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1 Introduction

Detailed description of Kovacic algorithm for solving second order linear ode with
rational coefficients is given with many solved examples showing how the algorithm
works step by step.

The algorithm is first described based on Kovacic original 1985 paper (1) and later
described in separate section based on modified Saunders/Smith algorithm in papers
(2,3). The same ode examples are solved using both algorithms to show the difference.

Given the ode

y"(z) + ay (z) + by(z) =0 (1)
a,be C(x)

It is transformed to the following ode by eliminating the first derivative
2'=rz reC(z) (2)

This is done using what is known as the Liouville transformation given by

z = ye% fad:z: (3)
W here 7 in (2) is given by
1 2 1 !
= — — — 4
r 4(1 + 20/ b ( )

It is equation (2) (called the DE from now on) which is solved using the Kovacic
algorithm and not Eq. (1). The solution to (1) can be obtained using (3) once y is
found. Kovacic algorithm finds a Liouvillian solution to (2) if one exists. There are 4
cases

1. DE has solution z = e/ “% where w € C(z).

2. DE has solution z = e/ “% where w is polynomial over C(z) of degree 2 and case
(1) does not hold.

3. Solutions of DE are algebraic over C(z) and case 1,2 do not hold.
4. DE has no Liouvillian solution.

Before describing how the algorithm works, there are necessary (but not sufficient)
conditions that should be checked to determine which case of the above the ode satisfies.

The following are the necessary conditions for each case. To check each case, let r = $
where ged (s,t) = 1. This means there is no common factor between s, t. The order of
r at oo is defined as deg (t) — deg (s).



For an example, if r = 25 then O(00) = 2—0 = 2. And if 7 = £# then O(c0) = 2—1=1.
The poles of r and the order of each pole needs to be determined.

The poles of r are the zeros of ¢. For example if ¢t = (1 — z)? () then there is one pole
is at £ = 1 of order 2 and one pole at x = 0 of order 1.

Knowing these two pieces of information is all what is needed to determine the necessary
conditions for each case. The necessary conditions for each case are the following

1. Case 1. Every pole of » must have even order or its order is 1. And O(00) is
even or greater than 2. For an example, given r = (z2 + 3), this has a pole of
order zero (since no poles), therefore O(oco) = 0 — 2 = —2 which is even. Hence
it satisfies case 1. (pole order zero, is even, since zero is even number).

2. Case 2. r has at least one pole of order 2 or the order is odd and greater than 2.
There are no conditions related to O(oo) for this case.

3. r has only poles of order 1 or 2. And O(00) must be at least 2.

If the conditions are not satisfied then there is no need to try that specific case as there
will be no solution. However if the conditions are satisfied, this does not necessarily
mean a solution exists for that case. This is what necessary but not sufficient conditions
means.

The following table summarizes the above conditions and the possible L list (to be
described later) for each case.

Case | Allowed pole order for r Allowed value for O(o0)
1 {0’13274a6a8)"'} {"'a_6a_4a_2a0a2’374a5a6)"'}
2 Need to have at least one pole that | no condition

is either order 2 or odd order greater
than 2. Any other pole order is
allowed as long as the above condi-
tion is satisfied. Hence the following
set of pole orders are all allowed.

{1,2}{1,3},{2},{3},{3,4},{1,2,5}.
3 {1,2} {2,3,4,5,6,7,--- }

Table 1: Necessary conditions for each Kovacic case

Some observations: In case one no odd order pole is allowed except for order 1. And
for case 3, only poles of order 1,2 are allowed. If O(co) = 0, which means s and ¢ have
same degree, then only possibility is case one or case two. Case 3 is not possible. For



case one, if O(00) is negative, then it has to be even. For example if r = z°  then

(z—1)
now O(o0) =2 —6=—4. But if r = f51)2 then O(00) = 2 — 5 = —3 and hence this
can not be case 1.

(z

The following are examples to help understand these conditions. Notice that if a pole
is of order 2 and O(o0) is say 2, then all three cases are met.

1.1 Examples how to determine which case the ode belongs
into

1.1.1 Example 1

45 — 825 + 122* + 423 + 72?2 — 20z + 4
4zt
There is one pole at £ = 0 of order 4. And O(co) =4 — 6 = —2. Conditions for case 1
are met. Since it has a pole of even order. Also O(o0) is even. Case 2 are not satisfied,
since there is no pole of order 2 and no odd pole of order greater than 2 exist. Case 3

is also not met, since the pole is order 4 and case 3 will only work if pole is order 1 or
2. Hence L = [1]

r =

1.1.2 Example 2
r=c

There is one pole of order zero (an even pole). So case 1 or 3 qualify. But O(c0) = 0—-1 =
—1 which is odd. But case 1 and 3 require O(00) be even. Hence case 1,2,3 all fail. This
is case 4 where there is no Liouvillian solution. This is known already, because this is
the known Airy ode y” = xy. Its solution are the Airy special functions. These are not
Liouvillian solutions. Hence L = []

1.1.3 Example 3

1 3

z 162
_ 16x — 3

1622

There is pole at = 0 of order 2. And O(c0) =2 — 1 = 1. Case 1 is not satisfied, since
O(o0) is not greater than 2. Also case 3 can not hold, since case 3 requires O(o0) be at
least order 2 and here it is 1. Only possibility left is case 2. There is one pole of order
2. Since case 2 have no conditions on O(oo) to satisfy, then case 2 has been met. So
this is case 2 only. L = [2]




1.1.4 Example 4

3 2 3
T1622  9(z—1)° | 165 (z— 1)
—3222 + 27z — 27
14422 (z — 1)°

r =

There is pole at x = 0 of order 2, and pole at = 1 of order 2. And O(c0) = 4—2 = 2.we
see that O(o0) is satisfied for case 1 and case 3. Recall that case 2 has no O(o0)
conditions. The pole order is satisfied for case 1 (must have even order or order 1), also
the pole order is satisfied for case 2 (have at least one pole of order 2), and pole order is

satisfied for case 3 (can only have poles of order 1 or 2). So all three cases are satisfied.
Remember that just because the necessary conditions are met, this does not mean a
Liouvillian solution exists. Hence L = [1,2,4,6,12].

1.1.5 Example 5

—5x + 27
r=-—-——-7
36 (z — 1)
O(c0) = 2—1 = 1. And r has pole at x = 1 of order 2. We see that O(oc0) is not
satisfied for case 1 and case 3 (case 1 requires even or greater than 2 for O(co) and case
3 requires O(00) = 2.). So our only hope is case 2. Case 2 has no O(oo) conditions. But
it needs to have at least one pole of order 2 or a pole which is odd order and greater
than 2. This is satisfied here, since pole is order 2. Hence only case 2 is possible. Hence
L =[2]. I do not understand why paper says all three cases are possible for this. This
seems to be an error in the paper (1).

1.1.6 Example 6

r=(z* +3)

There is zero order pole. (even order). O(c0) = 0 — 2 = —2. Hence only case 1 is
possible. L = [1]



1.1.7 Example 7
1
r = E
One pole at z = 0 of order 2. And O(c0) = 2 — 0 = 2. Case 1 is satisfied. Also case

2 since pole is even order. Also case 3 is satisfied. Hence all three cases are satisfied.
L=11,2,4,6,12]

1.1.8 Example 8

_ 4a?—15

T 4a?

We see that O(oo) = 0. From the table this means only case 1 and 2 are possible. (since
case 2 has no conditions on O(00) and only case 1 allows zero order for O(c0)). We see
there is a pole at £ = 0 of order 2. This is allowed by both case 1 and case 2. Hence
case 1,2 are possible and L = [1, 2]

r

2 Examples of ODE’s for each case

The following table gives an example ode for each case of the above. Recall there
are 4 cases. Case 1 (n=1), and case 2 (n =2) and case 3 (n =4,6,12) and case
4 which means no Liouvillian solution exist. Recall also that if ode belong to case
1,2 or 3, this does not imply that Liouvillian solution exists. For example, below
z?y" — 2zy’ + (22 + 2z + 2) y = 0 satisfies conditions for case 1, however, we can find

out that no Liouvillian solution exists.

case number ODE

One L = [1] z2y" + 4y + (22 +2)y =0

Two L = [2] 2zy" —y' +2y =0

One and Two L = [1,2] 4%y +4z(1 —2)y + (2 —9)y =0
One L = [1] z2y" — 2zy' + (22 + 22+ 2)y =0
One and Two and Three L = [1,2,4,6,12] | ¥’ — (4—9102)31 =0

Case 4, (i.e. No Liouvillian solution exist) | y” —zy =0




3 Algorithm implementation based on original
Kovacic 1985 paper

The following describes the algorithm for each case separately. The easiest one is for
case 1, and the hardest is for case 3. Many examples will also be given at the end of
the algorithm describing to show how it works.

3.1 Case one algorithm

3.1.1 Step 1

This description is based on KOVACIC 1985 paper and not based on the Saunders
paper.

We are given y” = ry. It is assumed that the necessary conditions for case 1 have been
met as given in the table above and r = 7 where ged (s,t) = 1 (in Maple this is done
using the normal() command). The first step is to find the poles of 7 and the order of
each pole. If there are no poles, then let the set of poles I' will be empty.

If a pole x = c is of order 1 which means there is a factor ﬁ in the partial fractions
decomposition of r, then let

[Vr],=0
af =1
a, =1

If the pole c is of order 2, which means there is a factor ﬁ; in the partial fractions

decomposition of r, then let

Vil =0
1 1
a;" = 5 + 5\/ 1+4b
1 1
C==-——=V1+4b
a, 27 2 +
Where b is the coefficient of ﬁ in the partial fraction decomposition of r. For
example, if r = —2, then = 2 is a pole of order 2 and b = 3. The coefficients are

(w—2)2 )
found using undetermined coefficients method. (Examples below show how).

If the pole is of order 4 or 6 or 8 and so on, then it is a little bit more complicated.
We write 2v = order. For example, if the pole was order 4, then v = 2 and if the pole

was order 6, then v = 3 and so on. Notice that for case 1, which we are discussing



here, if pole is of order larger than 2, then only poles of order 4,6,8, --- are allowed.

This is from the necessary condition. In this case, we add all terms involving —

T for

2 <4 < v in the Laurent series expansion of 1/r (not r) as follows

V=Y ot ®)

S T T
(z—c)? (z-o?° (x—¢)°
For an example if the pole was of order 6, then v = 3. Therefore we need to add all
terms in the Laurent series expansion of /7 from v = 3 down to 2. As follows

Lets look at an example of the above before going to the next step. Assume

475 — 825 + 122* + 423 + 72?2 — 20z + 4
4t
There is only one pole at x = 0 of order 4. Hence v = 2. We need to find the Laurent
series of 4/r expanding around the specific pole ¢ of order 2v. In Maple this is done
using series(/T, z = c).

r =

1 51 9 41 443 ,

o~ _22_°2_ e 2
e i e R A T 2

Hence

2
a.
vr), = —
V7], ; oo

a2

(z—¢)”

a2
- 2 3
Comparing the above to Eq. 2 shows that the coefficient is as is (written now as just a

to make it match the paper and use it in the following equation later on)

a=1

Ay

T in the Laurent series expansion of /7 around
x = c. In implementation of the algorithm the method of undetermined coefficients is
used instead of actually finding Laurent series for /7 at z = c.

So the term a is the coefficient of




Now that we found [/r] for poles > 2, we need to find its o;f, o, also. In this case
af = %(2 +v) and a; = %(—2 +v). Where a is the one we just found above. But

what is b here? b is the coefficient of the term m in 7 minus the coefficient of

W in [y/r]_ which we found above in (2). For an example, using the above  its
Laurent series expansion around z = 0 is
1 7 5 1
reT?—20+3+ -+ — — — +—
x x2 3 ozt
Then since a = 1 from earlier and since v = 2 here (since pole of order 4) then we look
above for the coefficient of the term 5 in r itself. We see this is —5. Now

1 _ 1
(z—0)"T" T (2-0)
we need to subtract from this value the coefficient of (m_ol)vﬂ = —1 __ from [\/7_"] . series

(@=0)°
from Eq (3). But since [\/ﬂc = ;O)Q then there is no term 10)3. Which means

(z— (z—

Therefore for this example

_ 1/ b 4o = 1/5 A 7
% To\TaTY)T2\17°) T2
We are now done with finding everything we need related to poles. The above needs to
be done for each pole c in r.

We see that for each pole, we need to calculate 3 items. They are [\/F] o af,a;.

Now we switch attention to the O(co) order. This is much easier. This is the order of
r = ¢ at infinity which is found from deg (t) — deg (s). There are also three cases to
consider.

If O(o0) > 2 then we write

V7]

(67
(07

i
_ o o

g1 813

If O(c0) = 2 then [/7] - = 0. Now we calculate b for this case. This is given by the
leading coefficient of s divided by the leading coefficient of t when ged (s,¢) = 1. In this

10



case

(V7] =0
1 1
a;:§+§V1+4b
1 1
=~ _Z\1+4b
Qoo =5~ VIT

Where here b is the coefficient of %2 in the Laurent series expansion of r at co. But we
do not need to find Laurent series expansion of r at oo to find b here. It can be found
iii?}% where 7 = 2 and ged (s,t) = 1. And lcoef f is the leading coefficient.
For example, if r = % then b = % If we took the Laurent series of r at oo which
in Maple can be done using the command series(r,z = oco) then we will get % +1iL

2 z2
which also give b = 1.

using b =

And finally, if O(co0) < 0, then O(oc0) has to be negative and even number (conditions
for case 1). Let the order of r at oo be —2v < 0. Then now [\/1_"]00 is the sum of all
terms z for 0 < ¢ < v in the Laurent series expansion of \/F at oo.

[\/ﬂoo =ar’+ 22" 4+ + 2,

And b is the coefficient of z°~! in r minus the coefficient of z~! in ([/7] 00)2. Then

This completes step 1 of the algorithm. We have found [\/1_"] . for each pole and associated
o}, a; and also found [/7]_ and its associated o, ag,. So, what will we do with
these? In step 2 these are used to find all possible values of what is called d. For each
non negative d, we will find a candidate w. And use this candidate w to find P(x) by
solving P” + 2wP’ + (v + w? —r) P = 0 (linear algebra problem). If we are able to
find a P(z) for any one candidate w then we stop and we have found the solution
y = p(z) e/ “% to the 3’ = ry. Examples below will show how all this works.

11



3.1.2 Step 2

Recall that from step 1 we have found [\/ﬂc and its associated o, a; (this is done
for each pole of r) and we have found [\/ﬂoo and its associated o} , a3 . From these
we now found a possible d values and trying each d > 0. The value of d is found using
the following for each combination of s(c) where s(c) is + or —

— ot +
d—aoo—g o
(&

We keep only the non negative values of d. It is important to note that we have to find
an integer positive value for d to continue. If no such value is found from the above,
then we stop here as this means no Liouvillian solution exist using case 1. Then we go
to case two or case three if it is available.

If we do find d > 0, then we now find corresponding candidate wy using

+

wi=Y" ((i) [Vr] 4+ = ) + @ [Vl

r—cC
c

3.1.3 Step 3

In this step we first attempt to find a polynomial p(z) of degree d, for w found in step
2. This is done by solving

p'+2wp + (W 4w —7)p=0

For example, if d = 2, then we let p(z) = 2? + ax + b and if w happened to be say
w% - % + x — 1, then by substituting these in the above, we can solve for a,b (if a
solution exist). Then the solution to ¢’ = ry is y = p(z) e/ “%. If the degree d = 1 then
we guess p(z) = = + a and try to solve for a. If the degree d = 0, then we let p(z) = 1,
a constant. In the special case of p(x) = 1, there is no coefficients a; to solve for. So we
would just need to verify that

WwHw-r=0
In this case.

This completes the full algorithm for case 1. We will now go over many examples for
case 1, showing how to implement this algorithm for each example.

The hardest part of the kovacic algorithm is just finding all the [\/ﬂ .t at, [\/ﬂ - ok,
Once these are found, the rest of the algorithm is much more direct.

12



3.1.4 Case one algorithm diagram

The following diagram summarized the above for case one.

Case One Algorithm
Step 1

2 =rz [vr], =0
set of poles !
R
o0 =1
[e]
pole ¢; of order 1
[Vil,, =0
c2
o 1 1
pole ¢ of order 2 u:; =3 + 5\/ 1+4b
1 1
L=-—=Vi+d
G, =575 +4b

o
of order > 4 (must be
even order). Let v be half
the order value.

V=2 =
cs o — ea)t
i=2 (i% b is the coefficient of the term W
ot = 1/b +ov in r (found from the partial fraction de-
‘2 \a, composition of ) minus the coefficient of
1 b same term but in [\/7]c,.
a, =-|——+v
! 2 ay X X
\ ThN a is the coefficient of
W in the above Lau-
Order of r at oo ront sum.
V.=
Order is > 2 al,=0
a =
[\/;] =0 This b is the coefficient of % in the Lau-
0 s
Order is 2 1 rent series expansion of r at oo. If r = =7
ol = 3 +5 Vl T 40— where ged(s,t) = 1 then b can be more
-1 1 I easily found using b = llizzgﬁi)) where lcoeff
Qoo =5 73V +4b means the leading coefficient.
This is the sum of terms z* for
0 < i < v in the Laurent series
Zuz /for VT (not r) at oo
Order is —2v < 0 0
hich must be ev Ty !
which must be even ot = 1 éfv This b is the coefficient of z~! in r =
since case 1. > 2\a (Which is found using long division) minus
_ 1 b the coefficient of same term but in ([v/r]e)”.
a=5(7"
\ This a is the coefficient of a, in

\’\'here b is the coefficient
of Tar in the partial
fractions expansion of r.

This is the sum of terms of )‘
in the Laurent series expalmon of
/T (not r) at the pole cz. The

sum of terms is for 2 < i <w

the above Laurent series sum.

Step 2

) Z”

cel

If family found which produced d an integer and posi

0=

cel’

<S(0)[ﬁ]n +

Step 3

For each family s = (s(¢))ceruse where s(c) is + or — let

tive then find

Find polynomial p(z) of degree d which satisfies p” + 2wp’ + (w’ + w? — 7)p = 0. Then the solution
to 2" = rz is given by
= pel wis

case_1.ipe Nasser M. Abbasi 2/1/2022

Figure 1: Case 1 Kovacic algorithm
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3.2 worked examples for case one

3.2.1 Example 1

Let
y  A4x8 — 8x% + 122* + 423 + T2® — 20z + 4
T
Therefore
s
r=—
t
4% — 82° + 122 + 42® + T2? — 20z + 4
- 44
1 7 5 1
2
x z+3+m+x2 x3+x4 (1)

Step 1 In this we find all [\/ﬂ . and associated a for each pole. There is only one pole
at £ = 0 of order 4. Hence 2v = 4. And v = 2. This is step (C3) now in the paper (1).

We need now to find Laurent series of 1/r expanded around =z = ¢ = 0. This is given
by (using series command on the computer)

1 51 9 41 443 ,
o P AT AR @

We need to add all terms in the Laurent series expansion of 1/r from v = 2 down to 2.
1

V= eop

Is only term from 2. Comparing the above to (z_ao)z shows that

Hence

(3)

a=1 (4)
Hence

Vrl.=— (5)

o; = %(—g +v> (6)

Where v = 2 and a = 1. We still need to find b. But b is the coefficient of the term

m in 7 minus the coefficient of m in [y/r]_ which we just found above.

14



Looking at 7 from Eq (1) we see that the term (x_(})vﬂ = (x—lo)?’ has coefficient —5. And

in it. Hence

looking at Eq (3) we see that there is no term Tk

b=-5-0
= -5 @
Now we found a, b, then (5,6) becomes (since v = 2)
1 -3

a:=%(—5+2)=77 (8)
Otc_=§(5+2)=§ 9)

We are done with all the poles.

Now we consider O(oo) which is deg (t) — deg (s) = 4 — 6 = —2. Since this is even order
and negative then —2v = —2 or
v=1

We need the Laurent series of /7 around oo. Using the computer this is
WVrl =z—1+=-+-S+ =+
T T
Now we only want the terms z* where 0 < 4 < v. This implies the above is reduced to
VAl =1
The a is the coefficient of ¥ = z which is
a=1

Now we need to find o associated with [/7] o+ For this we need to first find b. Recall

from above that b is the coefficient of z?~! or z° in r minus the coefficient of z?~1 = z°

in ([/T] 00)2. Since v = 1 then we want the coefficient of z° in r and subtract from it
the coefficient of z° in ([\/ﬂoo)2 But

(V7)) = (@-1)

=z2+1-2z

Hence the coefficient of z° in ([\/ﬂoo)z is 1. To find the coefficient of z° in 7 long
division is done

s
r=-
t
4% — 82° + 122 + 42® + T2? — 20z + 4
- 44
R
=@t g

15



Where @ is the quotient and R is the remainder. This gives

423 + 72% — 20x + 4
42

For the case of v # 0 then the coefficient is read from @ above. Which is 3. Hence

r= (a:2—2x+3)+

b=3-1
=2

For the other case of v = 0 then the coefficient of 7! in r is found using ll‘i Z‘Z’;j}((g) which
will give 1 in this case. (More examples below).

