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CHAPTER 1

THE PAPERS

1.1 An Algorithm for Solving Second Order Linear
Homogeneous Differential Equations (1985
version)

This is the original paper by JERALD J. KOVACIC.
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An Algorithm for Solving Second Order Linear 
Homogeneous Differential Equations 

JERALD J. KOVACIC 

JYACC Inc., 919 Third Avenue, 
New York, NY  10022, U.S.A. 

(Received 8 May 1985) 

In this paper we present an algorithm for finding a "closed-form" solution of the differential 
equation y" + ay' + by, where a and b are rational functions of a complex variable x, provided a 
"closed-form" solution exists. The algorithm is so arranged that if no solution is found, then 
no solution can exist. 

1. Introduction 

In this paper we present an algorithm for finding a "closed-form" solution of the 
differential equation y"+ay '+by,  where a and b are rational functions of a complex 
variable x, provided a "closed-form" solution exists. The algorithm is so arranged that if 
no solution is found, then no solution can exist. 

The first section makes precise what is meant by "closed-form" and shows that there 
are four possible cases. The first three cases are discussed in sections 3, 4 and 5 
respectively. The last case is the case in which the given equation has no "closed-form" 
solution. It holds precisely when the first three cases fail. 

In the second section we present conditions that are necessary for each of the three 
cases. Although this material could have been omitted, it seems desirable to know in 
advance which cases are possible. 

The algorithm in cases 1 and 2 is quite simple and can usually be carried out by hand, 
provided the given equation is relatively simple. However, the algorithm in case 3 
involves quite extensive computations. It can be programmed on a computer for a specific 
differential equation with no difficulty. In fact, the author has worked through several 
examples using only a programmable calculator. Only in one example was a computer  
necessary, and this was because intermediate numbers grew to 20 decimal digits, more 
than the calculator could handle. Fortunately, the necessary conditions for case 3 are 
quite strong so this case can often be eliminated from consideration. 

The algorithm does require that the partial fraction expansion of the coefficients of the 
differential equation be known, thus one needs to factor a polynomial in one variable 
over the complex numbers into linear factors. Once the partial fraction expansions are 
known, only linear algebra is required. 

Using the MACSYMA computer algebra system, see, for example, Pavelle & Wang 
(1985), Bob Caviness and David Saunders of Rensselear Polytechnic Institute 
programmed the entire algorithm (see Saunders (1981)). Meanwhile, the algorithm has 

0747-7171/86/010003 + 41 $03.00/0 © 1986 Academic Press Inc. (London) Ltd. 



4 J.J. Kovacic 

been implemented also in the MAPLE computer algebra system, see, for example, Char et 
al. (1985), by Carolyn Smith (1984). 

This paper is arranged so that the algorithm may be studied independently of the 
proofs. In section 1, parts 1 and 2 are necessary to understand the algorithm, parts 3 and 
4 are devoted to proofs. In the other sections, part 1 describes the algorithm, part 2 
contains examples, and the remaining parts contain proofs. 

Since the first appearance of this paper as a technical report, a number of papers have 
appeared on the same problem: Baldassarri (1980), Baldassarri & Dwork (1979), Singer 
(1979, 1981, 1985). 

Special thanks are due to Bob Caviness and David Saunders of RPI for their 
encouragement and assistance during the preparation of this paper. 

1. The Four Cases 

In the first part of this section we define precisely what we mean by "closed-form" 
solution. In the second part we state the four possible cases that can occur. These cases 
are treated individually in the latter sections. The third part is devoted to a brief 
description of the Galois theory of differential equations. This theory is used in the proofs 
of the theorems of the present chapter and those of sections 4 and 5. Part 4 contains a 
proof of the theorem stated in part 2. 

1.1. LIOUVILLIAN EXTENSIONS 

The goal of this paper is to find "closed-form" solutions of differential equations. By a 
"closed-form" solution we mean, roughly, one that can be written down by a first-year 
calculus student. Such a solution may involve esponentials, indefinite integrals and 
solutions of polynomial equations. (As we are considering functions of a complex 
variable, we need not explicitly mention trigonometric functions, they can be written in 
terms of exponentials. Note that logarithms are indefinite integrals and hence are 
allowed.) A more precise definition involves the notion of Liouvillian field. 

DEFINITION. Let F be a differential field of functions of a complex variable x that contains 
C(x). (Thus F is a field and the derivation operator '  ( =  d/dx) carries F into itself). F is 
said to be Liouvillian if there is a tower of differential fields 

C(x) = Fo ~ F I - c .  • • _= F,, --- F 

such that, for each i =  1, . . . ,  n, 

either Fl = Fi-l(cO where ~'/ctaFi_l 

(F~ is generated by an exponential of an integral over F~_ ~) 

or Fi = Fi-  i(c0 where c(~ F~_ 1 

(Ft is generated by an integral over F i_ 1) 

or Fj is finite algebraic over Fi-1. 

A function is said to be Liouvillian if it is contained in some Liouvillian differential field. 
Suppose that r/ is a (non-zero) Liouvillian solution of the differential equation 
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y" + ay' + by, where a, b e C(x). It follows that every solution of this differential equation is 
Liouvillian. Indeed, the method of reduction of order produces a second solution, namely 
,/~(e-I,/q2). This second solution is evidently Liouvillian and the two solutions are 
linearly independent. Thus any solution, being a linear combination of these two, is 
Liouvillian. 

We may use a well-known change of variable to eliminate the term involving y' from 
the differential equation. Set z = e ~ y, Then z"+ (b-¼a 2 -  ½a')z = 0. This new equation 
still has coefficients in C(x) and evidently y is Liouvillian if and only if z is Liouvillian. 
Thus no generality is lost by assuming that the term involving y' is missing from the 
differential equation. 

1.2 THE FOUR CASES 

In the remainder of this paper we shall consider the equation 

y"= ry, r~C(x). 

We shall refer to this equation as "the DE". To avoid triviality, we assume that r¢C. By 
a solution of the DE is always meant a non-zero solution. 

THEOREM. There are precisely four cases that can occur. 

Case 1. The DE has a solution of  the form e f°~ where coeC(x). 

Case 2. The DE has a solution of  the form e I°~ where a) is algebraic over C(x) of degree 
2, and case 1 does not hold. 

Case 3. All solutions of  the DE are algebraic over C(x) and cases 1 and 2 do not hold. 

Case 4. The DE has no Liouvillian solution. 

It is evident that these cases are mutually exclusive, the theorem states that they are 
exhaustive. The proof of this theorem will be presented in part 1.4. 

1.3. THE DIFFERENTIAL GALOIS GROUP 

Here we present a brief summary of the Picard-Vessiot theory of differential equations 
(see Kaplansky (1957), or Chapter 6 of Kolchin (1973)), which is tailored specifically to 
the DE y" = ry. 

Suppose that t/, ( is a fundamental system of solutions of the DE (where t/, ( are 
functions of a complex variable x). Form the differential extension field G of C(z) 
generated by t/, (, thus 

G = C ( x ) ( ~ ,  (>  = C(x) (~ ,  ,1', (, ~'). 

Then the Galois group of G over C(x), denoted by G(G/C(x)), is the group of all 
differential automorphisms of G that leave C(x) invariant. (An automorphism cr is 
differential if cr(a')= (aa)' for every a e G.) We refer the reader to the references cited 
above for a proof that the Fundamental Theorem of Galois Theory holds in this context. 

There is an isomorphism of G(G/C(x)) with a subgroup of GL(2), the group of 
invertible 2 x 2 matrices with coefficients in C. Let a e G(G/C(x)). Then 

(at/)" = a(r/") = cr(rr/) = r~rr/. 
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Hence, a t / i s  also a solution of the DE and so is a linear combination Gr/= a, t l+G(,  a,~, 
c~ ~ C, of ~/, (. Similarly, cr( = b , t /+ d , (  for some b,, d, e C. 

is immediately seen to be an injective group homomorphism. 
This representation c:G(G/C(x))-~GL(2) certainly does depend on the choice of 

fundamental  system rt, (. If t/i , (~ is another fundamental system, then there is a matrix 
32 e GL(2) such that (th, ~l) = (~, 0X.  Therefore, 

G = C(x)(~ I, ( )  = C(x) (~ l ,  (1)  and cl(a) = X - l c ( a ) X .  

The representation G(G/C(x) )~  GL(2) is determined by the DE only up to conjugation. 
By abuse of language, we allow ourselves to speak of any one of these conjugate groups as 
the Galois group of the DE. If a fundamental system ,7, ~ is fixed, then we refer to 
c(G(G/C(x))) c GL(2) as the Galois group of the DE relative to r/, (. 

Fix a fundamental system ~/, ( of solutions of the DE and let G _ GL(2) be the Galois 
group relative to t/, (. Let W = r /( ' - r / ' (  be the Wronskian of t/, (. A simple computation, 
using the DE, shows that W' = 0, so W is a (non-zero) constant and is left fixed by any 
element of G(G/C(x)). Let a e G(G/C(x)), then, using the notation above, 

W = a W  = (a,,rl + c,~O(b~,tf-t- d,, (') - (a , , t f+  c,, (')(b~rl ÷ d,~() 

= (a,~d,-b,~c,,)W = det c(a). W. 

Thus G ___ SL(2), the group of 2 x 2 matrices with determinant 1. 
Recall that a subgroup G of GL(2) is an algebraic group if there exist a finite number of 

polynomials 

Pi . . . . .  PreC[XI, X2, X3, X4] such that d eG 

if and only if 
Pl(a, b, c, d) . . . . .  P,(a, b, c, d) = O. 

One of the principal facts in the Picard-Vessiot theory is that the Galois group of a 
differential equation is an algebraic group. For a proof in all generality, see the references 
cited above. Here we sketch a proof in the special case that we are considering. 

Let  Y , Z ,  Y1, Z ,  be indeterminates over C(x) a n d  consider the substitution 
homomorphism 

CEx, Y, Z, Y1, ZI]  -~ C[x, r/, (, r/', ~']. 

The kernel of this mapping is a prime ideal p. Any element 

of SL(2) induces an automorphism of C[x, Y, Z, Y1, Z1] over C[x] by the formula 

(Y, Z, Yi, Zi)  --* (aY +cZ, b Y +dZ,  aY i +cZ  1, bY1 +dZi ) .  

Moreover,  A e G if and only if p is carried into itself. The ideal p is finitely generated, say 
P = (ql . . . . .  q,), where ql . . . . .  q~ are linearly independent over C. Let n be the maximum 
of the degrees of q~ , . . . ,  qs in x, Y, Z, Y~, Z1 and let V be the vector space over C of all 
polynomials in C[x, Y, Z, Y1, Z1] of degree n or less. Evidently the action of SL(2) on 
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C[x, Y, Z, Y1, Z1] restricts to V. Ifqa . . . . .  qs, qs+l . . . . .  qt is a basis of V, then there exist 
polynomials Pu~C[X1, X2, Xa, X,~] such that the result of the action of A on ql is 

t 

~, Pil(a, b, c, d)q 3. 
j = l  

It follows that A e G  if and only if Pu(a, b, c, d) = 0  for i =  1 . . . .  , s, j = s + l , . . . ,  t. 
Therefore G is an algebraic group. 

1,4. PROOF 

In this section we shall prove the theorem that was stated in 1.2. We shall use several 
facts about algebraic groups. Suitable references are Borel (1956), Kaplansky (1957), and 
Chapter 5 of Kolchin (1973). The following result is contained in Kaplansky (1957, p. 31). 

LEMMA. Let G be an algebraic subgroup of SL(2). Then one of four cases can occur. 

Case 1. G is triangulisable. 

Case 2. G is conjugate to a subgroup of 

and case 1 does not hold. 

Case 3. G is finite and cases 1 and 2 do not hold. 

Case 4. G = SL(2). 

Proof. Denote the component of the identity of G by G °. First we note that any two- 
dimensional Lie algebra is solvable, hence either dim G -- 3 (in which case G = SL(2)) or 
else G ° is solvable. In the latter case, G ° is triangulisable by the Lie-Kolchin Theorem. 
Assume that G ° is triangular. 

IfG°isnotdiagonalisable, t h e n G ° c o n t a i n s a m a t r i x o f t h e f o r m ( l o ~ ) w i t h a v ~ O  

(since an algebraic group contains the unipotent and semi-simple parts of all of its 

elements).SinceG°isnormalinG, anymatrix inGconjugates( lo~)intoatr iangular  

matrix. A direct computation shows that only triangular matrices have this property. 
Thus G itself is triangular. This is case 1. 

Assume next that G ° is diagonal and infinite, so G ° contains a non-scalar diagonal 
matrix A. Because G ° is normal in G, any element of G conjugates A into a diagonal 
matrix. A direct computation shows that any matrix with this property must be contained 
in D*. Therefore either G is diagonal, this being case 1, or else G is contained in D t, this 
being case 2. 

Finally we observe that if G ° is finite (and therefore G ° =  {1}), then G must also be 
finite. This is case 3, This proves the lemma. 

We shall now prove the theorem of section 2. 
Let q, ( be a fundamental system of solutions of the DE and let G be the Galois group 

relative to ~1, (. Set G = C(x)(r/, ~). 
Case 1. G is triangulisable. We may assume that G is triangular. Then, for every 



8 J . J .  Kovacic 

aeG(G/C(x ) ) ,  crtl =c ,~ ,  where c~eC, c ~ ¢ 0 .  Therefore a m = c o ,  where co=rf/q, which 
implies that  co e C(x). 

Case 2. G is conjugate to be a subgroup of Dr. We may assume that G is a subgroup of 
Dr. If co = ~/'/r/ and (b = ('/~, then, for every a eG(G/C(x)) ,  either aco = co, a~b = 4) or 
am = 4), crc~ = co. Thus co is quadratic over C(x). 

Case 3. G is finite. In this case G has only a finite number  of differential automorphisms 
a~ . . . . .  ~r,,. Since the elementary symmetric function of a~7 . . . . .  a,,r/ are invariant under 
G(G/C(x)),  rl is algebraic over C(x). Similarly, ~ is algebraic over C(x). Because every 
solution of the DE is contained in G, every solution of the D E  is algebraic. 

Case 4. G = SL(2). Suppose that the D E  had a Liouvillian solution. Then, as pointed 
out  in 1.1, every solution of the DE is Liouvillian. Thus G is contained in a Liouvillian 
field. It follows that  G ° is solvable (Kolchin, 1973, p. 415). Since G ° =SL(2)  is not 
solvable, the D E  can have no Liouvillian solution. 

This proves  the theorem. 

2. Necessary Conditions 

In  this section we discuss some easy conditions that are necessary for cases 1, 2, or 3 to 
hold. These conditions give a sufficient condition for case 4 to hold (namely when the 
necessary conditions for cases 1, 2, and 3 fail). Throughout ,  we shall consider the DE 
y" = ry, r ~ C(x). 

2, 1. THE NECESSARY CONDITIONS 

Since r is a rat ional  function, we may speak of the poles of r, by which we shall always 
mean  the poles in the finite complex plane C. If r = s/t, with s, t e C[x] ,  relatively prime, 
then the poles of r are the zeros of t and the order of the pole is the multiplicity of the zero 
of t. By the order of r at oo we shall mean the order of oo as a zero of r, thus the order of r 
at oo is deg t - d e g  s. 

THEOREM. The following conditions are necessary for the respective cases to hold. 

Case 1. Every pole o f t  must have even order or else have order 1. The order o f t  at oo 
must be even or else be greater than 2. 

Case 2. r must have at least one pole that either has odd order greater than 2 or else has 
order 2. 

Case 3. The order of  a pole o f  r cannot exceed 2 and the order o f  r at oo must be at 
least 2. I f  the partial fraction expansion of  r is 

r =  ( x - c i )  2 1- • d.' 
3 

then v~l + 4~ e •, .for each i, ~ flj = O, and i f  
J 

a 

then , , / i  + 4~ e O. 
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2.2. EXAMPLES 

Airey's Equat ion  y " =  x y  has no Liouvillian solution (i.e. case 4 holds). This  is c lear  
because the necessary conditions for cases 1, 2, and 3 all fail. More  generally, y " =  P y ,  

where P e C[x]  has odd degree, has no Liouvillian solution. 
For  Bessel's Equat ion  

4(n 2 -- x 2) -- 1 
y" = y, n e C  

4 x  z 

(in self-adjoint form), only cases 1, 2, and  4 are possible. 
For  Weber ' s  Equat ion 

y,, t±~2 1_ 
= t 4 *  - z - n ) Y ,  n ~ C ,  

only cases 1 and  4 are possible. 

2.3. PROOF 

In this section we prove the theorem of Section 1. 
Case 1. In this case the DE has a solution of the form t/--- e ~°' where co ~ C(x). Since 

q " =  rt/, it follows that  co,+co2= r (the Riccatti Equat ion) .  Both 09 and r have  Lauren t  
series expansions about  any  point  c of the complex plane,  for ease of no t a t i on  we t ake  
c = 0. Say 

co = b x~ + " " ", la e ~ ,  b ¢: O 

r = a x ~ +  . . . ,  v e 2 ~ ,  a ~ O .  

(The dots represent terms involving x raised to powers higher than that  shown.)  Us ing  
the Riccatti Equat ion,  we find that  

# b x U -  t + . . .  + b2x2u + . . . .  o~x v + . . . .  

As we need to show that  every pole of r either has order 1 or  else has  even order ,  we m a y  
assume that  v ~< - 3. Since ~ 4 0, - 3 >t v >i rain ( # -  1, 2~). It  follows tha t  # < - 1 and  
2# < # -  1. Since b 2 4 0, 2/~ = v, which implies that v is even. For  use in sect ion 3.3, we 
remark that  if r has a pole of  order  2# >f 4 at c, then co mus t  have a pole of o rde r  p at  c. 

Now consider  the Lauren t  series expansions of r and co at oo. 

co = b x~ + . . ., # ~ 7] , b 4= O 

r = c ~ x V + . . . ,  v e ~ _ ,  a # O .  

(The dots represent  terms involving x raised to a power  lower than that  shown. The  o rde r  
of r at ~ is - v.) As we need to show tha t  either the order  of i" at m is >~ 3 or else is even,  
we may assume that V 1> - 1. Using the Riccatti Equat ion,  we have 

l~bx~,- l + . . . +b2x2J~+ . . . .  axV + . . . . .  

Just as above,  - 1 ~ v ~< m a x  (~t-  1, 2it), # > - 1, 2# > / t -  1. Since b 2 ¢ 0, 2# = v, so v is 
even. Fo r  use in section 3,3, we remark  that  if r has a pole of order  2# t> 0 at  oo, then co 
has a pole of order  # at c~. 

This verifies the necessary conditions for case 1. 
Case 2. We analyse this case by considering the differential Galois  g roup  tha t  m u s t  

obtain. By section 1.4 the group must be conjugate to a subgroup  G of D t, which is no t  
triangulisable (otherwise case 1 would hold). Let 1/, ~ be a fundamenta l  system of 
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solutions of the DE relative to the group G. For  every c r a G ( G / C ( x ) ) ,  either a t /=Gr/ ,  
~r~=c~l{ or a t / = - c { 1 { ,  a ~ = c o q .  Evidently r/2~ 2 is an invariant of G ( G / C ( x ) )  and 
therefore r/2{2aC(x). Moreover, r/~¢ C(x), for otherwise G would be a subgroup of the 
diagonal group, which is case 1. 

Writing 

n2~ 2 = [-[ ( x - c y '  ( e ~ e ~ ) ,  

we have that at least one exponent e~ is odd. Without loss of generality we may assume 
that  

~2~2 = x e 1-1 ( x - c ~ y '  

and that e is odd. Let 

0 = ( n ~ ) ' / ( ~ )  = ½ ( ~ 2 ~ 2 ) , / ( ~ 2 ~ )  = ½ex- ~ + . "  ", 

where the dots represent terms involving x to non-negative powers. Since r/"= rr/ and 
~" = r~, 

0 " + 3 0 ' 0 + 0 3  = 4 r O + 2 r ' .  

Let r = ~x ~ + •. • be the Laurent series expansion of r at 0, where c~ # 0 and v ~ Z. From 
the equation above we obtain 

( e - 3 e  2 + ~ e 3 ) x  - 3  + " • = 2 ~ ( e + v ) x - l +  . . . .  

If v > - 2 ,  then 0 =  8 e - 6 e Z + e  3 = e ( e - 2 ) ( e - 4 ) .  This contradicts the fact that e is odd. 
Therefore v ~< -- 2. If v < - 2, then e + v = 0, so v is odd. 

This verifies the necessary conditions for case 2. 
Case 3. In this case the DE has a solution t/ that is algebraic over C(x). r/ has a 

Puiseaux series expansion about  any point c in the complex plane, for ease of notation we 
take c = 0 .  T h e n q = a x  ~ ' + . . . ,  where a ~ C ,  a : # 0 , # ~ Q .  Since r ~ C ( x ) , r = ~ x  ~ + ' ' ' ,  
where e ~ 0 and v E Z. The DE implies that 

i ~ ( # -  1 ) a x  u -  z + • . . = c~ax~ + ~ + • . . .  

It follows that v > t - 2 ,  i.e. r has no pole of order greater than 2. If v = - 2 ,  then 

#( /~-  1) = c~. Because/~eQ,  we must have ~/1 + 4 ~ e Q .  
So far we have shown that the partial fraction expansion of r has the form 

~i  3 j  
r =  ~(x_x,)-----------~+ ~ _ d j  + P ,  

where P ~ C[x]  and ~/1 + 4c~t ~ O for each i. 
Next, we consider the series expansions about oo, 

tl = a x  ~ + " " " , r = y x ~  + " " , 

where the dots represent lower powers of x than those shown. From the DE we obtain 

# ( # _  1)ax #- 2 + . . .  = v7ax~+U + . . . .  
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Just as above, we obtain v ~< - 2  and therefore P = 0. But 

a, ~x_~dj r = ~. (x S-c,)2 + 

= 
i 

where ~ - - - ~ c q + ~  ~d,. Therefore ~ f l i = 0  and # ( # - 1 ) =  y. Since/~me, ~ eQ. 

This completes the proof of the theorem stated in section 2.1. 

3. The Algorithm for Case 1 

The first part of this section is devoted to a description of the algorithm. It is somewhat 
complicated to describe in full generality, yet, as the examples in part 2 show, it is often 
quite easy to apply. The third part is devoted to a proof that the algorithm is correct. 

3.1. DESCRIPTION OF THE ALGORITHM 

The goal of this algorithm is to find a solution of the DE of the form ~/= Pe I°', where 
P~CCx] and coeC(x). Since r/ may be written as r / = e  j'C'*'lP+°O, this is of the form 
described in section 1.2. The first step on the algorithm consists of determining "parts" of 
the partial fraction expansion of co. In the second step we put these "parts" together to 
form a candidate for co. The maximum number of candidates possible is 2 p +1 where p is 
the number of poles of r. If there are no candidates, then case 1 cannot hold. The third 
and last step is applied to each candidate for co and consists of searching for a suitable 
polynomial P. If one is found, then we have the desired solution of the DE. If, for each 
candidate for co, we fail to find a suitable P, then case 1 cannot hold. 

We assume that the necessary condition of section 2.1 for case 1 holds, and we denote 
by F the set of poles of r. 

Step 1. For each c~F  u {m} we define a rational function [,fr-]c and two complex 
numbers a~ +, a~- as described below. 

(q) If c~F  and c is a pole of order 1, then 

[~rr-l~ = 0, ~+ = ~[ = i. 

(c2) If c~ F and c is a pole of order 2, then 

E , / ; l c  = 0. 

Let b be the coefficient of 1/(x-c) 2 in the partial fraction expansion for r. Then 

a? = ½ + ½,Jl-+ 4b. 

(ca) If c e F  and c is a pole of order 2v>~4 (necessarily even by the conditions of 

section 2.1), then [x/7]c is the sum of terms involving 1/(x-  c) ~ for 2 ~< i ~< v in the 

Laurent series expansion of ~ at c. There are two possibilities for [w/rio, one 
being the negative of the other, either one may be chosen. Thus 

a d 
[ v g L  = ( x - c )  + ' "  " +  
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In practice, one would not form the Laurent series for ,,//-r, but rather would 

determine [x/~-]~ by using undetermined coefficients. Let b be the coefficient of 
1 ~ ( x - c )  ~+~ in r minus the coefficient of l / ( x - e )  ~+~ in ([w/~]~). Then 

~ = --- a 

(oct) If  the order of r at oz is >2,  then 

E,/73  = 0, 

(oe~) If the order of r at oe is 2, then 

+ - 0 ,  cQ 1. 

E , # l o  = 0  

Let b be the coefficient of 1/x z in the Laurent series expansion of r at oo. (If 
r = s/t ,  where s, t e C[x] are relatively prime, then b is the leading coefficient of s 
divided by the leading coefficient of t.) Then 

= ½+ ½,/1 +4b .  

(0%) If the order of r at oo is - 2 v  ~< 0 (necessarily even by the conditions of section 

2.1), then [x/~l® is the sum of terms involving x t for 0 ~< i ~  v in the Laurent 
series for x/~ at or. (Either one of the two possibilities may be chosen.) Thus 

[w/)Tl oo = ax  ~ + " "  + d. 

Let b be the coefficient of x ~- t in r minus the coefficient of x v- 1 in ([x/~:]~) ~. 
Then 

Step  2. For each family s = (s(c))c~rul~l, where s(c) is + or - ,  let 

d = 
ceF 

If d is a non-negative integer, then 

is a candidate for co. If d is not a non-negative integer, then the family s may be removed 
from consideration. 

S tep  3. This step should be applied to each of the families retained from Step 2, until 
success is achieved or the supply of families has been exhausted. In the latter event, case 1 
cannot hold. 

For  each family, search for a monic polynomial P of degree d (as defined in Step 2) that 
satisfies the differential equation 

P" + 2coP' + (co' + co s - r)P = O. 

This is conveniently done by using undetermined coefficients and is a simple problem in 
linear algebra, which may or may not have a solution. If such a polynomial exists, then 
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tl = Pe I°~ is a solution of the DE. If no such polynomial  is found for any family retained 
from Step 2, then Case 1 cannot  hold. 

3.2. EXAMPLES 

Example 1. Consider  the D E  y" = ry where 

4x 6 - 8x s + 12x 4 + 4x 3 + 7x 2 - 20x + 4 

4x 

1 7 5 1 
= x 2 - 2 x + 3 + -  + - -  + 

x 4 x  2 x 3 x 4" 

Since r has a single pole (at 0) and the order there is 4, the necessary condit ions of  
section 2.1 for case 2 do not  hold. Evidently the necessary conditions for case 3 also do  
not hold. We apply  the algori thm for case 1 to this DE.  

The order  of r at the pole 0 is 2v = 4. Therefore [ x F ] o  = a/x2, and a 2 = 1. W e  choose  

a = 1, so [x/ ' ;]o = 1/x2. b = - 5 - 0  = - 5 ,  and therefore ~ff = ½ ( + ( -  5 /1)+2) ,  which gives 
c~ = -  3/2 and c% = 7/2. 

At m, v =  1, and [x/~']~o=ax+d. Compar ing  r and [ x / ~ ] ~ = a 2 x 2 + 2 a d x + d 2  we see 

that  a 2 = 1 and 2ad = - 2 .  W e  choose a = 1, d = - I. Thus  [x/~]~ = x -  1. b = 3 - 1 = 2, 
and c~ +~° = 1/2, ~z2o= - 3 / 2 .  

There are four families to consider. 

s(0) = + ,  s ( o o ) = + ,  d =  1 / 2 - ( - 3 / 2 )  = 2  

s(0) = + ,  s ( o o ) = - ,  d =  - 3 / 2 - ( - 3 / 2 ) = 0  

s ( 0 ) = - ,  s ( o o ) = + ,  d - -  1 / 2 - 7 / 2  = - 3  

s ( 0 ) = - ,  s ( o o ) = - ,  d = - 3 / 2 - 7 / 2  = - 5 .  

Only the first two remain for consideration. 
We shall treat the second family first, since d = 0 in that  case. The  candidate for  co is 

+ 1 3 
co = [ , / 7 3 o  + - - 2 x  x + 1. 

x 

We now search for a monic  polynomial  P of degree 0 such that  

P" + 2coP' +(co' +coZ-r)P = O. 

Since P = 1, the existence of  P is a question of whether  or  not co' + co x -  r = 0. But the  
coefficient of 1/x in co '+ co 2 - r  is - 6 .  Thus  no such polynomia l  P can exist. 

The only remaining family is the first family. The  candidate  for co is 

_ _  1 3 
co _- [x/~]0 + ct~'x +[x/~]°°  = - - - - - x  2 2x + x - 1 .  

We now search for a monic  polynomial  P of degree 2 that  satisfies the linear differential  
equation given above.  Writ ing P = x 2 +  ax+b,  we easily determine that  a = 0, b = -  1 
provides a solution. 

Therefore a solution of the DE is given by 

rl = Pe I°° = (x 2 - 1 ) e  f(ll:¢2-al(2x~+x-l~ 

= X -  3/2(X2 - -  1)e-  1/x+':2/2 - x  
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Example  2. In  this example  we begin the discussion of  Bessel 's Equa t i on  

y,, = (4n  2 -  1 ) 
\ 4---Z - 1  y, n e C .  

T h e  necessary condi t ions  of  sect ion 2.1 imply  tha t  case 3 canno t  hold.  Here  we consider 
case 1, case 2 is worked  out  in section 3.2. 

T h e  on ly  pole of  r is at c = 0 and  the o rder  there is 2. Thus  

[~ /~ ]  o = O, b = (4n  2 - 1 ) / 4 ,  ~f f  = ½ -4-- ½ ~ ' - - + - ~  = ½ _ n. 

+ O. At Go, r has o rder  0 and [x/~]oo = i. Evident ly  b = 0 so c% = 
There  a re  four  families to consider.  

s(0) = + ,  s(oo) = + ,  d -- - 1 / 2 - n  

s(O) = + ,  s(oo) = - ,  d = - 1 / 2 - n  

s(0) = - ,  s(oo) = + ,  d = - 1/2 + n 

s(0) = - ,  s ( m )  = - ,  d = - 1/2 + n. 

A necessary condi t ion  that  case 1 holds is that  - 1 / 2 + n  be a non-negat ive  integer, i.e. 
t ha t  n be half  an  odd  integer. We  claim tha t  this condit ion is also sufficient. 

I f  n is negat ive,  and half  an odd  integer, then m = - 1 / 2 - h e  N. This  corresponds  to the 
first family, in which case co = - m / x + i .  We need to find a po lynomia l  P of degree m such 
t h a t  

0 = P" + 2coP' + (co' + co 2 --  r)P 

m .'~ 2ira 
= P " + 2  - - - - + t i P ' -  .... P. 

X J X 

I t  is s t ra ight forward  to verify that  

,n 1 ( 2 m - j )  t xj 
P = i=0 ~ ( -  2 0 "  - j  j ! ( m - j )  .T 

is the desired po lynomia l .  A solut ion to Bessel 's Equa t ion  is given by  t / =  x - m P d  x. 
I f  n is posit ive,  then m = - 1 / 2  + n is a non-negat ive  integer. This  corresponds  to the 

th i rd  family. In  this case co = - - m i x  + i, a n d  we are back  to the case considered above.  
Example  3. In  this example  we treat  the general s i tuat ion where r is a po lynomia l  of  

degree  2. We  m a y  write r = (ax + d) 2 + b for  some a, b, d e C (a and d are determined by r 
o n l y  up to  sign, we choose  either of  the two possibilities). W e  claim tha t  the D E  has a 
Liouvi l l i an  so lu t ion  if and only if b/a is an  odd integer. 

The  necessa ry  condi t ion of  sect ion 2.1 implies that  only  cases 1 and  4 are possible. We  
consider  case 1. 

-i- Evident ly  I v / r ]  o0 = ax + d and  a~  = ½( ___ (b/a) - 1). There  are no poles. Thus  d equals ctoo 
or  a~o, so one of  these two n u m b e r s  mus t  be  a non-negat ive  integer for case 1 to hold. I t  
follows t h a t  b/a must  be an  odd integer,  which is the necessity par t  of  our  claim. 

F o r  sufficiency, we m a y  assume  tha t  b/a = 2n + 1 is positive, since a m a y  be replaced by 
- a. Case 1 will hold  p rov ided  tha t  there is a monic  po lynomia l  P of  degree n such that  

0 = P " + 2 c o P ' + ( c o ' + c o 2 - - r ) P  

= P" + 2(ax + d)P' - 2naP. 
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If we write 

P = ~ Pix i 
l=0 

and substitute, we obtain a system of linear equations in Po . . . . .  P, - 1 (P,, = 1) that  has a 
solution, namely 

Pi = (2n + 1)(i + 1) Pi + t + (i + 2)(i + 1) 
n - i  ~ re+ 2 ( i - - n - i , . . . , 0 )  

where P, + 1 = 0 and P,, = 1. 
A special ease of this example is Weber's Equation 

y" = ( ¼ x 2 - ½ - n ) y ,  n e C .  

Here a =  -- 1/2, b = - 1 / 2 - n ,  d =  O. Thus b/a = 2n+ 1 is an odd integer if and only if n is 
an integer. 

3.3. PROOF 

In case 1, the DE has a solution of the form r / = e I 0  with 0~C(x). Since ~/" =n l ,  we 
have 

0 '+0  2 = r (Riecatti Equation). 

We shall determine the partial fraction expansion of 0 using the Laurent series expansion 
of r and this Riccatti Equation. 

For  c ~ C, we denote the "component  at c" of the partial fraction expansion of  0 by 

[oL+ 
x - c i :  2 ( x -  c) ~ + --'x-c L 

In order to simplify the notation, we assume that c = 0 and drop the subscript "0". We  
shall also need to consider the Laurent series expansion of 0 about 0 

0 = [0 ]+  ~- +o.  
X 

Here # =  * +*x  + •. - ,  where the * denotes a complex number whose particular value is 
irrelevant to our discussion. 

We assume that  the necessary conditions for case 1 (see section 2.1) are satisfied, in 
particular we assume that the poles of r are either of even order or else of order 1. We  
split our proof into parts, depending on the nature of r at 0. This parallels the division of 
Step 1 of the algorithm. 

(c 1) Suppose that 0 is a pole of r of order 1, so 1"= *Ix+ • . ' .  The Riccatti equation 
becomes 

2 
v a  v El v * 

x~+t t- + ~ - +  -=-+x  " 

Sincea 2 ~ 0 , v ~ < l  and [ 0 ] = 0 .  
Substituting 0 = ct/x + ~ into the Riceatti Equation, we have 

- x~  + °' + g + ~ ~ + x " " "  
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Therefore --0~"~-0~ 2-~-- 0, SO 5 = 0 or 5 =  1. Were 5 = 0 ,  the left-hand side of this equation 
would have 0 as an ordinary point; however, the right-hand side has a pole at 0. We 
conclude that a = 1 and the component  of the partial fraction expansion of 0 at 0 is (in the 
notat ion of the algorithm) 

5 ± 
- - ,  where 5:L = 1. 

X 

(c2) Suppose that r has a pole at 0 of order 2, say 

b • 
r =~-2 + - +  . . . .  

X 

As in (ct) , [0] = 0 and - ~  +52 = b. Thus the component of the partial fraction expansion 
of 0 at 0 is 

5 + 
- - ,  where 5 + = ½_ ½~/]- + 4b. 

X 

(c3) Suppose that r has a pole at 0 of order 2#/> 4. In section 2.3, we showed that 
v =/~. Recall from section 3.1 that 

a , 
[,,/~] = ~- + . . .  + - 

X2 ~ 

where we have dropped the subscript "0".  
Let ~ = . , / 7 - r ~ ] .  Then ,=  F~ ]  ~+2~ [~ ]+~ .  Vrom the Riccatti Equation we 

obtain the following formula 

( [ 0 ]  - [ . , f i ] )  • ( [0 ]  + [ , , /72)  
5 - t ' T ' -  2~ ( & )  = - [o] '  + ~ ~ -  [o]  - 2ff [o]  

5 ~- 25 # _ # ~ + 2 ~ [ # / ~ ]  +~. 
x 2 X 

An examination of the right-hand side of this equation determines that it is free of terms 
involving 1/x  i for i =  v + 2 , . . . ,  2 (since v >1 1). This implies that the left-hand side is 0. 
Indeed, since 

([03 - Iv '7]) + ([03 + [,,/7]) = 2[O3, 

at least one of the factors involves 1/x  v. Were the other factor non-zero, it would involve 
1 / x  t for some i~>2. The product  would then involve 1/x ~+~ for some i ) 2 ,  which is 

absurd. Hence [0] = ___ [~/-r]. 
The coefficient of I / x  ~+1 in the right-hand side of (&) is +_va-T-25a+b,  where b is the 

coefficient of 1/x ~ + 1 in 27[~'-r] + ? 2 = r -  [V/~ T] 2. Therefore 5 -+ = ½ (+_ b/a + v). We have 
shown that  if 0 is a pole of r of order 2v f> 4, then the component of the partial fraction 
expansion of 0 at 0 is 

- - ,  where 5 ± x = 2  + + v .  

(c,) Finally, we must consider what happens when 0 is an ordinary point of r. As in 
(cl), [0] = 0  and - - 5 + ~  2 = 0 .  Contrary to the situation in (c~), however, we cannot 
conclude that 5 :A- 0. Hence the component  of the partial fraction expansion of r at 0 is 
either 0 or 1Ix. 
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We collect together what we have proven so far. Let F be the set of poles of r. Then 

( @~)'] d 1 
0 = 2 s(c)E'v/r],+ +R, 

where R ~ C[x], s(c) = + or - ,  and [-,/r]c, ~(c) are as in the statement of the algorithm. 
Next we consider the Laurent series about o0. Suppose that 

0 = R + e ~  + . . . .  
X 

(o01) If I" has order v > 2 at o0, then 

r = ~ -  + - -~ -~  + . . . .  

2__ The Riccatti Equation implies that R = 0 and -a~o + a ~ - 0 ,  so c% = 0 or 1. 
(oo2) If r has order 2 at o0, then 

b • ~ = ~ + ~ + . . . .  

The Rieeatti Equation implies that R = 0 and - a ~  + a~ = b, hence 

~ = k ___½,/1 +4b. 

(o03) In the other cases, the order of r at oz must be even, by the necessary conditions 
of section 2. Following an argument similar to that used in (c3) we find that 

R = _+ [.,/72oo, aoo=~ _+a-V,  

where - 2 v  is the order of r at o0, a is the leading coefficient of [~/r] ~ and b is the 

coefficient of 1/x v- 1 in r -  [v'r-]~. 
We now know that the partial fraction expansion of 0 has the form 

0 = s(~) [v ,7]c  + + ~(oo)[ , , /7]  oo + Y, • 
i=1 x - - d i  

Moreover, the coefficient of 1/x in the Laurent series expansion of 0 at oo is -,,c~) Thus 

d = ~  - ~  c~ e fiN. 
e~F 

Let 

and 

~o = ~-S-~- c / + ~(o0)[.,/7] ~, 

d 

e = [I  (x -d , ) .  
i = l  

Then 0 = co + P' /P .  Again, using the Riccatti Equation, we obtain 

P" + 2coP' + (co' + co 2 - r)P = 0. 

The converse, namely that if P is a solution of this equation, then 0 satisfies the Riecatti 
Equation, is a simple verification. It follows that if P is a solution of this equation, then 

= Pe I°' is a solution of the DE y" = ry. 
This proves that the algorithm for case 1 is correct. 
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4. The Algorithm for Case 2 

Following the pattern of section 3, we shall describe the algorithm in section 4.1, give 
examples in section 4.2 and the proof in section 4.3. The algorithm and its proof assume 
that case 1 is known to fail. 

4.1. DE SCRIPTION OF THE A L G O R I T H M  

Just as for case 1, we first collect data for each pole c of r and also for oo. The form of  
the data is a set Ec (or E~) consisting of from one to three integers. Next we consider 
families of elements of these sets, perhaps discarding some and retaining others. If no 
families are retained, case 2 cannot hold. F o r  each family retained we search for a monic 
polynomial that satisfies a certain linear differential equation. If no such polynomial exists 
for any family, then case 2 cannot hold. If such a polynomial does exist, then a solution to 
the DE  has been found. 

Let  F be the set of poles of r. 
Step 1. Fo r  each c ~ F we define Ec as follows. 

(el) If e is a pole of r of order 1, then Ec= {4}. 
(e2) If e is a pole of r of order 2 and if b is the coefficient of l / ( x - c )  2 in the partial  

fraction expansion of r, then 

Ec = {2+ k~/1 q-4blk = 0, +2} c~ ?7. 

(c3) If c is a pole of 1" of order v > 2, then Ec = {v}. 

(ool) If r has order >2  at oo, then E® = {0, 2, 4}. 
(oo2) If r has order 2 at oo and b is the coefficient of x -2 in the Laurent series 

expansion of r at oo, then 

E~o = {2+kw/~+ablk  = 0, +__2} c3 7/. 

(003) If the order of 1" at oo is v < 2, then E~o = {v}. 
Step 2. We consider all families (e~)c,r~l~0} with ec~E¢. Those families all of whose 

coordinates are even may be discarded. Let 

¢ ~ It" 

If d is a non-negative integer, the family should be retained, otherwise the family is 
discarded. If no families remain under consideration, case 2 cannot hold. 

Step 3. For  each family retained from Step 2, we form the rational function 

o=½Z 
ceF X - -  C 

Next  we search for a monic polynomial P of degree d (as defined in Step 2) such that  

P" + 30P" + (302 + 30' - 4r)P' + (0" + 300' + 03 - 4rO- 2r')P = O. 

If no such polynomial is found for any family retained from Step 2, then case 2 cannot  
hold. 

Suppose that such a polynomial is found. Let ~ = O+U/P and let co be a solution of 
the equation 

co2 + q ~ c o + ( ½ # + k ¢ 2 - r )  = 0. 

Then  t /=  eS '~ is a solution of the DE y" = ry. 
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4.2. EXAMPLES 

Example  1. Consider the DE y" = ry where 

1 3 
r =  

x 16x 2' 

The necessary conditions of section 2 show that cases 1 and 3 cannot hold. (The order of r 
at oo is 1 .) The only pole of r is at 0 and the order there is 2. The coefficient of 1/x  2 in the 

partial fraction expansion of r is b = - 3 / 1 6 .  Since 2 x , / ~ 4 b = l  is an integer, 
Eo = {1, 2, 3}. The order of r at oo is 1 and E~o --- {1}. 

We have three families to consider. 

e0 = 2, e = 1, d = -  1/2 

e 0 = 3 ,  e - - l ,  d = - I  

e 0 = l ,  e = l ,  d = 0 .  

Only the third family need remain in consideration. For  this family, 0 = 1/2x and we need 
to find a monic polynomial P, of degree 0, such that 

P "  + 30P" + (3 02 + 30' - 4r)P' + (0" + 300' + 03 - 4 r O -  2r ' )P = O. 

Evidently P must be 1, so the existence of P is a question of whether or not  
O " + 3 0 0 ' + O a - 4 r O - 2 r  ' is zero. That expression does happen to be 0, so P =  t is the 
desired polynomial. 

Next we form 
1 

~b = O + P ' /P  = 2--~' 

The equation for co is 

0=co2-4~o~+ q~'+~4,-r =~-~co+i6x2 x 
The roots are 

1 1 

It follows that 
r 1 = e I,o = el~t/~4x)+tf./7~) = x l / % 2 , f i  

is a solution of the DE. (And x l /4e  -2,/~ is also a solution.) 

Example  2. In this example we finish consideration of Bessel's Equation 

y , , = (  4n2-1  ) 
\ 4x 2 - 1  y, n e e ,  

that was started in section 3.2. In that section we observed that case 3 cannot hold and 
that case 1 holds if and only if n is half an odd integer. Here we treat case 2 and make the 
assumption that n is not half an odd integer. 

The only pole of r is at 0 and the order there is 2. Since 

2,,/1 + 4b = 2 , , / i  + 4(4n z - 1)/4 = 4n, 

either E o = {2} or E o = {2, 2+4n,  2 -4n} ,  depending on whether 4n is an integer or not. If 
4n is not an integer, then there is only one case to consider. 

e o = 2, e~o = 0, d - - - 1 .  
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Thus  if 4n is not  an integer, case 2 cannot  hold. If 4n is an integer, there are three cases to 
consider.  

eo = 2, e~ = 0, d = -  1 

e o = 2 + 4 n ,  e~ = 0, d = -  1--2n 

e o = 2 - 4 n ,  e ~ = 0 ,  d = - l + 2 n .  

In order  tha t  d be a non-negative integer, it is necessary that n be half an integer. Since 
n is no t  half an  odd integer, n must  be half an even integer, that is n is an integer. But, for 
such n, both eo and e~ are even. Hence all families are discarded and case 2 cannot hold. 

In this example, and in Example 2 of section 3.2, we have shown that Bessel's Equation 
has  a Liouvillian solution if and only if n is half  an odd integer. 

4.3. PROOF 

For  the p roof  of the algorithm for case 2 we shall rely heavily on the differential Galois 
g roup  of the DE.  In case 2, this group is (conjugate to) a subgroup of 

o,{(; 0) } c -  I c ~ C , c # 0  w _ -1 c c C ,  c # 0  . 

Moreover ,  we may  assume that case 1 does not  hold, so the differential Galois group is 
not  triangulisable. Let r/, ( be a fundamental system of solutions of  the DE corresponding 
to the subgroup of Dr. For  any differential au tomorphism cr of C(x)(t/, ( )  over C(x), 
either a~--C~h a ( = c - l ~  or a t l = - - c - l ( ,  tr~=c~, for some c e C ,  c # 0 .  Evidently 
o'(t/z(2) = t/2( 2, therefore t/2~2 ~ C(x). Moreover,  t/($ C(x) since case 1 does not hold. 

We write 

~2¢2 = g 1-i (x -c )  °c ~ (x-a,y' ,  
c a p  i =  

where F is the set of poles of r and the exponents e~,fi are integers. Our  goal is to 
determine these exponents. 

Let 

¢ = ( . O ' / ( n O  = ½(n2~2)'/(n~¢2) = ½ E e--z-~ +½ ~ f~ 
e~r x--c  i=t x - d i  

Because $ = r/ ' /t/+ ~'/(, it follows that  

(*) ¢ " + 3 ¢ ¢ ' + ¢  3 = 4r¢ +2r ' .  

We first determine e, for c ~ F. In order to simplify the notation,  we assume that c -- 0. 
(cl) Suppose that  0 is a pole of 1" of order 1. The Laurent  series expansions of r and ¢ 

at 0 are  of the form 

r = c ~ x - ~ + . . .  ( ~ # 0 )  

¢ = ½ e x - l + f +  . . .  ( e a T / , f ~ C ) .  

Substituting these series into the equation (*) and retaining all those terms that involve 
x -3 and  x -2,  we obtain the following. 

~ x - ~ +  . . . .  ~ -  ~ _ ~ f ~ -  ~ + . . .  + ~ - ~  + i , V x -  2 + . . .  

= 2c~ex-2 + . . . .  ~ x - 2 +  . . . .  
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Therefore e--¼e2+{~e3=0, so e = 0 , 2 , 4 .  Also - } e f + ¼ e 2 f = 2 e e - ~ .  Because c~¢0, 
e ~ 0, 2. Hence, e must be 4. 

(c2) Suppose that 0 is a pole of r of order 2 and that b is the coefficient of 1Ix 2 in the 
Laurent series for r. That is 

r = b x - 2 +  • . . ,  c~ = ½ex -1 + .  • • .  

Equating the coefficients of x -  a on the two sides of equation (*), we obtain 

e -¼e  2 +{e a = 2eb - 4b. 

The roots of this equation are e = 2, e = 2_+ 2x/T-+ 4b. Of course, the latter two roots may 
be discarded in the case that they are non-integral. 

