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1 Introduction
Detailed description of Kovacic algorithm for solving second order linear ode with
rational coefficients is given with many solved examples showing how the algorithm
works step by step.

The algorithm is first described based on Kovacic original 1985 paper (1) and later
described in separate section based on modified Saunders/Smith algorithm in papers
(2,3). The same ode examples are solved using both algorithms to show the difference.

Given the ode

y′′(x) + ay′(x) + by(x) = 0 (1)
a, b ∈ C(x)

It is transformed to the following ode by eliminating the first derivative

z′′ = rz r ∈ C(x) (2)

This is done using what is known as the Liouville transformation given by

z = ye
1
2
∫
adx (3)

Where r in (2) is given by
r = 1

4a
2 + 1

2a
′ − b (4)

It is equation (2) (called the DE from now on) which is solved using the Kovacic
algorithm and not Eq. (1). The solution to (1) can be obtained using (3) once y is
found. Kovacic algorithm finds a Liouvillian solution to (2) if one exists. There are 4
cases

1. DE has solution z = e
∫
ωdx where ω ∈ C(x).

2. DE has solution z = e
∫
ωdx where ω is polynomial over C(x) of degree 2 and case

(1) does not hold.

3. Solutions of DE are algebraic over C(x) and case 1,2 do not hold.

4. DE has no Liouvillian solution.

Before describing how the algorithm works, there are necessary (but not sufficient)
conditions that should be checked to determine which case of the above the ode satisfies.

The following are the necessary conditions for each case. To check each case, let r = s
t

where gcd (s, t) = 1. This means there is no common factor between s, t. The order of
r at ∞ is defined as deg (t)− deg (s).
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For an example, if r = 1
x2 then O(∞) = 2−0 = 2. And if r = 1+x

3x2 then O(∞) = 2−1 = 1.
The poles of r and the order of each pole needs to be determined.

The poles of r are the zeros of t. For example if t = (1− x)2 (x) then there is one pole
is at x = 1 of order 2 and one pole at x = 0 of order 1.

Knowing these two pieces of information is all what is needed to determine the necessary
conditions for each case. The necessary conditions for each case are the following

1. Case 1. Every pole of r must have even order or its order is 1. And O(∞) is
even or greater than 2. For an example, given r = (x2 + 3), this has a pole of
order zero (since no poles), therefore O(∞) = 0− 2 = −2 which is even. Hence
it satisfies case 1. (pole order zero, is even, since zero is even number).

2. Case 2. r has at least one pole of order 2 or the order is odd and greater than 2.
There are no conditions related to O(∞) for this case.

3. r has only poles of order 1 or 2. And O(∞) must be at least 2.

If the conditions are not satisfied then there is no need to try that specific case as there
will be no solution. However if the conditions are satisfied, this does not necessarily
mean a solution exists for that case. This is what necessary but not sufficient conditions
means.

The following table summarizes the above conditions and the possible L list (to be
described later) for each case.

Case Allowed pole order for r Allowed value for O(∞)
1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−6,−4,−2, 0, 2, 3, 4, 5, 6, · · · }
2 Need to have at least one pole that

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.
{1, 2},{1, 3},{2},{3},{3, 4},{1, 2, 5}.

no condition

3 {1, 2} {2, 3, 4, 5, 6, 7, · · · }

Table 1: Necessary conditions for each Kovacic case

Some observations: In case one no odd order pole is allowed except for order 1. And
for case 3, only poles of order 1,2 are allowed. If O(∞) = 0, which means s and t have
same degree, then only possibility is case one or case two. Case 3 is not possible. For
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case one, if O(∞) is negative, then it has to be even. For example if r = x6

(x−1)2 then
now O(∞) = 2 − 6 = −4. But if r = x5

(x−1)2 then O(∞) = 2 − 5 = −3 and hence this
can not be case 1.

The following are examples to help understand these conditions. Notice that if a pole
is of order 2 and O(∞) is say 2, then all three cases are met.

1.1 Examples how to determine which case the ode belongs
into

1.1.1 Example 1

r = 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4
4x4

There is one pole at x = 0 of order 4. And O(∞) = 4− 6 = −2. Conditions for case 1
are met. Since it has a pole of even order. Also O(∞) is even. Case 2 are not satisfied,
since there is no pole of order 2 and no odd pole of order greater than 2 exist. Case 3
is also not met, since the pole is order 4 and case 3 will only work if pole is order 1 or
2. Hence L = [1]

1.1.2 Example 2

r = x

There is one pole of order zero (an even pole). So case 1 or 3 qualify. But O(∞) = 0−1 =
−1 which is odd. But case 1 and 3 require O(∞) be even. Hence case 1,2,3 all fail. This
is case 4 where there is no Liouvillian solution. This is known already, because this is
the known Airy ode y′′ = xy. Its solution are the Airy special functions. These are not
Liouvillian solutions. Hence L = []

1.1.3 Example 3

r = 1
x
− 3

16x2

= 16x− 3
16x2

There is pole at x = 0 of order 2. And O(∞) = 2− 1 = 1. Case 1 is not satisfied, since
O(∞) is not greater than 2. Also case 3 can not hold, since case 3 requires O(∞) be at
least order 2 and here it is 1. Only possibility left is case 2. There is one pole of order
2. Since case 2 have no conditions on O(∞) to satisfy, then case 2 has been met. So
this is case 2 only. L = [2]
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1.1.4 Example 4

r = − 3
16x2 − 2

9 (x− 1)2
+ 3

16x (x− 1)

= −−32x2 + 27x− 27
144x2 (x− 1)2

There is pole at x = 0 of order 2, and pole at x = 1 of order 2. And O(∞) = 4−2 = 2.we
see that O(∞) is satisfied for case 1 and case 3. Recall that case 2 has no O(∞)
conditions. The pole order is satisfied for case 1 (must have even order or order 1), also
the pole order is satisfied for case 2 (have at least one pole of order 2), and pole order is
satisfied for case 3 (can only have poles of order 1 or 2). So all three cases are satisfied.
Remember that just because the necessary conditions are met, this does not mean a
Liouvillian solution exists. Hence L = [1, 2, 4, 6, 12].

1.1.5 Example 5

r = −5x+ 27
36 (x− 1)2

O(∞) = 2 − 1 = 1. And r has pole at x = 1 of order 2. We see that O(∞) is not
satisfied for case 1 and case 3 (case 1 requires even or greater than 2 for O(∞) and case
3 requires O(∞) = 2.). So our only hope is case 2. Case 2 has no O(∞) conditions. But
it needs to have at least one pole of order 2 or a pole which is odd order and greater
than 2. This is satisfied here, since pole is order 2. Hence only case 2 is possible. Hence
L = [2]. I do not understand why paper says all three cases are possible for this. This
seems to be an error in the paper (1).

1.1.6 Example 6

r =
(
x2 + 3

)
There is zero order pole. (even order). O(∞) = 0 − 2 = −2. Hence only case 1 is
possible. L = [1]
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1.1.7 Example 7

r = 1
x2

One pole at x = 0 of order 2. And O(∞) = 2 − 0 = 2. Case 1 is satisfied. Also case
2 since pole is even order. Also case 3 is satisfied. Hence all three cases are satisfied.
L = [1, 2, 4, 6, 12]

1.1.8 Example 8

r = 4x2 − 15
4x2

We see that O(∞) = 0. From the table this means only case 1 and 2 are possible. (since
case 2 has no conditions on O(∞) and only case 1 allows zero order for O(∞)). We see
there is a pole at x = 0 of order 2. This is allowed by both case 1 and case 2. Hence
case 1,2 are possible and L = [1, 2]

2 Examples of ODE’s for each case
The following table gives an example ode for each case of the above. Recall there
are 4 cases. Case 1 (n = 1) , and case 2 (n = 2) and case 3 (n = 4, 6, 12) and case
4 which means no Liouvillian solution exist. Recall also that if ode belong to case
1,2 or 3, this does not imply that Liouvillian solution exists. For example, below
x2y′′ − 2xy′ + (x2 + 2x+ 2) y = 0 satisfies conditions for case 1, however, we can find
out that no Liouvillian solution exists.
case number ODE
One L = [1] x2y′′ + 4xy′ + (x2 + 2) y = 0
Two L = [2] 2xy′′ − y′ + 2y = 0
One and Two L = [1, 2] 4x2y′′ + 4x(1− x) y′ + (2x− 9) y = 0
One L = [1] x2y′′ − 2xy′ + (x2 + 2x+ 2) y = 0
One and Two and Three L = [1, 2, 4, 6, 12] y′′ − 1

(4x2)y = 0

Case 4, (i.e. No Liouvillian solution exist) y′′ − xy = 0
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3 Algorithm implementation based on original
Kovacic 1985 paper

The following describes the algorithm for each case separately. The easiest one is for
case 1, and the hardest is for case 3. Many examples will also be given at the end of
the algorithm describing to show how it works.

3.1 Case one algorithm

3.1.1 Step 1

This description is based on KOVACIC 1985 paper and not based on the Saunders
paper.

We are given y′′ = ry. It is assumed that the necessary conditions for case 1 have been
met as given in the table above and r = s

t
where gcd (s, t) = 1 (in Maple this is done

using the normal() command). The first step is to find the poles of r and the order of
each pole. If there are no poles, then let the set of poles Γ will be empty.

If a pole x = c is of order 1 which means there is a factor 1
(x−c) in the partial fractions

decomposition of r, then let [√
r
]
c
= 0

α+
c = 1

α−
c = 1

If the pole c is of order 2, which means there is a factor 1
(x−c)2 in the partial fractions

decomposition of r, then let [√
r
]
c
= 0

α+
c = 1

2 + 1
2
√
1 + 4b

α−
c = 1

2 − 1
2
√
1 + 4b

Where b is the coefficient of 1
(x−c)2 in the partial fraction decomposition of r. For

example, if r = 3
(x−2)2 , then x = 2 is a pole of order 2 and b = 3. The coefficients are

found using undetermined coefficients method. (Examples below show how).

If the pole is of order 4 or 6 or 8 and so on, then it is a little bit more complicated.
We write 2v = order. For example, if the pole was order 4, then v = 2 and if the pole
was order 6, then v = 3 and so on. Notice that for case 1, which we are discussing
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here, if pole is of order larger than 2, then only poles of order 4, 6, 8, · · · are allowed.
This is from the necessary condition. In this case, we add all terms involving 1

(x−c)i for
2 ≤ i ≤ v in the Laurent series expansion of

√
r (not r) as follows

[√
r
]
c
=

v∑
i=2

ai

(x− c)i
(1)

= a2

(x− c)2
+ a3

(x− c)3
+ · · ·+ av

(x− c)v

For an example if the pole was of order 6, then v = 3. Therefore we need to add all
terms in the Laurent series expansion of

√
r from v = 3 down to 2. As follows

[√
r
]
c
=

3∑
i=2

ai

(x− c)i

= a2

(x− c)2
+ a3

(x− c)3

Lets look at an example of the above before going to the next step. Assume

r = 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4
4x4

There is only one pole at x = 0 of order 4. Hence v = 2. We need to find the Laurent
series of

√
r expanding around the specific pole c of order 2v. In Maple this is done

using series(
√
r, x = c).

√
r ≈ 1

x2 − 5
2
1
x
− 9

4 − 41
8 x− 443

32 x2 + · · · (2)

Hence [√
r
]
c
=

2∑
i=2

ai

(x− c)i

= a2

(x− c)2

= a2

(x− 0)2
(3)

Comparing the above to Eq. 2 shows that the coefficient is a2 is (written now as just a
to make it match the paper and use it in the following equation later on)

a = 1

So the term a is the coefficient of av
(x−c)v in the Laurent series expansion of

√
r around

x = c. In implementation of the algorithm the method of undetermined coefficients is
used instead of actually finding Laurent series for

√
r at x = c.
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Now that we found
[√

r
]
c
for poles > 2, we need to find its α+

c , α
−
c also. In this case

α+
c = 1

2

(
b
a
+ v
)
and α−

c = 1
2

(
− b

a
+ v
)
. Where a is the one we just found above. But

what is b here? b is the coefficient of the term 1
(x−c)v+1 in r minus the coefficient of

1
(x−c)v+1 in

[√
r
]
c
which we found above in (2). For an example, using the above r its

Laurent series expansion around x = 0 is

r ≈ x2 − 2x+ 3 + 1
x
+ 7

x2 − 5
x3 + 1

x4

Then since a = 1 from earlier and since v = 2 here (since pole of order 4) then we look
above for the coefficient of the term 1

(x−0)v+1 = 1
(x−0)3 in r itself. We see this is −5. Now

we need to subtract from this value the coefficient of 1
(x−0)v+1 = 1

(x−0)3 from
[√

r
]
c
series

from Eq (3). But since
[√

r
]
c
= 1

(x−0)2 then there is no term 1
(x−0)3 . Which means

b = −5− 0
= −5

Therefore for this example

α+
c = 1

2

(
b

a
+ v

)
= 1

2

(
−5
1 + 2

)
= −3

2

α−
c = 1

2

(
− b

a
+ v

)
= 1

2

(
5
1 + 2

)
= 7

2

We are now done with finding everything we need related to poles. The above needs to
be done for each pole c in r.

We see that for each pole, we need to calculate 3 items. They are
[√

r
]
c
, α+

c , α
−
c .

Now we switch attention to the O(∞) order. This is much easier. This is the order of
r = s

t
at infinity which is found from deg (t) − deg (s). There are also three cases to

consider.

If O(∞) > 2 then we write [√
r
]
∞ = 0

α+
∞ = 0

α−
∞ = 1

If O(∞) = 2 then
[√

r
]
∞ = 0. Now we calculate b for this case. This is given by the

leading coefficient of s divided by the leading coefficient of t when gcd (s, t) = 1. In this
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case [√
r
]
∞ = 0

α+
∞ = 1

2 + 1
2
√
1 + 4b

α−
∞ = 1

2 − 1
2
√
1 + 4b

Where here b is the coefficient of 1
x2 in the Laurent series expansion of r at ∞. But we

do not need to find Laurent series expansion of r at ∞ to find b here. It can be found
using b = lcoeff(s)

lcoeff(t) where r = s
t
and gcd (s, t) = 1. And lcoeff is the leading coefficient.

For example, if r = 1+5x
2x2 then b = 1

2 . If we took the Laurent series of r at ∞ which
in Maple can be done using the command series(r, x = ∞) then we will get 5

2x + 1
2

1
x2

which also give b = 1
2 .

And finally, if O(∞) ≤ 0, then O(∞) has to be negative and even number (conditions
for case 1). Let the order of r at ∞ be −2v ≤ 0. Then now

[√
r
]
∞ is the sum of all

terms xi for 0 ≤ i ≤ v in the Laurent series expansion of
√
r at ∞.[√

r
]
∞ = axv + z1x

v−1 + · · ·+ zn

And b is the coefficient of xv−1 in r minus the coefficient of xv−1 in
([√

r
]
∞

)2. Then
α+
∞ = 1

2

(
b

a
− v

)
α−
∞ = 1

2

(
− b

a
− v

)
This completes step 1 of the algorithm. We have found

[√
r
]
c
for each pole and associated

α+
c , α

−
c and also found

[√
r
]
∞ and its associated α+

∞, α−
∞. So, what will we do with

these? In step 2 these are used to find all possible values of what is called d. For each
non negative d, we will find a candidate ω. And use this candidate ω to find P (x) by
solving P ′′ + 2ωP ′ + (ω′ + ω2 − r)P = 0 (linear algebra problem). If we are able to
find a P (x) for any one candidate ω then we stop and we have found the solution
y = p(x) e

∫
ωdx to the y′′ = ry. Examples below will show how all this works.
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3.1.2 Step 2

Recall that from step 1 we have found
[√

r
]
c
and its associated α+

c , α
−
c (this is done

for each pole of r) and we have found
[√

r
]
∞ and its associated α+

∞, α−
∞. From these

we now found a possible d values and trying each d ≥ 0. The value of d is found using
the following for each combination of s(c) where s(c) is + or −

d = α±
∞ −

∑
c

α±
c

We keep only the non negative values of d. It is important to note that we have to find
an integer positive value for d to continue. If no such value is found from the above,
then we stop here as this means no Liouvillian solution exist using case 1. Then we go
to case two or case three if it is available.

If we do find d ≥ 0, then we now find corresponding candidate ωd using

ωd =
∑
c

(
(±)

[√
r
]
c
+ α±

c

x− c

)
+ (±)

[√
r
]
∞

3.1.3 Step 3

In this step we first attempt to find a polynomial p(x) of degree d, for ω found in step
2. This is done by solving

p′′ + 2ωp′ +
(
ω′ + ω2 − r

)
p = 0

For example, if d = 2, then we let p(x) = x2 + ax + b and if ω happened to be say
1
x2 − 3

2x + x − 1, then by substituting these in the above, we can solve for a, b (if a
solution exist). Then the solution to y′′ = ry is y = p(x) e

∫
ωdx. If the degree d = 1 then

we guess p(x) = x+ a and try to solve for a. If the degree d = 0, then we let p(x) = 1,
a constant. In the special case of p(x) = 1, there is no coefficients ai to solve for. So we
would just need to verify that

ω′ + ω2 − r = 0

In this case.

This completes the full algorithm for case 1. We will now go over many examples for
case 1, showing how to implement this algorithm for each example.

The hardest part of the kovacic algorithm is just finding all the
[√

r
]
c
, α±

c ,
[√

r
]
∞ , α±

∞.
Once these are found, the rest of the algorithm is much more direct.
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3.1.4 Case one algorithm diagram

The following diagram summarized the above for case one.

z′′ = rz

poles of r Γ

pole c1 of order 1

pole c2 of order 2

of order ≥ 4 (must be
even order). Let v be half
the order value.


[√
r
]
c1

= 0

α+
c1 = 1

α−c1 = 1



[√
r
]
c2

= 0

α+
c2 =

1

2
+

1

2

√
1 + 4b

α−c2 =
1

2
− 1

2

√
1 + 4b

Where b is the coefficient
of 1

(x−c2)2 in the partial

fractions expansion of r.

Case One Algorithm

(set of poles)

pole c3



[√
r
]
c3

=

v∑
i=2

ai

(x− c3)
i

α+
c1 =

1

2

(
b

av
+ v

)
α−c1 =

1

2

(
− b

av
+ v

)

This is the sum of terms of 1
(x−c)i

in the Laurent series expansion of√
r (not r) at the pole c3. The

sum of terms is for 2 ≤ i ≤ v

This a is the coefficient of
1

(x−c3)v in the above Lau-
rent sum.

b is the coefficient of the term 1
(x−c3)v+1

in r (found from the partial fraction de-
composition of r) minus the coefficient of
same term but in [

√
r]c3 .

Order of r at ∞

Order is > 2


[√
r
]
∞ = 0

α+
∞ = 0

α−∞ = 1

Order is 2



[√
r
]
∞ = 0

α+
∞ =

1

2
+

1

2

√
1 + 4b

α−∞ =
1

2
− 1

2

√
1 + 4b

This b is the coefficient of 1
x2 in the Lau-

rent series expansion of r at ∞. If r = s
t

where gcd(s, t) = 1 then b can be more

easily found using b = lcoeff(s)
lcoeff(t) where lcoeff

means the leading coefficient.

Order is −2v ≤ 0
which must be even
since case 1.



[√
r
]
∞ =

v∑
i=0

aix
v

α+
∞ =

1

2

(
b

a
− v
)

α−∞ =
1

2

(
− b
a
− v
)

This is the sum of terms xi for
0 ≤ i ≤ v in the Laurent series
for
√
r (not r) at ∞

This a is the coefficient of av in
the above Laurent series sum.

This b is the coefficient of xv−1 in r = s
t

(Which is found using long division) minus

the coefficient of same term but in ([
√
r]∞)

2
.

Step 2

Step 1

For each family s = (s(c))c∈Γ∪∞ where s(c) is + or − let

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

If family found which produced d an integer and positive then find

ω =
∑
c∈Γ

(
s(c)[
√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Step 3
Find polynomial p(x) of degree d which satisfies p′′ + 2ωp′ + (ω′ + ω2 − r)p = 0. Then the solution
to z′′ = rz is given by

z = pe
∫
w dx

case 1.ipe Nasser M. Abbasi 2/1/2022

Figure 1: Case 1 Kovacic algorithm
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3.2 worked examples for case one

3.2.1 Example 1

Let
y′′ = 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4

4x4 y

Therefore

r = s

t

= 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4
4x4

= x2 − 2x+ 3 + 1
x
+ 7

x2 − 5
x3 + 1

x4 (1)

Step 1 In this we find all
[√

r
]
c
and associated α±

c for each pole. There is only one pole
at x = 0 of order 4. Hence 2v = 4. And v = 2. This is step (C3) now in the paper (1).

We need now to find Laurent series of
√
r expanded around x = c = 0. This is given

by (using series command on the computer)

1
x2 − 5

2
1
x
− 9

4 − 41
8 x− 443

32 x2 + · · · (2)

We need to add all terms in the Laurent series expansion of
√
r from v = 2 down to 2.

Hence [√
r
]
c
= 1

(x− 0)2
(3)

Is only term from 2. Comparing the above to a
(x−0)2 shows that

a = 1 (4)

Hence [√
r
]
c
= 1

x2 (5)

α+
c = 1

2

(
b

a
+ v

)
α−
c = 1

2

(
− b

a
+ v

)
(6)

Where v = 2 and a = 1. We still need to find b. But b is the coefficient of the term
1

(x−0)v+1 in r minus the coefficient of 1
(x−0)v+1 in

[√
r
]
c
which we just found above.

14



Looking at r from Eq (1) we see that the term 1
(x−0)v+1 = 1

(x−0)3 has coefficient −5. And
looking at Eq (3) we see that there is no term 1

(x−0)3 in it. Hence

b = −5− 0
= −5 (7)

Now we found a, b, then (5,6) becomes (since v = 2)

α+
c = 1

2(−5 + 2) = −3
2 (8)

α−
c = 1

2(5 + 2) = 7
2 (9)

We are done with all the poles.
Now we consider O(∞) which is deg (t)−deg (s) = 4− 6 = −2. Since this is even order
and negative then −2v = −2 or

v = 1
We need the Laurent series of

√
r around ∞. Using the computer this is[√

r
]
∞ = x− 1 + 1

x
+ 3

2
1
x2 + 15

8x3 + · · ·

Now we only want the terms xi where 0 ≤ i ≤ v. This implies the above is reduced to[√
r
]
∞ = x− 1

The a is the coefficient of xv = x which is

a = 1

Now we need to find α±
∞ associated with

[√
r
]
∞. For this we need to first find b. Recall

from above that b is the coefficient of xv−1 or x0 in r minus the coefficient of xv−1 = x0

in
([√

r
]
∞

)2. Since v = 1 then we want the coefficient of x0 in r and subtract from it
the coefficient of x0 in

([√
r
]
∞

)2. But([√
r
]
∞

)2 = (x− 1)2

= x2 + 1− 2x

Hence the coefficient of x0 in
([√

r
]
∞

)2 is 1. To find the coefficient of x0 in r long
division is done

r = s

t

= 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4
4x4

= Q+ R

4x2

15



Where Q is the quotient and R is the remainder. This gives

r =
(
x2 − 2x+ 3

)
+ 4x3 + 7x2 − 20x+ 4

4x2

For the case of v 6= 0 then the coefficient is read from Q above. Which is 3. Hence

b = 3− 1
= 2

For the other case of v = 0 then the coefficient of x−1 in r is found using lcoeff(R)
lcoeff(t) which

will give 1 in this case. (More examples below).

