this STM is valid only for 0 = t = 7 since the shifted
Chebyshev polynomials of the first kind are defined over the
interval [0, T]. When t > T, the STM can be evaluated using
the formula (Coddington and Levinson, 1955)

®(t) = [2(Y)][2(T)H]" (28)

where t = nT + ¢, ¢y € [0, T),andn=1,2,3,.... Once
®(t) is known, the T-periodic complex matrix L(t) or the 2T-
periodic real matrix Q(t) can be computed in the following
way (Arrowsmith and Place, 1990). Since #(0) = I, L(0) =
L(T) = I, the Floquet Transition Matrix (FTM), ®(T ) can
be written as

&(T) = e°” (29)

where C is a n X n constant complex matrix. By performing
an eigen-analysis on ®(T ), the matrix C can be computed
easily. Then the T-periodic L-F transformation matrix is

L(t) = ®(t)e (30)

In order to evaluate the 2T-periodic real L-F transformation
matrix Q(t), first we note that (c.f. Coddington and Levinson,
1955)

PD(2T) = B*(T) = e TeC"T = 2T (31

where C* is the conjugate matrix of C, the » X n constant real
matrix R = {C + C*}/2 and the 2-T periodic L-F matrix Q(t)
can be represented as

Qt)=dM)e™;, 0=<t=T
Q(r + T) = ®(7)Q(T)e™;
T=s(T+7)=2T; 0=7=<T (32)

It should be noted that Q(t) = Q(t + 2T ). If one is interested
in finding L ~'(t) or Q~!(t), then there are two avenues. L(t)
and Q(t) can possibly be inverted through a symbolic software
like MACSYMA/MATHEMATICA/MAPLE or one can first
find the STM ¥(t) of the adjoint system [corresponding to Eq.
3N

7= ~AT(t)n (33)

and use the following relationship (c.f. Yakubovich and Star-
zhinski, 1975),

$71(t) = (1) (34)
The computation of & ~'(t) is essential in determining L ~'(t)
or Q!(t). For example, the inverse T-periodic L-F transforma-
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Fig. 1 Liapunov-Floquet transformation matrix 9 term expansion on the
commutative system

tion matrix L ~'(t) can be evaluated utilizing the properties of
the adjoint system as shown below.

L7(t) = [@(t)e "] = eS'@7I(t) = eSTT(t) (35)

It should be observed that the accuracy of L(t) or L™'(t) is
dependent upon the number of Chebyshev terms used in the
computation of the STM. Depending upon the size of the sys-
tem, an optimum number of terms can always be selected (see
Wu and Sinha, 1994 and Joseph et al., 1993) by incorporating
a desired tolerance parameter in the computational scheme.
Since the elements L;(t) or Qy(t) are periodic with period
T, they have the truncated Fourier representation
q
Li(t) = Y c,exp (2mnt/T), i=V-1  (36)

n=—gq

or

Qy(t) ~ % +3 a,cos (rat/T) + 3 b, sin (7nt/T) (37

n=1 n=1

Since the complex matrix L(t) (or the real matrix Q(t)) can
be computed as a function of t, all algebraic manipulations
involving this matrix can be done in symbolic form. L' (t)
and Qj'(t) have similar Fourier representations.

Since we have an exact L-F transformation L(t) for the
commutative system discussed in Section 3.1, it seems natural
to compare the exact result with the result obtained by the
Chebyshev expansion technique. After some algebraic manipu-
lations, we find that the I — Z matrix, appearing in Eq. (26)
takes the form

. I-G°C G™S
1-2= ) .
[ G'S I- GTle

where C and S are the coefficient matrices of expansions of
sine and cosine functions, respectively in the form of Eq. (21)
(see Sinha et al., 1993) and G is as given in Appendix-A. The
STM and the L-F transformation matrix were then computed
as explicit functions of time for a various number of terms in
the Chebyshev expansion. Since theoretically L(T ) = I, |IL(T)
— Il < € was used as the error control criterion, where ¢ is a
small positive number. As representative samples, the computed
L-F transformation matrix is plotted in Figs. 1 and 2 over the
first two periods for 9 term and 16 term expansions, respec-
tively. As seen from Fig. 2, the 16 term solution and the exact
result are identical.