(c3) Finally we consider the possibility that 0 is a pole of r of order v>  2. Then 
r = x - V +  ' ' "  and q~ = ½ e x - l +  " . .  . Equating the coefficients of x -v-1 in (*)we obtain 
0 = 2~e -2ev ,  hence e = v. 

In determining the exponents f we may use the calculation of (cl) above if we replace 
by 0 (since d~ must be an ordinary point of r). We find that f / =  0, 2, or 4. We cannot 
exclude the possibility that f = 2, but we can, of course, exclude the possibility ft = 0. 

We have shown so far that 

~12~ 2 = I-I ( x - c )  e°e2, 
c ~ F  

where e c s E c  (as defined in section 4.1) and PeC[-x] .  

Set 0 = ½ ~ ec , s o  q~ = 0 + P ' / P .  
c ~ r  X - - g  

The next step in our proof is to determine the degree d of P, which we do by examining 
the Laurent series expansion of ~b at oo and using equation (*). 

43 = ½e~x-~+  " ' ,  e ~ =  ~ e~+2a. 
c ~ F  

(OOl) Suppose that the order~ of r at oo is 2. As in (ct) we find that e~ -- 0, 2 or 4. 
(OOz) Suppose that the order of r at oo is 2 and that b is the coefficient of x -z in the 

Laurent series expansidn of r at oo. Then, as in (c2), e~ = 2, 2 + 2 ~ / 1 + 4 b  and eoo is 
integral. 

(oo3) Suppose that  the order of r at oo is v < 2. As in (ca), it follows that em = v. 
Note that at least one of the ec ( eeF)  is odd, since ~ ¢ C ( x ) .  
Using equation (*) and the equation q~ = 0 + P ' / P ,  we obtain 

P "  + 30P"  + (302 + 3 0 ' -  4r)P'  + (0" + 300 '  + 03 - 4 r O -  2r')P = 0. 

This is a linear homogeneo.us differential equation for P, so there is a polynomial solution 
if and only if there is a monic polynomial which is a solution. 

Now let a) be a solution of the equation 

(**) co =-~boo +½# + ½ C  - r  --- 0. 

To complete the proof  we need to show that t /= e I~' is a solution of the DE y* = ry .  

From (**) we obtain (by differentiation) 

(2co - ~b)o)' = ~b'oo- ½~b" - 4~4/+ r'. 
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The factor (2co-- ~b) cannot be zero. Indeed, if q5 = 209, then co '+co2-r  = 0 (from (**)) so 
r /=  el '° is a solution of the DE. But co = ½~b eC(x). This is case 1, which was assumed to 
fail. Using (**) and (*) we have 

2(2co - ~,b)(co' + co2 _ r) = - qS"- 3qS~b' - q~3 + 4rq~ + 2 / =  0. 

Thus co'+co 2 = r so r/= e fo is a solution of the DE. 
This completes the proof that the algorithm for case 2 is correct. 

5. The Algorithm for Case 3 

Following the pattern established in the previous two sections, we describe the 
algori thm in section 5.1 and give examples in section 5.2. The proof of the algorithm 
requires a knowledge of the finite subgroups of SL(2) and their invariants, which is 
provided in section 5.3. The proof of the algorithm is presented in section 5.4. 

In case 3, the DE has only algebraic solutions and we assume that cases 1 and 2 are 
known to fail. (It is possible for the DE to have only algebraic solutions and for cases 1 or 
2 to apply. For  example, case 1 gives the solution ~ = x  1/4 to the DE y " = - ( 3 / 1 6 x 2 ) y ,  

then reduction of order gives ~ = x 3/4 as a second solution.) 

5.1. DESCRIPTION OF THE ALGORITHM 

Le t r / b e  a solution of the DE y" = ry and set co -- ~f/1/. Then, as we shall show in section 
5.4, co is algebraic over C(x) of degree 4, 6 or 12. It is the minimal polynomial for co that 
we shall determine. We are unable to determine the minimal equation for r/(which would 
be of degree 24, 48 or 120). 

There are two possible methods for finding the minimal equation for co. We could find 
a polynomial of  degree 12 and then factor it. We shall prove that if co is any solution of 
the 12th degree polynomial found by our method, then r /=  e I'° is a solution of the DE, 
hence any one of the irreducible factors may be used. This is the most direct method; 
however, the factorisation can be a formidable problem, even with the assistance of a 
computer.  We illustrate this by example, in section 5.2. The alternative is to first attempt 
to find a 4th degree equation for co, then a 6th degree equation and finally a 12th degree 
equation. The advantage is that if an equation is found, then it is guaranteed to be 
irreducible. 

In our  description of the algorithm, we shall combine the various possibilities, denoting 
by n the degree of the equation being sought. As before, we denote by F the set of poles of 
r. Recall that, by the necessary conditions of section 2, r cannot have a pole of order > 2. 

Step  1. For each c ~ F w {oo} we define a set E~ of integers as follows. 

(cl) If c is a pole of r of order 1, then E c = { 12}. 

(c2) If c is a pole of r of order 2 and if c~ is the coefficient of 1 / ( x - c )  2 in the partial 
fraction expansion of r, then 

Ec = {6+  - ~  x / i  +4c~lk = 0, + 1, _+2 . . . . .  + 2 } n Z .  

( ~ )  If the Laurent series for r at ~ is 

r = y x - 2 + . . .  (7~C, possibly 0), 
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then 

E ~°={  6+12k~ f l+4 ' ' k -n  = 0 , ± 1 , ± 2  . . . . .  + 2 } n Z .  

Step 2. We consider all families (e~)c~r,~c~ol such that e~ a Ec. For  each such family, define 

n 

= 2 
oaf  

If d is a non-negative integer, the family is retained, otherwise the family is discarded. If 
no families are retained, then ~o cannot satisfy a polynomial equation of degree n with 
coefficients in C(x). 

Step 3. For each family retained from step 2, form the rational function 

0_- 
X - - C  

Also define 
s = 1-I ( x - c ) .  

eeF  

Next search for a monic polynomial P s C[x] of degree d (as defined in step 2) such that 
when we define polynomials P,, P,_ 1 . . . . .  P-  1 recursively by the formulas below, then 
P-  1 = 0 (identically). 

P,, = - p  

Pi-  1 = - SP~ + ( (n -  i)S' - SO)Pt- (n - i)(i + 1)SZrP~ + 1 

( i  = n, n -  1 . . . . .  0) .  

This may be conveniently done by using undetermined coefficients for P. If no such 
polynomial P is found for any family retained from step 2, then co cannot satisfy a 
polynomial equation of degree n with coefficients in C(x). 

Assume that a family and its associated polynomial P has been found, Let ~o be a 
solution of the equation 

SiPi J =  O. 
(n-o' t = 0  

Then t /= eI~ is a solution of the DE. 

5.2. EXAMPLES 

Example i. Our first example illustrates the alternative technique mentioned at the 
beginning of the last section, namely to bypass the search for equations of degrees 4 and 6 
for co and proceed directly to the search for an equation of degree 12. 

We consider the hypergeometric equation y" = ry where 

3 2 3 
r =  - - - t  

16x 2 9 (x -1 )  2 16x(x-1)"  

The necessary conditions of section 2 show that all four cases are possible. 
Applying the algorithm for case 1, we find that 

c~ = 3/4, ao = 1/4 

~ = 2 / 3 ,  c,;- = 1 / 3  

~+ = 2/3, cCo = 1/3, 

and d = a~o± - ao± - a ~  can never be a non-negative integer. Case 1 fails. 



24 J. j, Kovacic 

Apply ing  the a lgor i thm for case 2, we find tha t  

E o = {2, 3, 1} 

Et  = {2} 

Em = {2}, 

and  d = e ~ - e o - e l  can never  be a non-nega t ive  integer. Case 2 fails. 
W e  app ly  the  a lgor i thm for case 3, searching for an equat ion  of  degree 12 for  a~, thus 

n = 12 in the a lgor i thm.  

At c = 0 ,  ~ = - 3 / 1 6  and x / l + 4 ~ =  1/2 (or - 1 / 2 ) .  Hence  E o - { 3 ,  4, 5, 6, 7, 8, 9}. At 

c = 1, ~ = - 2 / 9  and  v /1  + 4 ~  = 1/3. So Ej = {4, 5, 6, 7, 8}. At oo, ~ = - 2 / 9  and  E ~  --- {4, 
5 , 6 , 7 , 8 } .  

Fo l lowing  the instruct ions of  step 2, we n o w  form the expression d =  e ~ - e o - e l  for 
every choice of  e~ ~ Eoo, eo e Eo, el e E~. We  discard those families for  which d is a nega t ive  
integer .  Only four  possibilities remain.  

coo = 7, eo = 3, el = 4, d = 0 

e~ = 8, e o = 3, e~ = 4, d = 1 

e~o = 8, e0 = 3, el = 5, d = 0 

e~ = 8, eo = 4, e~ = 4, d = 0. 

We now cons ider  the first possibility, following step 3. We set O = 3 / x + 4 / ( x - 1 ) ,  

S = x  2 - x ,  and  search for a monic  po lynomia l  P of degree 1 that  satisfies the condi t ions  
given in step 3. Of  course,  P = 1. 

The  c o m p u t a t i o n s  are far too compl ica ted  to be accurately done  by hand;  however ,  
they are  easily p r o g r a m m e d  into a compute r .  Since Pt is always a p o l y n o m i a l  
(i = 1 2 , . . . ,  - 1) whose  degree is easily predicted (in this example  deg P~ = 1 2 -  i) a r r a y s  of 
coefficients m a y  be man ipu la t ed  to car ry  th rough  the computa t ions .  In order  to  avoid 
r o u n d o f f  error ,  we compu ted  1212-tPt using 33 digit integer ar i thmetic .  T h e  results 
follow. 

P12 = - 1  

P l l  = 7 x - 3  

P lo = (1/12)( - 536x 2 + 4 5 9 x -  99) 

P9 = (3 !/(3.122))(18544x 3 -  23799x2 + 1 0 2 6 0 x -  1485) 

P8 = (4 [ / (16 .122) ) ( ,  127488x4 + 217972x 3 --  140879x 2 + 40770x- -  4455) 

P7 = (5 !/(2"123))(174080x 5 - 371748x 4 + 320305x 3 --  138975x 2 + 30375x - 2 6 7 3 )  

P6 = (6 !/125)( - 8257536x 6 + 21145136x 5 - 22757500x4 + 13168377x 3 
--  4318083x a + 760347x--  56133) 

Ps  = (7 !/(2' 125))(7929856x 7 - 23673984x 6 + 30564708x 5 -  22107287x 4 
+ 9 6 6 8 6 4 6 x  3 - 2555280x 2 + 3 7 7 6 2 2 x -  24057) 

P4 = (8 [/(16.126))( - 26421152x s + 900984832x 7 - 1356734768x 6 + 1177673400x ~ 
- -  6 4 4 0 8 2 3 2 7 x  4 + 227124972x 3 -  50398362x 2 + 6 4 2 9 7 8 0 x -  360855) 

Pa = (9 !/(3" 128))(174483046x 9 - 6688997376x 8 + 11509039440x 7 - 11656902184x 6 
+ 7654170465x 5 -  3376695033x4 + 1000183626x 3 -  191681802x 2 
+ 2 :1552885x-  1082565) 
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P2 = (10 !/(2' 129))( - 2281701376x I o + 9713634848x 9 - 18799438080x s 
+ 21766009616x 7 - 16683774768x 6 + 8840413683x 5 
- 3277319535x4 + 838780110x ~ - 141739470x z + 14270175x 
- 649539) 

P1 = (11 ! /12'°)(1342177280x 11-6282018816x1° + 13507531776x 9 -  17598922384x 8 
+ 15426848952xV- 9546427017x 6 +4252638672x s - -  1362816657x 4 
+ 307684656x a -  46576539x 2 + 4 2 5 1 5 2 8 x -  177147) 

Po = (12 ! /1212) ( -  8589934592x 12 + 43838865408x 11 _ 103681720320x I o 
+ 150145637824x 9 - 148170380976x s + 104901110964x 7 
- 54596424249x 6 -  21032969490x 5 -  5948563455x 4 
+ 1203654816x 3 -  165278151x 2 + 13817466x-  531441) 

P - I  = 0  

Therefore tl = el,O is a so lu t ion  of the DE, where co is a so lu t ion  of the equa t ion  

~ (xZ-x)iP~coi=O. 
t=0 ( 1 2 - i ) !  

Professors Caviness  and Saunders  of  Rensselaer Polytechnic  Inst i tute  k indly  offered to 
a t t empt  a fac tor isa t ion of  this po lynomia l  for co. They used the exceedingly powerfu l  
system for a lgebraic  m a n i p u l a t i o n  called MACSYMA at  MIT.  The  p rogram took less than  5 
minutes  to write  but  took 3 minutes  of C P U  time to execute. The result  is tha t  the 
po lynomia l  above  is the cube of the following polynomial .  

( X  2 - -  X ) 4 c o  4" - -  (1/3)(x 2 - x)  3(7x - 3)093 + (1/24)(x ~ - x)2(48x 2 - 41x + 9)(.02 

--  (1/432)(x 2 --  x)(320x a - 409x 2 + 180x - 27)09 
+ (1/20736)(2048x 4 - 3484x 3 + 2313x 2 - 702x + 81) 

Example 2. In this example  we consider  the DE y" = ry, where  

5x + 27 

3 6 ( x -  1) 2" 

The  necessary condi t ions  of sect ion 2 show tha t  all four cases a re  possible.  
Note  that the  pa r t i a l  fract ion expans ion  of  r has the form 

2 2 

r = - 9 ( x + l )  ~ + ' ' "  9 ( x _ l )  2 + " "  

and  the Lauran t  series for r a b o u t  oo is 

r =  - -  - -  
5 

36x ~ + " ' .  

Apply ing  the a lgor i thm for case 1 we find that  

ce_+l = 2/3, c~- 1 = 1/3 

e~- = 2 / 3 ,  cq- = 1/3 

c% + = 5/6, cQ = 1/6. 

F o r  no choice of signs is d = eoo-c~-± ± 1 - c ~ [  a non-negat ive integer,  thus case 1 c a n n o t  
hold .  
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Applying the algorithm for case 2 we find that E_ 1 = E~ = Eoo = {2}, and case 2 does 
not hold. 

We now apply the algorithm for case 3, at tempting to find an equation of degree 4 over 
C(x) that is satisfied by co. 

F r o m  step 1 we have that 

E _ 1 =  {4, 4, 6, 7, 8 }, E 1 = { 4 , 5 , 6 , 7 , 8  } and E ® = { 2 , 4 , 6 , 8 , 1 0 } .  

There  are four families with the property that d = ½ ( e ~ - e _ ~ - e ~ )  is a non-negative 
integer, namely 

e~ = 8, e_ 1 

e~o = 10, e_ t 

eoo= 10, e_ 1 

e~ = 10, e_ 1 

The first possibility gives 

Setting S = x 2 - 1, we have SO = -}x, S2r 

P~, = - 1 

= 4 ,  e~ = 4 ,  d = 0 ,  

- -4 ,  e 1 = 6 ,  d = 0 ,  

= 5 ,  el = 5 ,  d = 0 ,  

= 6 ,  el = 4 ,  d = 0 .  

4)  8x 
+ ~ = 3(x -~S- 1)' 

= - -~6(5x2+27) .  We then have 

P3 = (8/3)x 

P2 = - ( 1 / 3 ) (  15x2 + 1) 

e l  = (1/9)( 50x3 + 14x) 

Po = - (1/54)( 125x4 + 134x2 -- 3) 

P -1  = 0 .  

Let co be a solution of the equation 

So)* = ~xSco 3 - ~ ( 1 5 x  2 + 1)Sco 2 + ~ ( 2 5 x  3 + 7x)S~o - ~2--~(125x" + 134x 2 - 3). 

If  we make the substitution 6Sco = z + 4x, the equation simplifies to 

z 4 = 6(x 2 - 1)z 2 - 8 x ( x  2 - 1)z + 3(x 2 - 1) 2. 

Then 
q = elO, = (x 2 _ 1)1/3 exp (J" (z / (x  2 --  1)) dx) 

is a solution of the DE. 

5,3,  FINITE SUBGROUPS OF SL(2) 

In  this section we determine the finite subgroups of SL(2), up to conjugation, and their 
invariants. This work is classical, being found in the work of Klein, Jordan and others. 
For  the sake of completeness we sketch the results here in the form needed in the 
subsequent section. 
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THEOREM 1. Let G be a finite subgroup of SL(2). Then either 

(i) G is conjugate to a subgroup o f  the group 

o, o (o, o 
where D is the diagonal group, or 

(ii) the order of  G is 24 (the "tetrahedral" case), or 

(iii) the order of  G is 48 (the "octahedral" case), or 

(iv) the order of  G is 120 (the "icosahedral" case). 

In the last three cases G contains the scalar matrix -1 .  

The geometric names were used by Klein; however, our proof will be entirely algebraic. 
Proof. We assume that G is not conjugate to a subgroup of D*. Let H be the set of 

scalar matrices in G, thus H={1}  or {1,--1}, so the order of H is 1 or 2. For  any 
x e G - H (i.e. x e G and x $ H) we denote by Z(×) the centraliser of x in G and by N(x) the 
normaliser of Z(x) in G. 

Let xeG--H.  Since x is of finite order, x is diagonalisable. (The Jordan form of a non- 

diagonalisable matrix in SL(2)must  be + (10 I) .)  Since the centraliser in SL(2) of a 

diagonal non-scalar matrix is D (by direct computation) Z(x) must be the intersection of 
G and a conjugate of D. Hence Z(x) = Z(y) if and only if y~Z(x). Using this fact and the 
fact that Z(gxg-1) = gZ(x)9-1 we may conclude that (for arbitrary x, y, g, g'~ G) either 

gZ(x)g- t n g'Z(y)g'-* = H or gZ(x)g- ~ = g'Z(y)g'- 1 

and in the latter case y ~ g'- lgZ(x)g- ~g'. In addition gZ(x)g- 1 = g'Z(x)g'- 1 if and only if 
g,-19 e N(x). Therefore we may write G as a disjoint union 

G = U U (gZ(x,)g - l - H )  w H  (disjoint), 
i=1 

where the inner union is taken over all cosets gN(xi) in G/N(xl), s is some natural number 
and xl . . . . .  x ~ e G - H .  

The group N(xt) is easy to describe since xi is diagonalisable. First note that the only 
matrices in SL(2) that conjugate a diagonal non-scalar matrix into a diagonal matrix are 
the matrices in D* (by direct computation). It follows that N(x~) is the intersection of G 
and a conjugate of D ~, in particular the index of Z(x~) in N(xl), [N(xi) : Z(xt)'l, is either 1 
or 2. 

Let M = ord (G/H) and ei-- ord (Z(xt)/H). The representation of G as a disjoint union 
gives the following formulas. 

M .  ord H = ~ [G : N(xi)'l(ei. ord H -  ord H) + ord H, 
i=1 

o r  

M = (e~- 1) + 1, 
,=, [N(&) : Z(x,.)] .e i 

o r  

(# )  -M -t= 1 [N(x~):Z(xO] 
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Certainly s ~ 0 since G # H. If  s = 1, then 

1/M >1 1/([N(xz):Z(xl)]e~) = 1/ord (N(x~)/H), so G = N(xi) .  

This contradicts the fact that G is not conjugate to a subgroup of D*. 
Since e~ >~ 2 (i = 1 . . . . .  s) we have 

1 1 s 
0 < ~  ~< 1_~,  _~1 1 

• = [ N ( x 3 : Z ( x 3 ]  

80 

t= 1 [N(xi) : Z(xt)] < 2. 
Because 

[N(xi):Z(xi)] = I or 2, 

there are only  three solutions of this inequality. 

s = 2, [N(xl)  : Z(x l ) ]  = 1, [N(x2): Z(x2)] = 2 , 

s = 2, [N(xi)  : Z(xx)] = [N(xz):Z(x2)] = 2, 

S = 3, [ N ( x I )  : Z(xl)-]  --- [N(x2):Z(x2)  ] = [N(x3):Z(x3)  ] = 2. 

F o r  all solutions [N(x2):Z(x2)]  = 2. Thus G contains a conjugate of a matrix in 

D * - D '  i'e' the c°njugate °f  a matrix °f  the f°rm ( 0 ; )  - c - 1  . The  square of such a matrix 

is - 1. Hence ord H = 2. 
The  first solution gives 1/M = 1 / e t+ l / (2e2 ) - l / 2 ,  so e i = 3, e 2 = 2  and M = 12, so 

ord G = 24. (The point being that M > 2e2, since G is not conjugate to a subgroup of D, 
and therefore e~ >~ 3.) 

The  second solution gives 1/M = 1/(2el)+ 1/(2e2), which is impossible since M > 2e 2. 
The  third solution gives 

2 1 1 1 

M e I e 2 e 3 

Assuming tha t  e 1 ~< e2 ~< e3 we find that e~ < 3 so e~ = 2 and 

2 1 1 1 

M e= e3 2" 

Also e= = 3 since M > 2e3. The solutions are 

e l = 2 ,  e = = 3 ,  e a = 3 ,  M-----12, o r d G = 2 4 ,  

e 3 = 4 ,  M = 2 4 ,  o r d G = 4 8 ,  

e a = 5 ,  M = 6 0 ,  o r d G = 1 2 0 .  

This proves the theorem. 
In the fol lowing sequence of theorems we shall explicitly determine the three 

"geometr ic"  groups. To that end we need the following lemma. 

LEMMA. Let G be a finite subgroup of SL(2, C) that is not conjugate to a subgroup of  D*. Let 
H = {1, - 1}. Then G/H has no normal cyclic subgroup. 

PROOF. If x H  is a generator of a normal  cyclic subgroup of G/H then the group generated 
by x and - - x  is diagonalisable. Since this group would be normal  in G, G would be 
conjugate to a subgroup of D*. 
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THEOREM 2. Let G be a subgroup of SL(2, C) of order 24 that is not conjugate to a subgroup 
of Dr. Let H = {1, -1}.  Then G/H is isomoJThic to A4, the alternating group on 4 letters. 
Moreover, G is conjugate to the group generated by the matrices 

where ¢ is a primitive 6th root of 1 and 3(o = 2~- 1. 

PROOF. Since ord G/H is 12, and because of the previous lemma, G/B has 4 Sylow 
3-groups, and G/H acts by conjugation on the set of these Sylow 3-groups. This action 
induces a homomorphism G/H--, $4 (the symmetric group on 4 letters). The subgroup of 
the image consisting of those permutations that leave a particular Sylow 3-group fixed 
must have index 4 since G/H acts transitively. Therefore the order of the image is divisible 
by 4. It follows that the order of the kernel is 1, 2 or 3. By the previous lemma, the order 

'of the kernel must be 1, so G/H is isomorphic to a subgroup of $4. Now consider the 
composite homomorphism G/H~S4~{1 , -1} ,  with the last arrow being given by 
a ~ signum (or). By the previous lamina, G/H cannot have a normal subgroup of order 6 

.(since a subgroup of order 6 contains a unique subgroup of order 3 which would be 
normal in G/H). Therefore the composite homomorphism has trivial image and G/H is 
isomorphic to A4. 

Let z : G ~ A  4 be a homomorphism with kernel H. Let A~z-1(123). We may conjugate 
G so that A is a diagonal matrix. Thus 

0) 
Since zA3=(1), A3eH. However, zA¢(1)  and zA2¢(1), thus ACH and A2¢H. 
Replacing A by - A ,  if necessary, we may assume that ¢ is a primitive 6th root of 1. 

Let B~z-t(12)(34). Since z(AB)~ v(BA), B cannot be a diagonal matrix, i.e. not both 
B12 and B21 are zero. In fact neither is zero because if one were zero and the other non- 
zero, then B would have infinite order. 

WemayconjugateGby(; Od)withoutaffectingA. Ifwechoosec=B21andd=2B~2, 

then B has the form 

Now rB2= (1) so BacH. A direct computation shows that ;~ = ~b. 
Next we observe that z(BA 2) = ~(AB) 2 so BA 2 --- + (AB) 2. We perform the computation 

and discover that q~(~2 1) = _ ¢4 (using the fact that 0 ~ 0). Replacing B by - B ,  if 
necessary, we may assume that ~b(~2-1)=44, hence 3q~ = 24-1  (using the relation 
~2 = ~ _  1). 

Next we use the fact that d e t B = l  to obtain the formula ~bZ+2~b2=-l ,  or 

3~, = __ (2~-1). If necessary, we conjugate G by (~ _01) so that 3~¢, = 2~ -  1 = 3~. This 

proves the theorem. 
The group of this theorem is called the tetrahedral group. 
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THEOREM 3. Let G be a subgroup of  SL(2) of order 48 that is not conjugate to a subgroup of 
D t. Let H = { 1 , -  1}. Then G/H is isomorphic to S 4, the symmetric group on 4 letters. 
Moreover, G is conjugate to the group generated by the matrices 

where ~ is a primitive 8th root of 1 and 2~b = 4(~2+ 1). 

PROOF. Since ord G/H = 24, and because of the previous lemrna, G/H has 4 Sylow 
3-groups. The action of G/H on the set of Sylow 3-groups (via conjugation) induces a 
homomorphism G / H ~ S  4. The image contains a subgroup of index 4, namely the 
subgroup of permutations leaving a particular Sylow 3-group fixed, since G/H acts 
transitively on the set of Sylow 3-groups. Hence the order of the image is divisible by 4, so 
the order of the kernel is 1, 2, 3 or 6. Were the order of the kernel 6, then the kernel 
would contain a unique subgroup of order 3 which would be normal in G. This 
contradicts the lemma. Indeed, the lemma implies that ord ker = 1, so G/H is isomorphic 
to S 4. 

Let z : G ~ S 4  be a homomorphism with kernel H and let Aev-l(1234).  We may 
conjugate G so that A is a diagonal matrix 

Since zA4= (1), ~4= 5: 1. However, were 44= 1, then 42-- ±1 and A 2sH.  But zA2¢(1).  
Hence ~ is a primitive 8th root of 1. 

Let Bet-1(12).  Since z(AB) ~ ~(BA), B cannot be a diagonal matrix, thus not both Bt2 
and B21 are zero. In fact, neither is zero since B has finite order. We may conjugate G, 

without disturbing A, by ( ;  : ) , w h e r e c 2 = B 2 1 a n d d 2 = B l z .  ThenBhas  theform 

Using the fact ~B 2 = (1), i.e. B2sH,  we obtain easily that )~.= q~. 
Because z(BA 3) = z(AB) 2, BA a = ± (AB) 2. Making this computation, and using the fact 

that ~ ¢ 0 ,  we find that q~(~2-1)=±~,  or 2q~=±~(4a+l) .  Replacing B by - B ,  if 
necessary, we may assume that 24 = ~(~2 + 1). Then 2q~ 2 = - I. Now we use the fact that 

1 = det B = -  q~2--~2 to conclude that 2~2 = -  l. Conjugate G, if necessary, by (~ 0 1 )  

so that ¢ = qS. 
Because zA, zB generate $4 and the group generated by A, B contains H, we can 

conclude that A, B generate G. This proves the theorem. 
The group of this theorem is called the octahedral group. 

Th"EOREM 4. Let G be a subgroup of  SL(2) of  order 120 that is not conjugate to a subgroup 
of  D t, Let H = {1, -1} .  Then G/H is isomorphic to As, the alternating group on 5 letters. 
Moreover, G is conjugate to the group generated by the matrices 

where ~ is a primitive lOth root of  1, 5~b = 343 - 42 + 4 ~ -  2, and 5 0 = ~3 + 3~2-  2¢ + 1. 
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PROOF. The proof that G/H is isomorphic to A s may be found in Burnside (1955, 127, 
p. 161-2). 

Let r:G-+A5 be a homomorphism with kernel H and let AEz-*(12345). We may 
conjugate G so that A is a diagonal matrix 

A=(~\_ {0_~)./ Since zAS=(1),  4 S = ± l .  Replacing Awi th  - A ,  if necessary, we may 

assume that 4 5 = -- 1. Evidently { is a primitive 10th root of 1. 
Let B6r-x(12)(34). As in the proof of Theorem 3, we may assume that B has the form 

Because r(A4B)=7(BA) 2, A4B= +(BA) =. Making this computation we find that 
qS(1 + 43) = __+ {4, or 5~b = _ (34 a - {2 + 4 { -  2). Replacing B by - B, if necessary, we may 
assume that the plus sign obtains. Now we use the fact that 1 = det B to conclude that 

obtains. 
Note that 7A, zB generate A 5. (This group generated by ~A and zB contains an 

element of order 5, an element of order 2 and an element of order 3. Thus the order of this 
group is divisible by 30. Since A 5 is simple, this group must be As.) Also the group 
generated by A, B contains H. Therefore A, B generate G. This proves the theorem. 

The group described in this theorem is called the icosahedral group. 
For use in the next section, we also need to know the invariants of the three 

"geometric" groups. 

THEOREM 5. Let G be the Galois group of the DE y" = ry and let 71, ~ be a fiindamental 
system of solutions relative to the group G. 

(i) I f  G is the tetrahedral group, then (t/4 + 8q(a) 3 E C(x). 

(ii) I f  G is the octahedral group, then (r/s(-rq~s) 2 E C(x). 

(iii) I f  G is the ieosahedral group, then t/11~ _ 1 lr/6~ 6 _ r/(11 ~ C(x). 

PROOF. (i) Consider the tetrahedral group, using the notation of Theorem 2. Recall that 
4 3 = - - 1 ,  {2 = 4 - - 1  and 3~b = 2 { - 1 .  

t/4+8q~a is carried into {4(r/4+8r/Ca) by the matrix ( a  { 0 1 ) . T h e  matrix q~(12 _11) 

carries 

into 
rr" + 8n¢ 3 = n. (7 + 2~). (n + 2¢20 • ( 7 -  2{~) 

~b(r/+ 2~). 3qSr/- q5(24 - 1)(r/- 24{)" 4(1 - 2{)(r/+ 2{2~ ") 

= -- 3. q~4. (24 - 1) 2. (r/4 + 8r/~ 3) 

= - 3 .  ( -  1/3) 5 .  ( -  3 ) .  (~4 + 8~¢a) = ~4 + 8rt~a, 

Thus (t/4 + 8r/~3) 3 is an invariant of G and therefore is in C(x). 

(ii) Consider the octahedral group, using the notation of Theorem 3. Recall that 
44 = - 1 and 24~ = 4({ 2 + 1). 
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@ ( - t / (  5 is carried into ~*(r /5( - r / ( s )by  the matrix (~0 ~0_~). The matrix ~b(11 _11) 

carries 

ns (_ ,7 (5  = 11. ( .  (r/+ 0 ( , 1 -  ~)" (~ + ~:()" (,7 - ~2~) 
into 

q~(r/+ ( )  (~ -- O '  2~br/• 2~b(. 4)(1 + ~2)(~/_ ~2(). 4~(1 - ~2)(~ + ~2~) 
= 4" 4 6 "(l - 44) • ( r /5(-  r/(s) 
= 8" ( -  1 / 2 )  3 .  (r/S( - -  17(5) = - ( r / s ( - , 1 ( 5 ) .  

Thus (t/5(--r/(~) 2 is an invariant of G and therefore is in C(x). 

(iii) Consider the icosahedral group and use the notation of Theorem 4. First we collect 
some easily derivable formulas. 

542 = ~ 3 - - ~ 2 - - 3 ,  502 =- -~3- -1-~2- -2 ,  

5 ~  = 2¢3 -2~  z -  1 = 5(4~ ~-tp2).  

The  matrix (~ 01 )  carries r / t t ~ -  l l ~ 6 ( 6 - ~ / ( ~  into itself. The matrix ( ~  _ ~ ) c a r r i e s  

11~_ 11,~¢6 _ r/¢l 1 = , ~ .  (r/2 _ ~ ( _  (2) .  (~z + ¢3~( + ~ z ) .  
(r/2_ ~ r / ~ _  ¢4~) .  ( ~  + ~ C -  ~a~') ' (~2 _ ~ C  + ~3~)  

into 
4O(r/~ - , ~  - (~). 5¢,0r/( • ( - ~)(~ - ~r/~ - ~ )  • (~*)(~ + ~r/~ + ~(~). 

(-- 1)(r/2 + ~r/(-- ~aff2). ( _ 1)(r/2 _ ~,,r/~ + ~(2)  

= 5" (Sip) 2" (r/~ ~ ( -  1 lt/6~ 6 - - t / (  I 1) ___ t/i 1( _ 1 lr/6~ 6 -  r/( 11. 

Thus r/it( - llr/6(6--r/( 1~ is an invariant of G and therefore is in C(x). 
This proves the theorem. 

5.4.. PROOF OF THE ALGORITHM 

We must  prove the validity of four separate algorithms. We must show that the 
algorithms for finding a 4th, 6th and 12th degree equation for co are correct  for the 
tetrahedral,  octahedral and icosahedral groups and that the equation obtained is 
irreducible, and finally that the algorithm for finding a 12th degree equa t ion  is all- 
inclusive (al though the equation obtained need not  be irreducible). In so far as is possible, 
we carry out  the proofs simultaneously. 

We begin by showing that the equations obtained for co in the tetrahedral, octahedral 
and icosahedral cases are minimal. Throughout  we assume that the Galois g roup  G of the 
DE y" = ry is the tetrahedral, octahedral or icosahedral group. We also fix a fundamental 
system of solutions t/, ( of the DE relative to the group G and set co = rl'/r/. 

THEOREM 1. Let r/1 be any solution o f  the D E  and let cot = tl'l/r/1. 

(i) I f  G is the tetrahedral group, then 

degc(x)col >~4 and degcc~)co = 4. 



Solving Homogeneous Differential Equations 33 

(ii) U'G is the octahedral group, then 

degc(x)col ~> 6 and degc(~)co = 6. 

(iii) I f  G is the icosahedral group, then 

degc(x)col ) 12 and degc(x~co = 12. 

6th, 8th or 10th root of 1 in the tetrahedral, octahedral or icosahedral cases, the degree of 
co over C(x) is ~ [G : G1] = 4, 6 or 12. The reverse inequality is proven more generally, as 
indicated in the statement of the theorem. 

Let G1 be the subgroup of G that fixes t71. Complete tll to a fundamental system of 
solutions t/~, ~ of the DE and conjugate G to X G X  -~ so that X G X  -~ is the Gatois 
group of the DE relative to ~/~, ~.  Then XG1X --t  consists of matrices of the form 

c-  ~ " Since X G t X -  t is finite, d = 0 and c m = 1, where m is the order of G~. Evidently 

X G t X  ~ is a subgroup of the cyclic group 

{(; m: 

and therefore is cyclic. Hence G~/H (where H is the centre of G) is isomorphic to a cyclic 
subgroup of A4 in the tetrahedral case, of S4 in the octahedral case, and of A 5 in the 
icosahedral case. So ord G1/H ~ 3, 4, 5 or ord G~ ~ 6, 8, 10. ?hus 

degc(x)col = [G : G 1]/> 4, 6, 12. 

This proves the theorem. 
Throughout the remainder of this section we shall be considering a certain differential 

equation written recursively, namely 

a, --- -- 1 

(#),, ai-t  = -a '~--za~-(n- i ) ( i+ l)ra~+l (i = n, . . . ,  O) 

By a solution of (#),, is meant a function z such that when a , , . . . ,  a_~ are defined as 
above, then a_ ~ is (identically) zero. 

THEOREM 2. Let z be a solution of  (#),,, and let co be any solution of 

n - 1 (l i CA) i. 

co"=,=o y" 
Then ~1 = e I°' is a solution of the DE y"= ry. 

Proof. Let 
F! 1 al 

w' (a,,=-l) ,  
A = - w " ÷ i = o  ~ ( n - i ) !  -i=o ( n - i )  ------~w. 

where w is an indeterminate. We claim that 

Dk+ 1A Ok+ 1A akA c?k- 1A 
0Wk+ 1 (wZ--r) = ~ +[(n -2k )w+z]  ~ + k ( n - k + l )  o--~= T (k =0 ,  1 . . . .  ). 
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For  k = 0, we have 

OA (w2 r) __ ( ~ ia, ) 
0-7  --q37. - i  (w 2_ 0 

,.-1 ia i w i + l _ , i i  (i+ l)rai+l 
=na"w"+l +t~o (n---i)! i=o ( n - l - i ) !  

w i 

. - i  (n--i)a~ t+l ,(__i (n--i)(i+ l)rai+ i w~ 
= nw,4 - ,=0Z ( , , _  i) .' w - ,~0 - -  ( n "  i) ! 

n - 1  an _ l a i  w i  i~= 0 Gi _ l w i 
= n w A + a " - i A -  i=oZ (n_i) T. (n-i)------~. 

_ ~ (n--i)(i+ 1)rai+l we 
i=o~ (n- i ) !  

z )A_ ~=o 1 [za~+"i-i +(n--i)(i+ 1)rai+ i]w; = (nw + .= ( n -  0---~. 

" ' OA 
~=o ai w ~ = (nw + z)A + -~x. = ( n w  + z ) A  + ~ (n Z i )  ! 

Our  claim now follows by induction. 
To show that q = elO, is a solution of the DE is equivalent to showing that co' +co2= r. 

We assume that co'+ o92- r # 0 and force a contradiction. 
Since A(co) = 0, we have 

OA , OA 
Ow (co)o9 + ~x  (co) = O. 

Therefore 

OA OA 
OAow (og)(co' + o92 _ r) = - ~x (co) + (nco+ z)A(og) + ~x (co) = O. 

Hence 

Assuming that 

we have 

Thus 

SO 

OA 
Ow (co) O. 

Ok- i A Ok A 
r (co) = ~ (co) = o, 

d {a A ) a +lA Ok+IA 
o =-dyx \aw ~ (co) = ~ (o~)co'+ ~ (co). 

ak+IA 
Owk+i (o9)(co'+ ~ o 2 - r )  

O k+ 1A 0 k+ 1A OkA Ok- 1A 
- Ow k Ox (co)+ ~ (o9)+ [(n-2k)co+z] ~ (og)+k(n-k+ 1) ~ (co) 

---- 0 ,  

O~+IA 
Owk+ 1 (co) = O. 
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The desired contradiction follows from the fact that 

a"A 
cgw" (o~) = - n !  # 0. 

This proves the theorem. 

TrmOREM 3. 

(i) Suppose that (#)4 has a solution z e C(x). Then the polynomial 

3 ai 
w" - ,=oZ ~ w'~ C(x)[w] 

is irreducible over C(x). 

(ii) Suppose that (#)6 has a solution z~ C(x). Then the polynomial 

5 
w6- Z ~ w~c(x)[ w] 

l=0 ( 0 - 0  i 

is irreducible over C(x). 

(iii) Suppose that (#)12 has a solution z~C(x) and that ( # ) ,  and (#)6 do not have 
solutions in C(x). Then the polynomial 

11 at 
w12-~=0 ~ (12-i)----'--~ w~eC(x)[w] 

is irreducible over C(x). 

PROOF. By Theorems 1 and 2, any root of the polynomial 

" - '  a i  w I ( a i e C ( x ) )  w"-,=o y' 0,-i)' 

must  have degree 4, 6 or 12 over C(x), Statement (i) of the present theorem is clear. 
Statement (ii) follows from the fact that if a sextic is reducible, then one of the factors has 
degree ~< 3. To prove (iii) it suffices to show that if degc{.)co = n, then (#),, has a solution 
z e C(x). 

Let A E C(x)[w] be the minimal polynomial for co over C(x). Let deg,~A = n and write 

n-- 1 n a. 

A = --W"-b ~=o - -  al w i ~ - i ~ O ~  W' ( a  n = - -  1). ~= ( n - i ) !  

Consider the polynomial 
0A 2 0A B = ~ ( r - w ) +  ~ +(.w+z)A, 

where 

The coefficient of w" + ~ in B is 

and the coefficient of w" in B is 

z = a,,_ 1 e C(x). 

-- nan 4- nan = O, 

- ( n -  l ) a , , _  1 + al, + ha,,_ 1 + za .  ~ a . _  l - z = 0 .  



36 J.J.  Kovaeie 

since a. = -  1 and a ._  l = z .  Therefore degwB < n. But 

OA 2 t~A 
B(co) = ~w (o.))(r-co ) + ~ x  (og) + (mo + z)A(co) 

d 
= Ux (A(co)) + (tTco + z)A(co) 

= 0 .  

Therefore B = 0. The coefficient of  w ~ in B is 

i a i  - 1 ~ i  al + ~ at-1 ai -Jet7 +7, -- 
O =  ( i+ l) ( n - - l - i ) !  r - - ( i - - 1 )  (n+ l - - i ) !  + (n-- i ) [  ( n +  1-- i ) [  (n - - i ) [  

1 

( n -  i) ! 
[(n - i)(i + 1)ra~ + 1 + a l -  i + a'i + za~], 

where a_  1 = 0. These are precisely the equat ions  of ( # ) , .  This proves the theorem.  
For  a ny  function b we denote  by 16b = b'/b the " logar i thmic  derivative" of  b. 

THEOREM 4. Let  F be any form (homogeneous polynomial) o f  degree n in solutions oJ'the DE, 
Then z = l f F  is a solution o f ( # ) , , .  

PROOF. First  we prove that if F 1 and/72 are functions such that  16F1 and 15F z a re  solutions 
o f  (#),,, then lS(elF1 + e z F z )  is a solution of  ( # ) .  for any el, c2~C.  Let a~, a~, a~ denote 
the sequences determined by (#),, for z = 15F1, 16F2, 16(cl F~ + e~ F2) respectively. 

We claim that  
(c i F 1 + c2F2)a  3 = c 1 F  1 a~ + c2V 2 a~. 

This is clear for  i = n. Also 

(ci FI + c2 F2)a a- i = (ci F1 + c2 F 2 ) [ -  a~' - 15(c i F1 + c2 FE)a~-  (n - i)(i + 1)raa+ 1] 

= - [(c i Fi + c2 FE)aa] ' -  ( n -  i)(i + 1)r(ci Fl + c2 FE)a~a+ l 

= - [c~ F~ a~ + c 2 F2 a ~ ] ' -  ( n -  i)(i + 1) [ct F~ a~+~ + c2 F2 a2+~] 

= c l F i a ~ _ i + c z F 2 a 2 _ i  ( i = n , . . . , O ) .  
Therefore 

(ciFx +c2F2)a3-1 = c l F l a l - l  +e2F2a2--1 --- 0, 

which verifies ou r  assertion. 
To prove the theorem, we may assume that  

F = I I  rh, 
i = l  

where r/1 . . . . .  r/, are solutions of the DE. 
Let co i = r/'i/~ h and denote by a,,k the kth symmetr ic  function of cot . . . . .  co,,. Thus 

a,,,k-=O for  k < 0  or k > m ,  a,, o = 1 and 

Gmk = Z 091,' ' " 09ik 
l ~ < / t <  . . ,  < l k ~ m  

for 1 ~< k ~ m. First  we claim that 

or" k = (m + 1 - k)ra,,, k - 1 -- a,, 1 amk + (k + 1)or,,. k + 1. 
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This  formula is easily checked for m = 1 and, for m > 1, 

~r',.~ = (~,~_ i. k + or.,_ 1,~- i o9~)' 

= ( m - - k ) r G n _ l , k _ i - - ~ r m _ l , l r r , . _ L ~ + ( k + l ) r r m _ L k + i  

+ [(m + 1 - k)rG._  l, k -  2 -- rr._ l. ~ rr,._ 1, k -  1 + kam- l. k] c°m 
+ ~r~_ ~, k -  d r  - o~,~) 

= (m + 1 -- k)r(G._ 1, k-  1 + am - l, k- 2 COrn) -- (am- l, i + CO')(G._ i, ~ + cry_ l, k-  1 O9.,) 

+ ( k +  1)(~r~_ 1,k+ 1 + 0~-  L k¢O., ) 

= ( m + l - - k ) r G . , k _ l - - a . ~ G ~ k + ( k + l ) G , , , k + ~ ,  

which completes the induction. 
Next  we use induct ion on i to prove that 

ai = (--  1) '-~+ i ( n - i ) !  G. , , - i .  
Evident ly  

a . _ l = z = l f i F = ~  co b= G, i .  
t=l 

Using (#)~,  we have 

Hence  

ai - 1 = - a ' i -  z a i -  (n - i)(i + l)rai + 1 

= ( -  1 ) " - i ( n - i )  t o '~, , , ,- i+G,l(- 1 )n - t (n - i )  ! rr,,,,,_~ 
- ( n -  i ) ( i  + 1 ) r ( -  1 ) " - t ( n  - 1 - i) ! G, ,  ~ - 1 - f  

= ( -  1 ) " - i ( n -  i) ! [cr',,,,,_l + or,, 1 G, , , , - i -  (i + 1)rG,,~-1-~] 

= ( -  1)"-~(n--i)! ( n - - i +  1)G,,,-l+ 1 

= ( -  l )~-~(n-- i+ 1)t rr,,,,,_~+ 1. 

a - 1  = ( - 1 ) n ( n +  1)! G,,,,+l = 0. 

This  completes the proof  of the theorem. 

THEOREM 5. 

(i) I f  G is the tetrahedral group, then (# )4  has a solution z = l~u, where u 3e  C(x). 
(ii) I f  G is the octahedral group, then (#)6  has a solution z = l~u, where u2eC(x) .  

(iii) I f  G is either the tetrahedral group, the octahedral group or the icosahedral group, 

then ( # ) l z  has a solution z = 16u, where ueC(x) .  

PROOF. This theorem is a corollary of Theorem 3 of the present  section and Theorem 3 of 
the  previous section. For  part  (i) we may take u =  r/4+8~/~ 3, for part  (ii) we m ay  take 
u = r / s ~ - r / ~  5 and for part  (iii) we may take u=(r/4+8~/~a) ~, (~/s(_~/(5)2 or  
r/i l~ _ 1 lr]6~ 6 - r / (  11. 

We shall write 
u'2/" = c~c ( x - c )  eo ~ C(x). 

where  n = 4, 6 or  12 and e c e Z .  Our next step in the proof  is to determine the various 
possibilities for ec, as stated in step 1 of the algorithm. For  ease of notation, we shall 
assume that  c = 0. To  this end we shall use the Laurent  series for 

z = hSu = ~2 hS(ul2/")' 
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namely 
n --1 

z = - ~ e x  + ' "  ( e = e o e 2 ,  pos s ib l yO)  

and for r, namely 

r = o~x- 2 + [3x- 1 + . . .  (ct, f le  C, possibly 0). 

(Note that, by the necessary conditions of section 2, r can have no pole of  order 
exceeding 2.) 

First we consider the possibility that c~ = 0 and fl ~ O, corresponding to (cl) of Step 1 of 
the algorithm. 

THEOREM 6. I f  Ct = 0 and fl ~ O, then e = 12. 

PROOF. We write 
n 

z = = e x - 1 + f +  . . . ,  
12 

and treat e and f as indeterminates. Then 

a s = Aix- ~- , ,+B,  xt-,,+l+Cifxi-,,+l+...., 

where At, B~, C i are polynomials in e with coefficients in C. Using (#),, we find that 

for i = n . . . . .  0. 