Now that we found a, b, then from the above section describing the algorithm, we see
in this case that

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1 − 1

)
= 1

2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2
1 − 1

)
= −3

2

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.

step 2 Since we have a pole at zero, and we have one O(∞), each with ± signs, then
we set up this table to make it easier to work with. This implements

d = α±
∞ −

1∑
i=1

α±
ci

Therefore we obtain 4 possible d values.

pole c αc value O(∞) value d d value
x = 0 α+

c = −3
2 α+

∞ = 1
2 α+

∞ − (α+
c ) = 1

2 −
(−3

2

)
2

x = 0 α+
c = −3

2 α−
∞ = −3

2 α−
∞ − (α+

c ) = −3
2 −

(−3
2

)
0

x = 0 α−
c = 7

2 α+
∞ = 1

2 α+
∞ − (α−

c ) = 1
2 −

(7
2

)
−3

x = 0 α−
c = 7

2 α−
∞ = −3

2 α−
∞ − (α−

c ) = −3
2 −

(7
2

)
−5

We see from the above that we took each pole in this problem (there is only one pole
here at x = 0) and its associated α±

c with each α±
∞ and generated all possible d values

from all the combinations. Hence we obtain 4 possible d values in this case. If we had
2 poles, then we would have 8 possible d values. Hence the maximum possible d values

16



we can get is 2p+1 where p is number of poles. Now we remove all negative d values.
Hence the trial d values remaining is

d = {0, 2}

Now for each d value, we generate ω using

ω =
(∑

c

s(c)
[√

r
]
c
+ αc

x− c

)
+ s(∞)

[√
r
]
∞

To apply the above, we update the table above, now using only d = 0, d = 2 values,
but also add columns for

[√
r
]
c
,
[√

r
]
∞ to make the computation easier. Here is the

new table

pole c αc value s(c)
[√

r
]
c

O(∞) value s(∞)
[√

r
]
∞ d value

ω value(∑
c s(c)

[√
r
]
c
+ αc

x−c

)
+ s(∞)

[√
r
]
∞

x = 0 α+
c = −3

2 + 1
x2 α−

∞ = − 3
2 − x− 1 0

(
+
(

1
x2

)
+

−3
2

x−0

)
+ (−) (x− 1) = 1

x2 − 3
2x − x+ 1

x = 0 α+
c = −3

2 + 1
x2 α+

∞ = 1
2 + x− 1 2

(
+
(

1
x2

)
+

−3
2

x−0

)
+ (+) (x− 1) = x− 3

2x + 1
x2 − 1

The above are the two candidate ω values. For each ω we need to find polynomial P
by solving

P ′′ + 2ωP ′ +
(
ω′ + ω2 − r

)
P = 0 (8)

If we are able to find P , then we stop and the ode y′′ = ry is solved. If we try all
candidate ω and can not find P then this case is not successful and we go to the next
case.

step 3 Now for each candidate ω we solve the above Eq (8). Starting with ω = 1
x2 −

3
2x − x+ 1 associated with d = 0 in the table, then (8) becomes

P ′′ + 2
(

1
x2 −

3
2x

− x+ 1
)
P ′ +

((
3

2x2 −
2
x3 − 1

)
+
(

1
x2 −

3
2x

− x+ 1
)2

−
(
4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4

4x4

))
P = 0

P ′′ +
(

2
x2 −

3
2x

− 2x+ 2
)
P ′ +

(
4
x2 −

6
x

)
P = 0

Since this the case for d = 0, then P has zero degree, Hence P is constant. Therefore
the above simplifies to (

4
x2 − 6

x

)
P = 0

Which means 4
x2 − 6

x
= 0
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Which is not possible for all x. Hence d = 0 do not generate valid P polynomial. We
now try the case of d = 2. Since d = 2, it means the polynomial d is of degree two. Let

P = x2 + ax+ b

Substituting this in (8) using ω = x− 3
2x + 1

x2 − 1. This gives

P ′′ + 2
(
x−

3
2x

+
1
x2 − 1

)
P ′ +

((
3

2x2 −
2
x3 + 1

)
+
(
x−

3
2x

+
1
x2 − 1

)2
−
(
4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4

4x4

))
P = 0

P ′′ + 2
(
x−

3
2x

+
1
x2 − 1

)
P ′ +

(
4
x
− 4
)
P = 0

Using P = x2 + ax+ b the above becomes

2 + 2
(
x− 3

2x + 1
x2 − 1

)
(2x+ a) +

(
4
x
− 4
)(

x2 + ax+ b
)
= 0

2a− 4b− 3a
x
+ 2 a

x2 + 4 b
x
− 2ax+ 4

x
− 4 = 0

(2a− 4b− 4) + 1
x

(
−3
4a+ 4b+ 4

)
+ 1

x2 (2a)− 2ax = 0

Therefore

2a− 4b− 4 = 0

−3
4a+ 4b+ 4 = 0

2a = 0
2a = 0

hence a = 0 from last equation. Using first or second equation gives b = −1. Therefore
a solution is found. Hence

p(x) = x2 − 1

Therefore the solution to y′′ = ry is

y = p(x) e
∫
ωdx

=
(
x2 − 1

)
e
∫
x− 3

2x+
1
x2−1 dx

=
(
x2 − 1

)
e−

1
x
− 3

2 lnx+x2
2 −x

=
(
x2 − 1

)
x

−3
2 e−

1
x
+x2

2 −x

The second solution can be found by reduction of order.
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3.2.2 Example 2

Let
y′′ =

(
2
x2 − 1

)
y

Therefore

r = s

t

= 2− x2

x2 (1)

Step 1 In this we find all
[√

r
]
c
and associated α±

c for each pole. There is one pole at
x = 0 of order 2. In this case, from the description of the algorithm earlier, we write[√

r
]
c
= 0

α+
c = 1

2 + 1
2
√
1 + 4b

α−
c = 1

2 − 1
2
√
1 + 4b

Where b is the coefficient of 1
(x−0)2 in the partial fraction decomposition of r which is

2
x2 − 1. Hence b = 2. Therefore[√

r
]
c
= 0

α+
c = 1

2 + 1
2
√
1 + 8 = 1

2 + 3
2 = 2

α−
c = 1

2 − 1
2
√
1 + 8 = 1

2 − 3
2 = −1

We are done with all the poles. Now we consider O(∞) which is deg (t) − deg (s) =
2− 2 = 0. This falls in the case −2v ≤ 0. Hence

v = 0

We need the Laurent series of
√
r around∞. Using the computer this is i− i

x2 − 1
2x4 i+· · · .

Hence we need the coefficient of x0 in this series (0 because that is value of v).[√
r
]
∞ = ix0

Recall that
[√

r
]
∞ is the sum of terms of xj for 0 ≤ j ≤ v or for j = 0 since v = 0.

Looking at the series above, we see that

a = i
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Which is the coefficient of the term x0. Now we need to find α±
∞ associated with

[√
r
]
∞.

For this we need to first find b which is the coefficient of xv−1 = 1
x
in r minus the

coefficient of xv−1 = 1
x
in
([√

r
]
∞

)2. But([√
r
]
∞

)2 = i2 = −1

Hence the coefficient of x−1 in
([√

r
]
∞

)2 is 0. To find the coefficient of x−1 in r long
division is done

r = s

t

= 2− x2

x2

= Q+ R

x2

Where Q is the quotient and R is the remainder. This gives

r = −1 + 2
x2

For the other case of v = 0 then the coefficient of x−1 is found by looking up the
coefficient in R of x to the degree of of t then subtracting one and dividing result by
lcoeff(t). But degree of t is 2. Therefore we want the coefficient of x2−1 or x in R

which is zero. Hence b = 0− 0 = 0.

Now that we found a, b, then from the above section describing the algorithm, we see
in this case that

α+
∞ = 1

2

(
b

a
− v

)
= 1

2(0− 0) = 0

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2(−0− 0) = 0

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.

step 2 Since we have a pole at zero, and we have one O(∞), each with ± signs, then
we set up this table to make it easier to work with. This implements

d = α±
∞ −

1∑
i=1

α±
ci

Therefore we obtain 4 possible d values.
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pole c αc value O(∞) value d d value
x = 0 α+

c = 2 α+
∞ = 0 α+

∞ − (α+
c ) = 0− (2) −2

x = 0 α+
c = 2 α−

∞ = 0 α−
∞ − (α+

c ) = 0− (2) −2
x = 0 α−

c = −1 α+
∞ = 0 α+

∞ − (α−
c ) = 0− (−1) 1

x = 0 α−
c = −1 α−

∞ = 0 α−
∞ − (α−

c ) = 0− (−1) 1

We see from the above that we took each pole in this problem (there is only one pole
here at x = 0) and its associated α±

c with each α±
∞ and generated all possible d values

from all the combinations. Hence we obtain 4 possible d values in this case. If we had
2 poles, then we would have 8 possible d values. Hence the maximum possible d values
we can get is 2p+1 where p is number of poles. Now we remove all negative d values.
Hence the trial d values remaining is

d = {1}

There is one d value to try. We can pick any one of the two values of d generated since
there are both d = 1. Both will give same solution. We generate ω using

ω =
(∑

c

s(c)
[√

r
]
c
+ αc

x− c

)
+ s(∞)

[√
r
]
∞

To apply the above, we update the table above, now using only the first d = 1 value
in the above table. (selecting the second d = 1 row, will not change the final solution).
but we also add columns for

[√
r
]
c
,
[√

r
]
∞ to make the computation easier. Here is

the new table

pole c αc value s(c)
[√

r
]
c

O(∞) value s(∞)
[√

r
]
∞ d value

ω value(∑
c s(c)

[√
r
]
c
+ αc

x−c

)
+ s(∞)

[√
r
]
∞

x = 0 α−
c = −1 − 0 α+

∞ = 0 + i 1
(
−(0) + −1

x−0

)
+ (+) (i) = −1

x
+ i

The above gives one candidate ω value to try. For this ω we need to find polynomial P
by solving

P ′′ + 2ωP ′ +
(
ω′ + ω2 − r

)
P = 0 (8)

If we are able to find P , then we stop and the ode y′′ = ry is solved. If we try all
candidate ω and can not find P then this case is not successful and we go to the next
case.

step 3 Now for each candidate ω we solve the above Eq (8). Starting with ω = −1
x
+ i
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associated with first d = 1 in the table, then (8) becomes

P ′′ + 2
(
−1
x

+ i

)
P ′ +

((
−1
x

+ i

)′

+
(
−1
x

+ i

)2

−
(

2
x2 − 1

))
P = 0

P ′′ + 2
(
−1
x

+ i

)
P ′ +

(
−2i
x

)
P = 0

This needs to be solved for P . Since degree of p(x) is d = 1. Let p = x+ a. The above
becomes

2
(
−1
x

+ i

)
+
(
−2i
x

)
(x+ a) = 0

−2
x

+ 2i− 2i− 2ia
x

= 0
−2
x

− 2ia
x

= 0

Which means
a = i

Hence we found the polynomial
p(x) = x+ i

Therefore the solution to y′′ = ry is

y = pe
∫
ωdx

= (x+ i) e
∫ −1

x
+i dx

= (x+ i) 1
x
eix

= x+ i

x
(cosx+ i sin x)

The second solution can be found by reduction of order. The full general solution to
y′′ =

( 2
x2 − 1

)
y is

y(x) = c1
x
(x cosx− sin x) + c2

x
(cosx+ x sin x)
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3.2.3 Example 3

Let
y′′ =

(
x2 + 3

)
y

Therefore

r = s

t

= x2 + 3
1 (1)

Step 1 In this step we find all
[√

r
]
c
and associated α±

c for each pole. There are no
poles. In this case α±

c = 0 (paper was not explicit in saying this, but from example 3
in paper this can be inferred). Hence the value of d is decided by α±

∞ only in this case.

Now we consider O(∞) which is deg (t)− deg (s) = 0− 2 = −2. This falls in the case
−2v ≤ 0. Hence 2v = −2 or

v = 1

We need the Laurent series of
√
r around ∞. Using the computer this is

x+ 3
2x − 9

8x3 + · · ·

Hence we need the coefficient of x1 in this series (1 because that is value of v). Recall
that

[√
r
]
∞ is the sum of terms of xj for 0 ≤ j ≤ v or for j = 0, 1 since v = 1. Looking

at the series above, we see that
a = 1

Which is the coefficient of the term x. There is no term x0. Hence[√
r
]
∞ = x

Now we need to find α±
∞ associated with

[√
r
]
∞. For this we need to first find b. Recall

from above that b is the coefficient of xv−1 or x0 in r minus the coefficient of xv−1 = x0

in
([√

r
]
∞

)2. But
([√

r
]
∞

)2 = x2. Hence the coefficient of x0 is zero. To find the
coefficient of x0 in r long division is done

r = s

t

= x2 + 3
1

= Q+ R

1

23



Where Q is the quotient and R is the remainder. This gives

r = x2 + 3 + 0
1

For the case of v 6= 0 then the coefficient is read from Q above. Which is 3. Hence

b = 3− 0
= 3

Now that we found a, b, then from the above section describing the algorithm, we see
in this case that

α+
∞ = 1

2

(
b

a
− v

)
= 1

2(3− 1) = 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2(−3− 1) = −2

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c (these
are zero, in this example, since there are no poles) and found

[√
r
]
∞ and its associated

α±
∞. Now we go to step 2 which is to find the d′s.

step 2 We set up this table to make it easier to work with. This implements

d = α±
∞ −

0∑
i=1

α±
ci

Therefore we obtain 2 possible d values.

pole c αc values (all zero) O(∞) value d d value
x = N/A αc = 0 α+

∞ = 1 α+
∞ = 1 1

x = N/A αc = 0 α−
∞ = −2 α−

∞ = −2 −2

Picking the positive d integers, this gives

d = {1}

There is one d value to try. We can pick any one of the two values of d generated since
there are both d = 1. Both will give same solution. We generate ω using

ω =
(∑

c

s(c)
[√

r
]
c
+ αc

x− c

)
+ s(∞)

[√
r
]
∞

To apply the above, we update the table above, now using only the first d = 1 value in the
above table. (selecting the first d = 1 row). but we also add columns for

[√
r
]
c
,
[√

r
]
∞

to make the computation easier. Here is the new table
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pole c αc value s(c)
[√

r
]
c

O(∞) value s(∞)
[√

r
]
∞ d value

ω value(∑
c s(c)

[√
r
]
c
+ αc

x−c

)
+ s(∞)

[√
r
]
∞

x = 0 αc = 0 + 0 α+
∞ = 1 + x 1 (+(0) + 0) + (+) (x) = x

The above gives one candidate ω value to try. For this ω we need to find polynomial P
by solving

P ′′ + 2ωP ′ +
(
ω′ + ω2 − r

)
P = 0 (8)

If we are able to find P , then we stop and the ode y′′ = ry is solved. If we try all
candidate ω and can not find P then this case is not successful and we go to the next
case.

step 3 Now for each candidate ω (there is only one in this example) we solve the above
Eq (8). Starting with ω = x associated with first d = 1 in the table, then (8) becomes

P ′′ + 2(x)P ′ +
(
(x)′ + (x)2 −

(
x2 + 3

))
P = 0

P ′′ + 2xP ′ +
(
1 + x2 − x2 − 3

)
P = 0

P ′′ + 2xP ′ − 2P = 0

This needs to be solved for P . Since degree of p(x) is d = 1. Let p = x+ a. The above
becomes

2x− 2(x+ a) = 0
2x− 2x− 2a = 0

2a = 0

Which means
a = 0

Hence we found the polynomial
p(x) = x

Therefore the solution to y′′ = ry is

y = pe
∫
ωdx

= xe
∫
x dx

= xe
x2
2

The second solution can be found by reduction of order. The full general solution to
y′′ = (x2 + 3) y is

y(x) = c1xe
x2
2 + c2

(
xe

x2
2
√
π erf (x) + e

−x2
2

)
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3.2.4 Example 4

Let
y′′ = 2

x2y

Therefore

r = s

t

= 2
x2 (1)

Step 1 In this we find all
[√

r
]
c
and associated α±

c for each pole. There is one pole at
x = 0 of order 2. In this case, from the description of the algorithm earlier, we write[√

r
]
c
= 0

α+
c = 1

2 + 1
2
√
1 + 4b

α−
c = 1

2 − 1
2
√
1 + 4b

Where b is the coefficient of 1
(x−0)2 in the partial fraction decomposition of r which is

2
x2 . Hence b = 2. Therefore[√

r
]
c
= 0

α+
c = 1

2 + 1
2
√
1 + 8 = 1

2 + 3
2 = 2

α−
c = 1

2 − 1
2
√
1 + 8 = 1

2 − 3
2 = −1

We are done with all the poles. Now we consider O(∞) which is deg (t) − deg (s) =
2− 0 = 2. Since O(∞) = 2 then from the algorithm above[√

r
]
∞ = 0

Now we calculate b for this case. This is given by the leading coefficient of s divided by
the leading coefficient of t when gcd (s, t) = 1. In this case r = 2

x2 , hence b = 2
1 = 2.

Therefore [√
r
]
∞ = 0

α+
∞ = 1

2 + 1
2
√
1 + 4b = 1

2 + 1
2
√
1 + 8 = 2

α−
∞ = 1

2 − 1
2
√
1 + 4b = 1

2 − 1
2
√
1 + 8 = −1
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This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.

step 2 Since we have a pole at zero, and we have one O(∞), each with ± signs, then
we set up this table to make it easier to work with. This implements

d = α±
∞ −

1∑
i=1

α±
ci

Therefore we obtain 4 possible d values.

pole c αc value O(∞) value d d value
x = 0 α+

c = 2 α+
∞ = 2 α+

∞ − (α+
c ) = 2− (2) 0

x = 0 α+
c = 2 α−

∞ = −1 α−
∞ − (α+

c ) = −1− (2) −3
x = 0 α−

c = −1 α+
∞ = 2 α+

∞ − (α−
c ) = 2− (−1) 3

x = 0 α−
c = −1 α−

∞ = −1 α−
∞ − (α−

c ) = −1− (−1) 0

Hence the trial d values which are not negative are

d = {0, 3}

For d = 0 , since it shows in two rows, we take the first row. Now we generate ω for
each d using

ω =
(∑

c

s(c)
[√

r
]
c
+ αc

x− c

)
+ s(∞)

[√
r
]
∞

To apply the above, we update the table above, but we also add columns for
[√

r
]
c
,
[√

r
]
∞

to make the computation easier. Here is the new table

pole c αc value s(c)
[√

r
]
c

O(∞) value s(∞)
[√

r
]
∞ d value

ω value(∑
c s(c)

[√
r
]
c
+ αc

x−c

)
+ s(∞)

[√
r
]
∞

x = 0 α+
c = 2 + 0 α+

∞ = 2 + 0 0
(
+(0) + 2

x−0

)
+ (+) (0) = 2

x

x = 0 α−
c = −1 − 0 α+

∞ = 2 + 0 3
(
−(0) + −1

x−0

)
+ (+) (0) = −1

x

The above gives two candidate ω =
{ 2

x
, −1

x

}
value to try. For this ω we need to find

polynomial P by solving

P ′′ + 2ωP ′ +
(
ω′ + ω2 − r

)
P = 0 (8)

If we are able to find P , then we stop and the ode y′′ = ry is solved. If we try all
candidate ω and can not find P then this case is not successful and we go to the next
case.
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step 3 Now for each candidate ω we solve the above Eq (8). Starting with ω = 2
x

associated with first d = 0 in the table, then (8) becomes

P ′′ + 2
(
2
x

)
P ′ +

((
2
x

)′

+
(
2
x

)2

−
(

2
x2

))
P = 0

P ′′ + 4
x
P ′ +

(
− 2
x2 + 4

x2 − 2
x2

)
P = 0

P ′′ + 4
x
P ′ = 0

This needs to be solved for P . Since degree of p(x) is d = 0. Let p = a. The above
becomes

0 = 0

No unique solution. Hence d = 0 did not work. Now we try the second ω = −1
x

associated
with d = 3. Substituting in 8 gives

P ′′ + 2
(
−1
x

)
P ′ +

((
−1
x

)′

+
(
−1
x

)2

−
(

2
x2

))
P = 0

P ′′ + −2
x

P ′ +
(

1
x2 + 1

x2 − 2
x2

)
P = 0

P ′′ − 2
x
P ′ = 0

Since d = 3, let
p(x) = x3 + ax2 + bx+ c

Then P ′′ − 2
x
P ′ = 0 becomes

(6x+ 2a)− 2
x

(
3x2 + 2ax+ b

)
= 0

−2a− 2 b
x
= 0

Hence a = 0, b = 0 is solution. c is arbitrary. Taking c = 0 then

p(x) = x3

Therefore the solution to y′′ = ry is

y = p(x) e
∫
ωdx

= x3e
∫ −1

x
dx

= x3e− lnx

= x2
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The second solution can be found by reduction of order. The full general solution to
y′′ = 2

x2y is
y(x) = c1

1
x
+ c2x

2

3.2.5 Example 5

Let
y′′ = 32x2 − 27x+ 27

144x4 − 288x3 + 144x2y

Therefore

r = s

t

= 32x2 − 27x+ 27
144x4 − 288x3 + 144x2 (1)

= 3
16x − 3

16
1

(x− 1) +
3
16

1
x2 + 2

9
1

(x− 1)2
(2)

The necessary conditions for case 1 are met.

Step 1 In this we find all
[√

r
]
c
and associated α±

c for each pole. There is one pole at
x = 0 of order 2 and one pole at x = 1 of order 2. For the pole at x = 0 since order is
2 then [√

r
]
c=0 = 0

α+
c=0 =

1
2 + 1

2
√
1 + 4b

α−
c=0 =

1
2 − 1

2
√
1 + 4b

Where b is the coefficient of 1
(x−0)2 in the partial fraction decomposition of r given in

Eq (2) which is 3
16 . Hence b = 3

16 . Therefore[√
r
]
c=0 = 0

α+
c=0 =

1
2 + 1

2

√
1 + 4

(
3
16

)
= 1

4
√
7 + 1

2

α−
c=0 =

1
2 − 1

2

√
1 + 4

(
3
16

)
= 1

2 − 1
4
√
7
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And for the pole at x = 1 which is order 2,[√
r
]
c=1 = 0

α+
c=1 =

1
2 + 1

2
√
1 + 4b

α−
c=1 =

1
2 − 1

2
√
1 + 4b

Where b is the coefficient of 1
(x−1)2 in the partial fraction decomposition of r given in

Eq (2) which is 2
9 . Hence b = 2

9 . Therefore the above becomes[√
r
]
c=1 = 0

α+
c=1 =

1
2 + 1

2

√
1 + 4

(
2
9

)
= 1

6
√
17 + 1

2

α−
c=1 =

1
2 − 1

2

√
1 + 4

(
2
9

)
= 1

2 − 1
6
√
17

We are done with all the poles. Now we consider O(∞) which is deg (t) − deg (s) =
4− 2 = 2. Since O(∞) = 2 then from the algorithm above[√

r
]
∞ = 0

Now we calculate b for this case. This is given by the leading coefficient of s divided by
the leading coefficient of t when gcd (s, t) = 1. In this case r = 32x2−27x+27

144x4−288x3+144x2 from
Eq (1) , hence b = 32

144 = 2
9 . Therefore[√

r
]
∞ = 0

α+
∞ = 1

2 + 1
2
√
1 + 4b = 1

2 + 1
2

√
1 + 4

(
2
9

)
= 1

6
√
17 + 1

2

α−
∞ = 1

2 − 1
2
√
1 + 4b = 1

2 − 1
2

√
1 + 4

(
2
9

)
= 1

2 − 1
6
√
17

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.

step 2 Since we have a pole at x = c1 = 0 and pole at x = c2 = 1, and we have one
O(∞), each with ± signs. The following now implements

d = α±
∞ −

2∑
i=1

α±
ci
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By trying all possible combinations. There are 8 possible d values. This gives

d1 = α+
∞ −

(
α+
c1 + α+

c2

)
=
(
1
6
√
17 + 1

2

)
−
(
1
4
√
7 + 1

2

)
−
(
1
6
√
17 + 1

2

)
= −1

4
√
7− 1

2

d2 = α+
∞ −

(
α+
c1 + α−

c2

)
=
(
1
6
√
17 + 1

2

)
−
(
1
4
√
7 + 1

2

)
−
(
1
2 − 1

6
√
17
)

= 1
3
√
17− 1

4
√
7− 1

2

d3 = α+
∞ −

(
α−
c1 + α+

c2

)
=
(
1
6
√
17 + 1

2

)
−
(
1
2 − 1

4
√
7
)
−
(
1
6
√
17 + 1

2

)
= 1

4
√
7− 1

2

d4 = α+
∞ −

(
α−
c1 + α−

c2

)
=
(
1
6
√
17 + 1

2

)
−
(
1
2 − 1

4
√
7
)
−
(
1
2 − 1

6
√
17
)

= 1
4
√
7 + 1

3
√
17− 1

2

d5 = α−
∞ −

(
α+
c1 + α+

c2

)
=
(
1
2 − 1

6
√
17
)
−
(
1
4
√
7 + 1

2

)
−
(
1
6
√
17 + 1

2

)
= −1

4
√
7− 1

3
√
17− 1

2

d6 = α−
∞ −

(
α+
c1 + α−

c2

)
=
(
1
2 − 1

6
√
17
)
−
(
1
4
√
7 + 1

2

)
−
(
1
2 − 1

6
√
17
)

= −1
4
√
7− 1

2

d7 = α−
∞ −

(
α−
c1 + α+

c2

)
=
(
1
2 − 1

6
√
17
)
−
(
1
2 − 1

4
√
7
)
−
(
1
6
√
17 + 1

2

)
= 1

4
√
7− 1

3
√
17− 1

2

d8 = α−
∞ −

(
α−
c1 + α−

c2

)
=
(
1
2 − 1

6
√
17
)
−
(
1
2 − 1

4
√
7
)
−
(
1
2 − 1

6
√
17
)

= 1
4
√
7− 1

2

None of the d found are integer. Hence case 1 did not work we need to try case 2 and
if that also fail, try case 3. We will find all three cases fail on this ode..

3.2.6 Example 6

Let
y′′ = y

Therefore
r = s

t
= 1

The necessary conditions for case 1 are met since zero order pole and O(∞) = 0.