Now that we found a, b, then from the above section describing the algorithm, we see

in this case that
1/0b 1/2 1
+—— _— = —| — — = —
a“"z(a ”) 2(1 1) 2

* 2\ a 2\ 1 2
This completes step 1 of the solution. We have found [\/7_"]0 and its associated o and

found [/7] o, and its associated aZ. Now we go to step 2 which is to find the d's.

step 2 Since we have a pole at zero, and we have one O(00), each with + signs, then
we set up this table to make it easier to work with. This implements

Therefore we obtain 4 possible d values.

pole ¢ | a. value | O(o0) value | d d value
=0 aj=_73 ai'O:% a:o_(a:):%_<%3 2
=0 |of =3 |ay=-3 ag—(ef)==-3-(32) |0
r=0|a; =21 |at=1 o —(eg)=5-() |-3
=0 |a; =% |ay=-3 ag —(ag)=-3—-(1) | -5

We see from the above that we took each pole in this problem (there is only one pole
here at z = 0) and its associated aF with each af and generated all possible d values
from all the combinations. Hence we obtain 4 possible d values in this case. If we had
2 poles, then we would have 8 possible d values. Hence the maximum possible d values
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we can get is 2P*! where p is number of poles. Now we remove all negative d values.
Hence the trial d values remaining is

d = {0,2}

Now for each d value, we generate w using

r—cC

w= (Zs(c) e )+s(oo) VT,

C

To apply the above, we update the table above, now using only d = 0,d = 2 values,
but also add columns for [\/7_"]6, (V7] ., to make the computation easier. Here is the

new table
w value

pole ¢ | ac value | s(c) VT O(o0) value | s(o0) VT d value

V7l Ve (Ses@) VA, + 25 ) +s(00) [V,

1 1 = 1
z=0 ai’:%s + == ao_o:—% - z—1 0 <+<z—2>+%70>+(—)(z—1):z—2—%—93+1

;3

e=0 |af=32| + | % ak =1 + | e-1 2 (+(z%)+ﬁ>+(+)(w—1)=w—%+z%—1

The above are the two candidate w values. For each w we need to find polynomial P
by solving
P"+2wP + (W' +w’—7)P=0 (8)

If we are able to find P, then we stop and the ode y” = ry is solved. If we try all
candidate w and can not find P then this case is not successful and we go to the next
case.

step 3 Now for each candidate w we solve the above Eq (8). Starting with w = & —

2
2 — z + 1 associated with d = 0 in the table, then (8) becomes

2 6 _ g5 4 3 2 _
P i—i—m+1 Py i_l_l " i—i—z+1 _ 4x 8x° + 12z + 4x° + Tx 20z + 4 P=0
z2 2z 2z2 3 x 4zt

2 4
P”+(——3—2x+2>P’+(P—§>P:O

2 2z T

Since this the case for d = 0, then P has zero degree, Hence P is constant. Therefore
the above simplifies to

Which means

17



Which is not possible for all z. Hence d = 0 do not generate valid P polynomial. We
now try the case of d = 2. Since d = 2, it means the polynomial d is of degree two. Let

P=zxz’>+az+b

Substituting this in (8) using w =z — 2 + % — 1. This gives

3 1 3 2 3 1 2 428 — 85 + 122% + 428 + 722 — 20z + 4
/! /
P+2<$—2+2—1)P+<(22—3+1>+<-’K—2+2—1) _< y ) P=0

P”+2(m—%+x—12—1>P’+(%—4>P:0
Using P = 22 + az + b the above becomes
3 1 4 )
242(z——+—5—1)(2z+a)+(=-—4) (¢ +az+b) =0
Tz T
b 4
2a—4b—3% 42 44° —2az+-—4=0
r =z T T

(2a—4b—4)+£(—2a+4b+4> + = (2a) —2az =0

z?
Therefore
2a —4b—4=0
3
—1° +4b+4=0
2a =0
2a =0
hence a = 0 from last equation. Using first or second equation gives b = —1. Therefore
a solution is found. Hence
p(z) =2* —1

Therefore the solution to y” = ry is

y =p(z)el “*

_ (a:2 . 1) ef””‘%h%‘l dz

The second solution can be found by reduction of order.
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3.2.2 Example 2
Let

Therefore

(1)

Step 1 In this we find all [\/ﬂc and associated aF for each pole. There is one pole at
x = 0 of order 2. In this case, from the description of the algorithm earlier, we write

[\/ﬂc=0
1 1
= —V1+4b
o, 2+2 +
1 1
= _\/1+4
o, 5 5 + 4b

Where b is the coefficient of ﬁ in the partial fraction decomposition of r which is

m% — 1. Hence b = 2. Therefore

[Vr],=0
1 1 1 3
=4 V1 =_4-=2
o, 2-|-2 + 8 2—!—2
1 1 1 3
T == = = ]_ :———:—1
A =g gVite=35—7%

We are done with all the poles. Now we consider O(oco) which is deg (t) — deg (s) =
2 — 2 = 0. This falls in the case —2v < 0. Hence

v=20

We need the Laurent series of 1/7 around co. Using the computer this is i — ;—2 — ﬁi+- X
Hence we need the coefficient of z° in this series (0 because that is value of v).

Vil = ia’

Recall that [\/F]OO is the sum of terms of 27 for 0 < j < v or for j = 0 since v = 0.
Looking at the series above, we see that
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Which is the coefficient of the term z°. Now we need to find o, associated with [/r]
For this we need to first find b which is the coefficient of z?~1 = 9_16 in r minus the

coefficient of zv~! = 1 in ([\/7_"]00)2 But

(V7. = =1

Hence the coefficient of 27" in ([/] 00)2 is 0. To find the coefficient of 27! in 7 long
division is done

S
r=—
t
_2-2
=—
R
=@+ a?
Where (@) is the quotient and R is the remainder. This gives
2
r=-—1 + ﬁ

For the other case of v = 0 then the coefficient of 7! is found by looking up the
coefficient in R of x to the degree of of ¢ then subtracting one and dividing result by
lcoef f(t). But degree of t is 2. Therefore we want the coefficient of z>~! or z in R
which is zero. Hence b=0—- 0= 0.

Now that we found a, b, then from the above section describing the algorithm, we see
in this case that

This completes step 1 of the solution. We have found [\/7_"]0 and its associated af and
found [{/7] -, and its associated aZ . Now we go to step 2 which is to find the d's.

step 2 Since we have a pole at zero, and we have one O(o0), each with + signs, then
we set up this table to make it easier to work with. This implements

Therefore we obtain 4 possible d values.
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pole ¢ | a, value | O(o0) value | d d value
z=0|af=2 |af =0 al, —(af)=0—-(2) | -2
z=0|af=2 |oay= ay—(ef)=0—-(2) | -2
z=0|a, =-1|al =0 al, —(a;)=0—-(-1) | 1
z=0|a, =-1|ay=0 a,—(a)=0—(-1) |1

We see from the above that we took each pole in this problem (there is only one pole
here at x = 0) and its associated o with each af and generated all possible d values
from all the combinations. Hence we obtain 4 possible d values in this case. If we had
2 poles, then we would have 8 possible d values. Hence the maximum possible d values
we can get is 2P*! where p is number of poles. Now we remove all negative d values.
Hence the trial d values remaining is

d={1}

There is one d value to try. We can pick any one of the two values of d generated since
there are both d = 1. Both will give same solution. We generate w using

o (z.s(c) VA, + -2

r—c

) +s(00) [V]

To apply the above, we update the table above, now using only the first d = 1 value
in the above table. (selecting the second d = 1 row, will not change the final solution).
but we also add columns for [\/ﬂc, [\/ﬂoo to make the computation easier. Here is
the new table

w value

(Ses@ [vr], +

O(00) value | s(o0) d value

Qc

22 ) +5(00) [Vl

ot =0 | + i 1 (~O+ ) + (D6 = +i

The above gives one candidate w value to try. For this w we need to find polynomial P
by solving

(8)
If we are able to find P, then we stop and the ode y” = ry is solved. If we try all
candidate w and can not find P then this case is not successful and we go to the next

P"+2wP' + (W +w?—r) P =0

case.

step 3 Now for each candidate w we solve the above Eq (8). Starting with w = _71 +1
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associated with first d = 1 in the table, then (8) becomes

-1 -1\ /-1 \* [2
P"+2(—+i>P’+<(—+i> +(—+z’) —<—2—1)>P:0
T Z Z Z
P”+2<_—1+z’)P’+(_—2Z)P:0
T T

This needs to be solved for P. Since degree of p(x) is d = 1. Let p = z + a. The above

becomes
2(_—1+i> + <_—2Z) (z+a)=0
z z

2 2
- 2i-2% 9
A xr

2 2

-2 2a_

X xr

Which means

a=1
Hence we found the polynomial
p(x) =z +1
Therefore the solution to y” = ry is
y = pel

=(z+i)el T %=
—(z—l-z);e

T+

(cosz +isinx)

The second solution can be found by reduction of order. The full general solution to
y'=(Z—-1)yis

y(z) = ﬂ(:1ccosm —sinz) + g(cosac + zsinz)
x x
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3.2.3 Example 3

Let
y// — (.'172 + 3) y

Therefore

s

r=-
t
2 +3
- 1)

Step 1 In this step we find all [\/7_”]0 and associated aF for each pole. There are no
poles. In this case af = 0 (paper was not explicit in saying this, but from example 3
in paper this can be inferred). Hence the value of d is decided by o only in this case.

Now we consider O(oo0) which is deg (t) — deg (s) = 0 — 2 = —2. This falls in the case
—2v < 0. Hence 2v = —2 or
v=1

We need the Laurent series of /7 around oo. Using the computer this is

Hence we need the coefficient of z' in this series (1 because that is value of v). Recall
that [\/7_”] o, 1s the sum of terms of 27 for 0 < j <wor for j = 0,1 since v = 1. Looking
at the series above, we see that

a=1

Which is the coefficient of the term z. There is no term z°. Hence

Vrle =2

Now we need to find o, associated with [/r|_. For this we need to first find b. Recall

from above that b is the coefficient of z?~! or z° in r minus the coefficient of zv~! = 2°

in ([\/ﬂoo)z But ([\/ﬂoo)z = z%. Hence the coefficient of z° is zero. To find the
coefficient of z° in r long division is done

r =

8 <+l ®

[l

O

4+ =
="
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Where @ is the quotient and R is the remainder. This gives

0
r=w2+3+1

For the case of v # 0 then the coefficient is read from @ above. Which is 3. Hence

b=3-0

Now that we found a, b, then from the above section describing the algorithm, we see
in this case that

a;=%(—é—v) =%(—3—1)=—2

This completes step 1 of the solution. We have found [/7] . and its associated at (these
are zero, in this example, since there are no poles) and found [\/ﬂ -, and its associated
aZ . Now we go to step 2 which is to find the d's.

step 2 We set up this table to make it easier to work with. This implements

Therefore we obtain 2 possible d values.

pole ¢ o, values (all zero) | O(oco) value | d d value
z=N/A|a. =0 al =1 al =1 |1
z=N/A|a.=0 ay, = —2 ay=-2|-2

Picking the positive d integers, this gives

d={1}

There is one d value to try. We can pick any one of the two values of d generated since
there are both d = 1. Both will give same solution. We generate w using

w= (Zs<c> VA, + - ) +5(00) [V,

r—c

To apply the above, we update the table above, now using only the first d = 1 value in the
above table. (selecting the first d = 1 row). but we also add columns for [\/r]_, [/7]
to make the computation easier. Here is the new table

(e o]
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w value
pole ¢ | ac value | s(c) | [v7], | O(co) value | s(c0) | [/7]_ | d value (Z s(0) [r] + 2 ) + 5(00) [7]
=0 | a=0 | + 0 o =1 + z 1 (+(0)+0)+(+)(z) ==

The above gives one candidate w value to try. For this w we need to find polynomial P
by solving

P"+2wP + (W +w’—71)P=0 (8)
If we are able to find P, then we stop and the ode y” = ry is solved. If we try all

candidate w and can not find P then this case is not successful and we go to the next
case.

step 3 Now for each candidate w (there is only one in this example) we solve the above
Eq (8). Starting with w = z associated with first d = 1 in the table, then (8) becomes

P"+2(z) P' + ((z)' + (z)> — (> +3)) P =0
P"4+2zP' + (142> —2*—-3)P=0
P"+2zP' —2P =0

This needs to be solved for P. Since degree of p(x) is d = 1. Let p = 4+ a. The above
becomes

2c —2(x+a)=0
20 —2xr —2a =0

2a =0
Which means
a=20
Hence we found the polynomial
p(z) ==z
Therefore the solution to y” = ry is
y = pef wdx
— ze Jz dz
z2
= xe?

The second solution can be found by reduction of order. The full general solution to
y' = (z2+3)yis

12 3:2 —xz
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3.2.4 Example 4

Let
© .2
Y Ey

Therefore
s
r=—
t
2

= (1)

Step 1 In this we find all [\/ﬂc and associated o for each pole. There is one pole at
x = 0 of order 2. In this case, from the description of the algorithm earlier, we write

[ﬁ]czo
1 1
O{::§+§V1+4b
1 1
T =——=\14+4b
Qe =5 Vit

Where b is the coefficient of ﬁ; in the partial fraction decomposition of r which is

2. Hence b = 2. Therefore

[Vr] =0
1 1 1 3
+—— — = — —_ =
ac—2+2\/1+8 2-I—2 2
_ 1 1 1 3
% =y gvits=g =l

We are done with all the poles. Now we consider O(oco) which is deg (t) — deg (s) =
2 — 0 = 2. Since O(0c0) = 2 then from the algorithm above

Vil =0

Now we calculate b for this case. This is given by the leading coefficient of s divided by
the leading coefficient of ¢ when ged (s,t) = 1. In this case r = % , hence b = % = 2.

Therefore
[Vr], =0
L1 1 1 1
_ 1 1 1 1
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This completes step 1 of the solution. We have found [\/F]C and its associated aF and
found [{/7] -, and its associated aZ . Now we go to step 2 which is to find the d's.

step 2 Since we have a pole at zero, and we have one O(o0), each with + signs, then
we set up this table to make it easier to work with. This implements

Therefore we obtain 4 possible d values.

pole ¢ | a, value | O(oc0) value | d d value
z=0|af=2 |aof,=2 al —(af)=2-(2) 0
z=0|at=2 |ay =-1 ay—(af)=-1-(2) | -3
z=0|a;,=-1|af,=2 al —(a;)=2-(-1)
z=0|a, =-1|ay=-1 ay — (o) =—-1—(-1)

Hence the trial d values which are not negative are
d ={0,3}

For d = 0, since it shows in two rows, we take the first row. Now we generate w for
each d using

r—c

w= (Zs@ [V, + = ) +5(00) [V7].,

To apply the above, we update the table above, but we also add columns for [v/r]_, [/7]
to make the computation easier. Here is the new table

e o]

w value
pole ¢ | ac value | s(c) [ﬁ}c O(o0) value | s(o0) [ﬁ]w d value <Z s(c) [V, + 2= ) + 5(00) [V7]
c=0| af=2 | + 0 ak =2 + 0 0 (+O + 3%5) + (+) (0) = 2
e=0 |ag=-1| - 0 ak =2 + 0 3 (O + )+ O ==
The above gives two candidate w = {2, =1} value to try. For this w we need to find
polynomial P by solving
P"+2wP + (W' +w’—71)P=0 (8)

If we are able to find P, then we stop and the ode y” = ry is solved. If we try all
candidate w and can not find P then this case is not successful and we go to the next
case.
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step 3 Now for each candidate w we solve the above Eq (8). Starting with w = 2

associated with first d = 0 in the table, then (8) becomes

o) (3 () -(2) -

P"+%P’+(—3+i—3)P=0

This needs to be solved for P. Since degree of p(x) is d = 0. Let p = a. The above

becomes
0=0

No unique solution. Hence d = 0 did not work. Now we try the second w = _?1 associated
with d = 3. Substituting in 8 gives

@) (- (2)-(2) -

P”+%2P'+(i+i—3>P=0

Since d = 3, let
p(z) =2° +az’+ bz +c

Then P" — %P’ = 0 becomes

2
(6m+2a)—5(3x2+2ax+b) =0
—2a—2§=0

T

Hence a = 0,b = 0 is solution. c is arbitrary. Taking ¢ = 0 then

Therefore the solution to y” = ry is

-1
:$3€f dzx
_x3 —Inz
=x2
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The second solution can be found by reduction of order. The full general solution to
" 2

Yy = 5yis

1
y(z) = 01; + cox?

3.2.5 Example 5

Let
, 3222 — 27z +27
Y = 1442* — 28823 + 144227
Therefore
S
r=-
t
_ 3222 — 27z + 27 1)
"~ 144z% — 2883 + 14412
3 31+31+21 @
16z 16(x—1) 162 9 (z —1)°

The necessary conditions for case 1 are met.

Step 1 In this we find all [\/ﬂc and associated o for each pole. There is one pole at
x = 0 of order 2 and one pole at £ = 1 of order 2. For the pole at x = 0 since order is
2 then

[\/HCZOZO
R T J—
Oéc:0=§+§ 1+4b
1 1
O[;:0:§—§ 1+4b

Where b is the coefficient of ﬁ; in the partial fraction decomposition of r given in
Eq (2) which is £. Hence b = 2. Therefore

(V7] =0 =10

11 3 1 1
+ _ = - J— _
alo=35+5 1+4(16> 4\f7+2
_ 101 3 1 1
ac:0—§—§ 1+4(1_)_§_Z 7
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And for the pole at £ = 1 which is order 2,

[\/HCZIZO
1 1
a:r:1=§+§ 1+4b
1 1

Where b is the coefficient of ﬁg in the partial fraction decomposition of r given in
Eq (2) which is 2. Hence b = 2. Therefore the above becomes

[Vr]_, =0
1 1 2 1 1
+ _ = - [ [ _
ali=5+5 1+4(9) sVIT+ 3
_ 1 1 2 1 1
ac:1—§—§ 1+4(§)—§—6V17

We are done with all the poles. Now we consider O(oco) which is deg (t) — deg (s) =
4 — 2 = 2. Since O(oco0) = 2 then from the algorithm above

VA, =0
Now we calculate b for this case. This is given by the leading coefficient of s divided by
the leading coefficient of ¢ when ged (s,¢) = 1. In this case r = 3 éﬁﬁgg;ﬁiﬂhz from

Eq (1) , hence b = 32 = 2. Therefore

144 — 9
[Vr], =0
1 1 1 1 2 1 1
+—— — = — — — = — —
of =5 +5V1+4b 2+2,/1+4(9> 6\/1_7+2
_ 1 1 1 1 2 1 1

This completes step 1 of the solution. We have found [\/7_"]c and its associated o and
found [/7] -, and its associated a. Now we go to step 2 which is to find the d's.

step 2 Since we have a pole at £ = ¢; = 0 and pole at £ = ¢, = 1, and we have one

O(00), each with =+ signs. The following now implements
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By trying all possible combinations. There are 8 possible d values. This gives

dlza;—(alera;):<éx/1_7+%)—(%l\/7+%)—(é\/ﬁ+%>=—;l\/7—%
d2=ajo—(aj1+ac_2)=(%\/1_7+%)—(%1\/?+%)—(%—é 17)=% 1 —i\/_—
di=af (o +at) = (VT +3) = (- 3v7) - (§vT+3) = 113
d4=a:o—(ac_1—|—ac_2)=<é\/1_7+%>—(%—%ﬁ)—<%—éx/ﬁ)=;11\/7+% 17 -
d5=a(;—(ajl+ozj2)=<%—é\/ﬁ)—<iﬁ+%)—<%\/1_7+%)=—l—ll 7—% 17
dgza;o—(az-l—a;):(%—%\/ﬁ)—(iﬁ+%)—<%—é\/ﬁ)=—}l 7—%
d7:0‘<:o_(0‘c_1+0‘;:2):<%_é\/ﬁ)_<%_iﬁ>_<%\/ﬁ+%):i 7—% 17 —
ezt v = (1-1) - (- (- 1) -1

None of the d found are integer. Hence case 1 did not work we need to try case 2 and
if that also fail, try case 3. We will find all three cases fail on this ode..

3.2.6 Example 6
Let

Therefore

The necessary conditions for case 1 are met since zero order pole and O(oo) = 0.

Step 1 In this we find all [\/7_"]0 and associated o for each pole. There are no poles.
In this case [/r] = 0 and o = 0. Since O(c0) = 0, we are in case 2v < 0. Hence
v = 0. Then now [\/ﬂoo is the sum of all terms z* for 0 < ¢ < v in the Laurent series
expansion of /T at co.