A,, = - 1, 

Ai_ 1 ---- ( n - i -  

Bi_ 1 -~ ( n - i -  

C~_ 1 = ( n - i -  

B,, = C,, = O, 

~ e  Ai, 

1--~e Bi-(n--i)(i+ l)flAi+t, 

1 -  ]-~ e C i - A i ,  

We leave to the reader the verification 

because 

and 

that the solution to these equations is given by 

n - i - 1  
A i -- -- I-[ 

j=O 

n - i - 2  
y, 

j=O 

n - t - 2  

c,  = ( n - O  1-I 
j=O 

n - i - 2  I t ( j+ l ) (n - - j )  1~ k -  n 
k=0 ~-~ e 
k~j 

- - i -~e  ( i=  n , . . . , 0 )  

O =  a_ I = A _ l x - " - l  q - B _ l x - n + C _ l f x - " +  ' ' ' ,  

j=O -- "-~ e 

O = B - I  + C - l f  

= fl ~ ( j + l ) ( n - j )  I-[ k - - ~ e  + f ( n + l )  k -  
j = O  k=O k=O -~  e . 

kej 
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The  first equation implies that 
12 

e = - - I  
n 

for some t = 0 , . . . ,  n. Suppose that l ~ n. Then the second equation gives 

n-  1 
C =/3( l+  1)(n- l )  1-[ ( k - l ) ,  

k=0 

which implies that/~ = 0. This contradiction shows that l =  n and therefore e = 12. This 
proves the theorem. 

Next  we consider the possibility that c~ :/: 0. This corresponds to (c2) of Step 1 of the 
algori thm. As above we write a~ = A~xi-"+ ". ". 

LEMMA. Ai is a polynomial in e with coefficients in Q[cc] whose degree is n - i  and whose 
leading coefficient is - ( - ( n / 1 2 ) )  "-i. 

PROOF. Using ( # ) ,  we have 

A,, = - 1, 

A,-I  = ( n - - i -  ~2 e) A i - ( n - i ) ( i +  l)c~A,+ l. 

The  lemma is immediate from these formulas. 
The author  did not  succeed in finding a closed-form solution of these equations, thus 

we shall use an indirect argument. 
Assume that c~ ~ - 1/4. Then the DE y" = ry has Puisseaux series solutions of the form 

r h = x ~ l +  ..  . ,  /21 = ½+½x/1 +40q 

t/2 = x " ' + '  • ", #2 = ½ - ½ x / l + 4 a .  

By Theorem 4, hS(r/] t/~ -t) is a solution of ( # ) .  for every i = 0  . . . . .  n. Since 

l~(~ ~ - ' )  = (ira + (n-  i)~2)x -~  + " "  

the polynomial  A_ ~ must vanish for 

- - e =  - - i  1+4c~ ( i = 0 ,  n). 
n 2 . . . 9  

THEOREM 7. 

(i) Assume that G is the tetrahedral group. Then e is an integer chosen from among 
6 + k x / i + 4 c q  k = 0 ,  -I-3, +6. 

(ii) Assume that G is the octahedral group. Then e is an integer chosen from among 
6 + k ~ f l  +4cq k = 0 ,  +2,  -t-4, 4-6. 

(iii) Assume that G is either the tetrahedral group, the octahedral group or the 
icosahedral group. Then e is an integer chosen from among 6 + k x / l + 4 ~ ,  
k = 0 ,  _+1 . . . . .  +6.  
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PROOF. (i) In  this case n = 4. If  a # 1/4, then we may  use the L e m m a  and the remarks 
fol lowing it to  obtain 

0 =  A_ 1 = i=o  ]-~ ( 3  - 2  + ( 2 - - i )  l x ~ ~ ) "  

Thus  
e = 6 + k x / l + 4 ~ ,  k = 0 ,  -+3, +6 .  

If a = - 1 / 4 ,  we compute  directly, using the recurrence relations given above.  

A4 = - 1 

A3 = ~e 

A2 = -gZ(e 2 -  3e + 9) 

A1 = ~ ( e 3 - 9 e 2 + ~ e - 5 4 )  

Ao = - ~ ( e  4 -  18e ~ + 135e 2 - 4 5 9 e +  22-~ ~a) 

A _ 1 = r~3( e5 -- 30e 4 + 360 ea --  2160e 2 + 6 4 8 0 e -  7776) 

= -~3(e - 6) 5. 

(ii) I n  this case n = 6. I f  c~ ¢ -  1/4, then we may  use the L e m m a  and the remarks 
fol lowing it to  obtain  

0 =  A_ 1 =~=o f i  ( 2  - 3  + ( 3 - i ) ~ / 1  +4c~). 

Thus  
e = 6 + k x / l + 4 a ,  k = 0, + 2 ,  -t-4, -t-6. 

If c~ = - 1 / 4 ,  we compute  directly. 

A 6 = - - 1  

A 5 = ½e 

A4 = - ¼ ( e  2 -  2e + 6) 

A3 = 8X(e 3 - 6e 2 + 2 4 e -  24) 

A2 = - 1-~6 (e 4 -  12e 3 + 72e 2 --  192e + 216) 

A x = 3~(e 5 - 20e 4 + 180e 3 - 840e z + 2040e--  2016) 

A o = - ~  (e 6 -  30e 5 + 390e 4 -  2760ea + 11160e 2 --24336e + 22320) 

A_ a = 1 z--~s (e 7 - 42e 6 + 756e 5 --  7560e 4 + 45360e 3 -- 163296e 2 + 326592e - 279936) 

- -  l _ _ L _ r  e 6~7 - -  1281. ~ ) • 

(iii) I n  this case n = 12. If c~ ¢ - 1/4, then we may  use the L e m m a  and the remarks 
fo l lowing it to obta in  

12 

0 = A -1 = ]"l ( e -  6 + (6 - i)x/]--+ 4~). 
Thus  ~=o 

e = 6 + k x / l + 4 a ,  k = 0 , + l  . . . .  , +6.  
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I f  a = - 1 / 4 ,  we c o m p u t e  direct ly.  Us ing  a p r o g r a m m a b l e  ca l cu l a to r  we o b t a i n e d  the 

f o l l o w i n g .  

A12 = - 1  

A l l  = e 

Alo  = - e 2 +  e - 3  

A9 = e a - 3 e a + ~ e - 6  

A8 = - e 4 + 6e 3 - 27e 2 + 4 5 e - ~  

AT = e s -- 10e 4 + 60e 3 -- 180e 2 + 315e- -  216 

A 6 = --  e 6 + 15e s --  120e* + 540e a - 1485e 2 + 2 2 4 1 e -  1485 

As = e ~ - 2 1 e  6 + *~-x* e5 - 1365e 4 + 5355e a - 13041e 2 + - a - ~ - 2 e - -  11178 

A ,  = - -  e ~ + 28e 7 -  378e 6 + 3066e 5 - 1 6 1 7 0 e *  + 56196e 3 --  125118e 2 
+ 162378e-aS7267~ 

A 3 = e9 - 36e8 + 612e 7 - 6300e 6 + 42903e s - 199206e 4 + 628236e 3 

- -  1293732e 2 + ~ e - 8 6 2 4 8 8  

A2 = - - e  t° + 4 5 e  9 - 9 4 5 e  8 + 12060e 7 - 103005e 6 + 612927e 5 - 2566620e 4 
- 7453620e 3 - ~ e 2  + a3oo=35 e -  t 72½3s ~7 

A1 = e 11 _ 55e10 _b 282_~e9 _ 21780e s + 228195e 7 - 1690227e 6 
+ ~ e S _ 3 4 6 1 3 8 6 5 e ' ~ + l s 7 1 s s V 3 5 e 3  3 3 9 3 o 6 ! ~ 5 e 2  

~ 2 

+ ~ e -  92538045 

A0 = - - e  1 z + 66e 11 _ 2013e t° + 37455e 9 - ~ e  8 

- -  28176687e 6 + 13717925 le  5 - ~ e  4 + 1240169535e 3 
_ ~ e  = + 4446 ½02717 e _ 426102-6627. 

A_ 1 = e13 - 78e12 + 2808el  I - 6 1 7 7 6 e 1 °  + 9 2 6 6 4 0 e 9 - 1 0 0 0 7 7 1 2 e S  

+ 80061696e 7 _ 480370176e 6 + 2161665792e s - 7205552640e 4 

+ 17293326336ea- -  28298170368e2 + 2 8 2 9 8 1 7 0 3 6 8 e -  13060694016 

= ( e - 6 )  i s .  

T h i s  p roves  the  t h e o r e m .  

F i n a l l y  we c o n s i d e r  w h a t  h a p p e n s  if a = fl = 0, i.e. at  an  o r d i n a r y  po in t  of  r. U s i n g  the 

p r e v i o u s  t heo rem,  we h a v e  tha t  (nil 2)e is an integer.  

L e t  F d e n o t e  the set  of  po les  o f  r. W e  have  p r o v e n  the  fo l lowing.  

(i) I n  the t e t r a h e d r a l  case, ( # ) 4  has a so lu t ion  z = 16u, where  

u a = p3 1-I ( x - c ) %  
¢6r 

P e C [ x ]  and e~ is an  in teger  chosen  f rom a m o n g  6 + k ~ ,  k = 0, + 3, + 6. 

(ii)  I n  the o c t a h e d r a l  case, ( # ) 6  has a so lu t ion  z = lau, where  

u 2 = t,2 I-[ ( x - c ) %  
eeF 



42 J . J .  Kovacic 

P ~ C [ x ]  and e, in an integer chosen from among 6+k~/1  +4e,  k = 0, _+2, +4 ,  +6 .  
(iii) In either the tetrahedral case, the octahedral case or the icosahedral case, (#),2 

has a solution z = 16u, where 

u = P ]-I ( x - c ) %  
c,~F 

P e C [ x J  and ec is an integer chosen from among 6+kx/1  +4c~, k = 0, ___ 1 . . . . .  _+6. 
Let d = dep P. Then the Laurent series for z at oo has the form 

and the Laurent series for r at oo has the form 

r = 7 x - 2 + ' " .  

(By the necessary"conditions of section 2, the order of r at c~ is at least 2.) 
If we let 

12 
e ~ = - - d + ~ ,  e~, 

rl c ~ F  

then, by a theorem analogous to Theorem 7, e® satisfies the same conditions as does each 
e~. Also 

~ e~ --~1~ 

must be a non-negative integer. This is a restatement of step 2 of the algorithm. 
We shall complete the proof of the algorithm by showing that the recursive relations of 

step 3 are identical with (#)n. 
Let 

0 = ~2 c~r x--ce~ and S =  ~rl-'[ ( x - c ) .  

Then z = lSu = P ' / P + O .  Also set P l =  S n - l P a i .  Using (#) , ,  we have 

P, = - -p  

P i - a  = S n - ~ + i P a ~ - I  

= S ~ - t+ , p (  _ a~ - z a i -  (n - i)(i + 1)ra~ + 1) 

= - S ( S " -  ~Pai)' + (n - i)S ~-  ~S'Pa t + S n - i + 1P'a~ 

- S ( P '  + PO)(S  ~ - iai) - (n - i)(i + 1)S2r(S  ~ - ~- ~ Pa t  + ~) 

= - SP'l + ((n - i) - SO)P t - ( n -  i)(i + l ) S 2 r P t  + 1. 

This is precisely the equation of step 2 of the algorithm. 
Finally, the equation 

n - i a i  o.) i 

°~=,=o ~ (~-0-----~. 
may be rewritten as 

0 = - S~Pco " + ~ ( n -  0 t ~ o - ~ -  i~. d .  

This completes the proof of the algorithm. 
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Abstract

The Galois group tells us a lot about a linear homogeneous dif-
ferential equation - specifically whether or not it has “closed-form”
solutions. Using it, we have been able to develop an algorithm for
finding “closed-form” solutions.

First we will compute the Galois group of some very simple equa-
tions. We then will solve a more complicated one, using the techniques
of the algorithm. This example illustrates how the algorithm was dis-
covered and the kinds of calculations used by it.

1 Introduction

Every student of calculus wants a formula to solve differential equations. Of
course that is impossible, at least if we want “closed-form” solutions. The

1



situation is analogous to that of polynomial equations. We’d like to have
a formula for solutions in terms of radicals, and we know from the Galois
theory that we can’t.

In fact, the Galois group tells us a great deal about the kinds of solutions that
an equation has. That is, after all, the point of the Galois theory. Therefore
one wants to compute the Galois group of an equation.

That was my point of view when I started working on [6]. I wanted to find
some criteria to determine the Galois group of a differential equation. I
wanted them to be explicit, and easy - at that time pencil and paper was the
accepted form of symbolic computation.

What came out, to my surprise, was an explicit algorithm to either find a
“simple” solution or to prove that none exist.

There are no new ideas in the algorithm. It is simply brute-force calculation.
And the hardest parts were worked out in the 19th century.

According to Felix Ulmer and Jacques-Arthur Weil [13], algorithms for find-
ing rational solutions are in Liouville [7] (1833).

Ulmer and Weil also claim that algorithms for finding algebraic solutions are
in Fuchs [2] (1878) and Pèpin [9] (1881). But Michael Singer [11] claims
that these authors did not give a complete decision procedure, and that
Baldassarri and Dwork [1] were the first to have done so.

An algorithm for finding Liouvillian solutions requires the Picard-Vessiot
(Galois) theory, and so awaited the work of Kolchin in this century.

The original algorithm has some severe implementation difficulties. But re-
cent work as eliminated most of the problems. Most of the recent work done
to improve the algorithm is due to Abramov, Bronstein, Singer, Ulmer, and
Weil.

There is a web version for 2nd and 3rd order equations:

http://www-sop.inria.fr/cafe/Manuel.Bronstein/sumit/bernina_demo.html
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A very nice, and complete, description of the history of the algorithm and
further developments is Michael Singer’s survey article in [5, Direct and in-
verse problems in differential Galois theory, p. 527–554]. The bibliography
has 168 items!

For expositions of Picard-Vessiot (differential Galois) theory see: Kaplansky
[3], Kolchin [4], Magid [8], and van der Put-Singer [14].

2 The DE

We consider a second order linear homogeneous ordinary differential equation

z′′ + az′ + bz = 0

where a, b ∈ F = C(x) (and x′ = 1). There is a change of variables that
“normalizes” the equation. Let

y = e
1
2

R
az

then
y′′ = (b− 1

4
a2 − 1

2
a′)y .

If we can find y we can find z, at least up to the problem of integrating 1
2

∫
a.

But that is a “easier” problem and we consider it “solved”. In fact, there is
an algorithm, called the Risch algorithm, for integration.

Throughout the remainder of this talk, we consider only

y′′ = ry

where r ∈ F = C(x). We call this the DE.

There are several types of solutions that we are particularly interested in.

Definition 2.1. Let η be a solution of the DE.

1. η is algebraic if it the solution of a polynomial equation over F

2. η is primitive if η′ ∈ F, that is η =
∫

f for some f ∈ F,

3



3. η is exponential if η′/η ∈ F, that is η = e
R

f .

The third should really be called “exponential of a primitive”.

Definition 2.2. A solution η of the differential equation is said to be Liou-
villian if there is a tower of differential fields

F = G0 ⊂ G1 ⊂ ... ⊂ Gm = G,

with η ∈ G and for each i = 1, ..., m, Gi = Gi−1(ηi) with ηi either algebraic,
primitive, or exponential over Gi−1.

A Liouvillian solution is built up by integration and exponentiation. So we
get log’s, the trig functions, but not things like the Bessel functions. These
are “closed-form” solutions familiar to a first year calculus student.

This is a little more generous than “elementary” functions (logs and exp’s
only) in that we allow arbitrary indefinite integration.

Proposition 2.3. If y′′ = ry has one Liouvillian solution, then every solu-
tion is Liouvillian.

Use reduction of order: set y = ηz where η is a Liouvillian solution. One
finds that ηz′′ + 2η′z′ = 0. Therefore z =

∫
1
η2 and y = η

∫
1
η2 is another

Liovillian solution.

3 Picard-Vessiot (differential Galois) theory

We learned in college that the DE has a “fundamental system of solutions”
η,ζ. This means that η and ζ are functions that satisfy the equation and
are linearly independent over constants (C). In addition, every solution is a
linear combination over C of η and ζ.

We also learned that linear independence is equivalent to the Wronskian

W =

(
η ζ
η′ ζ ′

)

4



having non-zero determinant

det W 6= 0

Observe that

(det W )′ = (ηζ ′ − η′ζ)′ = η′ζ ′ + ηζ ′′ − η′′ζ − η′ζ ′ = ηrζ − rηζ = 0 .

Thus det W ∈ C.

Consider the differential field (F = C(x))

G = F〈η, ζ〉 = F(η, ζ, η′, ζ ′) .

Definition 3.1. The group of all differential automorphisms of G that leave
F invariant (element-wise) is called the differential Galois group of the G over
F and is denoted by

G(G/F) .

If σ ∈ G(G/F), is a differential automorphism over F then ση and σζ are
solutions of the DE. Therefore

σ
(
η ζ

)
=

(
η ζ

) (
aσ bσ

cσ dσ

)
,

where

c(σ) =

(
aσ bσ

cσ dσ

)

is an invertible (since σ is an automorphism) matrix of constants, i.e.

c(σ) ∈ GLC(2) = GL(2) .

But we can do better. Since aσ, bσ, cσ, dσ ∈ C, we have

σ

(
η ζ
η′ ζ ′

)
=

(
η ζ
η′ ζ ′

)(
aσ bσ

cσ dσ

)
.

i.e.
σW = Wc(σ)
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Taking determinants we have

σ(det W ) = det W det c(σ)

But
σ(det W ) = det W

since det W ∈ C. Therefore det c(σ) = 1, i.e.

c(σ) ∈ SL(2) .

Theorem 3.2. The mapping

c : G(G/F) −→ SL(2) = SLC(2)

is an injective homomorphism whose image is an algebraic subgroup of SL(2).

There is a “fundamental theorem of Galois theory”, i.e. a bijection between
algebraic subgroups of G(G/F) and intermediate differential fields F ⊂ E ⊂ G.

Theorem 3.3. If η1, ζ1 is another fundamental set of solutions of the DE
then the image of c1 in SL(2) is conjugate to the image of c.

I.e. There is an element X ∈ SL(2) such that

c1(G(G/F)) = X c(G(G/F)) X−1 .

4 Example 1

Consider y′′ = y. Then ex, e−x is a fundamental system of solutions and

G = F〈ex, e−x〉 = F(ex) .

Because (ex)′ = ex, we must have

(σex)′ = σex

6



for every σ ∈ G(G/F). This implies that

σex = dσe
x and σe−x = d−1

σ e−x

for some constant dσ ∈ C Therefore

σ
(
η ζ

)
=

(
η ζ

) (
dσ 0
0 d−1

σ

)

i.e.

G(G/F) ≈
{(

d 0
0 d−1

) ∣∣∣∣ d ∈ C
}
⊂ SL(2) .

5 Example 2

Consider

y′′ = − 1

4x2
y .

One solution is η =
√

x. We get the other one by reduction of order, so a
fundamental system of solutions is

η =
√

x, ζ =
√

x log x .

Now we can compute the Galois group. Let σ ∈ G(G/F). Then

ση = ±η .

log x is a solution of y′ = 1/x and every solution of that equation is of the
form log x + c for some constant c. Therefore

σζ = ±√x(log x + cσ) = cση ± ζ

Thus

G(G/F) ≈
{(

1 c
0 1

) ∣∣∣∣ c ∈ C
}
∪

{(−1 c
0 −1

) ∣∣∣∣ c ∈ C
}

7



6 The four cases

Theorem 6.1. There are precisely four cases that can occur.

Case 1. G is triangulisable, i.e. G is conjugate to a subgroup of
{(

c d
0 c−1

) ∣∣∣∣ c, d ∈ C, c 6= 0

}

Case 2. G is conjugate to a subgroup of
{(

c 0
0 c−1

) ∣∣∣∣ c ∈ C, c 6= 0

}
∪

{(
0 c

−c−1 0

) ∣∣∣∣ c ∈ C, c 6= 0

}

Case 3. G is a finite group: the tetrahedral group, the octahedral group or the
icosahedral group.

Case 4. G = SL(2).

7 Case 1

Suppose that

G ⊂
{(

c d
0 c−1

) ∣∣∣∣ c, d ∈ C, c 6= 0

}

and η, ζ is a fundamental system of solutions relative to G. For every σ ∈
G(G/F),

σ
(
η ζ

)
=

(
η ζ

) (
cσ dσ

0 c−1
σ

)

so
ση = cση .

We say that η is a semi-invariant.

Let θ = η′/η then

σθ =
ση′

ση
=

cση
′

cση
= θ =⇒ θ ∈ F = C(x) .

8



We say that θ is an invariant.

θ satisfies the Riccati equation

θ′ + θ2 =
ηη′′ − η′η′

η2
+

(
η′

η

)2

=
ηη′′

η2
= r .

i.e. the Riccati equation has a rational solution.

8 Case 2

Suppose that

G ⊂
{(

c 0
0 c−1

) ∣∣∣∣c ∈ C, c 6= 0

}
∪

{(
0 c

−c−1 0

) ∣∣∣∣c ∈ C, c 6= 0

}

Then either

ση = cση and σζ = c−1
σ ζ, or

ση = −c−1
σ ζ and σζ = cση

Therefore
σ(ηζ) = ±ηζ

so (ηζ)2 is an invariant and is in C(x). We write

(ηζ)2 = a
∏

i

(x− ci)
ei

for some ei ∈ Z, a, ci ∈ C.

Let

φ =
(ηζ)′

ηζ
=

1

2

((ηζ)2)′

(ηζ)2
=

1

2
a

∑
i

ei

x− ci

One computes that
φ′′ + 3φφ′ + φ3 = 4rφ + 2r′ .

This is the Riccati equation associated to the third order linear homogeneous
differential equation satisfied by ηζ. In this case it has a solution of a very
special sort.

9



9 Case 3

For the tetrahedral group,

ξ = (η4 + 8ηζ3)

then ξ3 is an invariant (and therefore is in C(x)) and

φ =
ξ′

ξ
=

1

3

(ξ3)′

ξ3

satisfies a 4th order Riccati equation.

For the octahedral group,
ξ = η5ζ − ηζ5

and ξ2 is an invariant.

φ =
ξ′

ξ
=

1

2

(ξ2)′

ξ2

satisfies a 6th order Riccati equation.

For the icosahedral group

φ = η11ζ − 11η6ζ6 − ηζ11

is invariant and satisfies a 12th order Riccati equation.

10 Case 4

This case is the easiest. The DE does not have Liouvillian solution.

11 Another example

Consider

y′′ =
(

x2 − 2x + 3 +
1

x
+

7

4x2
− 5

x3
+

1

x4

)
y = ry

10



We are going to try for Case 1, so we look for a rational solution θ of the
Ricatti equation

θ′ + θ2 = r

Since θ ∈ C(x), it has a partial fraction decomposition

θ =
an

xn
+ · · ·+ a1

x

+
b1m1

(x− c1)m1
+ · · ·+ b11

x− c1

+ · · ·
+

brmd

(x− cd)md
+ · · ·+ bd1

x− cd

+ f0 + · · ·+ fex
e

I separate out the pole x = 0 because it is a pole of r. The others (c1, . . . , cd)
are not. It turns out that the Riccati equation can have singularities that
are not present in the original equation.

It’s easier to use Laurent series. Look first at 0:

θ =
a

xn
+ · · ·+ b

x
+ · · · .

From the Riccati equation we get

− na

xn+1
+ · · ·+ a2

x2n
+ · · · = r =

1

x4
+ · · ·

It immediately follows that

n = 2 and a = ±1

Using the Riccati equation again, we get

−2a

x3
− b

x2
+ · · ·+ a2

x4
+

2ab

x3
+ · · · = 1

x4
− 5

x3
+ · · ·

therefore
−2a + 2ab = −5

11



So we have the possibilities:

a = 1 b = −3

2
θ =

1

x2
− 3/2

x
+ · · ·

a = −1 b =
7

2
θ = − 1

x2
+

7/2

x
+ · · ·

Now let’s try some other point:

θ =
a

x− cn
+ · · ·

From the Riccati equation we get

− na

(x− c)n+1
+ · · ·+ a2

(x− c)2
+ · · · = 0 + · · ·

so
n = 1 and a = 1

So far

θ =
1

x2
− 3/2

x
+

d∑
i=1

1

x− ci

+ f0 + · · ·+ fex
e

or

θ = − 1

x2
+

7/2

x
+

d∑
i=1

1

x− ci

+ f0 + · · ·+ fex
e

Unfortunately we do do not know, yet, what d is or what the ci are (not to
mention the polynomial part).

Next we look at ∞. Write

θ = axn + · · ·+ bx + cx−1 + · · ·

Then
naxn−1 + · · ·+ a2x2n + · · · = r = x2 + · · ·

12



Therefore
n = 1 and a = ±1

So
θ = ax + b +

c

x
+ ·

and, from the Riccati equation,

a + · · ·+ a2x2 + 2abx + 2ac + b2 + · · · = x2 − 2x + 3 + · · ·
Comparing coefficients we get

a = 1 b = −1 c =
1

2
θ = x− 1 +

1/2

x
+ · · ·

a = −1 b = 1 c = −3

2
θ = −x + 1− 3/2

x
+ · · ·

From our analysis of the finite poles we had two possibilities for θ. The first
was

θ =
1

x2
− 3/2

x
+

d∑
i=1

1

x− cd

+ f0 + · · ·+ fex
e

= fex
e + · · ·+ f0 +

d− 3/2

x
+

?

x2
+ · · ·

Comparing with the first case above we have

e = 1, fe = 1, f0 = −1, d− 3/2 = 1/2, d = 2

Comparing with the second case we have

e = 1, fe = −1, f0 = 1, d− 3/2 = −3/2, d = 0

But we had a second possibility for theta:

θ = − 1

x2
+

7/2

x
+

d∑
i=1

1

x− cd

+ f0 + · · ·+ fex
e

= fex
e + · · · f0 +

d + 7/2

x
+

?

x2
+ · · ·

13



Comparing with the equations we got at ∞ we have

e = 1, fe = −1, f0 = 1, d + 7/2 = −3/2, d = −3

which is impossible.

The last case is

e = 1, fe = −1, f0 = 1, d + 7/2 = −3/2, d = −5

which is also impossible.

Let’s try for d = 0. In that case

θ =
1

x2
− 3/2

x
+ 1− x

We try this in the Riccati equation and get

θ′ + θ2 = x2 − 2x + 3− 5

x
+

23/4

x2
− 5

x3
+

1

x4
6= r

This is not the right answer! So θ does not give a solution.

On to the case

θ =
1

x2
− 3/2

x
+

1

x− c1

+
1

x− c2

− 1 + x

We do not know what c1 and c2 are.

Let

ω =
1

x2
− 3/2

x
− 1 + x

and
P = (x− c1)(x− c2)

Then
η = e

R
θ = Pe

R
ω

is supposed to be a solution of the original DE (y′′ = ry). This gives

P ′′ + 2ωP ′ + (ω′ + ω2 − r)P = 0

14



or

P ′′ +
(

2

x2
− 3

x
− 2 + 2x

)
P ′ + (

4

x
− 4)P = 0

Substituting P = x2 + ax + b one easily finds that

P = x2 − 1 = (x− 1)(x + 1)

So c1 = 1, c2 = −1.

The solution to the original DE

y′′ = ry

is
η = Pe

R
ω = (x2 − 1)e

R
1

x2− 3
2x
−1+x = x−3/2(x2 − 1)e−1/x+−x+x2/2

12 Higher order

First of all, there really are only two cases: either the equation has a Liou-
villian solution or it doesn’t. And if it does, the Lie-Kolchin theorem tells
us that the DE will have a Liouvillian solution if and only if the connected
component of the identity of G, denoted by Go, is triangulizable:

Go =




c11 c12 · · · c1n

0 c22 · · · c2n
...

. . .
...

0 0) · · · cnn




For every σ ∈ Go,
ση = c11η

so

σ
η′

η
=

η′

η

Because Go has finite index in G,

η′

η

15



is algebraic over C(x). The degree d is the index of Go in G. Then the
symmetric functions in η, ζ of degree d are invariants. These are solutions of
a Riccati equation of order at most d.

Unfortunately, the index of Go in G may be arbitrarly large. However we do
have:

Theorem 12.1. If G ⊂ SL(n) has a non-trivial triangularizable subgroup
(not necessarily Go, but always G0), then the index is no greater than a
computable number I(n).

I(n) tends to be rather large, for example

I(2) = 384, 064 .

The following was proven by Michael Singer [10] and [11].

Theorem 12.2. Given a linear homogeneous differential equation of order
n

y(n) + an−1y
(n−1) + · · ·+ a0y = 0 ,

there is an algorithm that either finds a Liouvillian solution or proves that it
has none.

13 The Galois group

The algorithm actually tells us something about the Galois group of the
differential equation. In case 1, for example, the group is reducible (trian-
gularizable). We can break the cases into various subcases and refine the
algorithm to determine which subcase the equation belongs to.

For example, in case 1 could have d = 0. In this case the group is diagonal

G =

(
c 0
0 c−1

)
,

and ηζ is an invariant. If c is an n-th root of unity, then ηn is an invariant.

Singer and Ulmer [12] actually calculate the Galois group.
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[2] L. Fuchs, Über die linearen Differentialgleichungen zweiter Ordnung welche algebrais-
che Integrale besitzen, zweiter Abhandlung, J. für Math. 85 (1878).

[3] Irving Kaplansky, An introduction to differential algebra, Actualités Sci. Ind., No.
1251 = Publ. Inst. Math. Univ. Nancago, No. 5, Hermann, Paris, 1957. MR 0093654
(20 #177)

[4] E. R. Kolchin, Differential algebra and algebraic groups, Academic Press, New York,
1973. MR 0568864 (58 #27929)

[5] Ellis Kolchin, Selected works of Ellis Kolchin with commentary, American Mathemat-
ical Society, Providence, RI, 1999. MR 1677530 (2000g:01042)

[6] Jerald J. Kovacic, An algorithm for solving second order linear homogeneous differ-
ential equations, J. Symbolic Comput. 2 (1986), no. 1, 3–43. MR 839134 (88c:12011)
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l’École Polytechnique 22 (1833).

[8] Andy R. Magid, Lectures on differential Galois theory, University Lecture Se-
ries, vol. 7, American Mathematical Society, Providence, RI, 1994. MR 1301076
(95j:12008)
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différentielles linéaires du second ordre, Atti dell’ Accad. Pont. de Nuovi Lincei
XXXIV (1881), 243–388.

[10] Michael F. Singer, Algebraic solutions of nth order linear differential equations, Pro-
ceedings of the Queen’s Number Theory Conference, 1979 (Kingston, Ont., 1979),
1980, pp. 379–420. MR 634699 (83b:12022)

[11] , Liouvillian solutions of nth order homogeneous linear differential equations,
Amer. J. Math. 103 (1981), no. 4, 661–682. MR 623132 (82i:12028)

[12] Michael F. Singer and Felix Ulmer, Galois groups of second and third order linear
differential equations, J. Symbolic Comput. 16 (1993), no. 1, 9–36. MR 1237348
(94i:34015)

[13] Felix Ulmer and Jacques-Arthur Weil, Note on Kovacic’s algorithm, J. Symbolic Com-
put. 22 (1996), no. 2, 179–200. MR 1422145 (97j:12006)

[14] Marius van der Put and Michael F. Singer, Galois theory of linear differential
equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Princi-
ples of Mathematical Sciences], vol. 328, Springer-Verlag, Berlin, 2003. MR 1960772
(2004c:12010)

17



65

1.3 An Implementation of Kovacic’s Algorithm for
Solving Second Order Linear Homogeneous
Differential Equations

By B. David Saunders



An Implementation of Kovacic's Algorithm for Solving 
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1. Introduction. 

Kovacic [3] has given an algorithm 

for the closed form solution of differen

tial equations of the form ay" + by' + cy 

= 0, where a, hi and c are rational func

tions with complex coefficients of the 

independent variable x. The algorithm 

provides a Liouvillian solution (i.e. one 

that can be expressed in terms of inte

grals, exponentials and algebraic func

tions) or reports that nO such solution 

exists. 

In this note a version of Kovacic's 

algorithm is described. This version has 

been implemented in MACSYMA and tested 

successfully on examples in Boyce and 

DiPrima [1], Kamke [2), and Kovacic [3]. 

Modifications to the algorithm have been 

made to minimize the amount of code needed 

and to avoid the complete factorization of 

a polynomial called for. In Section 2 

these issues are discussed and in Section 

3 the author's current version of the 

algorithm is described. 
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2. Issues. 

Some notation: For any function u 

of X we write u' for dulux, and C denotes 

the complex numbers, C[x] the polynomials 

over C, and C(x) the rational functions 

over C. 

By a standard change of variables, 

( 1) au" + bu' + eu = 0 I 

a, b, c E C (x) 

is equi valent to 

a 'I 0, 

2 2 (2) y" ~ ry , r = (2b'a-2ba'+b -4ac)/4a 

in that (1) has a Liouvillian solution if 

and only if (2) has a Liouvillian solution 

(u = exp(f -b/2a dx) 'y). 

Using the Galois theory of differen

tial fields, Kovacic shows that equation 

(2) has a Liouvillian solution if and only 

if it has a solution of the form y = 
e fw dx where w is algebraic of degree 

1,2, 4, 6, or 12 over C(x). In turn, 

equation (2) has a solution of the form 

y = e fw dx if and only if the Ricatti 

equation 

(3) w' + w2 
r 

has a solution w which is algebraic of 

degree n = 1, 2, 4, 6, or 12 over C(x). 

The algorithm then consists in finding 

such w. This is done largely by analysis 

of the singularities of r. I f no such w 

exists it can be asserted that equation 

(1) has nO Liouvillian solution what-

soever. 

The goal of the algorithm then is to 

determine the coefficients of the minimal 
n-l i 

polynomial of w, mw(z) = zn + i~O miz 
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m. € C(x). Kovacic determines for each 
1. 

possible degree n in turn c.mdidate poly-

nomials m and conditions on them in such w 
a way that if the conditions are met then 

w is a solution to the Ricatti equation 

and if the conditions are not met for any 

of the candidate mw then no w of degree n 

is a solution. 

Computationally, three features of 

the algorithm deserve special attention. 

1. Candidates and conditions must be 

generated and the condidates tested against 

the conditions for each possible degree 

separately, (though degrees 4, 6, 12 can 

be treated simultaneously). In the ver

sion described in Section 3, we have taken 

advantage of similarities in the candidate 

generation process to minimize the amount 

of code. 

2. It is assumed that the poles of rare 

known (analysis of singularities dominates 

the process of determining the candidate 

solutions). This implies a complete split

ting of the denominator of r, which can be 

difficult in itself and requires also that 

computations be carried out in an alge

braic extension field (of the constant 

field generated by the coefficients of r) 

over which the denominator splits. But the 

solution - if found - generally has coef

ficients in a simpler extension involving 

only certain square roots. The version 

of the algorithm described here avoids 

explicit realization of the individual odd 

order poles but does require determination 

of the even order poles. There is reaSOn 

to think that one could also avoid split

ting the even order square free factors of 

the denominator, but this has not been 

achieved as yet. It should be remarked 

that this matter only begins to cause 

computational concern when the denominator 
k of r has a factor t , k even, with t 

irreducible of degree 2 or greater, a rare 

occurrence. 

3. The number of candidates which must be 

(n + l) k+l checked is in the worst case 

where k is the number of even order poles 

106 

of r. Thus the algorithm requires expo

nential time, though in practice this is 

unlikely to be of much concern in that k 

is generally small and aspects of the 

production of candidates dominate the 

computing time. For example k = 1 seems 

to be the upper bound for textbook prob

lems (cf. [1], [2]). 

3. The Algorithm. 

Kovacic describes his algorithm by 

treating three cases. Case 1 (n=l): 

search for a rational function w satisfy

ing the Ricatti equation 00' + 00
2 = r, 

case 2 (n=2): search for a solution w 

quadratic over C(x), and case 3 (n=4, 6, 

or 12): search for a higher degree func

tion. In each case one first computes a 

number d and rational function 3, then a 

polynomial P of degree d whose coeffici

ents are determined by d linear equations 

expressed in terms of e. Each case has 

3 steps, (1) determination of parts for 

d and 9 (by analysis of the poles of r), 

(2) assembly of trial d's and 9's from 

the parts, (3) determination from each 

trial d and 9 a system of linear equations 

for the coefficients of P. If any of 

these systems is solvable the desired 

function w may be expressed in terms of 

the corresponding e and P. Basically, 

the coefficient of zn-l in the minimal 

polynomial m (z) of w is -P'/P - e and 
w 

the other coefficients are expressible in 

terms of P, 9, and the input r via a 

recursive formula. For example if n=l 

we have w = P'IP + 9 (then e /w dx 

Pe /9 dx). If n=2, w satisfies w2 - ~w + 

$'/2 + ~2/2 - r = 0, where ~ = pllp + 9. 

The algorithm outlined below unifies 

step 1 and step 2 across the three cases. 

Thus only one description (piece of code) 

for these steps (with n as a parameter) 

is needed. Step 3 remains in 3 parts, one 

for each case, and is as described by 

Kovacic. Hence step 3 is not developed 

in detail below. Step 3 can be given a 
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unified treatment also, and it may be best 

to do this. However, such a unification 

has not been implemented as yet. 

Kovacic's algorithm (modified) 

[Given r 8 C(x), solve 00' + 00
2 = r for 00.] 

Step 0: [Preliminaries.] 

(a) Let r = sit, with gcd (s,t) = 1, 

s, t 8 C[x]. Compute the square 

free factorization of t: 

t = t t 2t 3"' t m 
1 23m' 

Let 0(00) = deg(t) - deg(s) [order of 

0:1 as a zero of r]. 

(b) [Necessary conditions.] 

Form a set L of possible degrees over 

C (x) of a solution w. [L is a subset 

of {I, 2, 4, 6, 12}.] 

1 E L only if 

ti 1 for all odd i > 3 

and 0(00) is even or 0(00) > 2. 

2 8 L only if 

t2 t 1 or ti t 1 for some odd i > 3. 

4, 6, 12 8 L only if 

ti = 1 for all i > 2 

(i.e., m < 2) and 0(00) > 2. 

Step 1: [Form parts for d and 9.] 

(a) [Fixed parts.] 

d fix ~ (min (0 (00), 2) - deg (t) 

3 deg(t l ». 
9fix = ~ (t'/t + 3tl '/tl ). 

(b) [Poles of order 2.] 

Find the roots c l ' .•• , ck of t 2 . 
2 . .,-,.--,,,, 

For i = 1 to k2 let d i = 11 + 4b , 
e i = di/(x - c i )· 

(c) [High order poles.] 

If 1 8 L then find the roots c k +1' 
2 

... , ck of t 4' t 6 , ••• , t m• 

For i = k2 + 1 to k let d i = bla, 

. e i =2[/r] +d./(xc
i
)· c i l. 

[Here a, b, [fi]c are as described by 

Kovacic [3, pg. 21, 34, 45]. They are 

computed from the Laurent series expansion 

of r at c. However the parts d i and e
i 

are different. This reflects the computa

tion of d fix and e
fix 

above and the differ

ent scheme for assembling parts in step 2. 
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Also, parts dO and eO corresponding to 

the 'zero' at infinity are computed as in 

(b) or (c) if 0(00) = 2 or 0(00) < 2 

respectively (but replace dO/(x - cO) by 

0) • ] 

Step 2: [Form trial d's, e's.] 

For n in L (taken in increasing order) do: 

If n = 1 then m = k else m = k 2 • 

For all sequences s = (sO' sl' .•. , sm) 

where each si 8 {-~n, -~n+l, ••• , ~n}, 

[Start with s = (-~n, ••• , -~n), view 

s as a m-digi t number base n + 1 which 

is incremented by 1 at each pass until 

s = (~n, ••• , ~n)] do: m 

Let ds n' d fix - E sidi' 
i=O 

If ds is an integer> 0 then 
m 

let es = n • e fix + E siei and 
i=O 

apply step 3n (ds ' 8s )' 

If step 3n is successful then stop -

solution is found. 

[It is expressed in terms of 8
s 

and a 

polynomial P of degree d
s 

found in 

step 3n by solving a system of linear 

equations. ] 

End' for all sequences s do'. 

End 'for n in L do'. 

[If this point is reached, all possibil

ities for a solution have been tried, 

so •.• ] 

Stop - no solution exists. 

The ds and es computed in step 2 are 

Kovacic's d's and e's, except that in 

case 1 he uses '00' rather than 'e' (see 

[3, pg. 23, 35, 46]). Thus this version 

may be verified by calculations to show 

that the same expressions are indeed ob

tained, and then reference to Kovacic's 

proo f of the algorithm • 

It is a tribute to the expressive 

power of MACSYMA that the code for this 

algorithm is about the same length as 

Kovacic's (mathematician's) description 

and contains little in the way of extra 

'programmer's' details. One exception 

to this is the vector s used to keep track 

of the trial d's and 9's. 
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We conclude with some sample computa

tions using the above algorithm. 

Example 1. 

Differential Equation: y" = (x2 + 3)y 

Step 0: r = x 2 + 3, L {1l , 

t = 1 [no poles except at ~], o(~) -2. 

Step 1: 

dfix -~, 8fix = 0, 

dO -3, 8 0 = 2x [for the pole at ~]. 

Step 2: 

s = (-~), ds = -2 [reject], 

s = (~), ds = 1, 8
s 

= x. 

Step 3: Successful with P = x. 

w = P' /P + e = l/x + x solves the 

Ricatti equation. 

y = e fw xe~x2 solves the D.E. 

Example 2. 

Differential Equation : y" (~ - 1~x2)Y 
Step 0: r = (x - 3/16)/x2, 

2 
t = x , t2 = x [one pole at a of order 2], 

0(00) = 1, L = {2}. 

Example 3. 

Differential Equation: x 2 y" 2y 

Step 0: r = 2/x2 

t = x
2

, t2 = x [one pole at 0 of order 2] 

o (~) = 2, L = {1, 2, 4, 6,. 12}. 

Step l: 

dfix 0, 8fix = 1/2x, 

dO 3, 8
0 0 [for the pole at ~] , 

d l 3, 81 3/x [pole at c l = 0] • 

Step 2: 

s = (-~, -~), ds = 3, 8s = -l/x. 

Step 3: Successful with P = x 3 • 

w = P'/P + 8 = 2/x solves the Ricatti 

equation. 

y = e fw = x 2 solves the D.E. 
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d fix ->.t, 9 fix = 1/2x, 

d l = ~. 91 = 1/2x [for the pole c 1=0]. 

Step 2: 

s = (-1), d s = 0, 8s = 1/2x. 

[the values s = (0) and s = (1), had they 

been tried first, would have been reject

ed since in those cases ds is not a nOn

negatiye integer.] 

Step 3: Successful with P 1. 

P' /P + 9 = 1/2x. 

w satisfies w2 (1/2x)w + (1 - 16x)/l6x2 

o. 
w = 1/4x + x-~ solves the Ricatti 

equation. 

fw dx y - e 
>.t 2x~ 

x e solves the D.E. 

Remark: No dO' 60 are computed when 1 ¢ L. 
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CHAPTER 1 

Introduction 

1.1. Overview 

The following essay is a discussion of an algorithm by J. Kovacic [3] to solve 

certain second order ordinary differential equations, and of an implementation of 

this algorithm in Maple. 

In the remainder of this chapter, the exact form of the problem to be solved is 

given. In chapter 2, some of the theory that is intrinsic to the algorithm is developed 

and the general form of the algorithm is specified. 

In chapter 3, Kovacic's algorithm is presented and proved correct. In chapter 

4, a variant of the algorithm developed by B. D. Saunders for implementation in 

Macsyma [5] is discussed and some corrections made. The corrected algorithm is 

also verified to correspond to Kovacic's algorithm. 

In chapter 5, the implementation of the algorithm is discussed and some prob

lems with Maple as the implementation system are mentioned. Some recommenda

tions for future work on Maple and on the implementation of the algorithm are 

made. Source code is presented in appendix A. Some examples of the use of the 

algorithm and of the implementation are presented in appendix B. 

1. 2. Purpose 

The equation to be solved is assumed of the following form: 

a·z" + b·z' + c·z = 0 (1. 2a) 

where a, band c are rational functions of a (complex) variable x with coefficients in 

the field of complex numbers C, a * 0 and z is a (complex) function of x. 

The goal of the algorithm is to find one Liouvillian solution of the equation. A 

solution is Liouvillian if it is an element of a Liouvillian field, where a Liouvillian 

field is defined as follows: 
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Definition: Let F be a differential field of functions of a complex variable x, that 

contains C(x), i. e. F is a field of characteristic zero with a differentiation 

operator ' with the following two properties: (a+b)' = a'+b' and 

(ab)' = ab' +a' b, for all a and b in F. (The characteristic of a field is the 

least integer q > 0 for which qa = 0 for all a in the field. If no such q 

exists, then the characteristic of the field is zero.) F is Liouvillian if there 

exists a tower of differential fields 

C(x) = Foe FIe· . k F n = F 

such that for each i = 1, ... ,n 

or 

or 

a' 
where - E. F i - I a 

(i. e. Fi is generated by an exponential of an integral over F i - I ) 

Pi = Fi-l(a) where a' E. F i - l 

(i. e. Fi is generated by an integral over F i - I ) 

Fi is finite algebraic over F i - I . 

(i. e. Fi = Fi-l(a) and a satisfies a polynoluial of the form 
aO+aIa+ ... +anan=O where the aj are in F i - l and are not all 
zero) 

The algorithm need only find one Liouvillian solution of the equation because a 

second solution may be found by the method of reduction of order as follows. The 

second solution is assumed of the form z2 = v'zl where zl is the known first solution 

and v is son1e function to be determined. Using the differential equation (1.2a), one 

obtains a first order equation for v which can be solved to give the second solution as 

-I~dx 
e a 

z2 = zi . f dx 
zr 

If the first solution, zl' is Liouvilli&I1 it is clear that the second, z2' is also 

Liouvillian and hence all solutions of (1. 2a) are Liouvillian (since all solutions are a 

linear cOlnbination of zl a:1d z2)' 

In order to reduce the original differential equation to a simpler form, the fol~ 

lo\ving transform.ation is made: 



Then (1. 2a) becomes 

or 

where 

-f~dx 
y(x) = z(x) . e 2a 

" (b
2 + 2ab' - 2ba' - 4ac) _ 0 y - y-

4a2 

r= 

y" = ly 

b2 + 2ab' - 2ba' - 4ac 

4a2 

3 

(1. 2b) 

Clearly, if the solutions to (1. 2a) are Liouvillian, then so are the solutions to (1. 2b). 

In what follows, the equation to be solved will be assumed of the form (1. 2b). 

The implementation of the algorithm accepts equations of the form (1. 2a), makes the 

transformation, solves the transformed equation, then transforms the solutions using 

the inverse transformation 

f~dx 
z(x) = y(x) . e 2a 



CHAPTER 2 

Some Preliminaries 

2.1. The Four Cases 

The following theorem by Kovacic [3] determines the form that the algorithm 

will take. 

Theorem: For the differential equation yU = ry, r £ C(x), there are four cases that 

can occur. 

(1) The d. e. has a solution of the form 'Y] = ef W where w £ C(x). 

(2) The d. e. has a solution of the form" = ef W where w is algebraic of 

degree 2 over C(x) and case (1) does not hold. 

(3) All solutions of the d. e. are algebraic over C(x) and cases (1) and (2) 

do not hold. The solutions are of the form" = ef W where w is algea 

braic of degree 4, 6 or 12 over C(x). 

(4) The d. e. has no Liouvillian solutions. 

The remainder of this section will cover the proof of this theorem and the back

ground necessary to understand it. 

Let ", t be any two independent solutions of the d. e. y" = ry. Define G to be 

the differential extension field of C(x) generated by " and t, i. e. 

G = C(x)('Y],,,',t,t'). (Higher derivatives of 'Y] and t are not necessary since 

Tl" = rTl £ G, ,,'" = r'" + r,,' £ G, etc.) 

Now, the Galois group of the differential equation is the Galois group of Gover 

C(x), and is denoted G = G(G/C(x)). G is the group of all differential automor

phisms of G leaving C(x) elementwise fixed. 