Step 1 In this we find all
[√

r
]
c
and associated α±

c for each pole. There are no poles.
In this case

[√
r
]
c
= 0 and α±

c = 0. Since O(∞) = 0, we are in case 2v ≤ 0. Hence
v = 0. Then now

[√
r
]
∞ is the sum of all terms xi for 0 ≤ i ≤ v in the Laurent series

expansion of
√
r at ∞. [√

r
]
∞ = 1

Hence a = 1. And b is the coefficient of xv−1 = x−1 in r minus the coefficient of
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xv−1 = x−1 in
([√

r
]
∞

)2. Hence b = 0. Then

α+
∞ = 1

2

(
b

a
− v

)
= 0

α−
∞ = 1

2

(
− b

a
− v

)
= 0

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.

step 2 Since we have a pole at zero and pole at x = 1, and we have one O(∞), each
with ± signs, then we set up this table to make it easier to work with. This implements

d = α±
∞ −

0∑
i=1

α±
ci

Therefore we obtain 2 possible d values.

pole c αc value O(∞) value d d value
x = NA αc = 0 α+

∞ = 0 α+
∞ = 0 0

x = NA αc = 0 α−
∞ = 0 α+

∞ = 0 0

Hence the trial d values which are not negative integers are

d = {0}

For d = 0 , since it shows in two rows, we take the first row. Now we generate ω for
each d using

ω =
(∑

c

s(c)
[√

r
]
c
+ αc

x− c

)
+ s(∞)

[√
r
]
∞

To apply the above, we update the table above, but we also add columns for
[√

r
]
c
,
[√

r
]
∞

to make the computation easier. Here is the new table

pole c αc value s(c)
[√

r
]
c

O(∞) value s(∞)
[√

r
]
∞ d value

ω value(∑
c s(c)

[√
r
]
c
+ αc

x−c

)
+ s(∞)

[√
r
]
∞

x = NA αc = 0 + 0 α+
∞ = 0 + 0 0 (+(0) + 0) + (+) (1) = 1

The above gives candidate ω = 1 value to try. For this ω we need to find polynomial P
by solving

P ′′ + 2ωP ′ +
(
ω′ + ω2 − r

)
P = 0 (8)

If we are able to find P , then we stop and the ode y′′ = ry is solved.
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step 3 Now for each candidate ω we solve the above Eq (8). Starting with ω = 1
associated with d = 0 in the table. Let p(x) = 1 since degree is zero, then (8) becomes

P ′′ + 2(1)P ′ +
(
(1)′ + (1)2 − (1)

)
P = 0

(0 + 1− 1) = 0
0 = 0

Hence p(x) = 1 is valid solution. Therefore the solution to y′′ = y is

y = p(x) e
∫
ωdx

= e
∫
1 dx

= ex

The second solution can be found by reduction of order. The full general solution to
y′′ = y is

y(x) = c1e
x + c2e

−x

3.2.7 Example 7

Let (
x2 − 2x

)
y′′ +

(
2− x2) y′ + (2x− 2) y = 0

Normalizing so that coefficient of y′′ is one gives

y′′ + (2− x2)
(x2 − 2x)y

′ + (2x− 2)
(x2 − 2x)y = 0

y′′ + ay′(x) + by = 0 (1)

Hence

a = (2− x2)
(x2 − 2x)

b = (2x− 2)
(x2 − 2x)

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)
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Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(
(2− x2)
(x2 − 2x)

)2

+ 1
2
d

dx

(
(2− x2)
(x2 − 2x)

)
− (2x− 2)

(x2 − 2x)

= (x4 − 8x3 + 24x2 − 24x+ 12)
4x2 (x− 2)2

(4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = (x4 − 8x3 + 24x2 − 24x+ 12)
4x2 (x− 2)2

z (5)

Therefore

r = s

t

= (x4 − 8x3 + 24x2 − 24x+ 12)
4x2 (x− 2)2

The necessary conditions for case 1 are met.

Step 1 In this we find all
[√

r
]
c
and associated α±

c for each pole. There is one pole at
x = 0 of order 2 and one pole at x = 2 of order 2. For the pole at x = 0 since order is
2 then [√

r
]
c=0 = 0

α+
c=0 =

1
2 + 1

2
√
1 + 4b

α−
c=0 =

1
2 − 1

2
√
1 + 4b

Where b is the coefficient of 1
(x−0)2 in the partial fraction decomposition of r which is

x4 − 8x3 + 24x2 − 24x+ 12
4x2 (x− 2)2

= 1
4 − 3

4
1
x
− 1

4
1

(x− 2) +
3
4

1
(x− 2)2

+ 3
4
1
x2 (6)

Hence b = 3
4 . Therefore [√

r
]
c=0 = 0

α+
c=0 =

1
2 + 1

2

√
1 + 4

(
3
4

)
= 3

2

α−
c=0 =

1
2 − 1

2

√
1 + 4

(
3
4

)
= −1

2
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And for the pole at x = 2 which is order 2,[√
r
]
c=2 = 0

α+
c=2 =

1
2 + 1

2
√
1 + 4b

α−
c=2 =

1
2 − 1

2
√
1 + 4b

Where b is the coefficient of 1
(x−2)2 in the partial fraction decomposition of r given in

Eq (6). Hence b = 3
4 . Therefore the above becomes[√

r
]
c=2 = 0

α+
c=2 =

1
2 + 1

2

√
1 + 4

(
3
4

)
= 3

2

α−
c=2 =

1
2 − 1

2

√
1 + 4

(
3
4

)
= −1

2

We are done with all the poles. Now we consider O(∞) which is deg (t) − deg (s) =
4 − 4 = 0. Since O(∞) = 0, we are in case 2v ≤ 0. Hence v = 0. Then now

[√
r
]
∞ is

the sum of all terms xi for 0 ≤ i ≤ v in the Laurent series expansion of
√
r at ∞ which

is [√
r
]
∞ = 1

2 − 1
x
+ 2

x3 + 11
x4 + · · · (7)

We want only terms for 0 ≤ i ≤ v but

v = 0

Therefore only the constant term. Hence[√
r
]
∞ = 1

2 (8)

Which means
a = 1

2
As it is the the term that matches

[√
r
]
∞ = axv + · · · . Hence

([√
r
]
∞

)2 = 1
4 and the

coefficient of 1
x
is zero. To find the coefficient of 1

x
in r long division is done

r = s

t

= x4 − 8x3 + 24x2 − 24x+ 12
4x4 − 16x3 + 16x2

= Q+ R

4x4 − 16x3 + 16x2
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Where Q is the quotient and R is the remainder. This gives

r = 1
4 + −4x3 + 20x2 − 24x+ 12

4x4 − 16x3 + 16x2

Since v = 0 then the coefficient of x−1 in r is found using lcoeff(R)
lcoeff(t) . This gives −1 as

seen from above. Hence b = −1− 0 = −1. Therefore

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
−1
1
2

− 0
)

= −1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−−1

1
2

− 0
)

= 1

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.

step 2 Since we have a pole at x = c1 = 0 and pole at x = c2 = 1, and we have one
O(∞), each with ± signs. The following now implements

d = α±
∞ −

2∑
i=1

α±
ci

By trying all possible combinations. There are 8 possible d values. This gives

d1 = 1−
(
α+
c1 + α+

c2

)
= 1−

(
3
2 + 3

2

)
= −2

d2 = 1−
(
α+
c1 + α−

c2

)
= 1−

(
3
2 − 1

2

)
= 0

d3 = 1−
(
α−
c1 + α+

c2

)
= 1−

(
−1
2 + 3

2

)
= 0

d4 = 1−
(
α−
c1 + α−

c2

)
= 1−

(
−1
2 − 1

2

)
= 2

d5 = −1−
(
α+
c1 + α+

c2

)
= −1−

(
3
2 + 3

2

)
= −4

d6 = −1−
(
α+
c1 + α−

c2

)
= −1−

(
3
2 − 1

2

)
= −2

d7 = −1−
(
α−
c1 + α+

c2

)
= −1−

(
−1
2 + 3

2

)
= −2

d8 = −1−
(
α−
c1 + α−

c2

)
= −1−

(
−1
2 − 1

2

)
= 0

Need to complete the solution next.
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3.2.8 Example 8

Let (
x2 + 1

)
y′′ + 2xy′ − 2y = 0

Normalizing so that coefficient of y′′ is one gives

y′′ + 2x
(x2 + 1)y

′ − 2
(x2 + 1)y = 0

y′′ + ay′(x) + by = 0 (1)

Hence

a = 2x
(x2 + 1)

b = − 2
(x2 + 1)

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(
2x

(x2 + 1)

)2

+ 1
2
d

dx

(
2x

(x2 + 1)

)
−
(
− 2
(x2 + 1)

)
= 2x2 + 3

(x2 + 1)2
(4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = 2x2 + 3
(x2 + 1)2

z (5)

Therefore

r = s

t

= 2x2 + 3
(x2 + 1)2

= 2x2 + 3
x4 + 2x2 + 1 (5A)
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The necessary conditions for case 1 are met.

Step 1 In this we find all
[√

r
]
c
and associated α±

c for each pole. There is one pole at
x = −i of order 2 and one pole at x = i of order 2. For the pole at x = −i since order
is 2 then [√

r
]
c1
= 0

α+
c1 =

1
2 + 1

2
√
1 + 4b

α−
c1 =

1
2 − 1

2
√
1 + 4b

Where b is the coefficient of 1
(x+i)2 in the partial fraction decomposition of r which is

(in Maple this can be found using fullparfrac.

2x2 + 3
(x2 + 1)2

= −1
4

1
(x− i)2

− 1
4

1
(x+ i)2

− 5i
4

1
(x− i) +

5i
4

1
x+ i

(6)

Hence b = −1
4 . Therefore[√

r
]
c=0 = 0

α+
c1 =

1
2 + 1

2

√
1 + 4

(
−1
4

)
= 1

2

α−
c1 =

1
2 − 1

2

√
1 + 4

(
−1
4

)
= 1

2

And for the pole at x = +i which is order 2,[√
r
]
c2
= 0

α+
c2 =

1
2 + 1

2
√
1 + 4b

α−
c2 =

1
2 − 1

2
√
1 + 4b

Where b is the coefficient of 1
(x−i)2 in the partial fraction decomposition of r given in

Eq (6). Hence b = −1
4 . Therefore the above becomes[√

r
]
c=2 = 0

α+
c=2 =

1
2 + 1

2

√
1 + 4

(
−1
4

)
= 1

2

α−
c=2 =

1
2 − 1

2

√
1 + 4

(
−1
4

)
= 1

2
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We are done with all the poles. Now we consider O(∞) which is deg (t) − deg (s) =
4− 2 = 2. Since O(∞) = 2, then

[√
r
]
∞ = 0. Now b is the coefficient of 1

x2 in r minus
coefficient of 1

x2 in
[√

r
]2
∞ which is zero. the coefficient of 1

x2 in r is found from lcoeff(s)
lcoeff(t)

which from Eq (5A) above is 2
1 = 2. Hence b = 2− 0 = 2.

α+
∞ = 1

2 + 1
2
√
1 + 4b = 1

2 + 1
2
√
1 + 8 = 2

α−
∞ = 1

2 − 1
2
√
1 + 4b = 1

2 − 1
2
√
1 + 8 = −1

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.

step 2 Since we have a pole at x = −i and pole at x = +i each of order 2, and we have
one O(∞), each with ± signs. The following now implements

d = α±
∞ −

2∑
i=1

α±
ci

By trying all possible combinations. There are 8 possible d values. This gives

d1 = 2−
(
α+
c1 + α+

c2

)
= 2−

(
1
2 + 1

2

)
= 1

d2 = 2−
(
α+
c1 + α−

c2

)
= 2−

(
1
2 + 1

2

)
= 1

d3 = 2−
(
α−
c1 + α+

c2

)
= 2−

(
1
2 + 1

2

)
= 1

d4 = 2−
(
α−
c1 + α−

c2

)
= 2−

(
1
2 + 1

2

)
= 1

d5 = −1−
(
α+
c1 + α+

c2

)
= −1−

(
1
2 + 1

2

)
= −2

d6 = −1−
(
α+
c1 + α−

c2

)
= −1−

(
1
2 + 1

2

)
= −2

d7 = −1−
(
α−
c1 + α+

c2

)
= −1−

(
1
2 + 1

2

)
= −2

d8 = −1−
(
α−
c1 + α−

c2

)
= −1−

(
1
2 + 1

2

)
= −2

Need to complete the solution next.

39



3.2.9 Example 9

Let
(1− x) y′′ + xy′ − y = 0

Normalizing so that coefficient of y′′ is one gives

y′′ + x

(1− x)y
′ − 1

(1− x)y = 0

y′′ + ay′(x) + by = 0 (1)

Hence

a = x

(1− x)

b = − 1
(1− x)

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a+

1
2a

′ − b

= 1
4

(
x

(1− x)

)2

+ 1
2
d

dx

(
x

(1− x)

)
−
(
− 1
(1− x)

)
= x2 − 4x+ 6

4 (x− 1)2
(4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = x2 − 4x+ 6
4 (x− 1)2

z (5)

Therefore

r = s

t

= x2 − 4x+ 6
4 (x− 1)2

= x2 − 4x+ 6
4x2 − 8x+ 4 (5A)
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The necessary conditions for case 1 are met.

Step 1 In this we find all
[√

r
]
c
and associated α±

c for each pole. There is one pole at
x = 1 of order 2. Hence [√

r
]
c1
= 0

α+
c1 =

1
2 + 1

2
√
1 + 4b

α−
c1 =

1
2 − 1

2
√
1 + 4b

Where b is the coefficient of 1
(x−1)2 in the partial fraction decomposition of r which is

(in Maple this can be found using fullparfrac).

x2 − 4x+ 6
4 (x− 1)2

= 1
4 + 3

4 (x− 1)2
− 1

2
1

x− 1 (6)

Hence b = 3
4 . Therefore [√

r
]
c1
= 0

α+
c1 =

1
2 + 1

2

√
1 + 4

(
3
4

)
= 3

2

α−
c1 =

1
2 − 1

2

√
1 + 4

(
3
4

)
= −1

2

We are done with all the poles. Now we consider O(∞) which is deg (t) − deg (s) =
2− 2 = 0. Since O(∞) = 0, we are in case 2v ≤ 0. Hence

v = 0

Then now
[√

r
]
∞ is the sum of all terms xi for 0 ≤ i ≤ v in the Laurent series expansion

of
√
r at ∞ which is [√

r
]
∞ = 1

2 − 1
2x + 1

x3 + 11
4x4 + · · · (7)

We want only terms for 0 ≤ i ≤ v but v = 0. Therefore only the constant term. Hence[√
r
]
∞ = 1

2 (8)

Which means
a = 1

2
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As it is the term that matches
[√

r
]
∞ = axv + · · · . Now we need to find b. This will

be the coefficient of xv−1 = 1
x
in r −

([√
r
]
∞

)2. But ([√r
]
∞

)2 = 1
4 . So coefficient of 1

x

is zero in
([√

r
]
∞

)2. To find the coefficient of 1
x
in r long division is done

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4
Where Q is the quotient and R is the remainder. This gives

r = 1
4 + −2x+ 5

4x2 − 8x+ 4

Hence the coefficient of 1
x
is lcoeff(R)

lcoeff(t) = −2
4 = −1

2 . Therefore b = −1
2 − 0 = −1

2 . Hence

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−1
2

1
2

− 0
)

= −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−1

2
1
2

− 0
)

= 1
2

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.

step 2 Now d is found using

d = α±
∞ −

1∑
i=1

α±
ci

By trying all possible combinations. There are 4 possible d values. This gives

d1 = α+
∞ −

(
α+
c1

)
= −1

2 − 3
2 = −2

d2 = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

d3 = α−
∞ −

(
α+
c1

)
= 1

2 − 3
2 = −1

d4 = α−
∞ −

(
α−
c1

)
= 1

2 −
(
−1
2

)
= 1

Using entry d = 1 entry above now we find ω using

ω =
(∑

c

s(c)
[√

r
]
c
+ α

s(c)
c

x− c

)
+ s(∞)

[√
r
]
∞
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Hence

ω =
(
0 +

α−
c1

x− c1

)
+ (−) 12

=
−1

2
x− 1 − 1

2
= −1

2
1

x− 1 − 1
2

If this ω fails to find p(x), then we will try the entry d = 0. Which will give

ω = −1
2

1
x− 1 + 1

2

Will finish the solution later.

3.2.10 Example 10

Let

y′′ − x2y′ − 3xy = 0 (1)
y′′ + ay′(x) + by = 0

Hence

a = −x2

b = −3x

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4
(
−x2)2 + 1

2
d

dx

(
−x2)− (−3x)

= 1
4x

4 + 2x (4)

43



Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ =
(
1
4x

4 + 2x
)
z (5)

Therefore

r = s

t

= 1
4x

4 + 2x

The necessary conditions for case 1 are met.

Step 1 In this we find all
[√

r
]
c
and associated α±

c for each pole. There are no poles.
Hence set Γ of poles is empty. Now we consider O(∞) which is deg (t) − deg (s) =
0− 4 = −4. We are in case 2v ≤ 0. Hence −2v = −4 or

v = 2

Then now
[√

r
]
∞ is the sum of all terms xi for 0 ≤ i ≤ v in the Laurent series expansion

of
√
r at ∞ which is [√

r
]
∞ = x2

2 + 2
x
− 4

x4 + 16
x7 − · · · (7)

We want only terms for 0 ≤ i ≤ v but v = 2. Therefore need to sum terms x0, x1, x2.
From the above we see that [√

r
]
∞ = x2

2 + 0x1 + 0x0

= x2

2
Which means

a = 1
2

As that is the term which matches
[√

r
]
∞ = ax2 + · · · . Now we need to find b. This

will be the coefficient of xv−1 = x in r minus coefficient of x in
([√

r
]
∞

)2. But
([√

r
]
∞

)2 = x4

4

Hence the coefficient is zero here. Now we find coefficient of x in r. But r = 1
4x

4 + 2x
hence the coefficient of x is 2. Therefore

b = 2− 0
= 2
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Hence

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(
2
1
2
− 2
)

= 1

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−2

1
2
− 2
)

= −3

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.

step 2 Now d is found using

d = α±
∞ −

0∑
i=1

α±
ci

By trying all possible combinations. There are 4 possible d values. This gives

d1 = α+
∞ = 1

d2 = α−
∞ = −3

Using d = 1 entry above now we find ω using

ω =
(∑

c

s(c)
[√

r
]
c
+ α

s(c)
c

x− c

)
+ s(∞)

[√
r
]
∞

Hence, since there are no poles, only last term above survives giving

ω = s(∞)
[√

r
]
∞ = (+) x

2

2 = x2

2

Will finish the solution next.

3.2.11 Example 11

Let

y′′ − 2
5xy

′ + 2y = 0 (1)

y′′ + ay′(x) + by = 0

Hence

a = −2
5x

b = 2
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It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(
−2
5x
)2

+ 1
2
d

dx

(
−2
5x
)
− (2)

= x2 − 55
25 (4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ =
(
x2 − 55

25

)
z (5)

Therefore

r = s

t

= x2 − 55
25

The necessary conditions for case 1 are met.

Step 1 In this we find all
[√

r
]
c
and associated α±

c for each pole. There are no poles.
Hence set Γ of poles is empty. Now we consider O(∞) which is deg (t) − deg (s) =
0− 2 = −2. We are in case 2v ≤ 0. Hence −2v = −2 or

v = 1

Then now
[√

r
]
∞ is the sum of all terms xi for 0 ≤ i ≤ v in the Laurent series expansion

of
√
r at ∞ which is [√

r
]
∞ = x

5 − 11
2
1
x
− · · · (7)

We want only terms for 0 ≤ i ≤ v but v = 1. Therefore need to sum terms x0, x1. From
the above we see that [√

r
]
∞ = x

5
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Which means
a = 1

5
As it is the the term that matches

[√
r
]
∞ = ax. Now we need to find b. This will be

the coefficient of xv−1 = x0 in r minus the coefficient of x0 in
([√

r
]
∞

)2. But
([√

r
]
∞

)2 = (x5)2
= x2

25

Hence the coefficient of x0 is zero. Now we find coefficient of x0 in r. Since r = x2

25 −
55
25

then coefficient of x0 is −55
25 = −11

5 . Hence b = −11
5 − 0 = −11

5 . Therefore

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

(−11
5

1
5

− 1
)

= −6

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−
−11

5
1
5

− 1
)

= 5

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.

step 2 Now d is found using

d = α±
∞ −

0∑
i=1

α±
ci

By trying all possible combinations. There are 2 possible d values since no poles.

d1 = α+
∞ = −6

d2 = α−
∞ = 5

Using d = 5 entry above now we find ω using

ω =
(∑

c

s(c)
[√

r
]
c
+ α

s(c)
c

x− c

)
+ s(∞)

[√
r
]
∞

Hence, since there are no poles, only last term above survives giving

ω = s(∞)
[√

r
]
∞ = (−) x5 = −x

5

Will finish the solution next.
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3.2.12 Example 12

Let

y′′ + x2 − 1
x

y′ + x2y = 0 (1)

y′′ + ay′(x) + by = 0

Hence

a = x2 − 1
x

b = x2

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(
x2 − 1

x

)2

+ 1
2
d

dx

(
x2 − 1

x

)
− x2

= −3(x4 − 1)
4x2 (4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = −3(x4 − 1)
4x2 z (5)

Therefore

r = s

t

= −3(x4 − 1)
4x2

The necessary conditions for case 1 are met.

Step 1 In this we find all
[√

r
]
c
and associated α±

c for each pole. There is one pole at
x = 0 of order 2. Hence
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[√
r
]
c1
= 0

α+
c1 =

1
2 + 1

2
√
1 + 4b

α−
c1 =

1
2 − 1

2
√
1 + 4b

Where b is the coefficient of 1
(x−0)2 in the partial fraction decomposition of r which is

(in Maple this can be found using fullparfrac).
−3(x4 − 1)

4x2 = −3
4x

2 + 3
4
1
x2 (6)

Hence b = 3
4 . Therefore [√

r
]
c1
= 0

α+
c1 =

1
2 + 1

2

√
1 + 4

(
3
4

)
= 3

2

α−
c1 =

1
2 − 1

2

√
1 + 4

(
3
4

)
= −1

2

Now we consider O(∞) which is deg (t)− deg (s) = 2− 4 = −2. We are in case 2v ≤ 0.
Hence −2v = −2 or

v = 1
Then now

[√
r
]
∞ is the sum of all terms xi for 0 ≤ i ≤ v in the Laurent series expansion

of
√
r at ∞ which is [√

r
]
∞ = i

√
3

2 x− i
√
3

4
1
x3 + · · · (7)

We want only terms for 0 ≤ i ≤ v but v = 1. Therefore need to sum terms x0, x1. From
the above we see that [√

r
]
∞ = i

√
3

2 x

Which means
a = i

√
3

2
As it is the the term that matches

[√
r
]
∞ = ax. Now we need to find b. This will be

the coefficient of xv−1 = x0 in r minus the coefficient of x0 in
([√

r
]
∞

)2. But
([√

r
]
∞

)2 = (i
√
3

2 x

)2

= −3
4x

2
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Hence the coefficient is zero here. Now we find coefficient of x0 in r. Since r = −3
4x

2+ 3
4

1
x2

then coefficient of x0 is zero also. Hence b = 0− 0 = 0. Therefore

α+
∞ = 1

2

(
b

a
− v

)
= 1

2(0− 1) = −1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2(0− 1) = −1
2

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.

step 2 Now d is found using

d = α±
∞ −

0∑
i=1

α±
ci

By trying all possible combinations. There are 4 possible d values. This gives

d1 = α+
∞ −

(
α+
c1

)
= −1

2 − 3
2 = −1

d2 = α+
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

d3 = α−
∞ −

(
α+
c1

)
= −1

2 − 3
2 = −2

d4 = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0

Using first d = 0 entry above now we find ω using

ω =
(∑

c

s(c)
[√

r
]
c
+ α

s(c)
c

x− c

)
+ s(∞)

[√
r
]
∞

Hence

ω = (−1) (0) +
−1

2
x− 0 + (+)

(
i
√
3

2 x

)
= −1

2x + i
√
3

2 x

Notice that if have taken the last d = 0 entry, we will get

ω = (−1) (0) +
−1

2
x− 0 + (−)

(
i
√
3

2 x

)
= −1

2x − i
√
3

2 x

In practice, we will try the second one if the first fails. Will finish the solution next.
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3.2.13 Example 13

Let

(1− x) y′′ + xy′ − y = 0 (1)
y′′ + ay′(x) + by = 0

Hence

a = x

1− x

b = − 1
1− x

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(
x

1− x

)2

+ 1
2
d

dx

(
x

1− x

)
−
(
− 1
1− x

)
= x2 − 4x+ 6

4 (x− 1)2
(4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = x2 − 4x+ 6
4 (x− 1)2

z (5)

Therefore

r = s

t

= x2 − 4x+ 6
4 (x− 1)2

The necessary conditions for case 1 are met.