[V, =1

Hence ¢ = 1. And b is the coefficient of z?~! = 27! in r minus the coefficient of
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r*l=2"lin ([\/ﬂoo)2 Hence b = 0. Then

This completes step 1 of the solution. We have found [\/7_"]6 and its associated o and
found [/7] o, and its associated aZ . Now we go to step 2 which is to find the d's.

step 2 Since we have a pole at zero and pole at z = 1, and we have one O(o0), each
with + signs, then we set up this table to make it easier to work with. This implements

pole ¢ | a. value | O(o0) value | d d value
z=NA|a.=0 |af = al, =00
z=NA|a.=0 |ay= al =010

Hence the trial d values which are not negative integers are
d = {0}

For d = 0, since it shows in two rows, we take the first row. Now we generate w for
each d using

w= (Z s(c) [\/7_"]0 + wa_c c) + s(00) [\/F]oo

To apply the above, we update the table above, but we also add columns for [\/F] o [\/1_"] -
to make the computation easier. Here is the new table

w value

(e [V, + 22) +s(0) [V7]

pole ¢ ac value | s(c) | [vr], | O(co) value | s(co) d value

(Vo

z=NA

ac=0 + 0 al, =0 + 0 0

(+(0)+0)+(+)(1) =1

The above gives candidate w = 1 value to try. For this w we need to find polynomial P
by solving
P"+2wP' + (W +w?—r) P =0 (8)

If we are able to find P, then we stop and the ode y” = ry is solved.
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step 3 Now for each candidate w we solve the above Eq (8). Starting with w = 1
associated with d = 0 in the table. Let p(z) = 1 since degree is zero, then (8) becomes

P'+2() P+ ((1)+ (1) - (1) P=0
(0+1-1)=0
0=0

Hence p(z) =1 is valid solution. Therefore the solution to y” =y is

y=p(x) efwdx
— 6f1 dz

:eaj

The second solution can be found by reduction of order. The full general solution to
y'=yis

y(x) = c1e” + cpe™”

3.2.7 Example 7

Let
(2 —20)y"+(2-2*)y+ (22 —-2)y=0

Normalizing so that coefficient of y” is one gives

2-2%) , (2z-2) B

'
y +(x2—2ac)y (m2—2x)y_0
V4 ay(a) + by = 0 )
Hence
_ -
“= (22 — 2x)
b (2x — 2)
(22 - 2z)

It is first transformed to the following ode by eliminating the first derivative
2 =rz (2)
Using what is known as the Liouville transformation given by

y=ze2 Jo (3)
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Where it can be found that r in (2) is given by

1 1
T=Za2+§a'—b

1/ (2-2)\* 1d[((2-2)\ (22-2)
_4((x2—2x)> +2dx<(x2—2x)> (2 — 2x)
(z* — 823 + 2472 — 247 + 12)

N 422 (z — 2)° @

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

,  (xt — 8z + 2422 — 24z + 12)

° = 422 (z — 2)° ‘ ©)

Therefore

S
r=—

t
(z* — 82 + 24x% — 24z + 12)
422 (z — 2)°

The necessary conditions for case 1 are met.

Step 1 In this we find all [\/17]6 and associated aF for each pole. There is one pole at
x = 0 of order 2 and one pole at £ = 2 of order 2. For the pole at = 0 since order is
2 then

[\/ﬂ c=0 = 0
[ T fpp—
O{c=0=§+§ 1+4b
1 1
C(c_=0 = 5 — §V1+4b
Where b is the coefficient of ﬁ in the partial fraction decomposition of r which is
z* — 823 + 242> —24x+12 1 31 1 1 3 1 31
i gttt ©

422 (z — 2) 4 4z 4(x—2) 4(x—2) 4z

Hence b = 2. Therefore



And for the pole at z = 2 which is order 2,

[\/ﬂc:2=0
PR T J—
ac:2:§+§ 1+4b
1 1
C__2=§—§V1+4b

Where b is the coefﬁ(nent of 2)2
Eq (6). Hence b = Therefore the above becomes

Vil
m

1 1
== —=4/1+4
62 2 2 +(

in the partial fraction decomposition of r given in

c—2 -

l\:JIv—l
l\DIi—‘
=~ W

Bl

We are done with all the poles. Now we consider O(oo) which is deg (t) — deg (s) =
4 — 4 = 0. Since O(c0) = 0, we are in case 2v < 0. Hence v = 0. Then now [\/7_"]00 is
the sum of all terms z* for 0 < 7 < v in the Laurent series expansion of /7 at co which
. 11 2 11

[«/ﬂoo=§—5+;+g+‘“ (M)

We want only terms for 0 < ¢ < v but
v=20

Therefore only the constant term. Hence

V=1 ®

Which means 1
a=—

As it is the the term that matches [/r] = az’+---. Hence ([\/ﬂoof = 1 and the

coefficient of 1 is zero. To find the coefficient of 1 in r long division is done

S
r=-
t
xt — 83 4 242% — 24x + 12
N 4z — 1623 + 1622
R

44 — 1623 + 1622



Where @ is the quotient and R is the remainder. This gives

1 —4x% + 2022 — 242z + 12
r==
4 44 — 1623 + 1622

lcoef f(R)

Since v = 0 then the coefficient of ! in r is found using 7= Ok

seen from above. Hence b = —1 — 0 = —1. Therefore
1/ 1/-1
+_ (Y9 _ (= _ - _
o, = 5 (a v) 2( % O) 1
1 b 1 -1
T = - —= — = - ——— — = ]_
=3(-2-2)=2(-7-9)

This completes step 1 of the solution. We have found [\/F]C and its associated aF and
found [{/7] -, and its associated aZ . Now we go to step 2 which is to find the d's.

This gives —1 as

step 2 Since we have a pole at £ = ¢; = 0 and pole at £ = c; = 1, and we have one
O(o0), each with + signs. The following now implements

d1=1—(a;+a;)=1—(§+§>=—z

d2=1—(ajl+ac_2)=1—(g—%>=0
d3=1—(ac_1+aj2):1—<—%+g)=0
d4=1—(a;1+ac_2)=1—<—%—%)=2
d5=—1—(aj1+aj2):—1—(g+g)=—4
d6:—1—(aj1+ac_2)=—1—(;—%):—2
d7=—1—(a;+a:’2)=—1—(—%+g)=—2
d8=—1—(a;+a;2):—1—(—%—%)=0

Need to complete the solution next.
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3.2.8 Example 8

Let
(£ +1)y"+2zy —2y =0

Normalizing so that coefficient of y” is one gives

" 2x /

A P ) L ) L

v +ay' (z) + by =0
Hence
2z
(x2+1)
2

T @+

It is first transformed to the following ode by eliminating the first derivative
2 =rz
Using what is known as the Liouville transformation given by

y:ze%lfadx

Where it can be found that r in (2) is given by

_ 1 2 1 !
r=40 + 50 b
_f 2 N o1d/ 2w N (2
4\ (22+1) 2dz \ (z2+1) (22 +1)
22743
(a2 +1)°
Hence the DE we will solve using Kovacic algorithm is Eq (2) which is
o 222 +3 s
(a2 +1)°
Therefore
s
r=-
_ 222 + 3
(22 + 1)
2% +3
ot 422241
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The necessary conditions for case 1 are met.

Step 1 In this we find all [\/ﬂc and associated af for each pole. There is one pole at

x = —i of order 2 and one pole at x = 7 of order 2. For the pole at x = —i since order
is 2 then
lvr],, =0
1 1
Oéjl = 5 + §V 1 + 4b
1 1
L =——=V1+4
o, 5 5 + 4b

Where b is the coefficient of ﬁ in the partial fraction decomposition of r which is
(in Maple this can be found using fullparfrac.

20°+3 1 1 1 1 51 51 (©)
(332-+—1)2 4(1:—1')2 4(:E+i)2 4 (x—1i) 4dz+1
Hence b = —}. Therefore

S~ | N
Il Il
N = N —

[\/F}C2=0
1 1
_ 1 1
(10225—5 1+4b

Where b is the coefficient of ﬁz in the partial fraction decomposition of r given in

Eq (6). Hence b = —1. Therefore the above becomes



We are done with all the poles. Now we consider O(oo) which is deg (t) — deg (s) =
4 — 2 = 2. Since O(o0) = 2, then [\/ﬂoo = 0. Now b is the coefficient of % in r minus
coefficient of % in [\/?]Zo which is zero. the coefficient of Z; in 7 is found from %
which from Eq (5A) above is 2 = 2. Hence b=2—0 = 2.

1 1 1 1
afl ==+ -V1+4b=-+-v/1+8=2
2 2 2 2
_ 1 1 1 1
am—§—§V1+4b—§—§ ].+ ——1

This completes step 1 of the solution. We have found [\/F]c and its associated ot and
found [/r]__ and its associated aZ. Now we go to step 2 which is to find the d's.

step 2 Since we have a pole at x = —¢ and pole at x = +i each of order 2, and we have
one O(o0), each with + signs. The following now implements

11
d1=2—(ac+1+a;;)=2—<—+—)=1

DN
DN

- 1 1
- 1 1
d3=2—<acl+a;)=2—<§+§):1
— _ 1 1
d4:2_(a01+a02):2_(§+§):1
d5=—1—(a++a+)=—1—(1+1>:—2
o e 2 2
- 1 1
d6=—1—(aj1—|—ac2)=—1—(§+§>=—2
- 1 1
d7=—1—(a61+aj2)=—1—(§+§>:—2
- - 1 1
d8=—1—(a01+a62)=—1—(§+§>=—2

Need to complete the solution next.
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3.2.9 Example 9
Let

Ql-—z)y" +zy —y=0
Normalizing so that coefficient of y” is one gives

T r
i-2 (-9
y' +ay(z) +by=0

y' + y=0

Hence
T
(1-=)

1
b__(l—x)

a =

It is first transformed to the following ode by eliminating the first derivative

2 =rz

Using what is known as the Liouville transformation given by
Y=z 6_71 J adz

Where it can be found that r in (2) is given by

1 1,
T—Za+§a—b

- i((lf@y*%%(ufx)) B (‘(1:@)
_ 22— 4+ 6
4(x —1)°

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

z,,_z2—4x—|-62
4(x—1)°

Therefore

40

(1)

(2)

3)

(5)



The necessary conditions for case 1 are met.

Step 1 In this we find all [\/1_"]0 and associated aF for each pole. There is one pole at
x =1 of order 2. Hence

V7], =0
1 1
Ozj1=§+§\/1+4b
1 1

Where b is the coefficient of ﬁ in the partial fraction decomposition of » which is

(in Maple this can be found using fullparfrac).

?-4r4+6 1. 3 11
4(z—172 4 4(z-1° 2z-1

(6)

Hence b = %. Therefore

1 1 3 3
+_ 1,2 29y _°
aq—2+2 1+4(4) 5

1 1 3 1
©=37 3 1*‘*(1) =73
We are done with all the poles. Now we consider O(oco) which is deg (t) — deg (s) =
2 —2 = 0. Since O(o0) = 0, we are in case 2v < 0. Hence

Q
Il

v=20

Then now [\/ﬂ o 18 the sum of all terms z* for 0 < ¢ < v in the Laurent series expansion

of 4/r at oo which is

[\/F]oozl—i+1 11

5 22 T3 1t

We want only terms for 0 < ¢ < v but v = 0. Therefore only the constant term. Hence

V=3 ®)

4. (7)

Which means

N~
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As it is the term that matches [/r| = az’+---. Now we need to find b. This will
be the coefficient of 27! = % in r — ([\/F}OO)Q But ([\/ﬂoo)z = 1. So coefficient of 1

Tz

is zero in ([y/T] 00)2' To find the coefficient of 1 in r long division is done

r==-
t
_ x2—4x +6
472 — 8 + 4
=@+ s

Where @ is the quotient and R is the remainder. This gives
1 -2z +5

"T AT 42 _8r+4
Hence the coefficient of I is llcc‘;?}’;((lf)) = =2 = —1. Therefore b= —1 — 0 = —1. Hence

This completes step 1 of the solution. We have found [\/F]c and its associated o and
found [/7] -, and its associated aZ. Now we go to step 2 which is to find the d's.

step 2 Now d is found using

1

- +

d=a_ — E a.
i=1

By trying all possible combinations. There are 4 possible d values. This gives

d=of— (ah) =~ — 2 =2
d=at ~(o5) =3~ (-3) =0
d3=a;—<a;>=§—§=—1
di=az - (0z) = - (-3) =1

Using entry d = 1 entry above now we find w using

o2

w=<Zs(c)[\/ﬂc+ ° )+3(oo)[\/ﬂoo

r—cC

42



Hence

If this w fails to find p(z), then we will try the entry d = 0. Which will give

11 4 1
2z—1 2
Will finish the solution later.
3.2.10 Example 10
Let
y' —z%y —3zy =0 (1)
y" +ay'(z) +by =0
Hence
a=—1°
b=-3x

It is first transformed to the following ode by eliminating the first derivative
Z'=rz (2)
Using what is known as the Liouville transformation given by
y=2z o7 Jade (3)

Where it can be found that r in (2) is given by

—12 1,_
r—4a +2a b
4( z’) 2d93( 7) = (=32)

1
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Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

1
2 = (Zx4 + 2.’1,') z (5)

Therefore

The necessary conditions for case 1 are met.

Step 1 In this we find all [\/F]c and associated o for each pole. There are no poles.
Hence set I' of poles is empty. Now we consider O(oo) which is deg (t) — deg(s) =
0—4 = —4. We are in case 2v < 0. Hence —2v = —4 or

v=2

Then now [\/ﬂ - is the sum of all terms z° for 0 < ¢ < v in the Laurent series expansion

of y/r at oo which is

) 4 16
T A I T 7
V=% + ot (7)
We want only terms for 0 < ¢ < v but v = 2. Therefore need to sum terms z°, 2!, z%.

From the above we see that

2
[\/ﬂoo = % + 0z' + 0z°
2
Which means 1
a=—
As that is the term which matches /7] o = ar?+---. Now we need to find b. This

will be the coefficient of 2°~! = z in r minus coefficient of z in( [\/7_”]00)2 But

Hence the coefficient is zero here. Now we find coefficient of z in r. But r = iz‘l + 2z
hence the coefficient of z is 2. Therefore

b=2-0
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Hence

This completes step 1 of the solution. We have found [\/F]c and its associated aF and
found [/7]__ and its associated aX. Now we go to step 2 which is to find the d’s
step 2 Now d is found using

0
— At +
d=oa — E a,.
i=1

By trying all possible combinations. There are 4 possible d values. This gives

d
da

1

(8% =
o, =—3

g1 8+

Using d = 1 entry above now we find w using

as(c)
w= (Zs(c) [Vr],+ — ) + 5(00) [Vr]

x—c
C
Hence, since there are no poles, only last term above survives giving

2 2

w=s(00) [V7],, = () 5 =

2
Will finish the solution next.

3.2.11 Example 11

Let
Vi 2 !
Y —gxy +2y=0 (1)
y' +ay'(z) +by =0

Hence

2

a=—-zx
5
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It is first transformed to the following ode by eliminating the first derivative
2 =rz (2)
Using what is known as the Liouville transformation given by
y=ze2 Jod (3)

Where it can be found that r in (2) is given by
1 1

__2 .
r—4a +2a b
1/ 2\% 1d/ 2
=-(-= S =Zz) = (2
4( 51;) +2dw< 5“’") @)
x2 — 55
T (4)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

= ( 2—555) . (5)

Therefore
s
r=-
t
x? — 55
25

The necessary conditions for case 1 are met.

Step 1 In this we find all [\/1_"]6 and associated o for each pole. There are no poles.
Hence set I' of poles is empty. Now we consider O(oo) which is deg (t) — deg(s) =
0—2=—2. We are in case 2v < 0. Hence —2v = —2 or

v=1

Then now [\/ﬂ - is the sum of all terms z! for 0 < 4 < v in the Laurent series expansion
of /T at oo which is

Vrlw=5-%35"" (7)

We want only terms for 0 < i < v but v = 1. Therefore need to sum terms z°, z!. From
the above we see that

46



Which means 1
5
As it is the the term that matches [/r| = az. Now we need to find b. This will be

the coefficient of zv~! = 2% in r minus the coefficient of z° in ([\/F}OO)Q But

a =

T
25
. . . . . 2
Hence the coefficient of z° is zero. Now we find coefficient of z° in r. Since r = ”2”—5 — %

=55 __
25

—%. Hence b = —% — 0 = —2L. Therefore

then coefficient of z° is 5

This completes step 1 of the solution. We have found [\/F]c and its associated o and
found [/7] o, and its associated a. Now we go to step 2 which is to find the d's.

step 2 Now d is found using

0

— ot +

d=a_ — E a.
i=1

By trying all possible combinations. There are 2 possible d values since no poles.

dl = Oéi_o =—6
d2 = O[;o =5
Using d = 5 entry above now we find w using
aﬁ(c)

r—cC

) +s(00) [V]

Hence, since there are no poles, only last term above survives giving

Will finish the solution next.
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3.2.12 Example 12

Let

2

-1

y”+£;—d+w@=0 (1)
Y +ay(z) +by=0
Hence
x2—1
a, frd
z
b=z

It is first transformed to the following ode by eliminating the first derivative
Z'=rz (2)
Using what is known as the Liouville transformation given by
y=2zez ok (3)
Where it can be found that r in (2) is given by

1 1
T=Za2+§a'—b

_1 z?—1 2+1i 2’ —1 —_ p2
4 T 2dx T v
3zt =1
:_(—) (4)

42

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

3(zt —1)
Z” = —TZ (5)
Therefore

s
r=—
t

_ =3(z*-1)

- 422

The necessary conditions for case 1 are met.

Step 1 In this we find all [\/ﬂc and associated aF for each pole. There is one pole at
x = 0 of order 2. Hence
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[vr],, =0
1 1
Oz;l_1=§+§ 1+4b
1 1
ac_1=§—§v1+4b

Where b is the coefficient of ﬁ in the partial fraction decomposition of r which is
(in Maple this can be found using fullparfrac).

4
—3(z* -1
By 3,8

42 4 (6)

T

Hence b = %. Therefore

Now we consider O(o0) which is deg (t) — deg (s) =2 —4 = —2. We are in case 2v < 0.
Hence —2v = -2 or
v=1
Then now [\/ﬂ - is the sum of all terms z° for 0 < ¢ < v in the Laurent series expansion
of /T at oo which is
V3 . i3 1

WVrlo=—5e-— 5t (7)

We want only terms for 0 < ¢ < v but v = 1. Therefore need to sum terms z°, z!. From
the above we see that
_ V3 .

Vil ="

2
As it is the the term that matches [/T] - = ax. Now we need to find b. This will be

the coefficient of zv~! = z° in r minus the coefficient of z° in ([\/ﬂw)z But

Which means
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[N[SY
8

Hence the coefficient is zero here. Now we find coefficient of z° in r. Since r = — ?—sz—l—
then coefficient of z° is zero also. Hence b = 0 — 0 = 0. Therefore

This completes step 1 of the solution. We have found [\/7_"]0 and its associated o and
found [/7] o, and its associated aZ . Now we go to step 2 which is to find the d's.

step 2 Now d is found using
0
d=at — Z ozcii
i=1

By trying all possible combinations. There are 4 possible d values. This gives

d=od— (of) = —5— 5 =1
d=at - (o5) =3~ (~3) =0
=%~ (o) = —5 — 5 = -2
di= a5 (05) =3~ (~3) =0

Using first d = 0 entry above now we find w using

ai(c)
w= (Zs(c) [\/7_“]0+ o c) + s(00) [\/7_"]00
Hence . ' '
w=(—1)(0) + z__iﬂ +(+) (§x> - ;—xl + gw

Notice that if have taken the last d = 0 entry, we will get

w=(-1)(0) + —2 + (=) <@x>—_—l—£x

z—0 2 2z 2

In practice, we will try the second one if the first fails. Will finish the solution next.

90



3.2.13 Example 13

Let
1-2)y" +2y —y=0 (1)
y' +ay'(z) +by =0
Hence
T
a =
l1—2x
1
b=—
11—z

It is first transformed to the following ode by eliminating the first derivative
2 =rz (2)
Using what is known as the Liouville transformation given by
y=2z 6—71 [ adz (3)

Where it can be found that r in (2) is given by

1, 1,
r=40 —I—éa—b

1z \? 1d/( = 1
_Z_l(l—x) +§%(l—x)_(_l—z>
2’ —4z+6
C 4(z—1)°

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

,,:z2—4x—|—6

z 5
Therefore
s
r=-
t
_ x2—4x +6
4(x—1)°

The necessary conditions for case 1 are met.

Step 1 In this we find all [\/ﬂc and associated aF for each pole. There is one pole at
x =1 of order 2. Hence
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lvr], =0
1 1
Otjl_§+§v1+4b
1 1

Where b is the coefficient of ﬁ in the partial fraction decomposition of r which is

?—4x+6 1 3 1 1

te—17 4 4@-1? 2z-1 ©)

Hence b = 3. Therefore

Now we consider O(oo) which is deg (t) — deg (s) =2 — 2 = 0. We are in case 2v < 0.
Hence —2v =0 or
v=20

Then now [\/ﬂ o 18 the sum of all terms z* for 0 < ¢ < v in the Laurent series expansion
of 4/r at oo which is

Vrl =-S5+ (7)

But we want only terms for 0 < i < v but v = 0. Therefore need to sum terms z°.

Which is the constant term
(8)
Which means

Now we need to find b. Which is given by the coefficient of % in r minus coefficient
of 1 in ([\/F}OO)Q But ([\/7_"}00)2 = 1 Hence the coefficient is zero here. To find the
coefficient of % in r long division is done (here paper is not clear at all what it means
by coefficient of z°~! in r as that depends on the form of r and how it is represented).
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This method of using long division to find the coefficient works to obtain the correct
result. But it is still not clear what the paper actually means by this.

s
r==-
t
2’ —4x46
472 — 8 + 4
R
=@+ 422 — 8z + 4
Where @ is the quotient and R is the remainder. This gives
. 1 —2x+5
4 422 —8x+4
For the case of v = 0 then the coefficient of z~! is llcc Z?;J;((lf)) = —T2 = —%. Notice that if

we just expanded r it will give = and we see there is no coefficient

EQ
e @ T3
of % in this representation. So we would have obtain wrong value of b if we just used
what the paper said. Now b = —% — 0 = —3. Therefore

1/b 1/1 1
+ _ -2 _ S 2_ —
“%=3(s v) o3 ) ;
© 2 T2\ 1 T2

This completes step 1 of the solution. We have found [\/F]c and its associated aF and
found [/7]__ and its associated aX. Now we go to step 2 which is to find the d's.

step 2 Now d is found using
1
- o
=1
By trying all possible combinations. There are 4 possible d values. This gives

di=al — (o) =

dy = o, — () = —(—%)zl
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Using first d = 1 entry from above we find w using

Hence

w=(enwwﬁ;i)+uoe)=ﬂ§§5+g

And if use the last entry d = 0 then

w(: DO+ x_—%l) ) (%x) - 2(.’L‘_—1 1) _%

In practice, we will try the second one if the first fails. Will finish the solution next.