Recall that an automorphisnl of a group H is an isomorphisnl from H to itself. 

A differential automorphism is an automorphism that commutes with' (the differen

tiation operator). 

4 
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This means that G is the group of all automorphisms 0': G - G such that 

O'(a') = (O'a)' for all a E G, and 0'1 = 1 for all 1 E C(x). 

The Galois group, G, is isomorphic to a subgroup of GL (2, C), the group of all 

2x 2 invertible matrices with complex coefficients, i. e. each 0' E G corresponds to a 

f
aa hal matrix e

a 
d

a 
where aa' ba , ea , da E C. This correspondence occurs as follows. 

Because " and ~ are solutions of y" = ry, and because any (1 EGis a differential 

automorphism, then 

and hence 0'" must be a solution of the d. e. too. Further, (1" must be a linear com

bination of " and t, since every solution of the d. e. is a linear combination of any 

two independent solutions of the d. e. We may then write 

Following the same arguments 

Combining these two results we have 

Using the Wronskian of " and t, we can show that G is isomorphic to a sub

group of SL(2,C) (CGL(2,C)), the group of 2x2 invertible matrices with determinant 

1. The Wronskian, W, of " and t is by definition W = ,,~' - ,,'t. Take the deriva

tive of Wand get 

Hence W must be a constant and so for any 0' E G, (1W = W (because WE C(x) and (1, 

by definition, leaves C(x) fixed). This implies 
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We will now state two facts without proof. The Galois group of the d. e., G, 

(relative to TJ and t), is (isomorphic to) an algebraic subgroup of SL (2, C). (This is a 

fundamental fact from Picard-Vessiot theory. A proof may be found in [3].) Recall 

that any subgroup K of GL(2,C) is said to be an algebraic group if there exist a finite 

number of polynomials Pl' ... • P ,P where each Pi E. C[X l ,X2,X3,X4], such that a 

matrix [: ~] is an element of K iff P1Ca,b,c,d) = ... = PnCa,b,c,d) = O. 

Further, for any algebraic subgroup of SL(2, C) the following lemma holds. 

(See [2] for the proof of this lemma.) 

Lemma: If G is an algebraic subgroup of SL(2,C) then one of the following four 

cases can occur. 

(1) G is triangulisable, i. e. there exists an x E G such that for every g E G, 

xgx- 1 is a triangular matrix. We can assume that xgx- 1 is a lower tri-

angular matrix and hence of the form [: a ~ 1] with a and b EO C. 

(Recall that G is a subgroup of SL(2,C) and hence the detenninant of 

xgx- 1 must be 1.) 

(2) G is conjugate to a subgroup of D+ where 

D+ = ([~ c~l] ICE C,C * 0) U ([_~-l ~] I c € C,c * 0) 
and case (1) does not hold, i. e. there exists an x E. G such that for 

every g E G, xgx- 1 is either a diagonal matrix or a skew-diagonal 

matrix but there is no XEG such that all xgx- 1 are triangular (this 

includes strictly diagonal too). (Note that the determinant of each 

xgx -1 is 1 since the determinant of each matrix in D + is 1.) 

(3) G is finite and cases (1) and (2) do not hold. 

(4) G = SL(2,C), i.e. G is the infinite group of all 2x2 matrices with 

determinant 1. 

What do we have now? We know that G, the Galois group of the d. e., is (iso

morphic to) an algebraic subgroup of SL(2, C). We also know that any algebraic sub

group of SL(2,C) satisfies the above lemma. We can now apply the lemma to the 
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Galois group of the d. e. and see what relevance it has to the solutions of the d. e. 

In case (1), G is triangulisable. Assume x E. G has been found and every matrix 

conjugated to a lower triangular matrix, (This is equivalent to changing the basis of 

the vector space or picking two different independent solutions" and t.) Then every 

[
acr 0 1 

(J' E. G is of the form -1 acr,ccr E. C and maps" to 0'" = acr'" Ccr acr 

Now if we set W = ~ (or equivalently,,, = e fw
), then 

" 
,,' (J" a" , ( ) 

, 

(70) = (7 -:;;- = (7~ = a:'fJ = ~ = 0) 

and hence w E. C(x). This is case (1) of the original theorem; the d. e. has a solution 

of the form" = ef w where w E. C(x). 

In case (2), G is conjugate to a subgroup of D +. Assume we have conjugated G 

[
acr 0 1 or [0 b crl and every (J' E. G is of the form 0 a;l -b;l 0 so that either (J'" = acr'" 

(J'~ = a;l~, or (J'" = bcr~' (J'~ = -b;l". (Note that in either case, (J'(,,2~2) = 'Tl2~2, so 

that 'fJ2~ 2 
E C(x).) If we set 0) = ~' ('fJ = / w) and <!> = ~', then either (70) = 0) and 

0'4> = 4>, or (J'W = 4> and (J'4> = w. Minimally both cases are handled by (J'2w = w or 

(J'2w - w = 0 so w satisfies a polynomial of degree 2 over C(x), hence is algebraic of 

degree 2 over C(x). This is case (2) of the original theorem; the d. e. has a solution 

of the form" = ef w where w is algebraic of degree 2 over C(x). 

In case (3), G is a finite group, i. e. there are only a finite number of automor

phisms, (J'1' (J'2' ...• (J' n' Look at any elementary symmetric function of the func

tions (J'1'" (J'2'" ... (J'n'" e.g. ~(J'i'Tl = (J'1" + (J'2'Tl + ... + (J'n'" For any (J'j E. G, 

(J'j (L(J'i'Tl) = ~(J'i" because (J'j . (J'i E. G for all (J'i (because G is a group and hence is 

closed). Hence, ~(J'i" = j(x) E. C(x) and" satisfies 0'1'Tl + ... + (J'n'Tl - j(x) = 0 

and is algebraic over C(x). A similar argument holds for ~ so that since" and ~ are 

algebraic over C(x), all solutions of the d. e. are algebraic over C(x). 

To be more specific about the nature of G in case (3), we win state the follow

ing theorem without proof. (See Kovacic [3] for details.) 

Theorem: If K is a finite subgroup of SL(2,C) then either 



(1) K is conjugate to a subgroup of n+ 0 

(2) The order of K is 24. 

(3) The order of K is 48. 

(4) The order of K is 120. 
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Clearly, the first case of this theorem is a subcase of case (2). This means that 

for case (3), G has order 24, 48 or 120 only, and hence the order of " over C(x) is 

24, 48 or 120 respectively. 

In each of these cases, the following functions of " and t are known to be in 

C(x); if G has order 24 then (,,4 + 8"t3)2 E. C(x), if G has order 48 then 

(,,5t - "t5)2 E. C(x), and if G has order 120 then "llt - 11il6t 6 - "tll 
E. C(x). (See 

[3] for proofs of these statements.) 

In case (4), G = SL(2,C). We want to show that in this case, the d.e. has no 

Liouvillian solution. We will assume the contrary and force a contradiction. 

Assume the d. e. has one Liouvillian solution. Then a second solution, obtained 

by the method of reduction of order, must also be Liouvillian and hence all solutions 

of the d. e. must be Liouvillian (because all solutions are a linear combination of the 

two independent solutions). Clearly, G = C(X)(",il',t,t') must be contained in a 

Liouvillian field. This implies that the component of the identity of G, GO, must be 

solvable. 

The component of the identity of any group is the largest connected subgroup of 

the group containing the identity. Recall that a point set is connected if any two 

points in the set can be joined by a segmental arc all of whose points belong to the 

point set. 

A group H is said to be solvable (in the Galois theory sense) if 

H = Ho:J Hl :J .:J Hm = {e} where each H i+ 1 is normal in Hi' each factor group 

H/H i+1 is abelian and e is the identity element of H. 

If G = SL(2,C), then GO = SL(2,C) and hence SL(2,C) must be solvable. But 

SL(2,C) is not solvable and a contradiction has been shown. Hence, the original 

assumption must be false and the d. e. has no Liouvillian solutions. This is case (4) 

of the original theorem. 

2.2. Form of the Algorithm 

At this point, we have that for the d. e. y" = ry, the solution is of the form eI w 

with either w E. C, w algebraic of degree 2 over C(x), or w algebraic of degree 4, 6 or 
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12 over C(x), or there is no closed-form solution. The algorithm to solve the given 

d. e. now takes the following form. 

apply sub-algorithm to find a solution of form Tl = eI W where W E C(x) 

if success then 

RETURN (solution); 

fi; 

apply sub-algorithm to find a solution of form Tl = eI W where w is algebraic of 

degree 2 over C(x) 

if success then 

RETURN (solution); 

fi; 

apply sub-algorithm to find a solution of form Tl = eI W where w is algebraic of 

degree 4, 6 or 12 over C(x) 

if success then 

RETURN(solution) ; 

fi; 

FAILO; 

Each of the three sub-algorithms must be such that if a solution of the required 

form exists, then it will always be found. Only then can one guarantee that if all 

three sub-algorithms fail, then there is no Liouvillian solution. 

2.3. Necessary Conditions 

In order to reduce the work involved in solving the d. e., Kovacic has deter

mined some conditions on the function r that must be true in order for each of the 

first three cases to be possible, i. e. for a Liouvillian solution to exist. If we can 

detennine using these conditions that a case is not possible, then the sub-algorithm 

for that case need not be attempted. 

These conditions are necessary but not sufficient; i. e. if the conditions for a 

given case do not hold then the corresponding sub-algorithm need not be tried as it 

will certainly fail, but if the conditions do hold then the sub-algorithm mayor may 

not succeed. 

In order to understand the necessary conditions and their development, SOlne 

facts from complex analysis are needed. 
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Recall that any analytic function, j, of a complex variable z, can be expanded 

about any point a in the complex plane in a Laurent series as follows. 

2 a_l a_2 
fez) = ao + al(z-a) + a2(z-a) + ... + -- + 2 + 

z-a (z-a) 

The analytic part of the given expansion is ao + al(z-a) + ... ; the principal part is 

a_l a_2 
-- + + .. '. By definition, a is a pole oj fez) oj order n if the last term 
z-a (z-a)2 

a_ n 
of the principal part of the Laurent series expansion of f about a is . 

(z-a)n 

Equivalently, if j is a rational function, a is a pole of j(z) of order n if it is a root of 

the denominator of j of multiplicity n. 

Further, the order of f at 00 is defined to be the order of 00 as a zero of f(z), 1. e. 

the order of 0 as a pole of f( 1.-). Equivalently, if f is a rational function, then the 
z 

order of j at 00 is the degree of the denominator minus the degree of the numerator. 

The following theorem regarding the necessary conditions for the three cases 

may now be stated. 

Theorem: For the d. e. y" = ry the following conditions are necessary for the respec

tive cases to hold, 1. e. for a Liouvillian solution of the specified form to 

exist. 

(1) Every pole of r has order 1 or even order, The order of r at 00 is 

even or greater than 2. 

(2) r has at least one pole of either order 2 or odd order greater than 2. 

(3) No pole of r has order greater than 2. The order of r at 00 is at least 

2. If the partial fraction expansion of r is r =:L (Xi 2 + ~ 13 ld' 

i (x-Ci) j x- j 

then yn-4cii £ Q for each i, Ll3j = 0, and V1 + 4,,/ £ Q where 
j 

'Y = :L ex. i + ~ 13 jdj . 
i j 

The following is a summary of the proof of this theorern. It uses several ideas 

that are explained in more detail in the proof of the algorithm itself (see section 

3.2. ). 

In case (1), the d.e. has a solution of the form" = e
fw

, where (U £ C(x). This 

implies that 

(2.3a) 

(See section 3.2. for a proof of this statement.) Since both rand (U £ C(x), they can 
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be expanded in Laurent series about any point c in the complex plane as follows. 

w = b(x-c)f.L + higher powers of x-c, J,l. E. Z, b * 0 (2.3b) 

r = a(x-c? + higher powers of x-c, v E Z, ex * 0 (2.3c) 

Substituting (2.3b) and (2.3c) into (2.3a) we get 

J,l.b(x-c)f.L- 1 + ... + b2(x-c)2f.L + ... = a(x-c)V + ... 

We want to demonstrate that if c is a pole of r (i. e. v < 0), then its order is either 1 

or even. If we assume v is not -1 or -2, we can show it must be even. Assume 

v ~ -3, then matching coefficients of the lowest power of x-c above gives 

v;;=: min(J,l.-1,2J,l.). With v ~ -3, this implies that J,l. < -1 and 2J..l. < jJ..-1. Because 

b2 * 0 (by assumption), then v = 2J,l., i. e. v is even as required. 

This also demonstrates that if r has a pole of order v = 2J,l. ;;=: 4 at c, then w has 

a pole of order J,l. at c. This fact will be used in the proof of the algorithm in section 

3.2.1. 

The proof of the conditions on the order of r at 00 is exactly analogous and is 

done by expanding rand w at 00. 

In case (2), the d. e. has a solution of the form" = ef w, w algebraic over C(x) 

of degree 2. The Galois group of the d. e., G, is conjugate to a subgroup of D + so 

that for every a E G either a" = acr", a~ = a;l~ or a" = bcr~' O'~ = -b;l". In 

either case, a(TJ2~2) = ,,2~2 so ,,2~2 E C(x). Also "t E. C(x) because if it were, we 

would have a(,,~) = "t = acr" . a;l~ and G would be a diagonal matrix with acr and 

a;l on the diagonal (i.e. the case aT} = bcr~' O'~ = -b;l" could not occur). 

Hence we can write ,,2~2 as IT (x-Ci/i, ei E Z, where at least one of the ei must 

1(,,2t2), 
be odd. Assume ,,2~2 = (x-cYrr (x-Ci)e j with e odd. Let 4> = (TIt)' = _2 __ _ 

Because,," = r" and ~" = r~, then 

<f>" + 3<f><f>' + <f>3 = 4r<f> + 2r' 

Expand both rand c:f> in Laurent series about c. Then 

1 -e 
<f> = _2_ + polynomial in x - c 

x-c 

r = a(x-c)V + higher powers of x-c 

and substitute (2.3e) and (2.3f) into (2.3d) to get 

TIt (T}2~2)' 

(2.3d) 

(2.3e) 

(2.3f) 



12 

3 2 1 3 
--4e Be 

e + ... + + ... + + ... = 2a(e+v)(x-cy-l + ... 
(x-c)3 (x-c)3 (x-c)3 

If v > -2, then e - ~e2 + -}e3 = ° and e = 0, 2, 4. But e must be odd, so v :-.:; -2. 

If v < -2, then 2a(e+v) = ° and e = -v so that v is odd. Hence either v = -2 or 

v < -2 and odd, i. e. r has a pole of either order 2 or odd order> 2. 

In case (3), " is algebraic over C(x) so it can be expanded in a Puiseaux series 

(Laurent series with fractional exponents) about any point c in the complex plane. 

Also, " is a solution of the d. e. so 

,," = r" 
Expand" and r about c 

" = a(x-c)f.I- + higher powers of x-c, a E C, a *" 0, iJ. E Q 

r = a(x-c)V + higher powers of x-c, a *" 0, v E Z 

and substitute (2. 3h) and (2.3i) into (2.3g) to get 

aiJ.(iJ.-1)(x-c )f.I--2 + . .. = aa(x-c )f.I-+ v + 

(2.3g) 

(2.3h) 

(2.3i) 

The lowest order term on the right, being composed of the product of the lowest 

order terms of " and r, cannot be zero, so Jl. + v ~ iJ. - 2 and v ~ - 2, i. e. the poles 

of r have order 1 or 2. 

If v = -2~ then matching coefficients of (x-c)f.I-- 2 on both sides gives 
1 L. /-- ... ;-:;--:--:;, 

Ci = iJ.(iJ.-l) or iJ. ="2 ± "2 v1 + 4a . Because iJ. E Q, by assunlption, then vl+4a E Q 

and the partial fraction expansion of r must be 

ai f3j 
r = ~ + ~. x-d. + polynomial 

i (x- Ci)2 J ) 

with yI+4cij E Q for each i. 

The remainder of the conditions are obtained in an exactly analogous manner by 

expanding rand" about 00 and substituting into,," = r". 



CHAPTER 3 

Kovacic '8 Algorithm and Proof 

3.1. Kovacic's Algorithm 

In his original paper, Kovacic describes and proves the sub-algorithms for each 

of the three cases separately. We will exploit the similarities in the three algorithms 

and describe them together. This will make it easier to follow the unification 

Saunders does for his variant of the algorithm. Proofs of the three sub-algorithms 

will be done separately in section 3.2. 

The goal of the algorithm will be to determine the minimal polynomial for u). 

Since "11 = ef W in all cases, this determines a solution of the d. e. (In son1e cases, we 

may not be able to obtain an explicit expression for w.) 

We will first determine a function c!> = c!>( "11,0. Then, in each case, the minimal 

polynomial for w is written in terms of 4> (and r). The form of <!> as a function of "11 

and , will be determined by the invariant of the Galois group of the d. e. in each 

case, where the invariant of the Galois group of the differential equation ]$ defined to 

be that function of "11 and, that is kept invariant by all (J' in the group and hence is in 

C(x). Recall that in case (1), ~ is invariant, in case (2) "11 2,2 is invariant, and in 
"11 

case (3) ("11 4 + 8"11,3)2, ("11 5, - "11,5)2 and "11 11, - 11"11 6,6 - "11,11 are invariant. 

In all cases, c!> will be written as cf> = e + ~'. The main component of e is a 

e 
sum ~_c_, where r is the set of poles c of r. A major part of the work of the 

eEl' x-c 

algorithm will be determining possible values for the ec's. 

The function P will be a polynomial whose roots are ordinary points of r (i. e. 

not poles). We will not determine the roots of P (i. e. the poles of ~') explicitly; 

rather we will determine a possible degree d of P in terms of the ec's and ex (deter

mined from the expansion of r at 00). Then, we can determine the coefficients of P 

using an equation relating P, e and r. 

We will need to consider all combinations of possibilities for the ec's and ex to 

get a solution for P. If a solution can be found for P, we will have found the proper 

13 
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combination of e/s and ex and will have determined e exactly (since it is a function 

of the e/s) and hence c!> and w. 

The algorithm is divided into 3 steps. As a prelinlinary stage, the set r of the 

poles of r is computed. Also, the degree of r at infinity is computed; it will be 

required in the cOlnputation of ex. 

The quantity n will be the degree of w over C(x) in each case; for case (1) 

n = 1, for case (2) n = 2 and for case (3) n = 4, 6 or 12. 

Step (1) 

For each c in r define a set Ee of possible values of ee as follows: 

(a) If c is a pole of r of order 1 then 

(b) 

case (1) Ee = {I} 

case (2) 

case (3) 

Ee = {4} 

Ee = {12} 

If" 1 f f d 2 db' 1 ff' . .c 1 ., . 1 c IS a po e 0 r 0 or er an IS 1I1e coe -~lclent 01 -----;::;- In tne partla 
(x-c)"-

fraction expansion of r then 

case (1) - Ee = {1- + k\/1+4b I k = ±-}} 
case (2) Ec = {2 + 2kV1+4b I k = O,±1} n Z 

case (3) Ee ={6+ 1;kV1+4b I k=O,±l, ,±j)n z 

(c) If c is a pole of r of order v > 2 then 
1 b I 1 case (1) - Ee = {4-V + kc; k = ±"2} 

where [Vr]c is the sum of terms involving ____ 1_-;-_ for i = 2, , ~ 
(X-C)l 

in the Laurent series expansion of Vr at c, a is the coefficient of 

1 v in [Vr]c' and b is the coefficient of 1 ~ + 1 in 
(x-C)2 (x-C)2 

r - ([Vr]e)2 

case (2) Ec = {v} 

case (3) - Ee = {} (since there are no poles of order> 2 in case (3)) 

Also define a set Ex as follows. 

(a) If the order of r at 00 > 2 then 

1 I 1 case (1) Ex = {z + k k = ±z-} 

case (2) Ex = {2 + 2k I k = O,±1} 
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case (3) -Ex = {6 + l;k I k = O,±1, .... ±~} 

(b) If the order of r at 00 = 2 and b is the coefficient of ~ in the Laurent series 
x 

expansion of r at 00 then 

case(1) Ex = {i + kY1+4b I k = ±i} 
case(2) Ex = {2 + 2kY1+4b I k = O,±l} n z 
case(3) Ex = {6 + ~kYl+4b I k = O,±l, .... ±~} n z 

(c) If the order of r at 00 = v < 2 then 
1 b I 1 case (1) - Ex = {-4v + k-;; k = ±2:} 

where [Vr]x is the sum of terms involving xi for i = ~v . ... ,0 in 
-v 

the Laurent series expansion of Vr at 00, a is the coefficient of x 2 

~-1 
in [Vr]x, and b is the coefficient of x 2 in r - ([Vr]x)2 

case (2) Ex = {v} 

case (3) - Ex = {} (since the order of r at 00 is ~ 2 in case(3)) 

Step (2) 

Consider all possible tuples (e
Cl

' eCl' ...• ecn ' ex), where the Ci are the distinct ele

ments of r and each e
Cj 

and ex is an element of the corresponding set ECj and Ex 

respectively. (For case (2), we may discard a tuple if all of its coordinates are 

even. ) 

Form the quantity d as follows: 

case (1) d = ex - Lec 
cef 

case (2) 

case (3) 

If d is a non-negative integer, retain the tuple for step (3); otherwise, discard the 

tuple. 

Step (3) 

For each tuple retained from step (2), form the rational function e as follows: 

case (1) e = L (~ + S(C)[Vr]c) + s(oo)[Vr]x 
cef x-c 

where [Vr]c is computed only for poles c of order > 2 and s(c) is the 



case (2) 

16 

sign of k in the corresponding ec in the tuple, and [Vr]x is computed 

only if the order of r at 00 is < 2 and s(oo) is the sign of k in the 

corresponding ex in the tuple. 

e 
e = 12:-c-

2 eEl' x-c 

e 
case (3) e - n 2:_c-

- 12 r X - C ee. 

N ow search for a polynomial P of degree d defined by the following equations for 

n+2 polynomials Pi' i = n,n-l, .... 0,-1. (These are somewhat different from 

those given in Kovacic's paper; the rationale for them is given in section 3.2.3.) 

cases (1), (2) and (3) - Pn = -p 

Pi-1 = -P/ - eP i - (n-i)(i+1)rPi+1 i = n,n-l, ... ,0 

and 

P -1 = ° (identically) 

In each case, P is computed by constructing the polynomial of degree d with undeter

mined coefficients, substituting into the above equations and solving the final equa

tion P -1 = 0 for the undetermined coefficients. If the polynomial P exists, then 

compute W as follows. (Again, this is slightly different from Kovacic's paper; see 

section 3.2.3.) 
It p. 

cases (1), (2) and (3) w is a solution of 2: ( _l.)! wi = 0 
i=O n l. 

(Note that it may be impossible to obtain an explicit solution for w.) 

Then, "11 = ef w is a solution of the d. e. If no polynomial P exists for any tuple 

retained from step (2), then the case cannot hold. 

3.2. Proof of Kovacic's Algorithm 

In the proofs that follow, we will use the following fact several times. The d. e. 

y" = ry has a solution of the form "11 = ef w iff w satisfies the Riccati equation 

w' + w2 = r. 

The first half of the proof is as follows. Because 11 is a solution to y" = ry, 

TI" = r"l1. Since "11 = e
fw

, "11' = we
fw 

and "11" = w'e
fw + w2e

fw
. Thus, 

W'''I1 + w2" = T"I1 and dividing through by "11 = ef w (since it is not zero), we have 

w' + w2 = r. 

and 

I h d f · f w • n t e converse case, e Ine "11 = e ,1. e. 
"11' 

W=-. 
"11 

Since w' -j- w2 = r, 

, _ "11" (11,)2 
Then, w - - - -~-)-

"11 "11 .... 

by assumption, 
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proving TI" = r" and that" is a solution of y" = ry. 

3.2.1. Proof of Algorithm for Case (1) 

In case (1), we are searching for a solution to the d. e. y" = ry of the form 

" = ef w, W E C(x). Recall from section 3.1 that we are looking for a function 
p' 

4> = e + p' In this case, W = 4>. 

Since W E C(x), it can be expanded in a Laurent series about any point in the 

complex plane. The algorithm proceeds by determining the partial fraction expan

sion of wand is proved using the Laurent series expansion of r and the Riccati equa

tion 

(3.2.1a) 

We will write the Laurent series expansion of w about a pole c of r as 

Further, we will not need to determine the a/s and b/s explicitly, so we will set 

1.1. a· oc. 

[w]c = L l i and Wc = Lbi(x-C)l. Then 
i=2 (x- c) j=O 

e 
We will call [wlc + _c_, the "component at c" of the expansion of w. 

x-c 

(3.2.1 b) 

The major task of the algorithm is to determine parts of w, i. e. the ee and [wJc 

and the polynomial remainder part we' 

N ow we know that the poles of r are of either order 1, order 2 or even order ;::: 

4, from the necessary conditions for case (1). 

Suppose c is a pole of r of order 1. Then 

# 1 . I . r = -- + po ynomla In x-c 
x-c 

(3.2.1c) 

(We will use # as a placeholder, to denote a complex constant whose value is unk

nown and unimportant.) Substitute (3.2.1b) and (3.2.1c) into the Riccati equation 

(3.2.1a) and get 
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- JLaf.L a 2 # __ ---=--_+ ... + f.L + ... = __ + 
(x-c)f.L+ 1 (x-c)2f.L x-c 

Since, by assumption, all. if; 0, matching coefficients of _1_ on both sides gives 
r x-c 

IJ. ai 
min(~+ 1, 2JL) = 1 .... JL :::;; 0 and hence [w]c = }: . = 0 (because JL is supposed to 

i=2 (X-C)l 
ec 

be ~ 2) and w = -- + w . 
x-c c 

Use this expression and the Riccati equation (3.2.1a) again and get 

-e ec 
2 2e W ,.., ::/l~ __ c_+ w/+ +_c_c+ w .... =_'_+ 

(x-c)2 (x-c)2 x-c c x-c 

1 .... 1atching coefficients of 1 2 on both sides gives -ec + ec
2 = 0, 1. e. ec is either 0 

(x-c) 
or 1. The solution ec = 0 can be eliminated since in that case, the right hand side of 

the above equation has a pole at c and the left hand side does not. 

Hence, if c is a pole of r of order 1, then the component at c of w is 

N ow suppose that c is a pole of r of order 2. Then 

b # r=--+--+ ... 
(x-c)2 x-c 

(3.2.1d) 

Substitute (3.2.1b) and (3.2.1d) into the Riccati equation (3.2.1a) (as before) and 

get 

-!-La j..l. 
----'-~ + ... 
(x-c)/-L+ 1 

a
2 

b # + f.L + ... = ___ + __ + 
(x-c)2fJ- (x-c)2 x-c 

As before, match coefficients of 
1 

on both sides and get 
(x-c)2 

min(JL+1,2J..L) = 2 .... J..L :::;; 1 and again [w]c = 0 (because J.L should be ~ 2) and 

N ow use this expression and the Riccati equation (3.2. 1 a) again and get 

,.., -
- e C _ ,ee""' 2e C w C _ 2 b #: 

--- + (OJ) + ----- + ------- + w = ---- -1- --------- + . . . 
(x-c)2 C (x-c)2 x-c C (x-c)2 x-c 

M l' ff' . f 1 b l'd' ,.., b' '1 . atC!llng cae lClents a 2 on ot 1 S1 es glves -ec + ec .... = ,1. e. two possIm1-
(x-c) 

ities for ec ' ec = t + -lVl+4b or ec = ~- - tY1 + 4b . 



Hence, if c is a pole of r of order 2, then the component at c of w is 

1 1 ... ~ 
ec = "2 ± "2 v 1 +4b 
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N ow suppose that c is a pole of r of order v = 2,. ~ 4. From the proof of the 

necessary conditions for case (1) (see section 2.3.) we have that w must have a pole 
v 
2 a· 

of order f at c, i. e. [w]c = L l i' 
;=2 (x-c) 

As defined in the statement of the algorithm (section 3.1) 

a # 
[Vr]c = + ... + ---=-

( )f (x-c)2 
x-c 

(3.2.1e) 

If we now define re = Vr - [Vr]c then r = (rc + [Vr]c)2 = Fc 2 + 2rJVrlc + ([Vr]e)2 

and 

(3.2.1f) 

Using (3.2.1e) and (3.2.1f) and the Riccati equation (3.2.1a), we can show 

(after several lines of not very interesting or important algebra) that 

ee 2 2eAwlc ee 2 2eewe ,., 
= -[w]e' + - w/ + r - ([Vr]) - - -- - -- - 2w [wJ - w .. 

(x-c)2 - e x-c (x-cf x-c e e e 

The left hand side of this equation has only terms involving 
1 

for 
(x-c)i 

i = 4, ... ,v. The right hand side has terms involving -!----.- for i = 1, . , .. ~ + 1 
(X-C)l 

and polynomials in x-c. Because there are no terms with 
1 

for 

i = f+2, ... ,von the right hand side, the left hand side must be equal to zero and 

e 
hence either [wJc = [Vr]e or [w]e = -[Vr]e' and w = ±[Vr]e + _c_ + we' 

x-c 

Use this expression and the Riccati equation (3.2.1a) again and (after several 

more lines of not very interesting algebra) get 



+a'~ 
- 2 ~ b ---- + . .. + - we' + ---- + ... 

-.!+1 (x-C)2 -.!+1 
(x-C)2 (x-C)2 

-+ 2aee 
-.!+1 

(x-c) 2 

2wea 
---1'+···=0 
(x-C)2 
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Matching coefficients of 
1 

on both sides gives ± a' ~- + b -+ 2aee = 0 and 
!:'+1 -

(x-C)2 

e = l(-~ + ~) or e = l( ~ - ~). 
e 22 a e 22 a 

Hence, if c is a pole of r of even order v ~ 4, then the component at c of the 

IJartial fraction expansion of w is 

e =1.( .!'. + !>.) 
c 2 2 a 

or 

Now, look at g, an ordinary point of r, i. e. not a pole, so that r is a polyno

mial in x-g. Expanding w about g and using the Riccati equation (3.2.1a) and argu-

ments similar to the first case, we can show that w = _1_ + polynomial in x- g where 
x-g 

1 is either 0 or 1. 

Collecting what we have so far, if r is the set of poles of r, then 

where [Vr]e = 0 if c is not a pole of order ~ 4 and R is a polynomial in C[x]. 

We now determine the polynomial part R using the expansion of w about 00, 

namely 

ex 
w = R + - + lower powers of x 

x 
(3.2.1g) 

Using arguments analogous to the previous cases we obtain ex = 0, 1, R = 0 if 

0(00) > 2, ex = t ± tV1 +4b , R = 0 if 0(00) = 2 and ex = t(~- ± %), R = ±[Vr]x if 

0(00) = v ~ o. 
Hence, 
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(3.2.1h) 

where s(c) is + or - according to the sign in the corresponding ec ' s(oo) is + or -

according to the sign in ex, [Vr]c = 0 if c is not a pole of r of order ~ 4 and 

[Vr]x = 0 if 0(00) ~ 2. By expanding (3.2.1h) about 00 and setting it equal to 
d 

(3. 2.1g), we obtain the equation ex = 2:ec + ~ 1 and hence an expression for d in 
eef i-I 

terms of the ec's and e:o namely d = ex - Lec' 
eef 

d p' d 1 
If we now set P = IT (x- gi) (note that d is the degree of P) so that -- = 2:--

i=1 P i=l x- gi 

and if e = 2: [~ ± [Vr]c) ± [Vr]x, we have 
eel' x-c 

P' w=q,=8+p 

All of e is known; we require a method of determining P. 

Using the Riccati equation (3.2.1a) again, and w = e + ~' , we obtain 

p.p" _ p I2 
w' = 0' + 

p2 
28P' p I2 

00 2 = a2 + -- -I- --
P p2 

P" + 2ap' + P (a' + e2 - r) = 0 

(3.2.1i) 

(3.2.1j) 

\Ve have that if w satisfies the Riccati equation w' + 00
2 = r then P satisfies (3.2.1 j). 

We can verify that if P satisfies (3. 2.1j), then 00 satisfies the Riccati equation and 

hence 'l1 = eI W satisfies the d. e. 

P" - p,2 '" 28P' p,2 p" + 2ap' + pee' + 82) Pr 
w' + w2 = a' + + eL + -- + -- = ------~---"- = - = r 

p2 P p2 P P 

This completes the proof of the correctness of the algorithm for case (1). 

3.2.2. Proof of Algorithm for Case (2) 

In case (2), we are searching for a solution to the d. e. y fI = ry of the fornl 

" = eI W where w is algebraic of degree 2 over C(x). The Galois group of the d. e. is 

conjugate to a subgroup of 
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and ,.?t2 is an invariant of the group. Hence 5 11 2t 2 
E. C(x) and TIt E. C(x) (or else we 

would have case (1)). Therefore we can write 

and 

(3.2.2a) 

The task of the algorithm will be to determine the ee and ii' (We do not need to 

determine the gi explicitly.) Once c!> is determined, there is a quadratic equation 

depending on c!> that determines to and hence the solution. 

Because TI and t are solutions to the d. e., i. e. TI" = rTl and t" = rL 

c!>" + 3c!>c!>' + c!>3 = 4rc!> + 2r' (3.2.2b) 

This has given us a relationship between c!> (and the ee and Ii) 5 and r, a known func

tion. 

We can now determine the ee by looking at the poles of r and the Laurent series 

expansion of rand c!> about these poles. 

and 

Suppose c is a pole of r of order 1. Then 

ex 1 . 1 ' r = -- + po ynonua In x-c 
x-c 

1 
lee 

c!> = -- + k + polynomial in x-c, k E. C 
x-c 

(3.2.2c) 

(3.2.2d) 

Substituting (3.2.2c) and (3.2.2d) into (3,2.2b), we obtain 

3231332 
ee - --.;fee - leek sec --.;fee k 

----:-+ ... + + ... + + ... + + + ... 
(x-c)3 (x-c)3 (x-c)2 (x·_c)3 (x-c)2 

Matching 

2cree ---+ ... + 
(x-c)2 

coefficients of 

-2ex 
(x-c)2 

1 
(x-c)3 

+ . 

on both 

-+ ee = 0, 2, 4. Matching coefficients of 

sides 

1 

3 3 2 -2eek + --.;fee k = 2cxee - 2ex. Because (l *- 0, ee *- 0, 2. 

Hence, if c is a pole of r of order 1, then 

gives 

on both sides gives 



N ow suppose c is a pole of r of order 2. Then 

r= b # 1 . 1 . 
( 

,'I + -- + po ynomla In x-c 
x-cr x-c 

1 
2 eC 

<!> = -- + polynomial in x - c 
x-c 
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(3.2.2e) 

(3.2.2f) 

Substituting (3.2.2e) and (3.2.2f) into (3.2.2b) we get 

3 2 1 3 
ec - 4 ec sec 2bec - 4b ---+ .. , + + ... + = + ... + + .,. 

(x-c)3 (x-c)3 (x-c)3 (x-c)3 (x-c)3 

M h · ff' . f 1 b h . d' 3 2 1 3 - 2b 4b atc lng cae IClents 0 3 on ot SI es gIves ec - -;fec + Sec - ec - or 
(x-c) 

three possibilities for ec' ec = 2, 2 ± 2Vl +4b. Since ec is assumed an integer, non-

integral solutions for ec may be discarded. 

Hence, if c is a pole of r of order 2 then 

ec = 2, 2 ± 2V 1 + 4b Eo Z 

N ow suppose that c is a pole of r of order v > 2. Then 

r = a + higher powers of x - c 
(x-c)V 

1 
2:ec 

<!> = -- + polynomial in x - c 
x-c 

Substitute (3.2.2g) and (3.2.2h) into (3.2.2b) and get 

3 2 1 3 

(3.2.2g) 

(3.2.2h) 

ec --4eC Sec 
----::-+ ... + + ... + + 
(x-c)3 (x-c)3 (x-c)3 

2aec -2crv 
= + ... +------:-

(x-c)v+l (x-c)v+l 

Since v > 2, v+ 1 > 3 and 2aec - 2av = 0 -+ ec = v. 

Hence if c is a pole~ of r of order v > 2 then 

N ow look at the gi which are poles of <!> but ordinary points of r. Then 

r = polynomial in x - g i (3.2.2i) 

and 



lJ. 
ef> = _2_l_ + k + polynomial in x- gi' k E C 

x-gi 

Substitute (3.2.2i) and (3.2.2j) into (3.2.2b) and get 
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(3.2.2j) 

h - iff - ffjg if? iffg 
-----=-+ ... + + + ... + + + ... 
(x- gi)3 (x- gj)3 (x- gj)2 (x- gj)3 (x- gj)2 

Since there are no terms in 1 on the right hand side f· - 1/l- + l/? = 0 
(x- gj)3 ' l 4 l 8 l 

- h = 0, 2, 4; hence all the fi in ef> are even. 

Collecting what we have so far, ,,2t2 = constant· II(x-c)eC 
• p2 where P E C[x] 

,., m f 
and P-- = II (x- gj) i. 

i=l 

We can now use the expansion of ef> about 00, namely 

1 
2e:;c 

ef> = -- + lower powers of x 
x 

(3.2.2k) 

and arguments exactly analogous to the previous cases, to obtain e:;c = 0, 2, 4 if 

0(00) > 2, e:;c = 2, 2 ± 2'\11 +4b if 0(00) = 2, and e:;c = v if 0(00) = v < 2. 

By expanding (3.2.2a) about 00, setting it equal to (3.2.2k) and extracting the 

coefficient of 1. on both sides, we can obtain the following equation, 
x 

1 11 m m 
2e:;c = 2Lee + 2~h. If d is the degree of P, then 2d = Lfi so that 

cef 1=1 i=l 

d = i (e:;c - Lee) (an expression in terms of the ee's and e:;c). 
cef 

1 ee p' 
If we now let 9 = 2L--, then ef> = 9 + -. Use this expression and (3.2.2b) 

cef x-c P 

and obtain 

P'" + 39P' + (392 + 39' - 4r')P' + (8" + 390' + 93 - 4r9 - 2r')P = 0 (3.2.21) 

We still don't have 00, the objective of the algorithm. Kovacic introduces the 

following equation, algebraic in 00, 

2 1, 1 2 
00 - ef>oo + -4> + -4> - r = 0 

2 2 (3.2.2m) 

We can verify that if 00 is a solution of this equation and case (2) holds, then 00 



satisfies w' + w2 = r and hence" = ef W satisfies the d. e. y" = ry. 

If we differentiate (3.2.2m) we get 

(2w - c!»w' = c!>'w - l_cP" - c!>c!>' + r' 
2 

From (3.2.2m), we have that w2 - r = c!>w - Ic!>' - Ic!>2 so that 

(2w - c!»(w' + w2 - r) = --~(c!>" + 3cPc!>' + 4>3 - 4rc!> - 2r') = 1 
2 

(3.2.2b) = 0 
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so that either 2w - c!> = 0 or w' + w2 - r = O. Now 2w - c!> cannot be zero, since in 

that case w = IcP E C(x) and that is covered in case (1), assumed to fail for case (2). 

Hence, w' + w2 = rand " = ef W is a solution of the d. e. This proves the 

correctness of the algorithnl for case (2). 

3.2.3. Proof of Algorithm for Case (3) 

In case (3), we are searching for an algebraic solution, ", of the d.e. y" = ry 

and as in previous cases, we determine it by computing the minimal polynomial for 

w = ~ (" = ef w). As stated in section 2.1., the order of the Galois group of the 

" d. e. in this case is 24, 48 or 120; the following theorem says that the degree of the 

corresponding w over C(x) is then 4, 6 or 12 respectively. (See Kovacic [3] for 

details of the proof. ) 

,,' Theorem: If w = - where" and t are solutions of the d. e. and G is the Galois 

" group of the d. e. relative to " and t, then if G has order 24,_ 48 or 120, w 

has degree 4, 6 or 12 respectively over C(x). Also, for any other 

,,' 
w1 = _1_ where 111 is also a solution of the d. e., the degree of w1 over 

"1 
C(x) is greater than or equal to 4, 6 or 12 respectively, i. e. the w obtained 

are minimal. 

The algorithm for this case can be carried out in one of two ways: either find a 

12th degree polynomial for 00, factor it into irreducible factors and use any of the 

factors for w; or try for a 4th degree polynomial for w, then a 6th degree polynomial 

for w, and finally a 12th degree polynomial for w. 

In the implementation, the second alternative was chosen since factoring a 12th 

degree polynomial is difficult in Maple (if not impossible if it has algebraic exten

sions). This is also what is done in Saunders' algorithm for the same reasons. 
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It will be noted in the relevant places in the proof of this case of the algorithnl 

where the algorithms for cases (1) and (2) can be derived from this case. It turns out 

that the three cases are more similar than Kovacic's paper originally leads us to 

believe. 

The backbone of the algorithm (and the algorithms for cases (1) and (2)) is an 

n-th order ordinary differential equation for a function G> defined in terms of <1> and r 

by a-l = 0, where a-l is defined by the following equations, denoted (#)n' 

an = -1 

ai-l = -a/ - <l>ai - (n-i)(i+1) rai+l i = n . .... 0 ) 
(Note that in the formula for an-l there is no an+l term since n-i = 0 when i = n.) 

In all three cases, we will construct G> as G> = e + ~' , where n is the degree of w 

over C(x) The function e is constructed as a function of the poles of rand P is then 

defined in terms of e and r by the equation P -1 = 0 where Pi = P'ai' 

n ec 
In case (3), e = 12~--; compare this with 

eEl' x- C 

e = ~ (~ + S(C)[Vr]c] + s(oo)[Vrl:c in case (1) and e = ~~ ~ in case (2). 
eef X - C eef X - C 

The following three theorems by Kovacic are used in the proof of the algorithm 

for case (3) but they apply equally well to the algorithms for cases (1) and (2). 

Theorem(1): If G> is a solution of a-l = 0 where ai is defined by the equations 

denoted (# )n' and w is a solution of the equation 

then" = ef W is a solution of the d. e. y" = ry. 

Proof: 

We first define the polynomial A (u) in terms of the ai as 

11-1 ai . 
A(u) = -un + ~ . , ul 

i=O (n-l). 

or 
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1\ ai . 
A(u) = ~ ( _')' ul 

i=O n l. 

Kovacic claims that 

for all integer k ~ O. (See [3] for a proof by induction on n of this claim.) From the 

definition of A(u) and the assumed definition of w, A(w) = O. We will show that 

A(w) = 0 implies that w' + w2 = r (equivalent to Ti = e
fw 

is a solution of y" = ry), 

by assuming the contrary and forcing a contradiction. 

B A ( ) . dA (w) -_ 0 Th ecause w IS a constant, dx . en 

dA(w) = aA(w) aw + aA(w) = 0 
dx aw ax ax 

w,aA(w) + aA(w) = 0 
aw ax 

(w' + w2 - r) aA(w) 
aw 

= _ aA(w) + (w2 _ r) aA(w) 
ax aw 

From (3.2.3a) with k = 0, 

(w' + w2 - r) aA(w) = _ aA(w) + (nw+~)A(w) + aA(w) = 0 
aw ax ax 

(since A(w) = 0). Because w' + w2 - r ;# 0 by assumption, aA(w) Inust be zero. aw 
Hence, we have that a1A(w

z
) = 0 for I = 0 and I = 1. Now we can use induction to aw . 

ak+1A(w) _ 
prove k+ 1 - 0. Assume it is true for arbitrary I = k-l and I = k, 1. e. aw 
ak-1A(w) akA(w) akA(w) 
--~-=- = = O. If = 0 then 

awk- 1 awk awk 

( , + 2 ) ak+1A(w) 
w w - r k+l aw 

From (3.2.3a) we have 
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k+l ( ) 
( ' 2 )a Aw 
w + w - r k+l 

aw 

ak+1A(w) ak+1A(w) akA(w) ak-1A(w) 
= - k + k + [(n-2k)w + C!>]- a'):-- + k(n-k+ l)-a,.,k-l-aw ax aU) ax UJ ..... 

. akA(w) ak-1A(w) ak+1A(w) 
SInce --- = ---" - = 0 (by assumption), then (w' + w2 - r) k+-l - = 0, 

awk awk- 1 aw 
ak+1A(w) 

and since w' + w2 
=1= l' (by assumption), then k+l = O. 

aw 

The desired contradiction then falls out since 

anA(w) = ~ (, n ai wi) = n ( ai a(w i
)) = an(anwn) = -n! =1= 0 

awn awn ~o(n-i)! ~o en-i)! awn awn 

and hence A(w) = 0 implies w' + w2 = rand 'l1 = ef W is a solution of y" = ry. 

n-l a· 
Thus if w satisfies wn = ~ ( _I.) , wi where the ai correspond to a solution c!> of 

;=0 n l. 

(#)n' then ef W is a solution of y" = ry. This completes the proof of the theorem. D 

This theorem implies that if we can construct c!> and then calculate the 

corresponding ai using (# )n' we can determine an equation for wand hence a solu

tion of the d. e. 

The following theorem says that the equation for w obtained using the ai 

corresponding to c!> is the minimal polynomial for w. Further, c!> is proved to be a 

function in C(x). 

Theorem(2): If the degree of w over C(x) is n, then c!> is a solution of a_l = 0 where 

ai is defined by (#)n' and c:!> is a rational function of x with coefficients 

in C, i. e. c!> E C(x). 

Proof: 

Let A(u) be a polynomial with coefficients in C(x), and let A(u) be the minimal poly

nomial for w. Let deg A (u) = n so that the degree of w over C(x) is n, then A (u) can 

be of the form 

n-l a· n a· 
()

_ n ~ I i_~ I i 
A u - - u + £J ( _ '), u - £J ( _ ')' U 

i=O n l. ;=0 n l. 

Consider the following polynomial B (u) 
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2 aA(u) aA(u) 
B(u) = (r-u ) + + (nu + <!»A(u) 

au ax 

where <!> = an-l and <!> E. C(x). We win show that c!> satisfies a_I = 0 where the ai are 

defined by (#)n' by determining the coefficients of powers of u in B(u). 

The un+1 term in B(u) comes from -u2 aA(u) and nuA(u) and is 
au 

na un - I a un 
-u2 . n + nu . _n_ = -na un+I + na un+1 = 0 

O! O! n n 

The un term comes from _u2aA (U) , aA(u) , nuA(u) and cf>A(u) and is 
au ax 

(n-l)an_lUn- 2 an'un an_IUn- 1 anun 

- u
2 

. I! + ----o! + nu . I! + <!> . Of 

= - (n - l)a un + a ' un + na un + Aa un n-l n n-l '+' n 

= (a + a ' + Aa )un = 0 n-I n '+' n 

since an = -1, an' = 0 and since <!> = an-I' <!>an = -an-I' Hence, there are no un+1 

or un terms in B(u) and the degree of B(u) is less than n. 

Now B(w) = 0 as follows 

B(w) = (r-w 2) oA(w) + aA(w) + (nw + <!»A(w) 
aw ax 

= w' aA(w) + aA(w) + (nw + <!»A(w) = dA(w) + (nw + <!»A(w) = 0 
aw ax dx 

since A (w) = 0 by definition because it is the minimal polynomial for w. Hence, the 

coefficients of wi in B(w) for i < n must all be zero. The wi term in B(w) is 

(i+l)ai+l i 2 (i-l)ai-I i-2 a/. ai-l w i - 1 + <!> . ai 
r . -w - w . w + wl + nw . w 

(n-i-l)! (n-i+l)! (n-i)l (n-i+l)! (n-i)! i 

[
r(i+ l)ai+I 

(n-i-l)! 

(i-l) ai-l nai-l <!>ai ] . 
----+ + w l 

(n- i+ I)! (n- i+ 1)1 (n- i)! 