Step 1 In this we find all
[√

r
]
c
and associated α±

c for each pole. There is one pole at
x = 1 of order 2. Hence
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[√
r
]
c1
= 0

α+
c1 =

1
2 + 1

2
√
1 + 4b

α−
c1 =

1
2 − 1

2
√
1 + 4b

Where b is the coefficient of 1
(x−1)2 in the partial fraction decomposition of r which is

x2 − 4x+ 6
4 (x− 1)2

= 1
4 + 3

4 (x− 1)2
− 1

2
1

x− 1 (6)

Hence b = 3
4 . Therefore [√

r
]
c1
= 0

α+
c1 =

1
2 + 1

2

√
1 + 4

(
3
4

)
= 3

2

α−
c1 =

1
2 − 1

2

√
1 + 4

(
3
4

)
= −1

2

Now we consider O(∞) which is deg (t)− deg (s) = 2− 2 = 0. We are in case 2v ≤ 0.
Hence −2v = 0 or

v = 0

Then now
[√

r
]
∞ is the sum of all terms xi for 0 ≤ i ≤ v in the Laurent series expansion

of
√
r at ∞ which is [√

r
]
∞ = 1

2 − 1
2x + 1

x3 + · · · (7)

But we want only terms for 0 ≤ i ≤ v but v = 0. Therefore need to sum terms x0.
Which is the constant term [√

r
]
∞ = 1

2 (8)

Which means
a = 1

2
Now we need to find b. Which is given by the coefficient of 1

x
in r minus coefficient

of 1
x
in
([√

r
]
∞

)2. But ([√r
]
∞

)2 = 1
4 Hence the coefficient is zero here. To find the

coefficient of 1
x
in r long division is done (here paper is not clear at all what it means

by coefficient of xv−1 in r as that depends on the form of r and how it is represented).
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This method of using long division to find the coefficient works to obtain the correct
result. But it is still not clear what the paper actually means by this.

r = s

t

= x2 − 4x+ 6
4x2 − 8x+ 4

= Q+ R

4x2 − 8x+ 4

Where Q is the quotient and R is the remainder. This gives

r = 1
4 + −2x+ 5

4x2 − 8x+ 4

For the case of v = 0 then the coefficient of x−1 is lcoeff(R)
lcoeff(t) = −2

4 = −1
2 . Notice that if

we just expanded r it will give x2

4(x−1)2 −
x

(x−1)2 +
3

2(x−1)2 and we see there is no coefficient
of 1

x
in this representation. So we would have obtain wrong value of b if we just used

what the paper said. Now b = −1
2 − 0 = −1

2 . Therefore

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 1
2
1
2
− 0
)

= 1
2

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

1
2
1
2
− 0
)

= −1
2

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.

step 2 Now d is found using

d = α±
∞ −

1∑
i=1

α±
ci

By trying all possible combinations. There are 4 possible d values. This gives

d1 = α+
∞ −

(
α+
c1

)
= 1

2 −
(
3
2

)
= −1

d2 = α+
∞ −

(
α−
c1

)
= 1

2 −
(
−1
2

)
= 1

d3 = α−
∞ −

(
α+
c1

)
= −1

2 −
(
3
2

)
= −2

d4 = α−
∞ −

(
α−
c1

)
= −1

2 −
(
−1
2

)
= 0
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Using first d = 1 entry from above we find ω using

ω =
(∑

c

s(c)
[√

r
]
c
+ α

s(c)
c

x− c

)
+ s(∞)

[√
r
]
∞

Hence
ω =

(
(−1) (0) +

−1
2

x− 1

)
+ (+)

(
1
2

)
= −1

2(x− 1) +
1
2

And if use the last entry d = 0 then

ω

(
= (−1) (0) +

−1
2

x− 1

)
+ (−)

(
1
2x
)

= −1
2(x− 1) −

1
2

In practice, we will try the second one if the first fails. Will finish the solution next.

3.2.14 Example 14

Let

3y′′ + xy′ − 4y = 0 (1)
y′′ + ay′(x) + by = 0

Hence

a = x

3
b = −4

3
It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(x
3

)2
+ 1

2
d

dx

(x
3

)
−
(
−4
3

)
= x2

36 + 3
2 (4)
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Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = x2 + 54
36 z (5)

Therefore

r = s

t

= x2 + 54
36

The necessary conditions for case 1 are met.

Step 1 In this we find all
[√

r
]
c
and associated α±

c for each pole. There are no poles.
Hence Γ is empty.

Now we consider O(∞) which is deg (t)− deg (s) = 0− 2 = −2. We are in case 2v ≤ 0.
Hence −2v = −2 or

v = 1

Then now
[√

r
]
∞ is the sum of all terms xi for 0 ≤ i ≤ v in the Laurent series expansion

of
√
r at ∞ which is [√

r
]
∞ = x

6 + 9
2
1
x
+ · · · (7)

But we want only terms for 0 ≤ i ≤ v but v = 1. Therefore need to sum terms x0, x1.
Therefore [√

r
]
∞ = x

6 (8)

Which means
a = 1

6
Now we need to find b. Which is given by the coefficient of xv−1 = x0 or the constant
term in r minus coefficient of x0 in

([√
r
]
∞

)2. But ([√r
]
∞

)2 = x2

36 . Hence the coefficient
of x0 is zero here. Now we find coefficient of x0 in r. Since r = x2

36+
54
36 then the coefficient

of x0 is 54
36 = 3

2 . Hence b = 3
2 − 0 = 3

2 . Therefore

α+
∞ = 1

2

(
b

a
− v

)
= 1

2

( 3
2
1
6
− 1
)

= 4

α−
∞ = 1

2

(
− b

a
− v

)
= 1

2

(
−

3
2
1
6
− 1
)

= −5

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.
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step 2 Now d is found using

d = α±
∞ −

0∑
i=1

α±
ci

By trying all possible combinations. There are 2 possible d values (since no poles). This
gives

d1 = α+
∞ = 4

d2 = α−
∞ = −5

Using d = 4 entry from above we find ω using

ω =
(∑

c

s(c)
[√

r
]
c
+ α

s(c)
c

x− c

)
+ s(∞)

[√
r
]
∞

Hence
ω = (0) + (+)

(x
6

)
= x

6

3.2.15 Example 15

Let (
4− x2) y′′ + xy′ + 2y = 0 (1)

y′′ + ay′(x) + by = 0

Hence

a = x

(4− x2)

b = 2
(4− x2)

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(
x

(4− x2)

)2

+ 1
2
d

dx

(
x

(4− x2)

)
−
(

2
(4− x2)

)
= 11x2 − 24

4 (x2 − 4)2
(4)
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Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = 11x2 − 24
4 (x2 − 4)2

z (5)

Therefore

r = s

t

= 11x2 − 24
4 (x2 − 4)2

= 11x2 − 24
4x4 − 32x2 + 64 (5A)

The necessary conditions for case 1 are met.
Step 1 In this we find all

[√
r
]
c
and associated α±

c for each pole. There are two poles
at ±2 each of order 2. For pole at x = 2 = c1

[√
r
]
c1
= 0

α+
c1 =

1
2 + 1

2
√
1 + 4b

α−
c1 =

1
2 − 1

2
√
1 + 4b

Where b is the coefficient of 1
(x−2)2 in the partial fraction decomposition of r which is

11x2 − 24
4 (x2 − 4)2

= 5
16

1
(x+ 2)2

+ 5
16

1
(x− 2)2

− 17
32

1
(x+ 2) +

17
32

1
(x− 2) (6)

Hence b = 5
16 . Therefore [√

r
]
c1
= 0

α+
c1 =

1
2 + 1

2

√
1 + 4

(
5
16

)
= 5

4

α−
c1 =

1
2 − 1

2

√
1 + 4

(
5
16

)
= −1

4

And for pole at x = −2 = c2[√
r
]
c2
= 0

α+
c2 =

1
2 + 1

2

√
1 + 4

(
5
16

)
= 5

4

α−
c2 =

1
2 − 1

2

√
1 + 4

(
5
16

)
= −1

4
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Now we consider O(∞) which is deg (t)− deg (s) = 4− 2 = 2. Therefore v = 1. In this
case [√

r
]
∞ = 0 (7)

And
α±
∞ = 1

2 ± 1
2
√
1 + 4b

The coefficient of xv−1 = x0 is zero in
[√

r
]2
∞. To find coefficient of x0 in r = 11x2−24

4(x2−4)2

and since v = 0 then using b = lcoeff(s)
lcoeff(t) gives 11

4 . Hence b = 11
4 − 0 = 11

4 . Therefore

α+
∞ = 1

2 + 1
2

√
1 + 4

(
11
4

)
= 1

2 +
√
3

α−
∞ = 1

2 − 1
2

√
1 + 4

(
11
4

)
= 1

2 −
√
3

This completes step 1 of the solution. We have found
[√

r
]
c
and its associated α±

c and
found

[√
r
]
∞ and its associated α±

∞. Now we go to step 2 which is to find the d′s.
step 2 Now d is found using

d = α±
∞ −

0∑
i=1

α±
ci

By trying all possible combinations. There are 8 possible d values. These are

d1 = α+
∞ −

(
α+
c1 + α+

c2

)
= 1

2 +
√
3−

(
5
4 + 5

4

)
=

√
3− 2

d2 = α+
∞ −

(
α+
c1 + α−

c2

)
= 1

2 +
√
3−

(
5
4 − 1

4

)
=

√
3− 1

2

d3 = α+
∞ −

(
α−
c1 + α+

c2

)
= 1

2 +
√
3−

(
−1
4 + 5

4

)
=

√
3− 1

2

d4 = α+
∞ −

(
α−
c1 + α−

c2

)
= 1

2 +
√
3−

(
−1
4 − 1

4

)
=

√
3 + 1

d5 = α−
∞ −

(
α+
c1 + α+

c2

)
= 1

2 −
√
3−

(
5
4 + 5

4

)
= −

√
3− 2

d6 = α−
∞ −

(
α+
c1 + α−

c2

)
= 1

2 −
√
3−

(
5
4 − 1

4

)
= −

√
3− 1

2

d7 = α−
∞ −

(
α−
c1 + α+

c2

)
= 1

2 −
√
3−

(
−1
4 + 5

4

)
= −

√
3− 1

2

d8 = α−
∞ −

(
α−
c1 + α−

c2

)
= 1

2 −
√
3−

(
−1
4 − 1

4

)
= 1−

√
3

There are no d ≥ 0 integers. This means case 1 does not apply. We need to try case 2
now.
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3.3 Case two Kovacic algorithm
The following diagram shows the algorithm for case two.

z′′ = rz

poles of r Γ

pole c1 of order 1

pole c2 of order 2

of order v > 2

Ec = {4}

Ec = {2, 2 + 2
√

1 + 4b, 2− 2
√

1 + 4b}

Where b is the coefficient
of 1

(x−c)2 in the partial

fractions expansion of r.

Case Two Algorithm

(set of poles)

pole c3
Ec = {v}

Order of r at ∞

Order is > 2 E∞ = {0, 2, 4}

Order is 2

This b is the coefficient of 1
x2 in

the Laurent series expansion of r
at ∞. If r = s

t where gcd(s, t) =
1 then b can be more easily found

using b = lcoeff(s)
lcoeff(t) where lcoeff

means the leading coefficient.

Order is v < 2 E∞ = {v}

Step 2

Step 1

For each family (ec)c∈Γ∪∞ with ec ∈ Ec let

d =
1

2

(
e∞ −

∑
c∈Γ

ec

)

If family found which produced d an integer and positive then find

θ =
1

2

∑
c∈Γ

ec
x− c

Step 3 Find polynomial p(x) of degree d which satisfies

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0

Let

φ = θ +
p′

p

The find solution ω for the equation

ω2 − φω +

(
1

2
φ′ +

1

2
φ2 − r

)
= 0

If solution can be found then
z = e

∫
w dx

Is the solution to z′′ = rz

case 2.ipe Nasser M. Abbasi 2/17/2022

(keep only integer values)

E∞ = {2, 2 + 2
√

1 + 4b, 2− 2
√

1 + 4b}
(keep only integer values)

Figure 2: Case 2 Kovacic algorithm
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3.4 Case 3 Kovacic algorithm
The following diagram shows the algorithm for case 3.

z′′ = rz

poles of r Γ

pole c1 of order 1

pole c2 of order 2

Ec = {12}

Ec =
{

6 + 12k
n

√
1 + 4b|k = 0,±1,±2, . . . ,±n

2

}
∩ Z

Where b is the coefficient
of 1

(x−c)2 in the partial

fractions expansion of r.

Case 3 Algorithm

(set of poles)

Order of r at ∞

This b is the coefficient of 1
x2 in

the Laurent series expansion of r
at ∞. If r = s

t where gcd(s, t) =
1 then b can be more easily found

using b = lcoeff(s)
lcoeff(t) where lcoeff

means the leading coefficient.

Step 2

Step 1

For each family (ec)c∈Γ∪∞ with ec ∈ Ec let

d =
1

2

(
e∞ −

∑
c∈Γ

ec

)

If family found which produced d an integer and positive then find

θ =
n

12

∑
c∈Γ

ec
x− c

Step 3 Let polynomial p(x) of degree d with coefficients ai. . The following set of equations are set up in
order to determine the coefficients ai of the above polynomial

pn = −p
pi−1 = −p′i − θpi − (n− 1)(i+ 1)rpi+1 i = n, n− 1, . . . , 0

Where n above is either 4,6 or 12.
The coefficients ai are solved for from

p−1 = 0

By using method of undetermined coefficients. Now generate equation for ω using the equation

n∑
i=0

pi
(n− i)!

ωi = 0

If solution ω can be found then
z = e

∫
w dx

Is the solution to z′′ = rz

case 3.ipe Nasser M. Abbasi 2/17/2022

(keep only integer values)

(keep only integer values)

Ec =
{

6 + 12k
n

√
1 + 4b|k = 0,±1,±2, . . . ,±n

2

}
∩ Z

Figure 3: Case 3 Kovacic algorithm
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4 Algorithm implementation based on modified
Saunders and Smith algorithm

As with original Kovacic algorithm, an input ode

y′′(x) + ay′(x) + by(x) = 0 (1)
a, b ∈ C(x)

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz r ∈ C(x) (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b (4)

It is Eq. (2) (called DE from now on) which is solved and not Eq. (1). There are three
steps for Saunders version. Case 1 and case 2 are handled in same way. In showing
the steps, both Saunders paper (2) and Carolyn J. Smith paper (3) were used. Smith
paper is more detailed and has some corrections to Saunders algorithm also.

There are 4 steps to the algorithm. Step 0 determines which case r belongs to (case
1 or 2 or 3 or non of these). Step 1 determines the fixed efixed, θfixed and also ei, θi.
Where i can be 0 and higher depending. (see below). Step 2 uses the efixed, θfixed and
all the ei, θi found in step 1 to determine the trial d,Θ. Here Θ is used instead of θ as
in Smith paper so not confuse it with the θi found in step 1. If trial number d can be
found which is integer and positive then step 3 is now called. It is in step 3 where the
minimal polynomial p(x) is found using the d and Θ. If such p(x) can be found then ω

is solved for and the solution for the ode z′′ = rz is now z = e
∫
ωdx. If no solution p(x)

can be found, then the next trials d,Θ tried in order to find p(x). This continues until
all trials are tried or if solution is found. Below shows more details on each step. The
trials d,Θ are found by iterating over all possible set of values called s. These sets of
values are generated depending on case number and m value, where m is the number
of terms in the square free factorization of t = t1t

2
2t

3
3· · · tmm. How this is all done is given

below in examples.
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4.0.1 Step 0

This step is similar to Kovacic algorithm. In it we determine necessary conditions for
each case but it is done is more direct way in this version. Given y′′ = ry, we write
d = s

t
then now we do square free factorization on t which gives

t = t1t
2
2t

3
3· · · tmm

For example, if t = x2, then t1 = 1, t2 = x. And if t = 3− x3 then t1 = −1, t2 = x3 − 3.
And O(∞) = deg (t)− deg (s). Then now we determine which case we are in by finding
necessary conditions, This is done slightly different from the original Kovacic. So at the
end of this step we know if L = [1] (case 1) or L = [1, 2] (case 1 and case 2), or L = [2]
(case 2 only) or L = [4, 6, 12] (case 3 only) and so on.

The necessary conditions are based on the square free factorization on t = t1t
2
2t

3
3· · · tmm

and is summarized in Carolyn J. Smith paper (3) as (these are all the same necessary
conditions as from original Kovacic paper) but expressed in terms of the square free
factorization of t = t1t

2
2· · · tmm where r = s

t
.

1. L = [1] (meaning case 1) if ti = 1 for all odd i ≥ 3 (i.e. no odd order
poles allowed other than 1) and O(∞) is even only. (i.e. allowed O(∞) are
· · · ,−6,−4,−2, 0, 2, 4, 6, · · · .

2. L = [2] (meaning case 2) if t2 6= 1 or ti 6= 1 for any odd i ≥ 3. (i.e. only pole of
order 2 is allowed, and then poles of order 3, 5, 7, · · · are allowed.

3. L = [4, 6, 12] (meaning case 3), if ti = 1 for all i > 2 and O(∞) ≥ 2. (i.e. poles of
order 1,2 is only allowed).

4.0.2 Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1)) (5)

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
(6)

For an example, lets say that r = 16x−3
16x2 . Hence t = 16x2 = t1t

2
2 where t1 = 16, t2 = x.

And O(∞) = 2− 1 = 1. Therefore deg (t) = 2, deg (t1) = 0 and t′ = d
dx
16x2 = 32x and
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t′1 = 0. The above becomes

efixed =
1
4(min (1, 2)− 2− 3(0))

= 1
4(1− 2)

= −1
4

θfixed =
1
4

(
32x
16x2 + 3(0)

)
= 1

2x

part (b)

Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of t2. In
other words, the number of poles of r that are of order 2. These will be the zeros of t2
in the above square free factorization of t. Label these poles c1, c2, · · · , ck2 . For each ci
then ei =

√
1 + 4b where b is the coefficient of 1

(x−ci)2
in the partial fraction expansion

of r and θi = ei
x−ci

. For an example, if t = x2. Then t = t1t
2
2 and t1 = 1, t2 = x. Hence

the zeros of t2 are c1 = 0. There is only one zero. Hence k2 = 1 and we only have one
iteration to do. Hence b = 1, e1 =

√
1 + 4 (1) =

√
5 and θe =

√
5

x−0 =
√
5
x
.

Part (c)

This part applied only to case 1. It generates additional values of ei, θi in addition to
what was generated in part (b). This is done for poles of r of order 4, 6, 8, · · · ,M if any
exist. These are the roots of t4, t6, · · · , tM . These poles are labeled ck2+1, ck2+2, · · · , ck.
The labeling starts from k2 since for the pole of order 2 in part b we used c1, c2, · · · , ck2
for its zeros. Now we iterate for i from k2 + 1 to k. For each pole we find its ei and
θi. These are found similar to original Kovacic paper. Examples below will illustrate
better how this is done.

Note that if there are no poles of order 4, 6, · · · then k = k2 = M. The value M is used
below to generate s sequences in step 2. What this means is that for case 1, if there
are no poles of order 4, 6, · · · , then M is just the number of poles of r of order 2. For
cases other than case 1, M is always number of poles of r of order 2. The checking on
poles of order 4, 6, · · · is only done for case 1.

Part(d)

Now we need to find e0, θ0. If O(∞) > 2 then e0 = 1, θ0 = 0. But if O(∞) = 2 then
θ0 = 0 and e0 =

√
1 + 4b where b is the coefficient of 1

x2 in the Laurent series expansion
of r at ∞. This is the same as was done in original Kovacic algorithm. If O(∞) is none
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of the above two cases, then case 1 is handled on its own and examples below show
how this is done. Otherwise for all other cases e0 = 0, e0 = 0.

The above complete step 1, which is to generates the candidate e′s and θ′s. In step
2, these are used to generate trials d and θ and find from them P (x) polynomial if
possible.

4.0.3 Step 2

In this step, we now have all the ei, θi values found above in addition to efix, θfix. Now
we generate trial d using

d = (n) (efix) + s0e0 −
M∑
i=1

siei (7)

Where n is the case number. For case 1, it will be n = 1. For case 2 it will be n = 2.
For case 3 it will be 4 and 6 and 12. If d ≥ 0 then we go and find a trial Θ. We need to
have both d,Θ to go to the next step. Θ is found using

Θ = (n) (θfix) +
M∑
i=0

siθi (8)

What is s in the above? These are sets of all combinations generated based on case
number n and m values which will be described below. So the above trial d and Θ are
generated for each such set s. Each set s has values {s0, s1, · · · sm} in it. So si above
means the ith element is the current set s. There will be (n+ 1)m+1 such different s sets.
For example, case 1, means n = 1 and if m = 2, which means t = t1t

2
2 then there will be

23 = 8 sets of s to try. For each such set, we generate d,Θ. If one set s gives a d which
is an integer and positive, then Θ is generated and then step 3 is called to calculate ω.
If step 3 is successful then we stop since a solution is found. Hence step 3 takes as input
the trial d and Θ and is called repeatedly from step 2 until either solution y = e

∫
ωdx

is found or until all sets s are used. This is done for each case number n which can be
1, 2, 4, 6 or 12. Starting from case 1 to case 3 (recall that case 3 has n = 4, 6, 12 in it).
Of course if any one case manages to find a solution, then the algorithm stops.

Before going to step 3 description, We will show how the sets s are generated. This
depends on value of n and M . Recall that M is number of poles of r of order 2 for
case 1 if there are no higher order poles. For example, for n = 1 and say M = 2 then 8
different sets s are generated. Based on all different permutations of

{
±n

2 ,±
n
2 , · · · ,±

n
2

}
.

There are M + 1 entries, because entries are indexed from 0 to M . Hence for M = 0
(which will happen if where are no poles), then there are (n+ 1)1 entries. For example
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for n = 1 this means two entries given by
{
±1

2

}
which s =

{1
2

}
and s =

{
−1

2

}
to try

Λ =
−1

2

+1
2

For n = 1,M = 2 then there are (1 + 1)3 = 8 entries. We have all combinations of{
±1

2 ,±
1
2 ,±

1
2

}
. This results in the following matrix

Λ =



−1
2 −1

2 −1
2

−1
2 −1

2 +1
2

−1
2 +1

2 −1
2

−1
2

1
2 +1

2

+1
2 −1

2 −1
2

+1
2 −1

2 +1
2

+1
2 +1

2 −1
2

+1
2 +1

2 +1
2


But if n = 1 and M = 1 then there are (1 + 1)2 = 4 entries. All combinations
of
{
±1

2 ,±
1
2

}
and the matrix is

Λ =


−1

2 −1
2

−1
2 +1

2

+1
2 −1

2

+1
2 +1

2


Each row in the above matrix S is one set s to try. To be more clear, in the equation
Θ = (n) (efix) +

∑M
i=0 siei the si in the equation means the ith entry in that specific

s set we are using at the moment, which happens to be one row of the matrix Λ. For
example, if we are trying the second row in Λ, then s0 = −1

2 , s1 = −1
2 , s2 = +1

2 . For
the case n = 1 and M = 3, then

{
±1

2 ,±
1
2 ,±

1
2 ,±

1
2

}
. There is (2)4 = 16 different sets s
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(or 16 rows in the matrix Λ). The matrix Λ is

Λ =



−1
2 −1

2 −1
2 −1

2

−1
2 −1

2 −1
2

1
2

−1
2 −1

2
1
2 −1

2

−1
2 −1

2
1
2

1
2

−1
2

1
2 −1

2 −1
2

−1
2

1
2 −1

2
1
2

−1
2

1
2

1
2 −1

2

−1
2

1
2

1
2

1
2

1
2 −1

2 −1
2 −1

2
1
2 −1

2 −1
2

1
2

1
2 −1

2
1
2 −1

2
1
2 −1

2
1
2

1
2

1
2

1
2 −1

2 −1
2

1
2

1
2 −1

2
1
2

1
2

1
2

1
2 −1

2
1
2

1
2

1
2

1
2


If it was case 2 which means n = 2, then if M = 2, then we have all different permuta-
tions of 1,−1, 0 in each entry. This gives 33 = 27 different sets to try

Λ =



−1 −1 −1
−1 −1 0
−1 −1 +1
−1 0 −1
−1 0 0
−1 0 +1
... ... ...
+1 +1 +1
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And if n = 2,M = 3 then this gives 34 = 81 different sets s

Λ =



−1 −1 −1 −1
−1 −1 −1 0
−1 −1 −1 +1
−1 −1 0 −1
−1 −1 0 0
−1 −1 0 +1
... ... ... ...
+1 +1 +1 +1


And if n = 4,M = 2 then this gives 53 = 125 different sets s

Λ =



−2 −2 −2
−2 −2 −2
−2 −2 −2
−2 −2 −2
−2 −2 −2
... ... ...
+2 +2 +2


And if n = 4,M = 3 then this gives 54 = 625 different sets s

Λ =



−2 −2 −2 −2
−2 −2 −2 −1
−2 −2 −2 0
−2 −2 −2 +1
−2 −2 −2 +2
... ... ... ...
+2 +2 +2 +2


And if n = 6,M = 2 then this gives 73 = 343 different sets s

Λ =



−3 −3 −3
−2 −2 −2
−2 −2 −1
−2 −2 −0
−2 −2 +1
−2 −2 +2
−2 −2 +3
... ... ...
+3 +3 +3
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And if n = 6,M = 3 then this gives 74 = 2401 different sets s

Λ =



−3 −3 −3 −3
−3 −3 −3 −2
−3 −3 −3 −1
−3 −3 −3 0
−3 −3 −3 +1
−3 −3 −3 +2
−3 −3 −3 +3
... ... ... ...
+3 +3 +3 +3


And if n = 12,M = 2 then this gives 133 = 2197 different sets s

Λ =



−12 −12 −12
−12 −12 −11
−12 −12 −10
... ... ...

−12 −12 +12
... ... ...

+12 +12 +12


And if n = 12,M = 3 then this gives 134 = 28561 different sets s

Λ =



−12 −12 −12 −12
−12 −12 −12 −11
−12 −12 −12 −10
... ... ... ...

−12 −12 −12 +12
... ... ... ...

+12 +12 +12 +12


And so on.
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4.0.4 step 3

The input to this step is the integer d and Θ found from Eq (7,8) as described in step
2 and also r which comes from z′′ = rz.