3.2.14 Example 14

Let
' +xy —4y=0 (1)
Y +ay(z) +by=0
Hence
a = E
3
4
b=——
3

It is first transformed to the following ode by eliminating the first derivative
2 =rz (2)
Using what is known as the Liouville transformation given by
y=ze2 Jo (3)

Where it can be found that r in (2) is given by

=543 @
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Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

2
4
=2 ?_)25 z (5)
Therefore
s
r=-
t
. z% 4 54
- 36

The necessary conditions for case 1 are met.

Step 1 In this we find all [\/F]c and associated o for each pole. There are no poles.
Hence I' is empty.

Now we consider O(co) which is deg (t) — deg (s) = 0 — 2 = —2. We are in case 2v < 0.
Hence —2v = —2 or

v=1

Then now [\/ﬂ - is the sum of all terms ! for 0 < 4 < v in the Laurent series expansion

of 4/r at oo which is

91

[\/F}OO=%+§E+--~ (7)

But we want only terms for 0 < 7 < v but v = 1. Therefore need to sum terms x

V. =75 ®)

0 .1
, X

Therefore
Which means

Now we need to find b. Which is given by the coefficient of zv~! = z° or the constant
term in r minus coefficient of z° in ([/7] 00)2. But ([/T] 00)2 :2%. Hence the coefficient
x

of 20 is zero here. Now we find coefficient of 2° in r. Since r = - % then the coefficient

36
of 20 is % = % Hence b = % —-0= % Therefore

1/b 1/2
+ _ -2 _ — (2 _ —
a°°_2<a v) 2(1 1) 4

[=2]

This completes step 1 of the solution. We have found [\/F]C and its associated aF and
found [{/7] -, and its associated aZ . Now we go to step 2 which is to find the d's.
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step 2 Now d is found using

0

— At +
d=oa — E o,

i=1
By trying all possible combinations. There are 2 possible d values (since no poles). This
gives

d1 = Oé;l—o =4

dz = O{;O = -5

Using d = 4 entry from above we find w using

O[Z(C)
o (Zs<c> VA, + ) + s(00) [V,

r—c
C
Hence

3.2.15 Example 15

Let
(4-2*)y" +2y +2y=0 (1)
Y +ay(z) +by=0
Hence
fe T
- (4-4?)
2
b= 2
(4 —2?)

It is first transformed to the following ode by eliminating the first derivative

2 =rz

(2)

Using what is known as the Liouville transformation given by

y=ze2 J o (3)
Where it can be found that r in (2) is given by
1 1

T=Za2+§a'—b

- 711((432))2*%%((4 —xx?)) B ((4—2x2>>
_ 1122 — 24
4 (z2 —4)°

(4)



Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

1122 — 24
R (5)
4 (z2 —4)
Therefore
s
r=-
t
2 2 _
_ 11z* —24 11z — 24 (5A)

4(z2 —4)? 4z —32z% +64
The necessary conditions for case 1 are met.

Step 1 In this we find all [\/ﬂc and associated af for each pole. There are two poles
at £2 each of order 2. For pole at x =2 = ¢;

[\/F}clzo
1 1
a;’1=§+§v1+4b
_ 1 1
a01=§—§ 1+4b

Where b is the coefficient of ﬁ in the partial fraction decomposition of r» which is

11:v2—24_5 1 ) 1 17 1 17 1

4(x2—4)2_16(a:+2)2+ﬁ(z—2)2_3_2(z+2)+3_2(z—2) (6)

Hence b = . Therefore

_ 1 1 1
“a—§‘§1+4(w>—‘z
And for pole at £ = —2 = ¢
vrl, =0
1 1 5 5
+_ 147 Il
acz—2+2 1+4(16> 1

N——
I
|
.

& o
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Now we consider O(co) which is deg (t) — deg (s) = 4 — 2 = 2. Therefore v = 1. In this
case

VA, =0 m
And 11
The coefficient of 2! = z° is zero in [\/ﬂio To find coefficient of z° in 7 = %—_‘3%
and since v = 0 then using b = lliii%f((i)) gives 1. Hence b = 11 — 0 = !, Therefore

1 1 11 1
+ _— = = =
o =5+ 1+4(4) 2+\/§

1 1 11 1
-~ _— 14+4(=)==-V3
oz, (/1 ( ) 5 V3

This completes step 1 of the solution. We have found [\/F]c and its associated o and
found [/7] -, and its associated a. Now we go to step 2 which is to find the d's.

step 2 Now d is found using

0
- +
d=a — E a,
i=1

By trying all possible combinations. There are 8 possible d values. These are

1 5 9
dl=a;—<az+a;>=§+*/§‘<z+z = V32

1 5 1 1
d2=a;—(a2+a;)=§+*/§‘(1‘z):f‘é
1 1 5 1
d3=aio—(a;+a;>=§+‘[‘(‘z+z>=f‘§
4 I | 1 1
di=al — (o +ag) =5+ V8~ (—5 -7 ) =V3+1
_ P | 5 5
d = o — (0 o) =5 = V347 ) =-V3-2
1 5 1 1
d6=a&—<az+a;>=§‘ﬁ‘(1‘z):‘f‘i
1 1 5 1
d7=%‘o—<a;+a;2>=§‘“§‘(‘Zﬁz):—f—i
1 1 1
ds = o, — (o +a,) =5 = 3‘(‘1‘1)= -V

There are no d > 0 integers. This means case 1 does not apply. We need to try case 2
now.
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3.3 Case two Kovacic algorithm

The following diagram shows the algorithm for case two.

Case Two Algorithm
Step 1

zZ =Tz
\\1: T (set of poles) Ee=1{4
poles ot r

Where b is the coefficient
of T L

[0 in the partial
/ fractions expansion of r.
E.={2,2+2V1+4b,2 —2v1+ 4b}

(keep only integer values)

E. = {v}

[}
pole ¢; of order 1

o
pole ¢y of order 2

pole ¢
[e]
of order v > 2

Order is > 2 E., ={0,2,4}

Order of r at oo

L Orderisv<?2 Ey = {v}

Step 2

For each family (e.)ceruse with e, € E, let

d:%(ex726n>

cel

If family found which produced d an integer and positive then find
1 €.
0=— -
2 Z Tr—c
cer

Step 3 Find polynomial p(z) of degree d which satisfies

P +30p" + (367 + 30" — dr) p' + (0" + 300 +6° —4r6 — 2r') p=0
Let

/
s=0+Z2
p
The find solution w for the equation

5 1 1 .
2 APV T R
w® — dw + (2(7) + 2(7) r) 0
If solution can be found then
by efwds

Is the solution to 2" = rz

- This b is the C(?efﬁCiellt qf
the Laurent series expansion of r

1

2

means the leading coefficient.

in

——— Order is 2 Foo = {2,2+2V1+4b,2 — 2y/1 + 4b} at oo. If 7 = $ where ged(s,t) =
(keep only integer values) 1 then b can be more easily found
using b = 711222((?)) where lcoeff

case 2.ipe Nasser M. Abbasi 2/17/2022

Figure 2: Case 2 Kovacic algorithm
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3.4 Case 3 Kovacic algorithm

The following diagram shows the algorithm for case 3.

Case 3 Algorithm
Step 1

2 =rz

\&le%if . " (set of poles)

o
pole ¢; of order 1

E.= {12}

‘Where b is the coefficient
of ﬁ in the partial

/ fractions expansion of r.

E.= {6+ 12T+ 40k = 0,£1,%2,...,£2}NZ

(keep only integer values)

o
pole ¢ of order 2

This b is the coefficient of % in

x2
__— the Laurent series expansion of r
Order of r at 00 Ep = {6+ 28/ T 4blk = 0,4+1,42,...,+2}NZ at oo. If r = § where ged(s, ) =
n 1 then b can be more easily found
(keep only integer values) using b = 11:222((:)) where lcoeff

means the leading coefficient.

Step 2

For each family (e.)ceruse With e, € E. let

d:%(eoﬁzea

cel

If family found which produced d an integer and positive then find

n €c
0=— =
12 T—c
cel’
Step 3 Let polynomial p(z) of degree d with coefficients a;. . The following set of equations are set up in

order to determine the coefficients a; of the above polynomial

Pn = —P
pi-1=—p;—0pi—(n—1)(i+1)rpiy1  i=nn—1,...,0
Where n above is either 4,6 or 12.
The coefficients a; are solved for from
p-1=0
By using method of undetermined coefficients. Now generate equation for w using the equation
n

pi i
i_p
Z (n— i)'w

If solution w can be found then
2= efwdr,

Is the solution to 2" = rz

case_3.ipe Nasser M. Abbasi 2/17/2022

Figure 3: Case 3 Kovacic algorithm
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4 Algorithm implementation based on modified
Saunders and Smith algorithm

As with original Kovacic algorithm, an input ode

y"(z) + ay'(z) + by(z) =0 (1)
a,be C(x)

It is first transformed to the following ode by eliminating the first derivative
2'=rz reC(z) (2)
Using what is known as the Liouville transformation given by
y=ze2 J ot (3)

Where it can be found that r in (2) is given by

1, 1,

= - —a — 4

r=,a + 50 b 4)

It is Eq. (2) (called DE from now on) which is solved and not Eq. (1). There are three
steps for Saunders version. Case 1 and case 2 are handled in same way. In showing
the steps, both Saunders paper (2) and Carolyn J. Smith paper (3) were used. Smith

paper is more detailed and has some corrections to Saunders algorithm also.

There are 4 steps to the algorithm. Step 0 determines which case r belongs to (case
1 or 2 or 3 or non of these). Step 1 determines the fixed efized, 0fizea and also e;, 6;.
Where i can be 0 and higher depending. (see below). Step 2 uses the €fized, 0izea and
all the e;, 0; found in step 1 to determine the trial d, ©. Here © is used instead of 0 as
in Smith paper so not confuse it with the 6; found in step 1. If trial number d can be
found which is integer and positive then step 3 is now called. It is in step 3 where the
minimal polynomial p(z) is found using the d and ©. If such p(z) can be found then w
is solved for and the solution for the ode 2” = rz is now z = e/ “%*. If no solution p(x)
can be found, then the next trials d, © tried in order to find p(z). This continues until
all trials are tried or if solution is found. Below shows more details on each step. The
trials d, © are found by iterating over all possible set of values called s. These sets of
values are generated depending on case number and m value, where m is the number
of terms in the square free factorization of ¢ = ¢;t2t3- - - t™. How this is all done is given
below in examples.
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4.0.1 Step 0

This step is similar to Kovacic algorithm. In it we determine necessary conditions for
each case but it is done is more direct way in this version. Given y’ = ry, we write
d = { then now we do square free factorization on ¢ which gives

t = tytoty. -7

For example, if t = 2%, then t; = 1,ty = z. And if t =3 — 23 then t; = —1,¢, = 23 — 3.
And O(o0) = deg (t) — deg (s). Then now we determine which case we are in by finding
necessary conditions, This is done slightly different from the original Kovacic. So at the
end of this step we know if L = [1] (case 1) or L = [1,2] (case 1 and case 2), or L = [2]
(case 2 only) or L = [4,6,12] (case 3 only) and so on.

The necessary conditions are based on the square free factorization on t = t¢3t3- - - t™
and is summarized in Carolyn J. Smith paper (3) as (these are all the same necessary
conditions as from original Kovacic paper) but expressed in terms of the square free
factorization of t = t1t3- - -t where r = 2.

1. L = [1] (meaning case 1) if ¢;, = 1 for all odd ¢ > 3 (i.e. no odd order
poles allowed other than 1) and O(oo) is even only. (i.e. allowed O(co) are
’_6’_4a_2’0>27476a""

2. L = [2] (meaning case 2) if 5 # 1 or ¢; # 1 for any odd 7 > 3. (i.e. only pole of
order 2 is allowed, and then poles of order 3,5,7,--- are allowed.

3. L =[4,6,12] (meaning case 3), if ¢, = 1 for all ¢ > 2 and O(o0) > 2. (i.e. poles of
order 1,2 is only allowed).
4.0.2 Step 1
This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efized, Ofizea are calculated using

1, .
€fized = Z(mln (O(00),2) — deg (t) — 3deg (t1)) (5)
1/t t
0 xed — S| T 3_1 6
pua =3 (5 +3%) (©
For an example, lets say that r = 1222, Hence t = 16z® = t,t3 where ¢; = 16,1, = .

And O(o0) = 2 — 1 = 1. Therefore deg (t) = 2,deg (¢;) = 0 and ¢’ = -£162? = 32z and
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t; = 0. The above becomes

part (b)

Here the values e;, §; are found for ¢ = 1- - - k; where ks is the number of roots of ¢5. In
other words, the number of poles of r that are of order 2. These will be the zeros of ¢,
in the above square free factorization of ¢. Label these poles c;,ca, - - -, ck,. For each ¢;
then e; = v/1 + 4b where b is the coefficient of ﬁ in the partial fraction expansion
of r and 6, = mi"Ci. For an example, if t = z2. Then t = t;t2 and ¢t; = 1,t, = x. Hence
the zeros of ¢y are ¢c; = 0. There is only one zero. Hence k; = 1 and we only have one
iteration to do. Hence b= 1,e; = /1 +4(1) = v/5 and 0, = x_\{go = ‘/75

Part (c)

This part applied only to case 1. It generates additional values of e;, §; in addition to
what was generated in part (b). This is done for poles of r of order 4,6,8,--- , M if any
exist. These are the roots of 4,6, - ,t). These poles are labeled ck,41, Ckyt2,** , Ck-
The labeling starts from ks since for the pole of order 2 in part b we used ¢y, co, -+ , Ck,
for its zeros. Now we iterate for ¢ from ky + 1 to k. For each pole we find its e; and
;. These are found similar to original Kovacic paper. Examples below will illustrate
better how this is done.

Note that if there are no poles of order 4,6, --- then k = k; = M. The value M is used
below to generate s sequences in step 2. What this means is that for case 1, if there
are no poles of order 4,6, ---, then M is just the number of poles of r of order 2. For
cases other than case 1, M is always number of poles of r of order 2. The checking on
poles of order 4,6, - - - is only done for case 1.

Part(d)

Now we need to find eg, 6. If O(00) > 2 then ey = 1,6y = 0. But if O(0c0) = 2 then
0o = 0 and ey = v/1 + 4b where b is the coefficient of xlz in the Laurent series expansion
of r at co. This is the same as was done in original Kovacic algorithm. If O(c0) is none
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of the above two cases, then case 1 is handled on its own and examples below show
how this is done. Otherwise for all other cases eg = 0,e9 = 0.

The above complete step 1, which is to generates the candidate €'s and €'s. In step
2, these are used to generate trials d and 6 and find from them P(z) polynomial if
possible.

4.0.3 Step 2

In this step, we now have all the e;, 0; values found above in addition to ef;z, 04y Now
we generate trial d using

d = (n) (efiz) + Soeo — Z s;e; (7)

i=1

Where n is the case number. For case 1, it will be n = 1. For case 2 it will be n = 2.
For case 3 it will be 4 and 6 and 12. If d > 0 then we go and find a trial ©. We need to
have both d, © to go to the next step. © is found using

What is s in the above? These are sets of all combinations generated based on case
number n and m values which will be described below. So the above trial d and © are
generated for each such set s. Each set s has values {sg, s1,- - Sy} in it. So s; above
means the i element is the current set s. There will be (n + 1)™"" such different s sets.
For example, case 1, means n = 1 and if m = 2, which means ¢ = t;¢2 then there will be
23 = 8 sets of s to try. For each such set, we generate d, ©. If one set s gives a d which
is an integer and positive, then © is generated and then step 3 is called to calculate w.
If step 3 is successful then we stop since a solution is found. Hence step 3 takes as input
the trial d and © and is called repeatedly from step 2 until either solution y = e/«
is found or until all sets s are used. This is done for each case number n which can be
1,2,4,6 or 12. Starting from case 1 to case 3 (recall that case 3 has n = 4,6,12 in it).
Of course if any one case manages to find a solution, then the algorithm stops.

Before going to step 3 description, We will show how the sets s are generated. This
depends on value of n and M. Recall that M is number of poles of r of order 2 for
case 1 if there are no higher order poles. For example, for n = 1 and say M = 2 then 8
different sets s are generated. Based on all different permutations of {+%,+%,--- ,+2}.
There are M + 1 entries, because entries are indexed from 0 to M. Hence for M =0

(which will happen if where are no poles), then there are (n+ 1)" entries. For example
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for n = 1 this means two entries given by {£} which s = {3} and s = {—1} to try

A=
+

NI= NI

For n = 1, M = 2 then there are (1+1)° = 8 entries. We have all combinations of
{:I:%, :I:%, :l:%} This results in the following matrix

+

N N NI N NR N= = N
N[
NI NI N NFE N NI N N

_I_
NI NI NI N
I

|
= NI N
+

_|_

_|_

+ +
+

_I_
_|_

But if » = 1 and M = 1 then there are (1+1)° = 4 entries. All combinations
of{:l:%, :l:%} and the matrix is

>
Il
+
N= D= NI= N
+
NI NI= NI NI

+

_|_

Each row in the above matrix S is one set s to try. To be more clear, in the equation
© = (n) (efiz) + Y1, si€i the s; in the equation means the " entry in that specific
s set we are using at the moment, which happens to be one row of the matrix A. For
example, if we are trying the second row in A, then sy = —%, §1 = —%, Sy = —|-%. For

the case n =1 and M = 3, then {+1,+1 +£1 +11 There is (2)* = 16 different sets s
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N NI NI N N N N N

NI NI= NI N NI NI N= N

(or 16 rows in the matrix A). The matrix A is

NI NIF NDIR NI=

NI NI= NI N

NI~ IR IR NI

NI= NI N N

N= N |

NI= N |

N= N |

NI= N[

1 _1
2 2
11
2 2
1
2
1 _1
2 2
11
2 2
1
2
1
2
1 _1
2 2
11
2 2
1
2
1 _1
2 2
11
2 2
1
2
1
2

If it was case 2 which means n = 2, then if M = 2, then we have all different permuta-
tions of 1,—1,0 in each entry. This gives 3% = 27 different sets to try

1 -1 -1
1 -1 0
—1 -1 41
-1 0 -1
A=1_1 0 o
1 0 +1
+1 41 +1
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And if n = 2, M = 3 then this gives 3* = 81 different sets s

1 -1 -1 —1]
1 -1 -1 0
1 -1 -1 +1
1 -1 0 -1
A=1_1 1 0 o
1 -1 0 +1
+1 41 +1 +1

And if n = 4, M = 2 then this gives 53 = 125 different sets s

12 +2 42,
And if n = 4, M = 3 then this gives 5* = 625 different sets s

—2 -2 —2 -2
—2 -2 -2 -1
—2 -2 -2 0
Ae|-2 -2 —2 +1
—2 -2 —2 42

+2 +2 42 +2]
And if n = 6, M = 2 then this gives 73 = 343 different sets s

(-3 -3 -3
-2 -2 -2
-2 -2 -1
-2 -2 —0
A= |—2 -2 +1
-2 -2 42
-2 -2 +3
+3 +3 +3

67



And if n = 6, M = 3 then this gives 7* = 2401 different sets s

-3 -3 -3 -3]
—3 -3 -3 -2
—3 -3 -3 -1
-3 -3 -3 0
A= |—3 -3 =3 +1
—3 -3 -3 42
—3 -3 -3 43
+3 +3 +3 +3]

And if n = 12, M = 2 then this gives 133 = 2197 different sets s

12 —12 —12]
~12 —-12 —11
~12 —-12 —10
A=| ¢
—12 —12 +12
+12 412 +12]

And if n = 12, M = 3 then this gives 13* = 28561 different sets s

-12 -12 -12 -12
-12 -12 -12 -11
-12 —-12 -12 -10

=12 -12 -12 +12

+12 +12 412 +12]

And so on.
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4.0.4 step 3

The input to this step is the integer d and © found from Eq (7,8) as described in step
2 and also r which comes from 2" = rz.

This step is broken into these parts. First we find the p_;(z) polynomial. If we are
to solve for its coefficients, then next we build the minimal polynomial from the p;(x)
polynomials constructed during finding p_;(z). The minimal polynomial py,(z) will
be a function of w. Next we solve for w from pp,(x) = 0. If this is successful, then we
have found w and the first solution to the ode z” = rz is e/ “% . Below shows how this
is done.