= 1 [( ')(' 1) (i-I) nai-l + az" + Aaz.]Wi 
(n-i)! n-l l+ rai+l - (n-i+l) ai-l + (n--i+l) '+' 

= 1 [(n-i)(i+l)Tai+l + ai-l + a/ + <!>ai]w i 
(n- i)I 

So (n-i)(i+l)rai+l + ai-I + a/ + <!>ai = 0 for all i = 0, ... ,n where a_I = O. 

These are exactly the equations defining (#)n so <!> is a solution of a_I = 0 as 
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required. This completes the proof of the theorem. 0 

What do we have now? We have that cl> E. C(x) is a solution of a_I = 0 defined 

11-1 a· 
by (#)n iff w satisfying w n = L -( _t.) I wi is a solution of w' + w L = rand w is alge

i=O n l. 

braic of degree n over C(x). The algorithms for all three cases use this fact; inlpli

citly in cases (1) and (2), and explicitly in case (3). We progressively try n = 1, 

n = 2, n = 4, n = 6, n = 12. At each step we attempt to find a cl> in C(x) satisfying 
11-1 a· 

(#)w If that is possible then the minimal polynomial for w is - wn + L ( _to) I wi. If 
i=O n l. 

it is not possible, we proceed to the next value of n. If no value of n produces a cl> in 

C(x) then there is no solution to the d. e. y" = ry. 

The following theorem provides a way of building the function cl>. 

Theorem(3): If u is any homogeneous polynomial of degree n in solutions" and, of 
, 

the d. e. then cl> = ~ is a solution of (#)w (Note: for example, 
u 

,,2,3 + 3",4 is a homogeneous polynomial of degree 5 in solutions of 

the d. e.) 

See [3] for the details of the proof. 

l.-(u rn ) , 
We require that cl> be in C(x) so that cl> = ~ = m must be in C(x). If ~ 

u urn u 

is in C(x) or urn, m~l, is in C(x) then this requirement is satisfied. The functions u 

are written in terms of the invariants of the Galois group of the d. e. for each case. 

(See section 2.2 for the derivation of the invariants.) Recall that the invariant of the 

Galois group of the d. e. is a function of " and, left fixed by all (j in the group, i. e. 

it is a function in C(x). 

Table 1 - Galois group invariants 
n u invariant m 

1 " u'/u 1 
2 ", u2 2 
4 ,,4+ 8",3 u3 3 
6 "S,-"tS u2 2 

12 ,,11, -11 "6,6_,,,11 u 1 

We can then write the invariant in terms of the poles of r and certain exponents ee' 



and a polynonlial part. Recall that in case (1), 

u' ( e ) p' <1> = - = w = ~ _c_ + s(c)[Vr]c -I- s(oo)[Vr]x + -
U cel' x-c P 

and in case (2), 

~(U2)' 
<1> = ---=",----

u'" 

For case (3), we combine the cases n = 4, 6, 12 by writing 

12 m - e f 
un = I1(x-c) CII(x-gi) I 

cer ;=1 

12 

<1>= 
~-(u n), u n ~ p' ---- L-- +-

12 - 12cel' x-C P 
u n 
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The ec's are determined in a manner analogous to the process described for cases (1) 

and (2), and so will not be covered again here. The derivation is slightly more com

plicated here because of the parameter n, but basically the same. 

The results are as follows. If c is a pole of r of order 1, then ec = 12. If c is a 

pole of r of order 2, then ec = 6 + kV1 +4b, where k is one of 0, ±3, ±6 if n = 4, k is 

one of 0,±2,±4,±6 if n = 6, and k is one of 0,±1, ... ,±6 if n = 12. 

Similarly, if the order of r at 00 is greater than 2, then ex = 6 + k and if the 

order of r at 00 is 2, then ex = 6 + kV1+4b, where k = O,±3,±6 if n = 4, 

k = 0,±2,±4,±6 if n = 6, and k = O,±l, .... ±6 if n = 12. 

It can also be shown that ;2h is an integer for all so that for n = 4, 

u3=p3rr(x-c)eC; for n=6, u2 =p2II(x-c/c
; and for n=12, u=PII(x-c)eC, 

cel' eel' cel' 

where the degree of P, d = ;2 (ex - ~ec)' is a non-negative integer. 

Compare the above results for case (3) those obtained in cases (1) and (2). The 

order of the invariant m 

~(um)' 
nl 

Q> = --- E C(x). 
unl 

is defined to be the least integer such that 
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Table 2 - Formulas for ec 

n m ec (c order 1) ec (c order 2) k 

1 1 1 t+kYl+4b 
1 1 
-- --

2' 2 
2 2 4 2(1 +kYl +4b) -1, 0, 1 
4 3 12 3(2+kVl +4h) -2, -1,0,1,2 
6 2 12 2(3+kVl +4b) -3 , ... , 3 

12 1 12 6+kVl+4b -6 , ... , 6 

The value calculated for ec if c is a pole of r of order 1 is n . m; the value calculated 

for ec if c is a pole of r of order 2 is m(1 + kYl+4b) where k = --i . ... , ~. 
So for case (3) we have 

12 

U' ;i(U -;;-)' n ec P' 
~ = -U- = ----::-::-12- = 12~x-c + p 

U " CE 

n ec P' 
If we set e = 12:L--, then cf> = 8 + - as expected. 

CEf X - C P 

We now set Pi = P . ai and demonstrate that the recursive relations for Pare 

correct. Kovacic actually sets Pi = Sn-i . P . ai' where S = II(x-c), with no justifi-
CEf 

cation at all. This is completely unnecessary and obscures the similarities of the 

three cases. 

= -Pa/ - pea; - P'ai - (n-i)(i+l)rP i +1 = -Pi' - aPi - (n-i)(i+l)rPi+1 

Because a_I = 0, then P -1 = O. 



Hence P is defined by the following equations 

Pn = -P 

Pi-1 = -P/ - SP i - (n-i)(i+l) rPi+1 

and 

P -1 = 0 (identically) 

Rewriting the equation for w in terms of Pi gives 

i. e. 
n Pi . 
~ Wi = 0 
£oJ ( _ ')' i=O n l. 
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We can now verify that these two sets of equations for P and ware the same as 

those produced in cases (1) and (2) as follows. 

In case (1), n = 1. 

= p' + 8P 

P -1 = -Po' - epa - (1-0)(0+1)rP1 

= -(P' + SP), - S(p' + SP) - r(-P) = _p" - S'P - SP' - 8P' - s2p + rP 

= _pIT - 2ap' - (a' + a2 - r)P 

because P -1 = a-l'P = 0 (because a_I = 0) then 

pIt + 2SP' + (8' + S2 - r)P = 0 (3.2.3b) 

1 Pi . 
Also ~ (1- ')' wl 

= 0 so that 
i=O l • 

Po a PI 1 _ 
(1-0)! w + (I-I)! w - 0 

p' + ap - Pw = 0 
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P' + 8P P' 
w= =8+-

P P 
(3.2.3c) 

Note that (3.2. 3 b) and (3.2. 3c) are the same equations as those produced for case 

(1), namely (3.2.1j) and (3.2.1i) respectively. 

In case (2), n = 2. 

P 2 = -P 

= P' + SP 

= -(p' + 8P), - 8(P' + 8P) - 2r(-P) 

= -p" - 8'P - SP' - 8P' - e2p + 2rP 

= -P" - 28P' - (9' + 82 - 2r)P 

P -1 = -Po' - SPa - (2-0)(0+1)rP1 

= -(-P" - 28P' - (8' + 82 - 2r)P)' - 8(-P" - 28P' - (8' + 82 - 2r)P) - 2r(P' + SP) 

= P'" + 28'P' + 28P" + (8' + 82 - 2r)P' + (8" + 288' - 2r')P + 8P" + 282P' 

+ 88'P + 83p - 2r8P - 2rP' - 2r8P 

= P"' + 38P" + (38' + 382 - 4r)P' + (8" + 388' + 83 - 4r8 - 2r')P 

Because P -1 must be zero then 

P'" + 38P" + (38' + 382 - 4r)P' + (8" + 388' + 83 - 4r8 - 2r')P = (B.2.3d) 

2 p. 
Also ~o (2_

l

i)! wi = 0, so that 

Po a PI 1 P 2 2 _ 
(2-0)! w + (2-1)! w + (2-2)! w - 0 

!(-P" - 28P' - (8' + 82 - 2r)P) + (P' + 8P)w + (-P)w2 = 0 
2 
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w2 + w + - - 0 ( 
p' + ap) 1 ( - p" - 2ap' - (a' + e2 - 2r)p) _ 

-p 2 -p 

( 
p' ) 1 (p" 2ap' ] w2 

- a + p w + "2 p + ---p- + (0' + a2 
- 2r) = 0 

P' p" (p,)2 
Since c!> = a + p' c!>' = a' + p - p then 

(3.2.3e) 

Note that (3.2.3d) and (3.2.3e) are the same equations as those produced for case 

(2), namely (3.2.21) and (3.2.2m) respectively. 

Noticing that the equations for P and w could be unified for all three cases was 

of benefit in implementing the algorithm. Saunders' [5] had unified only steps (1) 

and (2) of the algorithm and implemented step (3) separately for each of the three 

cases. In the implementation for Maple, step (3) could also be implemented as a sin

gle procedure. 



CHAPTER 4 

Saunders' Algorithm 

4.1. Saunders' Modifications to Kovacic's Algorithm 

Saunders [5] has produced a modified version of Kovacic's algorithm where 

most of the algorithm has been unified to avoid implementing each of the cases 

separately. In his algorithm, only the final portion of step (3) remained to be imple

mented separately for each case. By noting the similarities of the three cases, it was 

possible to unify this step as well. 

Saunders does not prove that his version of Kovacic's algorithm does in fact 

correctly implement Kovacic's algorithm and it is certainly not obvious that the two 

are the sanle algorithm. In fact, in the course of comparing the two, several bugs 

were discovered in Saunders' algorithm. A corrected version is presented here and 

verified correct by comparison with Kovacic's algorithm as given in section 3.1. 

Saunders' algorithnl is noteworthy in that he has unified the computation of d 

(the degree of p) and e in steps (1) and (2) of Kovacic's algorithm. (Recall that we 

are computing a function G> = e + ~' , then obtaining the minimal polynomial for w 

in terms of G> and r.) We have now unified the computation of P and w in step (3) of 

Kovacic's algorithm; see section 3.2.3 for details. 

Saunders' unification is carried out by computing "parts" of d and 8. Recall 

that in Kovacic's algorithm, d = constant· (ex - ~ec'J for a1l three cases, and that 
CEf 

the ec's and ex were of the form expressionl + k . expression2' where 

k = ~ .... , ~. Here, we will compute the sum of all the expressionl's in d as ejl.p 

and each expression2 as ei' with i = 0 for ex. 

A similar process is carried out for e. Recall that in Kovacic's algorithnl, the 
ec 

main conlponent of 8 was the sunl ~--. 
CEf x-c 

In a preliminary step of the algorithm, we normalise r = !.... where gcd(s, t) = 1 
t 

and sand t are polynomials in C[x]. We then perform a square-free decomposition 

on t and obtain t = tl·tl·tl·· ·tmm. We will not have to determine all the poles of r 
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as in Kovacic's algorithm, only the poles with even order. We also determine the 

order of r at 00, 0(00) = degt - degs. 

N ext, we determine which of the three cases are possible (equivalently, what 

degrees of w over C(x) are possible) by checking the necessary conditions and creat m 

ing a list L of possible degrees as follows. 

1e.L 
2e.L 

if ti = 1 for all odd i ~ 2 and 0(00) is even or > 2 

if t2 =1= 1 or ti *" 1 for some odd i ~ 3 
4, 6, 12 E. L if ti = 1 for all i > 2 and 0 (00) ~ 2 

Then, the algorithm is as follows. 

Step (1) 

Form parts of d and e. 

(a) efix = tmin(0(00),2) - tdegt - %deg t1 

It' 1t1' 
4 4 

9fix = -t- + ti 
(b) find the poles c1' ... , ck

2 
of r of order 2 (i. e. the roots of t2) 

for i from 1 to k2 do 

od 

1 
bi = the coefficient of in the partial fraction expansion of r 

(x- ci)2 

e· = "" 11+4£ 
I v I 

ei 
e·=--

I X-Ci 

(c) if 1 E. L then find the poles ck
2
+1' ... ,ck of order 4, 6, 8 , ... ,m (i. e. the 

roots of t4' t6' ... , tm) 

for i from k2+ 1 to k do 

[Vrlc. = the sum of terms involving __ 1-f' for k = 2, ... ,~- and v the 
I (x-ci) 

order of the pole ci' in the Laurent series expansion of Vr at ci 
-v 

ai = the coefficient of (x- c) -2" in [Vrt .. 
I 

-~+1 
bi = the coefficient of (x-ci) 2 in r - ([Vr]c)2 

hi 
e· = ---

I ai 



od 

(d) if 0(00) > 2 then 

eo = 1 

60 = 0 

elsif 0(00) = 2 then 

else 

bo = the coefficient of ~ in the Laurent series expansion of r at 00 

x 

eo = v'I+47iQ 
60 = 0 

if 1 E L then 

38 

[Vrly; = the sum of terms involving xi, for i = -;v, .... 0 and 

else 

fi 

fi 

Step (2) 

v = 0(00), in the Laurent series expansion of Vr at 00 

-11 

ao = the coefficient of x 2 in [Vr]x 
~+1 

bo = the coefficient of x 2 in r - ([Vr]x)2 
bo eo =-
ao 

60 = 2[Vr]x 

eo = 0 

60 = 0 

Form the trial d's and 6's. 

for each n in L (in increasing order) do 

if n = 1 then m = k else m = k2 fi 

if n = 2 and 0(00) < 2 then 

eo = 0 

80 = 0 

fi 

for all sequences s = (so . .... sm) where si E {- %, - %+ 1, .... %} do 
m 

d = n' efix + soeo - LSiei 
;=1 

if d is an integer 2:: 0 then 



fi 

od 

m 

6 = n·6fix + ~si6i 
i=O 

apply step (3) to d and 6 

if successful then 

RETURN (solution) 

fi 

od 

FAILO; (no solution exists) 

Step (3) 

Find the polynomial P (if possible) and w. 

form P in tenns of undetermined coefficients ai 

P = adxd + ad_lxd - 1 + ... + ao 

generate the recursive relations Pi 

Pn = -P 

for i from n by -1 to 0 do 

Pi - 1 = -P/ - 6P i - (n-i)(i+1)rPi+l 

od 

solve P -1 = 0 for the ai 

if a solution exists then 

e. se 

fi 

generate the minimal polynomial for w 

minpoly = 0 

for i from 0 to n do 

Pi . 
minpoly = minpoly + . Wi 

(n-i)! 

od 

solve minpoly for w 

RETURN(solution as ef w) 

not successful 
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The following corrections were made to Saunders' original algorithm. The 
m 

expression for d in step (2) was d = n . ejix - ~siei' Unless one multiplied the 
;=0 
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expressions for eo by -1, this expression was incorrect. The corrected expression is 

more desirable simply because it corresponds more closely to the expression for d in 

Kovacic's algorithm. (See step (2) in section 3.1.) 

Also, it was stated that eo and 60 were only computed if 0(00) was:$; 2, and were 

never computed if 1 was not in the list L, i. e. if case (1) was not possible. This will 

be seen to be untrue in the following section. 

4.2. Proof of Saunders' (Corrected) Algorithm 

In order to verify this algorithm, we will require several identities. If 

t = t1" t22. tl··· tm m, with the ti square-free and pair-wise relatively prime, then 

degt = degtl + 2· degt2 + 3· degt3 + . .. + m' degtm 

and 

degtk = the number of poles of r of order k 

Also, 

and 

where the aj , j = 1. ... ,degtk are the roots of tk' i. e. the poles of r of order k. 

Now, we will verify the corrected version of Saunders' algorithm for each of the 

three cases of Kovacic's algorithm, i. e. n = 1, n = 2 and n = 4, 6 or 12. In all 

cases, the verification consists of proving that the d's and a's computed agree for the 

two algorithms. The d's and a's computed by Saunders' algorithm will be denoted ds 

and as; those computed by Kovacic's algorithm win be denoted by dk and ak . 

Case (1) 

n = 1 

k 

ds = 1· efix + soeo - ~siei 
i-1 
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k 
1 . 1 2 

= 4 mIn(0(00),2) + sOeO - ~ 1 - ~ 2 - LSiei -
cef cef i=l 

poles of poles of 

1 k 
~ 4-v - ~ siei 
ct!f i=k2+1 

poles of 
order 1 order 2 orderv>2 

v even 

= tmin(0(00),2) + sOeO - ~ 1 - ~ ct + siV1+4b ) -
poles of poles of 

~ (lv + s/!_) 
poles of 4 a 

order 1 order 2 orderv>2 
v even 

Compare this formula with the formula for dk . 

= e~ - ~ 1 - ~ (t + kVl +4b) -
cef cef 

where k = ±t 
poles of poles of 
order 1 order 2 

Th h 1 1 1 · h fl' n n 1 e tree sums are c ear y equa In t e two ormu as SInce Si = 2' • -2 = ± 2 

when n = 1. It remains to show that tmin(0(00),2) + soeo corresponds to e~. If 

0(00) > 2 then 

and if 0(00) = 2 then 

1 . 1 1 ... ;-:;-;--.;y 1 L. ~ 
4 m1n(0(00),2) + saeO = 4,2 + ±2' v 1+4b = 2: ± 2 v 1+4b = e~ 

and if 0(00) < 2 then 

1 1 1 b 1 lb 
4min(0(00),2) + soeo = 4' v + ±2'~ = 4v ± 2~ = e~ 

so ds = dk for case (1). 

Now 

k 

6s = l·Sfix + L Si 6 i 
i=O 



1 1 

= 2: _1_ + 2.: _2_ + 
eer x- Ci eel' x- Ci 

4V k2 k 

}: -- + s080 + }:Si8 i + 2: Siei 
eel' X-Ci i=l i=k

2
+1 

poles of poles of 
order 1 order 2 

poles of 
order v>2 

v even 

l_+s.e. (lv+s.e. ) 
= PO~ofX~Cj + poI~of 2x_;~ + poI~'" 4x _ c; , + 2sJVrlc, + s080 

order 1 order 2 order v>2 
11 even 

1 ++SiY1 +4b [lv+s.~ ] 
= l",x-cj + poI~'" X-Cj + l", \-C; a + 2s j [

Vrlc, + s080 

order 1 order 2 order v>2 

Since si = 
n 
2' 

1 
1+s.Y1+4b 2 I 

8s = ~ ~ +}: x-c. + 
poles of X C I poles of I 
order 1 order 2 

Recall that the formula for 8k is 

1 
= ~-+ 

eel' X-C 
poles of 
order 1 

+ + kVf+4b 

~ X-C + 
eer 

poles of 
order 2 

v even 

( J-v+s,~ ] 4 la ~;-}: + sign(si)· [ V r lei + s080 
poles of X-Ci 

order 11>2 
v even 

;E 
eel' 

poles of 
orderv>2 

v even 

( ilJ+k~ + S(C)[Vrl
c

) + s(oo)[ifrlc 
X-C 
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Clearly, the three sums are equal in the two formulas. It rem.ains to show that .'1080 

corresponds to s(oo)[Vrl oc • If 0(00) ~ 2 then 

and if 0(00) < 2 then 

so e s = e k for case (1) and Saunders' algorithm is verified correct for n = 1. 

Case (2) 

n = 2 



k2 

ds = 2-ejix + sOeO - 2 siei 
i=l 

k2 

= ~min(0(00),2) - 2degtl - degt2 - 1:L. vdegtv + soeo - LSiei 
v>2 i=l 

k2 

= ~min(0(00),2) + soeo - ~ 2 - 2 1 - LSiei -
eel' eel' i=l 

poles of poles of 
order 1 order 2 

1 
2 -iV 

eel' 
poles of 

orderv>2 

= Imin(0(00),2) + sOeO - L 2 - L l+s iYl+4b - L tv 
poles of poles of poles of 
order 1 order 2 order v>2 

= I (min(0(00),2) + 2soeo - L 4 - L 2+2siYl +4b - L v] 
poles of poles of poles of 
order 1 order 2 order v> 2 

Recall that the formula for dk is 

dk=I(ex-Lec ) 
eel' 

= I [ex - L 4 - L 2+2kYl+4b - }: v] 
eel' al' eel' 

poles of poles of poles of 
order 1 order 2 order v> 2 
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The three sums are clearly equal in the two formulas since 

si = -I' ---'I = -1,0,1 = 0,±1 when n = 2. It remains to show that 

min(0(00),2) + 2soeo corresponds to ex. If 0(00) > 2 then 

mine 0 (00),2) + 2s oe 0 = 2 + 2 -s 0.1 = 2 + 2s 0 = ex 

and if 0(00) = 2 then 

min(0(00),2) + 2s0eO = 2 + 2s0Yl+4b = ex 

and if 0(00) = v < 2 then 

min(0(00),2) + 2s0eO = v + 2·so·0 = v = ex 

so that ds = dk for case (2). 

Now 



k2 

8s = 2· 8fix + LSi8i 
i=O 

2 = ~ --+ 
cef X-Ci 

poles of 
order 1 

1 :L --+ 
cef X-Ci 

poles of 
order 2 

2 1 +si'\li+4b 
= ~ -- + L -.----- + 

pol,es of X - Ci poles of X - Ci 
order 1 order 2 

1 
i V 

~ --- + SOOO 
poles of X - C i 

order v>2 

---L--+L + 
1 [4 2+2s iV1 +4b 

2 polesofX-Ci poles of X-Ci 
~ _V_ + 2S000) 

polesof X-Ci 
orderv>2 order 1 order 2 

Recall that the formula for Ok is 

1 [ 4 = -- L - + 
2 cef X-C 

poles of 
order 1 

L 2+2kV1+4b + L _V_] 
cef X - C cef X - C 

poles of poles of 
order 2 order v> 2 

44 

Clearly the three sums are equal in the two formulas. Since 00 = 0 in this case 

regardless of the value of 0(00), we have Os = Sk for case (2) and Saunders' algorithm 

is verified correct for n = 2. 

Case (3) 

n = 4,6,12 

k2 

ds = n·efix + sOeO - ~siei 
i=l 

k2 

= ~min(0(00),2) - ndegtl - %deg t2 + sOeO - LSiei 
;=1 



k2 

!14- min(0(00),2) + sOeO - L n - 2 ~ - ~s·e. 
CEf CEf 2 i = 1 l l 

poles of poles of 
order 1 order 2 

= -F2-(3.min(0(00),2) + l!soeo - 2: 12 - L 6+~~SiV1+4b) 
poles of poles of 
order 1 order 2 

Compare this fornlula with the formula for dk . 

n ( I? ";-:;-;-;-:;-1 Ii ex - L 12 - L 6+ ,; k v 1 + 4b 
cef cef 

poles of poles of 
order 1 order 2 

The three sums are clearly equal in the two 
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formulas since 

si= -g .... . %=O,±1,±2 ..... ±-~ when n= 4,6 or 12. It remains to show 

that 3·min(0(oo),2) + l~soeo corresponds to ex. If 0(00) > 2 then 
n 

and if 0(00) = 2 then 

. 12 12 .. ;-:;-:-;-;- 12 ..;-:;-;-;-:;-
3·mln(0(00),2) + --.;zsoeo = 3·2 + --.;z·sov 1+4b = 6 + n-sov 1+4b = ex 

and 0(00) < 2 does not occur in case (3). 

Now 

k2 

9 = n·9./" + """s·9· 
S JlX "" l l 

i=O 

nt' 3n t ' k 4" 41 2 
= - + -- + s090 + Ls·f}. 

t tl i=O l l 

n 
n 2 k2 

= ~ -- + ~ -- + s090 + L S i9 i 
cEf X-Ci CEf X-Ci i=O 

poles of poles of 
order 1 order 2 

~+s·e· n 2 l l 

= L -- + L + s060 
polesofx-ci polesof X-Ci 
order 1 order 2 



~+s,V1+4b n 2 z 
=~-+}: -, 

polesofx-ci poles of X Cz 
order 1 order 2 

[ 

12 .. ~ 
n 12 6+ n si V 1+4b 

=- L -+ L 
12 - , -", poles of X C I poles of X "z 

order 1 order 2 

Recall that the formula for ek is 

e e
k 

= -~L_c-
12 cd' X-C 

[ 

6+ ~kVT+4b 1 = ~ L ~ + L __ n ___ _ 
12 CEf X - C CEf X - C 

poles of poles of 
order 1 order 2 
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Clearly, the sunlS are equal in the two formulas. Since eo = 0 for any value of 0(00), 

then Os = 8k for case (3) and Saunders' algorithm is verified correct for n =4,6,12. 

}Ience, the corrected version of Saunders' algorithm is verified correct as 

presented. 



CHAPTER 5 

Implementation in Maple 

5.1. Details of the Implementation 

The implementation in Maple follows Saunders' variant of the algorithm fairly 

closely. Several subsections of the implementation will be discussed further here. 

The square-free decomposition required in the preliminary step of Saunders' 

algorithm is done using Yun's algorithm (c) as follows. If P is a primitive polyno

mial, its square-free decomposition Pl'P1'P~" .p;: is computed by: 

G ~gCd(P':] 
P 

Cl<-G 

D <- dP /G _ dC l 

1 dx dx 

for i from 1 while Cl =1= 1 do 

p. <- gcd(C. D.) 
l P l 

od 

A proof that this algorithm does calculate the square-free decomposition of P may be 

found in [7]. 

The procedure to find the roots of the parts t2' t4' ...• tm was developed to cir

cum vent intrinsic limitations in Maple's solve routine. (See section 5.2 for further 

details.) First, Maple's solve is called to determine the roots. If solve finds all the 

roots (the number of roots should be the degree of the input polynomial), then rad

simp is called to simplify them. Otherwise, factor is called in an attenlpt to reduce 

the polynomial to factors that can be handled by solve. If factor cannot produce any 

factors, the differential equation cannot be solved and the routine fails. 

In step 1 of Saunders' algorithm, the calculation of the d i and of [Vr]c. requires 
I 
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computation of coefficients of the Laurent series expansion of a rational function at 

its poles. The function is never explicitly expanded in a Laurent series; instead the 

method of undetermined coefficients is used. This also requires long division of the 

rational function to reduce ~ to squo + srem where deg(srem) < deg(t). The algo-
t t 

rithm used for division is algorithm D by Knuth [4]. 

Then, if a is a root of t with multiplicity m, t(x) = (x-a)m·g(x) and f is a poly

nomial in x 

srem srem Am + Am-l +.". + ~ + L 
(x-a)m (x-a)m-l x-a g 

where 

A. = 1 d
m 

- i. (srem) 
l (m-i)! dxm-z g 

x=a 

This algorithm is from the eRe Standard Mathematical Tables [6]. 

The calculation of [Vr]c. also uses this algorithm for undetermined coefficients. 
I 

1 
If ci is a pole of order v = 27 ~ 4, then [Vr]c. is the sum of terms involving ---

I (x-Ci)i 

for i = 2,3.. ..7 in the Laurent series expansion of Vr at Ct. So 

[" 'r] _ a7 a7 -1 a2 vr --- + + ... + ----:-
Cj - (X- Ci)7 (x- Ci)7-1 (X- Ci)2 

and ([vY]c,)2 agrees with (Vr)2 = r for powers of 1 k' k = 7+2 ..... 27. We 
I (x-ci) . 

exploit this fact by squaring [Vr]Cj and obtaining expressions equal to the coefficients 

of --~ in r, then using the undetermined coefficients algorithm on r. 
(x-cJ 

.. r 2 (a7 
a'f-l a2 ] v [ 1 [T ):1 C[vr] ) - + ------ + ... + 2 = L ----i· ~ a/ai-j 

. Cj - (x- CJ7 (x - cJ7-1 (x- Ci) i=4 (x-r- Ci) j=i-T 

Vve first solve for a7 by noting 

a; = coefficient of 1 in r 
(X- Ci)27 

Then each succeeding coefficient, a7 -1,a7 -2' .... a2 can be solved for using the 

equation ± a/ ai- j = coefficient of _1 __ . in r and substitution of previously com-
j=i-T (x- Ci)l 

puted a's. 



49 

The calculation of [\,;;1:>:; is very similar. If the order of r at 0':) is v = - 27, then 

[\/;:1:,; is the sum of terms involving xi' i = 0, ... ,7 in the Laurent series expansion 

of Vr at 00, i. e. 

[Vr]x = a~7 + . .. + ao 

and ([Vr]x)2 agrees with r for powers of xk, k = 0, ... ,27. A formula can be 

derived for the coefficients as before and matched with coefficients of powers of x in 

squo. 

In step (2) of Saunders' algorithm, it is necessary to generate all possible 
n 

sequences (so' sl' ... ,snJ where each si E {a, ± 1, ± 2 ..... ± 2}' The quantities si 

are implemented as a one-dimensional table of rational numbers and the entire vector 

treated as a m+ 1 digit number base n+ 1 in order to generate all the combinations. If 

the vector s is initialised to 

n n 
2 2 

then repeatedly adding 1 until s is 

n n 
2 2 

will produce all the combinations required. 

n 
2 

n 
2 

As in Saunders' implementation, step 3 of the algorithm is implemented in three 

separate procedures for n = 1, n = 2, and n = 4, 6, 12. The three routines are very 

similar. Each generates a polynomial p of degree d as 

x d + ad_1xd - 1 + ... + alx + ao and then generates an expression as a function of p 

and the given e that must be zero. By computing the numerator of the generated 

expression (using normal and numerator ), then extracting the coefficients of each 

power of x, a set of expressions is found, each of which must be zero. These equa

tions are linear functions of the unknown coefficients ai and can be solved using a 

linear equation solver (courtesy of M. B. Monagan). This routine is noteworthy in 

that it can handle the case where the system of equations is overdetermined. 

5.2. Limitations of the Implementation 

While the algorithm as stated claims to solve any d. e. of the form 

ay" + by' + cy = ° where a, b, c E C(x), the implemented algorithm will handle only 

a subset of these equations for a number of reasons. 
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In the preliminary step of the implemented algorithm, it is necessary to compute 

r as !.- where gcd(s,t) = 1. As long as r € Q(x), Maple's normal will correctly sim-
t 

plify r to the fornl required. At present, however, it will not accept constants such 

as V2. In this case, calling radsirnp will correctly normalise but radsimp will not 

correctly handle any more COIllplicated constants, such as exp(2) for example. 

It is clear that more powerful normalisation facilities are needed in Maple to 

handle the non-rational coefficients. 

In the first step of the implenlented algorithm, it is necessary to find the roots of 

a polynomial in C[x]. In reality, the polynomial must be in Q[x] for several reasons. 

First, the roots computed by solve are sin1plified using radsimp which can handle 

rationals and rationals to rational powers, and no other constants. Then, if solve is 

unable to find the roots of the polynomial, Maple's factor package is called and it 

can only factor over the integers (actually over the Gaussian integers if (-1) * * (1/2) is 

represented as 1). 

The use of the factor package could be a limitation in and of itself in that it is 

very slow and relatively untested. Fortunately, for most of the examples tested (and 

hopefully most of the examples to be tried in the future), the polynomial we require 

the roots of is of low degree, generally not more than degree 4 and can be ade

quately handled by solve and radsimp. 

Another problem with Maple's solve function nlanifested itself when implement

ing step 3 of the algorithm. In that stage, a polynomial is constructed with undeter

mined coefficients and an expression depending on that polynomial is set to zero. 

The unknown coefficients are determined by expanding the expression and extracting 

the coefficients of each power of the dependent variable. This often- results in an 

over-determined system of equations. Maple's solve routine will only handle a 

square system of equations, i. e. n equations in n unknowns. I-Iowever, M. B. 

Monagan was able to provide a linear equation solver that handles both under- and 

over- determined systems of equations as well as square systems. This routine (or a 

variant of it) should be provided in the Maple library. 

Two problelns arise in the final stages of the implemented algorithm. In step 3 

in an 3 cases, the solution is returned as eI something. Then in the course of transfornl

ing the equation from the form y" = ry back to the input form az" + hz' + cz = 0, 

h I something . d I h f' h l' . . anot er e IS compute. n t e course 0 testlng, t e llrtltatIons of 11aple's 

integrator were clearly demonstrated at this point. It is a well-known fact that much 

more work is needed on this function and I will not belabour the point. 
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In the cases where the integral could be computed, the second problem became 

evident. If the solution to the d. e. is a polynomial, it will often be conlputed as 

e1og(polynomial) and since Maple had no knowledge of the relationship between exp and 

log, it would remain in that form in the output solution. This form could hardly be 

considered simplified and it seemed clear that any user of the package would not 

appreciate such a solution. Fortunately, B. Char produced a simplifier for expres

sions with exp's and log's. This system of routines knows the basic rules of exponen

tials and logarithms, namely ea . eb = c a+b and logx + logy = logxy, and also know s 

that exp and log are related by exp(log( ... )) = .. '. (It does not yet know that 

log(exp( ... )) = ... ; hopefully, this can also be implemented.) 

5.3. Some Further Observations 

The implemented algorithm was tested extensively using the equations in Kamke 

[1]. During this testing another problem was noted, namely that the algorithnl will 

not handle parameterised equations, i. e. if the input equation is ay II + by I + cy = 0, 

then a, band c must be polynomials in x and no other parameters. In step (2), a 

decision must be made as to whether the quantity d is greater than or equal to zero 

and is an integer. If the expression for d is parameterised and the question was sim

ply, is d ~ 0, we could proceed by following the two cases, d < ° and d ~ 0, 

through the remainder of the code and outputting the conditions on d along with the 

solutions computed in each case. However, the question, is d an integer, does not 

lend itself to handling a finite number of cases. A true constant must be determined 

for d. 

In step (3) of the algorithm for case (3) only, an equation for co is computed of 

degree 4, 6 or 12. It may be impossible to produce an explicit expression for one of 

the solutions of this equation if it is of degree 6 or 12. In that case, we return an 

unevaluated integral, ef w, in the solution and a condition on w, namely the equation 

we were unable to solve. 

These two cases demonstrate a clear need for Maple (or any other system) to be 

able to handle and simplify expressions with side relations. The system must have 

certain basic side relations built in, e. g. i2 + 1 = 0, sin2x + cos2x = 1, etc. The user 

must also be able to add side relations to the knowledge of the system, whether 

directly or indirectly, e. g. via conditions on a solution to a differential equation. 

In the preliminary step of the algorithm, it is necessary to perform a square-free 

factorisation of a polynomial. Square-free factorisation is also required by Maple's 

radsimp routine, (undoubtedly) by the factor package, and by the Risch integration 

package (as yet, not in the Maple library). It is probably also used by other routines 
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as well. It is recommended that a good square-free factorisation routine (for both 

univariate and multivariate polynomials) be added to the Maple library. The four 

routines mentioned above all use a slightly different square-free factorisation routine, 

though they may all be using the same algorithm. 

The determination of the coefficients of the partial fraction expansion of a r in 

step (1) of the algorithm requires a routine to do polynomial long division. Maple's 

divide routine divides 'only if the input polynomials divide exactly. It is suggested 

that a library routine to do quotient-remainder division might be useful to a number 

of packages. 



APPENDIX A 

Source Code 
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read '/u/csnlith/cs787 Iradsimp. m '; 

read '/u/csmith/essay/lsolve. m'; 

read '/u/bw char 1m a thw are/sym b olic/m aple/functioncall'; 

read '/u/bwchar/mathw are/symbolic/maple/lncontract'; 

read '/u/bwchar/mathware/symbolicJmaple/scanmap'; 

# 

# 

# --> osolve: Solve second order ordinary differential equations 

# 

# Calling sequence: osolve(in_ode, dep, indep) 

# 

# Purpose: Solves second order ordinary differential equations 

# of the form a I/< y" + b '" y' + c I/< Y = 0 using 

# Kovacic's algorithm for second order linear 

# homogeneous equations 

# 

# Input: in_ode - either an equation or an expression assumed 

# equal to zero representing the differential 

# equation to be solved 

# 

# 

# 

# 

# 

# 

dep - the dependent variable to be solved for, given 

as an undefined function e. g. y(x) 

indep - the independent variable 

# Output: function value -- a set of two independent solutions 

# of the 0. d. e. if they can be found 

# 

# Functions required: odeorder, kovode 

# 

# 

osolve : = proc(in_ode, dep, indep) 

localode,a,b,c,d,i; 

if type(in_ode, '= ') then 

ode: = expand(op(1,in_ode)-op(2,in_ode)); 
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else 

ode: = expand(in_ode); 

fi; 

if odeorder( ode, dep, indep) < > 2 then 

ERROR(,not a second order o. d. e'); 

fi; 

a : = 0; b : = 0; c : = 0; d : = 0; 

if type(ode, '+ ') then 

for i from 1 to nops(ode) do 

op(i,ode); 

if has(", diff( diff( dep, indep), indep)) then 

a : = a + "/ diff( diff( dep, indep), indep); 

elif has(", diff( dep, indep)) then 

b : = b + "/ diff(dep,indep); 

elif has(", dep) then 

c : = c + "/ dep; 

else 

d : = d + "; 
fi; 

od; 

else 

fi; 

if has(ode,diff(diff(dep,indep),indep)) then 

a : = ode / diff(diff(dep,indep),indep); 

elif has(ode,diff(dep,indep)) then 

b : = ode / diff( dep, indep); 

elif has( ode, dep) then 

c : = ode / dep; 

else 

d : = ode; 

fi; 

if (indets(a) + indets(b) + indets(c)) - {indep} <> {} then 

ERROR(,invalid coefficients'); 

fi; 
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if d < > 0 then 

print('W ARNING: non-homogeneous, trying homogeneous case'); 

fi; 

kovode(a, b, c, indep); 

end; 



# 

# 

#--> odeorder: Determines the order of an ordinary differential equation 

# 

# Calling sequence: odeorder( ode, dep, indep) 

# 

# Purpose: Determines the order of an o. d. e., i. e. the highest 

# derivative of the dependent variable with respect to 

# the independent variable. 

# 

# Input: ode - an equation representing the o. d. e. 

# 

# dep - the dependent variable, e. g. y(x) 

# 

# indep - the independent variable, e. g. x 

# 

# Output: function value -- integer order of the o. d. e., -1 if the 

# input equation is not an o. d. e. 

# 

# Functions required: 

# 

# 

odeorder : = proc(ode,dep,indep) 

if type(ode, function) and (op(O,ode) = 'diff') then 

if op(2, ode) < > indep then 

RETURN(-l); 

eHf op(1 , ode) = dep then 

RETURN(1); 

else 

fi; 

odeorder(op(l, ode), dep, indep); 

if " = -1 then 

RETURN(-l); 

else 

RETURN("+ 1); 

fi; 

eHf type(ode, '+ ') or type(ode, '*') then 
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map( odeorder, {op(ode)}, dep, indep); 

RETURN(max(op("))); 

elif type(ode, '**') then 

RETURN (odeorder( op(1 , ode), dep, indep)); 

else 

RETURN(-l); 

fi; 

end; 
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# 

# 

#--> kovode: Kovacic's algorithm for second order o. d. e.'s 

# 

# Calling sequence: kovode(fa,fb,fc, var) 

# 

# Purpose: Solve a second order linear homoegeneous differential 

# equation of the form fa * y" + fb * y' + fc * y = 0 

# 

# Input: fa,fb,fc - coefficients in the differential equation, 

# must be in O(x) 

# 

# Output: function value -- set of two independent solutions of 

# the o. d. e. and possibly an equation 

# that is a condition on the solutions 

# 

# Functions required: normal, numerator, rdivide, sqfr, undetcoeff, 

# roots, radsimp, solve, step3n1, step3n2, step3n4, 

# esimp,int 

# 

# 

kovode : = proc(fa, fb, fc, var) 

local s, t, squo, srem, tcont, sdec, m, ord_inf, listl, oddti, i, j, k, 1, 

d, theta, dfix, thetafix, ds, thetas, t1 , t2, trest, rlist2, rlisthigher, 

k1, k2, soln, soln1, soln2, ac, rt, nu, vtemp, n, alls, sprod; 

# transform the equation to the form z" = (s/t)*z 

s : = 2*diff(fb, var)*fa - 2*fb*diff(fa, var) + fb*fb - 4*fa*fc; 

t : = 4*fa*fa; 

# step 0 - preliminaries 

norma1(s/t); 

s : = numerator(", 't'); 

rdivide(s, t, var, 'squo', 'srem'); 
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sdec : = sqfr(t, var, 'tcont'); 

m : = nops(sdec); 

t : = tcont; 

for i from 1 to m do 

t : = t * op Ci, sd ec ) * * i ; 
od; 

if m > 0 then 

t1 : = op(l, sdec); 

else 

t1 : = l; 

fi; 

if m > 1 then 

t2 : = op(2, sdec); 

else 

t2 : = 1; 

fi; 

ord_inf : = degree(t, var) - degree(s, var); 

listl : = []; 

oddti : = true; 

for i from 3 by 2 to m do 

if opCi, sdec) < > 1 then 

oddti : = false; 

fi; 

od; 

break; 

if oddti and (type(ord_inf/2,integer) or (ord_inf > 2)) then 

listl:= [op(listl),1]; 

fi; 

if not oddti or (t2 < > 1) then 

listl : = [op(listl), 2]; 

fi; 

if (m < = 2) and (ord_inf > = 2) then 

listl : = [op(listl),4,6,l2]; 
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fi; 

if nops(1istl) = 0 then 

FAILO; 

fi; 

# step 1 - form parts for d and theta 

dfix : = (min(ord_inf,2) - degree(t,var) - 3 * degree(tl,var)) / 4; 

thetafix : = normal((diff(t,var) / t + 3 * diff(tl,var) I tl) /4); 

rlist2 : = roots(t2, var); 

t2 : = t2/lcoeff(t2); 

k2 : = nops(rlist2); 

for i from 1 to k2 do 

trest : = t I t2**2; 

rt:= op(i,rlist2); 

for j from 1 to i-l do 

trest:= trest * (var - op(j,rlist2))**2; 

od; 

for j from i+ 1 to k2 do 

trest : = trest * (var - op(j,rlist2))**2; 

od; 

undetcoeff(srem, trest, var, rt, 2, 2); 

d[i] : = radsimp((l + 4* ")**(1/2)); 

theta[i] : = radsimp(d[i]/(var-rt)); 

od; 

kl : = k2; 

if mem ber(l, listl) then 

for i from 4 by 2 to m do 

op(i,sdec); 

rlisthigher : = roots(", var); 

sdec : = [opel. .i-l,sdec), ''''/lcoeff(,'''),op(i+ 1. .m,sdec)]; 

nu : = i/2; 

for j from 1 to nops(rlisthigher) do 
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fi; 

k1 : = k1 + 1; 

rt : = op(j,rlisthigher); 

trest : = t / op(i,sdec)**i; 

for 1 from 1 to j-l do 

trest : = trest Ii< (var-op(l, rlisthigher))* *i; 

od; 

for 1 from j+ 1 to nops(rlisthigher) do 

trest : = trest * (var-op(l,rlisthigher))**i; 

od; 

undetcoeff(srem, trest, var, rt, 2 *nu, 2 *nu); 

ac[nu] : = radsimp("**(1/2)); 

for k from nu-1 by -1 to 2 do 

ac[k] : = vtemp; 

0; 

for 1 from nu by -1 to k do 

" + ac[l] * ac[nu + k-l]; 

od; 

ac[k] : = solve( "= undetcoeff( srem, trest, var, rt, 2 * nu, k + nu), vtem p); 

od; 

O' , 
for k from 2 to nu-1 do 

" + ac[k] * ac[nu+ 1-k]; 

od; 

d[kl] : = (undetcoeff(srem, trest, var,rt,2*nu,nu+ 1) - ")/ac[nu]; 

0; 

for k from 2 to nu do 

" + ac[k] / (var - rt)**k; 

od; 

theta[kl] : = 2 * " + d[k1] / (var - rt); 

od; 

od; 

if ord inf > 2 then 

d[O] : = 1; 

theta[O] : = 0; 

elif ord_inf = 2 then 

lcoeff(s) / lcoeff(t); 

d[O]:= radsimp((1+4*")**(1/2)); 
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theta[O] : = 0; 

elif member(l, listl) then 

nu : = (-ord_inf) / 2; 

ac[nu] := radsimp(coeff(squo,var,2*nu)**(1/2)); 

for i from nu-1 by -1 to 0 do 

ac[i] : = vtemp; 

0; 

for j from i to nu do 

" + ac[j] * ac[i + nu- j]; 

od; 

ac[i] : = solve("= coeff(squo, var,i+ nu), vtemp); 

od; 

0; 

for 1 from 0 to nu-1 do 

" + ac[l] * ac[nu-l-1]; 

od; 

if nu = 0 then 

coeff(srem, var, degree(t, var)-l )/lcoeff(t) - "; 

else 

coeff(squo,var,nu-1) - "; 

fi; 

if " = 0 then 

d[O] : = 0; 

else 

fi; 

0; 

d[O] : = "/ ac[nu]; 

for 1 from 0 to nu do 

" + ac[l] * var**l; 

ad; 

theta[O] : = 2*"; 

else 

fi; 

d[O] : = 0; 

theta[O] : = 0; 

# step 2 - form trial d's and theta's 

for i from 1 to nops(Iistl) do 
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n : = op(i,listl); 

if n = 1 then 

m:= k1; 

else 

m:= k2; 

fi; 

if (n = 2) and (ord_inf < 2) then 

d[O] : = 0; 

theta[O] : = 0; 

fi; 

for j from 0 to m do 

sq[j] : = -112 * n; 

od; 

alls : = false; 

while not alls do 

sq[O] * d[O]; 

for I from 1 to m do 

" - sq[l] * d[I]; 

od; 

ds : = radsimp(n * dfix + "); 

if type(ds, integer) and ds > = 0 then 

0; 

for I from 0 to m do 

" + sq[l] * theta[I]; 

od; 

thetas: = radsimp(n * thetafix + "); 

# step 3 - determine polynomial P if possible and hence omega and solution 

sain := step3(n,ds,thetas,s/t,var); 

if op(1, [soIn]) < > '@FAIL' then 

fb/fa; 

soIn1:= exp(int(-1/2 * ",var)) * op(1,[soln]); 
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fi; 

fi; 

soIn2 : = soln1 * 

int(esimp(exp(-int("", var))/(soln1 *soln1)), var); 

if nops([ soln]) = 1 then 

RETURN ([ esimp(soln1), esimp(soln2)]); 

else 

RETURN ([ esimp(soln1), esimp(soln2)], op(2, [soln])); 

fi; 

for j from m by -1 to 0 do 

if sq[j] = (1/2 * n) then 

sq[j] : = -1/2 * n; 

else 

fi; 

od; 

sq[j] : = sq[j] + 1; 

break; 

if j < 0 then 

alls : = true; 

fi; 

od; 

od; 

FAILO; 

end; 
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# 

# 

#--> step3: Step 3 of Kovacic's algorithm 

# 

# Calling sequence: step3(n, d, theta, rhs, var) 

# 

# Purpose: Perform step 3 of Kovacic's algorithm 

# 

# Input: n -- degree of omega over C(x) 

:# 

# d -- degree of the polynomial to be constructed 

# 

# 

# 

# 

# 

# 

:# 

theta m_ trial function theta 

rhs -- right hand side of the o. d. e z" = r*z 

var -- independant variable of the o. d. e. 