(38)
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4 Some General Results and Application to the Ma-
thieu Equation

41 Computation of L-F Transformation Matrix. In

this section we propose to study the general free and harmoni-
cally forced problems and present specific results for the Ma-
thieu equation of the form

. _ 0 1 0
x(t) = [—(a2 + B cos wt) o]x(t) * {F(Q, t)} (39)

The L-F transformation matrix is computed for Eq. (39) using
the proposed Chebyshev expansion scheme. Following the
steps outlined in Section 3.2, it can be shown that the matrix
I — Z, appearing in Eq. (26) takes the form

I -GT
-GT(a? + Q)27/w)?* 1

After the coefficient vector b is determined, the STM ®(t) is
computed using the representation given in Eq. (27). The L-F
transformation matrix L(t) or Q(t) is then computed from Eq.
(30) or (32). A convergence study of the elements of Q(t) as
a function of the number of Chebyshev expansion terms has
been presented in Table 1. The Table indicates the values of
the elements sampled at 7/4, 3T7/4 and T where the Period
T = 2 Secs. Of course, at £ = 2, Q;; + Qx — 2 and Q> +
Q.: — 0 as the number of terms increase.

At this point, it should be pointed out that for small 5, the L-
F transformation matrix can also be obtained by the perturbation
method as shown by Yakubovich and Starzhinski (1975). For
this procedure to be applicable to Eq. (3), the matrix A(t)
should be of the form A(t) = A, + SA;(t). According to this
procedure the STM, ®(t) of Eq. (3) may be expressed as

B(t) = L(t, B)ec#

[I-Z]=[ ] (40)

where
L(t,B) =1+ BL(t) + BZL(t) + ...,
C(B)=Co+ BC, + B2Co+ ..., (41)

C(0) =Cpand L(t + T, 8) = L(t, B). Substituting Eq. (41)
in Eq. (3) yields

dL/dt = A(t)L(t, 8) — L(t, BYC(B) (42)

Comparing the coefficients of like powers of 5, a sequence of
matrix differential equations can be obtained. However, in the

1.5 T T
- -
z/ // N
1.0 Ve N\,
P \-/
-—- L
_ — L02)
A — L@
- 05} —— L2
. \/_\/_\/\/
AN .
\\ o N L
\\\_// A —
“n.o (/1] 1.0 15 20
Time

Fig. 2 Liapunov-Floquet transformation matrix 16 term expansion and
the exact solution for the commutative system
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Table 1 Convergence of L-F transformation elements o? = 0.5, § = 4.0,
w =20

Time | No. of Chebyshev ®,i= 0),i%
Secs) Y Qy J Yy Qy0,ivj
6.0 4.95885d-02 -5.93414
8.0 2.731624-03 -5.15794
100 -2.543774-03 -5.16673
120 2.88849d-04 -5.22464
0.5 140 1.949314-05 -522910
16.0 -8.53952d-06 -5.22871
18.0 8.349134d-07 -522859
200 1.84261d-08 -5.22858
6.0 -4.95885d-02 593414
8.0 -2.731624-03 5.15794
10.0 2.543774-03 5.16672
120 -2.88850d-04 5.22464
1.5 140 -1.949364-05 5.22910
16.0 8.539844-06 5.22871
18.0 -8.35125d4-07 522859
200 -1.85315d-08 5.22858
6.0 1.86490 1.30012
8.0 1.99586 0.12003
10.0 2.00541 -8.421774-02
120 1.99881 8.576873-03
2.0 140 1.99991 9.09347d-04
16.0 2.00004 -3.12005d-04
18.0 2.00000 2.69006d-05
200 2.00000 1.283174-06

following, differential equations corresponding to the powers '
of B and 2 only are shown as

A, =C,
dL,/dt = CoL,(t) — Li(t)Co + Ay (1) — C,
dL,/dt = CL,(t) — L,(t)C,
+ A (L (t) = Li(t)C, — C, (43)

The solution of the above set of matrix differential equations
is anything but simple. However, for the special choice of C,
= 0 or cI where c is an arbitrary constant, a solution can be
obtained without much difficulty.