We start by forming a polynomial
p(z) =2+ ag_ 127+ +ap

Notice that 2% has coefficient 1. The goal is to solve for the a; coefficient. Now depending
on case number n, we do the following. If case n = 1 then

P1=—p 9)
Do = —P,1 — Op;
p_1=—py— Opo — (1) (1) rp

And it is p_; = 0 which is solved for the coefficients a;. For the case n = 2 we find p as
follows

DP2=—p (10)
p1=—p; — Op;
po = —p; —Op1 — (1) (2) P2

p-1=—py— Opo— (2) (1) rpx

And it is p_; = 0 which is solved for the coefficients a;. For the case n = 4 we find p as
follows

by=—p (11)
ps = —py — Opy
P2 = —p3 —Op3 — (1) (4) rps
p1=—py — Opy — (2) (3) rps
' (3) (2) rp2
(4)(L)rp
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And it is p_; = 0 which is solved for the coefficients a;. For the case n = 6 we find p as
follows

Pe = —D (12)
Ps = —p — Ops
ps = —ps — Ops — (1) (6) e
p3 = —py —Ops— (2) (5)ps
p2 = —p3 — Op3 — (3) (4) P4
p1 = —py — Opy — (4) (3) Tps
po = —p) — Op1 — (5) (2) P2
p-1=—py— Opo— (6) (1) rp1

And it is p_; = 0 which is solved for the coefficients a;. For the case n = 12 we find p
as follows

P12 = —p (13)
b = —p/m — Op12

P10 = —P/u —Op11 — (1) (12) 7p12

P9 = —Pp1o — Op1o — (2) (11) rpny

Ps = —py — Opg — (3) (10) 7p1o
pr = —ps — Ops — (4) (9) 7o
pe = —p7 — Op7 — (5) (8) rps
ps = —ps — Ops — (6) (7) D7
ps = —p5 — Ops — (7) (6) Tps
p3 = —py — Ops— (8) (5)ps
P2 = —p3 — Op3 — (9) (4) rp4
p1 = —py — Opy — (10) (3) rps
po = —p; — Op1 — (11) (2) rp2
p-1=—py — Opo — (12) (1) rp

If we are able to solve for all the a; by solving

p-i(z) =0

Then we now have determined p(z). This is used to find w as follows. For the case n = 1
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For the case n = 2 w is found by solving

/ 2
2— _— _—— —
w ¢w+2+2 r=0
Where ¢ = & +©.

Where py, p1, p2 are from Eq (10) above. For the case n = 4 then

1 1 1 9 3 4
Pmin = 77P0 + 3P + 1P + p3w” + paw
Where py, p1, p2, p3, p4 are from Eq (11) above. For the case n = 6 then

Pmin = apo + aplw + Ipzw + 5103&1 + 5?4&1 + psw” + pew

Where po, p1, P2, D3, P4, D5, Pe are from Eq (12) above. For the case n = 12 then
1 1

in = ——Pot-— w—l—i w2+l w3+l o.)4+l (;.25%—l w6+l w7—|-l (.‘JS—I-l wg—l-l w'%+prw!

Where p; for i = 0---12 are from Eq (13) above. In each case, we now solve for
Prin(7) =0
For w. If this is successful, then now we have to verify the solution satisfies the Riccati
ODE. w must satisfy in all case the following equation
W twr=r

If it does, then we have solved the z” = rz ode z = e/“% and also the original
y" + ay’' + by = 0 ode. This completes the Kovacic algorithm. Examples are given below
showing how to implement the above to solve number of ode’s.

4.1 Worked examples

4.1.1 Example 1 case one

Solve
(1-2*)y" — 22y + 6y =0
Normalizing so that coefficient of u” is one gives (assuming x # 1)

6
/1_2 T !
Y ofam e ta- Y

y' +ay(z)+by=0 (1)

=0
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Hence

a

b

—2x
(1—=z?)
_6
(1—2?)

It is first transformed to the following ode by eliminating the first derivative

2 =rz

Using what is known as the Liouville transformation given by

Y

_ ze_Tl J adz

Where it can be found that r in (2) is given by

1 1

r=-a*+-ad —-b

>2+ %%Qfﬁaﬂ e —6x2>

4 2

. 1 —2x
T4 ((1 )
622 —7
(x2 —1)*

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

"

622 —7 B
(22 — 1)?

2)

3)

(5)

Step 0 We need to find which case it is. 7 = £. The free square factorization of ¢ is
t = t,t2. Hence

m =2

(6)

And t; = 1,t; = (2 — 1). Now O(00) = deg (t) — deg (s) = 4 — 2 = 2. The poles of r
are x = 1, —1 each of order 2. Looking at the cases table giving up, reproduced here

case | allowed pole order for r = ¢ | allowed O(oco) order L
1 [{0,1,2,4,6,8,--} (- ,—8,-6,—4,-2,0,2,3,4,5,6,7,---} | [1]
2 {2,3,5,7,9,---} no condition 2]
3 | {1,2} {2,3,4,5,6,7, - } [4,6,12]

Shows that all cases are possible. Hence L = {1,2,4,6,12}. So n=1,n=2,n=4,n =
6,n = 12 will be tried until one is successful.

Step 1
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This step has 4 parts (a,b,c,d).
part (a) Here the fixed parts €fized, 0 fizea are calculated using

€ ived = le(min (0(c0) ,2) — deg (£) — 3deg (1))

1/t t)
efiwedzzl( +3 1)

Using O(00) = 2,¢ = (22 — 1)*,¢; = 1 the above gives

€ ived = }l(min (2,2) — 4 — 3(0))

_lo_y
1
~ 9
2
B rine = £<(%2_1))+3(0)
wea = | sy
A
T 21

part (b)

Here the values e;, §; are found for ¢ = 1- - - k; where ks is the number of roots of ¢5. In
other words, the number of poles of r that are of order 2. These will be the zeros of
t, in the above square free factorization of ¢. From above we found that ¢, = 2% — 1.
Label these poles ¢, ¢a, -+ ,ck,. The zeros of ¢ty are {1, —1} therefore ¢; = 1 ,cp = —1
and k, = 2. For each ¢; then e; = v/1 + 4b where b is the coefficient of )2 in the
partial fraction expansion of r which is

611:2—7 _ o, ﬁj
(22— 1) (Z (x—ci)2) * (Zx—dj>

J

-Gty i) (et e)

Therefore for ¢; = 1, looking at the above, we see that the coefficient of ﬂl) is —.
Hence b = T and ey =v1+4+4b=,/1— 4% = (. For ¢ = —1 looking at the above, we
see that the coefficient of w is 7. Hence b= 7' and ey = v1+4b= /1 — 45 = 0.

Therefore

€1 =

62=0
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Now, 0; = _—. For ¢; = 1 this gives 6; = -*; = 0 since e; = 0. And 6, = _%-. For

r—c; "’ x—co "

co = —1 this gives 0, = we—jl = 0 since e; = 0. Hence

6,=0

Part (c)

This part applied only to case 1. It is used to generate e;,8; for poles of r order
4,6,8,--- , M if any exist. Since non exist here. This is skipped. This means

M=2

since 2 is the number of poles of order 2.
Part(d)

Now we need to find eg, 6. If O(c0) > 2 then e = 1,6y = 0. But if O(c0) = 2 then
0o = 0 and ey = v/1 + 4b where b is the coefficient of xiz in the Laurent series expansion
of r at co. Since in this example O(oc0) = 2 then

e =V1+4b
6p=0

Now we need to find b. The Laurent series expansion of r at oo is f—2 + w% + ;—6 4+
Hence b = 6. Therefore

Now we have found all e;, 8;. They are

e ={5,0,0}

6 ={0,0,0}
The above are arranged such that e is the first entry. Same for 6. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the

candidate €’s and €'s. In step 2, these are used to generate trials d and 6 and find from
them P(x) polynomial if possible.

Step 2
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In this step, we now have all the e;, 0; values found above in addition to efiz, 0i;. Now
we generate trial d using

M

d = (n) (efiz) + So€o — Z 8;€; (7)

i=1

Where n is the case number. For case 1, it will be n = 1. For case 2 it will be n = 2.
For case 3 it will be 4 and 6 and 12. If d > 0 then we go and find a trial ©. We need to
have both d, © to go to the next step. © is found using

© = (n) (05iz) + Z s:6; (8)

We need to first generate s sets. For n = 1 and since M = 2 in this example (number
of poles of order 2), then these these are given by

[_1 _ 1 _1]
2 2 2
1 1 1
2 2 +2
1 1 1
2 +2 2
1 1 1

— = +_ +_
2 2 2

A=

41 1 _1
2 2 2
1 1 1

+2 2 +2
1 1 1

T3 t2 73
1 1 1

_+§ +§ +§_

We go over each row one at a time. Trying the first row s = {_71, _71, _71} which means

So = 5,81 = 5,82 = —3. Hence the first trial d is (using Eq (7)) and recalling that
X

—_1 —
€fiz = _§a9fimed — z2—1 then

M
d = (n) (efiz) + So€o — Z 8;€;

=1

_ @) (-%) + (;) (5) — (5161 + 5262)

o)+ (3)o- (Fo- o)

= -3

Since this is negative, then we skip this set s. Now we try the second row of A which is
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S S :
s={ "L 1. Then above now gives

M
d = (n) (efiz) + so€0 — Z $i€;

=1

~0(-3)+(5) O Gier+52e0

-o-2)+(3)o-(For o)

Since this is negative, then we skip this set s. Now we try the third row of A which is

=1, 41 =1} Then above now gives

S=12:2:72

M
d = (n) (efiz) + So€o — Z s;€;

i=1

_ () (—%) + (‘71) (5) — (s161 + s22)

-0 ()+(F)o- (- 10)

Since this is negative, then we skip this set s. Now we try the row 4 of A which is

=L, £, L1, Then above now gives

§=1%7272

M
d = (n) (efiz) + Soeo — Z Si€;
i=1

_ () (—%) + (‘71) (5) — (5161 + 5262)

o)) (o0

Since this is negative, then we skip this set s. Now we try the row 5 of A which is
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_ 4l -1 -1 :
s ={%, 3, 5t }. Then above now gives

M

d = (n) (efiz) + Soeo — Z 8;€;

=1

~0(-3)+ (%) - Gier+52e0

1 +1 +1 1
~0(-3)+(5) - (Fo+;0)
Since d > 0, then we can use it. Now using Eq (8) gives

O = (n) (B5ia) + Z si0;

xT
= (1) (1:2 — 1) + (8090 + 8101 + 8202)

z +1 1 1
= + (790 - 591 - 592)

2 -1

But all 8, = 0. Therefore -

2 -1

Now that we have good trial d and ©, then step 3 is called to generate w if possible.

O =

Step 3

The input to this step is the integer d = 2 and © = " found from step 2 and also
r= (222__1)72 which comes from z” = rz. This step is broken into these parts. First we
find the p_;(z) polynomial. If we are to solve for its coefficients, then next we build
the minimal polynomial from the p;(z) polynomials constructed during finding p_; ().
The minimal polynomial py;,(x) will be a function of w. Next we solve for w from
Pmin(x) = 0. If this is successful, then we have found w and the first solution to the ode

2" =rzis z = ¢/ “%  Below shows how this is done.

We start by forming a polynomial

p(z) =2+ ag 127+ +ap

=m2—|—a1x—|—a0

The goal is to solve for the a; coefficient. Now depending on case number n, we do the

7



following. Since we are in case n = 1 then

b1 =—p
= —.’IJ2 — a1 — Qg
Po = —Pl1 — Opy

x
= —(—x2 — a1 — ao)/ — <:L'2 — 1) (—.’52 — a1 X — a())
(zag — a1 — 2x + 2x°%a; + 323)
- 2 —1

p_1=—py— Opo— (1) (1) rpy

2 -1 -1 2 -1
2xa1+3a0+1)
2 —1

_ ((xao—a1—2x+2x2a1+3x3)>' ( x )((mao—a1—2x+2x2a1+3x3)) 622 —17
- _ = —

_ ol

Now we try to solve for a; using p_;(z) = 0. This gives 2zxa; + 3ay + 1 = 0 which gives
a1 = 0,a9 = —3. Hence this implies
p(z) = 2* + a1z + ao
= xz —_ 1

3

Since this is case n = 1 then

- +
1
-3 x2—1

. 9x2 -7
34 —4z2 41

Before using this, we will verify it is correct. For case 1 the above should satisfy
W Hw=r
Let us see if this is the case or not.
d 922 — 7 922 —7 \® 6227
—(z——— )+ (2 = .
de \ 3z*—4z2+1 3zt — 422 +1 (z2 —1)

622 —7 622 —7

(22 -1)" (a2 -1)°
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Verified. Since solution w is found and verified, then first solution to the ode is
z=e J wdz

9z -7
— ef 3:10(21—4172-21 dx

— 6% ln(w2—1)+ln(z2—%)

1
=2 —-1(2*2-=
a=1(a - )

Hence first solution to the original ode is

y=26_71fadm

4.1.2 Example 2 case one

Solve
oz —1)7°y" —2y=0

Normalizing so that coefficient of u” is one gives (assuming = # 1 and z # 0)

2
'

% u=0
Y z(x — 1)2y
Y +ay(z) +by=0

Hence
a=0
_ 2
z(z—1)°

It is first transformed to the following ode by eliminating the first derivative

2 =rz
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Using what is known as the Liouville transformation given by

y:ze%lfadx

Where it can be found that r in (2) is given by

1 1
r=-a*+-ad —b

4 2
2

o z(z—1)°

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

2

B z(z—1)2z

3)

(4)

(5)

Step 0 We need to find which case it is. 7 = £. The free square factorization of ¢ is
t = t,t2. Hence

And

m = 2

t1:.’IJ

t2=.’lf—1

(6)

Now O(o0) = deg (t) — deg(s) = 3 — 0 = 3. The poles of r are z = 0 of order 1 and
x =1 of order 2. Looking at the cases table giving up, reproduced here

case | allowed pole order for r = ¢ | allowed O(co) order L
1 {0,1,2,4,6,8,---} {--,-8,-6,-4,-20,2,3,4,5,6,7,---} | [1]
2 {2,3,5,7,9,---} no condition 2]
3 {1,2} {2,3,4,5,6,7,---} [4,6,12]

Shows that all cases are possible. Hence L = {1,2,4,6,12}. Son=1,n=2,n=4,n =
6,n = 12 will be tried until one is successful. Starting with n = 1.

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efized, Ofizea are calculated using

€ ined = ;l(min (0(c0) ,2) — deg (£) — 3deg (t1))

1/t

4\t

t/
efiwed = = (_ + 3_1)
ty
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Using O(o0) = 3,t = z(z — 1)?,¢; = & the above gives
1
€ fized = Z(min (3,2) —3—-3(1))

1
= -(2-3—
12-3-3)
=-1

R )

1(3x2—4x+1 3)

4\ z(z—-1)7°> =z
_13z-2
S 2r z—1

part (b)

Here the values e;, 6; are found for ¢ = 1. - - ky where k, is the number of roots of ¢5. In
other words, the number of poles of r that are of order 2. These will be the zeros of ¢,
in the above square free factorization of ¢. From above we found that ¢, = z — 1. Label
these poles ¢, ¢z, -+, ck,. The zeros of to are {1} therefore ¢; = 1 and ky = 1 since one

zero. Hence
M=1

For each c; then e; = v/1 + 4b where b is the coefficient of ﬁ; in the partial fraction

expansion of r which is

2
z(z—1)°

- (Tgr)+ (2)

() )

Therefore for ¢; = 1, looking at the above, we see that the coefficient of ﬁ
Hence b =2 and e; = v1+4b = /1 + 8 = 3. Hence

is 2.

61:3

Now, 6; = —%—. For ¢; =1 this gives #; = -°.- = -2 Hence

r—c; '

—

81



Part (c)

This part applied only to case 1. It is used to generate e;,8; for poles of r order
4,6,8,--- , M if any exist. Since non exist here. This is skipped. Hence M stays 1.

Part(d)
Now we need to find eg, 6. If O(00) > 2 then ey = 1,6y = 0. But if O(oc0) = 2 then

0o = 0 and ey = /1 + 4b where b is the coeflicient of é in the Laurent series expansion
of r at co. Since in this example O(o0) = 3 then

€y =
00=0

Now we have found all e;, 8;. They are

e={1,3}

3
o= fo.2)

The above are arranged such that ej is the first entry. Same for 6. This to keep the

same notation as in the paper. The above complete step 1, which is to generates the
candidate €’'s and €'s. In step 2, these are used to generate trials d and 6 and find from
them P(x) polynomial if possible.

Step 2
In this step, we now have all the e;, 0; values found above in addition to ef;s, iy Now

we generate trial d using
M

d = (n) (efiz) + Soeo — Z s;e; (7)

i=1
Where n is the case number. For case 1, it will be n = 1. For case 2 it will be n = 2.
For case 3 it will be 4 and 6 and 12. If d > 0, then we go and find a trial ©. We need
to have both d, © to go to the next step. O is found using

© = (n) (05iz) + Z 5:6; (8)

We need to first generate s sets. For n = 1 and since M = 1 in this example, then these
these are given by

_+_

-
|
+
NI= NI= = N
_+_
= NI- N N

+




We go over each row one at a time. Trying the first row s = {3}, 5t} which means
St Hence the first trial d is (using Eq (7)) and recalling that ey, =
X

-1
So = 2 yS1 =
1 3z-2
_1a9fixed = 95 o1 then

M
d = (n) (efiz) + Soeo — Z s;€;

i=1

—0 0+ (5 ) @ e

Since d > 0, then we can use it. Now using Eq (8) gives

O = (n) (B5iz) + Z sib;

= (1) <i3x - 2) + (3000 + 5161)

2¢ x — 1
13z-2 /(-1 1
= o1 +(7"°‘§91)

1 3z—2 1 1 3
=9 o1 20377

Therefore 1

z(z—1)
Now that we have good trial d and ©, then step 3 is called to generate w if possible.
Step 3

0=-—

The input to this step is the integer d = 0 and © = —ﬁ found from step 2 and also
r= ﬁ which comes from z” = rz. This step is broken into these parts. First we
find the p_;(z) polynomial. If we are to solve for its coefficients, then next we build
the minimal polynomial from the p;(z) polynomials constructed during finding p_; ().
The minimal polynomial py;,(x) will be a function of w. Next we solve for w from
Pmin(x) = 0. If this is successful, then we have found w and the first solution to the ode

2" =rzis z = ¢/“%  Below shows how this is done.

We start by forming a polynomial

p(z) = 2%+ ag 127+ +ap
=1
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Since this is case n = 1 then

Cz(z—1)
B -1
z(x—1)
Before using this, we will verify it is correct. For case 1 the above should satisfy

J+wi=r

Let us see if this is the case or not.

%(—ﬁ) " (‘x(xl— 1))2 N x<x2— 1y

1 2z—1 1 ? 2
P17 <_z(z—1)> T z(z— 1)
2 2
z(z—1)7° z(z-1)°

Verified. Since solution w is found and verified, then first solution to the ode is

1
z=¢l “FEDd

— elnx—ln(m—l)
oz
-1
Hence first solution to given ODE is
y= ze%l [ adz
T 1
— —5 [0dz
= e 2
z—1
oz
-1

4.1.3 Example 3 case one

Solve

y/l _ x2y/ _ $2y — 0
y' +ay(z)+by=0
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Hence

a=—z’
b= —z2?
It is first transformed to the following ode by eliminating the first derivative
2 =rz (2)
Using what is known as the Liouville transformation given by
y=rzez ok 3)
Where it can be found that r in (2) is given by

1 1
r=-a*+-ad —-b

4 2
1, + z°
4
zt +42? — 4z
= = 4
; @)
Hence the DE we will solve using Kovacic algorithm is Eq (2) which is
S = <.’L'4+4Z2—4:L') . (5)

Step 0 We need to find which case it is. r = { where

s=zx*+422 — 4z

t=4

The free square factorization of ¢ is ¢t = [[]]. Hence

m=20 (6)
Since m is number of elements in the free square factorization. in this special case we
set

t1=1

to=1
Now

O(c0) = deg () — deg (s)
=0-4
=4

There are no poles. Looking at the cases table giving up, reproduced here
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case | allowed pole order for r = ¢ | allowed O(co) order L
1 [{0,1,2,4,6,8,---} (- ,—8,—6,-4,-2,0,2,3,4,5,6,7,--- } | [1]
2 {2,3,5,7,9,---} no condition 2]
3 |{1,2} {2,3,4,5,6,7,-- } 4, 6,12]

Shows that only case 1 meets the necessary conditions. Hence L = [1]. So n = 1.
Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efized, 0 fizea are calculated using

1 .

€fived = 4 (in (O(00),2) — deg (t) — 3deg (t1))
1/t t

6 ized — S| 3_1

fied = 4 (t + tl)
Using O(o0) = —4,t = 4,t; = 4 the above gives
1
€ fized = Z(min (—4,2) — 0 —3(0))

1
=74

(#50)

part (b)

Here the values e;, §; are found for ¢ = 1- - - ky where ks is the number of roots of ¢5. In
other words, the number of poles of r that are of order 2. These will be the zeros of
to in the above square free factorization of ¢. From above we found that ¢, = 1. Label
these poles ci, ¢z, -, ck,- The zeros of to are {}. There are no zeros since constant.
Therefore ky = 0 since one zero. Hence

M=0
No e;, 0; are generated. i.e. e = {},0 = {} so far.
Part (c)

This part applied only to case 1. It is used to generate e;,8; for poles of r order
4,6,8,--- , M if any exist. Since non exist here. This is skipped. Hence M stays 0.
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Part(d)

Now we need to find eg, 6. If O(00) > 2 then ey = 1,6y = 0. But if O(co) = 2 then
0o = 0 and ey = /1 + 4b where b is the coeflicient of xiz in the Laurent series expansion
of r at co. Since in this example O(co) = —4 then none of these cases apply. We
fall into the case that handles n = 1 only which is the current case which results in
ep = —2,0p = 2+ 2. Hence

e={-2}

0= {2 + x2}
The above are arranged such that e; is the first entry. Same for 6. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the

candidate €’'s and €'s. In step 2, these are used to generate trials d and 6 and find from
them P(z) polynomial if possible.