This step is broken into these parts. First we find the p−1(x) polynomial. If we are
to solve for its coefficients, then next we build the minimal polynomial from the pi(x)
polynomials constructed during finding p−1(x). The minimal polynomial pmin(x) will
be a function of ω. Next we solve for ω from pmin(x) = 0. If this is successful, then we
have found ω and the first solution to the ode z′′ = rz is e

∫
ωdx . Below shows how this

is done.

We start by forming a polynomial

p(x) = xd + ad−1x
d−1 + · · ·+ a0

Notice that xd has coefficient 1. The goal is to solve for the ai coefficient. Now depending
on case number n, we do the following. If case n = 1 then

p1 = −p (9)
p0 = −p′1 −Θp1

p−1 = −p′0 −Θp0 − (1) (1) rp1

And it is p−1 = 0 which is solved for the coefficients ai. For the case n = 2 we find p as
follows

p2 = −p (10)
p1 = −p′2 −Θp2

p0 = −p′1 −Θp1 − (1) (2) rp2
p−1 = −p′0 −Θp0 − (2) (1) rp1

And it is p−1 = 0 which is solved for the coefficients ai. For the case n = 4 we find p as
follows

p4 = −p (11)
p3 = −p′4 −Θp4

p2 = −p′3 −Θp3 − (1) (4) rp4
p1 = −p′2 −Θp2 − (2) (3) rp3
p0 = −p′1 −Θp1 − (3) (2) rp2

p−1 = −p′0 −Θp0 − (4) (1) rp1
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And it is p−1 = 0 which is solved for the coefficients ai. For the case n = 6 we find p as
follows

p6 = −p (12)
p5 = −p′6 −Θp6

p4 = −p′5 −Θp5 − (1) (6) rp6
p3 = −p′4 −Θp4 − (2) (5) rp5
p2 = −p′3 −Θp3 − (3) (4) rp4
p1 = −p′2 −Θp2 − (4) (3) rp3
p0 = −p′1 −Θp1 − (5) (2) rp2

p−1 = −p′0 −Θp0 − (6) (1) rp1

And it is p−1 = 0 which is solved for the coefficients ai. For the case n = 12 we find p

as follows

p12 = −p (13)
p11 = −p′12 −Θp12

p10 = −p′11 −Θp11 − (1) (12) rp12
p9 = −p′10 −Θp10 − (2) (11) rp11
p8 = −p′9 −Θp9 − (3) (10) rp10
p7 = −p′8 −Θp8 − (4) (9) rp9
p6 = −p′7 −Θp7 − (5) (8) rp8
p5 = −p′6 −Θp6 − (6) (7) rp7
p4 = −p′5 −Θp5 − (7) (6) rp6
p3 = −p′4 −Θp4 − (8) (5) rp5
p2 = −p′3 −Θp3 − (9) (4) rp4
p1 = −p′2 −Θp2 − (10) (3) rp3
p0 = −p′1 −Θp1 − (11) (2) rp2

p−1 = −p′0 −Θp0 − (12) (1) rp1

If we are able to solve for all the ai by solving

p−1(x) = 0

Then we now have determined p(x). This is used to find ω as follows. For the case n = 1

ω = p′

p
+Θ
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For the case n = 2 ω is found by solving

ω2 − φω + φ′

2 + φ2

2 − r = 0

Where φ = p′

p
+Θ.

Where p0, p1, p2 are from Eq (10) above. For the case n = 4 then

pmin = 1
4!p0 +

1
3!p1ω + 1

2!p2ω
2 + p3ω

3 + p4ω
4

Where p0, p1, p2, p3, p4 are from Eq (11) above. For the case n = 6 then

pmin = 1
6!p0 +

1
5!p1ω + 1

4!p2ω
2 + 1

3!p3ω
3 + 1

2!p4ω
4 + p5ω

5 + p6ω
6

Where p0, p1, p2, p3, p4, p5, p6 are from Eq (12) above. For the case n = 12 then

pmin = 1
12!p0+

1
11!p1ω+

1
10!p2ω

2+ 1
9!p3ω

3+ 1
8!p4ω

4+ 1
7!p5ω

5+ 1
6!p6ω

6+ 1
5!p7ω

7+ 1
4!p8ω

8+ 1
3!p9ω

9+ 1
2!p10ω

10+p11ω
11+p12ω

12

Where pi for i = 0· · · 12 are from Eq (13) above. In each case, we now solve for

pmin(x) = 0

For ω. If this is successful, then now we have to verify the solution satisfies the Riccati
ODE. ω must satisfy in all case the following equation

ω′ + ω2 = r

If it does, then we have solved the z′′ = rz ode z = e
∫
ωdx and also the original

y′′+ ay′+ by = 0 ode. This completes the Kovacic algorithm. Examples are given below
showing how to implement the above to solve number of ode’s.

4.1 Worked examples

4.1.1 Example 1 case one

Solve (
1− x2) y′′ − 2xy′ + 6y = 0

Normalizing so that coefficient of u′′ is one gives (assuming x 6= 1)

y′′ − 2 x

(1− x2)y
′ + 6

(1− x2)y = 0

y′′ + ay′(x) + by = 0 (1)
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Hence

a = −2x
(1− x2)

b = 6
(1− x2)

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(
−2x

(1− x2)

)2

+ 1
2
d

dx

(
−2x

(1− x2)

)
− 6

(1− x2)

= 6x2 − 7
(x2 − 1)2

(4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = 6x2 − 7
(x2 − 1)2

z (5)

Step 0 We need to find which case it is. r = s
t
. The free square factorization of t is

t = t1t
2
2. Hence

m = 2 (6)

And t1 = 1, t2 = (x2 − 1). Now O(∞) = deg (t) − deg (s) = 4 − 2 = 2. The poles of r
are x = 1,−1 each of order 2. Looking at the cases table giving up, reproduced here

case allowed pole order for r = s
t

allowed O(∞) order L

1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, · · · } [1]
2 {2, 3, 5, 7, 9, · · · } no condition [2]
3 {1, 2} {2, 3, 4, 5, 6, 7, · · · } [4, 6, 12]

Shows that all cases are possible. Hence L = {1, 2, 4, 6, 12}. So n = 1, n = 2, n = 4, n =
6, n = 12 will be tried until one is successful.

Step 1
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This step has 4 parts (a,b,c,d).
part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1))

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
Using O(∞) = 2, t = (x2 − 1)2 , t1 = 1 the above gives

efixed =
1
4(min (2, 2)− 4− 3(0))

= 1
4(2− 4)

= −1
2

θfixed =
1
4

 d
dx

(
(x2 − 1)2

)
(x2 − 1)2

+ 3(0)


= x

x2 − 1
part (b)
Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of t2. In
other words, the number of poles of r that are of order 2. These will be the zeros of
t2 in the above square free factorization of t. From above we found that t2 = x2 − 1.
Label these poles c1, c2, · · · , ck2 . The zeros of t2 are {1,−1} therefore c1 = 1, c2 = −1
and k2 = 2. For each ci then ei =

√
1 + 4b where b is the coefficient of 1

(x−ci)2
in the

partial fraction expansion of r which is

6x2 − 7
(x2 − 1)2

=
(∑

i

αi

(x− ci)2

)
+
(∑

j

βj

x− dj

)

=
(
−1
4

1
(x− 1)2

− 1
4

1
(x+ 1)2

)
+
(
13
4

1
(x− 1) −

13
4

1
x+ 1

)
Therefore for c1 = 1, looking at the above, we see that the coefficient of 1

(x−1)2 is −1
4 .

Hence b = −1
4 and e1 =

√
1 + 4b =

√
1− 41

4 = 0. For c2 = −1 looking at the above, we

see that the coefficient of 1
(x+1)2 is −1

4 . Hence b = −1
4 and e2 =

√
1 + 4b =

√
1− 41

4 = 0.
Therefore

e1 = 0
e2 = 0
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Now, θi = ei
x−ci

. For c1 = 1 this gives θ1 = e1
x−1 = 0 since e1 = 0. And θ2 = e2

x−c2
. For

c2 = −1 this gives θ2 = e2
x+1 = 0 since e2 = 0. Hence

θ1 = 0
θ2 = 0

Part (c)

This part applied only to case 1. It is used to generate ei, θi for poles of r order
4, 6, 8, · · · ,M if any exist. Since non exist here. This is skipped. This means

M = 2

since 2 is the number of poles of order 2.

Part(d)

Now we need to find e0, θ0. If O(∞) > 2 then e0 = 1, θ0 = 0. But if O(∞) = 2 then
θ0 = 0 and e0 =

√
1 + 4b where b is the coefficient of 1

x2 in the Laurent series expansion
of r at ∞. Since in this example O(∞) = 2 then

e0 =
√
1 + 4b

θ0 = 0

Now we need to find b. The Laurent series expansion of r at ∞ is 6
x2 + 5

x4 + 4
x6 + · · · .

Hence b = 6. Therefore

e0 =
√

1 + 4 (6)
=

√
25

= 5

Now we have found all ei, θi. They are

e = {5, 0, 0}
θ = {0, 0, 0}

The above are arranged such that e0 is the first entry. Same for θ. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate e′s and θ′s. In step 2, these are used to generate trials d and θ and find from
them P (x) polynomial if possible.

Step 2
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In this step, we now have all the ei, θi values found above in addition to efix, θfix. Now
we generate trial d using

d = (n) (efix) + s0e0 −
M∑
i=1

siei (7)

Where n is the case number. For case 1, it will be n = 1. For case 2 it will be n = 2.
For case 3 it will be 4 and 6 and 12. If d ≥ 0 then we go and find a trial Θ. We need to
have both d,Θ to go to the next step. Θ is found using

Θ = (n) (θfix) +
M∑
i=0

siθi (8)

We need to first generate s sets. For n = 1 and since M = 2 in this example (number
of poles of order 2), then these these are given by

Λ =



−1
2 −1

2 −1
2

−1
2 −1

2 +1
2

−1
2 +1

2 −1
2

−1
2 +1

2 +1
2

+1
2 −1

2 −1
2

+1
2 −1

2 +1
2

+1
2 +1

2 −1
2

+1
2 +1

2 +1
2


We go over each row one at a time. Trying the first row s =

{−1
2 , −1

2 , −1
2

}
which means

s0 = −1
2 , s1 = −1

2 , s2 = −1
2 . Hence the first trial d is (using Eq (7)) and recalling that

efix = −1
2 , θfixed =

x
x2−1 then

d = (n) (efix) + s0e0 −
M∑
i=1

siei

= (1)
(
−1
2

)
+
(
−1
2

)
(5)− (s1e1 + s2e2)

= (1)
(
−1
2

)
+
(
−1
2

)
(5)−

(
−1
2 (0)− 1

2(0)
)

= −3

Since this is negative, then we skip this set s. Now we try the second row of Λ which is
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s =
{−1

2 , −1
2 , +1

2

}
. Then above now gives

d = (n) (efix) + s0e0 −
M∑
i=1

siei

= (1)
(
−1
2

)
+
(
−1
2

)
(5)− (s1e1 + s2e2)

= (1)
(
−1
2

)
+
(
−1
2

)
(5)−

(
−1
2 (0) + 1

2(0)
)

= −3

Since this is negative, then we skip this set s. Now we try the third row of Λ which is
s =

{−1
2 , +1

2 , −1
2

}
. Then above now gives

d = (n) (efix) + s0e0 −
M∑
i=1

siei

= (1)
(
−1
2

)
+
(
−1
2

)
(5)− (s1e1 + s2e2)

= (1)
(
−1
2

)
+
(
−1
2

)
(5)−

(
+1
2 (0)− 1

2(0)
)

= −3

Since this is negative, then we skip this set s. Now we try the row 4 of Λ which is
s =

{−1
2 , +1

2 , +1
2

}
. Then above now gives

d = (n) (efix) + s0e0 −
M∑
i=1

siei

= (1)
(
−1
2

)
+
(
−1
2

)
(5)− (s1e1 + s2e2)

= (1)
(
−1
2

)
+
(
−1
2

)
(5)−

(
+1
2 (0) + 1

2(0)
)

= −3

Since this is negative, then we skip this set s. Now we try the row 5 of Λ which is
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s =
{+1

2 , −1
2 , −1

2

}
. Then above now gives

d = (n) (efix) + s0e0 −
M∑
i=1

siei

= (1)
(
−1
2

)
+
(
+1
2

)
(5)− (s1e1 + s2e2)

= (1)
(
−1
2

)
+
(
+1
2

)
(5)−

(
+1
2 (0) + 1

2(0)
)

= +2

Since d ≥ 0, then we can use it. Now using Eq (8) gives

Θ = (n) (θfix) +
M∑
i=0

siθi

= (1)
(

x

x2 − 1

)
+ (s0θ0 + s1θ1 + s2θ2)

= x

x2 − 1 +
(
+1
2 θ0 −

1
2θ1 −

1
2θ2
)

But all θi = 0. Therefore
Θ = x

x2 − 1
Now that we have good trial d and Θ, then step 3 is called to generate ω if possible.

Step 3

The input to this step is the integer d = 2 and Θ = x
x2−1 found from step 2 and also

r = 6x2−7
(x2−1)2 which comes from z′′ = rz. This step is broken into these parts. First we

find the p−1(x) polynomial. If we are to solve for its coefficients, then next we build
the minimal polynomial from the pi(x) polynomials constructed during finding p−1(x).
The minimal polynomial pmin(x) will be a function of ω. Next we solve for ω from
pmin(x) = 0. If this is successful, then we have found ω and the first solution to the ode
z′′ = rz is z = e

∫
ωdx . Below shows how this is done.

We start by forming a polynomial

p(x) = xd + ad−1x
d−1 + · · ·+ a0

= x2 + a1x+ a0

The goal is to solve for the ai coefficient. Now depending on case number n, we do the
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following. Since we are in case n = 1 then

p1 = −p

= −x2 − a1x− a0

p0 = −p′1 −Θp1

= −
(
−x2 − a1x− a0

)′ − ( x

x2 − 1

)(
−x2 − a1x− a0

)
= (xa0 − a1 − 2x+ 2x2a1 + 3x3)

x2 − 1
p−1 = −p′0 −Θp0 − (1) (1) rp1

= −
(
(xa0 − a1 − 2x+ 2x2a1 + 3x3)

x2 − 1

)′

−
(

x

x2 − 1

)(
(xa0 − a1 − 2x+ 2x2a1 + 3x3)

x2 − 1

)
− 6x2 − 7

(x2 − 1)2
(
−x2 − a1x− a0

)
= 2(2xa1 + 3a0 + 1)

x2 − 1

Now we try to solve for ai using p−1(x) = 0. This gives 2xa1 + 3a0 + 1 = 0 which gives
a1 = 0, a0 = −1

3 . Hence this implies

p(x) = x2 + a1x+ a0

= x2 − 1
3

Since this is case n = 1 then

ω = p′

p
+Θ

= 2x
x2 − 1

3
+ x

x2 − 1

= x
9x2 − 7

3x4 − 4x2 + 1

Before using this, we will verify it is correct. For case 1 the above should satisfy

ω′ + ω2 = r

Let us see if this is the case or not.

d

dx

(
x

9x2 − 7
3x4 − 4x2 + 1

)
+
(
x

9x2 − 7
3x4 − 4x2 + 1

)2

= 6x2 − 7
(x2 − 1)2

6x2 − 7
(x2 − 1)2

= 6x2 − 7
(x2 − 1)2
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Verified. Since solution ω is found and verified, then first solution to the ode is

z = e
∫
ωdx

= e
∫ x

(
9x2−7

)
3x4−4x2+1dx

= e
1
2 ln
(
x2−1

)
+ln

(
x2− 1

3
)

=
√
x2 − 1

(
x2 − 1

3

)
Hence first solution to the original ode is

y = ze
−1
2
∫
adx

=
√
x2 − 1

(
x2 − 1

3

)
e

−1
2
∫ −2x(

1−x2
)dx

=
√
x2 − 1

(
x2 − 1

3

)
e

∫
x(

1−x2
)dx

=
√
x2 − 1

(
x2 − 1

3

)
e

−1
2 ln

(
x2−1

)

=
√
x2 − 1

(
x2 − 1

3

)
√
x2 − 1

=
(
x2 − 1

3

)
4.1.2 Example 2 case one

Solve
x(x− 1)2 y′′ − 2y = 0

Normalizing so that coefficient of u′′ is one gives (assuming x 6= 1 and x 6= 0)

y′′ − 2
x (x− 1)2

y = 0

y′′ + ay′(x) + by = 0 (1)

Hence

a = 0

b = − 2
x (x− 1)2

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)
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Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 2
x (x− 1)2

(4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = 2
x (x− 1)2

z (5)

Step 0 We need to find which case it is. r = s
t
. The free square factorization of t is

t = t1t
2
2. Hence

m = 2 (6)

And

t1 = x

t2 = x− 1

Now O(∞) = deg (t) − deg (s) = 3 − 0 = 3. The poles of r are x = 0 of order 1 and
x = 1 of order 2. Looking at the cases table giving up, reproduced here

case allowed pole order for r = s
t

allowed O(∞) order L

1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, · · · } [1]
2 {2, 3, 5, 7, 9, · · · } no condition [2]
3 {1, 2} {2, 3, 4, 5, 6, 7, · · · } [4, 6, 12]

Shows that all cases are possible. Hence L = {1, 2, 4, 6, 12}. So n = 1, n = 2, n = 4, n =
6, n = 12 will be tried until one is successful. Starting with n = 1.

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1))

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
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Using O(∞) = 3, t = x(x− 1)2 , t1 = x the above gives

efixed =
1
4(min (3, 2)− 3− 3(1))

= 1
4(2− 3− 3)

= −1

θfixed =
1
4

(
d
dx

(
x(x− 1)2

)
x (x− 1)2

+ 3
(
x′

x

))

= 1
4

(
3x2 − 4x+ 1
x (x− 1)2

+ 3
x

)
= 1

2x
3x− 2
x− 1

part (b)

Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of t2. In
other words, the number of poles of r that are of order 2. These will be the zeros of t2
in the above square free factorization of t. From above we found that t2 = x− 1. Label
these poles c1, c2, · · · , ck2 . The zeros of t2 are {1} therefore c1 = 1 and k2 = 1 since one
zero. Hence

M = 1

For each ci then ei =
√
1 + 4b where b is the coefficient of 1

(x−ci)2
in the partial fraction

expansion of r which is

r = 2
x (x− 1)2

=
(∑

i

αi

(x− ci)2

)
+
(∑

j

βj

x− dj

)

=
(

2
(x− 1)2

)
+
(
− 2
x− 1 + 2

x

)
Therefore for c1 = 1, looking at the above, we see that the coefficient of 1

(x−1)2 is 2.
Hence b = 2 and e1 =

√
1 + 4b =

√
1 + 8 = 3. Hence

e1 = 3

Now, θi = ei
x−ci

. For c1 = 1 this gives θ1 = e1
x−1 = 3

x−1 . Hence

θ1 =
3

x− 1
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Part (c)
This part applied only to case 1. It is used to generate ei, θi for poles of r order
4, 6, 8, · · · ,M if any exist. Since non exist here. This is skipped. Hence M stays 1.
Part(d)
Now we need to find e0, θ0. If O(∞) > 2 then e0 = 1, θ0 = 0. But if O(∞) = 2 then
θ0 = 0 and e0 =

√
1 + 4b where b is the coefficient of 1

x2 in the Laurent series expansion
of r at ∞. Since in this example O(∞) = 3 then

e0 = 1
θ0 = 0

Now we have found all ei, θi. They are

e = {1, 3}

θ =
{
0, 3

x− 1

}
The above are arranged such that e0 is the first entry. Same for θ. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate e′s and θ′s. In step 2, these are used to generate trials d and θ and find from
them P (x) polynomial if possible.
Step 2
In this step, we now have all the ei, θi values found above in addition to efix, θfix. Now
we generate trial d using

d = (n) (efix) + s0e0 −
M∑
i=1

siei (7)

Where n is the case number. For case 1, it will be n = 1. For case 2 it will be n = 2.
For case 3 it will be 4 and 6 and 12. If d ≥ 0, then we go and find a trial Θ. We need
to have both d,Θ to go to the next step. Θ is found using

Θ = (n) (θfix) +
M∑
i=0

siθi (8)

We need to first generate s sets. For n = 1 and since M = 1 in this example, then these
these are given by

Λ =


−1

2 −1
2

−1
2 +1

2

+1
2 −1

2

+1
2 +1

2
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We go over each row one at a time. Trying the first row s =
{−1

2 , −1
2

}
which means

s0 = −1
2 , s1 = −1

2 . Hence the first trial d is (using Eq (7)) and recalling that efix =
−1, θfixed = 1

2x
3x−2
x−1 then

d = (n) (efix) + s0e0 −
M∑
i=1

siei

= (1) (−1) +
(
−1
2

)
(1)− (s1e1)

= −1− 1
2 −

(
−1
2 (3)

)
= 0

Since d ≥ 0, then we can use it. Now using Eq (8) gives

Θ = (n) (θfix) +
M∑
i=0

siθi

= (1)
(

1
2x

3x− 2
x− 1

)
+ (s0θ0 + s1θ1)

= 1
2x

3x− 2
x− 1 +

(
−1
2 θ0 −

1
2θ1
)

= 1
2x

3x− 2
x− 1 − 1

2(0)−
1
2

3
x− 1

Therefore
Θ = − 1

x (x− 1)
Now that we have good trial d and Θ, then step 3 is called to generate ω if possible.

Step 3

The input to this step is the integer d = 0 and Θ = − 1
x(x−1) found from step 2 and also

r = 2
x(x−1)2 which comes from z′′ = rz. This step is broken into these parts. First we

find the p−1(x) polynomial. If we are to solve for its coefficients, then next we build
the minimal polynomial from the pi(x) polynomials constructed during finding p−1(x).
The minimal polynomial pmin(x) will be a function of ω. Next we solve for ω from
pmin(x) = 0. If this is successful, then we have found ω and the first solution to the ode
z′′ = rz is z = e

∫
ωdx . Below shows how this is done.

We start by forming a polynomial

p(x) = xd + ad−1x
d−1 + · · ·+ a0

= 1
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Since this is case n = 1 then

ω = p′

p
+Θ

= 0− 1
x (x− 1)

= −1
x (x− 1)

Before using this, we will verify it is correct. For case 1 the above should satisfy

ω′ + ω2 = r

Let us see if this is the case or not.

d

dx

(
− 1
x (x− 1)

)
+
(
− 1
x (x− 1)

)2

= 2
x (x− 1)2

1
x2

2x− 1
(x− 1)2

+
(
− 1
x (x− 1)

)2

= 2
x (x− 1)2

2
x (x− 1)2

= 2
x (x− 1)2

Verified. Since solution ω is found and verified, then first solution to the ode is

z = e
∫
− 1

x(x−1)dx

= elnx−ln(x−1)

= x

x− 1

Hence first solution to given ODE is

y = ze
−1
2
∫
adx

= x

x− 1e
− 1

2
∫
0dx

= x

x− 1

4.1.3 Example 3 case one

Solve

y′′ − x2y′ − x2y = 0 (1)
y′′ + ay′(x) + by = 0
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Hence

a = −x2

b = −x2

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4x

4 − x+ x2

= x4 + 4x2 − 4x
4 (4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ =
(
x4 + 4x2 − 4x

4

)
z (5)

Step 0 We need to find which case it is. r = s
t
where

s = x4 + 4x2 − 4x
t = 4

The free square factorization of t is t = [[]]. Hence

m = 0 (6)

Since m is number of elements in the free square factorization. in this special case we
set

t1 = 1
t2 = 1

Now

O(∞) = deg (t)− deg (s)
= 0− 4
= −4

There are no poles. Looking at the cases table giving up, reproduced here
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case allowed pole order for r = s
t

allowed O(∞) order L

1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, · · · } [1]
2 {2, 3, 5, 7, 9, · · · } no condition [2]
3 {1, 2} {2, 3, 4, 5, 6, 7, · · · } [4, 6, 12]

Shows that only case 1 meets the necessary conditions. Hence L = [1]. So n = 1.

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1))

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
Using O(∞) = −4, t = 4, t1 = 4 the above gives

efixed =
1
4(min (−4, 2)− 0− 3(0))

= 1
4(−4)

= −1

θfixed =
1
4

(
d
dx
(4)
(4) + 3

(
(4)′

4

))
= 0

part (b)

Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of t2. In
other words, the number of poles of r that are of order 2. These will be the zeros of
t2 in the above square free factorization of t. From above we found that t2 = 1. Label
these poles c1, c2, · · · , ck2 . The zeros of t2 are {}. There are no zeros since constant.
Therefore k2 = 0 since one zero. Hence

M = 0

No ei, θi are generated. i.e. e = {} , θ = {} so far.