# Output: function value -- solution of the o. d. e. z" = r*z 

:# namely exp(int(onlega)) 

# 

# Functions required: radsimp, nunlerator, Lsolve, int 

# 

# 

step3 : = proc(n, d, theta, rhs, var) 

local p, listv ,i, a, pr, sete, soln, trial, w; 

p : = var**d; 

listv:=[]; 

for i from d-1 by -1 to 0 do 

a.i:= evaln(a.i); 

p : = p + a. i * v ar * * i; 

listv : = [op(1istv), a. i]; 

od; 

pr[n] : = -p; 

for i from n by -1 to 0 do 
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pr[i-l] : = normal(-diff(pr[i], var) - theta * pr[i] 

- (n-i) * (i+ 1) * rhs * pr[i+ 1]); 

od; 

trial: = expand(numerator(radsimp(pr[ -1]))); 

if trial < > 0 then 

sete : = {}; 

for i from ldegree(trial, var) to degree(trial, var) do 

coeff(trial, var, i); 

fi; 

if " < > 0 then 

fi; 

od; 

sete : = sete + {"}; 

soln : = Lsolve(sete, listv); 

if op(l, [soln]) = [] then 

RETURN('@FAIL'); 

fi; 

for i from d-l by -1 to 0 do 

a.i : = op(2,op(d-i,soln)); 

od; 

trial:= 0; 

for i from 0 to n do 

trial: = trial + pr[i] * w * *i / (n-i)! ; 

od; 

[solve( trial, w)]; 

if " = [] then 

RETURN(exp(int('@W'(var), var)), subs(w= '@W', trial) = 0); 

fi; 

w : = radsimp(op(l, ")); 

exp(int(w, var)); 
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68 

RETURN("); 

end; 



# 

# 

# --> roots: Find the roots of a polynomial 

# 

# Calling sequence: roots(poly, var) 

# 

# Purpose: Find the roots of a given polynomial in Z[var] 

# 

# Input: poly -- a univariate polynomial in var with integer 

# coefficients 

# 

# var -- the indeterminate of the polynomial 

# 

# Output: function value -- a list of the radically simplified 

# roots of the polynomial, an ERROR 

# if we could not find degree(poly, var) 

# roots, i. e. all of them 

# 

# Functions required: solve, radsimp, factor 

# 

# 

roots: = proc(poly, var) 

local newp,rlist,i; 

if degree(poly, var) = 0 then 

RE TU RN ([]) ; 

fi; 

soln : = [solve(poly, var)]; 

if nops(soln) = degree(poly, var) then 

RETURN(map(radsimp, soln)); 

fi; 

newp : = factor(poly); 

if newp = poly then 
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ERROR('unable to find roots of the demoninator'); 

fi; 

rlist : = []; 

for i from 1 to nops(newp) do 

roots( op(i, newp), var); 

rlist : = [op(rlist),op(")]; 

ad; 

RETURN(rlist); 

end; 
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# 

# 

# --> sqfr: Perform a square-free factorization of a polynomial 

# 

# Calling sequence: sqfr(poly, var, 'cont') 

# 

# Purpose: Do a square-free factorization of a univariate polynomial 

# 

# Input: poly -- a univariate polynomial with integer coefficients 

# 

# 

# 

var -- the indeterminate of the polynomial 

# Output: function value -- a list of the form [tl, t2, t3, ... , tm] 

# where poly = t1 * t2**2 * t3**3 * 

# ... * tm**m 

# 

# 'cont' -- (call-by-name) if the third argument is 

# present the integer content of poly is assigned 

# to the name 'cont' 

# 

# Functions required: primpart, gcd 

# 

# Reference: Yun's paper "On Square-Free Decomposition Algorithms" 

# 

# 

sqfr : = proc(poly, var, cont) 

local i,signp,pp, tc, tlistl,c,d; 

signp : = sign(poly); 

expand(poly) / signp; 

if nargs > 2 then 

pp : = primpart(",{var}, 'tc'); 

cont : = tc * signp; 

else 

pp := primpart(",{var}); 

fi; 
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tlistl : = []; 

expand(diff(pp, var)); 

ged(pp, ", 'e', 'd'); 

for i from 1 while e < > 1 do 

expanded - diff(e,var)); 

ged(e, ", 'e', 'd'); 

tlistl : = [op(tlistl), "J; 
ad; 

tlistl ; 

end; 
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# 

# 

#--> undetcoeff: Determine the coefficient of a factor in a partial 

# fraction expansion 

# 

# Calling sequence: undetcoeff(num,rden,var,root,m,ex); 

# 

# Purpose: Determine the coefficient of 1 / (var - root)**ex 

# in the partial fraction expansion of 

# num / (rden * (var - root)**m) 

# 

# Input: num -- polynomial with rational coefficients as above 

# 

# rden -- polynomial with rational coefficients as above 

# 

# 

# 

# 

# 

# 

# 

var -- indeterminate of quotient 

root -- root of the denominator of quotient 

m -- multiplicity of root in denominator 

# ex -- particular coefficient required 

# 

# Output: function value -- coefficient as described above 

# 

# Functions required: normal, rsubs (only until 3.1 is released) 

# 

# Reference: CRC Standard Mathematical Tables 

# 

# 

undetcoeff : = proc(num,rden,var,root,m,ex) 

local k,p,i; 

k : = m - ex; 

p : = num / rden; 

for i from 1 to k do 

73 



p : = diff(p, var); 

ad; 

p : = normal(p); 

RETURN(rsubs(p, var= root)/(k!)); 

end; 
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# 

# 

#--> rdivide: Divide one polynomial by another and return quotient and 

# remainder 

# 

# Calling sequence: rdivide(a, b, var, 'quo', 'rem') 

# 

# Purpose: Divides a polynomial "a" by a polynomial "b" and produces 

# the quotient and remainder polynomials 

# 

# Input: a -- univariate polynomial with rational coefficients 

# 

# b -- univariate polynomial with rational coefficients 

# 

# var -- indeterminate of the two polynomials 

# 

# 

# Output: function value -- none (of any relevance) 

# 

# 'quo' -- (call-by-name) the quotient when a is divided 

# by b 

# 

# 'rem' -- (call-by-name) the remainder when a is divided 

# by b 

# 

# Functions required: 

# 

# Reference: Knuth, Volume 1, Algorithm D 

# 

# 

rdivide : = procCa, b, var, quo, rem) 

local m,n, exa, exb, i, j, u, v, q; 

m : = degree(a, var); 

n : = degree(b, var); 

exa:= expand(a); 

exb : = expand(b); 
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for i from 0 to m do 

uri] : = coeff(exa, var, i); 

ad; 

for i from m+ 1 to n-1 do 

uri] : = 0; 

od; 

for i from 0 to n do 

v[i] : = coeff( exb, var, i); 

ad; 

for i from m-n by -1 to 0 do 

q[i] : = u[n+ i] I v[n]; 

for j from n+i-1 by -1 to i do 

u[j] : = u[j] - q[i] * v[j-i]; 

ad; 

ad; 

o· , 
for i from 0 to n-1 do 

" + uri] * var* *i; 

ad; 

rem: = "; 

o· , 
for i from 0 to m-n do 

" + q[i] * var**i; 

ad; 

quo := "; 

end; 
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# 

# 

#--> esimp: Simplify expressions with exponentials and logarithms 

# 

# Calling sequence: esimp(expr) 

# 

# Purpose: Simplify an expression with exp's and log's (In's) 

# using the standard rules for exp's and log' and 

# the rule exp(Iog( ... )) = ... 

# 

# Input: expr -- expression with exp's and log' 

# 

# Output: function value -- simplified version of expr 

# 

# Functions required: scanmap, expcontract, lncontract, explnsimp 

# 

# 

esimp : = proc(expr) 

scanmap(expr, [expcontract,lncontract, explnsimp]); 

RETURN("); 

end; 

save '/u/csmith/essay/kovode. m'; 

quit; 
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APPENDIX B 

Examples and Tests 

An Example of the Use of Kovacic's Algorithm 

We will consider the differential equation 

Making the transformation 

-f~dx 
y=z'e 2a =z 

the equation becomes 

2 
y" = -y 

x 2 

so that 

There is only one pole of r, C = 0, and it has order 2, so that r = {2}. The order of 

r at 00 is degree(x2) - degree(2) = 2. 

Checking the necessary conditions (section 2.3), we find that all three cases are 

possible so we must try the sub-algorithms for all three cases. 

First, the algorithm for case (1). The pole c = ° is of order 2 so 

Eo = {i + kY1+4b}, k = ±~-, where b = 2 (the coefficient of ~in the partial frac
x 

tion expansion of r at 0), i.e. Eo = {i + iY1 + 4.2, i - i Y1 + 4' 2} = {2, -1}. 

The order of r at 00 is 2 so Ex = {i + kY1+4b}, k = ±i, where b = 2 (the coef-

1 
ficient of in the Laurent series expansion of r at 00), i. e. 

x 2 

E. = {1 + lY1+4·2 l - lY1+4'2} = {2 -1} 
in 2 2 ' 2 2 ,. 

There are four possible tuples to consider; (eo,e x ) = (2,2), (2,-1), (-1,2) and 

e 
(-1, -1). Since d = ex - ~ec and e = ~_c_, the possible values for d and e are 

cef cef x-c 
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eo ex d 6 

2 2 0 
2 
x 

2 -1 -3 
2 
x 

-1 2 3 
-1 
x 

-1 -1 0 
-1 
x 

We can eliminate the second tuple since in that case d is not a non-negative integer. 

We now search for a 

P" + 26P' + (6' + 62 - r)P = O. 

monic polynomial of degree d satisfying 

For the first tuple, d = 0 so P must be 1. We 

check whether this satisfies the required equation. 

So we have the correct P and 6. 

Now 

P' 2 l' 2 
00=6+-=-+-=-

P x 1 x 

and the solution is 

We can transform this back using the inverse transformation 

f~dx 
z=y.e 2a =y 

and get zl = x 2• Then by the method of reduction of order, the second solution is 

-f!dx 
_ f e a _ 2 f 1 _ 2 f 1 _ 2 -113 _ - 1 z2-z1' dx-x' --2dx-x' -dx-x .-----zr ~2) x4 x 3 3x 
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An Example of the Use of the rVlaple Implementation 

The following is a listing of a Maple session using the inlplementation of 

Kovacic's algorithm. 

Script started on Fri Aug 12 21:04:31 1983 

Warning: no access to tty; thus no job control in this shell ... 

% maple < testrun 

1 \ " 1 1 

. -I \ 1 1 11_· 
\ ~LE 1 Version 3.0 --- Nfuy 1983 

<---- ----> 

# read '/u/csmith/essay/kovode. m '; 

words used 1399 

# prettyprint : = 0; 

words used 34125 

prettyprint : = 0 

# eq1 : = diff(y(x),x,x) + y(x) = 0; 

eq1 : = diff(diff(y(x),x),x)+ y(x)= 0 

# osolve(eq1,y(x),x); 

words used 36194 

words used 132824 

[exp( (-1) *I*x), 1/2/1* exp(I*x)] 

# eq2 : = diff(y(x),x,x) + 4*x*diff(y(x),x) + (4*x**2+ 2)*y(x) = 0; 

eq2 : = diff(diff(y(x),x),x)+ 4*x*diff(y(x),x)+ (4*x**2+ 2)*y(x)= 0 

# osolve(eq2,y(x),x); 

words used 134826 

words used 147080 

[exp(( -1) *x* *2), exp( (-1 )*x* *2)*x] 

# eq4 : = x**2*diff(y(x),x,x) - 2*x*diff(y(x),x) + (x**2+ 2)*y(x) = 0; 

eq4 : = x**2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+ (x**2+ 2)*y(x)= 0 



# osolve(eq4,y(x),x); 

words used 149144 

words used 206842 

[x* exp(( -1) *I*x), 1/2 * x/I* exp(I*x)] 

# eq5 : = (x-2)**2*diff(y(x),x,x) - (x-2)*diff(y(x),x) - 3*y(x) = 0; 

eq5 : = (x + (-2))* *2 * diff( diff(y(x), x), x)-(x + (-2)) *diff(y(x), x)-3 *y(x) = 0 

# osolve( eq5, y(x), x); 

words used 208881 

words used 279114 

[ (x + (-2)) * * ( -3 12) * (x * * 2 -4 * x + 4) * * (1/4) , ( -8 * x + 6 * x * * 2 -2 * x * * 3 + 1/4 * x * :;: 4) * 

(x + (-2)) * * (-3/2) * (x* *2-4 *x + 4)* * (1/4)] 

# map(radsimp, "); 

words used 281126 

words used 418931 

[(x+ (-2))**(-1), (-8*x+ 6*x**2-2*x**3+ 1/4*x**4)/(x+ (-2))] 

# quit; 

Final 'words used'= 420608, storage= 1047028 

% 

script done on Fri Aug 12 21: 12: 15 1983 
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Abstract

This paper gives a detailed overview and a number of worked out examples illus-
trating the Kovacic [1] algorithm for solving second order linear differential equation
A(x)y′′+B(x)y′+C(x)y= 0 where A,B,C are rational functions with complex coef-
ficients in the independent variable x. All three cases of the algorithm were im-
plemented in a software package based on an object oriented design and complete
source code listing given in the appendix with usage examples. Implementation used
the Maple computer algebra language.1. This package was then used to analyze the
distribution of Kovacic algorithm cases on 3000 differential equations.
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1 Introduction
Kovacic [1] gave an algorithm for finding a closed form Liouvillian2 solution to any linear
second order differential equation A y′′+By′+Cy= 0 if such a solution exists. Smith [2]
gave an implementation based on a modified version of Kovacic algorithm by Saun-
ders [3].

The current implementation is based on the original paper by Kovacic and uses the
new object oriented features in Maple. The accompanied software package have been
tested on 3000 differential equations with each solution verified using Maple’s odetest.
The test suite is included as a separate module. The Appendix describes how to use the
software.

The Kovacic algorithm finds one (basis) solution of A y′′+By′+Cy= 0. The second ba-
sis solution is found using reduction of order. The general solution is a linear combination
of the two basis solutions found.

The algorithm starts by writing the input ode A y′′+By′+Cy= 0 as

y′′+ay′+by= 0 (1)

Where a = B
A ,b = C

A . The substitution

z = ye
1
2

∫
a dx (2)

is then applied to (1) which transforms it to a second order ode in the new dependent
variable z(x) without the first derivative

z′′ = rz (3)

r in the above is given by

r = 1
4

a2 + 1
2

a′−b (4)

It is ode (3) which is solved by the algorithm and not (1). Equation (3) will be called the
DE from now on.

If a solution z(x) to the DE is found, then the first basis solution to the original ode is
obtained using the transformation (2) in reverse

y= ze−
1
2

∫
a dx

The second solution is found using reduction of order.

2Wikipedia defines Liouvillian function as function of one variable which is the composition of a finite
number of arithmetic operations (+,−,×,÷), exponentials, constants, solutions of algebraic equations (a
generalization of nth roots), and antiderivatives. Kovacic in his original paper says “Such a solution may
involve exponentials, indefinite integrals and solutions of polynomial equations. (As we are considering
functions of a complex variable, we need not explicitly mention trigonometric functions, they can be written
in terms of exponentials. Note that logarithms are indefinite integrals and hence are allowed.”
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These are the four possible cases to consider.

1. DE has solution z = e
∫
ωdx with ω ∈C(x).

2. DE has solution z = e
∫
ωdx with ω polynomial over C(x) of degree 2.

3. Solutions of DE are algebraic over C(x).

4. DE has no Liouvillian solution.

Before describing how the algorithm works, there are necessary (but not sufficient)
conditions that determine which case the DE satisfies. Only those cases that meet the
necessary conditions will be attempted.

The following are the necessary conditions for each case. To check each case, let r = s
t

where gcd(s, t) = 1. The order of r at ∞ (from now on referred to as O (∞)) is defined as
deg(t)−deg(s). The poles of r and the order of each pole need to be determined.

Knowing the order of the poles of r and O (∞) is all what is needed to determine the
necessary conditions for each case. These conditions are the following

1. Case 1. Either no pole exists, or if a pole exists, the order must be either one or
even. If O (∞) is less 3, then it must be even otherwise it can be even or odd.

2. Case 2. r must have at least one pole either of order 2 or odd order greater than 2.
There are no conditions on O (∞).

3. Case 3. r must have a pole either of order 1 or 2. No other order is allowed. O (∞)
must be at least 2.

If the conditions of a case are not satisfied then the case will be attempted as the
algorithm guarantees that there will be no Liouvillian solution. However if the conditions
are satisfied, this does not necessarily mean a solution exists. As an example y′′ = 1/x6 y
satisfies only case one, but running the algorithm on case one shows that there is no
Liouvillian solution.

The following table summarizes the above conditions for each case.

Case Allowed pole order for r Allowed value for O (∞)

1 {0,1,2,4,6,8, · · · } {· · · ,−6,−4,−2,0,2,3,4,5,6, · · · }
2 Need to have at least one pole

of order 2 or pole of odd or-
der greater than 2. Any other
pole order is allowed as long
as the above condition is satis-
fied. The following are examples
of pole orders which are allowed.
{1,2},{1,3},{2},{3},{3,4},{1,2,5}.

no conditions

3 {1,2} {2,3,4,5,6,7, · · · }

Table 1: Necessary conditions for each Kovacic case
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Some observations: In case one, no odd order pole is allowed except for order 1. Case
one is the only case that could have no pole in r, which is the same as a pole of order zero.
Case two and three require at least one pole. For case three, only poles of order 1 or 2 are
allowed. If O (∞) is zero, then only possibility is either case one or two. For case one, if
O (∞) is negative, then it must be even.

The above table also shows that when r has only one pole of order 2 and O (∞) equals
2 or higher then all three cases are possible. Also, if r has two poles one of order 1 and
the other of order 2 and O (∞) equals 2 or higher then all three cases are possible.

These are the only two possibilities where all three cases have the same necessary
conditions.

2 Description of algorithm for each case

2.1 Case one
2.1.1 step 1

Assuming that the necessary conditions for case one are satisfied and z′′ = rz, r = s
t . Let Γ

be the set of all poles of r. For each pole c in this set, three quantities are calculated: Ra-
tional function

[p
r
]

c and two complex numbers α+
c ,α−

c .
How this is done depends on the order of the pole as described below. If the set Γ is

empty (when there are no poles), then this part is skipped.

1. If the pole c has order 1 then [p
r
]

c = 0
α+

c = 1
α−

c = 1

2. If the pole c is of order 2 then [p
r
]

c = 0

α+
c = 1

2
+ 1

2

p
1+4b

α−
c = 1

2
− 1

2

p
1+4b

Where b is the coefficient of 1
(x−c)2 in the partial fraction decomposition of r.

3. If the pole is of order {4,6,8, . . . } (poles must be all even from the conditions of case
one), then the computation is more involved. Let 2v be the order of the pole. Hence
if the pole was order 4, then v = 2. Let

[p
r
]

c be the sum of terms involving 1
(x−c)i

for 2≤ i ≤ v in the Laurent series expansion of
p

r (not r) at c. Therefore[p
r
]

c =
v∑

i=2

ai

(x− c)i

= a2

(x− c)2 + a3

(x− c)3 +·· ·+ av

(x− c)v (1)

3



α+
c ,α−

c are found using

α+
c = 1

2

(
b
av

+v
)

α−
c = 1

2

(
− b

av
+v

)
Where in the above av is the coefficient of the term av

(x−c)v in (1) and b is the coeffi-
cient of the term 1

(x−c)v+1 in r itself (found from the partial fraction decomposition),
minus the coefficient of same term in the Laurent series expansion of

p
r at c.

The coefficients in the Laurent series can be obtained as follows. Given r(x) with
a pole of finite order N at x = c, then its Laurent series expansion at c is given by
the sum of the analytic part and the principal part of the of the Laurent series. The
coefficients bn are contained in the principal part of the series.

r (x)=
∞∑

n=0
an (x− c)n +

N∑
n=1

bn

(x− c)n (2)

=
∞∑

n=0
an (x− c)n + b1

(x− c)
+ b2

(x− c)2 + b3

(x− c)3 +·· ·+ bN

(x− c)N

To obtain b1 (which is the residue of r (x) at c), both sides of the above are multiplied
by (x− c)N which gives

(x− c)N r (x)=
∞∑

n=0
an (x− c)n+N +b1 (x− c)N−1 +b2 (x− c)N−2 +·· ·+bN (3)

Differentiating both sides of (3) (N −1) times w.r.t. x gives

dN−1

dx(N−1)

(
(x− c)N f (x)

)
=

∞∑
n=0

dN−1

dx(N−1)

(
an (x− c)n+N

)
+b1 (N −1)!

Evaluating the above at x = c gives

b1 =
limx→c

dN−1

dx(N−1)

(
(x− c)N r(x)

)
(N −1)!

To find the next coefficient b2, both sides of (3) are differentiated (N −2) times

dN−2

dx(N−2)

(
(x− c)N r (x)

)
=

∞∑
n=0

dN−2

dx(N−2)

(
an (x− c)n+N

)
+b1 (N −1)!(x− c)+b2 (N −2)!

Evaluating the above at x = c gives

b2 =
limx→c

dN−2

dx(N−2)

(
(x− c)N r (x)

)
(N −2)!
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The above is repeated to find b3,b4, · · · ,bN . The general formula for find coefficient
bn is therefore

bn =
limx→c

dN−n

dx(N−n)

(
(x− c)N r (x)

)
(N −n)!

(4)

For the special case of the last term bN the above simplifies to

bN = lim
x→c

(x− c)N r(x) (5)

The above is implemented in the function laurent_coeff() in the Kovacic class.

This completes finding all the quantities
{[p

r
]

c ,α+
c ,α+

c
}

for each pole in the set Γ
for case one.

The next step calculates the following three quantities for O (∞).

1. If O (∞)≤ 0, which must be even, then let −2v =O (∞) and
[p

r
]
∞ is then the sum of

all terms xi for for 0≤ i ≤ v in the Laurent series expansion of
p

r at ∞.[p
r
]
∞ =

v∑
i=0

aixv = a0 +a1x+a2x2 · · ·+avxv (6)

The coefficients ai are found by setting x = 1
y in r and then finding the Laurent

series of
[√

r(y)
]

expanded around y = zero. The process for finding the coefficient
is the same one used as described earlier where now the limit is taken as y ap-
proaches zero from the right. This gives all the terms of (6). This is implemented
in the function laurent_coeff() in the Kovacic class.

The corresponding {α+∞,α−∞} are given by

α+
∞ = 1

2

(
b
av

−v
)

α−
∞ = 1

2

(
− b

av
−v

)
Where av is coefficient of xv in (6) and b is the coefficient of xv−1 in r itself (found
using long division) minus the coefficient of xv−1 in

([p
r
]
∞

)2.

2. If O (∞)= 2 then
[p

r
]
∞ = 0. The corresponding {α+∞,α−∞} are given by

α+
∞ = 1

2
+ 1

2

p
1+4b

α−
∞ = 1

2
− 1

2

p
1+4b

Here b = lcoef(s)
lcoeff(t) where r = s

t . lcoef(s) is the leading coefficient of s and similarly,
lcoef(t) is the leading coefficient of t.

3. If O (∞)> 2 then [p
r
]
∞ = 0

α+
∞ = 0

α−
∞ = 1
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2.1.2 step 2

Using quantities calculated in step 1, the algorithm now searches for a non-negative
integer d using

d =α±
∞− ∑

c∈Γ
α±

c

If non-negative d is found, a candidate ωd is calculated using

ωd = ∑
c∈Γ

(
(±)

[p
r
]

c +
α±

c

x− c

)
+ (±)

[p
r
]
∞

If no non-negative integer d could be found, then no Liouvillian solution exists using
this case. Case two or three are tried next if these are available.

2.1.3 step 3

In this step the algorithm finds polynomial p(x) = a0 + a1x+ a2x2 + ·· · + xd of degree d.
This is done by solving for the coefficients ai from

p′′+2ωp′+ (
ω′+ω2 − r

)
p = 0 (7)

Where ω is from the second step above and r is from z′′ = rz.
For an example, if d = 2, then p (x) = x2 +a1x+a0 is substituted in (3) and a0,a1 are

solved for. If solution exists, then the solution to z′′ = rz will be

z = p(x)e
∫
ωdx

If the degree d = 1 then p (x)= x+a0 and the same process is applied. If the degree d = 0,
then p (x)= 1.

The first basis solution to the original ode is now be found from

y1 = ze−
1
2

∫
a dx

And the second basis solution using reduction of order formula is

y2 = y1

∫
e−

∫
a dx

y2
1

dx

Hence the general solution to the original ode is

y(x)= c1 y1 + c2 y2

This completes the full algorithm for case 1. The part that needs most care is in finding{[p
r
]

c ,α±
c ,

[p
r
]
∞ ,α±∞

}
. Once these are calculated, the rest of the algorithm is much more

direct.
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2.1.4 Algorithm flow chart for case one

z′′ = rz

poles of r Γ

pole c1 of order 1

pole c2 of order 2

of order ≥ 4 (must be
even order). Let v be half
the order value.


[√

r
]
c1

= 0

α+
c1 = 1

α−
c1 = 1



[√
r
]
c2

= 0

α+
c2 =

1

2
+

1

2

√
1 + 4b

α−
c2 =

1

2
− 1

2

√
1 + 4b

Where b is the coefficient
of 1

(x−c2)2
in the partial

fractions expansion of r.

Case One Algorithm

(set of poles)

pole c3



[√
r
]
c3

=

v∑
i=2

ai

(x− c3)
i

α+
c1 =

1

2

(
b

av
+ v

)
α−
c1 =

1

2

(
− b

av
+ v

)

This is the sum of terms of 1
(x−c)i

in the Laurent series expansion of√
r (not r) at the pole c3. The

sum of terms is for 2 ≤ i ≤ v

This a is the coefficient of
1

(x−c3)v
in the above Lau-

rent sum.

b is the coefficient of the term 1
(x−c3)v+1

in r (found from the partial fraction de-
composition of r) minus the coefficient of
same term but in [

√
r]c3 .

Order of r at ∞

Order is > 2


[√

r
]
∞ = 0

α+
∞ = 0

α−
∞ = 1

Order is 2



[√
r
]
∞ = 0

α+
∞ =

1

2
+

1

2

√
1 + 4b

α−
∞ =

1

2
− 1

2

√
1 + 4b

This b is the coefficient of 1
x2 in the Lau-

rent series expansion of r at ∞. If r = s
t

where gcd(s, t) = 1 then b can be more

easily found using b = lcoeff(s)
lcoeff(t) where lcoeff

means the leading coefficient.

Order is −2v ≤ 0
which must be even
since case 1.



[√
r
]
∞ =

v∑
i=0

aix
v

α+
∞ =

1

2

(
b

a
− v

)
α−
∞ =

1

2

(
− b

a
− v

)

This is the sum of terms xi for
0 ≤ i ≤ v in the Laurent series
for

√
r (not r) at ∞

This a is the coefficient of av in
the above Laurent series sum.

This b is the coefficient of xv−1 in r = s
t

(Which is found using long division) minus

the coefficient of same term but in ([
√
r]∞)

2
.

Step 2

Step 1

For each family s = (s(c))c∈Γ∪∞ where s(c) is + or − let

d = αs(∞)
∞ −

∑
c∈Γ

αs(c)
c

If family found which produced d an integer and positive then find

ω =
∑
c∈Γ

(
s(c)[

√
r]c +

α
s(c)
c

x− c

)
+ s(∞)[

√
r]∞

Step 3
Find polynomial p(x) of degree d which satisfies p′′ + 2ωp′ + (ω′ + ω2 − r)p = 0. Then the solution
to z′′ = rz is given by

z = pe
∫
w dx

Figure 1: Case 1 Kovacic algorithm
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2.2 Case two
2.2.1 step 1

Assuming that the necessary conditions for case two are satisfied and z′′ = rz, r = s
t . Let

Γ be the set of all poles of r. For each pole c in this set, Ec is found as follows

1. If the pole c has order 1 then Ec = {4}.

2. If the pole c is of order 2 then Ec = {2,2+ 2
p

1+4b,2− 2
p

1+4b} where b is the
coefficient of 1

(x−c)2 in the partial fraction decomposition of r. In the above set Ec,
only integer values are kept.

3. If the pole c is of order v > 2 then Ec = {v}

The next step is to determine E∞.

1. If O (∞)> 2 then E∞ = {0,2,4}

2. If O (∞) = 2 then E∞ = {2,2+2
p

1+4b,2−2
p

1+4b} where b = lcoef(s)
lcoeff(t) where r = s

t .
lcoef(s) is the leading coefficient of s and similarly lcoef(t) is the leading coefficient
of t. In the above set E∞ only integer values are kept.

3. If O (∞)< 2 then E∞ =O (∞).

2.2.2 step 2

Using quantities calculated in step 1, the algorithm now searches for a non-negative
integer d using

d = 1
2

(
e∞− ∑

c∈Γ
ec

)

Where in the above ec ∈ Ec, e∞ ∈ E∞ found in step 1. If non-negative d is found, then

θ = 1
2

∑
c∈Γ

ec

x− c

If no non-negative integer d could be found, then no Liouvillian solution exists using this
case. Case three is tried next if it is available.

2.2.3 step 3

In this step the algorithm determines a polynomial p(x)= a0+a1x+a2x2+·· ·+xd of degree
d. This is done by solving for the coefficients ai from

p′′′+3θp′′+ (
3θ2 +3θ′−4r

)
p′+ (

θ′′+3θθ′+θ3 −4rθ−2r′
)

p = 0 (1)
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Where θ was found in step 2 and r is from z′′ = rz. If p(x) can be found that satisfies (1)
then

φ= θ+ p′

p
(2)

ω is then solved for from

ω2 −φω+
(
1
2
φ′+ 1

2
φ2 − r

)
= 0 (3)

If solution ω to (3) can be found, then the solution to z′′ = rz is given by

z = e
∫
ωdx

This completes the full algorithm for case two. The general solution to the original ode is
now determined as outlined at the end of case one above.
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2.2.4 Algorithm flow chart for case two

z′′ = rz

poles of r Γ

pole c1 of order 1

pole c2 of order 2

of order v > 2

Ec = {4}

Ec = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

Where b is the coefficient
of 1

(x−c)2 in the partial

fractions expansion of r.

Case Two Algorithm

(set of poles)

pole c3
Ec = {v}

Order of r at ∞

Order is > 2 E∞ = {0, 2, 4}

Order is 2

This b is the coefficient of 1
x2 in

the Laurent series expansion of r
at ∞. If r = s

t where gcd(s, t) =
1 then b can be more easily found

using b = lcoeff(s)
lcoeff(t) where lcoeff

means the leading coefficient.

Order is v < 2 E∞ = {v}

Step 2

Step 1

For each family (ec)c∈Γ∪∞ with ec ∈ Ec let

d =
1

2

(
e∞ −

∑
c∈Γ

ec

)

If family found which produced d an integer and positive then find

θ =
1

2

∑
c∈Γ

ec
x− c

Step 3 Find polynomial p(x) of degree d which satisfies

p′′′ + 3θp′′ +
(
3θ2 + 3θ′ − 4r

)
p′ +

(
θ′′ + 3θθ′ + θ3 − 4rθ − 2r′

)
p = 0

Let

ϕ = θ +
p′

p

The find solution ω for the equation

ω2 − ϕω +

(
1

2
ϕ′ +

1

2
ϕ2 − r

)
= 0

If solution can be found then
z = e

∫
w dx

Is the solution to z′′ = rz

(keep only integer values)

E∞ = {2, 2 + 2
√
1 + 4b, 2− 2

√
1 + 4b}

(keep only integer values)

Figure 2: Case 2 Kovacic algorithm
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2.3 Case three
2.3.1 step 1

Assuming the necessary conditions for case three are satisfied and z′′ = rz, r = s
t . Let Γ be

the set of all poles of r. Recall that case three can have either a pole of order 1 or order 2
only. For each pole c in this set, Ec is found as follows

1. If the pole c has order 1 then Ec = {12}.

2. If the pole c is of order 2 then

Ec =
{

6+ 12k
n

p
1+4b

}
for k =−n

2
· · · n

2
(1)

Where k is incremented by 1 each time, and n is any of {4,6,12} and b is the coef-
ficient of 1

(x−c)2 in the partial fraction decomposition of r. In the above set Ec, only
integer values are kept. For an example, when n = 4 then k = {−2,−1,0,1,2} and
Ec = {6−6

p
1+4b,6−3

p
1+4b,6,6+3

p
1+4b,6+6

p
1+4b} and similarly for n = 6

and n = 12.

The next step determines E∞. This is found using same formula as (1) but b is calculated
differently using b = lcoef(s)

lcoeff(t) where r = s
t . lcoef(s) is the leading coefficient of s and lcoef(t)

is the leading coefficient of t.

2.3.2 step 2

Using quantities calculated in step 1, the algorithm now searches for a non-negative
integer d using

d = n
12

(
e∞− ∑

c∈Γ
ec

)

Where in the above ec ∈ Ec, e∞ ∈ E∞ n is any of {4,6,12} values. If non-negative d is
found, then

θ = n
12

∑
c∈Γ

ec

x− c

The sum above is over all families of {e∞, ec} which generated the non-negative integer
d. Next define

S = ∏
c∈Γ

(x− c)

The product above is over families of {e∞, ec} which generated the non-negative integer
d. If no non-negative integer d is found, then no Liouvillian solution exists.
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2.3.3 step 3

In this step the algorithm determines a polynomial p(x)= a0+a1x+a2x2+·· ·+xd of degree
d. Define set of polynomials {Pn,Pn−1, · · · ,P−1 where

Pn =−p(x)

Pi−1 =−SP ′
i +

(
(n− i)S′−Sθ

)
Pi − (n− i)(i+1)S2rPi+1 i = n · · ·0

The last polynomial P−1(x) is used to solve for the coefficients ai using

P−1(x)= 0 (2)

In Maple this is done using the solve command with the identity option. If it is possible
to find coefficients ai such that (2) is satisfied, then define the equation

n∑
i=0

S iPi(x)
(n− i)!

ωi = 0

ω is solved for from the above equation. If solution ω is found then the solution to z′′ = rz
will be

z = e
∫
ωdx

This completes the full algorithm for case three. The general solution to the original ode
can now be determined as outlined at the end of case one above.
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2.3.4 Algorithm flow chart for case three

z′′ = rz

poles of r Γ

pole c1 of order 1

pole c2 of order 2

Ec = {12}

Ec =
{
6 + 12k

n

√
1 + 4b|k = 0,±1,±2, . . . ,±n

2

}
∩ Z

Where b is the coefficient
of 1

(x−c)2 in the partial

fractions expansion of r.

Case 3 Algorithm

(set of poles)

Order of r at ∞

This b is the coefficient of 1
x2 in

the Laurent series expansion of r
at ∞. If r = s

t where gcd(s, t) =
1 then b can be more easily found

using b = lcoeff(s)
lcoeff(t) where lcoeff

means the leading coefficient.

Step 2

Step 1

For each family (ec)c∈Γ∪∞ with ec ∈ Ec let

d =
1

2

(
e∞ −

∑
c∈Γ

ec

)

If family found which produced d an integer and positive then find

θ =
n

12

∑
c∈Γ

ec
x− c

And
S =

∏
c∈Γ

(x− c)

Step 3
Let polynomial p(x) of degree d with coefficients ai.
The following set of equations are set up in order to determine p(x).

Pn = −p(x)

Pi−1 = −Sp′i + ((n− i)S′ − Sθ)Pi − (n− i)(i+ 1)S2rPi+1 i = n · · · 0

Where n above is either 4,6 or 12. The last polynomial P−1(x) is used to solve for
the coefficients ai using

P−1(x) = 0

The equation for ω is found using

n∑
i=0

SiPi(x)

(n− i)!
ωi = 0

If solution ω can be found then
z = e

∫
w dx

Is the solution to z′′ = rz

(keep only integer values)

(keep only integer values)

Ec =
{
6 + 12k

n

√
1 + 4b|k = 0,±1,±2, . . . ,±n

2

}
∩ Z

Figure 3: Case 3 Kovacic algorithm
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2.4 Statistics and discussion of results obtained using Kovacic
algorithm

This gives summary of results obtained using testsuite of 3000 differential equations, all
of which were selected as linear with rational coefficients as functions of x that can be
solved using this algorithm.

The ode’s used in the testsuite were collected by the author and stored in sql database.
These were collected from a number of standard textbooks and other references such as
“Differential Equations. E. Kamke. 3th edition. Chelsea.” and “Ordinary Differential
Equations And Their Solutions. Murphy, George Moseley. Dover. 2011”.

All the ode’s were successfully solved using the Kovacic algorithm as implemented
here and each solution was verified using Maple odetest.

The following diagram shows the percentage of ode’s solved using each case.

Case one 97.36%

Case three 0.097%

Case two 2.54%

Figure 4: Kovacic cases distributions

Case 3 was required for solving only 3 odes. It used n = 4 for all 3 ode’s. n = 6 and
n = 12 were not reached or required to try. Recall that n for case 3 is the degree of the
polynomial in ω used to solve for in order to find the z solution from z = e

∫
ωdx.

This result shows that case 1 and 2 combined is all what is needed to solve 99.9%
of ode’s used in practice. Larger collection of ode’s than the 3000 used could produce
different results, but the overall trend is that case 3 is rarely needed in practice and
within case 3, n = 6 and n = 12 are even less likely to be required.

When forcing the algorithm to use case 3 and only use n = 12, this resulted in a very
long computation time on some ode’s. For an example, using ode y′′+ xy′+ y = 0 which
satisfies all three cases, and asking the solver to use case 3 and n = 12, it was found that
it required p(x) of degree d = 24 in order to find ω of degree 12 that can be solved. The
total number of trials in step 3 of case three to find such solution was found to be 2367.
This took over 30 minutes to complete.
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In comparison, the same ode was solved using case one in less than one second giving
the same solution on the same computer.

The testsuite also calculates the distribution of cases which has its necessary condi-
tions satisfied for each ode. Recall that having the necessary conditions for a case sat-
isfied does not mean a solution would be found using that case. The following bar chart
shows the percentages of the 3000 ode’s that satisfied the necessary conditions each case.
This chart shows that many ode’s satisfy the conditions for more than one case at the
same time.

case 1 case 2 case 3
0

20

40

60

80

100

98.6%

45.88%

30.09%

Figure 5: Percentage of ode’s that satisfy each Kovacic case necessary conditions
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3 Worked example for each case

3.1 case one
3.1.1 Example 1

Given the ode

(2x+1)y′′−2y′− (2x+3)y= 0

Converting it y′′+ay′+by= 0 gives

y′′− 2
2x+1

y′− 2x+3
2x+1

y= 0

Where a =− 2
2x+1 ,b =−2x+3

2x+1 . Applying the transformation z = ye
1
2

∫
a dx gives z′′ = rz where

r = 1
4 a2 + 1

2 a′−b. This results in

r = s
t

= 4x2 +8x+6
(2x+1)2 = s

t

There is one pole at x =−1
2 , hence Γ= {−1

2 }. The order is 2 and O (∞)= deg(t)−deg(s)= 0.
Table 1 shows that the necessary conditions for case one and two are both satisfied. This
is solved first using case one. Since the order of the pole is 2, then[p

r
]

c = 0 (1)

α+
c = 1

2
+ 1

2

p
1+4b

α−
c = 1

2
− 1

2

p
1+4b

Where b is the coefficient of 1
(x−c)2 = 1

(x+ 1
2 )2

in the partial fraction decomposition of r which

is r = 1+ 3
4

1
(x+ 1

2 )2
+ 1

x+ 1
2
. Therefore b = 3

4 and the above becomes[p
r
]

c = 0

α+
c = 1

2
+ 1

2

√
1+4

(
3
4

)
= 3

2

α−
c = 1

2
− 1

2

√
1+4

(
3
4

)
=−1

2

Since O (∞) = 0 then v = 0 and
[p

r
]
∞ is the sum of all terms xi for 0 ≤ i ≤ v in the

Laurent series expansion of
p

r at ∞ which is found as follows. Since
p

r =
√

4x2+8x+6
(2x+1)2

then setting x = 1
y gives

√
r(y) =

√√√√4
(

1
y

)2+8 1
y+6(

2 1
y+1

)2 and since v = 0 then the constant term is

limy→0
√

r(y)= 1. Therefore
[p

r(x)
]
∞ = 1. Hence a = 1.

16



b is the coefficient of xv−1 = 1
x in r minus the coefficient of 1

x in
([p

r
]
∞

)2 = 1 which
is zero since there is no term 1

x . Because v = 0, long division is used is used find the
coefficient of 1

x in r.

r = s
t

= 4x2 +8x+6
4x2 +4x+1

=Q+ R
t

= 1+ 4x+5
4x2 +4x+1

The coefficient of 1
x in r is the leading coefficient in R minus the leading coefficient in t

which gives 4
4 = 1. Therefore b = 1−0= 1. This results in[p

r
]
∞ = 1

α+
∞ = 1

2

(
b
av

−v
)

= 1
2

(
1
1
−0

)
= 1

2

α−
∞ = 1

2

(
− b

av
−v

)
= 1

2

(
−1

1
−0

)
=−1

2

The above completes step 1 for case one. Step 2 searches for a non-negative integer d
using

d =α±
∞− ∑

c∈Γ
α±

c (2)

Where the above is carried over all possible combinations resulting in the following 4
possibilities (in this example, there is only one pole, hence the sum contains only one
term) and the number of possible combinations is therefore 22 = 4

d =α+
∞−α+

c = 1
2
−

(
3
2

)
=−1

d =α+
∞−α−

c = 1
2
−

(
−1

2

)
= 1

d =α−
∞−α+

c =−1
2
−

(
3
2

)
=−2

d =α−
∞−α−

c =−1
2
−

(
−1

2

)
= 0

The above shows there are two possible d values to use. d = 1 or d = 0. Each is tried until
one produces a solution or all fail to do so. For each valid d found an ω is found using

ω=∑
c

(
(±)

[p
r
]

c +
α±

c

x− c

)
+ (±)

[p
r
]
∞

17



But
[p

r
]

c = 0 in this example, hence the above simplifies to

ω=∑
c

(
α±

c

x− c

)
+ (±)

[p
r
]
∞

Since there is one pole, then the candidate ω to try are the following

ω= α+
c

x− c
+ (+1)

[p
r
]
∞

ω= α+
c

x− c
+ (−1)

[p
r
]
∞

ω= α−
c

x− c
+ (+1)

[p
r
]
∞

ω= α−
c

x− c
+ (−1)

[p
r
]
∞

Substituting the known values found in step 1 into the above gives

ω=
3
2

x+ 1
2

+ (+1)(1)= 6+2x
2x+3

ω=
3
2

x+ 1
2

+ (−1)(1)=− 2x
2x+3

ω= −1
2

x+ 1
2

+ (+1)(1)= 2x
2x+1

ω= −1
2

x+ 1
2

+ (−1)(1)=−2(1+ x)
2x+1

So there are two possible d values to try, and for each, there are 4 possible w(x), which
gives 8 possible tries. This completes step 2. For each trial, step 3 is now invoked.

Starting with d = 0 and using ω = 2x
2x+1 , and since the degree is d = 0 then p(x) = 1.