Step 2

In this step, we now have all the e;, 6; values found above in addition to ef;z, 0f;;. Since

n=1and M = 0 then we have (n + l)MJrl = 2! = 2 sets s to try. These are given by
_1
A= 2
+
Now we generate trial d using
M
d = (n) (efiz) + So€o — Z si€;
i=1

Since M = 0 then the above becomes

d = (n) (efiz) + So€o (7)
If d > 0 then we go and find a trial ©. We need to have both d, © to go to the next
step. O is found using
M
O = (n) (Oic) + Y _ sif; (8)
=0
Since M = 0. Hence the first trial d is (using Eq (7)) and recalling that ef;, =
—1, Hfmd =0 then

d= ) er) + (5 ) -2)

(H)(-1)+1
0
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Since d > 0, then we can use it. Using Eq (8) gives
6= (n) (efm) + 8090
1
=0—-(2+2°
2
1
=—-1- §$2
Now that we have good trial d and ©, then step 3 is called to generate w if possible.

Step 3

The input to this step is the integer d = 0 and © = —1 — %zQ found from step 2 and
also r = W which comes from 2” = rz. This step is broken into these parts.
First we find the p_;(z) polynomial. If we are to solve for its coeflicients, then next we
build the minimal polynomial from the p;(x) polynomials constructed during finding
p—1(x). The minimal polynomial py,,(z) will be a function of w. Next we solve for w
from puin(z) = 0. If this is successful, then we have found w and the first solution to
the ode y” = ry is e/ “% . Below shows how this is done.

We start by forming a polynomial

p(@) =3+ a1z 4+ +ag

=1
Since this is case n = 1 then
w= r +0
p
=—-1- %x2

Before using this, we will verify it is correct. For case 1 the above should satisfy
WwAw=r

Let us see if this is the case or not.

d 1, 1,\>  [a*+42® -4z
T

—et et Hot 1= T
et +4z? —dz 1 2'4 42?4z
— ¢ tiT4

It did not verify. This means this solution can not be used. If we try the next row in A
we will find it gives negative d. This means there is no Liouvillian solution. This is an
example where even if we find d > 0 we still can end up not finding a solution.
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4.1.4 Example 4 case one
Solve

(2 +1)y" + 72°y + 92y = 0
y" +ay'(z) + by =0

Hence
Tx?
(z3 +1)
_ 9z
(a3 +1)

It is first transformed to the following ode by eliminating the first derivative

2 =rz

Using what is known as the Liouville transformation given by
adz

y:ze%lf

Where it can be found that r in (2) is given by

r= %laQ + %a’ —b
1/ 72 \* 1(d [ 7 9z
:Z(@ﬁ+n)'+§QE(@ﬁ+D))_(ﬁ+1)
_1( 7z? )2+1(—7z(x3—2)) 9z
T4\ (3 +1) 2\ (23 +1)° (z3 +1)
—xz(z3 + 8)
4@+ 1)
Hence the DE we will solve using Kovacic algorithm is Eq (2) which is
g _e@+8)
4 (3 +1)°

Step 0 We need to find which case it is. 7 = { where
§= —m(:c3 + 8)
t=4(c*+1)°

The free square factorization of ¢ is t = [1, 2% + 1]. Hence

m=2
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Since m is number of elements in the free square factorization. in this special case we

set

t1=1

to =23 +1
Now

O(o0) = deg () — deg (s)

=6—-14
=2
There are three poles each of order 2. Looking at the cases table giving up, reproduced
here
case | allowed pole order for r = ¢ | allowed O(oco) order L
1 {0,1,2,4,6,8,"'} {“',_8,_6,_47_27(),2,3)475,677)"'} [1]
2 {2,3,5,7,9,---} no condition 2]
3 {1,2} {2,3,4,5,6,7,---} [4,6,12]

Shows that all three cases are possible. Hence L = [1,2,4,6,12].
Step 1

This step has 4 parts (a,b,c,d).

M Here the fixed parts efiged, 0fizes are calculated using

€ ived = }l(mm (0(00) ,2) — deg (£) — 3deg (1))

1/t t
eixe =\ 7 3_1
fiwed 4(t+ tl)

Using O(o0) = 2,t = 4(z® + 1)2 ,t1 = 1 the above gives

1
€ fived = Z(min (2,2) — 6 —3(0))
1
=_(2—
12-6)
=-1
0 1 (&4 + 1) +3(0)
fized 4 4 (1’3 + 1)2
_3 4
213 +1
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part (b)

Here the values e;, §; are found for ¢ = 1- - - ky where ks is the number of roots of ¢5. In
other words, the number of poles of r that are of order 2.

_ z(e®+8)
T 4(zt 4 1)
These will be the zeros of ¢, in the above square free factorization of ¢. From above we
found that
ty=a23+1
Label these zeros of ¢, as ¢, g, - ,ck,. The zeros of t, are {—1, (—1)% , —(—1)%} =

{-1,1 - 1iv/3,1 + %iv/3}. Therefore k, = 3. Hence
M=3

Now we iterate over each zero c; times finding e; and 6; from each. These are found to
be (following formula in paper) to be

7

bl—%

e é

T3

7

bQ—%

o =3

73

7

ba = —

57 36

e é

273

And
4

0= ———

'T3@+1)

8

02: :

3(1v3+2z—1)

0. — —8
T 3(iV3-2w+1)

Part (c)

This part applied only to case 1. It is used to generate e;,8; for poles of r order
4,6,8,--- , M if any exist. Since non exist here. This is skipped. Hence M stays 3.
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Part(d)

Now we need to find eg, 6. If O(c0) > 2 then ey = 1,6y = 0. But if O(c0) = 2 then
6y = 0 and ey = v/1 + 4b where b is the coefficient of # in the Laurent series expansion
of r at co. Since in this example O(c0) = 2 then this case applies. b = ;Z‘;Z%Eg where
lcoef f gives the leading coefficient. Since s = —z(z® + 8) = —z* — 8z then lcoef f(s)
= —1. And since t = 4(z® + 1)* = 42% + 823 + 4 then lcoef f(t) = 4. Therefore b = 7
and therefore

60=V1—|—4b
=0

Hence now we have

oo 4 8 -8
'3(z+1)"3(iv3+20—1) 3 (iv3— 2z +1)

The above are arranged such that e is the first entry. Same for 6. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate €’'s and #'s. In step 2, these are used to generate trials d and 6 and find from
them P(x) polynomial if possible.

Step 2
In this step, we now have all the e;, 6; values found above in addition to ef;z, 0.

Starting with n = 1. And since we have M = 3 then there are (n+ 1) =2 = 16
sets s to try. The first set s is

_f—n -=—nn-n-n| [-1-1-1-1
Tl 2222 [ 122" 2"

Now we generate trial d using

M
d = (n) (efiz) + So€o — Z s;€;

i=1

Since M = 3 then the above becomes

d = (n) (efiz) + Soeo — S1€1 — S2€2 — S3€3 (7)
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If d > 0 then we go and find a trial ©. We need to have both d,© to go to the next
step. © is found using

3 _z?
2 2341

Hence the first trial d is (using Eq (7)) and recalling that e, = —1,0fi5ea =

Qe Q- (H-(E

=1
Since d > 0, then we can use it. Using Eq (8) gives (using M = 3)

© = (n) (Bfiz) + sobo + 5101 + 5202 + 5303

-0 (35)+ ()0 () Ge'5m)* () (rt=n)

_(; z? )_ 2 4 N 4
T \223+1 3(z+1) 3(iv3+2z-1) 3(iv/3—2z+1)

212
(z+1)(ivV3+2x—1) (ivV/3—2z+1)
22342

Now that we have good trial d and ©, then step 3 is called to generate w if possible.
Step 3

The input to this step is the integer d =1 and © = % found from step 2 and also

:c(:c3+8)
T 4(23+1)2
find the p_;(z) polynomial. If we are to solve for its coefficients, then next we build

which comes from 2” = rz. This step is broken into these parts. First we

r =

the minimal polynomial from the p;(z) polynomials constructed during finding p_;(z).

The minimal polynomial py,(z) will be a function of w. Next we solve for w from
Pmin(z) = 0. If this is successful, then we have found w and the first solution to the ode
y' = ry is e/ “% . Below shows how this is done.

We start by forming a polynomial

p(z) =2+ ag_ 127+ +ap

=T
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Since this is case n = 1 then

/
w=216
p
1
T

$2

23 42
242
2z (23 +1)

Before using this, we will verify it is correct. For case 1 the above should satisfy

JHw=r

Let us see if this is the case or not.

i) (aees) - et

(46242 | (2*+2)°  z(a®+8)
202 (23 + 1) 422 (23 +1)% 4 (3 + 1)2
_z(@*+8)  z(a®+8)

423 +1)° 4(@3+1)°
Verified. Since solution w is found and verified, then first solution to the ode is

z=efwda:

z3+2
= ef 22(23+1) &

x
V3 + 1

Hence first solution to given ODE is

adzx

y:ze%lf

=—" ¢
vz3+1

T 1
Vas +1 (z3 +1)

[N

94



4.1.5 Example 5 case one

Solve Bessel ode (from Kovacic original paper)
J 4(m? —2?) -1
422
y'+ay +by=0

y=0

Hence

It is first transformed to the following ode by eliminating the first derivative

2 =rz

Using what is known as the Liouville transformation given by

y=26_71fadx

Where it can be found that r in (2) is given by

1 1
T=Za2+§a'—b
4(m? —z?) -1

472

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

" __ 4(m2 B $2) —1
z = 4$2 z

Step 0 We need to find which case it is. r = $ where

s=4(m2—x2)—1

t = 4z?
The free square factorization of ¢ is ¢t = [1, z|. Hence
m =2

Since m is number of elements in the free square factorization. in this case we set
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Now
O(00) = deg (t) — deg (s)
=2-2
=0

There is one pole at x = 0 of order 2. Looking at the cases table giving up, reproduced
here

case | allowed pole order for r = { | allowed O(co) order L
1 [{0,1,2,4,6,8,---} (- ,—8,—6,-4,-2,0,2,3,4,5,6,7,--- } | [1]
2 {2,3,5,7,9,---} no condition 2]
3 | {1,2} {2,3,4,5,6,7,- } [4,6,12]

Shows that only case 1,2 are possible. L = [1,2].
Step 1
This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efized, Ofizeq are calculated using
1, .
€ fized = Z(mln (O(OO) ) 2) - deg (t) - 3deg (tl))
1/t t
6 ized — S| 3_1
fived =y (t + tl)
Using O(o0) = 0,t = 42, t; = 1 the above gives

€ fized = i(min (0,2) —2 —3(0))

1
= -(0-2
10-2)
_ 1
2
1 (4 (4?)
O fized = 1 (d 122 3(0)
_1
2%

part (b)

Here the values e;, 6; are found for ¢ = 1. - - ky where k, is the number of roots of ¢5. In
other words, the number of poles of r that are of order 2.
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4(m? — %) -1
4z?
These will be the zeros of ¢5 in the above square free factorization of ¢. From above we
found that

r =

tz =T
Label these zeros of ty as c1,ca, -+ ,Cr,. The zeros of ty are {0}. Therefore ky = 1.
Hence

M=1

Now we iterate over each zero c¢; times finding e; and 6; from each. These are found to
be (following formula in paper) to be

1
b1=m2—£—l

1
e1=v1+4b=\/1+4(m2—1):2m m >0

Where b, is the coefficient of ﬁ in the partial fractions decomposition of r which

isr=-1+(m?>-1)%. And

z2°

Part (c)

This part applied only to case 1. It is used to generate e;,8; for poles of r order
4,6,8,--- , M if any exist. Since non exist here. This is skipped. Hence M stays 1.

Part(d)

Now we need to find ey, 6. If O(00) > 2 then ey = 1,6y = 0. But if O(0co) = 2 then
0o = 0 and ey = v/1 + 4b where b is the coeflicient of % in the Laurent series expansion
of r at co. Since O(o0) = 0 here then none of these cases applies. For case 1 (n = 1)
following the method in the paper we find

€y = 0
Oy = 21
Hence now we have
e ={0,2m}

o= {221
x
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The above are arranged such that e, is the first entry. Same for 8. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate €’s and €'s. In step 2, these are used to generate trials d and 6 and find from
them P(x) polynomial if possible.

Step 2

In this step, we now have all the e;, 6; values found above in addition to ef;s, 0.

Starting with n.= 1. And since we have M = 1 then there are (n+ 1) =22 = 4
sets s to try. The first set s is

SACE S R

Now we generate trial d using

M
d = (n) (efiz) + Soeo — Z s;€;

i=1

Since M =1 then the above becomes
d = (n) (efiz) + So€o — $1€1 (7)

If d > 0 then we go and find a trial ©. We need to have both d, © to go to the next
step. O is found using

© = (n) (04iz) + Z 8:6; (8)

Hence the first trial d is (using Eq (7)) and recalling that es;, = —3, 0fiveq = 5= gives

1 -1 -1
- (-3)+(3) 0-(F)em

B 1

=m — 5
We now have to assume something about m to be to continue otherwise we will not
be able to decide if d is integer and d > 0. If we assume that m is half of all positive
odd integers (3,2,2,---) then d > 0. We can also assume that m is half of all negative
odd integers and the other s set will match. So under the assumption that m is half
of all positive odd integers the above d can be used for the next step. To continue,
we assume m takes some specific value to simplify the steps. Let m = % from now on.

Hence d = 1. Therefore e, become
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e ={0,3}

)

6= (TL) (wa) + 8000 + 8101

(2] () (3) ()

1
- T (iz+1
x(zz—i— )

Using Eq (8) gives (using M = 1)

Now that we have good trial d and ©, then step 3 is called to generate w if possible.
Step 3
The input to this step is the integer d =1 and © = —%(w + 1) found from step 2 and

2,2\
also r = % which comes from z” = rz. This step is broken into these parts.

First we find the p_;(z) polynomial. If we are to solve for its coefficients, then next we
build the minimal polynomial from the p;(z) polynomials constructed during finding
p—1(x). The minimal polynomial pm,(z) will be a function of w. Next we solve for w
from pmin(x) = 0. If this is successful, then we have found w and the first solution to
the ode ¥’ = ry is e/ “% . Below shows how this is done.

We start by forming a polynomial

p(z) = 2% +ag_127 + -+ a

=+ ag

The goal is to solve for the ag coefficient. Now depending on case number n, we do the
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following. Since we are in case n = 1 then

b1=—p

= —T —Q

po = —py — Op1
=—(—z—ap) — (—%(i-’ﬁ + 1)) (=2 —ao)

_1- (%(m 4 1)) (=2 — ag)

= —i (iz® + iaoz + ao)

p_1=—py—Opo— (1) (1) rp1

1, 5 . ' 1. 1, 5 . 4(n? —z%) -1
— (== (== N (== - —r—
( x(zx +za0x+a0)) ( x(zx-l— )) ( x(zx +za0x+a0)> = (—z — ap)
2.
= —;(zao -1)
Now we try to solve for a; using p_;(z) = 0. This gives agp = —i. Hence this implies
p(z) =z —1i
Since this is case n = 1 then
pl
w==—+06
p
. / 1
= (= Z,) — —(iz+1)
r—1i
_ —i(iz — 22+ 1)
 (~z4i)z
(iz® + 1)
34z

Before using this, we will verify it is correct. For case 1 the above should satisfy
WwHw=r

Let us see if this is the case or not.

d <—i(ix—x2+ 1)) n (‘i(ix—w2+1)>2 4<(%)2 _x2> !

dz (—z+1i)x (—x+1i)x 42
(—2iz® + 322 +1)  (ix®+z—3)° 1 (* —2)
22 (22 4 1)° 22 (z — 1) 2
1 1
re-n=-Le -y
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—i(iz—22+1) (iz3+1)

Verified. Hence w = e = T e will give the solution to the ode y” —
%y =0 when m = % Since solution w is found and verified, then first solution

to the ode is

y = efwdm
311
_ ef— (Z:3+z)dm
= Ee_im(x —1)

Hence first solution to given ODE is

y= ze%l [ adz
_ le—ix(w _ 7,) e—%fodx
T
1 .
= 56_”(33 —1)

One difficulty in implementation of Kovacic algorithm using an ode with a parameter
m like in this Bessel ode example, is that it makes it hard to decide if d > 0 or not. So
in practice, it is better to use this algorithm for specific values of any parameters that
can be involved.

4.1.6 Example 6 case one

Solve
y A4z — 8x% + 122* + 423 + T2? — 20z + 4
x

Hence

a=0

b 428 — 82 + 122* + 423 + Tz — 20z + 4

B 4x4
It is first transformed to the following ode by eliminating the first derivative
Z'=rz (2)

Using what is known as the Liouville transformation given by
y=ze2 Jod (3)

Where it can be found that r in (2) is given by
1 1
r= Za2 + Ea’ —b

428 — 825 + 122* + 423 + T2 — 20z + 4
= o (4)
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Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

,  A4r8 —8x5 + 122 + 423 + Tx? — 202 + 4
2= e z (5)

Step 0 We need to find which case it is. r = § where

s=4z% — 825 + 122* + 423 + 72?2 — 20z + 4
t = 4z*

The free square factorization of ¢ is t = [1, 1, 1, z]. Hence
m=4 (6)

Since m is number of elements in the free square factorization. in this case we set

Now

There is one pole at x = 0 of order 4. Looking at the cases table

case | allowed pole order for r = { | allowed O(oco) order L
1 [{0,1,2,4,6,8,--} (- ,—8,-6,—4,-2,0,2,3,4,5,6,7,---} | [1]
2 {2,3,5,7,9,---} no condition 2]
3 [{1,2} {2,3,4,5,6,7, } [4,6,12]

Shows that only case 1 is possible. L = [1].

Step 1

This step has 4 parts (a,b,c,d).

M Here the fixed parts efized, Ofizeq are calculated using

€ ined = ;l(min (0(c0) ,2) — deg (£) — 3deg (t1))

1/t t
eiwe =\ 7 3_1
fied 4(t+ tl)
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Using O(oc0) = 0,t = 4z*,¢; = 1 the above gives

1
€ fized = Z(min (—2,2) —4 —3(0))
1
= (-2-4
2-1)
_ 3
2
1[4 (4%
efia;ed = 4_1 <d Azt + 3(0)
1
oz

part (b)

Here the values e;, §; are found for ¢ = 1- - - ky where ks is the number of roots of ¢5. In
other words, the number of poles of r that are of order 2. Since ¢ = 1 then there are

poles. Hence k; = 0 and
M=0

Part (c)

This part applied only to case 1. It is used to generate e;,6; for poles of r order
4,6,8,--- , M if any exist. Here we have pole x = 0 of order 4. Following the paper
(need to document), we find e; = —5,6; = % — 2. We start from index 1 since k; = 0
from part (b). Now k; = 1. Note that for case 1, we use k;. Hence

M=1
And now not M = 0 (for case 1 only). For other cases, we use ky for M.
Part(d)

Now we need to find eg, 8. If O(00) > 2 then ey = 1,6y = 0. But if O(0c0) = 2 then
6, = 0 and ey = v/1 + 4b where b is the coefficient of z% in the Laurent series expansion
of r at co. Since O(00) = 0 here then none of these cases applies. For case 1 (n = 1)
following the method in the paper we find (need to document)

60:2
00=—2+2.’L’

Hence now we have

e={2,-5}

2
X T
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The above are arranged such that e, is the first entry. Same for 8. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate €’s and €'s. In step 2, these are used to generate trials d and 6 and find from
them P(x) polynomial if possible.

Step 2
In this step, we now have all the e;, 6; values found above in addition to ef;s, 0.

Starting with n. = 1. And since we have M = k; = 1 then there are (n+ 1) =22 =4
sets s to try. The first set s is

= - [-1 -1
Tl2 2" 122
Now we generate trial d using

M
d = (n) (efiz) + Soeo — Z s;€;

i=1

Since M =1 then the above becomes
d = (n) (efiz) + So€o — $1€1 (7)

If d > 0 then we go and find a trial ©. We need to have both d, © to go to the next
step. O is found using

© = (n) (04iz) + Z 8:6; (8)

Hence the first trial d is (using Eq (7)) and recalling that ef;; = —3, 01i5e0 = © gives

(4)+(F)e- ()0

=5
Since this is not > 0, we go to next set s {£!, 1} and try again
3 +1 +1
=0 (-3)+(3) - (T) e
=2
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This works. Using Eq (8) gives (using M = 1)

e = (n) (efm) + 3090 + 8191

(2]« () covae (2) (5-2)
(—22°% + 22% 4 3z — 2)

22
3 1

—r—1-2 4=
T 2z+x2

Now that we have good trial d and ©, then step 3 is called to generate P(x) if possible.
Step 3

The input to this step is the integer d =2 and © =z — 1 — 2 + % found from step 2
and also r = 4””6_8””5“2””4:;‘?3”””2_20”4 which comes from z” = rz. Since degree d = 2,

then let p(z) = z? + az + b. Therefore we need to now find P(z) that solves

P" +26

2+20(2z +a)+ (6 +

2ro(e-1-3 + VN owsays((zo1-3 4L ’+ 431 ? 425 — 82° + 122" + 42° + 72® —

o 2z g2 ) T o 2z x? v 4zt
Which simplifies to
1
——2(2am3—4x—2ax2—2a+4bm2—|—3ax—4bx+4x2) =0
x
b

4 1
—2az 4+~ +2a+ 2 —4b—3a= +4- —4=0
X X x X

Hence by comparing coefficients

1(2a)-|-(2a—4b—4)=0

1
-2 —(4 - 4b) + —
#(~20) + (4= 3a+45) +

Therefore a = 0. And 4 — 3a + 4b = 0 gives b = —1. Same if we used 2a — 4b — 4 =0,
So consistent equations. Therefore

P(x)=2*-1
And the solution is

z = P(z)el %

— (.,11,2 _ 1) efm—l—%-l-m%dz

= (2 - 1) pie ity e
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Hence first solution to given ODE is

4.1.7 Example 7 case two

Solve
"_ 162 — 3y
1622
Y +ay'(z) + by =0
Hence
a=20
b _ 16x — 3

16z
It is first transformed to the following ode by eliminating the first derivative

2 =rz

Using what is known as the Liouville transformation given by
Y=z 6_71 J adz

Where it can be found that r in (2) is given by

1 1
r:Za2+§a'—b
_ 16x — 3

1622

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is
S 16z — 32
1622
Step 0 We need to find which case it is. r = { where
s =16z — 3
t = 162°
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The free square factorization of ¢ is ¢t = [1, z|. Hence
m =2 (6)

Since m is number of elements in the free square factorization. in this special case we
set

Now

O(o0) = deg (t) — deg (s)
=21
=1

There is pole x = 0 of order 2. Looking at the cases table, reproduced here

case | allowed pole order for r = { | allowed O(oco) order L
1 {0,1,2,4,6,8,---} {--,-8,-6,-4,-2,0,2,3,4,5,6,7,---} | [1]
2 {2,3,5,7,9,---} no condition 2]
3 {1,2} {2,3,4,5,6,7,---} [4,6,12]

Shows that only case 2 is possible (due to O(c0) = 1 which is not allowed other than
for case 2). Hence L = [2].