Part (c)

This part applied only to case 1. It is used to generate ei, θi for poles of r order
4, 6, 8, · · · ,M if any exist. Since non exist here. This is skipped. Hence M stays 0.
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Part(d)
Now we need to find e0, θ0. If O(∞) > 2 then e0 = 1, θ0 = 0. But if O(∞) = 2 then
θ0 = 0 and e0 =

√
1 + 4b where b is the coefficient of 1

x2 in the Laurent series expansion
of r at ∞. Since in this example O(∞) = −4 then none of these cases apply. We
fall into the case that handles n = 1 only which is the current case which results in
e0 = −2, θ0 = 2 + x2. Hence

e = {−2}
θ =

{
2 + x2}

The above are arranged such that e0 is the first entry. Same for θ. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate e′s and θ′s. In step 2, these are used to generate trials d and θ and find from
them P (x) polynomial if possible.
Step 2
In this step, we now have all the ei, θi values found above in addition to efix, θfix. Since
n = 1 and M = 0 then we have (n+ 1)M+1 = 21 = 2 sets s to try. These are given by

Λ =

−1
2

+1
2


Now we generate trial d using

d = (n) (efix) + s0e0 −
M∑
i=1

siei

Since M = 0 then the above becomes

d = (n) (efix) + s0e0 (7)

If d ≥ 0 then we go and find a trial Θ. We need to have both d,Θ to go to the next
step. Θ is found using

Θ = (n) (θfix) +
M∑
i=0

siθi (8)

Since M = 0. Hence the first trial d is (using Eq (7)) and recalling that efix =
−1, θfixed = 0 then

d = (n) (efix) +
(
−1
2

)
(−2)

= (1) (−1) + 1
= 0
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Since d ≥ 0, then we can use it. Using Eq (8) gives

Θ = (n) (θfix) + s0θ0

= 0− 1
2
(
2 + x2)

= −1− 1
2x

2

Now that we have good trial d and Θ, then step 3 is called to generate ω if possible.
Step 3
The input to this step is the integer d = 0 and Θ = −1− 1

2x
2 found from step 2 and

also r = x4+4x2−4x
4 which comes from z′′ = rz. This step is broken into these parts.

First we find the p−1(x) polynomial. If we are to solve for its coefficients, then next we
build the minimal polynomial from the pi(x) polynomials constructed during finding
p−1(x). The minimal polynomial pmin(x) will be a function of ω. Next we solve for ω
from pmin(x) = 0. If this is successful, then we have found ω and the first solution to
the ode y′′ = ry is e

∫
ωdx . Below shows how this is done.

We start by forming a polynomial

p(x) = xd + ad−1x
d−1 + · · ·+ a0

= 1

Since this is case n = 1 then

ω = p′

p
+Θ

= −1− 1
2x

2

Before using this, we will verify it is correct. For case 1 the above should satisfy

ω′ + ω2 = r

Let us see if this is the case or not.
d

dx

(
−1− 1

2x
2
)
+
(
−1− 1

2x
2
)2

=
(
x4 + 4x2 − 4x

4

)
−x+ 1

4x
4 + x2 + 1 = x4 + 4x2 − 4x

4
x4 + 4x2 − 4x

4 + 1
4 = x4 + 4x2 − 4x

4
It did not verify. This means this solution can not be used. If we try the next row in Λ
we will find it gives negative d. This means there is no Liouvillian solution. This is an
example where even if we find d ≥ 0 we still can end up not finding a solution.
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4.1.4 Example 4 case one

Solve (
x3 + 1

)
y′′ + 7x2y′ + 9xy = 0 (1)
y′′ + ay′(x) + by = 0

Hence

a = 7x2

(x3 + 1)

b = 9x
(x3 + 1)

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(
7x2

(x3 + 1)

)2

+ 1
2

(
d

dx

(
7x2

(x3 + 1)

))
− 9x

(x3 + 1)

= 1
4

(
7x2

(x3 + 1)

)2

+ 1
2

(
−7x(x3 − 2)
(x3 + 1)2

)
− 9x

(x3 + 1)

= −x(x3 + 8)
4 (x3 + 1)2

(4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = − x(x3 + 8)
4 (x3 + 1)2

z (5)

Step 0 We need to find which case it is. r = s
t
where

s = −x
(
x3 + 8

)
t = 4

(
x3 + 1

)2
The free square factorization of t is t = [1, x3 + 1]. Hence

m = 2 (6)
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Since m is number of elements in the free square factorization. in this special case we
set

t1 = 1
t2 = x3 + 1

Now

O(∞) = deg (t)− deg (s)
= 6− 4
= 2

There are three poles each of order 2. Looking at the cases table giving up, reproduced
here

case allowed pole order for r = s
t

allowed O(∞) order L

1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, · · · } [1]
2 {2, 3, 5, 7, 9, · · · } no condition [2]
3 {1, 2} {2, 3, 4, 5, 6, 7, · · · } [4, 6, 12]

Shows that all three cases are possible. Hence L = [1, 2, 4, 6, 12].
Step 1
This step has 4 parts (a,b,c,d).
part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1))

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
Using O(∞) = 2, t = 4(x3 + 1)2 , t1 = 1 the above gives

efixed =
1
4(min (2, 2)− 6− 3(0))

= 1
4(2− 6)

= −1

θfixed =
1
4

 d
dx

(
4(x3 + 1)2

)
4 (x3 + 1)2

+ 3(0)


= 3

2
x2

x3 + 1
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part (b)

Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of t2. In
other words, the number of poles of r that are of order 2.

r = − x(x3 + 8)
4 (x3 + 1)2

These will be the zeros of t2 in the above square free factorization of t. From above we
found that

t2 = x3 + 1

Label these zeros of t2 as c1, c2, · · · , ck2 . The zeros of t2 are
{
−1, (−1)

1
3 ,−(−1)

1
3

}
={

−1, 12 −
1
2i
√
3, 12 +

1
2i
√
3
}
. Therefore k2 = 3. Hence

M = 3

Now we iterate over each zero ci times finding ei and θi from each. These are found to
be (following formula in paper) to be

b1 =
7
36

e1 =
4
3

b2 =
7
36

e2 =
4
3

b3 =
7
36

e3 =
4
3

And

θ1 =
4

3 (x+ 1)

θ2 =
8

3
(
i
√
3 + 2x− 1

)
θ3 =

−8
3
(
i
√
3− 2x+ 1

)
Part (c)

This part applied only to case 1. It is used to generate ei, θi for poles of r order
4, 6, 8, · · · ,M if any exist. Since non exist here. This is skipped. Hence M stays 3.
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Part(d)

Now we need to find e0, θ0. If O(∞) > 2 then e0 = 1, θ0 = 0. But if O(∞) = 2 then
θ0 = 0 and e0 =

√
1 + 4b where b is the coefficient of 1

x2 in the Laurent series expansion
of r at ∞. Since in this example O(∞) = 2 then this case applies. b = lcoeff(s)

lcoeff(t) where
lcoeff gives the leading coefficient. Since s = −x(x3 + 8) = −x4 − 8x then lcoeff(s)
= −1. And since t = 4(x3 + 1)2 = 4x6 + 8x3 + 4 then lcoeff(t) = 4. Therefore b = −1

4
and therefore

e0 =
√
1 + 4b

= 0

Hence now we have

e =
{
0, 43 ,

4
3 ,

4
3

}
θ =

{
0, 4

3 (x+ 1) ,
8

3
(
i
√
3 + 2x− 1

) , −8
3
(
i
√
3− 2x+ 1

)}

The above are arranged such that e0 is the first entry. Same for θ. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate e′s and θ′s. In step 2, these are used to generate trials d and θ and find from
them P (x) polynomial if possible.

Step 2

In this step, we now have all the ei, θi values found above in addition to efix, θfix.

Starting with n = 1. And since we have M = 3 then there are (n+ 1)M+1 = 24 = 16
sets s to try. The first set s is

s =
{
−n

2 ,
−n

2 ,
−n

2 ,
−n

2

}
=
{
−1
2 ,

−1
2 ,

−1
2 ,

−1
2

}
Now we generate trial d using

d = (n) (efix) + s0e0 −
M∑
i=1

siei

Since M = 3 then the above becomes

d = (n) (efix) + s0e0 − s1e1 − s2e2 − s3e3 (7)
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If d ≥ 0 then we go and find a trial Θ. We need to have both d,Θ to go to the next
step. Θ is found using

Θ = (n) (θfix) +
M∑
i=0

siθi (8)

Hence the first trial d is (using Eq (7)) and recalling that efix = −1, θfixed = 3
2

x2

x3+1
gives

d = (1) (−1) +
(
−1
2

)
(0)−

(
−1
2

)(
4
3

)
−
(
−1
2

)(
4
3

)
−
(
−1
2

)(
4
3

)
= 1

Since d ≥ 0, then we can use it. Using Eq (8) gives (using M = 3)

Θ = (n) (θfix) + s0θ0 + s1θ1 + s2θ2 + s3θ3

= (1)
(
3
2

x2

x3 + 1

)
+
(
−1
2

)
(0) +

(
−1
2

)(
4

3 (x+ 1)

)
+
(
−1
2

)(
8

3
(
i
√
3 + 2x− 1

))+
(
−1
2

)(
−8

3
(
i
√
3− 2x+ 1

))

=
(
3
2

x2

x3 + 1

)
− 2

3 (x+ 1) −
4

3
(
i
√
3 + 2x− 1

) + 4
3
(
i
√
3− 2x+ 1

)
= 2x2

(x+ 1)
(
i
√
3 + 2x− 1

) (
i
√
3− 2x+ 1

)
= −x2

2x3 + 2

Now that we have good trial d and Θ, then step 3 is called to generate ω if possible.

Step 3

The input to this step is the integer d = 1 and Θ = −x2

2x3+2 found from step 2 and also
r = − x

(
x3+8

)
4(x3+1)2 which comes from z′′ = rz. This step is broken into these parts. First we

find the p−1(x) polynomial. If we are to solve for its coefficients, then next we build
the minimal polynomial from the pi(x) polynomials constructed during finding p−1(x).
The minimal polynomial pmin(x) will be a function of ω. Next we solve for ω from
pmin(x) = 0. If this is successful, then we have found ω and the first solution to the ode
y′′ = ry is e

∫
ωdx . Below shows how this is done.

We start by forming a polynomial

p(x) = xd + ad−1x
d−1 + · · ·+ a0

= x
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Since this is case n = 1 then

ω = p′

p
+Θ

= 1
x
− x2

2x3 + 2

= x3 + 2
2x (x3 + 1)

Before using this, we will verify it is correct. For case 1 the above should satisfy

ω′ + ω2 = r

Let us see if this is the case or not.

d

dx

(
x3 + 2

2x (x3 + 1)

)
+
(

x3 + 2
2x (x3 + 1)

)2

= − x(x3 + 8)
4 (x3 + 1)2

−(x6 + 6x3 + 2)
2x2 (x3 + 1)2

+ (x3 + 2)2

4x2 (x3 + 1)2
= − x(x3 + 8)

4 (x3 + 1)2

− x(x3 + 8)
4 (x3 + 1)2

= − x(x3 + 8)
4 (x3 + 1)2

Verified. Since solution ω is found and verified, then first solution to the ode is

z = e
∫
ωdx

= e

∫
x3+2

2x
(
x3+1

)dx

= x
6
√
x3 + 1

Hence first solution to given ODE is

y = ze
−1
2
∫
adx

= x
6
√
x3 + 1

e
− 1

2
∫ 7x2(

x3+1
)dx

= x
6
√
x3 + 1

1
(x3 + 1)

7
6

= x

(x3 + 1)
4
3
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4.1.5 Example 5 case one

Solve Bessel ode (from Kovacic original paper)

y′′ − 4(m2 − x2)− 1
4x2 y = 0 (1)

y′′ + ay′ + by = 0

Hence

a = 0

b = 4(m2 − x2)− 1
4x2

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 4(m2 − x2)− 1
4x2 (4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = 4(m2 − x2)− 1
4x2 z (5)

Step 0 We need to find which case it is. r = s
t
where

s = 4
(
m2 − x2)− 1

t = 4x2

The free square factorization of t is t = [1, x]. Hence

m = 2 (6)

Since m is number of elements in the free square factorization. in this case we set

t1 = 1
t2 = x
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Now

O(∞) = deg (t)− deg (s)
= 2− 2
= 0

There is one pole at x = 0 of order 2. Looking at the cases table giving up, reproduced
here

case allowed pole order for r = s
t

allowed O(∞) order L

1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, · · · } [1]
2 {2, 3, 5, 7, 9, · · · } no condition [2]
3 {1, 2} {2, 3, 4, 5, 6, 7, · · · } [4, 6, 12]

Shows that only case 1,2 are possible. L = [1, 2].

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1))

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
Using O(∞) = 0, t = 4x2, t1 = 1 the above gives

efixed =
1
4(min (0, 2)− 2− 3(0))

= 1
4(0− 2)

= −1
2

θfixed =
1
4

(
d
dx
(4x2)
4x2 + 3(0)

)
= 1

2x

part (b)

Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of t2. In
other words, the number of poles of r that are of order 2.
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r = 4(m2 − x2)− 1
4x2

These will be the zeros of t2 in the above square free factorization of t. From above we
found that

t2 = x

Label these zeros of t2 as c1, c2, · · · , ck2 . The zeros of t2 are {0}. Therefore k2 = 1.
Hence

M = 1

Now we iterate over each zero ci times finding ei and θi from each. These are found to
be (following formula in paper) to be

b1 = m2 − 1
4

e1 =
√
1 + 4b =

√
1 + 4

(
m2 − 1

4

)
= 2m m > 0

Where b1 is the coefficient of 1
(x−c1)2

in the partial fractions decomposition of r which
is r = −1 +

(
m2 − 1

4

) 1
x2 . And

θ1 =
e1

x− c1
= 2m

x

Part (c)

This part applied only to case 1. It is used to generate ei, θi for poles of r order
4, 6, 8, · · · ,M if any exist. Since non exist here. This is skipped. Hence M stays 1.

Part(d)

Now we need to find e0, θ0. If O(∞) > 2 then e0 = 1, θ0 = 0. But if O(∞) = 2 then
θ0 = 0 and e0 =

√
1 + 4b where b is the coefficient of 1

x2 in the Laurent series expansion
of r at ∞. Since O(∞) = 0 here then none of these cases applies. For case 1 (n = 1)
following the method in the paper we find

e0 = 0
θ0 = 2i

Hence now we have

e = {0, 2m}

θ =
{
2i, 2m

x

}
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The above are arranged such that e0 is the first entry. Same for θ. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate e′s and θ′s. In step 2, these are used to generate trials d and θ and find from
them P (x) polynomial if possible.

Step 2

In this step, we now have all the ei, θi values found above in addition to efix, θfix.

Starting with n = 1. And since we have M = 1 then there are (n+ 1)M+1 = 22 = 4
sets s to try. The first set s is

s =
{
−n

2 ,
−n

2

}
=
{
−1
2 ,

−1
2

}
Now we generate trial d using

d = (n) (efix) + s0e0 −
M∑
i=1

siei

Since M = 1 then the above becomes

d = (n) (efix) + s0e0 − s1e1 (7)

If d ≥ 0 then we go and find a trial Θ. We need to have both d,Θ to go to the next
step. Θ is found using

Θ = (n) (θfix) +
M∑
i=0

siθi (8)

Hence the first trial d is (using Eq (7)) and recalling that efix = −1
2 , θfixed =

1
2x gives

d = (1)
(
−1
2

)
+
(
−1
2

)
(0)−

(
−1
2

)
(2m)

= m− 1
2

We now have to assume something about m to be to continue otherwise we will not
be able to decide if d is integer and d ≥ 0. If we assume that m is half of all positive
odd integers (12 ,

3
2 ,

5
2 , · · · ) then d ≥ 0. We can also assume that m is half of all negative

odd integers and the other s set will match. So under the assumption that m is half
of all positive odd integers the above d can be used for the next step. To continue,
we assume m takes some specific value to simplify the steps. Let m = 3

2 from now on.
Hence d = 1. Therefore e, θ become
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e = {0, 3}

θ =
{
2i, 3

x

}
Using Eq (8) gives (using M = 1)

Θ = (n) (θfix) + s0θ0 + s1θ1

= (1)
(

1
2x

)
+
(
−1
2

)
(2i) +

(
−1
2

)(
3
x

)
= −1

x
(ix+ 1)

Now that we have good trial d and Θ, then step 3 is called to generate ω if possible.

Step 3

The input to this step is the integer d = 1 and Θ = − 1
x
(ix+ 1) found from step 2 and

also r = 4
(
n2−x2)−1

4x2 which comes from z′′ = rz. This step is broken into these parts.
First we find the p−1(x) polynomial. If we are to solve for its coefficients, then next we
build the minimal polynomial from the pi(x) polynomials constructed during finding
p−1(x). The minimal polynomial pmin(x) will be a function of ω. Next we solve for ω
from pmin(x) = 0. If this is successful, then we have found ω and the first solution to
the ode y′′ = ry is e

∫
ωdx . Below shows how this is done.

We start by forming a polynomial

p(x) = xd + ad−1x
d−1 + · · ·+ a0

= x+ a0

The goal is to solve for the a0 coefficient. Now depending on case number n, we do the

99



following. Since we are in case n = 1 then

p1 = −p

= −x− a0

p0 = −p′1 −Θp1

= −(−x− a0)′ −
(
−1
x
(ix+ 1)

)
(−x− a0)

= 1−
(
−1
x
(ix+ 1)

)
(−x− a0)

= −1
x

(
ix2 + ia0x+ a0

)
p−1 = −p′0 −Θp0 − (1) (1) rp1

= −
(
−1
x

(
ix2 + ia0x+ a0

))′

−
(
−1
x
(ix+ 1)

)(
−1
x

(
ix2 + ia0x+ a0

))
− 4(n2 − x2)− 1

4x2 (−x− a0)

= −2
x
(ia0 − 1)

Now we try to solve for ai using p−1(x) = 0. This gives a0 = −i. Hence this implies

p(x) = x− i

Since this is case n = 1 then

ω = p′

p
+Θ

= (x− i)′

x− i
− 1

x
(ix+ 1)

= −i(ix− x2 + 1)
(−x+ i)x

= −(ix3 + 1)
x3 + x

Before using this, we will verify it is correct. For case 1 the above should satisfy

ω′ + ω2 = r

Let us see if this is the case or not.

d

dx

(
−i(ix− x2 + 1)

(−x+ i)x

)
+
(
−i(ix− x2 + 1)

(−x+ i)x

)2

=
4
((3

2

)2 − x2
)
− 1

4x2

(−2ix3 + 3x2 + 1)
x2 (x2 + 1)2

+ (ix2 + x− i)2

x2 (x− i)2
= − 1

x2

(
x2 − 2

)
− 1
x2

(
x2 − 2

)
= − 1

x2

(
x2 − 2

)
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Verified. Hence ω = −i
(
ix−x2+1

)
(−x+i)x = −

(
ix3+1

)
x3+x

will give the solution to the ode y′′ −
4
(
m2−x2)−1

4x2 y = 0 when m = 3
2 . Since solution ω is found and verified, then first solution

to the ode is

z = e
∫
ωdx

= e
∫
−

(
ix3+1

)
x3+x

dx

= 1
x
e−ix(x− i)

Hence first solution to given ODE is

y = ze
−1
2
∫
adx

= 1
x
e−ix(x− i) e− 1

2
∫
0dx

= 1
x
e−ix(x− i)

One difficulty in implementation of Kovacic algorithm using an ode with a parameter
m like in this Bessel ode example, is that it makes it hard to decide if d ≥ 0 or not. So
in practice, it is better to use this algorithm for specific values of any parameters that
can be involved.

4.1.6 Example 6 case one

Solve
y′′ = 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4

4x4 y (1)

Hence

a = 0

b = −4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4
4x4

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4
4x4 (4)
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Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4
4x4 z (5)

Step 0 We need to find which case it is. r = s
t
where

s = 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4
t = 4x4

The free square factorization of t is t = [1, 1, 1, x]. Hence

m = 4 (6)

Since m is number of elements in the free square factorization. in this case we set

t1 = 1
t2 = 1

Now

O(∞) = deg (t)− deg (s)
= 4− 6
= −2

There is one pole at x = 0 of order 4. Looking at the cases table

case allowed pole order for r = s
t

allowed O(∞) order L

1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, · · · } [1]
2 {2, 3, 5, 7, 9, · · · } no condition [2]
3 {1, 2} {2, 3, 4, 5, 6, 7, · · · } [4, 6, 12]

Shows that only case 1 is possible. L = [1].

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1))

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
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Using O(∞) = 0, t = 4x4, t1 = 1 the above gives

efixed =
1
4(min (−2, 2)− 4− 3(0))

= 1
4(−2− 4)

= −3
2

θfixed =
1
4

(
d
dx
(4x4)
4x4 + 3(0)

)
= 1

x

part (b)

Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of t2. In
other words, the number of poles of r that are of order 2. Since t2 = 1 then there are
poles. Hence k2 = 0 and

M = 0

Part (c)

This part applied only to case 1. It is used to generate ei, θi for poles of r order
4, 6, 8, · · · ,M if any exist. Here we have pole x = 0 of order 4. Following the paper
(need to document), we find e1 = −5, θ1 = 2

x2 − 5
x
. We start from index 1 since k2 = 0

from part (b). Now k1 = 1. Note that for case 1, we use k1. Hence

M = 1

And now not M = 0 (for case 1 only). For other cases, we use k2 for M .

Part(d)

Now we need to find e0, θ0. If O(∞) > 2 then e0 = 1, θ0 = 0. But if O(∞) = 2 then
θ0 = 0 and e0 =

√
1 + 4b where b is the coefficient of 1

x2 in the Laurent series expansion
of r at ∞. Since O(∞) = 0 here then none of these cases applies. For case 1 (n = 1)
following the method in the paper we find (need to document)

e0 = 2
θ0 = −2 + 2x

Hence now we have

e = {2,−5}

θ =
{
−2 + 2x, 2

x2 − 5
x

}
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The above are arranged such that e0 is the first entry. Same for θ. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate e′s and θ′s. In step 2, these are used to generate trials d and θ and find from
them P (x) polynomial if possible.

Step 2

In this step, we now have all the ei, θi values found above in addition to efix, θfix.

Starting with n = 1. And since we have M = k1 = 1 then there are (n+ 1)M+1 = 22 = 4
sets s to try. The first set s is

s =
{
−n

2 ,
−n

2

}
=
{
−1
2 ,

−1
2

}
Now we generate trial d using

d = (n) (efix) + s0e0 −
M∑
i=1

siei

Since M = 1 then the above becomes

d = (n) (efix) + s0e0 − s1e1 (7)

If d ≥ 0 then we go and find a trial Θ. We need to have both d,Θ to go to the next
step. Θ is found using

Θ = (n) (θfix) +
M∑
i=0

siθi (8)

Hence the first trial d is (using Eq (7)) and recalling that efix = −3
2 , θfixed =

1
x
gives

d = (1)
(
−3
2

)
+
(
−1
2

)
(2)−

(
−1
2

)
(−5)

= −5

Since this is not ≥ 0, we go to next set s
{+1

2 , +1
2

}
and try again

d = (1)
(
−3
2

)
+
(
+1
2

)
(2)−

(
+1
2

)
(−5)

= 2
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This works. Using Eq (8) gives (using M = 1)

Θ = (n) (θfix) + s0θ0 + s1θ1

= (1)
(
1
x

)
+
(
+1
2

)
(−2 + 2x) +

(
+1
2

)(
2
x2 − 5

x

)
= −(−2x3 + 2x2 + 3x− 2)

2x2

= x− 1− 3
2x + 1

x2

Now that we have good trial d and Θ, then step 3 is called to generate P (x) if possible.

Step 3

The input to this step is the integer d = 2 and Θ = x− 1− 3
2x + 1

x2 found from step 2
and also r = 4x6−8x5+12x4+4x3+7x2−20x+4

4x4 which comes from z′′ = rz. Since degree d = 2,
then let p(x) = x2 + ax+ b. Therefore we need to now find P (x) that solves

P ′′ + 2ΘP ′ +
(
Θ′ +Θ2 − r

)
P = 0

2 + 2Θ(2x+ a) +
(
Θ′ +Θ2 − r

) (
x2 + ax+ b

)
= 0

2 + 2
(
x− 1− 3

2x + 1
x2

)
(2x+ a) +

((
x− 1− 3

2x + 1
x2

)′

+
(
x− 1− 3

2x + 1
x2

)2
− 4x6 − 8x5 + 12x4 + 4x3 + 7x2 − 20x+ 4

4x4

)(
x2 + ax+ b

)
= 0

Which simplifies to

− 1
x2

(
2ax3 − 4x− 2ax2 − 2a+ 4bx2 + 3ax− 4bx+ 4x2) = 0

−2ax+ 4
x
+ 2a+ 2 a

x2 − 4b− 3a1
x
+ 4 b

x
− 4 = 0

Hence by comparing coefficients

x(−2a) + 1
x
(4− 3a+ 4b) + 1

x2 (2a) + (2a− 4b− 4) = 0

Therefore a = 0. And 4− 3a+ 4b = 0 gives b = −1. Same if we used 2a− 4b− 4 = 0,
So consistent equations. Therefore

P (x) = x2 − 1

And the solution is

z = P (x) e
∫
Θdx

=
(
x2 − 1

)
e
∫
x−1− 3

2x+
1
x2 dx

=
(
x2 − 1

)
x− 3

2 e−
1
x
+x2

2 −x
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Hence first solution to given ODE is

y =
(
x2 − 1

)
x− 3

2 e−
1
x
+x2

2 −xe
−1
2
∫
adx

=
(
x2 − 1

)
x− 3

2 e−
1
x
+x2

2 −xe−
1
2
∫
0dx

=
(
x2 − 1

)
x− 3

2 e−
1
x
+x2

2 −x

4.1.7 Example 7 case two

Solve

y′′ = 16x− 3
16x2 y (1)

y′′ + ay′(x) + by = 0

Hence

a = 0

b = −16x− 3
16x2

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 16x− 3
16x2 (4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = 16x− 3
16x2 z (5)

Step 0 We need to find which case it is. r = s
t
where

s = 16x− 3
t = 16x2
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The free square factorization of t is t = [1, x]. Hence

m = 2 (6)

Since m is number of elements in the free square factorization. in this special case we
set

t1 = 1
t2 = x

Now

O(∞) = deg (t)− deg (s)
= 2− 1
= 1

There is pole x = 0 of order 2. Looking at the cases table, reproduced here

case allowed pole order for r = s
t

allowed O(∞) order L

1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, · · · } [1]
2 {2, 3, 5, 7, 9, · · · } no condition [2]
3 {1, 2} {2, 3, 4, 5, 6, 7, · · · } [4, 6, 12]

Shows that only case 2 is possible (due to O(∞) = 1 which is not allowed other than
for case 2). Hence L = [2].