This polynomial is now checked to see if it satisfies

p′′+2ωp′+ (ω′+ω2 − r)p = 0 (3)

(ω′+ω2 − r)p = 0

d
dx

(
2x

2x+1

)
+

(
2x

2x+1

)2
− 4x2 +8x+6

(2x+1)2 = 0

− 4
2x+1

= 0

Since the left side is not identically zero, then this candidate ω has failed. Carrying out
this process for the other 3 possible ω values shows that non are satisfied as well. d = 1
is now tried. This implies the polynomial is p(x) = a0 + x. The coefficient a0 needs to be
determined such that p′′+2ωp′+ (ω′+ω2 − r)p = 0 is satisfied. Starting with ω = 2x

2x+1
gives

p′′+2ωp′+ (ω′+ω2 − r)p = 0

2ωp′+ (ω′+ω2 − r)p = 0

18



Substituting p = a0+x and ω= 2x
2x+1 and r = 4x2+8x+6

(2x+1)2 into the above and simplifying gives

− 4a0
2x+1 = 0. This implies that (3) can be satisfied for a0 = 0. Therefore the polynomial of

degree one is found and given by

p(x)= x

Therefore the solution to z′′ = rz is

z = pe
∫
ωdx

= xe
∫ 2x

2x+1 dx

= xex− ln(2x+1)
2

= xex
p

2x+1

Given this solution for z(x), the first basis solution of the original ode in y is found using
the inverse of the original transformation used to generate the z ode which is z = ye

1
2

∫
a dx,

therefore

y1 = ze−
1
2

∫
a dx

= xex
p

2x+1
e−

1
2

∫ − 2
2x+1 dx

= xex
p

2x+1
e

ln(2x+1
2

= xex
p

2x+1

p
2x+1

= xex

The second basis solution is found using reduction of order

y2 = y1

∫
e
∫ −a dx dx

y2
1

dx

= xex
∫

e
∫ − −2

2x+1 dx dx
(xex)2 dx

= xex
∫

eln(2x+1)

(xex)2 dx

=−e−x

Therefore the general solution to the original ode (2x+1)y′′−2y′− (2x+3)y= 0 is

y(x)= c1 y1 + x2 y2

y(x)= c1xex − c2e−x

This completes the solution.
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3.1.2 Example 2

Given the ode

x2 (
x2 −2x+1

)
y′′− x(3+ x)y′+ (4+ x)y= 0

Converting it y′′+ay′+by= 0 gives

y′′− x(3+ x)
x2

(
x2 −2x+1

) y′+ 4+ x
x2

(
x2 −2x+1

) y= 0

Where a = − x(3+x)
x2(x2−2x+1) ,b = 4+x

x2(x2−2x+1) . Applying the transformation z = ye
1
2

∫
a dx gives

z′′ = rz where r = 1
4 a2 + 1

2 a′−b. This results in

r = s
t

= 7x2 +10x−1
4x2 (x−1)4

There is one pole at x = 0 of order 2 and pole at x = 1 of order 4, hence Γ = {0,1}, and
O (∞)= deg(t)−deg(s)= 6−2= 4. Table 1 shows that the necessary conditions for case one
and two are both satisfied. For the pole at 0 and since its order is 2 then[p

r
]
0 = 0 (1)

α+
0 = 1

2
+ 1

2

p
1+4b

α−
0 = 1

2
− 1

2

p
1+4b

Where b is the coefficient of 1
(x−0)2 = 1

x2 in the partial fraction decomposition of r which is

r = 4
(x−1)4 − 2

(x−1)3 − 1
4x2 − 3

2(x−1)
+ 3

2x
+ 7

4(x−1)2 (2)

The above shows that b =−1
4 . Equation (1) becomes becomes[p

r
]
0 = 0

α+
0 = 1

2
+ 1

2

√
1−4

1
4
= 1

2

α−
0 = 1

2
− 1

2

√
1−4

1
4
= 1

2
For the second pole at x = 1, since its order is 4, then 2v = 4 or v = 2. Therefore the
corresponding

[p
r
]
1 is the sum of all terms involving 1

(x−1)i for 2≤ i ≤ v or 2≤ i ≤ 2 in the
Laurent series expansion of

p
r (not r) around this pole. This results in

[
p

r]1 =
2∑

i=2

ai

(x−1)i

= a2

(x−1)2 (3)
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a2 is found using

a2 = lim
x→1

(x−1)2pr

= lim
x→1

(x−1)2

√
7x2 +10x−1
4x2 (x−1)4

= 2

Therefore

[
p

r]1 = 2
(x−1)2

α+
1 = 1

2

(
b
a
+v

)
= 1

2

(
b
2
+2

)
α−

1 = 1
2

(
−b

a
+v

)
= 1

2

(
−b

2
+2

)
(4)

What remains is to determine b. This is the coefficient of 1
(x−c)v+1 = 1

(x−1)3 in the partial
fraction decomposition of r which from (2) is −2 minus the coefficient of same term in
[
p

r]1 which from (3) is zero. Therefore b =−2−0=−2. (4) now becomes

[
p

r]1 = 2
(x−1)2

α+
1 = 1

2

(
b
a
+v

)
= 1

2

(−2
2

+2
)

= 1
2

α−
1 = 1

2

(
−b

a
+v

)
= 1

2

(
−−2

2
+2

)
= 3

2
(5)

The above completes finding [
p

r]c,α+
c ,α+

c for all poles in the set Γ.
Since the order of r at ∞ is 4> 2 then

[
p

r]∞ = 0
α+
∞ = 0

α−
∞ = 1

This completes the first step of the solution. The following tables summarizes the findings
so far

pole c location pole order [
p

r]c α+
c α−

c

0 2 0 1
2

1
2

1 4 2
(x−1)2

1
2

3
2

Table 2: First step, case one. Γ set information

Order of r at ∞ [
p

r]∞ α+∞ α−∞
4 0 0 1

Table 3: First step, case one. O (∞) information
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This completes step 1 for case one. Step 2 searches for non-negative integer d using

d =α±
∞− ∑

c∈Γ
α±

c

Where the above is carried over all possible combinations resulting in the following 8
possibilities (in this example, there are two poles, hence the sum contains two term) and
the number of possible combinations is therefore 23 = 8

d =α+
∞− (

α+
0 +α+

1
)= 0−

(
1
2
+ 1

2

)
=−1

d =α+
∞− (

α+
0 +α−

1
)= 0−

(
1
2
+ 3

2

)
=−2

d =α+
∞− (

α−
0 +α+

1
)= 0−

(
1
2
+ 1

2

)
=−1

d =α+
∞− (

α−
0 +α−

1
)= 0−

(
1
2
+ 3

2

)
=−2

d =α−
∞− (

α+
0 +α+

1
)= 1−

(
1
2
+ 1

2

)
= 0

d =α−
∞− (

α+
0 +α−

1
)= 1−

(
1
2
+ 3

2

)
=−1

d =α−
∞− (

α−
0 +α+

1
)= 1−

(
1
2
+ 1

2

)
= 0

d =α−
∞− (

α−
0 +α−

1
)= 1−

(
1
2
+ 3

2

)
=−1

There is only one possible d = 0 values to use. Candidate ω are now found using

ω=∑
c

(
(±)

[p
r
]

c +
α±

c

x− c

)
+ (±)

[p
r
]
∞
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Which gives

ω1 =
(
(+)

[p
r
]
0 +

α+
0

x

)
+

(
(+)

[p
r
]
1 +

α+
1

x−1

)
+ (+)

[p
r
]
∞

ω2 =
(
(+)

[p
r
]
0 +

α+
0

x

)
+

(
(−)

[p
r
]
1 +

α−
1

x−1

)
+ (+)

[p
r
]
∞

ω3 =
(
(−)

[p
r
]
0 +

α−
0

x

)
+

(
(+)

[p
r
]
1 +

α+
1

x−1

)
+ (+)

[p
r
]
∞

ω4 =
(
(−)

[p
r
]
0 +

α−
0

x

)
+

(
(−)

[p
r
]
1 +

α−
1

x−1

)
+ (+)

[p
r
]
∞

ω5 =
(
(+)

[p
r
]
0 +

α+
0

x

)
+

(
(+)

[p
r
]
1 +

α+
1

x−1

)
+ (−)

[p
r
]
∞

ω6 =
(
(+)

[p
r
]
0 +

α+
0

x

)
+

(
(−)

[p
r
]
1 +

α−
1

x−1

)
+ (−)

[p
r
]
∞

ω7 =
(
(−)

[p
r
]
0 +

α−
0

x

)
+

(
(+)

[p
r
]
1 +

α+
1

x−1

)
+ (−)

[p
r
]
∞

ω8 =
(
(−)

[p
r
]
0 +

α−
0

x

)
+

(
(−)

[p
r
]
1 +

α−
1

x−1

)
+ (−)

[p
r
]
∞

Substituting values found in step 1 into the above gives

ω1 =
( 1

2

x

)
+

(
(+)

2
(x−1)2 +

1
2

x−1

)
= 2x2 + x+1

2x (x−1)2

ω2 =
( 1

2

x

)
+

(
(−)

2
(x−1)2 +

3
2

x−1

)
= 4x2 −9x+1

2x (x−1)2

ω3 =
( 1

2

x

)
+

(
(+)

2
(x−1)2 +

1
2

x−1

)
= 2x2 + x+1

2x (x−1)2

ω4 =
( 1

2

x

)
+

(
(−)

2
(x−1)2 +

3
2

x−1

)
= 4x2 −9x+1

2x (x−1)2

ω5 =
( 1

2

x

)
+

(
(+)

2
(x−1)2 +

1
2

x−1

)
= 2x2 + x+1

2x (x−1)2

ω6 =
( 1

2

x

)
+

(
(−)

2
(x−1)2 +

3
2

x−1

)
= 4x2 −9x+1

2x (x−1)2

ω7 =
( 1

2

x

)
+

(
(+)

2
(x−1)2 +

1
2

x−1

)
= 2x2 + x+1

2x (x−1)2

ω8 =
( 1

2

x

)
+

(
(−)

2
(x−1)2 +

3
2

x−1

)
= 4x2 −9x+1

2x (x−1)2

Which shows there are only two different ω to try, these are ω1,ω2. This complete step 2.
For each trial, step 3 is now invoked. Starting with d = 0 and ω=ω1 = 2x2+x+1

2x(x−1)2
. Since the
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degree d = 0 then p(x)= 1. This polynomial needs to satisfy

p′′+2ωp′+ (ω′+ω2 − r)p = 0 (6)

(ω′+ω2 − r)p = 0

d
dx

(
2x2 + x+1
2x (x−1)2

)
+

(
2x2 + x+1
2x (x−1)2

)2

− 7x2 +10x−1
4x2 (x−1)4 = 0

0= 0

Because the equation is satisfied, the polynomial p(x) = 1 can be used. The solution to
z′′ = rz is now found from

z = pe
∫
ωdx

= e
∫ 2x2+x+1

2x(x−1)2
dx

= e
ln(x−1)

2 − 2
x−1+ ln(x)

2

=
p

x−1
p

xe−
2

x−1

Given this solution for z(x), the first basis solution of the original ode in y is found using
the inverse of the original transformation used to generate the z ode which is z = ye

1
2

∫
a dx,

therefore

y1 = ze−
1
2

∫
a dx

=
p

x−1
p

xe−
2

x−1 e
− 1

2
∫ − x(3+x)

x2(x2−2x+1) dx

Which simplifies to

y1 = x2

x−1
e−

4
x−1

The second solution y2 to the original ode is found using reduction of order as was done
in the first example.

3.1.3 Example 3

This ode is a standard second order representing the oscillating harmonics ode with con-
stant coefficients and does not require Kovacic algorithm to solve it as it can be readily
solved using standard method by finding the roots of the characteristic equation. It is
included here in order to illustrate the Kovacic algorithm.

y′′+ y′+ y= 0
A y′′+By′+Cy= 0

Converting it to z′′ = rz as shown before gives

z′′ = s
t

z

= −3
4

z
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Hence r = −3
4 . There are no poles therefore Γ= {}, and O (∞) = deg(t)−deg(s) = 0. Table 1

shows that the necessary conditions for case one are only satisfied. Since the set Γ is
empty, then only the quantities related to O (∞) need to be calculated. The order of r at
∞ is Or(∞) = 0 therefore v = 0. r has no x in it, hence the Laurent series of

p
r at ∞ is

itself

p
r = i

p
3

2

Therefore

a = i
p

3
2

And since r is constant then b = 0. Hence

[
p

r]∞ = i
p

3
2

α+
∞ = 1

2

(
b
a
−v

)
= 1

2

 0
i
p

3
2

−0

 = 0

α−
∞ = 1

2

(
−b

a
−v

)
= 1

2

− 0
i
p

3
2

−0

= 0

This completes step 1 for case one. Step 2 searches for non-negative integer d using

d =α±
∞− ∑

c∈Γ
α±

c

Since there are no poles then

d =α−
∞

= 0

Since d is non-negative integer integer it can be used to find ω using

ω= ∑
c∈Γ

(
s(c)[

p
r]c + αs(c)

c

x− c

)
+ s(∞)[

p
r]∞

The above reduces to

ω= (−)[
p

r]∞

= 0+ (−)

(
i
p

3
2

)

=− i
p

3
2
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Now that ω is determined, the next step is find a corresponding minimal polynomial p(x)
of degree d = 0 to solve the ode. The polynomial p(x) needs to satisfy the equation

p′′+2ωp′+ (
ω′+ω2 − r

)
p = 0 (1)

Since d = 0 then let p(x)= 1. Substituting this in the above gives

(0)+2

(
− i

p
3

2

)
(0)+

(
(0)+

(
− i

p
3

2

)2

−
(
−3

4

))
= 0

0= 0

The equation is satisfied. Therefore the first solution to the ode z′′ = rz is

z(x)= pe
∫
ωdx

= e
∫ − i

p
3

2 dx

= e−
i
p

3 x
2

The first solution to the original ode in y is now found from (using A = 1,B = 1)

y1 = ze
∫ − 1

2
B
A dx

= ze−
∫ 1

2 dx

= ze−
x
2

= e−
i
p

3 x
2

(
e−

x
2

)
= e−

x(1+I
p

3)
2

The second solution y2 to the original ode is found using reduction of order

y2 = y1

∫
e
∫ − B

A dx

y2
1

dx

= y1

∫
e−

∫
dx

(y1)2 dx

= y1

∫
e−x

(y1)2 dx

=
(
e−

x(1+I
p

3)
2

)(
− i

p
3ei

p
3 x

3

)

=− I
3

e
x(I

p
3−1)
2

p
3

Therefore the general solution is

y= c1 y1 + c2 y2

= c1

(
e−

x(1+i
p

3)
2

)
+ c2

− ie
x(i

p
3−1)
2

p
3

3
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Using Euler’s formula the above can be simplified to the standard looking solution

y(x)= e−
x
2

(
C1 sin

(p
3 x
2

)
+C2 cos

(p
3 x
2

))

3.2 case two
3.2.1 Example 1

Given the ode

2x2 y′′− xy′+ (1+ x)y= 0

Converting it y′′+ay′+by= 0 gives

y′′− 1
2x

y′+ 1+ x
2x2 y= 0

Where a = − 1
2x ,b = 1+x

2x2 . Applying the transformation z = ye
1
2

∫
a dx gives z′′ = rz and r =

1
4 a2 + 1

2 a′−b. Therefore

r = s
t

= −3−8x
16x2

There is one pole at x = 0 of order 2 and O (∞) = deg(t)−deg(s) = 2−1 = 1. Table 1 shows
that necessary conditions for only case two are satisfied. Since pole is order 2, the set
E0 = {2,2+2

p
1+4b,2−2

p
1+4b} where b is the coefficient of 1

(x)2 in the partial fraction
decomposition of r given by

r =− 3
16x2 − 1

2x

Therefore b =− 3
16 . Hence

E0 =
2,2+2

√
1−4

3
16

,2−2

√
1−4

3
16


= {2,3,1}

Since O (∞) = 1 < 2 then E∞ = O (∞) = {1}. This completes step 1 of case two. Step 2 is
used to determine a non-negative integer d. Using e∞ = 1 gives

d = 1
2

(
e∞− ∑

c∈Γ
ec

)
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There is only one pole, so the sum contains only one term. There are 3 possible combina-
tions to try, using either e0 = 2, e0 = 3 or e0 = 1. Therefore

d = 1
2

(e∞− (e0))= 1
2

(1−2)=−1
2

= 1
2

(e∞− (e0))= 1
2

(1−3)=−1

= 1
2

(e∞− (e0))= 1
2

(1−1)= 0

The above shows that only the family {e∞ = 1, e0 = 1} generated non-negative d = 0. θ

is now found. In the following sum, only ec retained from the above are used. In this
example, this will be e0 = 1 since it is the member of E0 which generated non-negative
integer. If there were more than one e i found, then each would be tried at time.

θ = 1
2

∑
c∈Γ

ec

x− c

= 1
2

( e0

x−0

)
= 1

2x

This completes step 2. Step 3 finds polynomial p(x)= a0+a1x+a2x2+·· ·+xd of degree d.
Since d = 0 then p(x)= 1. This polynomial has to satisfy the following

p′′′+3θp′′ (3θ2 +3θ′−4r
)

p′+ (
θ′′+3θθ′+θ3 −4rθ−2r′

)
p = 0

Substituting p = 1,θ = 1
2x into the above and simplifying gives

0= 0

Since p(x)= 1 is verified, then

φ= θ+ p′

p

= 1
2x

Next, ω solution is found using

ω2 −φω+
(
1
2
φ′+ 1

2
φ2 − r

)
= 0

Substituting the values for φ and r into the above gives

w2 − w
2x

+ 1+8x
16x2 = 0

Solving for ω gives two roots, either one can be used. Using

ω= 1+2
p

2
p−x

4x
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Therefore the first solution to the ode z′′ = rz is

z(x)= e
∫
ωdx

= e
∫ 1+2

p
2
p−x

4x dx

= x
1
4 e

p
2
p−x

The first solution to the original ode in y is now found from

y1 = ze
∫ − 1

2 a dx

= ze−
∫ 1

2
−x
2x2 dx

= ze
ln(x)

4

=
(
x

1
4 e

p
2
p−x

)
x

1
4

=p
xe

p
2
p−x

The second solution y2 to the original ode can be found using reduction of order.

3.2.2 Example 2

This is an ode in which the necessary conditions for all three cases are satisfied, but
solved using case two to illustrate the algorithm.

(1− x)x2 y′′+ (5x−4)xy′+ (6−9x)y= 0

Converting it y′′+ay′+by= 0 gives

y′′+ 5x−4
(1− x)x

y′+ 6−9x
(1− x)x2 y= 0

Where a = 5x−4
(1−x)x ,b = 6−9x

(1−x)x2 . Applying the transformation z = ye
1
2

∫
a dx gives z′′ = rz where

r = 1
4 a2 + 1

2 a′−b. Therefore

r = s
t

= 4− x
4x(x−1)2

There is a pole at x = 0 of order 1 and a pole at x = 1 of order 2. Since there is no odd
order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case
one are satisfied. Since there is a pole of order 2 then the necessary conditions for case
two are also satisfied. Since pole order is not larger than 2 and the order at ∞ is 2 then
the necessary conditions for case three are also satisfied. Any one of the three cases
algorithm could be used to solve this, but here case two will be used for illustration.

The pole of order 1 at x = 0 gives E0 = {4} and the pole of order 2 at x = 1 gives
E1 = {2,2+2

p
1+4b,2−2

p
1+4b} where b is the coefficient of 1

(x−1)2 in the partial fraction
decomposition of r. The partial fractions decomposition of r is

r = 3
4(x−1)2 − 1

x−1
+ 1

x
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The above shows that b = 3
4 , therefore E1 = {−2,2,6}.

O (∞) = 2 therefore E∞ = {2,2+2
p

1+4b,2−2
p

1+4b} where b = lcoef(s)
lcoeff(t) where r = s

t .
This gives b =−1

4 , hence

E∞ = {2,2+2
p

1+4b,2−2
p

1+4b}

=
{

2,2+2
√

1−4
1
4

,2−2
√

1−4− 1
4

}
= {2,2,2}
= {2}

The following table summarizes step 1 results.

pole c location pole order Ec

0 1 {4}

1 2 {−2,2,6}

Table 4: First step, case two. Ec set information

Order of r at ∞ E∞
2 {2}

Table 5: First step, case two. O (∞) information

The above completes step 1 for case two. Step 2 searches for a non-negative integer d
using

d = 1
2

(
e∞− ∑

c∈Γ
ec

)

Where in the above ec ∈ Ec, e∞ ∈ E∞ were found in the first step. The following are the
possible combinations to use

d = 1
2

(2− (4−2))= 0

= 1
2

(2− (4+2))=−2

= 1
2

(2− (4+6))=−4

The above shows that Ec = {e0 = 4, e1 = −2} are the family of values to use and all other
values are discarded.
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The following rational function θ is determined using

θ = 1
2

∑
c∈Γ

ec

x− c

= 1
2

(
4

(x− (0))
+ −2

(x− (1))

)
= 2

x
− 1

x−1

The algorithm now searches for a monic polynomial p(x) of degree d = 0 such that

p′′′+3θp′′+ (
3θ2 +3θ′−4r

)
p′+ (

θ′′+3θθ′+θ3 −4rθ−2r′
)

p = 0

Since d = 0, then p(x) = 1. Substituting the values found in step 2 in the above equation
and simplifying gives

0= 0

Hence p(x)= 1 can be used. Let

φ= θ+ p′

p

= 2
x
− 1

x−1

And ω be the solution of

ω2 −φω+
(
1
2
φ′+ 1

2
φ2 − r

)
= 0

Substituting the values for φ and r into the above equation gives

w2 −
(
2
x
− 1

x−1

)
w+ (x−2)2

4(x−1)2 x2
= 0

Solving for ω gives two roots, either one can be used. Using

ω= x−2
2(x−1) x

Therefore to z′′ = rz is

z = e
∫
ωdx

= e
∫ x−2

2(x−1)x dx

= xp
x−1
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The first solution to the original ode in y is now found from

y1 = ze−
∫ 1

2 a dx

= ze−
∫ 1

2
5x2−4x
−x3+x2 dx

= ze2ln(x)+ ln(x−1)
2

= z
(
x2px−1

)
= xp

x−1

(
x2px−1

)
= x3

The second solution y2 to the original ode is found using reduction of order.

3.3 case three
3.3.1 Example 1

This is the same ode used in second example above for case two as the necessary condi-
tions for case three are also satisfied.

(1− x)x2 y′′+ (5x−4)xy′+ (6−9x)y= 0

As shown earlier, this ode is transformed to z′′ = rz where

r = s
t

= 4− x
4x(x−1)2

There is a pole at x = 0 of order 1 and a pole at x = 1 of order 2. For the pole of order 1 at
x = 0, E0 = {12}. For the pole of order 2 at x = 1

E1 =
{

6+ 12k
n

p
1+4b

}
for k =−n

2
· · · n

2
(1)

Where k is incremented by 1 each time, and n is any of {4,6,12} and b is the coefficient of
1

(x−1)2 in the partial fraction decomposition of r which is

r = 3
4(x−1)2 − 1

x−1
+ 1

x

The above shows that b = 3
4 . Starting with n = 4 (if this n produces no solution then

n = 6,12 will be tried also). Equation (1) now becomes

E1 =
{

6+ 12k
4

√
1+4

(
3
4

)}
for k =−2 · · ·2
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Which simplifies to

E1 = {6+6k} for k =−2 · · ·2
= {−6,0,6,12,18}

E∞ is found using (1) but with different b. In this case b is given by b = lcoef(s)
lcoeff(t) where

r = s
t . lcoef(s) is the leading coefficient of s and lcoef(t) is the leading coefficient of t. Since

r = −x+4
4x3−8x2+4x then b =−1

4 . Equation (1) becomes

E∞ =
{

6+ 12k
4

√
1−4

(
1
4

)}
for k =−2 · · ·2

This simplifies to

E∞ = {6}

The following table summarizes step 1 results using n = 4.

pole c location pole order Ec

0 1 {12}

1 2 {−6,0,6,12,18}

Table 6: First step, case three using n = 4. Ec set information

Order of r at ∞ E∞
2 {6}

Table 7: First step, case three using n = 4. O (∞) information

The next step is to determine a non negative integer d using

d = n
12

(
e∞− ∑

c∈Γ
ec

)

Where in the above ec is a distinct element from each corresponding Ec. This means all
possible tuples {ec1 , ec2 , . . . , ecn} are tried in the sum above, where eci is one element of
each Ec found earlier.

33



This results in the following values for d using n = 4 and e∞ = 6.

d = 1
3

(6− (12−6)) = 0

= 1
3

(6− (12+0)) =−2

= 1
3

(6− (12+6)) =−4

= 1
3

(6− (12+12))=−6

= 1
3

(6− (12+18))=−8

Therefore only the first case using e0 = 12, e1 =−6 generated non-negative integer d. The
following rational function is now formed

θ = n
12

∑
c∈Γ

ec

x− c

= 4
12

(
12

(x− (0))
+ −6

(x− (1))

)
= 2x−4

(x−1) x

And

S = ∏
c∈Γ

(x− c)

= (x−0)(x−1)
= x(x−1)

This completes the step 2 of the algorithm.
Since the degree d = 0, then p(x)= 1. Now Pi(x) polynomials are generated using

Pn =−p(x)

Pi−1 =−Sp′
i + ((n− i)S′−Sθ)Pi − (n−1)(i+1)S2rPi+1 i = n,n−1, . . . ,0

These generate the following set

P4 =−1
P3 = 2x−4

P2 =−3(x−2)2

P1 = 3(x−2)3

P0 =−3(x−2)4

2
P−1 = 0
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There is nothing to solve for from the last equation P−1 = 0 as p(x) = 1 is already known
because the degree d was zero and hence there are no coefficients ai to solve for.

Next ω is determined as the solution to the following equation using n = 4.

n∑
i=0

S i Pi

(n− i)!
ωi = 0

P0

4!
+ SP1

3!
ω+ S2P2

2!
ω2 + S3P3

1!
ω3 ++S4P4

0!
ω4 = 0

− 1
16

(
2ωx2 −2xω− x+2

)4 = 0

Solving the above and using any one of the roots results in

ω= 1
2x (x−1)

(x−2)

The above ω is used to find a solution to z′′ = rz from

z = e
∫
ωdx

= e
∫ x−2

2x(x−1) dx

= xp
x−1

Therefore one solution to the original ode in y is

y= ze
∫ − 1

2 a dx

= ze−
∫ 1

2
5x2−4x
−x3+x2 dx

= ze2ln(x)+ ln(x−1)
2

=
(

xp
x−1

)(
x2px−1

)
The second solution to the original ode is found using reduction of order. This completes
the solution using case 3 for degree n = 4 of ω.

3.3.2 Example 2

The ode is

x2(1+ x)y′′+ x(2x+1)y′′− (4+6x)y= 0

Converting it y′′+ay′+by= 0 gives

y′′+ 2x+1
x(1+ x)

y′− 4+6x
x2(1+ x)

y= 0
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Where a = 2x+1
x(1+x) ,b =− 4+6x

x2(1+x) . Applying the transformation z = ye
1
2

∫
a dx results in z′′ = rz

where r = 1
4 a2 + 1

2 a′−b where

r = s
t

= 24x2 +40x+15
4(x(x+1))2

There is a pole at x = 0 of order 2 and a pole at x = −1 of order 2. Since there is no odd
order pole larger than 2 and the order at ∞ is 2 then the necessary conditions for case
one are satisfied. Since there is a pole of order 2 then necessary conditions for case two
are also satisfied. Since pole order is not larger than 2 and the order at ∞ is 2 then the
necessary conditions for case three are also satisfied. This is now solved as case three for
illustration.

Starting with n = 4, and for the pole of order 2 at x =−1

E−1 =
{

6+ 12k
n

p
1+4b

}
for k =−n

2
· · · n

2

This simplifies to

E−1 =
{
6+3k

p
1+4b

}
for k =−2 · · ·2 (1)

b is the coefficient of 1
(1+x)2

in the partial fractions decomposition of r given by

r =− 1
4(1+ x)2 + 15

4x2 − 5
2(1+ x)

+ 5
2x

The above shows that b =−1
4 . Equation (1) becomes

E−1 =
{

6+3k

√
1−4

(
1
4

)}
for k=−2 · · ·2

= {6}

For the pole at x = 0 of order 2, b is the coefficient of 1
x2 in the above partial fractions

decomposition of r. This shows that b = 15
4 . Hence

E0 =
{

6+3k

√
1+4

(
15
4

)}
for k=−2 · · ·2

= {−18,−6,6,18,30}

E∞ is found using equation (1) but with different b. In this case b is given by b = lcoef(s)
lcoeff(t)

where r = s
t . lcoef(s) is the leading coefficient of s and lcoef(t) is the leading coefficient of

t. Since r = 24x2+40x+15
4x4+8x3+4x2 then b = 6. Equation (1) becomes

E∞ =
{
6+3k

√
1+4(6)

}
for k =−2 · · ·2

= {−24,−9,6,21,36}
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The following table summarizes step 1 results using n = 4.

pole c location pole order Ec

−1 2 {6}

0 2 {−18,−6,6,18,30}

Table 8: First step, case three using n = 4. Ec set information

Order of r at ∞ E∞
2 {−24,−9,6,21,36}

Table 9: First step, case three using n = 4. O (∞) information

The next step is to determine a non negative integer d using

d = n
12

(
e∞− ∑

c∈Γ
ec

)

Where in the above ec is a distinct element from each corresponding Ec. This means all
possible tuples {ec1 , ec2 , . . . , ecn} are tried in the sum above, where eci is one element of
each Ec found earlier.
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This results in the following values for d using n = 4.

d = 1
3

(−24− (6−18)) =−4

= 1
3

(−24− (6+6)) =−12

= 1
3

(−24− (6−6)) =−8

= 1
3

(−24− (6+18))=−16

= 1
3

(−24− (6+30))=−20

= 1
3

(−9− (6−18)) = 1

= 1
3

(−9− (6+6)) =−7

= 1
3

(−9− (6−6)) =−3

= 1
3

(−9− (6+18)) =−11

= 1
3

(−9− (6+30)) =−15

= 1
3

(6− (6−18)) = 6

= 1
3

(6− (6+6)) =−2

= 1
3

(6− (6−6)) = 2

= 1
3

(6− (6+18)) =−6

= 1
3

(6− (6+30)) =−10

= 1
3

(21− (6−18)) = 11

= 1
3

(21− (6+6)) = 3

= 1
3

(21− (6−6)) = 7

= 1
3

(21− (6+18)) =−1

= 1
3

(21− (6+30)) =−5

= 1
3

(36− (6−18)) = 16

= 1
3

(36− (6+6)) = 8

= 1
3

(36− (6−6)) = 12

= 1
3

(36− (6+18)) = 4

= 1
3

(36− (6+30)) = 0

From the above, the following families all produce non-negative d
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e∞ =−9 e−1 = 6 e0 =−18 d = 1

e∞ = 6 e−1 = 6 e0 =−18 d = 6

e∞ = 6 e−1 = 6 e0 =−6 d = 2

e∞ = 21 e−1 = 6 e0 =−18 d = 11

e∞ = 21 e−1 = 6 e0 = 6 d = 3

e∞ = 21 e−1 = 6 e0 =−6 d = 7

e∞ = 36 e−1 = 6 e0 =−18 d = 16

e∞ = 36 e−1 = 6 e0 = 6 d = 8

e∞ = 36 e−1 = 6 e0 =−6 d = 12

e∞ = 36 e−1 = 6 e0 = 18 d = 4

e∞ = 36 e−1 = 6 e0 = 30 d = 0

Starting with the smallest d = 0 as that is the least computationally expensive with
its corresponding e−1 = 6, e0 = 30, e∞ = 36, the following rational function is now formed

θ = n
12

∑
c∈Γ

ec

x− c

= 4
12

(
6

x+1
+ 30

x

)
= 12x+10

x (1+ x)
And

S = ∏
c∈Γ

(x− c)

= (x+1)x

This completes the step 2 of the algorithm.
Polynomial p(x) is now determined. Since the degree of the polynomial is d = 0, then

p(x)= 1

The Pi(x) polynomials are generated using

Pn =−p(x)

Pi−1 =−Sp′
i + ((n− i)S′−Sθ)Pi − (n−1)(i+1)S2rPi+1 i = n,n−1, . . . ,0

The above results in the following set

P4 =−1
P3 = 12x+10

P2 =−3(6x+5)2

P1 = 3(6x+5)3

P0 =−3(6x+5)4

2
P−1 = 0
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There is coefficient for p(x) to solve for from the last equation P−1 = 0 as p(x) = 1 is
already known because the degree d is zero. ω is now determined as the solution to the
following equation, using n = 4

n∑
i=0

S i Pi

(n− i)!
ωi = 0

P0

4!
+ SP1

3!
ω+ S2P2

2!
ω2 + S3P3

1!
ω3 ++S4P4

0!
ω4 = 0

− 1
16

(
2ωx2 +2xω−6x−5

)4 = 0

Solving the above and using any one of the roots gives

ω= x−2
2x (x−1)

This ω is used to find a solution to z′′ = rz from

z = e
∫
ωdx

= e
∫ 6x+5

2x(1+x) dx

= x
5
2
p

1+ x

The first solution to the original ode in y is found from

y= ze
∫ − 1

2 a dx

= ze−
∫ 1

2
2x2+x

x2(1+x)
dx

= ze−
ln(x(1+x))

2

=
(
x

5
2
p

1+ x
)(

1p
x (1+ x)

)
Which simplifies to

y= x2

The second solution to the original ode is found using reduction of order.
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4 Conclusion
Detailed description of the Kovacic algorithm with worked out examples were given. All
three cases of the Kovacic algorithm were implemented using object oriented design in
Maple. The software was then used to analyze over 3000 differential equations. The
results showed that case one and two combined provided coverage for 99.9% of the ode’s
with 97.36% of the ode’s solved using case one algorithm and 2.54% solved using case 2
algorithm with only 0.1% requiring case 3. Not a single ode was found that required the
use of case three with n = 6 or n = 12.

One restriction found on the use of the algorithm is that it requires an ode with its
coefficients being numerical and not symbolic. This is because the algorithm has to decide
in step 2 if d (the degree of polynomial p(x)) is non-negative integer or not in order
to continue to step 3. If some of the ode coefficients were symbolic, it will not be able
to decide on this (without additional assumptions provided). Therefore this algorithm
works best with ode’s having its coefficients given with numerical values.
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5 Appendix

5.1 Instructions and examples using the Kovacic package
The Kovacic class is included in the file KOV.mpl and the Kovacic testsuite module is in
the file kovacic_tester.mpl. These two files accompany the arXiv version of this paper.

To use these, download these two files to some directory at your computer. For exam-
ple, on windows, assuming the files were downloaded to c:/my_folder/, then now start
Maple and type

read "c:/my_folder/KOV.mpl"
read "c:/my_folder/kovacic_tester.mpl"

The above will load the kovacic_class and the testsuite module. Once the above is
successfully completed, then to solve an ode the command is� �

1 ode := diff(y(x),x$2)+diff(y(x),x)+y(x)=0;
2 o := Object(kovacic_class,ode,y(x)); #create the object
3 sol := o:-dsolve();� �

The above command will automatically try all the cases that have been detected one
by one until a solution is found. If no solution is found, it returns FAIL. To verify the
solution, the command is� �

1 if sol<>FAIL then
2 odetest(sol,ode);
3 fi;� �

Which returns 0 if the solution is correct.
A note on the type of ode’s supported: it is recommenced to use only ode’s with numeric

coefficients and not symbolic coefficients. This is because the Kovacic algorithm needs
to decide if the degree d of the polynomial p(x) is non-negative or not. If some of the
coefficients are purely symbolic, then it can fail to decide this. An example of this is given
in the original Kovacic paper as example 2 on page 14, which is to solve the Bessel ode
y′′ =

(
4n2−1

4x2 −1
)

y. This will now return FAIL since the algorithm can not decide if d is
non-negative integer without knowing any assumptions or having numerical value for n.
Replacing n by any half odd integer, then it can solve it as follows� �

1 ode :=diff(diff(y(x),x),x)=((4*n^2-1)/(4*x^2)-1)*y(x);
2 n :=-3/2;
3 o := Object(kovacic_class,ode,y(x));
4 sol := o:-dsolve();� �

To solve an ode using specific case number, say case 2, the command is� �
1 ode := ...;
2 o := Object(kovacic_class,ode,y(x));
3 sol := o:-dsolve_case(2);� �
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If the ode happened to satisfy cases 1 and 2 for an example, then the above command
will only use case 2 to solve it and will skip case 1. If the command o:-dsolve() was
used instead, then the ode will be solved using case 1 instead as that is the first one tried.
Case 2 will only be tried is no solution is found using case 1.

The object created above, named as “o”, has additional public methods that can be
invoked. The following is description of all public methods available.

• o:-get_y_ode() This returns the original ode.

• o:-get_z_ode() This returns the ode solved by Kovacic algorithm which is z′′ = rz.

• o:-get_r() This returns r only.

• o:-get_poles() This returns list of the poles of r. It has the format

[ [pole location,pole order],[pole location,pole order], ...]

If there are no poles, then the empty list [] is returned.

• o:-get_order_at_infinity() This returns the order of r at infinity.

• o:-get_possible_cases() This returns list of possible Kovacic cases detected which
can be [1], [2], [1,2], [1,2,3]. If no Kovacic cases are found, then the empty list
[] is returned.

• o:-get_case_used() This returns the actual case number used if solution to the
ode was successful. This can be 1,2 or 3. If no solution is found after trying all cases
whose conditions were satisfied, then −1 is returned.

• o:-get_n_case_3() This return n used when case 3 was used to solve the ode. This
can be 4,6 or 12. If case 3 was not used, or no solution is found, then −1 is returned.

To run the full testsuite of 3000 ode’s that comes with the package, the command is� �
1 kovacic_tester:-unit_test_main_api();
2 "Test ", 6735, " PASSED "
3 "Test ", 6736, " PASSED "
4 "Test ", 6737, " PASSED "
5 .
6 .
7 "Test ", 7579, " PASSED "
8 "Test ", 7580, " PASSED "
9 "Test ", 7581, " PASSED "� �

To run testsuite using specific cases only, the commands are� �
1 kovacic_tester:-unit_test_case_1();
2 kovacic_tester:-unit_test_case_2();
3 kovacic_tester:-unit_test_case_3();� �
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5.2 Source code
� �

1 #--------------------------------------------------------------------
2 #FILE NAME : KOV.mpl
3 #
4 # Copyright (C) 2022, Nasser M. Abbasi. All rights reserved
5 # email: nma@12000.org
6 #
7 # Free software to use and modify in anyway as long as the above
8 # copyright notice remains attached in the file
9 #

10 # Change history
11 #-----------------
12 # Oct 27, 2022. Initial version
13 #
14 # Note that the latest version and any updates can alaways be obtained
15 # from the author web site at
16 # http://12000.org/my_notes/my_paper_on_kovacic/paper.htm
17 #
18 # Any problems found in the software please report so I can correct.
19 # This implementation was done using Maple 2022.2 on windows 10.
20 #
21 #--------------------------------------------------------------------
22
23 #--------------------------------------------------------------------
24 # An Object oriented implementation of the Kovacic algortithm
25 # using Maple 2022.
26 #
27 # based on original Kovacic paper description of the algorithm.
28 #
29 # This file contains two modules. The first is called kovacic_class
30 # used to create kovacic object. The second is kovacic_tester module
31 # used for unit testing the kovacic_class module
32 #
33 # To use this file just do
34 #
35 # read "KOV.mpl"
36 # ode := diff(y(x),x$2)=2/x^2*y(x)
37 # o := Object(kovacic_class,ode,y(x));
38 # sol := o:-dsolve();
39 #
40 # Make sure to set the currentdir() in Maple correctly in order to find
41 # where you downloaded the file "KOV.mpl" to.
42 #--------------------------------------------------------------------
43
44 #--------------------------------------------------------------------
45 # This class is used to solve an ode using Kovacic algorithm.
46 #
47 # Please see documantion section in the paper for additional
48 # information on using this class.
49 #--------------------------------------------------------------------
50
51 kovacic_class :=module()
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52 option object;
53
54 #class to hold one entry in the gamma set for case 1
55 local case_one_gamma_entry := module()
56 option object;
57 export pole_location := 0;
58 export pole_order := 0;
59 export sqrt_r := 0;
60 export alpha_plus := 0;
61 export alpha_minus := 0;
62 export b:=0;
63 end module;
64
65 #class to hold O_infinity information for case 1
66 local case_one_O_inf := module()
67 option object;
68 export sqrt_r_inf := 0;
69 export alpha_plus_inf := 0;
70 export alpha_minus_inf := 0;
71 export a := 0;
72 export b := 0;
73 end module;
74
75 #class to hold one entry in the gamma set for case 2,3
76 local case_2_and_3_gamma_entry:=module()
77 option object;
78
79 export pole_location := 0;
80 export pole_order := 0;
81 export Ec::set := {};
82 export b := 0;
83 end module;
84
85 #--------------------------------------------------------------------
86 # PRIVATE variables for the kovacic class
87 # only methods inside this class can access these
88 #--------------------------------------------------------------------
89
90 local original_ode;
91
92 #coefficients of original linear ode A y’’+ B y’ + C y =0
93 local A,B,C;
94
95 #original ode dependent and independent variables
96 local y::symbol,x::symbol;
97
98 local modified_ode; #this is the z’’=r*z ode;
99 local z::symbol; #dependent variable for the r_ode z’’(x)=r*z(x)

100 local r,s,t; #where r=s/t;
101
102 local O_inf; #order of r at infinity. degree(s)-degree(t)
103
104 # poles or r. format is [ [pole,order],[pole,order],...]
105 # if no poles, for example r=x, then list is empty []
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106 # this means pole order zero is not in the list, since no pole.
107 local poles_list::list := [];
108
109 #contains all possible cases detected. Hence [1] or [1,2] or [1,2,3]
110 #or remains empty [] for case 4.
111 local list_of_possible_cases::list := [];
112
113 local case_used_to_solve::integer:=-1; #this will have case used: 1,2 or 3
114
115 #this will have n=4,6 or 12 used for case 3 only
116 local n_used_for_case_3::integer:=-1;
117
118 #--------------------------------------------------------------------
119 # CONSTRUCTOR
120 #
121 # the input is the ode itself as first argument, and the
122 # dependent variable, y(x) for example, as second argument.
123 #--------------------------------------------------------------------
124 export ModuleCopy::static:= proc( _self,
125 proto::kovacic_class,
126 ode::‘=‘,func::function(name) ,$)
127 local A,B,C;
128 local x,y,r,z::nothing,s,t;
129
130 x,y,A,B,C := parse_and_validate_ode(ode,func);
131
132 _self:-original_ode := ode;
133
134 #force r to be relatively prime ratio of 2 polynomials
135 r := normal( (2*diff(B,x)*A-2*B*diff(A,x)+B^2-4*A*C)/(4*A^2));
136 if not type(r,’ratpoly’(anything,x)) then
137 ERROR("r= ", r ," is not polynomial or rational function in ",x);
138 fi;
139
140 s := numer(r);
141 t := denom(r);
142
143 #save all findings into the object private data
144 #so it can be used later
145 _self:-modified_ode := diff(z(x),x$2) = r*z(x);
146 _self:-O_inf := degree(t,x)-degree(s,x);
147
148 _self:-r := r;
149 _self:-x := x;
150 _self:-y := y;
151 _self:-z := z;
152 _self:-s := s;
153 _self:-t := t;
154 _self:-C := C;
155 _self:-B := B;
156 _self:-A := A;
157
158 #determine all poles and order
159 _self:-generate_poles_and_order_list();
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160
161 #determine all possible kovacic cases
162 _self:-find_possible_cases();
163
164 return NULL;
165 end proc;
166
167 #--------------------------------------------------------------------
168 # This module private function is called by constructor to parse and
169 # validate the ode
170 #--------------------------------------------------------------------
171 local parse_and_validate_ode:=proc(ode::‘=‘,func::function(name),$)
172 local x,y,A,B,C,L::list;
173 local item,dep_variables_found;
174
175 if nops(func)<>1 then
176 ERROR("dependent variable ",func," has more than one argument");
177 fi;
178
179 y := op(0,func);
180 x := op(1,func);
181
182 #basic verification
183 if not has(ode,y) then ERROR("Supplied ",ode," has no ",y); fi;
184 if not has(ode,x) then ERROR("Supplied ", ode," has no ",x); fi;
185 if not has(ode,func) then ERROR("Supplied ",ode," has no ",func); fi;
186
187 #check it is second order
188 if PDEtools:-difforder(ode)<>2 then
189 ERROR("Only second order ode’s can be used in Kocacic algorithm. ");
190 fi;
191
192 #check all dependent variables in ode which is y, match given func y(x)
193 try
194 dep_variables_found := PDEtools:-Library:-GetDepVars([y],ode);
195 catch:
196 ERROR(lastexception);
197 end try;
198
199 #o over dep_variables_found and check the
200 #independent variable is same as x i.e. ode can be y’(z)+y(z)=0 but
201 #function is y(x).
202 for item in dep_variables_found do
203 if not type(item,function) then
204 ERROR("Parse error. Expected ",func," found ",item," in", ode);
205 else
206 if op(1,item) <> x then
207 ERROR("Parse error. Expected ",func," found ",item," in",ode);
208 fi;
209 if nops(item)<>1 then
210 ERROR("Parse error. One argument allowed in ",
211 func," found ", item," in " , ode);
212 fi;
213 fi;
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214 od;
215
216 #now go over all indents in ode and check that y shows as y(x)
217 #and not as just y as the PDEtools:-Library:-GetDepVars([_self:-y],ode)
218 #code above does not detect this. i.e. it does not check y’(x)+y=0
219 if numelems(indets(ode,identical(y))) > 0 then
220 ERROR("Parsing error, Can not have ",y," with no argument inside ",ode);
221 fi;
222
223 #check ode is linear in y(x)
224 if not has(DEtools:-odeadvisor(ode,func,[’linear’]),’_linear’) then
225 ERROR("Only linear ode’s can be used in Kocacic algorithm. ");
226 fi;
227
228 #extract coefficients of the ode
229 L:=DEtools:-convertAlg(ode,func); #this only works on linear ode’s
230
231 if L[2]<>0 then ERROR("Not homogeneous ode"); fi;
232
233 #Finished parsing the ode. A y’’+B y’ + C y = 0
234 C := L[1,1];
235 B := L[1,2];
236 A := L[1,3];
237
238 if not type(A,’ratpoly’(anything,x)) or not type(B,’ratpoly’(anything,x))
239 or not type(C,’ratpoly’(anything,x)) then
240 error "ode coefficients are not rational functions of ",x;
241 fi;
242
243 return x,y,A,B,C;
244
245 end proc;
246
247 #--------------------------------------------------------------------
248 # main API. Called to solve the ode using Kovacic algorithm.
249 # returns the solution in the form of y(x)=.... or if no solution
250 # is found returns FAIL.
251 # see user guide how to use.
252 #--------------------------------------------------------------------
253 export dsolve::static:=proc(_self,$)
254 local sol:=FAIL, current_case_number::posint;
255
256 if nops(_self:-list_of_possible_cases) = 0 then
257 return FAIL;
258 fi;
259
260 #keep trying all possible cases, starting from case 1 to case 3.
261 #until one case succeed or all are tried
262
263 for current_case_number in _self:-list_of_possible_cases do
264 sol := _self:-dsolve_case(current_case_number);
265 if sol<>FAIL then
266 _self:-case_used_to_solve:=current_case_number;
267 return sol;
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268 fi;
269 od;
270
271 return FAIL;
272
273 end proc;
274
275 #--------------------------------------------------------------------
276 # Called to solve the ode using a specific case number
277 # made public to allow user to solve using specific case
278 #--------------------------------------------------------------------
279 export dsolve_case::static:=proc(_self,case_number::posint,$)
280 local sol;
281
282 if case_number>3 then ERROR("Only case number 1,2,3 are allowed"); fi;
283
284 if nops(_self:-list_of_possible_cases)=0 then
285 ERROR("No possible cases detected for this ode");
286 fi;
287
288 if not member(case_number,_self:-list_of_possible_cases) then
289 ERROR("Case ", case_number,
290 " not one of possible cases ", _self:-list_of_possible_cases);
291 fi;
292
293 if case_number = 1 then
294 sol:= _self:-solve_case_1();
295 elif case_number = 2 then
296 sol:= _self:-solve_case_2();
297 else
298 sol:= _self:-solve_case_3();
299 fi;
300
301 _self:-case_used_to_solve := case_number;
302 return sol;
303
304 end proc;
305 #--------------------------------------------------------------------
306 # returns back the z’’(x) = r(x) z(x) ode, which is the one
307 # actually solved by Kovacic algorithm
308 #--------------------------------------------------------------------
309 export get_z_ode::static:=proc(_self,$)
310 local x := _self:-x;
311 local r := _self:-r;
312 local z := _self:-z;
313
314 if _self:-s = 0 then
315 return diff(z(x),x$2) = 0;
316 else
317 return diff(z(x),x$2) = numer(r)%/denom(r) * z(x);
318 fi;
319 end proc;
320
321 #--------------------------------------------------------------------
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322 # returns back the r term in the z’’(x) = r(x) z(x) ode
323 #--------------------------------------------------------------------
324 export get_r::static:=proc(_self,$)
325 if _self:-s = 0 then
326 return 0;
327 else
328 return numer(_self:-r)%/denom(_self:-r);
329 fi;
330 end proc;
331
332 #--------------------------------------------------------------------
333 # returns s, where r = s/t and z’’ = r z(t)
334 #--------------------------------------------------------------------
335 export get_s::static:=proc(_self,$)
336 return _self:-s;
337 end proc;
338
339 #--------------------------------------------------------------------
340 # returns t, where r = s/t and z’’ = r z(t)
341 #--------------------------------------------------------------------
342 export get_t::static:=proc(_self,$)
343 return _self:-t;
344 end proc;
345
346 #--------------------------------------------------------------------
347 # Returns back the original ode ( A y’’+ B y’ + C y = 0 )
348 #--------------------------------------------------------------------
349 export get_y_ode::static:=proc(_self,$)
350 return _self:-original_ode;
351 end proc;
352
353 #--------------------------------------------------------------------
354 # returns list of poles of r, where z’’(x) = r z(x)
355 # The list has format [ [pole location,order], ...]
356 #--------------------------------------------------------------------
357 export get_poles::static:=proc(_self,$)
358 return _self:-poles_list;
359 end proc;
360
361 #--------------------------------------------------------------------
362 # returns O_infinity of r, where z’’(x) = r z(x)
363 #--------------------------------------------------------------------
364 export get_order_at_infinity::static:=proc(_self,$)
365 return _self:-O_inf;
366 end proc;
367
368 #--------------------------------------------------------------------
369 # returns list of possible kovacic cases possible.
370 #--------------------------------------------------------------------
371 export get_possible_cases::static:=proc(_self,$)::list;
372 return _self:-list_of_possible_cases;
373 end proc;
374
375 #--------------------------------------------------------------------
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376 # returns actual case number used when solving ode.
377 # can be 1,2 or 3
378 # if no cases applicable, then -1 is returned
379 #--------------------------------------------------------------------
380 export get_case_used::static:=proc(_self,$)::integer;
381 return _self:-case_used_to_solve;
382 end proc;
383
384 #--------------------------------------------------------------------
385 # returns n used for case 3. Either 4,6, or 12.
386 # if not case 3 used, then -1 is returned.
387 #--------------------------------------------------------------------
388 export get_n_case_3::static:=proc(_self,$)::integer;
389 return _self:-n_used_for_case_3;
390 end proc;
391
392
393 #--------------------------------------------------------------------
394 # All functions below are private
395 #--------------------------------------------------------------------
396
397 #--------------------------------------------------------------------
398 #This proc find all possible kovacic cases. These can be 1,2 or 3.
399 #if none of these found, then empty list is returned, which is
400 #case 4 in the paper. For example, if case 1 is only possible,
401 #then [1] is returned. if case 1 and 2 are possible, then [1,2]
402 #is returned, if all three cases possible, then [1,2,3] is returned.
403 #If no cases possible then [] returned.
404 #--------------------------------------------------------------------
405 local find_possible_cases::static:=proc(_self,$)
406 local L::list := [];
407 local poles_order := convert(_self:-poles_list[..,2],set);
408 local T::set;
409
410 #check for case 1
411 T := select(Z-> Z>2,poles_order);
412 if nops( select(Z->type(Z,odd),T) )=0 and
413 (_self:-O_inf<0 and type(_self:-O_inf,even)) or
414 _self:-O_inf=0 or _self:-O_inf>1 then
415 L:= [1];
416 fi;
417
418 if nops(poles_order)>0 then #must have at least one pole for 2,3 cases
419
420 if nops(poles_order)<>0 then #can not have pole order 0, i.e. no poles
421
422 T:=select(Z-> Z>2,poles_order);
423
424 # r must have at least one pole that is either odd order greater
425 #than 2 or else has order 2
426
427 if nops( select(Z->type(Z,odd),T) )<>0
428 or member(2,poles_order) then
429 L:= [ op(L),2 ];