To illustrate this approach, the homogeneous part of Eq. (39)
is considered and is rewritten after normalizing with wt = 27t’
such that w = 2 as

x(t')

0 1 0 o1 .,
- {[—azwz O] * [—ﬂwz cos 27t’ 0]}"(t ) “h

where £ is assumed to be small. In the following, the L and C
matrices are computed for the case when the parameter a® =
0. The other singular and nonsingular cases have been deait
with elaborately by Yakubovich and Starzhinski (1975). For
this case, the constituting matrices up to the order of 8 and 52
can be computed using the formulae

1 (T '
C = T-[; A(t)dt, Li(t) = fo [A(t) — C,]dt,
1 T
C, = f-[) [A(H)Li(t) — Li(t)C,]dt

Lx(t) = fo [[A(t)Li(t) — Li(t:)Ci] — Cldt; (45)

Therefore, the L-F transformation matrix and the corresponding
exponent matrix, C(£4) can be obtained using Eq. (41) in terms
of the small parameter § as
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, .
1+l—3£—-(c0527rt’-1) 0
L(t, B) =

—sin —2“’
2

and

2
C(ﬁ)=[° ﬂ"]

0 0
For § = 0.001, the exponent matrix, C(#) is computed using

the Chebyshev expansion and the perturbation methods and is
recorded below

0 0.0099 0 1.0005
= = 4
Com [o 0 ] g [0 0 ] “7
With § = 0.01, they take the forms
0 0.0988 0 1.0050
Com = [o 0 ] Coms = [—0.0001 0 ] (48)

It can be readily observed from the exponent matrix Ceys that
even in such a small range of 3, the character of the system
changed from two zero characteristic exponents to two purely
imaginary characteristic exponents. However, the exponent ma-
_ trix obtained by perturbation method C,.. always yields two
zero eigenvalues for all values of 8 and hence fails to provide
the true system characteristics. Therefore, the perturbation pro-
cedure (at least the first order) is not suitable for this problem.

The important advantage of the L-F transformation matrix is
that it allows one to study the time-periodic systems in the
time-invariant space. Once the T periodic Liapunov-Floquet
transformation matrix, L(t) is computed, Eq. (39) takes the
form

z(t) = Cz(t) + L'()F(Q, t) (49)

by applying Eq. (4), x(t) = L(t)z(t) where C is a complex
matrix. The solution of the above equation is given by

z(t) = eC'Z(0) + flec“"){L"(s)F(Q, s)}ds (50)
(1]

where Z(0) = {z(0), 2(0) }T. It should be noted that the above
solution is valid for arbitrary F(2, t) and can certainly be used
to find response due to stochastic excitations as well. However,
in this study F (£, t) is restricted to a periodic function.

The homogeneous solution of Eq. (39) as obtained from Eq.
(50) are plotted in Figs. 3 and 4 against Runge-Kutta numerical
solutions for various parameter combinations. In both cases 16
term Chebyshev solutions are virtually identical to the Runge-
Kutta results while the 9 term solutions also yield good approxi-
mations to the numerically integrated trajectories. For the stable
case in Fig. 3, # is small and the solution obtained by the
averaging method is quite accurate. However, such is not the
case for the unstable solution shown in Fig. 4 because 8 is no
longer small.