Step 1
This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts €fized, 0 fizea are calculated using

€ ived = }l(mm (0(00) ,2) — deg (£) — 3deg (1))

1/t t
eiwe =2\ 7 3_1
fized 4(t+ tl)
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Using O(o0) = 1,t = 162%,t; = 1 the above gives

1
€fized = Z(min (1,2) — 2 —3(0))
1

=-(1-2
11-2)
__1
4
1 £ (162?)
efized = Z ( 1622 3(0)
_ L
Y

part (b)

Here the values e;, §; are found for ¢ = 1- - - ky where ks is the number of roots of ¢5. In
other words, the number of poles of r that are of order 2.

T_16x—3
T 1622

These will be the zeros of £, in the above square free factorization of ¢. From above we
found that

tg =T
Label these zeros of ty as c1,ca, -+ ,Cr,. The zeros of to are {0}. Therefore ky = 1.
Hence

M=1

Now we iterate over each zero c; times finding e; and 6; from each. These are found to
be (following formula in paper) to be

e 1
D)
And 1
0, = —
! 2z
Part (c)

This part applied only to case 1. It is used to generate e;,8; for poles of r order
4,6,8,--- , M if any exist. Since only case 2 exist in this example. This is skipped.
Hence M stays 1.

Part(d)
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Now we need to find eg, 6. If O(c0) > 2 then ey = 1,6y = 0. But if O(co0) = 2 then
0o = 0 and ey = v/1 + 4b where b is the coefficient of # in the Laurent series expansion
of r at co. None of these apply, and this is not case 1. Hence

60=O
6o =0

~fol
o]

The above are arranged such that e; is the first entry. Same for 6. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate €’'s and €'s. In step 2, these are used to generate trials d and 6 and find from
them P(z) polynomial if possible.

Step 2

Hence now we have

In this step, we now have all the e;, 6; values found above in addition to ey;z, 0.

Starting with n = 2. Since case 2 only applies here. And since we have M = 1 then
there are (n + 1) = 32 = 9 sets s to try. The first set s is

5= {_7”_7"} = {-1,-1}

Now we generate trial d using

M
d = (n) (efiz) + Soeo — Z 8:€;
i=1
Since M =1 then the above becomes
d = (n) (efiz) + So€o — s1€1 (7)

If d > 0 then we go and find a trial ©. We need to have both d, © to go to the next
step. O is found using

© = (n) (05iz) + Z 5:6; (8)

Hence the first trial d is (using Eq (7)) and recalling that ey, = —i, O fized = ﬁ gives
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Since d > 0, then we can use it. Using Eq (8) gives (using M = 1)
0= (’I’L) (Gfm) + 8090 + 8191

- (5 )+ 0O+ (5)
1

T2
Now that we have good trial d and ©, then step 3 is called to generate P(x) if possible.
Step 3

The input to this step is the integer d = 0 and © = % found from step 2 and also
102-3 which comes from z” = rz. We need now to find P(x) of degree d = 0 which

is a constant such that

P" +30P" + (30*+30' —4r) P' + (0" + 300" + ©% —4r0 —2r') P =0

r =

Since P =1 then above simplifies to
(0" +306'+6°—4r0 —2r') =0

We know © and r. If this verifies, then we can use P = 1. Substituting the above
becomes

1\” 1 /1Y 1\3 16z — 3 1 16z — 3\’
((ﬁ) e () * (3e) 4T )(ﬁ)”( 1622 ) -
@I L d (1N (1Y 16e-3) (1) d =
dz? \ 2z 2z dx \ 2z 2T 1622 2T dm 16z2
0=

Verified. Hence

0

P(z)=1

Let
Pl
=0+ F
_1
2z
Now we solve for w from

w2—¢w+( ¢+ qb—r

G0 )
2z 2\ 2z 2 1622
1
T

wz——w—i-

2z 16952 B
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The solution w = - + \/ii We pick either solution. Hence the solution is

5 = efwda:
1,1
:efﬂ+ﬁdw

= m%eQﬁ
Hence first solution to given ODE is

-1
y=ze? J adz

1 1
— xze2\/56—§ J 0dz

= Q;%e%/i
4.1.8 Example 8 case two
Solve
1
" o_
Yy = EZJ
y" + ay'(z) + by =0
Hence
a=0
1
b == —E

It is first transformed to the following ode by eliminating the first derivative

2 =rz

Using what is known as the Liouville transformation given by
y=z 6_71 J adz
Where it can be found that r in (2) is given by

1 1
r:Za2+§a'—b
1
T3

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

1
Z”=—3Z
T
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Step 0 We need to find which case it is. r = $ where

s=1

t =23

The free square factorization of ¢ is ¢ = [1, 1, z]. Hence

m=3

(6)

Since m is number of elements in the free square factorization. in this special case we

set

Now

O(o0) = deg (t) — deg (s)

=3-0
=3

There is pole £ = 0 of order 3. Looking at the cases table, reproduced here

case | allowed pole order for r = { | allowed O(co) order L
1 |{0,1,2,4,6,8,---} {,—8,-6,—4,-2,0,2,3,4,5,6,7,---} | [1]
2 {2,3,5,7,9,---} no condition 2]
3 | {12} {2,3,4,5,6,7,-- } [4,6,12]

Shows that only case 2 is possible (since odd pole is only allowed in case 2). Hence

L=12].
Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efiged, 0 fizea are calculated using

€ ived = }l(mm (0(00) ,2) — deg (£) — 3deg (1))

efixed =

1

4

(

tl

tl
Z 4343
il tl)
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Using O(o0) = 1,t = z3,¢; = 1 the above gives

1
€ fived = Z(min (3,2) —3-3(0))
1

=,2-3)
1
T4
d (.3
0 tized = i(d“if ) + 3(0)>
3
T4z

part (b)

Here the values e;, §; are found for ¢ = 1- - - ky where ks is the number of roots of ¢5. In
other words, the number of poles of r that are of order 2. There are no poles of order
2. Hence ky; = 0.

Part (c)

This part applied only to case 1. It is used to generate e;, 6; for poles of  order 4, 6,8, - - -
if any exist. Since only case 2 exist in this example. This is skipped. Hence k, stays 0.

Part(d)
Now we need to find eg, 6y. If O(c0) > 2 then eq = 1,6y = 0. Hence

€y =
6o=0

Hence now we have

e={1}

6 = {0}
The above are arranged such that e, is the first entry. Same for 6. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the

candidate €’'s and #'s. In step 2, these are used to generate trials d and 6 and find from
them P(x) polynomial if possible.

Step 2

In this step, we now have all the e;, 8; values found above in addition to ef;z, 0.
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Starting with n = 2. Since case 2 only applies here. And since we have ks = 0 then
there are (n + 1)***" = 3 sets s to try. The first set s is

{7}

Now we generate trial d using

k2
d = (n) (efiz) + Soeo — Z Si€;
i=1
Since ky = 0 then the above becomes
d= (’I’L) (efm) + Sp€o (7)

If d > 0 then we go and find a trial ©. We need to have both d,© to go to the next
step. © is found using

k2
6 = (n) Oru) + > 6 ®)
=0
Hence the first trial d is (using Eq (7)) and recalling that ey;, = —i, O fized = % gives
1
1= (~;)+ D
__3
2

Since negative then we can not use it. Now we try the next set s = {0}. Then Eq(7)
gives

Since negative then we can not use it. Now we try the last set s = {+1}. Then Eq(7)
gives

Since not an integer, then we can not use it. We are run out of sets s to try. Therefore
there is no Liouvillian solution.
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4.1.9 Example 9 case two

Solve
22%y" — 2y + (1 —22)y =0
1 1-2z
y//_%y/_|_(2x2 )y= z#£0
Y +ay(z) +by=0
Hence
0 1
2z
(1-2x)
b=~——~2
212

It is first transformed to the following ode by eliminating the first derivative
2 =rz
Using what is known as the Liouville transformation given by

-1
y=ze? J adz

Where it can be found that r in (2) is given by

r=ia2+§a'—b

L1 1N\ 1d [ 1 (1—2z)
—1(%) +§@(‘5)‘ 202
_ 16z —3

1622

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

s 16z — 3z
1622

Step 0 We need to find which case it is. r = { where

s=16z — 3
t = 1622

The free square factorization of ¢ is ¢ = [1, z|. Hence

m=2
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Since m is number of elements in the free square factorization. in this special case we

set

Now

There is pole x = 0 of order 2. Looking at the cases table, reproduced here

O(oc0) = deg (t) — deg (s)
=2-1
=1

case | allowed pole order for r = ¢ | allowed O(co) order L
1 [{0,1,2,4,6,8,---} (- ,—8,—-6,-4,-2,0,2,3,4,5,6,7,--- } | [1]
2 {2,3,5,7,9,---} no condition [2]
3 | {1,2} {2,3,4,5,6,7,-- } [4,6,12]

Shows that only case 2 is possible (O(c0) = 1 is only possible for case 2). Hence L = [2].

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts €fized, 0 fizea are calculated using

€ ived = le(min (0(c0) ,2) — deg (£) — 3deg (1))

1/t
efized == (? +3

4

4
ty

Using O(o0) = 1,t = 162%,t; = 1 the above gives

€ ived = i(min (1,2) — 2 — 3(0))

1
4

1-2)
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part (b)

Here the values e;, 6; are found for ¢ = 1- - - ky where k5 is the number of roots of ¢5 = .
In other words, the number of poles of r that are of order 2. There is one pole of order 2.

Hence k; = 1. the coefficient of ﬁ; in the partial fractions of r = 22 = 1 — f‘—ﬁﬁ.

Thereforeb = —3 . Hencee; =v1+4b=4/1+4(—3) =1and 6, =

en __ 1
5 = 5. Hence

-4}
{3

Part (c)

This part applied only to case 1. It is used to generate e;, 6; for poles of  order 4, 6,8, - - -
if any exist. Since only case 2 exist in this example. This is skipped. Hence k-, stays 0.

Part(d)

Now we need to find e, §p. Since this is not case 1 and since it is not O(oco) > 2 and
not O(oo) = 2, then

Hence now we have

1
o051

The above are arranged such that e is the first entry. Same for 6. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate €’'s and €'s. In step 2, these are used to generate trials d and 6 and find from
them P(x) polynomial if possible.

Step 2
In this step, we now have all the e;, 6; values found above in addition to eyiz, 0.

Starting with n = 2. Since case 2 only applies here. And since we have k; = 1 then
there are (n + 1)¥! = 32 = 9 sets s to try. The first set s is

5= {_7"_7”} — {-1,-1}
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Now we generate trial d using

ko
d = (n) (efiz) + Soeo — Z Si€;
i=1
Since k; = 1 then the above becomes
d = (n) (efiz) + So€0 — s1€1 (7)

If d > 0 then we go and find a trial ©. We need to have both d,© to go to the next
step. © is found using

© = (n) (05iz) + Z 8i0; (8)

Hence the first trial d is (using Eq (7)) and recalling that esi; = —3, 0fivea = 5= gives

6= (2) (%) + 8090 + 8191
~@(5,) + DO+ (D,
1
=%

Since this is case 2 (n = 2) then we need to first find P(x). The degree is d = 0. Hence
constant. Say P = 1. But we need to verify this is valid. Setting up the equation

P" +30P" + (30 +30' —4r) P'+ (0" + 360"+ 6% —4r©@ — 2r') P =0
Which simplifies to (since P = 1)
0" 4300+ 0 —4r0 —2r' =0

Using © = %, r= lfgm_f the above reduces to
0=0
Hence P(z) =1 can be used. Now let
Pl
— O+ —
¢ +5
1
2
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We now need to solve for w from (notice that original Kovacic paper has + and not —
after first term in the following equation. The + is from Smith paper. It seems to have
been a typo in original paper as this version gives the correct solution).

1 1
2 Loy Lo )
w ¢w+(2¢+2¢ r) 0
, 1 1 1

YT oz T 82 T 1622

(16z —3) =0
Solving (and picking first root) gives

(1+4Vx)

1
iz

Before using this, we verify it satisfies w’ + w? =r

2
di(4 (1 +4f)) ($(1+4\/5)) _1eo3
161952 (162 =3) = m;—;f
Verified OK. Hence solution is
z=elw®
_lev
Hence first solution to given ODE is
Y=z o2 Jadz
—x4e2‘fe i [ —ods
= \/ze?V®
Second solution y, can now be find by reduction of order.
4.1.10 Example 10 case two
Solve
(22 +2)y" +3zy' —y=0 (1)
v (x23—T- Y " @ ; 2 ="

y' +ay(z)+by=0
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Hence

o 3z
(22 +2)
1
b=——+——
(z2 +2)

It is first transformed to the following ode by eliminating the first derivative
2 =rz
Using what is known as the Liouville transformation given by
y=2z e 2 Jade

Where it can be found that r in (2) is given by

1 1
r=1a2+§a'—b

(e Y ey
4\ (22 +2) 2dx \ (z2+2) (2 +2)
Tz +20

4(z2+2)°

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

o T+
4 (22 +2)°

Step 0 We need to find which case it is. r = 3 where

s="Tz"+20
t = 4(2® +2)° = 16 + 1622 + 42"

The free square factorization of ¢ is t = [1, (z? + 2)]. Hence

m =2

2)

3)

(4)

(5)

(6)

Since m is number of elements in the free square factorization. in this special case we

set

t1=1
t2=(.’152+2)
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Now

There is pole £ = +iv/2 of order 2. Looking at the cases table, reproduced here

O(00) = deg (t) — deg (s)

=4-2
=2

case | allowed pole order for r = ¢ | allowed O(oco) order L
1 |{0,1,2,4,6,8,---} {--,—8,—6,-4,-2,0,2,3,4,5,6,7,---} | [1]
2 {2,3,5,7,9,---} no condition 2]
3 | {12} {2,3,4,5,6,7, } [4,6,12]

Shows that all cases are possible. Hence L = [1,2,4, 6, 12].

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efized, 0 fizea are calculated using

€ ived = le(min (0(c0) ,2) — deg (£) — 3deg (1))

1
efia:ed = Z (

t ¢
434
%)

Using O(o0) = 2,t = 4(z? + 2)2 ,t1 = 1 the above gives

part (b)

€ fized = i(min (2,2) —4—3(0))

Here the values e;,0; are found for ¢ = 1---ky where ko is the number of roots of
to = (22 4+ 2). In other words, the number of poles of r that are of order 2. There
are two poles of order 2. Hence k; = 2. These poles at z = +iv/2. The coefficient of
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where c; is first pole is b; = Hence er=v1+4b=/1+4(—%) =73 and

(z—c )2

__ _e€ _ _ 3
0, = x_lq = (m_i \[) The coeﬂic1ent of )2 where c; is second pole is by = —1.
_ _ 3\ 1 __ e _
Hence e = v1+4b=,/1+4 (_E) =5 and 0, = e = (zH\[) Hence

11
e=19-,2
2’2

ez{z(x—lm/ﬁ)’2("*"+1"*/§)}

Part (c)

This part applied only to case 1. It is used to generate e;, 8; for poles of r order 4, 6,8
if any exist. Since only order 2 pole exist, then this is skipped. Hence ks stays 2.

Part(d)

Now we need to find ey, 8. Since this is case O(c0) = 2, then ey = /1 + 4b where

b = ZIEZZ%E‘:) where lcoef f(s) is leading coefficient of s = 7x? + 20 which is 7 and

lcoef f(t) is leading coefficient of ¢ = 16 + 162> + 4z* which is 4. Hence b =

Therefore
=VI+db= 1+ 4 =2V2

6o=0

11
={2v2, -, 2
e {f,m}

1 1
0=<0, ,
{ 2 (z —iv2) 2(m+i\/§)}
The above are arranged such that ej is the first entry. Same for 6. This to keep the

same notation as in the paper. The above complete step 1, which is to generates the
candidate €’'s and €’'s. In step 2, these are used to generate trials d and 6 and find from

Hence now we have

them P(z) polynomial if possible.
Step 2
In this step, we now have all the e;, 6; values found above in addition to ey;z, 0.

Starting with n. = 1. And since we have k, = 2 then there are (n + 1)**! = 23 = 8 sets
s to try. The first set s is

s_J-nn-n|_[-1-1-1
127272 127272
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Now we generate trial d using

k2
d = (n) (efiz) + So€0 — Z 5i€;
i=1
Since ky = 2 then the above becomes
d = (n) (efiz) + Soeo — S1€1 — S2€2 (7

If d > 0 then we go and find a trial ©. We need to have both d,© to go to the next
step. © is found using

k2
O = (n) (0fiz) + Z 8i0; (8)
i=0
Hence the first trial d is (using Eq (7)) and recalling that ef;; = —%, Ofived = 275 Gives

- (4)+(3)69-(3)6)-(3) ()

S

Since not an integer, we try next set s = {3, 5, 31} and now Eq (7) gives
1 -1 -1 1 +1 1
=0 () +(3)@2)-(3) () - (3) ()
1
= 2=
2

Since not an integer, we try next set s = {3, £, =1 }. If we continue this way we will
find that all sets s will fail to generate a d > 0. Hence case one did not work. Now we
go to case 2 (n = 2).

Starting with n = 2. And since we have ky = 2 then there are (n+ 1) = 33 sets s

to try. The first set s is
-n —-n —n
S { 2 ) 2 ) 2 } { ) ) }

Now we generate trial d using

k2

d = (n) (efiz) + Soeo — Z s;€;

i=1

Since ky = 2 then the above becomes

d = (n) (efiz) + So€o — 161 — S2€2 (7)
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If d > 0 then we go and find a trial ©. We need to have both d,© to go to the next

(®)

step. © is found using
k2
© = (n) (Bfi0) + Y _ sib;
=0

Hence the first trial d is (using Eq (7)) and recalling that ejix = —3, 0fized = 725 gives
1 1 1
d=(2) (-§> +(=1) (2\/5) —(=1) (5) — (=1 (§>
= —2v2
Since not an integer, we try next set s = {—1,—1,+1}. If we continue this way we will
find that set s = {0, —1, —1} works.
1 1 1
d=(2) (—5) +(0) (2\@) - (-1 <§> —(-1) <§>
=0

We can use this d. From Eq (8)

1
6= (2) — | + 8000 + 8191 + 8202
2z

® (5253) OO - (-1 (W)*‘” <m>

T2 4+ 2

X

T 2242
Since this is case 2 (n = 2) then we need to first find P(x). The degree is d = 0. Hence

constant. Say P = 1. But we need to verify this is valid. Setting up the equation
P" +30P" + (36?4 30' —4r) P' + (0" + 300" +©0° —4r© —2r') P =0
Which simplifies to (since P = 1)
0" +300' +0°—4r0 —2r' =0

: _ oz _ 7z2420
Using © = 7T =3 (@212)? the above reduces to

0=0

Hence P(x) = 1 can be used. Now let

¢=@+F
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We now need to solve for w from (notice that original Kovacic paper has + and not —
after first term in the following equation. The + is from Smith paper. It seems to have
been a typo in original paper as this version gives the correct solution).

w2—¢w+(%¢'+%¢2—r) =0

IR L S 1/ z '+1 T 2_ 7% 4+ 20 _0
2 + 2 2\ 22+ 2 2\ 22+ 2 4(z242)7)
4w’z — dwad + (16w? — 7) 22 — 8aw + 16w? — 16

4(z2+2)°
4w’z* — dwz® + (16w? — 7) 2° — 8zw + 16w* — 16 =0

0

Solving for w (and picking first root) gives

_T+2v2z%2+4
o 2(22+2)

w

Before using this, we verify it satisfies w’ + w? =r

2
d (z+2v22% +4 N T+2v222+4) T2 +20
de\  2(z2+2) 2 (2% +2) 422 +2)°
Tr’+20 72?420

dz* + 1622 + 16 4(z2 + 2)2

Verified OK. Hence solution is

zzefwd:c

242122244
ef 2(s2+2) 4

v/2 arcsinh ( § ac)

1
= (:c2 + 2) ‘e
Hence first solution to given ODE is

—1
Y =ze J adz
1 3z

= (2? +2)i e\/iarcsinh<§z)e—§fwdw

e\/i arcsinh ( ?:p)

(22 +2)

Second solution y, can now be find by reduction of order.
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4.1.11 Example 11 case one

Solve
(2P +z+1)y —z(-22° -4z + 1)y +y=0
,  r(=2r2—4x+1) , _o
22 (x2+2x+1) y x2(x2+x+1)y_
y' +ay'(z) +by =0
Hence

z(—22% — 4+ 1)
z? (22 + 2z +1)

b— 1
22224z +1)

a=—

It is first transformed to the following ode by eliminating the first derivative

2 =rz

Using what is known as the Liouville transformation given by
Y=z 6%1 J adz

Where it can be found that r in (2) is given by

1 1
T=Za2—|—§a'—b

1 z(-2a%—4z+1) 2+1i z(-222—4dx+1)\ 1
4 z? (22 +z+1) 2 dx 2 (x2+z+1) 2 (
102> -8z —1

4z (2 4z + 1)

Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

o 10z? — 8z — 1 B
422 (22 4+ z + 1)

Step 0 We need to find which case it is. r = { where

s=102> -8z —1
t=4m2(:v2+z+1)2
= (x3+x2—|—m)2
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The free square factorization of ¢ is t = [1,z® + 2? + z]. Hence

m =2

(6)

Since m is number of elements in the free square factorization. in this special case we

set

t1=1

t2:z3+x2+z
Now

O(o0) = deg (t) — deg (s)
=6—2
=4

There are poles of order 2. Looking at the cases table, reproduced here

case | allowed pole order for r = { | allowed O(oco) order L
1 {0,1,2,4,6,8,---} {--,-8,-6,-4,-2,0,2,3,4,5,6,7,---} | [1]
2 {2,3,5,7,9,---} no condition 2]
3 {1,2} {2,3,4,5,6,7,---} [4,6,12]

Shows that all cases are possible. Hence L = [1,2,4,6,12].
Step 1

This step has 4 parts (a,b,c,d).