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1))

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
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Using O(∞) = 1, t = 16x2, t1 = 1 the above gives

efixed =
1
4(min (1, 2)− 2− 3(0))

= 1
4(1− 2)

= −1
4

θfixed =
1
4

(
d
dx
(16x2)
16x2 + 3(0)

)
= 1

2x

part (b)

Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of t2. In
other words, the number of poles of r that are of order 2.

r = 16x− 3
16x2

These will be the zeros of t2 in the above square free factorization of t. From above we
found that

t2 = x

Label these zeros of t2 as c1, c2, · · · , ck2 . The zeros of t2 are {0}. Therefore k2 = 1.
Hence

M = 1

Now we iterate over each zero ci times finding ei and θi from each. These are found to
be (following formula in paper) to be

e1 =
1
2

And
θ1 =

1
2x

Part (c)

This part applied only to case 1. It is used to generate ei, θi for poles of r order
4, 6, 8, · · · ,M if any exist. Since only case 2 exist in this example. This is skipped.
Hence M stays 1.

Part(d)
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Now we need to find e0, θ0. If O(∞) > 2 then e0 = 1, θ0 = 0. But if O(∞) = 2 then
θ0 = 0 and e0 =

√
1 + 4b where b is the coefficient of 1

x2 in the Laurent series expansion
of r at ∞. None of these apply, and this is not case 1. Hence

e0 = 0
θ0 = 0

Hence now we have

e =
{
0, 12

}
θ =

{
0, 1

2x

}
The above are arranged such that e0 is the first entry. Same for θ. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate e′s and θ′s. In step 2, these are used to generate trials d and θ and find from
them P (x) polynomial if possible.
Step 2
In this step, we now have all the ei, θi values found above in addition to efix, θfix.
Starting with n = 2. Since case 2 only applies here. And since we have M = 1 then
there are (n+ 1)M+1 = 32 = 9 sets s to try. The first set s is

s =
{
−n

2 ,
−n

2

}
= {−1,−1}

Now we generate trial d using

d = (n) (efix) + s0e0 −
M∑
i=1

siei

Since M = 1 then the above becomes

d = (n) (efix) + s0e0 − s1e1 (7)

If d ≥ 0 then we go and find a trial Θ. We need to have both d,Θ to go to the next
step. Θ is found using

Θ = (n) (θfix) +
M∑
i=0

siθi (8)

Hence the first trial d is (using Eq (7)) and recalling that efix = −1
4 , θfixed =

1
2x gives

d = (2)
(
−1
4

)
+ (−1) (0)− (−1)

(
1
2

)
= 0
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Since d ≥ 0, then we can use it. Using Eq (8) gives (using M = 1)

Θ = (n) (θfix) + s0θ0 + s1θ1

= (2)
(

1
2x

)
+ (−1) (0) + (−1)

(
1
2x

)
= 1

2x
Now that we have good trial d and Θ, then step 3 is called to generate P (x) if possible.
Step 3
The input to this step is the integer d = 0 and Θ = 1

2x found from step 2 and also
r = 16x−3

16x2 which comes from z′′ = rz. We need now to find P (x) of degree d = 0 which
is a constant such that

P ′′′ + 3ΘP ′′ +
(
3Θ2 + 3Θ′ − 4r

)
P ′ +

(
Θ′′ + 3ΘΘ′ +Θ3 − 4rΘ− 2r′

)
P = 0

Since P = 1 then above simplifies to(
Θ′′ + 3ΘΘ′ +Θ3 − 4rΘ− 2r′

)
= 0

We know Θ and r. If this verifies, then we can use P = 1. Substituting the above
becomes((

1
2x

)′′

+ 3 1
2x

(
1
2x

)′

+
(

1
2x

)3

− 4
(
16x− 3
16x2

)(
1
2x

)
− 2
(
16x− 3
16x2

)′
)

= 0(
d2

dx2

(
1
2x

)
+ 3 1

2x
d

dx

(
1
2x

)
+
(

1
2x

)3

− 4
(
16x− 3
16x2

)(
1
2x

)
− 2 d

dx

(
16x− 3
16x2

))
= 0

0 = 0

Verified. Hence
P (x) = 1

Let

φ = Θ+ P ′

P

= 1
2x

Now we solve for ω from

ω2 − φω +
(
1
2φ

′ + 1
2φ− r

)
= 0

ω2 − 1
2xω +

(
1
2

(
1
2x

)′

+ 1
2

(
1
2x

)
− 16x− 3

16x2

)
= 0

ω2 − 1
2xω + 1

16x2 − 1
x
= 0
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The solution ω = 1
4x ± 1√

x
. We pick either solution. Hence the solution is

z = e
∫
ωdx

= e
∫ 1

4x+
1√
x
dx

= x
1
4 e2

√
x

Hence first solution to given ODE is

y = ze
−1
2
∫
adx

= x
1
4 e2

√
xe−

1
2
∫
0dx

= x
1
4 e2

√
x

4.1.8 Example 8 case two

Solve

y′′ = 1
x3y (1)

y′′ + ay′(x) + by = 0

Hence

a = 0

b = − 1
x3

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
x3 (4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = 1
x3 z (5)

111



Step 0 We need to find which case it is. r = s
t
where

s = 1
t = x3

The free square factorization of t is t = [1, 1, x]. Hence

m = 3 (6)

Since m is number of elements in the free square factorization. in this special case we
set

t1 = 1
t2 = 1

Now

O(∞) = deg (t)− deg (s)
= 3− 0
= 3

There is pole x = 0 of order 3. Looking at the cases table, reproduced here

case allowed pole order for r = s
t

allowed O(∞) order L

1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, · · · } [1]
2 {2, 3, 5, 7, 9, · · · } no condition [2]
3 {1, 2} {2, 3, 4, 5, 6, 7, · · · } [4, 6, 12]

Shows that only case 2 is possible (since odd pole is only allowed in case 2). Hence
L = [2].

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1))

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
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Using O(∞) = 1, t = x3, t1 = 1 the above gives

efixed =
1
4(min (3, 2)− 3− 3(0))

= 1
4(2− 3)

= −1
4

θfixed =
1
4

(
d
dx
(x3)
x3 + 3(0)

)
= 3

4x

part (b)

Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of t2. In
other words, the number of poles of r that are of order 2. There are no poles of order
2. Hence k2 = 0.

Part (c)

This part applied only to case 1. It is used to generate ei, θi for poles of r order 4, 6, 8, · · ·
if any exist. Since only case 2 exist in this example. This is skipped. Hence k2 stays 0.

Part(d)

Now we need to find e0, θ0. If O(∞) > 2 then e0 = 1, θ0 = 0. Hence

e0 = 1
θ0 = 0

Hence now we have

e = {1}
θ = {0}

The above are arranged such that e0 is the first entry. Same for θ. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate e′s and θ′s. In step 2, these are used to generate trials d and θ and find from
them P (x) polynomial if possible.

Step 2

In this step, we now have all the ei, θi values found above in addition to efix, θfix.
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Starting with n = 2. Since case 2 only applies here. And since we have k2 = 0 then
there are (n+ 1)k2+1 = 3 sets s to try. The first set s is

s =
{
−n

2

}
= {−1}

Now we generate trial d using

d = (n) (efix) + s0e0 −
k2∑
i=1

siei

Since k2 = 0 then the above becomes

d = (n) (efix) + s0e0 (7)

If d ≥ 0 then we go and find a trial Θ. We need to have both d,Θ to go to the next
step. Θ is found using

Θ = (n) (θfix) +
k2∑
i=0

siθi (8)

Hence the first trial d is (using Eq (7)) and recalling that efix = −1
4 , θfixed =

3
4x gives

d = (2)
(
−1
4

)
+ (−1) (1)

= −3
2

Since negative then we can not use it. Now we try the next set s = {0}. Then Eq(7)
gives

d = (2)
(
−1
4

)
+ (0) (1)

= −1
2

Since negative then we can not use it. Now we try the last set s = {+1}. Then Eq(7)
gives

d = (2)
(
−1
4

)
+ (+1) (1)

= 1
2

Since not an integer, then we can not use it. We are run out of sets s to try. Therefore
there is no Liouvillian solution.
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4.1.9 Example 9 case two

Solve

2x2y′′ − xy′ + (1− 2x) y = 0 (1)

y′′ − 1
2xy

′ + (1− 2x)
2x2 y = 0 x 6= 0

y′′ + ay′(x) + by = 0

Hence

a = − 1
2x

b = (1− 2x)
2x2

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(
− 1
2x

)2

+ 1
2
d

dx

(
− 1
2x

)
− (1− 2x)

2x2

= 16x− 3
16x2 (4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = 16x− 3
16x2 z (5)

Step 0 We need to find which case it is. r = s
t
where

s = 16x− 3
t = 16x2

The free square factorization of t is t = [1, x]. Hence

m = 2 (6)
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Since m is number of elements in the free square factorization. in this special case we
set

t1 = 1
t2 = x

Now

O(∞) = deg (t)− deg (s)
= 2− 1
= 1

There is pole x = 0 of order 2. Looking at the cases table, reproduced here

case allowed pole order for r = s
t

allowed O(∞) order L

1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, · · · } [1]
2 {2, 3, 5, 7, 9, · · · } no condition [2]
3 {1, 2} {2, 3, 4, 5, 6, 7, · · · } [4, 6, 12]

Shows that only case 2 is possible (O(∞) = 1 is only possible for case 2). Hence L = [2].

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1))

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
Using O(∞) = 1, t = 16x2, t1 = 1 the above gives

efixed =
1
4(min (1, 2)− 2− 3(0))

= 1
4(1− 2)

= −1
4

θfixed =
1
4

(
d
dx
(16x2)
16x2 + 3(0)

)
= 1

2x
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part (b)

Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of t2 = x.
In other words, the number of poles of r that are of order 2. There is one pole of order 2.
Hence k2 = 1. the coefficient of 1

(x−0)2 in the partial fractions of r = 16x−3
16x2 = 1

x
− 3

16
1

(x−0)2 .

Therefore b = − 3
16 . Hence e1 =

√
1 + 4b =

√
1 + 4

(
− 3

16

)
= 1

2 and θ1 = e1
x−0 = 1

2x . Hence

e =
{
1
2

}
θ =

{
1
2x

}
Part (c)

This part applied only to case 1. It is used to generate ei, θi for poles of r order 4, 6, 8, · · ·
if any exist. Since only case 2 exist in this example. This is skipped. Hence k2 stays 0.

Part(d)

Now we need to find e0, θ0. Since this is not case 1 and since it is not O(∞) > 2 and
not O(∞) = 2, then

e0 = 0
θ0 = 0

Hence now we have

e =
{
0, 12

}
θ =

{
0, 1

2x

}
The above are arranged such that e0 is the first entry. Same for θ. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate e′s and θ′s. In step 2, these are used to generate trials d and θ and find from
them P (x) polynomial if possible.

Step 2

In this step, we now have all the ei, θi values found above in addition to efix, θfix.

Starting with n = 2. Since case 2 only applies here. And since we have k2 = 1 then
there are (n+ 1)k2+1 = 32 = 9 sets s to try. The first set s is

s =
{
−n

2 ,
−n

2

}
= {−1,−1}
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Now we generate trial d using

d = (n) (efix) + s0e0 −
k2∑
i=1

siei

Since k2 = 1 then the above becomes

d = (n) (efix) + s0e0 − s1e1 (7)

If d ≥ 0 then we go and find a trial Θ. We need to have both d,Θ to go to the next
step. Θ is found using

Θ = (n) (θfix) +
k2∑
i=0

siθi (8)

Hence the first trial d is (using Eq (7)) and recalling that efix = −1
4 , θfixed =

1
2x gives

d = (2)
(
−1
4

)
+ (−1) (0)− (−1)

(
1
2

)
= 0

We can use this d.From Eq (8)

Θ = (2)
(

1
2x

)
+ s0θ0 + s1θ1

= (2)
(

1
2x

)
+ (−1) (0) + (−1) 1

2x

= 1
2x

Since this is case 2 (n = 2) then we need to first find P (x). The degree is d = 0. Hence
constant. Say P = 1. But we need to verify this is valid. Setting up the equation

P ′′′ + 3ΘP ′′ +
(
3Θ2 + 3Θ′ − 4r

)
P ′ +

(
Θ′′ + 3ΘΘ′ +Θ3 − 4rΘ− 2r′

)
P = 0

Which simplifies to (since P = 1)

Θ′′ + 3ΘΘ′ +Θ3 − 4rΘ− 2r′ = 0

Using Θ = 1
2x , r =

16x−3
16x2 the above reduces to

0 = 0

Hence P (x) = 1 can be used. Now let

φ = Θ+ P ′

P

= 1
2x
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We now need to solve for ω from (notice that original Kovacic paper has + and not −
after first term in the following equation. The + is from Smith paper. It seems to have
been a typo in original paper as this version gives the correct solution).

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

ω2 − 1
2xω − 1

8x2 − 1
16x2 (16x− 3) = 0

Solving (and picking first root) gives

ω = 1
4x
(
1 + 4

√
x
)

Before using this, we verify it satisfies ω′ + ω2 = r

d

dx

(
1
4x
(
1 + 4

√
x
))

+
(

1
4x
(
1 + 4

√
x
))2

= 16x− 3
16x2

1
16x2 (16x− 3) = 16x− 3

16x2

Verified OK. Hence solution is

z = e
∫
ωdx

= x
1
4 e2

√
x

Hence first solution to given ODE is

y1 = ze
−1
2
∫
adx

= x
1
4 e2

√
xe−

1
2
∫
− 1

2xdx

=
√
xe2

√
x

Second solution y2 can now be find by reduction of order.

4.1.10 Example 10 case two

Solve (
x2 + 2

)
y′′ + 3xy′ − y = 0 (1)

y′′ + 3x
(x2 + 2)y

′ − 1
(x2 + 2)y = 0

y′′ + ay′(x) + by = 0
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Hence

a = 3x
(x2 + 2)

b = − 1
(x2 + 2)

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(
3x

(x2 + 2)

)2

+ 1
2
d

dx

(
3x

(x2 + 2)

)
+ 1

(x2 + 2)

= 7x2 + 20
4 (x2 + 2)2

(4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = 7x2 + 20
4 (x2 + 2)2

z (5)

Step 0 We need to find which case it is. r = s
t
where

s = 7x2 + 20

t = 4
(
x2 + 2

)2 = 16 + 16x2 + 4x4

The free square factorization of t is t = [1, (x2 + 2)]. Hence

m = 2 (6)

Since m is number of elements in the free square factorization. in this special case we
set

t1 = 1
t2 =

(
x2 + 2

)
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Now

O(∞) = deg (t)− deg (s)
= 4− 2
= 2

There is pole x = ±i
√
2 of order 2. Looking at the cases table, reproduced here

case allowed pole order for r = s
t

allowed O(∞) order L

1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, · · · } [1]
2 {2, 3, 5, 7, 9, · · · } no condition [2]
3 {1, 2} {2, 3, 4, 5, 6, 7, · · · } [4, 6, 12]

Shows that all cases are possible. Hence L = [1, 2, 4, 6, 12].

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1))

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
Using O(∞) = 2, t = 4(x2 + 2)2 , t1 = 1 the above gives

efixed =
1
4(min (2, 2)− 4− 3(0))

= 1
4(2− 4)

= −1
2

θfixed =
1
4

 d
dx

(
4(x2 + 2)2

)
4 (x2 + 2)2

+ 3(0)


= x

x2 + 2

part (b)

Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of
t2 = (x2 + 2). In other words, the number of poles of r that are of order 2. There
are two poles of order 2. Hence k2 = 2. These poles at x = ±i

√
2. The coefficient of
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1
(x−c1)2

where c1 is first pole is b1 = − 3
16 . Hence e1 =

√
1 + 4b =

√
1 + 4

(
− 3

16

)
= 1

2 and
θ1 = e1

x−c1
= 1

2
(
x−i

√
2
) . The coefficient of 1

(x−c2)2
where c2 is second pole is b2 = − 3

16 .

Hence e2 =
√
1 + 4b =

√
1 + 4

(
− 3

16

)
= 1

2 and θ2 = e1
x−c2

= 1
2
(
x+i

√
2
) Hence

e =
{
1
2 ,

1
2

}
θ =

{
1

2
(
x− i

√
2
) , 1

2
(
x+ i

√
2
)}

Part (c)
This part applied only to case 1. It is used to generate ei, θi for poles of r order 4, 6, 8
if any exist. Since only order 2 pole exist, then this is skipped. Hence k2 stays 2.
Part(d)

Now we need to find e0, θ0. Since this is case O(∞) = 2, then e0 =
√
1 + 4b where

b = lcoeff(s)
lcoeff(t) where lcoeff(s) is leading coefficient of s = 7x2 + 20 which is 7 and

lcoeff(t) is leading coefficient of t = 16 + 16x2 + 4x4 which is 4. Hence b = 7
4 .

Therefore

e0 =
√
1 + 4b =

√
1 + 4

(
7
4

)
= 2

√
2

θ0 = 0

Hence now we have

e =
{
2
√
2, 12 ,

1
2

}
θ =

{
0, 1

2
(
x− i

√
2
) , 1

2
(
x+ i

√
2
)}

The above are arranged such that e0 is the first entry. Same for θ. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate e′s and θ′s. In step 2, these are used to generate trials d and θ and find from
them P (x) polynomial if possible.
Step 2
In this step, we now have all the ei, θi values found above in addition to efix, θfix.
Starting with n = 1. And since we have k2 = 2 then there are (n+ 1)k2+1 = 23 = 8 sets
s to try. The first set s is

s =
{
−n

2 ,
−n

2 ,
−n

2

}
=
{
−1
2 ,

−1
2 ,

−1
2

}
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Now we generate trial d using

d = (n) (efix) + s0e0 −
k2∑
i=1

siei

Since k2 = 2 then the above becomes

d = (n) (efix) + s0e0 − s1e1 − s2e2 (7)

If d ≥ 0 then we go and find a trial Θ. We need to have both d,Θ to go to the next
step. Θ is found using

Θ = (n) (θfix) +
k2∑
i=0

siθi (8)

Hence the first trial d is (using Eq (7)) and recalling that efix = −1
2 , θfixed =

x
x2+2 gives

d = (1)
(
−1
2

)
+
(
−1
2

)(
2
√
2
)
−
(
−1
2

)(
1
2

)
−
(
−1
2

)(
1
2

)
= −

√
2

Since not an integer, we try next set s =
{−1

2 , −1
2 , +1

2

}
and now Eq (7) gives

d = (1)
(
−1
2

)
+
(
−1
2

)(
2
√
2
)
−
(
−1
2

)(
1
2

)
−
(
+1
2

)(
1
2

)
= −

√
2− 1

2

Since not an integer, we try next set s =
{−1

2 , +1
2 , −1

2

}
. If we continue this way we will

find that all sets s will fail to generate a d ≥ 0. Hence case one did not work. Now we
go to case 2 (n = 2).

Starting with n = 2. And since we have k2 = 2 then there are (n+ 1)k2+1 = 33 sets s
to try. The first set s is

s =
{
−n

2 ,
−n

2 ,
−n

2

}
= {−1,−1,−1}

Now we generate trial d using

d = (n) (efix) + s0e0 −
k2∑
i=1

siei

Since k2 = 2 then the above becomes

d = (n) (efix) + s0e0 − s1e1 − s2e2 (7)
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If d ≥ 0 then we go and find a trial Θ. We need to have both d,Θ to go to the next
step. Θ is found using

Θ = (n) (θfix) +
k2∑
i=0

siθi (8)

Hence the first trial d is (using Eq (7)) and recalling that efix = −1
2 , θfixed =

x
x2+2 gives

d = (2)
(
−1
2

)
+ (−1)

(
2
√
2
)
− (−1)

(
1
2

)
− (−1)

(
1
2

)
= −2

√
2

Since not an integer, we try next set s = {−1,−1,+1}. If we continue this way we will
find that set s = {0,−1,−1} works.

d = (2)
(
−1
2

)
+ (0)

(
2
√
2
)
− (−1)

(
1
2

)
− (−1)

(
1
2

)
= 0

We can use this d. From Eq (8)

Θ = (2)
(

1
2x

)
+ s0θ0 + s1θ1 + s2θ2

= (2)
(

x

x2 + 2

)
(0) (0)− (−1)

(
1

2
(
x− i

√
2
))− (−1)

(
1

2
(
x+ i

√
2
))

= x

x2 + 2
Since this is case 2 (n = 2) then we need to first find P (x). The degree is d = 0. Hence
constant. Say P = 1. But we need to verify this is valid. Setting up the equation

P ′′′ + 3ΘP ′′ +
(
3Θ2 + 3Θ′ − 4r

)
P ′ +

(
Θ′′ + 3ΘΘ′ +Θ3 − 4rΘ− 2r′

)
P = 0

Which simplifies to (since P = 1)

Θ′′ + 3ΘΘ′ +Θ3 − 4rΘ− 2r′ = 0

Using Θ = x
x2+2 , r =

7x2+20
4(x2+2)2 the above reduces to

0 = 0

Hence P (x) = 1 can be used. Now let

φ = Θ+ P ′

P

= x

x2 + 2
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We now need to solve for ω from (notice that original Kovacic paper has + and not −
after first term in the following equation. The + is from Smith paper. It seems to have
been a typo in original paper as this version gives the correct solution).

ω2 − φω +
(
1
2φ

′ + 1
2φ

2 − r

)
= 0

ω2 −
(

x

x2 + 2

)
+ ω

(
1
2

(
x

x2 + 2

)′

+ 1
2

(
x

x2 + 2

)2

− 7x2 + 20
4 (x2 + 2)2

)
= 0

4ω2x4 − 4ωx3 + (16ω2 − 7)x2 − 8xω + 16ω2 − 16
4 (x2 + 2)2

= 0

4ω2x4 − 4ωx3 +
(
16ω2 − 7

)
x2 − 8xω + 16ω2 − 16 = 0

Solving for ω (and picking first root) gives

ω = x+ 2
√
2x2 + 4

2 (x2 + 2)

Before using this, we verify it satisfies ω′ + ω2 = r

d

dx

(
x+ 2

√
2x2 + 4

2 (x2 + 2)

)
+
(
x+ 2

√
2x2 + 4

2 (x2 + 2)

)2

= 7x2 + 20
4 (x2 + 2)2

7x2 + 20
4x4 + 16x2 + 16 = 7x2 + 20

4 (x2 + 2)2

Verified OK. Hence solution is

z = e
∫
ωdx

= e

∫ x+2
√

2x2+4
2
(
x2+2

) dx

=
(
x2 + 2

) 1
4 e

√
2 arcsinh

(√
2

2 x
)

Hence first solution to given ODE is

y1 = ze
−1
2
∫
adx

=
(
x2 + 2

) 1
4 e

√
2 arcsinh

(√
2

2 x
)
e
− 1

2
∫ 3x(

x2+2
)dx

= e
√
2 arcsinh

(√
2

2 x
)

√
(x2 + 2)

Second solution y2 can now be find by reduction of order.
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4.1.11 Example 11 case one

Solve

x2(x2 + x+ 1
)
y′′ − x

(
−2x2 − 4x+ 1

)
y′ + y = 0 (1)

y′′ − x(−2x2 − 4x+ 1)
x2 (x2 + x+ 1) y′ + 1

x2 (x2 + x+ 1)y = 0

y′′ + ay′(x) + by = 0

Hence

a = −x(−2x2 − 4x+ 1)
x2 (x2 + x+ 1)

b = 1
x2 (x2 + x+ 1)

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(
−x(−2x2 − 4x+ 1)

x2 (x2 + x+ 1)

)2

+ 1
2
d

dx

(
−x(−2x2 − 4x+ 1)

x2 (x2 + x+ 1)

)
− 1

x2 (x2 + x+ 1)

= 10x2 − 8x− 1
4x2 (x2 + x+ 1)2

(4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = 10x2 − 8x− 1
4x2 (x2 + x+ 1)2

z (5)

Step 0 We need to find which case it is. r = s
t
where

s = 10x2 − 8x− 1

t = 4x2(x2 + x+ 1
)2

=
(
x3 + x2 + x

)2
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The free square factorization of t is t = [1, x3 + x2 + x]. Hence

m = 2 (6)

Since m is number of elements in the free square factorization. in this special case we
set

t1 = 1
t2 = x3 + x2 + x

Now

O(∞) = deg (t)− deg (s)
= 6− 2
= 4

There are poles of order 2. Looking at the cases table, reproduced here

case allowed pole order for r = s
t

allowed O(∞) order L

1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, · · · } [1]
2 {2, 3, 5, 7, 9, · · · } no condition [2]
3 {1, 2} {2, 3, 4, 5, 6, 7, · · · } [4, 6, 12]

Shows that all cases are possible. Hence L = [1, 2, 4, 6, 12].