42 Stability and External Resonance Conditions. The
stability conditions for the periodic Eq. (3) can be easily deter-
mined from the homogeneous part of Eq. (49) through a discus-
sion of the eigenvalues of the time-invariant matrix C. For the
special case of Mathieu Eq. (39), it is well known that for
sufficiently small 8, the internal resonance condition is given
by w = 2a. This corresponds to the case when the C matrix (2
X 2) has a repeated zero eigenvalue. Similar situations arise in
higher order systems.
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2
1- ﬂ—:—(cos 2at’ — 1)

(46)

In the following, it is shown that the proposed technique
can be effectively applied to obtain the conditions for external
resonances for a general n X »n linear periodic system of the
form given by Eq. (49). Since the elements of L™'(t) are
periodic functions of time with frequency w, and F(2, t) can
be expanded in a Fourier series, L~ (t)F ({2, t) can be repre-
sented as

LY OFQ, )= ¥ T a,ee= j=y-1 (51)
p=—g m=~—r
where a,,, are arbitrary complex numbers.
At this point the resonance conditions are apparent if one
looks at the eigenvalues of matrix C. In general, the eigenvalues

16 v
----- 16 Term Expansion
----- 9 Term Expansion
~—— R-KIntegration
Y B Traditioanl Averaging
3 04 f
oz}
-08-1.0 3.5 iO 0s

o
xi(t)

Fig. 3 Linear homogeneous Mathieu equation o® = 1/(47?), g = 0.01a%,
w=1,IC ={05,05}7
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x)(t)

Fig. 4 Linear homogeneous Mathieu equation o = 25,8 =20, w = 1,
IC = {0.5,0.5}7
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Fig. 5 Mathieu equation n = m = 1, u = 0 resonance o® = 4.0, 8 =
7.468, w = 2m, ? = 2.3257297, t — 20Secs

are complex, that is, of the form a, * iw,. Therefore the reso-
nance conditions are given by

T, =pwEtm;mp=01,2,...,n=12,... (52)

As an example, consider the case of Mathieu equation such
that the roots of the matrix C has a pair of purely imaginary
roots and if F(2, t) = F cos Qt, the sequence of forcing
frequencies §2 which give rise to resonances can be obtained
from Eq. (52) by settingn =m =1and £ =0, 1,2,.... This
case is particularly interesting because it corresponds to the
bifurcation point if one is dealing with a nonlinear problem
where the linear part consists of a Mathieu type system. The
results for one case of purely imaginary roots are plotted for
the first three resonant forcing frequencies in Figs. 5-6. In
each case the solution to the original equation increases without
bound, however, it is noted that the amplitude of the harmonic
corresponding to ¢ = 0 increases most rapidly. The amplitudes
of the higher harmonics also increase but at much slower rates.

5 Analysis of Parametrically Excited Nonlinear Sys-
tems
In the following, the analysis of quasilinear Eq. (2) with

F(f, t) = 0 is considered. First, the 2T L-F transformation
matrix Q(t) is used such that

x(t) = Q(t)z(t) (53)

transforms Eq. (2) to a vector field where the linear part is
time-invariant. The resulting equation is of the form

z=Rz + Q'E(Qz, 1) (54)

where R is an n X n real constant matrix. The form of Eq.
(54) is amenable to direct application of the method of time
dependent normal forms (TDNF) for equations with periodic
coefficients as shown by Amold (1988).

Equation (54) in its Jordan canonical form can be written as

y=Jy+w(y,t) + ...+ w(y,t)
+...0(lyl*, v (55)

where J is the Jordan form of matrix R and w,’s are 2T-periodic
functions and contain homogeneous monomials of y; of order
k. The aim of the normal form is to construct a sequence of
transformations which successively remove the nonlinear terms
w,.(y,t) forr =2,.. .k, where kis the highest order considered.
The transformation is of the form

Journal of Vibration and Acoustics

y=v+h(v,t) (56)

where h, (v, t) is a formal power series in v of degree r with
periodic coefficients having the principal period 2T. Applying
the above change of coordinates, and following the procedure
given in Arrowsmith and Place (1990) the solvability condition
for the given degree of nonlinearity can be obtained as

c=7x/T (57)

where h, ;,, a. ;. are the Fourier coefficients of expansions of

by ;. = a,./(lop + mA — \);

h.(v, t) and w.(y, t), respectively. A = (N\;, Az, ..., A,) are
the eigenvalues of matrix J. It is clear that when
(icp + mA - \) =0 Vo (58)