M Here the fixed parts efized, Ofizeq are calculated using

€ ived = }l(mm (0(00) ,2) — deg (£) — 3deg (1))

1/t t
eiwe =2\ 7 3_1
fied 4(t+ tl)
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Using O(00) = 2,¢ = (23 + 22 + z)°, ¢; = 1 the above gives
1
€ fized = Z(min (6,2) — 6 —3(0))
1
= (2—
t2-6)
=-1

; 1 dx((:c + 2 +:c)>
fized = 4 (23 4 22 + z)°

+ 3(0)

132> +2z+1
223 +12417
part (b)

Here the values e;, 6; are found for i+ = 1---ky where ky is the number of roots of
ty = 22 + 2% 4+ z. In other words, the number of poles of  that are of order 2. There are
three poles of order 2. Hence k; = 3. These poles at z = {0, —1 + 2i+/3}. The coefficient

of )2 where ¢; is first pole is b; = —;. Hence e; = vV1+4b = /1+4(—3) =0
and 01 = 0. The coefficient of s where ¢, is second pole is by = M‘”z.
z—c ) 3(-1+iv3)
_ _ V/3v/2430iv3 _ e __ —2v/3/24-30iv/3 .
Hence e; = v/1 +4b = —3(_1%\/5) and 0, = 2 = 3(_1%\/5) (Z = 2x_1). The coefficient
of —L, where c; is the third pole is bs = =%Y3+2. Hence 3 = /1 + 4b = Y3Y2=30i/3
(z—c3) 3(1+iv3) 3(14iv3) )
and 03 = &8 = __2V3y2-30iv3 Hence

z—c3 3(1+i\/§) (i\/§+2w+1> ’

{ V3V2 +30iv/3 /32 — 30i }

T 3(-1+4v3) T 3(1+4v3)

9:{0 —2v/3v/2 + 30iv/3 2v3v/2 — 30iv/3 }
"3(-1+4v3) (ivV3—-22-1)"3(1+iV3) (ivV3+ 2z +1)

Part (c)

This part applied only to case 1. It is used to generate e;, 8; for poles of r order 4,6, 8
if any exist. Since only order 2 pole exist, then this is skipped. Hence k, stays 3.

Part(d)
Now we need to find e, 6p. Since this is case O(co) = 4 > 2 and since there are no
poles or order 4,6,8, --- then we do not need to handle case n = 1. Instead we use

ey =

6o=0
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Hence now we have

R V3v/2 +30iv3 v/3v/2 —30iv/3
7 3(-1+4v3) T 3(1+iv3)

D POV N ps e 2v3/2 — 30i/3
1 73 (-1+4v8) (V3 —20—1) 3 (1 +iv3) (iv3+ 2z +1)

The above are arranged such that e, is the first entry. Same for 6. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate €’s and #'s. In step 2, these are used to generate trials d and 6 and find from
them P(x) polynomial if possible.

Step 2
In this step, we now have all the e;, 6; values found above in addition to ef;s, 0.

Starting with n = 1. And since we have k, = 3 then there are (n+1)™*' =24 = 16
sets s to try. The first set s is

_—n—n—n—n_—l—l—l—l
Tl 222" 2 [ 122" 2"

Now we generate trial d using

ko
d = (n) (efiz) + So€o — Z si€;
i=1
Since ko = 3 then the above becomes
d = (n) (efiz) + So€o — S1€1 — S2€2 — S3€3 (7)

If d > 0 then we go and find a trial ©. We need to have both d,© to go to the next
step. © is found using

132%2+2x+1

Hence the first trial d is (using Eq (7)) and recalling that efi; = —1,0fized = 553 o

gives

2o ()0 (3) (S5580)-(3) (S

|
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Since not an integer, we try next set s = {3, 51, 5, £}, If we continue this process

we will find that set s = {%, 2l =L +—1} works and generates

= () on-(3)0- (3) (525 - () (56257

=0
We can use this d. From Eq (8)

0= (n) (efim) + 5000 + 5161 + 5202 + 5305

O(EE) ()0 ()0 (3) (e ) -

223 +224z 2 2 —1+4v3) (V3 -2z —1) 2)
12 -2+1
2 24z +1

Now that we have good trial d and ©, then step 3 is called to generate P(x) if possible.

Step 3
The input to this step is the integer d = 0 and © = ﬁ 2%;926?;1 found from step 2 and
also r = %. Since degree d = 0, then let p(z) = 1. A constant. We need to

verify

P"+20P' + (6/+©*—r)P=0
0+6*-r=0

Substituting gives

_4.’IJ2(:L'2+.'17+1)2 B
0=0

d /122 —-2c+1 1222 —2¢+1\> 1022 —-8z—1
dr\2z z24+z+1 2r 22 +x+1

Verified. The solution is

z = P(z)el ®%

2
1 2z°—-2x41
= ef 2z g24z+1 dz

= (51;2 +xz+ 1)% \/Ee—%\/?;arctan<w)
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Hence first solution to given ODE is

-1
Y =zez [ adz

1

(4 a1yt g s (o) (i

_7 (2z+1)V3
ze 8 3arctan< 3 )

V4 zx+4

Second solution y, can now be find by reduction of order.

4.1.12 Example 12 case one

Let
(2 —20)y"+(2-2*)y+ (22 —2)y=0
Normalizing so that coefficient of y” is one gives
2 — z? 2z — 2
@-s) ,, @o-2)
(x% — 2x) (22 — 2x)
y' +ay'(z) +by =0

yll +

Hence
. (2 — z?)
((ﬂﬂ2 - 296))
2x — 2
b= o)

It is first transformed to the following ode by eliminating the first derivative

2 =rz

Using what is known as the Liouville transformation given by
Y=z 6_71 J adz

Where it can be found that r in (2) is given by

1 1
r=Za2+§a'—b

1/ 2-2)\? 1d [ (2-2° (2z — 2)
_z_l((x2—2x)> +§%<(x2—2x)>_(x2—2x)
_at — 8’ + 242? — 242 + 12

B 422 (z — 2)°
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Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

"

xt —

8x3 + 24x2% — 24x + 12

422 (z — 2)°

Step 0 We need to find which case it is. r = $ where

s=x*— 8z + 2422 — 24z + 12
t = 42?(x — 2)°

The square free factorization of ¢ is ¢t = [1, z(xz — 2)]. Hence

m =2

(5)

(6)

Since m is number of elements in the free square factorization. in this case we set

Now

t1 =1
to = z(z — 2)

O(00) = deg () — deg (s)

=4-4
=0

There is one pole at x = 0 of order 2 and one pole at = 2 also of order 2. Looking at

the cases table

case | allowed pole order for r = ¢ | allowed O(co) order L
1 {0,1,2,4,6,8,---} {--,-8,-6,—4,-2,0,2,3,4,5,6,7,---} | [1]
2 {2,3,5,7,9,---} no condition [2]
3 {1,2} {2,3,4,5,6,7,---} [4,6,12]

Shows that only case 1,2 are possible. L = [1,2].

Step 1

This step has 4 parts (a,b,c,d).

part (a) Here the fixed parts efized, Ofizeq are calculated using

€ ined = ;l(min (0(c0) ,2) — deg (£) — 3deg (t1))

efiwed =

1

4

(

tl

t/
434
Al tl)
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Using O(oc0) = 0,t = 4z*,¢; = 1 the above gives

€ fived = i(min (0,2) —4 — 3(0))

1
21(0—4)
-1
1 4 (422(z — ))
efimed— 4< 472 (:B—Q) 3(0))
_ z? — 3z +2
z (z — 2)°
oz —1
- z(r—2)

part (b)

Here the values e;,0; are found for i = 1---ky where ky is the number of roots of
to = z(x — 2). In other words, the number of poles of r that are of order 2. There are
two poles Hence ky; = 2. These poles c; Where i =1,2 at x = {0, 2}. For each ¢; then

1+ 4b where b is the coefficient of >2 in the partial fraction expansion of r
and 0; = 2. The partial fraction expansmn of T is

ozt —8ad + 242? — 242 + 12
402 (z — 2)°
1 31 1 1 3 1 31

1 4z 1@-2) Td@_2® 1z

The coefficient of W where ¢; = 0 is first pole is b; = § from looking at the above.

Hence e; = vV1+4b=/1+4(3) =2 and 6, = - = . The coefficient of )2
where ¢, = 2 is second pole is by = 3. Hence e; = v1+4b = (/1+4(3) = 2 and
0, = xfcz = —2-. Therefore the lists ¢, are

e={2,2}
92{%’3532}

This part applied only to case 1. It is used to generate e;,8; for poles of r order
4,6,8,- -,k if any exist. There are none. This step is skipped.

Part(d)

Part (c)
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Now we need to find eg, 6. If O(c0) > 2 then ey = 1,6y = 0. But if O(co0) = 2 then
6y = 0 and ey = v/1 + 4b where b is the coefficient of # in the Laurent series expansion
of r at co. Since O(00) = 0 here then none of these cases applies. For case 1 (n =1)
we first find [r], the sum of terms z* for i = —%,---0 where v is the O(co0) which is
zero here. Hence

v=20

The following is sum of terms from the Laurent series expansion of /7 at z = oo which

18 1 1 2 11

V=gt mtmt
We want only terms for 0 < ¢ < v but v = 0. Therefore only the constant term. Hence
1
Ve =3

0

Then a is the coefficient of 72 = z” or constant term. Hence

a=_

2

And b is the coefficient of z2 "' =z in 7 — ([/7] 00)2. This comes out to be

b=-1
Hence
b
€)= — = -2
a
o =2[vA],, =1
Hence now we have
e={-2,2,2}

2 2
~J1.2
6 {’x’x—2}

The above are arranged such that ej is the first entry. Same for 6. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate €’'s and €’'s. In step 2, these are used to generate trials d and 6 and find from
them P(z) polynomial if possible.

Step 2

In this step, we now have all the e;, 6; values found above in addition to ey;z, 0.
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Starting with n = 1. And since we have ky = 2 then there are (n + 1) = 23 = § sets
s to try. The first set s is

_—n—n—n_—l—l—l
*T1 222 (1222

Now we generate trial d using

k2
d = (n) (efiz) + Soeo — Z s;€;
i=1
Since ky = 2 then the above becomes
d = (n) (efiz) + So€o — 161 — S2€2 (7)

If d > 0 then we go and find a trial ©. We need to have both d,© to go to the next
step. © is found using

© = (n) (05iz) + Z 8:6; (8)

z2—3z+2

Hence the first trial d is (using Eq (7)) and recalling that efi; = —1,0fizeq = (o 2)?

-0+ (F)ea-(Fe-(F) e

=2

gives

This will work. Let us find all of the d so to compare with the solution to same ode
using original kovacic algorithm given earlier to see if we get same d’'s. We try next set

-0+ (F)ea-(Fo-(F) e

s={33%
=2

Trying next set s = {_Tl, _71, 5

Trying next set s = { !, &1, £11
e (F)er- () (2o
=2
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Trying next set s = {£}, 31, 2t}
e () ()o- (2
—0
Trying next set s = {£}, 31, £}
o (G- (2o (2o
=2

=2
Trying the next set s = {£!, 1 11
(e (2o (e
=4

OK, we have all d values. We now try the ones which are d > 0 and these are d—0,d = 2.
Trying d = 2 first which used the set s = {3}, 5, 5L} gives {1, 2, -2

6= (n) (wa) + 8090 + 8191 + 82191

-0 () ()0 (3) 6)+ () ()
1 22-2

2 x—2

Now that we have good trial d and ©, then step 3 is called to generate P(x) if possible.

Step 3
The input to this step is the integer d = 0 and © = — L2

2 x—2
4 o 3 2 . .
“ 8364:22&”6_2)34”12 which comes from z” = rz. Since degree d = 2, then let

p(z) = % + a1 + a. Solving for p(z) from

found from step 2 and

also r =

P"4+20P' + (0'+60°—r)P=0
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gives p(z) = x? as solution. Hence the solution is

z = P(z) el ®%

2

1 -2
— x2ef—ﬁzm_2 d.’l)

Z _=z
= e 2
Tz —2
Hence first solution to given ODE is
Y = ze%l J adz
a2
.27% _520 _71f ((1227%)) dx
= e z2e
VT —2
= :L‘z

The second solution can be found by reduction of order.

4.1.13 Example 13 case one

Let
" x !
_ =0
Y +1—xy 1_ Y
y" +ay'(z) + by =0
Hence
T
a =
l1—2x
1
b=—
11—z

It is first transformed to the following ode by eliminating the first derivative

2 =rz

Using what is known as the Liouville transformation given by

y:ze%fadx

Where it can be found that r in (2) is given by

1 1
T=Za2+§a’—b
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Hence the DE we will solve using Kovacic algorithm is Eq (2) which is

,,=a:2—4x+6

z )
4(x — 1) (5)
Therefore
s
r=-
t
_2®—4r+6
4(x—1)°
Step 0 We need to find which case it is. r = $ where
s=x>—4r+6
t=4(zx —1)°
The square free factorization of ¢ is ¢t = [1, (x — 1)]. Hence
m =2 (6)
Since m is number of elements in the free square factorization. in this case we set
t1 =1
t2 = (1’ — 1)
Now
O(00) = deg (t) — deg (s)
=2-2
=0
There is one pole at £ = 1 of order 2. Looking at the cases table
case | allowed pole order for r = ¢ | allowed O(oco) order L
1 {0,1,2,4,6,8,"'} {"',_8,_6,_47_27(),2,3)475,677)"'} [1]
2 {2,3,5,7,9,---} no condition 2]
3 {1,2} {2,3,4,5,6,7,---} [4,6,12]

Shows that only case 1,2 are possible. Hence L = [1,2].

Step 1

This step has 4 parts (a,b,c,d).
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part (a) Here the fixed parts efized, Ofizea are calculated using

€ ived = }l(mm (0(c0) ,2) — deg (£) — 3deg (1))

1/t t
eime =2\ 7 3_1
fized 4(t+ tl)

Using O(o0) = 0,t = 4(z — 1)*,¢; = 1 the above gives

€ fized = le(min (0,2) —2 —3(0))
1
=70-2)
1
T2
Ofia:ed 411 <%4(?ix__1;g ) + 3(0)>
1
20 —2

part (b)

Here the values e;,0; are found for ¢ = 1---ky where ko is the number of roots of
to = (x — 1). In other words, the number of poles of r that are of order 2. There is
one pole of order 2. Hence ky = 1. For each pole ¢; then e; = +/1 + 4b where b is the

coefficient of m in the partial fraction expansion of r and 6, = ziiCi. The partial

fraction expansion of 7 is

x2—4x+6_1+ 3 11
4(x—1)° 4 4(z-17° 2z-1

The coefficient of ﬁ is by = 2 from looking at the above. Hence e; = v1+4b =

1+4 (%) =2and 6; = wi—lcl = ﬁ.Therefore the lists e, 0 are
e={2}
2
0 —
=
Part (c)

This part applied only to case 1. It is used to generate e;,8; for poles of r order
4,6,8,- -,k if any exist. There are none. This step is skipped.

Part(d)
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Now we need to find eg, 6. If O(c0) > 2 then ey = 1,6y = 0. But if O(co0) = 2 then
0o = 0 and ey = v/1 + 4b where b is the coefficient of # in the Laurent series expansion

of r at co. Since O(00) = 0 here then none of these cases applies. For case 1 (n =1)

we first find [r]  the sum of terms 2 for ¢ = —%, -0 where v is O(00) which is zero

here. Hence v = 0. This sum of terms is from the Laurent series expansion of /7 at
x = 0o which is

0

. . _v
Then a is the coefficient of 72 = 2" or constant term. Hence

CL=§

And b is the coefficient of z2 "' =z in 7 — ([/7] 00)2. This comes out to be

1
b=—-
2
Therefore
b _1
€y = E = ?2 =-1

Hence now we have

e={-1,2}

2
o= {12}

The above are arranged such that e is the first entry. Same for 6. This to keep the
same notation as in the paper. The above complete step 1, which is to generates the
candidate €’'s and #'s. In step 2, these are used to generate trials d and 6 and find from
them P(x) polynomial if possible.

Step 2

In this step, we now have all the e;, 8; values found above in addition to ef;z, 0.
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Starting with n = 1. And since we have ky = 1 then there are (n + 1) = 22 = 4 sets

s to try. The first set s is
-n —n -1 -1
S = —, = —,
272 272

Now we generate trial d using

ko
d = (n) (efiz) + So€o — Z si€;
i=1
Since ky = 1 then the above becomes
d = (n) (efiz) + o0 — S1€1 (7)

If d > 0 then we go and find a trial ©. We need to have both d,© to go to the next
step. © is found using

Hence the first trial d is (using Eq (7)) and recalling that ez, = —3, Ofigea = 7. gives

-0 () (F)eo- ()

using set {3, 5
This will work. The corresponding © is from (8)

1
6= (1) <21}—2> +5060+8191

1 1 1 2
= —Z(1) ==
2z — 2 2( ) 2z —1
1z
2z —1
Let us find all of the d and © so to compare with the solution to same ode using original
kovacic algorithm given earlier to see if we get same d's. We try next set s = _71, %1
1 -1 +1
d=(1)(—= — ) (=)= =) (2
0(4)+ () - ()
=-1
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+1 -1

We skip this d since negative. Next is s = {£}, 5

The corresponding O is from (8)

1
6= (].) (21‘ _ 2) +8000 + 3101

2 —2 2 2z —1
_ r—2
S 2(zx—1)
The next set is {11, £1
1 1 1
1= (-3)+(3) 0= (3) @

OK, we have all d values. We now try the ones which are d > 0 and these ared = 0,d = 1.
Let us use d = 1 case. Now that we have good trial d and ©, then step 3 is called to
generate P(x) if possible.

Step 3
The input to this step is the integer d =1 and © = —%ﬁ found from step 2 and also
r= % which comes from 2” = rz. Since degree d = 1, then let p(z) = z + a.

Solving for p(z) from
P"+20P' +(©0'+6©°—r)P=0
gives p(z) = x as solution. Hence the solution is
z = P(z)el ®%

1
= e _iﬁda’

T

n=x
r—1
1
e 2%
=2 eTfﬁdw
r—1
=z
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The second solution can be found by reduction of order.

5 Notation mapping between Saunders/Smith
algorithm and original Kovacis algorithm

I have implemented the original Kovacis algorithm using Maple 2021 based on the
original paper (1). The following are notation difference between the two algorithms
and the implementation by Smith [3] that I found.

1. Kovacis algorithm uses aZ defined as af =  + %m for the case when
O(o0) = 2. Smith algorithm uses eq for the v/1 + 4b part only. In both algorithms
the b value is calculated in the same way. It is the coefficient of z% in the Laurent
series expansion of 7 at co. But we do not need to find Laurent series expansion

of r at oo to find b here. It can be found using b = llzf;fc’;g; where 7 = 2 and
ged (s, t) = 1.

2. Smith algorithm finds ej,es,--- values for each pole. This is part b of step
1 for poles of order 2, these correspond to only the v/1 +4b part in Kovacis
algorithm (this is part c2 of stepl), where there it finds [\/ﬂc for each pole and
of = 1 & 1v/1+4b where b is the coefficient of ﬁ in the partial fraction
decomposition of r. This b value is also the same for Smith algorithm in its €’s.

More mappings to be added next.
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