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1))

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
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Using O(∞) = 2, t = (x3 + x2 + x)2 , t1 = 1 the above gives

efixed =
1
4(min (6, 2)− 6− 3(0))

= 1
4(2− 6)

= −1

θfixed =
1
4

 d
dx

(
(x3 + x2 + x)2

)
(x3 + x2 + x)2

+ 3(0)


= 1

2
3x2 + 2x+ 1
x3 + x2 + x

part (b)
Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of
t2 = x3+x2+x. In other words, the number of poles of r that are of order 2. There are
three poles of order 2. Hence k2 = 3. These poles at x =

{
0,−1

2 ±
1
2i
√
3
}
. The coefficient

of 1
(x−c1)2

where c1 is first pole is b1 = −1
4 . Hence e1 =

√
1 + 4b =

√
1 + 4

(
−1

4

)
= 0

and θ1 = e1
x−c1

= 0. The coefficient of 1
(x−c2)2

where c2 is second pole is b2 = 9i
√
3+2

3
(
−1+i

√
3
)2 .

Hence e2 =
√
1 + 4b =

√
3
√

2+30i
√
3

3
(
−1+i

√
3
) and θ2 = e2

x−c2
= −2

√
3
√

2+30i
√
3

3
(
−1+i

√
3
)(

i
√
3−2x−1

) . The coefficient

of 1
(x−c3)2

where c3 is the third pole is b3 = −9i
√
3+2

3
(
1+i

√
3
)2 . Hence e3 = √

1 + 4b =
√
3
√

2−30i
√
3

3
(
1+i

√
3
)

and θ3 = e3
x−c3

= 2
√
3
√

2−30i
√
3

3
(
1+i

√
3
)(

i
√
3+2x+1

) . Hence

e =
{
0,

√
3
√

2 + 30i
√
3

3
(
−1 + i

√
3
) ,

√
3
√
2− 30i

√
3

3
(
1 + i

√
3
) }

θ =
{
0, −2

√
3
√

2 + 30i
√
3

3
(
−1 + i

√
3
) (

i
√
3− 2x− 1

) , 2
√
3
√
2− 30i

√
3

3
(
1 + i

√
3
) (

i
√
3 + 2x+ 1

)}
Part (c)
This part applied only to case 1. It is used to generate ei, θi for poles of r order 4, 6, 8
if any exist. Since only order 2 pole exist, then this is skipped. Hence k2 stays 3.
Part(d)
Now we need to find e0, θ0. Since this is case O(∞) = 4 > 2 and since there are no
poles or order 4, 6, 8, · · · then we do not need to handle case n = 1. Instead we use

e0 = 1
θ0 = 0
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Hence now we have

e =
{
1, 0,

√
3
√

2 + 30i
√
3

3
(
−1 + i

√
3
) ,

√
3
√

2− 30i
√
3

3
(
1 + i

√
3
) }

θ =
{
0, 0, −2

√
3
√

2 + 30i
√
3

3
(
−1 + i

√
3
) (

i
√
3− 2x− 1

) , 2
√
3
√
2− 30i

√
3

3
(
1 + i

√
3
) (

i
√
3 + 2x+ 1

)}

The above are arranged such that e0 is the first entry. Same for θ. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate e′s and θ′s. In step 2, these are used to generate trials d and θ and find from
them P (x) polynomial if possible.

Step 2

In this step, we now have all the ei, θi values found above in addition to efix, θfix.

Starting with n = 1. And since we have k2 = 3 then there are (n+ 1)k2+1 = 24 = 16
sets s to try. The first set s is

s =
{
−n

2 ,
−n

2 ,
−n

2 ,
−n

2

}
=
{
−1
2 ,

−1
2 ,

−1
2 ,

−1
2

}
Now we generate trial d using

d = (n) (efix) + s0e0 −
k2∑
i=1

siei

Since k2 = 3 then the above becomes

d = (n) (efix) + s0e0 − s1e1 − s2e2 − s3e3 (7)

If d ≥ 0 then we go and find a trial Θ. We need to have both d,Θ to go to the next
step. Θ is found using

Θ = (n) (θfix) +
k2∑
i=0

siθi (8)

Hence the first trial d is (using Eq (7)) and recalling that efix = −1, θfixed = 1
2
3x2+2x+1
x3+x2+x

gives

d = (1) (−1) +
(
−1
2

)
(+1)−

(
−1
2

)
(0)−

(
−1
2

)(√
3
√
2 + 30i

√
3

3
(
−1 + i

√
3
) )−

(
−1
2

)(√
3
√

2− 30i
√
3

3
(
1 + i

√
3
) )

= −7
6i
√
3− 3

2
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Since not an integer, we try next set s =
{−1

2 , −1
2 , −1

2 , +1
2

}
. If we continue this process

we will find that set s =
{1

2 ,
−1
2 , −1

2 , +1
2

}
works and generates

d = (1) (−1) +
(
1
2

)
(+1)−

(
−1
2

)
(0)−

(
−1
2

)(√
3
√
2 + 30i

√
3

3
(
−1 + i

√
3
) )−

(
1
2

)(√
3
√

2− 30i
√
3

3
(
1 + i

√
3
) )

= 0

We can use this d. From Eq (8)

Θ = (n) (θfix) + s0θ0 + s1θ1 + s2θ2 + s3θ3

= (1)
(
1
2
3x2 + 2x+ 1
x3 + x2 + x

)
+
(
−1
2

)
(0) +

(
−1
2

)
(0) +

(
−1
2

)(
−2

√
3
√

2 + 30i
√
3

3
(
−1 + i

√
3
) (

i
√
3− 2x− 1

))+
(
1
2

)(
2
√
3
√
2− 30i

√
3

3
(
1 + i

√
3
) (

i
√
3 + 2x+ 1

))

= 1
2x

2x2 − 2x+ 1
x2 + x+ 1

Now that we have good trial d and Θ, then step 3 is called to generate P (x) if possible.

Step 3

The input to this step is the integer d = 0 and Θ = 1
2x

2x2−2x+1
x2+x+1 found from step 2 and

also r = 10x2−8x−1
4x2(x2+x+1)2 . Since degree d = 0, then let p(x) = 1. A constant. We need to

verify

P ′′ + 2ΘP ′ +
(
Θ′ +Θ2 − r

)
P = 0

Θ′ +Θ2 − r = 0

Substituting gives

d

dx

(
1
2x

2x2 − 2x+ 1
x2 + x+ 1

)
+
(

1
2x

2x2 − 2x+ 1
x2 + x+ 1

)2

− 10x2 − 8x− 1
4x2 (x2 + x+ 1)2

= 0

0 = 0

Verified. The solution is

z = P (x) e
∫
Θdx

= e
∫ 1

2x
2x2−2x+1
x2+x+1 dx

=
(
x2 + x+ 1

) 1
4
√
xe

− 7
6
√
3 arctan

(
(2x+1)

√
3

3

)
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Hence first solution to given ODE is

y1 = ze
−1
2
∫
adx

=
(
x2 + x+ 1

) 1
4
√
xe

− 7
6
√
3 arctan

(
(2x+1)

√
3

3

)
e

−1
2
∫ ( 1

x2
(
x2+x+1

)
)
dx

= xe
− 7

3
√
3 arctan

(
(2x+1)

√
3

3

)
√
x2 + x+ 4

Second solution y2 can now be find by reduction of order.

4.1.12 Example 12 case one

Let (
x2 − 2x

)
y′′ +

(
2− x2) y′ + (2x− 2) y = 0

Normalizing so that coefficient of y′′ is one gives

y′′ + (2− x2)
(x2 − 2x)y

′ + (2x− 2)
(x2 − 2x)y = 0

y′′ + ay′(x) + by = 0 (1)

Hence

a = (2− x2)
(x2 − 2x)

b = (2x− 2)
(x2 − 2x)

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(
(2− x2)
(x2 − 2x)

)2

+ 1
2
d

dx

(
(2− x2)
(x2 − 2x)

)
− (2x− 2)

(x2 − 2x)

= x4 − 8x3 + 24x2 − 24x+ 12
4x2 (x− 2)2

(4)
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Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = x4 − 8x3 + 24x2 − 24x+ 12
4x2 (x− 2)2

z (5)

Step 0 We need to find which case it is. r = s
t
where

s = x4 − 8x3 + 24x2 − 24x+ 12
t = 4x2(x− 2)2

The square free factorization of t is t = [1, x(x− 2)]. Hence

m = 2 (6)

Since m is number of elements in the free square factorization. in this case we set

t1 = 1
t2 = x(x− 2)

Now

O(∞) = deg (t)− deg (s)
= 4− 4
= 0

There is one pole at x = 0 of order 2 and one pole at x = 2 also of order 2. Looking at
the cases table

case allowed pole order for r = s
t

allowed O(∞) order L

1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, · · · } [1]
2 {2, 3, 5, 7, 9, · · · } no condition [2]
3 {1, 2} {2, 3, 4, 5, 6, 7, · · · } [4, 6, 12]

Shows that only case 1,2 are possible. L = [1, 2].

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1))

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
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Using O(∞) = 0, t = 4x4, t1 = 1 the above gives

efixed =
1
4(min (0, 2)− 4− 3(0))

= 1
4(0− 4)

= −1

θfixed =
1
4

(
d
dx

(
4x2(x− 2)2

)
4x2 (x− 2)2

+ 3(0)
)

= x2 − 3x+ 2
x (x− 2)2

= x− 1
x (x− 2)

part (b)

Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of
t2 = x(x− 2). In other words, the number of poles of r that are of order 2. There are
two poles. Hence k2 = 2. These poles ci where i = 1, 2 at x = {0, 2}. For each ci then
ei =

√
1 + 4b where b is the coefficient of 1

(x−ci)2
in the partial fraction expansion of r

and θi = ei
x−ci

. The partial fraction expansion of r is

r = x4 − 8x3 + 24x2 − 24x+ 12
4x2 (x− 2)2

= 1
4 − 3

4
1
x
− 1

4
1

(x− 2) +
3
4

1
(x− 2)2

+ 3
4
1
x2

The coefficient of 1
(x−0)2 where c1 = 0 is first pole is b1 = 3

4 from looking at the above.

Hence e1 =
√
1 + 4b =

√
1 + 4

(3
4

)
= 2 and θ1 = e1

x−c1
= 2

x
. The coefficient of 1

(x−c2)2

where c2 = 2 is second pole is b2 = 3
4 . Hence e2 =

√
1 + 4b =

√
1 + 4

(3
4

)
= 2 and

θ2 = 2
x−c2

= 2
x−2 . Therefore the lists e, θ are

e = {2, 2}

θ =
{
2
x
,

2
x− 2

}
Part (c)

This part applied only to case 1. It is used to generate ei, θi for poles of r order
4, 6, 8, · · · , k if any exist. There are none. This step is skipped.

Part(d)
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Now we need to find e0, θ0. If O(∞) > 2 then e0 = 1, θ0 = 0. But if O(∞) = 2 then
θ0 = 0 and e0 =

√
1 + 4b where b is the coefficient of 1

x2 in the Laurent series expansion
of r at ∞. Since O(∞) = 0 here then none of these cases applies. For case 1 (n = 1)
we first find [r]∞ the sum of terms xi for i = −v

2 , · · · 0 where v is the O(∞) which is
zero here. Hence

v = 0

The following is sum of terms from the Laurent series expansion of
√
r at x = ∞ which

is [√
r
]
∞ = 1

2 − 1
x
+ 2

x3 + 11
x4 + · · ·

We want only terms for 0 ≤ i ≤ v but v = 0. Therefore only the constant term. Hence[√
r
]
∞ = 1

2

Then a is the coefficient of x− v
2 = x0 or constant term. Hence

a = 1
2

And b is the coefficient of x−v
2 +1 = x in r −

([√
r
]
∞

)2. This comes out to be

b = −1

Hence

e0 =
b

a
= −2

θ0 = 2
[√

r
]
∞ = 1

Hence now we have

e = {−2, 2, 2}

θ =
{
1, 2

x
,

2
x− 2

}
The above are arranged such that e0 is the first entry. Same for θ. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate e′s and θ′s. In step 2, these are used to generate trials d and θ and find from
them P (x) polynomial if possible.

Step 2

In this step, we now have all the ei, θi values found above in addition to efix, θfix.
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Starting with n = 1. And since we have k2 = 2 then there are (n+ 1)k2+1 = 23 = 8 sets
s to try. The first set s is

s =
{
−n

2 ,
−n

2 ,
−n

2

}
=
{
−1
2 ,

−1
2 ,

−1
2

}
Now we generate trial d using

d = (n) (efix) + s0e0 −
k2∑
i=1

siei

Since k2 = 2 then the above becomes

d = (n) (efix) + s0e0 − s1e1 − s2e2 (7)

If d ≥ 0 then we go and find a trial Θ. We need to have both d,Θ to go to the next
step. Θ is found using

Θ = (n) (θfix) +
k2∑
i=0

siθi (8)

Hence the first trial d is (using Eq (7)) and recalling that efix = −1, θfixed = x2−3x+2
x(x−2)2

gives

d = (1) (−1) +
(
−1
2

)
(−2)−

(
−1
2

)
(2)−

(
−1
2

)
(2)

= 2

This will work. Let us find all of the d so to compare with the solution to same ode
using original kovacic algorithm given earlier to see if we get same d′s. We try next set
s =

{−1
2 , −1

2 , −1
2

}
d = (1) (−1) +

(
−1
2

)
(−2)−

(
−1
2

)
(2)−

(
−1
2

)
(2)

= 2

Trying next set s =
{−1

2 , −1
2 , +1

2

}
d = (1) (−1) +

(
−1
2

)
(−2)−

(
−1
2

)
(2)−

(
+1
2

)
(2)

= 0

Trying next set s =
{−1

2 , +1
2 , +1

2

}
d = (1) (−1) +

(
−1
2

)
(−2)−

(
+1
2

)
(2)−

(
+1
2

)
(2)

= −2
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Trying next set s =
{+1

2 , −1
2 , −1

2

}
d = (1) (−1) +

(
+1
2

)
(−2)−

(
−1
2

)
(2)−

(
−1
2

)
(2)

= 0

Trying next set s =
{+1

2 , −1
2 , +1

2

}
d = (1) (−1) +

(
+1
2

)
(−2)−

(
−1
2

)
(2)−

(
+1
2

)
(2)

= −2

Trying the next set s =
{+1

2 , +1
2 , −1

2

}
d = (1) (−1) +

(
+1
2

)
(−2)−

(
+1
2

)
(2)−

(
−1
2

)
(2)

= −2

Trying the next set s =
{+1

2 , +1
2 , +1

2

}
d = (1) (−1) +

(
+1
2

)
(−2)−

(
+1
2

)
(2)−

(
+1
2

)
(2)

= −4

OK, we have all d values. We now try the ones which are d ≥ 0 and these are d−0, d = 2.
Trying d = 2 first which used the set s =

{−1
2 , −1

2 , −1
2

}
gives

{
1, 2

x
, 2
x−2

}
Θ = (n) (θfix) + s0θ0 + s1θ1 + s21θ1

= (1)
(
x2 − 3x+ 2
x (x− 2)2

)
+
(
−1
2

)
(1) +

(
−1
2

)(
2
x

)
+
(
−1
2

)(
2

x− 2

)
= − 1

2x
x2 − 2
x− 2

Now that we have good trial d and Θ, then step 3 is called to generate P (x) if possible.

Step 3

The input to this step is the integer d = 0 and Θ = − 1
2x

x2−2
x−2 found from step 2 and

also r = x4−8x3+24x2−24x+12
4x2(x−2)2 which comes from z′′ = rz. Since degree d = 2, then let

p(x) = x2 + a1x+ a2. Solving for p(x) from

P ′′ + 2ΘP ′ +
(
Θ′ +Θ2 − r

)
P = 0
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gives p(x) = x2 as solution. Hence the solution is

z = P (x) e
∫
Θdx

= x2e
∫
− 1

2x
x2−2
x−2 dx

= x
3
2

√
x− 2

e−
x
2

Hence first solution to given ODE is

y1 = ze
−1
2
∫
adx

= x
3
2

√
x− 2

e−
x
2 e

−1
2
∫ (

2−x2
)

(
x2−2x

)dx

= x2

The second solution can be found by reduction of order.

4.1.13 Example 13 case one

Let

y′′ + x

1− x
y′ − 1

1− x
y = 0 (1)

y′′ + ay′(x) + by = 0

Hence

a = x

1− x

b = − 1
1− x

It is first transformed to the following ode by eliminating the first derivative

z′′ = rz (2)

Using what is known as the Liouville transformation given by

y = ze
−1
2
∫
adx (3)

Where it can be found that r in (2) is given by

r = 1
4a

2 + 1
2a

′ − b

= 1
4

(
x

1− x

)2

+ 1
2
d

dx

(
x

1− x

)
−
(
− 1
1− x

)
= x2 − 4x+ 6

4 (x− 1)2
(4)
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Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z′′ = x2 − 4x+ 6
4 (x− 1)2

z (5)

Therefore

r = s

t

= x2 − 4x+ 6
4 (x− 1)2

Step 0 We need to find which case it is. r = s
t
where

s = x2 − 4x+ 6
t = 4(x− 1)2

The square free factorization of t is t = [1, (x− 1)]. Hence

m = 2 (6)

Since m is number of elements in the free square factorization. in this case we set

t1 = 1
t2 = (x− 1)

Now

O(∞) = deg (t)− deg (s)
= 2− 2
= 0

There is one pole at x = 1 of order 2. Looking at the cases table

case allowed pole order for r = s
t

allowed O(∞) order L

1 {0, 1, 2, 4, 6, 8, · · · } {· · · ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, · · · } [1]
2 {2, 3, 5, 7, 9, · · · } no condition [2]
3 {1, 2} {2, 3, 4, 5, 6, 7, · · · } [4, 6, 12]

Shows that only case 1,2 are possible. Hence L = [1, 2].

Step 1

This step has 4 parts (a,b,c,d).
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part (a) Here the fixed parts efixed, θfixed are calculated using

efixed =
1
4(min (O(∞) , 2)− deg (t)− 3 deg (t1))

θfixed =
1
4

(
t′

t
+ 3t

′
1
t1

)
Using O(∞) = 0, t = 4(x− 1)2 , t1 = 1 the above gives

efixed =
1
4(min (0, 2)− 2− 3(0))

= 1
4(0− 2)

= −1
2

θfixed =
1
4

(
d
dx

(
4(x− 1)2

)
4 (x− 1)2

+ 3(0)
)

= 1
2x− 2

part (b)

Here the values ei, θi are found for i = 1· · · k2 where k2 is the number of roots of
t2 = (x− 1). In other words, the number of poles of r that are of order 2. There is
one pole of order 2. Hence k2 = 1. For each pole ci then ei =

√
1 + 4b where b is the

coefficient of 1
(x−ci)2

in the partial fraction expansion of r and θi = ei
x−ci

. The partial
fraction expansion of r is

x2 − 4x+ 6
4 (x− 1)2

= 1
4 + 3

4 (x− 1)2
− 1

2
1

x− 1

The coefficient of 1
(x−1)2 is b1 = 3

4 from looking at the above. Hence e1 =
√
1 + 4b =√

1 + 4
(3
4

)
= 2 and θ1 = e1

x−c1
= 2

x−1 .Therefore the lists e, θ are

e = {2}

θ =
{

2
x− 1

}
Part (c)

This part applied only to case 1. It is used to generate ei, θi for poles of r order
4, 6, 8, · · · , k if any exist. There are none. This step is skipped.

Part(d)
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Now we need to find e0, θ0. If O(∞) > 2 then e0 = 1, θ0 = 0. But if O(∞) = 2 then
θ0 = 0 and e0 =

√
1 + 4b where b is the coefficient of 1

x2 in the Laurent series expansion
of r at ∞. Since O(∞) = 0 here then none of these cases applies. For case 1 (n = 1)
we first find [r]∞ the sum of terms xi for i = −v

2 , · · · 0 where v is O(∞) which is zero
here. Hence v = 0. This sum of terms is from the Laurent series expansion of

√
r at

x = ∞ which is

[√
r
]
∞ = 1

2 − 1
2x + 1

x3 + · · ·

We want only terms for 0 ≤ i ≤ v but v = 0. Therefore only the constant term. Hence[√
r
]
∞ = 1

2

Then a is the coefficient of x− v
2 = x0 or constant term. Hence

a = 1
2

And b is the coefficient of x−v
2 +1 = x in r −

([√
r
]
∞

)2. This comes out to be

b = −1
2

Therefore

e0 =
b

a
=

−1
2

1
2

= −1

θ0 = 2
[√

r
]
∞ = 1

Hence now we have

e = {−1, 2}

θ =
{
1, 2

x− 1

}
The above are arranged such that e0 is the first entry. Same for θ. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate e′s and θ′s. In step 2, these are used to generate trials d and θ and find from
them P (x) polynomial if possible.

Step 2

In this step, we now have all the ei, θi values found above in addition to efix, θfix.
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Starting with n = 1. And since we have k2 = 1 then there are (n+ 1)k2+1 = 22 = 4 sets
s to try. The first set s is

s =
{
−n

2 ,
−n

2

}
=
{
−1
2 ,

−1
2

}
Now we generate trial d using

d = (n) (efix) + s0e0 −
k2∑
i=1

siei

Since k2 = 1 then the above becomes

d = (n) (efix) + s0e0 − s1e1 (7)

If d ≥ 0 then we go and find a trial Θ. We need to have both d,Θ to go to the next
step. Θ is found using

Θ = (n) (θfix) +
k2∑
i=0

siθi (8)

Hence the first trial d is (using Eq (7)) and recalling that efix = −1
2 , θfixed =

1
2x−2 gives

using set
{−1

2 , −1
2

}
d = (1)

(
−1
2

)
+
(
−1
2

)
(−1)−

(
−1
2

)
(2)

= 1

This will work. The corresponding Θ is from (8)

Θ = (1)
(

1
2x− 2

)
+ s0θ0 + s1θ1

= 1
2x− 2 − 1

2(1)−
1
2

2
x− 1

= −1
2

x

x− 1

Let us find all of the d and Θ so to compare with the solution to same ode using original
kovacic algorithm given earlier to see if we get same d′s. We try next set s =

{−1
2 , +1

2

}
d = (1)

(
−1
2

)
+
(
−1
2

)
(−1)−

(
+1
2

)
(2)

= −1
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We skip this d since negative. Next is s =
{+1

2 , −1
2

}
d = (1)

(
−1
2

)
+
(
1
2

)
(−1)−

(
−1
2

)
(2)

= 0

The corresponding Θ is from (8)

Θ = (1)
(

1
2x− 2

)
+ s0θ0 + s1θ1

= 1
2x− 2 + 1

2(1)−
1
2

2
x− 1

= x− 2
2 (x− 1)

The next set is
{+1

2 , +1
2

}
d = (1)

(
−1
2

)
+
(
1
2

)
(−1)−

(
1
2

)
(2)

= −2

OK, we have all d values. We now try the ones which are d ≥ 0 and these are d = 0, d = 1.
Let us use d = 1 case. Now that we have good trial d and Θ, then step 3 is called to
generate P (x) if possible.
Step 3
The input to this step is the integer d = 1 and Θ = −1

2
x

x−1 found from step 2 and also
r = x2−4x+6

4(x−1)2 which comes from z′′ = rz. Since degree d = 1, then let p(x) = x + a.
Solving for p(x) from

P ′′ + 2ΘP ′ +
(
Θ′ +Θ2 − r

)
P = 0

gives p(x) = x as solution. Hence the solution is

z = P (x) e
∫
Θdx

= xe
∫
− 1

2
x

x−1dx

= x
e−

1
2x

√
x− 1

Hence first solution to given ODE is

y1 = x
e−

1
2x

√
x− 1

e
−1
2
∫
adx

= x
e−

1
2x

√
x− 1

e
−1
2
∫

x
1−x

dx

= x
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The second solution can be found by reduction of order.

5 Notation mapping between Saunders/Smith
algorithm and original Kovacis algorithm

I have implemented the original Kovacis algorithm using Maple 2021 based on the
original paper (1). The following are notation difference between the two algorithms
and the implementation by Smith [3] that I found.

1. Kovacis algorithm uses α±
∞ defined as α±

∞ = 1
2 ± 1

2

√
1 + 4b for the case when

O(∞) = 2. Smith algorithm uses e0 for the
√
1 + 4b part only. In both algorithms

the b value is calculated in the same way. It is the coefficient of 1
x2 in the Laurent

series expansion of r at ∞. But we do not need to find Laurent series expansion
of r at ∞ to find b here. It can be found using b = lcoeff(s)

lcoeff(t) where r = s
t
and

gcd (s, t) = 1.

2. Smith algorithm finds e1, e2, · · · values for each pole. This is part b of step
1 for poles of order 2, these correspond to only the

√
1 + 4b part in Kovacis

algorithm (this is part c2 of step1), where there it finds
[√

r
]
c
for each pole and

α±
c = 1

2 ± 1
2

√
1 + 4b where b is the coefficient of 1

(x−c)2 in the partial fraction
decomposition of r. This b value is also the same for Smith algorithm in its e′s.

More mappings to be added next.
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