Eq. (55) can be reduced to a linear form. Otherwise, the corre-
sponding resonant terms will stay in the reduced equation so
that Eq. (55) takes the simplest nonlinear form as
k .
v=Jv+ Y w(v,t) +...0(vI*,t)

r=2

(59)

It is important to note that the w.(v, t) contains only a finite
number ¢ of Fourier harmonics. In order to obtain an approxi-
mate solution of Eq. (55), the variations of the periodic coeffi-
cients of nonlinear terms can be neglected in comparison with

40

xa(t)
g

40 F

x1(t)

Fig. 6(a) Mathieu equationn =m = 1, u = 1 resonance o® = 4.0, g =
7.468, w = 27, ) = 3.9574556, t — 20Secs

1.0

oS

00 |

x2(t)

Toa 02 'Y 02 04
x1(t)

Fig. 6(b) Mathieu equationn = m = 1, p = —1 resonance o® = 4.0, 8
= 7.468, w = 2=, I = 8.6089150, t — 20Secs
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their predominant means (Rosenblat and Cohen, 1980). This
approximation results in an equation which is completely auton-
omous and the solution can be obtained via the time-independent
normal form theory (TINF).

To demonstrate the applicability and effectiveness of the sug-
gested approaches, a nonlinear Mathieu equation is considered.
The parameters of the equation are selected in such a way that
there exists no generating solution to apply first order averaging.
The results of the proposed technique based on L-F transforma-
tion and normal forms provide reasonably good solutions even
for moderately large parameters multiplying the nonlinear terms
whereas the traditional averaging procedure is applicable only
when the parameters multiplying the linear periodic terms as
well as the nonlinear terms are both small.

Example: Nonlinear Mathieu’s Equation

Consider the Mathieu Equation with cubic nonlinearity of the
form

£ +6x+ (a®>+ Bcoswt)x + ex®> =0 (60)

where 6, a, 8, w and € are the parameters of the system.
Applications of the real L-F transformation Q(t), the Jordan
canonical transformation, and the near-identity transformation
to Eq. (60) in the state space form yields

¥ 0 A y:

where 7 = 2T, A = {\;, A;} are the eigenvalues of R and the
periodic coefficients f(t, 7);i, j= 1, ..., 4 are expressed as

1
fi(t,7) = ay + 3 a¥cos (27rnt) + bY sin (
T

n-1

2nnt

) (62)

After experimenting with various sets of system parameters, it
was observed that [ = 15 to 18 provided accurate representations
of functions f;;(t, 7). It is also consistent with the number of
Fourier terms taken in the representation of the L-F transforma-
tion Q(t).

In order to obtain a solution of Eq. (61) using TDNF, con-
sider a near-identity nonlinear transformation

Yi=u+g(t, 7)u’ + gn(t, T)uv
+ gi3(t, T)av? + g (t, 7)v?

Y2 =V + gu(t, T)u® + gu(t, THudv
+ ga(t, T)uv? + g (t, TIV:  (63)

where the periodic coefficients gy(t, 7);i, j=1,...,4 are
once again of the form given by Eq. (62) but with unknown
constants &, and b,. Substituting Eq. (63) in Eq. (61) and
solving the resulting homological equation, the unknown con-
stants %, and b, can be evaluated. In situations when there is
no resonance, the Fourier series assumed for gy(t, 7) and its
derivative are found to be convergent (Amold, 1988). There-
fore, the solution of the nonlinear Mathieu’s equation in the
original coordinates can be obtained by substituting back all the
intermediate transformations. Even when some of the nonlinear
terms remain due to resonance, the resulting equation can still
be used to provide many useful conclusions about the stability
and dynamical behavior of the system. Such procedures are
described in the literature (Bruno, 1989; Hale and Kocak,
1991).

Equation without Generating Solution (o’ = 0). Note
that when a? = 0 the fundamental frequency wy of the autono-
mous part of Eq. (60) is also zero and there is no generating
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{Yl} - l:)\x 0 ]{YI} ‘e {f”(t, )y + fu(t, T)yiy: + fis(t, T)yiy? + fu(t, T)yg} (61)
£.(t, )yi + fu(t, yly: + £a(t, 7)yiy3 + fu(t, 7)y3

solution in the classical sense. Consequently, the averaging or
perturbation method cannot be applied to this case.

Parameter Set 1: > = 0; f = 4.0; §=0.4243; ¢ =03;

For this set, the solutions based on TDNF and TINF theory
have been found to predict the dynamic behavior quite precisely
in comparison with the numerical solution as shown in Fig. 7.
Parameter Set 2: a2 =0; B =4.0; §=04243; €=30;

This set shows that the behavior of the system is well pre-
dicted by the suggested TDNF and TINF techniques when com-
pared with the numerical solution even though the nonlinearity
parameter ¢ is 10 times larger than the value used in set 1.
The comparison is shown in Fig. 8. An approximate analytical
solution obtained using the L-F transformation and the time-
dependent normal form theory pertaining to this parameter set
is provided in Appendix B.

6 Conclusions

In this paper, a general technique for the computation of
L-F transformation matrix in terms of the shifted Chebyshev
polynomials is presented. As shown in literature, (Sinha and
Wu, 1991a; Sinha et al., 1993; Joseph et al., 1993) this Cheby-
shev expansion technique is numerically efficient and can be
successfully used for the computation of the state transition

matrices for large scale systems. As shown in Section 3.2, the
L-F transformation matrices can be evaluated as a by-product
of these computations. On the basis of the convergence study
reported by Joseph et al. (1993) and our experience with the
various case studies reported here, a 12 to 18 term Chebyshev
polynomial representations of the L-F transformation matrices
provide excellent accuracy. This. transformation converts the
linear part of the quasilinear periodic dynamical equation to a
time-invariant form regardless of the magnitude of the parame-
ters associated with the periodic matrix. For all the linear cases
considered in this study, it is evident that increasing the number
of terms in the STM expansion increases the accuracy of the
L-F transformation and the solution. As seen from Table 1,
uniform convergence has been observed as the number of terms
were increased from 6 to 20. For most single and double preci-

15 ' .
——— Numerical
wt Traditional Averaging
—-—- L-F Transfn and TINF
-—— L-F Transfn and TDNF
05}
(1.39,0.0007)
901 0.0
N ‘I
05 !
10 |
ast e -
20,5 205 Y 05 10 5 20

x1()

Fig. 7 Comparison of solution of Mathieu’s equation with cubic nonlin-
earityo® = 0, 8 = 4.0, 6 = 0.4243, ¢ = 0.3
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Fig. 8 Comparison of solution of Mathieu’s equation with cubic nonlin-
earity =0, 8 = 4.0, 5 = 04243, ¢ = 3.0

sion calculations, the 16 term expansion is found to be more
than sufficient. Similar observations have been made for larger
systems as well (see Pandiyan and Sinha, 1993).

The successful computational procedure for the L-F transforma-
tion has resulted in new methods for the analysis of general linear
and quasilinear dynamic systems with periodically varying coeffi-
cients. Since the linear part can be made time-invariant, the solu-
tions of transformed systems can be obtained using the standard
time-invariant methods and converted back to the original coordi-
nates via the inverse L-F transformation. In case of quasilinear
periodic systems, the resulting dynamical equations can be ana-
lyzed using the time-dependent normal form theory.

The symbolic inversion of L-F transformation matrices is a
computationally intensive task and therefore it is recommended
that the adjoint equation of (3) be utilized to compute the inverse
L-F transformation matrix, as suggested in this study. Applying
the transformation to externally excited systems gives an accurate
representation of the resonance conditions. The Mathieu equation
example shows how easily and explicitly all resonance conditions
can be determined through the proposed approach. It is observed
that the solutions obtained via time-dependent normal forms show
a slower behavior to the numerical solutions. Nevertheless, they
eventually depict the cormrect behavior of the system. The reason
for such a slow behavior can be attributed to different pointing
directions of the averaged drift of such methods and the projection
of the true motion ( Arnold, 1988).

To conclude, the authors would like to state that it is for the
first time the computation and application of Liapunov-Floquet
transformation has been demonstrated in the analysis of periodic
dynamical systems. It has been shown that the proposed analysis
techniques are virtually free from the small parameter limita-
tions and can provide approximate analytical solutions in most
cases through the application of a symbolic software. In addi-
tion, the question of the existence of the so called ‘‘generating
solution’’ does not arise, which is certainly not the case with
the classical methods such as averaging, pertarbation, etc. The
controllers for periodically varying systems can be effectively
designed using the time-invariant methods through the applica-
tion of the Liapunov-Floquet transformation. Such studies have
been reported elsewhere (Sinha and Joseph, 1993).
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APPENDIX A

In Eq. (3) let

A(t) = Ay + A(t)

where A, and A(t) are n X n matrices.
The Z matrix appearing in Eq. (26) can be written as

Zonxm = [As ® GT + C, ® G™Q]

where C, is the coefficient matrix of A(t) and from reference by Sinha and Wu, (1991a), G” the (m X m) integration operational
matrix and Q(d;) the m X m product operational matrix are given as

1/2 172 0
-1/8 0 1/8
-1/6 -1/4 0
1/16 0 -1/8
GT = . . .
(=1)"
| 2m(m - 2)
[ 4, d,/2
d, d, + d,/2
~ 4, (@ +d)/2
Q(dj) = . .

L dm—l (dm—2 + dm)/z
Kronecker Product. Consider a 2 X 2 square matrix A

0
0
1/12
0

-1

4(m —

d,/2

(d, + d;)/2
d, + d./2

and an n X m matrix B. The Kronecker product of the two matrices is defined by

(A1)

(A2)

0
0
0
: (A3
1 )
am-1)
0
2) i
dm—l i
(dog + d,)/2
(A4)
do + dpng/2 |

a;B a,B
B =
A® [aZ,B a,B ]

The resulting matrix is of size 2n X 2m.

APPENDIX B

Approximate analytical solution of the nonlinear Mathieu equation for the parameter set 2. The symbols used
are y = 7t, £ = uo and x = v, where u, and v, are the initial conditions in the normal form coordinates u
and v, respectively. (a, b) represents complex number a + ib, i = V(-1).

X, = e(020IMN1((0 2791 0.7064) + (0.0248, 0.0764) cos (2y) + (0.0003, 0.0010) cos (4y)
+ (0.0198, —0.0064) sin (2y) + (0.0004, —0.0001) sin (4y)} £ + e~OUB-08IM( (2054 —(0.7821)

+ (~0.0319, —0.0846) cos (2) + (—0.0004, —0.0011) cos (4y) + (0.0220, —0.0083) sin (27)
+ (0.0004, —0.0002) sin (4y)} x + (-S5O (00071, —0.0050) + (0.0005, —0.0025) cos (2y)

+ (0.00001, —0.00008) cos (4v) + (0, 0.00001) cos (27v) cos (4y) + (0.0008, —0.00002) cos (27) sin (27)

+ 0.0001 cos (47) sin (2y) — 0.00005 cos (27) sin (4y) + (0., —0.00001) sin (2y) sin (4y) ~ 0.00004 sin (6y)
+ (0.0001, —0.0002) cos? (2y) — 0.00001 cos (6y) + (—0.0078, ~0.0003) sin (27) + (0.0001, —0.0002) sin® (2y)
~ 0.0007 sin (4y)] €% + e(~OSS5-08IN{ (00022, 0.0083) + (~0.0002, 0.0009) cos (2y)

+ (0.00004, 0.00001) cos (4y) + (~0.0003, 0.00007) sin (2y) — 0.00002 sin (2y) sin (4y)} x>
+ e(-063524N (3836, —0.1547) + (0.0971, —0.0100) cos (2y) + (0.0061, 0.0007) cos® (27)
+ (0.0024, — 0.0002) cos (47) + 0.0003 cos (2y) cos (4y) + 0.00003 cos (6y) + (0.0003, —0.0682) sin (27)

218 / Vol. 118, APRIL 1996

+ (0.0006, —0.0010) cos (2y) sin (2y) + 0.00003 cos (4vy) sin (2y) + (0.0066, 0.0003) sin? (2y)
+ (=0.0002, —0.0012) sin (4y) — 0.00001 cos (2) sin (4y) + 0.0004 sin (2y) sin (4y) + (—0.00005, —0.00001) sin (6y)}¢*
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X, = e(TOHROEM (06273, 0.0378) + (0.0568, —0.0363) cos (2y) + (0.0039, ~0.0015) cos (4y)
+ (0.00005, ~0.00002) cos (6y) + (—0.1546, —0.4623) sin (2y) + (~—0.0041, —0.0124) sin (4y)
+ (—0.00004, —0.0001) sin (6y)} € + e(~0NR-03Mt((_0 5781, 0.4080) + (0.0754, —0.0080) cos (2v)
+ (0.0045, —0.0014) cos (4y) + (0.1892, 0.5151) sin (27) + (0.00005, 0.0001) sin (67)
+ (0.0051, 0.0138) sin (4y) + (0.00005, —0.00002) cos (67) }x + e(OS6S08M( (0 0485, —0.00008) cos (27)
+ (—0.0043, 0.00004) cos (4y) + 0.00003 cos® (4y) + (0.0036, —0.0027) — 0.00005 cos (6y)
+ (0.0022, 0.0097) sin (2y) + (—0.0006, 0.0006) cos (2v) sin (2y) + (0.0050, 0.0004) sin?(27)
+ (0.0003, 0.0004) sin (4y) — 0.00002 cos (27y) sin (4y) + (0.0006, 0.00001) sin (2y) sin (47y)
+ 0.00001 sin? (4y) + 0.0002 sin (6y) — 0.00002 cos (2y) sin (6y) + 0.00003 sin (2v) sin (6y)
+ 0.00078 cos (27) cos (4y) — 0.00001 cos (4v) sin (27) + (0.0051, 0.0002) cos? (2y)} €%
+ @(TOSXS-0MM( (0082, ~0.0035) + (~0.0008, 0.00002) cos (2y) + (—0.00006, —0.00002) cos (4v)
+ (0.0013, —0.0055) sin (2y) + 0.00003 cos (4v) sin (2y) + (0.0005, —0.0002) sin (4y) + 0.00005 sin (6y)
— 0.00003 cos (27y) sin (2) — 0.00005 cos (2y) sin (4y)}Ex? + (08624 1 (0 1350, 1.0413)
+ (-0.0365, —0.1839) cos (2y) + (—0.0021, 0.0082) cos* (2y) + (—0.0026, —0.0084) cos (4v)
+ (—0.00004, 0.0007) cos (2y) cos (4y) + (0., 0.00001) cos? (4y) + (—0.00003, —0.0001) cos (6y)
+ (—0.4434, 0.1072) sin (27) + (—0.0161, —0.0032) cos (27) sin (2y) + (0.0001, 0.00006) cos (4y) sin (2y)
+ (—0.0064, 0.0221) sin® (27) + (—0.0144, 0.0030) sin (4v) + (—0.0002, —0.0001) cos (2) sin (47)
+ 0.00002 cos (4v) sin (4y) + (—0.0002, 0.0009) sin (2y) sin (4y) + (—0.0003, 0.00003) sin (6y)
+ 0.00002 cos (2) sin (6y) + 0.00003 sin (2y) sin (6y)} £ + (~0635-245){0,00003 cos (2y) + (0., —0.00001) sin (2y)}x°
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