51



430 fi;
431
432 #check for case 3
433
434 if not member(0,poles_order)
435 and nops(select(Z-> Z>2,poles_order))=0
436 and _self:-O_inf>=2 then
437
438 L:= [ op(L),3 ];
439
440 fi;
441 fi;
442 fi;
443
444 _self:-list_of_possible_cases := L;
445
446 return NULL;
447 end proc;
448
449 #--------------------------------------------------------------------
450 #called to find all poles of r and the order
451 #of each pole. Uses Maple’s sqrfree.
452 #--------------------------------------------------------------------
453 local generate_poles_and_order_list::static:=proc(_self,$)
454 local L::list := [];
455 local sol::list;
456 local current_sol;
457 local poles_list::list;
458 local current_pole;
459 local r := _self:-r, x := _self:-x;
460
461 poles_list := sqrfree(denom(r),x);
462 poles_list := poles_list[2,..]; #we do not need the overall factor
463
464 if nops(poles_list) = 0 then
465 _self:-poles_list:=[];
466 else
467 for current_pole in poles_list do
468
469 sol := solve(current_pole[1]=0,[x]);
470 sol := ListTools:-Flatten(sol);
471
472 for current_sol in sol do
473 L := [op(L), [rhs(current_sol) ,current_pole[2] ] ];
474 od;
475
476 od;
477
478 _self:-poles_list := L;
479 fi;
480
481 return NULL;
482
483 end proc:
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484 #--------------------------------------------------------------------
485 #
486 # C A S E O N E I M P L E M E N T A T I O N
487 #
488 # returns ode solution using case 1, or FAIL is no solution exist
489 #--------------------------------------------------------------------
490 local solve_case_1::static:=proc(_self,$)
491 local O_infinity_set::kovacic_class:-case_one_O_inf;
492 local gamma_set::set(kovacic_class:-case_one_gamma_entry):={};
493
494 gamma_set, O_infinity_set := _self:-case_1_step_1();
495 return _self:-case_1_step_2(gamma_set, O_infinity_set);
496 end proc;
497
498 #--------------------------------------------------------------------
499 # called from _self:-solve_case_1()
500 #--------------------------------------------------------------------
501 local case_1_step_1::static:=proc(_self,$)::
502 set(kovacic_class:-case_one_gamma_entry),
503 kovacic_class:-case_one_O_inf;
504
505 local current_pole;
506 local e::kovacic_class:-case_one_gamma_entry;
507 local o::kovacic_class:-case_one_O_inf;
508 local b,a,v,i::integer;
509 local b_coeff_in_r,b_coeff_in_r_inf_square;
510 local x := _self:-x, r := _self:-r;
511 local N::integer;
512 local laurent_c;
513 local current_term;
514 local b_from_r,b_from_laurent_series;
515
516 #this contains all information generated for each pole of r
517 #this is what is called the set GAMMA in the paper and
518 #in the diagram of algorithm above.
519 local gamma_set::set(kovacic_class:-case_one_gamma_entry) := {};
520
521 if nops(_self:-poles_list) = 0 then
522 gamma_set := {};
523 else
524 for current_pole in _self:-poles_list do
525 e := Object(kovacic_class:-case_one_gamma_entry);
526
527 e:-pole_location := current_pole[1];
528 e:-pole_order := current_pole[2];
529
530 if e:-pole_order =1 then
531
532 e:-sqrt_r := 0;
533 e:-alpha_plus := 1;
534 e:-alpha_minus := 1;
535 gamma_set := { op(gamma_set), e };
536
537 elif e:-pole_order = 2 then
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538
539 e:-sqrt_r := 0;
540 e:-b := _self:-b_partial_fraction(r,x,e:-pole_location,2);
541 e:-alpha_plus := 1/2+1/2*sqrt(1+4*e:-b);
542 e:-alpha_minus := 1/2-1/2*sqrt(1+4*e:-b);;
543 gamma_set := { op(gamma_set), e };
544
545 else
546
547 v := e:-pole_order/2;
548 e:-sqrt_r := 0;
549
550 for N from 2 to v do
551 laurent_c := _self:-laurent_coeff(sqrt(r),x,
552 e:-pole_location,v,N);
553 current_term := laurent_c/(x-e:-pole_location)^N;
554 e:-sqrt_r := e:-sqrt_r + current_term;
555 if N = v then
556 a := laurent_c;
557 fi;
558 od;
559
560 b_from_r :=_self:-b_partial_fraction(r,x,e:-pole_location,v+1);
561 b_from_laurent_series :=_self:-laurent_coeff(sqrt(r),x,
562 e:-pole_location,v,v+1);
563
564 e:-b := b_from_r - b_from_laurent_series;
565
566 e:-alpha_plus := 1/2*((e:-b)/a + v);
567 e:-alpha_minus := 1/2*(-(e:-b)/a + v);
568 gamma_set := { op(gamma_set), e };
569
570 fi;
571 od;
572 fi;
573
574 o := Object(case_one_O_inf);
575
576 if _self:-O_inf > 2 then
577
578 o:-sqrt_r_inf := 0;
579 o:-alpha_plus_inf := 0;
580 o:-alpha_minus_inf := 1;
581
582 elif _self:-O_inf=2 then
583
584 o:-sqrt_r_inf :=0;
585 o:-b := lcoeff(_self:-s) / lcoeff(_self:-t);
586 b := radsimp((1+4*o:-b)^(1/2));
587 o:-alpha_plus_inf := 1/2 + 1/2*b;
588 o:-alpha_minus_inf := 1/2 - 1/2*b;
589
590 else #order at infinity -2*v<= 0 which must be even
591
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592 v := (-_self:-O_inf) / 2;
593 o:-sqrt_r_inf :=0;
594
595 for i from 0 to v do
596
597 laurent_c := _self:-laurent_coeff(sqrt(r),x,infinity,v,i);
598 o:-sqrt_r_inf := o:-sqrt_r_inf + laurent_c*x^i;
599 if i = v then
600 o:-a := laurent_c;
601 fi;
602
603 od;
604
605 b_coeff_in_r_inf_square := _self:-laurent_coeff(
606 o:-sqrt_r_inf^2,x,0,v,v-1);
607
608 b_coeff_in_r := _self:-get_coefficient_of_r(v-1);
609 o:-b := b_coeff_in_r - b_coeff_in_r_inf_square;
610 o:-alpha_plus_inf := 1/2*( (o:-b)/(o:-a) - v);
611 o:-alpha_minus_inf := 1/2*( -(o:-b)/(o:-a) - v);
612 fi;
613
614 return gamma_set,o;
615
616 end proc;
617
618 #--------------------------------------------------------------------
619 # Finds b coefficient in r for the case one only when v<=0
620 # using long division
621 #--------------------------------------------------------------------
622 local get_coefficient_of_r::static:=proc(_self,the_degree,$)
623 local r := _self:-r;
624 local x := _self:-x;
625 local c,R,t;
626
627 try
628 c := coeff(r,x,the_degree);
629 catch:
630 R := rem(numer(r),denom(r),x);
631 t := denom(r);
632 c := lcoeff(R)/lcoeff(t);
633 end try;
634
635 return c;
636 end proc;
637
638 #--------------------------------------------------------------------
639 # called from _self:-solve_case_1()
640 # This determines the set of d non-negative integers and
641 # corresponding w for each d.
642 #--------------------------------------------------------------------
643 local case_1_step_2::static:=proc(_self,
644 gamma_set::set(kovacic_class:-case_one_gamma_entry),
645 O_infinity::kovacic_class:-case_one_O_inf,$)
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646
647 local d,N,K,number_of_poles::integer,current_alpha_infinity;
648 local item::list;
649 local the_sign::integer,sign_list::list;
650 local w;
651 local r_solution,y_solution;
652 local x := _self:-x;
653
654 #this will contains all data found for any nonnegative d. Each
655 #entry will be a list of this form
656 # [d, w]
657
658 local good_d_found := Array(1..0);
659 local B::Matrix; #this will contain good_d_found but as matrix
660
661 number_of_poles := nops(gamma_set);
662 sign_list := combinat:-permute([1$number_of_poles,-1$number_of_poles],
663 number_of_poles);
664
665 for K,current_alpha_infinity in
666 [O_infinity:-alpha_plus_inf,O_infinity:-alpha_minus_inf] do
667
668 for item in sign_list do
669
670 d := 0;
671
672 if number_of_poles>0 then
673
674 for N,the_sign in item do
675 if the_sign = -1 then
676 d := d-gamma_set[N]:-alpha_minus;
677 else
678 d := d-gamma_set[N]:-alpha_plus;
679 fi;
680 od;
681
682 fi;
683
684 d := simplify(d + current_alpha_infinity);
685
686 if type(d,’integer’) and d >= 0 then
687 w := 0;
688
689 for N,the_sign in item do
690
691 if number_of_poles>0 then
692
693 if the_sign = -1 then
694 w := w +(-1)*gamma_set[N]:-sqrt_r +
695 (gamma_set[N]:-alpha_minus)/
696 (x - gamma_set[N]:-pole_location);
697 else
698 w := w + gamma_set[N]:-sqrt_r +
699 ( gamma_set[N]:-alpha_plus)/
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700 (x - gamma_set[N]:-pole_location);
701 fi;
702
703 fi;
704
705 od;
706
707 #this to get the sign in according to paper. First + then -
708 if K = 1 then
709 w := w + O_infinity:-sqrt_r_inf;
710 else
711 w := w - O_infinity:-sqrt_r_inf;
712 fi;
713
714 good_d_found ,= [ d, w];
715 fi;
716 od;
717 od;
718
719 if numelems(good_d_found) = 0 then return FAIL; fi;
720
721 #now convert the array to Matrix, and sort on d, so we
722 #start will the smallest
723 #degree d, which is the first column, as that will be most efficient.
724 #convert to set first, to remove any possible duplicat entries
725 #then convert to Matrix
726
727 convert(good_d_found,set);
728 B := convert(convert(%,list),Matrix);
729 B := B[sort(B[.., 1], ’output’= ’permutation’)];
730
731 for N from 1 to LinearAlgebra:-RowDimension(B) do
732
733 r_solution := _self:-case_1_step_3(B[N,1], B[N,2]); #(d,w)
734
735 if r_solution <> FAIL then
736 y_solution := _self:-build_y_solution_from_r_solution(r_solution);
737 return y_solution;
738 fi;
739
740 od;
741
742 return FAIL;
743
744 end proc;
745
746 #--------------------------------------------------------------------
747 # called from _self:-case_1_step_2()
748 #--------------------------------------------------------------------
749 local case_1_step_3::static:=proc(_self,d::nonnegative,w,$)
750 local x := _self:-x;
751 local r := _self:-r;
752 local p;
753 local i::integer;
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754 local a::nothing;
755 local eq;
756 local coeff_sol;
757 local tmp,W;
758 local final_result;
759
760 p := x^d;
761
762 for i from d-1 by -1 to 0 do
763 p := p + a[i] * x^i;
764 od;
765
766 #using original kovacis method. Not Smith.
767 eq := simplify( diff(p,x$2)+2*w*diff(p,x)+(diff(w,x)+w^2-r)*p) = 0;
768
769 if d = 0 then
770 if not evalb(eq) then return FAIL; fi;
771 else
772 #solve for coefficients
773 try
774 coeff_sol := timelimit(30,solve(
775 identity(eq,x), [seq(a[i],i=0..d-1)]));
776 catch:
777 return FAIL;
778 end try;
779
780 if nops(coeff_sol) = 0 then return FAIL; fi;
781
782 tmp := map(evalb,coeff_sol[1]);
783 if has(tmp,true) then return FAIL; fi;
784
785 p := eval(p,coeff_sol[1]); #to force a[i] solutions to update
786 fi;
787
788 W := diff(p,x)/p + w;
789 W := radsimp(W);
790
791 tmp := diff(W,x)+W^2;
792
793 if evalb( tmp = r) or is(tmp = r) or simplify(tmp-r)=0 then #can be used
794 try
795 tmp := int(w, x);
796 catch:
797 return FAIL;
798 end try;
799
800 if has(tmp,int) then return FAIL; fi;
801
802 final_result := simplify(p*exp(tmp));
803 if has(final_result,signum) or has(final_result,csgn) then
804 final_result := p*exp(tmp);
805 fi;
806
807 return final_result;
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808 else
809 return FAIL;
810 fi;
811
812 end proc;
813
814 #--------------------------------------------------------------------
815 #
816 # C A S E T W O I M P L E M E N T A T I O N
817 #
818 # returns ode solution using case 2, or FAIL is no solution exist
819 #--------------------------------------------------------------------
820 local solve_case_2::static:=proc(_self,$)
821
822 local E_inf::set;
823 local gamma_set::set(kovacic_class:-case_2_and_3_gamma_entry):={};
824
825 gamma_set, E_inf := _self:-case_2_step_1();
826 return _self:-case_2_step_2(gamma_set, E_inf );
827
828 end proc;
829
830 #--------------------------------------------------------------------
831 #
832 #--------------------------------------------------------------------
833 local case_2_step_1::static:=proc(_self,$)::
834 set(kovacic_class:-case_2_and_3_gamma_entry),set;
835
836 local current_pole;
837 local e::kovacic_class:-case_2_and_3_gamma_entry;
838 local E_inf::set;
839 local b;
840 local x := _self:-x;
841 local r := _self:-r;
842
843 #this contains all information generated for each pole of r
844 #this is what is called the set GAMMA in the paper and in the diagram of
845 #algorithm above.
846 local gamma_set::set(kovacic_class:-case_2_and_3_gamma_entry) := {};
847
848 for current_pole in _self:-poles_list do
849
850 e := Object(kovacic_class:-case_2_and_3_gamma_entry);
851 e:-pole_location := current_pole[1];
852 e:-pole_order := current_pole[2];
853
854 if e:-pole_order = 1 then
855
856 e:-Ec := {4};
857 gamma_set := { op(gamma_set), e };
858
859 elif e:-pole_order = 2 then
860
861 e:-b := _self:-b_partial_fraction(r,x,e:-pole_location,2);
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862 e:-Ec := {2,2+2*sqrt(1+4* e:-b),2-2*sqrt(1+4* e:-b)};
863 e:-Ec := select(z->type(z,integer),e:-Ec);
864 gamma_set := { op(gamma_set), e };
865
866 else
867
868 e:-Ec := {e:-pole_order};
869 gamma_set := { op(gamma_set), e };
870
871 fi;
872 od;
873
874 if _self:-O_inf>2 then
875
876 E_inf := {0,2,4};
877
878 elif _self:-O_inf=2 then
879
880 b := lcoeff(_self:-s) / lcoeff(_self:-t);
881 E_inf := {2,2+2*sqrt(1+4*b),2-2*sqrt(1+4*b)};
882 E_inf := select(z->type(z,integer),E_inf);
883
884 else #order at infinity v< 2
885
886 E_inf := {_self:-O_inf};
887
888 fi;
889
890 return gamma_set,E_inf;
891 end proc;
892
893 #--------------------------------------------------------------------
894 # called from _self:-solve_case_2()
895 # This determines the set of d non-negative integers and
896 # corresponding w for each d.
897 #--------------------------------------------------------------------
898 local case_2_step_2::static:=proc(_self,
899 gamma_set::set(kovacic_class:-case_2_and_3_gamma_entry),
900 E_inf::set,
901 $)
902
903 local L::list := [];
904 local item,current_E_inf;
905 local d,N,ee,theta;
906 local x := _self:-x;
907 local r_solution,y_solution;
908
909 #this will contains all data found for any nonnegative d. Each
910 #entry will be a list of this form
911 # [d, theta]
912 #so if we obtain say 3 values of d that are nonnegative,
913 #there will be 3 such lists in this array
914
915 local good_d_found := Array(1..0);
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916 local B::Matrix; #this will contain good_d_found as matrix
917
918 for item in gamma_set do
919 L := [ op(L), convert(item:-Ec,list) ];
920 od;
921
922 #now find all possible tuples
923 if nops(L)>1 then
924 L := kovacic_class:-cartProdSeq(op(L));
925 else
926 L := L[1];
927 fi;
928
929 for current_E_inf in E_inf do
930 for item in L do
931
932 d := 1/2*( current_E_inf - add(item));
933
934 if type(d,’integer’) and d >= 0 then
935 theta :=0;
936
937 for N,ee in item do
938 theta := theta + ee/(x-gamma_set[N]:-pole_location);
939 od;
940
941 theta := 1/2*theta;
942 good_d_found ,= [ d, theta];
943 fi;
944
945 od;
946 od;
947
948 if numelems(good_d_found) = 0 then return FAIL; fi;
949
950 #now convert the array to Matrix, and sort on d, so
951 #we start will the smallest degree d, which is the first column, as
952 #that will be most efficient.
953 #convert to set first, to remove any possible duplicat entries
954 #then convert to Matrix
955
956 convert(good_d_found,set);
957 B := convert(convert(%,list),Matrix);
958 B := B[sort(B[.., 1], ’output’= ’permutation’)];
959
960 for N from 1 to LinearAlgebra:-RowDimension(B) do
961
962 r_solution := _self:-case_2_step_3(B[N,1], B[N,2]); #(d,theta)
963
964 if r_solution <> FAIL then
965 y_solution := _self:-build_y_solution_from_r_solution(r_solution);
966 return y_solution;
967 fi;
968
969 od;
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970
971 return FAIL;
972
973 end proc;
974
975 #--------------------------------------------------------------------
976 # called from _self:-case_2_step_2()
977 #--------------------------------------------------------------------
978 local case_2_step_3::static:=proc(_self,d::nonnegative,theta,$)
979
980 local p, i;
981 local a::nothing;
982 local tmp;
983 local coeff_sol := [];
984 local eq;
985 local phi;
986 local sol_w;
987 local current_w;
988 local r:=_self:-r;
989 local w::nothing;
990 local x := _self:-x;
991 local sol;
992
993 p := x^d;
994
995 for i from d-1 by -1 to 0 do
996 p := p + a[i] * x^i;
997 od;
998
999 eq:= simplify(diff(p,x$3) + 3*theta*diff(p,x$2) +

1000 (3*theta^2+3*diff(theta,x) -4*r) * diff(p,x)
1001 + ( diff(theta,x$2)+3*theta*diff(theta,x)+theta^3 -
1002 4*r*theta - 2*diff(r,x))*p) = 0;
1003
1004 if d=0 then
1005 if not evalb(eq) then return FAIL; fi;
1006 else
1007 #solve for polynomial coefficients
1008 try
1009 coeff_sol:= timelimit(30,solve(
1010 identity(eq,x), [seq(a[i],i=0..d-1)]));
1011 catch:
1012 return FAIL;
1013 end try;
1014
1015 if nops(coeff_sol) = 0 then return FAIL; fi;
1016
1017 tmp := map(evalb,coeff_sol[1]);
1018 if has(tmp,true) then return FAIL; fi;
1019
1020 p := eval(p,coeff_sol[1]); #to force a[i] solutions to update
1021 fi;
1022
1023 phi := theta + diff(p,x)/p;
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1024 eq := w^2 - phi*w + simplify(1/2*diff(phi,x)+1/2*phi^2-r) = 0;
1025
1026 try
1027 sol_w := timelimit(30,solve(eq,[w])); #changed to []
1028 sol_w := ListTools:-Flatten(sol_w);
1029 catch:
1030 return FAIL;
1031 end try;
1032
1033 if nops(sol_w) = 0 then return FAIL; fi;
1034
1035 for current_w in sol_w do
1036
1037 current_w := radsimp(rhs(current_w));
1038
1039 #verify w before using it. Added 1/12/2022 4 PM
1040 tmp := diff(current_w,x)+current_w^2;
1041 if evalb( tmp= r) or is(tmp = r) or simplify(tmp-r)=0 then
1042 try
1043 sol := timelimit(30,int(current_w, x));
1044 catch:
1045 return FAIL;
1046 end try;
1047
1048 if has(sol,int) then return FAIL; fi;
1049
1050 return simplify(exp(sol));
1051 fi;
1052
1053 od;
1054
1055 end proc;
1056
1057 #--------------------------------------------------------------------
1058 #
1059 # C A S E T H R E E I M P L E M E N T A T I O N
1060 #
1061 # returns ode solution using case 3, or FAIL is no solution exist
1062 #--------------------------------------------------------------------
1063
1064 local solve_case_3::static:=proc(_self,$)
1065
1066 local E_inf::set;
1067 local gamma_set::set(kovacic_class:-case_2_and_3_gamma_entry):={};
1068 local sol;
1069
1070 #these are possible degress of w to try until one works or none works
1071 #local w_degree::list := [4,6,12];
1072 local w_degree::list := [4,6,12];
1073 local n::posint;
1074
1075 for n in w_degree do
1076 gamma_set, E_inf := _self:-case_3_step_1(n);
1077 sol := _self:-case_3_step_2(gamma_set, E_inf, n );
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1078
1079 if sol<>FAIL then return sol; fi;
1080 od;
1081
1082 return FAIL;
1083
1084 end proc;
1085
1086 #--------------------------------------------------------------------
1087 # First step in case 3
1088 #--------------------------------------------------------------------
1089 local case_3_step_1::static:=proc(_self,
1090 n::posint,
1091 $)::set(kovacic_class:-case_2_and_3_gamma_entry),set;
1092
1093
1094 local current_pole;
1095 local e::kovacic_class:-case_2_and_3_gamma_entry;
1096 local E_inf::set;
1097 local b,k;
1098 local x := _self:-x;
1099 local r := _self:-r;
1100
1101 #this contains all information generated for each pole of r
1102 #this is what is called the set GAMMA in the paper and in the diagram of
1103 #algorithm above.
1104 local gamma_set::set(kovacic_class:-case_2_and_3_gamma_entry):={};
1105
1106 for current_pole in _self:-poles_list do
1107
1108 e := Object(kovacic_class:-case_2_and_3_gamma_entry);
1109
1110 e:-pole_location := current_pole[1];
1111 e:-pole_order := current_pole[2];
1112
1113 if e:-pole_order = 1 then
1114
1115 e:-Ec := {12};
1116 gamma_set := { op(gamma_set), e };
1117
1118 elif e:-pole_order = 2 then
1119
1120 e:-b := _self:-b_partial_fraction(r,x,e:-pole_location,2);
1121 e:-Ec := {seq( 6+12*k/n*sqrt(1+4*(e:-b)),k=-n/2..n/2,1)};
1122 e:-Ec := select(z->type(z,integer),e:-Ec);
1123 gamma_set := { op(gamma_set), e };
1124
1125 else
1126 ERROR("Internal error. Case 3 can only have poles of order 1 or 2");
1127 fi;
1128 od;
1129
1130 #same formula, but different b
1131 b := lcoeff(_self:-s) / lcoeff(_self:-t);
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1132 E_inf := {seq( 6+12*k/n*sqrt(1+4*b),k=-n/2..n/2,1)};
1133 E_inf := select(z->type(z,integer),E_inf);
1134
1135 return gamma_set,E_inf;
1136
1137 end proc;
1138
1139 #--------------------------------------------------------------------
1140 # Second step in case 3
1141 #
1142 # called from _self:-solve_case_3()
1143 # This determines the set of d non-negative integers and
1144 # corresponding w for each d.
1145 #--------------------------------------------------------------------
1146 local case_3_step_2::static:=proc(
1147 _self,
1148 gamma_set::set(kovacic_class:-case_2_and_3_gamma_entry),
1149 E_inf::set,
1150 n::posint,$)
1151
1152 local L::list := [];
1153 local item,current_E_inf;
1154 local d,ee,theta,N;
1155 local x := _self:-x;
1156 local r_solution,y_solution;
1157 local S;
1158 local current_iteration::integer;
1159 local tmp;
1160
1161 #this will contains all data found for any nonnegative d. Each
1162 #entry will be a list of this form
1163 # [d, theta, S]
1164 #so if we obtain say 3 values of d that are nonnegative
1165 local good_d_found := Array(1..0);
1166 local B::Matrix; #this will contain good_d_found as matrix
1167
1168 #DEBUG();
1169 for item in gamma_set do
1170 L := [ op(L), convert(item:-Ec,list) ];
1171 od;
1172
1173 #now find all possible tuples
1174 if nops(L)>1 then
1175 L := kovacic_class:-cartProdSeq(op(L));
1176 else
1177 L := L[1];
1178 fi;
1179
1180 current_iteration:=0;
1181 for current_E_inf in E_inf do
1182 for item in L do
1183 current_iteration := current_iteration+1;
1184
1185 d := n/12*( current_E_inf - add(item));
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1186
1187 if type(d,’integer’) and d >= 0 then
1188 theta :=0;
1189 for N,ee in item do
1190 theta := theta + ee/(x-gamma_set[N]:-pole_location);
1191 od;
1192 theta := n/12*theta;
1193 theta := simplify(theta);
1194 S := mul( (x-gamma_set[N]:-pole_location), N=1..nops(item));
1195 tmp := simplify(S) assuming real;
1196 if not has(tmp,csgn) and not has(tmp,signum) then
1197 S:= tmp;
1198 fi;
1199
1200 good_d_found ,= [ d, theta, S];
1201 fi;
1202 od;
1203 od;
1204
1205 #now convert the array to Matrix, and sort on d, so we start
1206 # with the smallest
1207 #degree d, which is the first column, as that will be most efficient.
1208
1209 if numelems(good_d_found) = 0 then return FAIL; fi;
1210
1211 #convert to set first, to remove any possible duplicat entries
1212 #then convert to Matrix
1213 convert(good_d_found,set);
1214 B := convert(convert(%,list),Matrix);
1215 B := B[sort(B[.., 1], ’output’= ’permutation’)];
1216
1217 for N from 1 to LinearAlgebra:-RowDimension(B) do
1218 #(d,theta,S,n)
1219 r_solution := _self:-case_3_step_3(B[N,1], B[N,2], B[N,3],n);
1220
1221 if r_solution <> FAIL then
1222 _self:-n_used_for_case_3 := n;
1223 y_solution := _self:-build_y_solution_from_r_solution(r_solution);
1224 return y_solution;
1225 fi;
1226 od;
1227
1228 return FAIL;
1229 end proc;
1230
1231 #--------------------------------------------------------------------
1232 # Third and final step in case 3.
1233 # called from _self:-case_3_step_2(). Returns solution or FAIL is no
1234 # solution found.
1235 #--------------------------------------------------------------------
1236 local case_3_step_3::static:=proc(
1237 _self,
1238 d::nonnegative,
1239 theta,
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1240 S,
1241 n::posint,
1242 $)
1243
1244 local p, i,P_minus_1;
1245 local a::nothing;
1246 local final_result,tmp;
1247 local coeff_sol := [];
1248 local sol_w;
1249 local current_w;
1250 local r := _self:-r;
1251 local x := _self:-x;
1252 local omega::symbol;
1253 local P := Array(-1..n);
1254 local result_of_simplify;
1255 local result_of_is_check;
1256 local omega_equation;
1257
1258 #this makes p(x). For example if d=3, then the result will be
1259 # p(x) = x^3 + a(2) x^2 + a(1) x + a(0)
1260 #where the number of unknowns to determine is always the same
1261 #as the degree, in this case a(0),a(1),a(2)
1262
1263 p := x^d; #this will be 1 if degree is zero
1264
1265 for i from d-1 by -1 to 0 do
1266 p := p + a[i] * x^i;
1267 od;
1268
1269 #build the P_n polynomials based on p(x) above
1270 P[n] := -p;
1271
1272 for i from n by -1 to 0 do
1273
1274 if i=n then
1275 P[i-1] := -S * diff(P[i], x) - S*theta*P[i];
1276 P[i-1] := simplify( P[i-1]);
1277 else
1278 P[i-1] := -S * diff(P[i], x) +
1279 ( (n-i)*diff(S,x) - S*theta)*P[i] - (n-i)*(i+1)*S^2*r*P[i+1];
1280 P[i-1] := simplify( P[i-1]);
1281 fi;
1282
1283 od;
1284
1285 #solve P[-1] for p(x) if needed.
1286 P_minus_1 := expand(numer(radsimp(P[-1])));
1287
1288 if P_minus_1 <>0 and evalb(p<>1) then
1289 if not hastype(P_minus_1,’indexed’) then #it must be indexed now
1290 ERROR("Internal error. Please report. This should not happen");
1291 fi;
1292
1293 try
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1294 coeff_sol := timelimit(30,solve(identity(P_minus_1,x), [seq(a[i],i=0..d-1)]));
1295 catch:
1296 return FAIL;
1297 end try;
1298
1299 if nops(coeff_sol)=0 then #unable to solve
1300 return FAIL;
1301 fi;
1302
1303 map(evalb,coeff_sol[1]); #check all solved for
1304 if has(%,true) then return FAIL; fi;
1305 fi;
1306
1307 #build the equation for omega
1308 omega_equation := 0;
1309
1310 for i from 0 to n do
1311 omega_equation := omega_equation + S^i*P[i]/(n-i)! * omega^i ;
1312 od;
1313
1314 omega_equation := simplify(omega_equation);
1315
1316 if nops(coeff_sol)<>0 then
1317 #to force a[i] solutions to update to solved coefficients
1318 omega_equation := eval(omega_equation,coeff_sol[1]);
1319 fi;
1320
1321 try
1322 sol_w := timelimit(30, solve(omega_equation=0, [omega]));
1323 sol_w := ListTools:-Flatten(sol_w);
1324 catch:
1325 return FAIL;
1326 end try;
1327
1328 if nops(sol_w) = 0 then return FAIL; fi;
1329
1330 #go over each w solution and use one that works. verify before using
1331
1332 for current_w in sol_w do
1333
1334 current_w := rhs(current_w);
1335
1336 if not has(current_w, RootOf) then
1337 try
1338 current_w := timelimit(30,simplify(current_w));
1339 catch:
1340 NULL;
1341 end try;
1342
1343 if is_w_verified(current_w,x,r) then
1344 final_result := _self:-simplify_final_result(current_w,x);
1345 if final_result<>FAIL then
1346 return final_result;
1347 fi;
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1348 fi;
1349 else #no Rootof, try to resolve
1350 try
1351 current_w := timelimit(30,[allvalues(current_w)]);
1352 catch:
1353 return FAIL;
1354 end try;
1355
1356 current_w := current_w[1]; #just use any root. Pick first
1357
1358 if not has(current_w, RootOf) then
1359 try
1360 current_w := timelimit(30,simplify(current_w));
1361 catch:
1362 NULL;
1363 end try;
1364
1365 if is_w_verified(current_w,x,r) then
1366 final_result := _self:-simplify_final_result(current_w,x);
1367 if final_result<>FAIL then
1368 return final_result;
1369 fi;
1370
1371 fi;
1372 fi;
1373 fi;
1374 od;
1375
1376 return FAIL;
1377
1378 end proc;
1379
1380
1381 #--------------------------------------------------------------------
1382 # Called from case 3, step 3 to verify w
1383 #--------------------------------------------------------------------
1384 local is_w_verified:=proc(current_w,x,r)::truefalse;
1385 local tmp;
1386 local result_of_is_check::truefalse;
1387 local result_of_simplify;
1388
1389 tmp := diff(current_w,x)+current_w^2;
1390
1391 if evalb( tmp=r) then return true; fi;
1392
1393 try
1394 result_of_simplify := timelimit(30,simplify(tmp-r));
1395 if evalb(result_of_simplify=0) then return true; fi;
1396 catch:
1397 NULL;
1398 end try;
1399
1400 try
1401 result_of_is_check := timelimit(30,is(tmp = r));
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1402 if result_of_is_check then return true; fi;
1403 catch:
1404 NULL;
1405 end try;
1406
1407
1408 return false;
1409 end proc;
1410
1411 #--------------------------------------------------------------------
1412 # Called from case 3, step 3 to simplify final result
1413 #--------------------------------------------------------------------
1414
1415 local simplify_final_result::static:=proc(_self,omega,x,$)
1416 local final_result;
1417 local integral_result;
1418
1419 try
1420 integral_result := timelimit(30,int(omega, x));
1421 catch:
1422 return FAIL;
1423 end try;
1424
1425 if has(integral_result,int) or has(integral_result,Int) then
1426 return exp(Int(omega, x));
1427 fi;
1428
1429 try
1430 final_result := timelimit(30,simplify(exp(integral_result))) assuming real;
1431 if has(final_result,signum) or has(final_result,csgn)
1432 or has(final_result,abs) then
1433 final_result := exp(integral_result);
1434 fi;
1435 catch:
1436 final_result:= exp(integral_result);
1437 end try;
1438
1439 return final_result;
1440 end proc;
1441
1442
1443 #--------------------------------------------------------------------
1444 # External proc helper
1445 # provided thanks to Joseph Riel
1446 #--------------------------------------------------------------------
1447 local cartProdSeq:= proc(L::seq(list))
1448 local Seq::nothing,i::nothing,j;
1449 option ‘Copyright (C) 2007, Joseph Riel. All rights reserved.‘;
1450 eval([subs(Seq= seq, foldl(Seq, [cat(i, 1..nargs)],
1451 seq(cat(i,j)= L[j], j= nargs..1, -1)))])
1452 end proc:
1453
1454 #--------------------------------------------------------------------
1455 # Checks for special math function.
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1456 # This function was provided thanks to Carl Love.
1457 # modified to allow some special functions.
1458 #--------------------------------------------------------------------
1459 local has_special_math_function:= subs(
1460 _F= {(op@FunctionAdvisor)~(FunctionAdvisor("class_members", "quiet"), "quiet")[]}
1461 minus ( {FunctionAdvisor("elementary", "quiet")[]}
1462 union {erf,erfc, erfi, Im,Re,signum,max,argument} ),
1463 proc(e::algebraic, x::{name, set(name)}:= {})
1464 hastype(e, And(specfunc(_F), dependent(x)))
1465 end proc
1466 ):
1467
1468 #--------------------------------------------------------------------
1469 # called if step 3 is successful. Build y solution from r solution
1470 #--------------------------------------------------------------------
1471 local build_y_solution_from_r_solution::static:=proc(_self,r_solution,$)
1472
1473 local y1,y2;
1474 local int_B_over_A;
1475 local A :=_self:-A, B:=_self:-B;
1476 local x :=_self:-x, y:= _self:-y;
1477 local tmp;
1478
1479 if B = 0 then
1480 y1 := r_solution;
1481 int_B_over_A := 0;
1482 else
1483 try
1484 int_B_over_A := timelimit(60,int(-B/A,x));
1485 if has(int_B_over_A,int) or has(int_B_over_A,RootOf) then
1486 int_B_over_A := Int(-B/A, x);
1487 y1 :=r_solution*exp(1/2*int_B_over_A);
1488 else
1489 y1 := simplify(r_solution*exp(1/2*int_B_over_A));
1490 if has(y1,signum) or has(y1,csgn) then
1491 y1 := r_solution*exp(1/2*int_B_over_A);
1492 fi;
1493 fi;
1494 catch:
1495 int_B_over_A := Int(-B/A,x);
1496 y1 := r_solution*exp(1/2*int_B_over_A);
1497 end try;
1498 fi;
1499
1500 try
1501 y2 := timelimit(30, int( simplify(exp(int_B_over_A))/y1^2,x));
1502
1503 if kovacic_class:-has_special_math_function(y2,x) then
1504 y2 := y1 * Int( exp(int_B_over_A)/y1^2,x)
1505 else
1506 y2 := y1 * y2;
1507 fi;
1508 tmp := simplify(y2);
1509 if has(tmp,signum) or has(tmp,csgn) then
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1510 y2 := y1 * y2;
1511 else
1512 y2 := tmp;
1513 fi;
1514 catch:
1515 y2 := y1 * Int( exp(int_B_over_A)/y1^2,x)
1516 end try;
1517
1518 return y(x) = _C1*y1 + _C2*y2;
1519
1520 end proc;
1521
1522 #--------------------------------------------------------------------
1523 # Helper private function called to obtain b from the partial fraction
1524 # decomposition of r needed by the differenent case implementations
1525 #--------------------------------------------------------------------
1526 local b_partial_fraction::static:=proc(_self,
1527 r,
1528 x::symbol,
1529 pole_location,
1530 the_power::posint,$)
1531
1532 local r_partial_fraction,T::nothing;
1533
1534 r_partial_fraction := allvalues(convert(r,’fullparfrac’,x));
1535
1536 #adding dummy T so that select below always works
1537 r_partial_fraction := T+r_partial_fraction;
1538 select(z->hastype(z,
1539 anything/(anything*identical(x - pole_location)^the_power)),
1540 r_partial_fraction);
1541
1542 return coeff(%,1/(x-pole_location)^the_power);
1543
1544 end proc;
1545
1546 #--------------------------------------------------------------------
1547 # Helper private function called to return Laurent series coefficient
1548 # of the 1/(x-c)^n term. where n=1,2,3,.... for the function f(x)
1549 # expandid about pole of order m
1550 # if c=infinity, then x is replaced by 1/y and expansion is around 0
1551 # for infinity, n=0,1,2,...
1552 #--------------------------------------------------------------------
1553 local laurent_coeff::static:=proc(_self,
1554 f,
1555 x::symbol,
1556 c,
1557 m::integer,
1558 n::integer,$)
1559
1560 local the_coeff,y::nothing,fy;
1561
1562 if c = infinity then
1563 fy := eval(f,x=1/y);

72



1564 if m-n>0 then
1565 the_coeff := limit( diff( y^m * fy,y$(m-n)),y=0,right)/(m-n)!;
1566 elif m-n=0 then
1567 the_coeff := limit( y^m * fy,y=0,right)/(m-n)!;
1568 else
1569 the_coeff := 0;
1570 fi;
1571 else
1572 if m-n>0 then
1573 the_coeff := limit( diff( (x-c)^m * f,x$(m-n)),x=c,right)/(m-n)! ;
1574 elif m-n=0 then
1575 the_coeff := limit( (x-c)^m * f,x=c,right)/(m-n)!;
1576 else
1577 the_coeff := 0;
1578 fi;
1579 fi;
1580
1581 the_coeff := eval(the_coeff,[csgn=1,signum=1]);
1582
1583 return the_coeff;
1584
1585 end proc;
1586
1587 end module;� �
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This article deals with the classical question of deciding whether or not a linear 
ordinary differential equation with rational coefficients has liouvillian solutions and 
computing them if any. Liouvillian (or closed-form) solutions are those which can 
be built up from C(x) by algebraic operations and taking exponentials or primitives. 

A decision procedure to solve this problem for arbitrary order equations is 
presented in [20]. Although this solves the problem in principle, this procedure is 
not an algorithm that can be readily implemented (for recent work concerning 
improvements for equations of order three, see [24], [21]). In contrast, the case of 
equations of order two was solved by Kovacic [12] in a completely effective manner. 
His algorithm is implemented several times: in MACSYMA (Caviness and Saunders 
[16], Pavelle and Wang [14]), in MAPLE (Smith [23], Char [4] ) or in SCRATCHPAD 

(Senechaud and Siebert [18]). All these implementations are conceived for 
equations having their coefficients in C(x) (actually Q(x)), which is the natural 
environment of the original algorithm. 

In this article we apply a slightly modified version of the algorithm to families 
of second order equations, that is-equations in which the coefficients depend upon 
some external parameters. The examples treated are mainly hypergeometric and 
Heun's equations. By the way we recover some of Kimura's results ([10]) and also 
obtain relations between generalized hypergeometric functions (Proposition 10). As 
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far as we know, our results concerning Heun's equations are new. The study of 
examples is the aim of the third section of the paper. Our version of the algorithm 
is detailed in the first section and a sketch of the proof is presented in the second 
section: we follow mainly Kovacic's arguments with some modifications pointed 
out in our paper. 

This new version is being implemented in SCRATCHPAD by Fouche [6] who 
plans to use the resources of computer algebra to handle the parameters. It could 
be a stage in an automatic calculus of the differential galois group. 

This article grew out of a series of lectures by the authors as well as C. Mitschi 
and F. Richard-Jung given in l-P. Ramis Seminar in 1986-87. We also would like 
to thank the referees for some valuable suggestions. 

1 Description of the Algorithm 

1.1 The Method 

Let us recall a few basic facts from differential algebra. We consider C(x) equipped 
d 

with the usual derivation - as a differential field. A differential extension of C(x) is 
dx d 

a differential overfield, the derivation of which extends -. 
dx 

Let 

a(x)y" + b(x)y' + c(x)y = 0 (1) 

be a differential equation of order two with polynomial coefficients. If {1], 0 is a 
fundamental set of solutions of this equation in some differential extension of C(x), 
with the same field of constants, the field K = C(x)(1], 1]', (, n is a Picard- Vessiot 
extension of C(x) associated to Eq. (1). 

A field automorphism of K is called: 

• a differential automorphism if it commutes with the derivation of K 
• a C(x)-automorphism if it is a differential automorphism leaving C(x) pointwise 

invariant. 

The group G of all C(x)-automorphisms of K is called the differential galois 
group of Eq. (1). 

It is known (Kolchin [11]) that the Picard-Vessiot extension is unique up to 
C(x)-differential isomorphism and the G may be viewed as an algebraic subgroup 
of GL(2, C) by associating to (lEG the matrix 

such that (l(1]) = iY.1] + y( and (l(() = /31] + be. 
We are now able to give a precise definition of a liouvillian extension or solution. 

Definition 1. A differential field extension L of C(x) is called liouvillian if there is a 
tower offields C(x) = Lo C L1 c··· eLm = L, such that for i = 0, ... ,m ~ 1, L i + 1 = 
LJ1]J, where one of the following conditions holds: 
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• IJi is algebraic over L i, (algebraic extension) 
• IJiELi , (extension by a primitive) 

• '!l.ELi , (extension by the exponential of a primitive). 
IJi 

A solution of Eq. (1) is called liouvillian if it belongs to some liouvillian extension of 
C(x). 

As the order of the equation is two, the "variation of the constant" method 
proves that either no solution ofEq. (1) is liouvillian or all solutions are liouvillian. 

Replacing in Eq. (1) the function y by the simultaneously liouvillian function 

y exp S ~ we only have to look at equations in the reduced form 
2a 

y" - r(x)y = ° (2) 

where rEC(x). Note that if a =1= 0, 

2b'a - 2ba' + b2 
- 4ac 

r = -----:;:----
4a2 

It is a classical fact (Kaplansky [9]) that the differential galois group of Eq. (2) is a 
subgroup of SL(2, C). This is generally not the case for the differential galois group 
of (1); indeed the previous transformation does not preserve the galois group. 

Proposition 1 (Kovacic). The equation y" - ry = ° has liouvillian solutions if and 
only if its differential galois group is a proper algebraic subgroup of SL(2, C). 

The logarithmic derivative w of a solution ofEq. (2) satisfies the Riccati equation 

w' +w2 =r (3) 

By Lie-Kolchin's theorem, it is known that Eq. (2) has liouvillian solutions if 
and only if Eq. (3) has an algebraic solution, the degree of which belongs to 

Lmax = {1,2,4,6, 12}. 

It is now possible to sketch the main steps of the algorithm. 
1. By examining the nature of the poles of r, one can define a subset L of Lmax 

containing the possible values for the particular equation under consideration. This 
is achieved in what is called First step in the algorithm. There, one finds our 
improved "necessary conditions". 

2. Exploring increasing values of n in L, one searches for a minimal polynomial 
of degree n 

(4) 

with aiEC(x), which could be satisfied by a solution w of the Riccati Eq. (3). 
The differential galois group of Eq. (2) acts on the solutions of Eq. (3) and it acts 

algebraically (i.e. as an ordinary Galois group) on its algebraic solutions. Thus if a 
root of the irreducible polynomial (4) is a solution of Eq. (3) then any root of this 
polynomial is also a solution of Eq. (3). By this property and since the Riccati 
equation is of order one, one gets an _ 2, ... , ao as explicit rational functions of an- 1 

and one just has to find an - 1 . 
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3. One looks for an - 1 of the form 

where: 

• e is related to the poles of r, that is the fixed singularities of the Riccati Eq. (3). 
For each n there is afinite set of possible values for e and they can be computed 
from the exponents of the Eq. (2) in its singular points (including 00 ifnecessary). 
These possible values for e are listed in the Third step of the algorithm. 

• P is a polynomial related to the moving singularities of the Riccati Eq. (3), the 
degree of which is a known function of the pair (n, e). The coefficients of P have 
to satisfy a linear, generally overdetermined system. When for at least one pair (r, e) 
such a polynomial P can be found, the polynomial (4) corresponding to the 
smallest such n is certainly irreducible. 
The final answer takes the form: 

• either the differential Eq. (2) has no liouvillian solution, 
• or this equation has only liouvillian solutions. The algorithm produces an 

irreducible polynomial with rational coefficients. To any root (j) ofthis polynomial 
is associated the solution '1 = exp J (j) of Eq. (2). 
When one liouvillian solution is found, another one, linearly independent, is 

'1 J~. This second solution is not always detected by the algorithm; moreover the 
'12 

various solutions given by the algorithm are not necessarily linearly Independent. 

1.2 The Algorithm 

Notations. Let Lmax = {1,2,4,6, 12} and let h be the function defined on Lmax by 

h(1) = 1, h(2) = 2, h(4) = 3, h(6) = 2, h(12) = 1. 

Input: A rational function 

r(x) = s(x). 
t(x) 

The polynomials s, tEC[X] are supposed to be relatively prime, t being unitary. 
The differential equation under consideration is 

y" -ry=O. 

First step: The set L of possible degrees of algebraic solutions of the Riccati equation. 

1. Make a full linear factorisation of t(x) over C. 
If t(x) = 1 then m = 0, else according to this factorisation set 

t(x) = t1 (x)t2(X)2 ... tm(x)m 

where the t;'s are unitary pairwise relatively prime polynomials with no 
multiple root and tm i= 1. 
Denote by T' the set of complex roots of t and let T = T' U { 00 }. 

Introduce the order o(c) of an element CET by 
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o(c) = { 
i when C is a root of t i , 

max(O,4+degs-degt) whenc= 00. 

Let m+ = max(m,o(oo)). 
For ° ~ i ~ m+, denote by r i = {cErlo(c) = i} the subset of all elements of 
order i. 

2. If m+ ~ 2 then Y2 = card r 2 else Y2 = 0. Compute 

Y=Y2+ card ( U rk)' 
oddk 

3~k~m+ 

3. Define the subset L' of Lmax by the following rules: 

lEI: 

2EI: 

4,6,12EI: 

~ 

~ 

~ 

Y = Y2 
y~2 

m+ ~2. 

4. For each CE r 1 u r 2 , compute the numbers rl.c and Pc defined by 

I 
rl.c 2+~~+O(1) whencEC, 

(x - c) x - C 
r(x) = 

rl.
oo + Poo + o(~) whenc = 00. 

x2 x 3 X4 

5. If 4¢:I: then L = I: else 

VCEr, J1 + 4r1.eEQ, 

if 
L Pe=O 

then L = L:, 

1 + 4C~2 rl.c + cEr~urfe )EQ 

else L = I:\ {4, 6, 12}. 
6. If L = 0 then go to OUTPUT2 

else assign n the smallest value in L. 

Second step: Exponents at the singular points 

1. If OOEro then Eoo = h(n){O, 1, ... , n}. 
2. For each CEr1 , define the set Ee by Ee = {nh(n)}. 
3. When n = 1, for each CEr2, define the set Ee by 

4. When n ~ 2, for each CEr2, define the set Ee by 

Ec = {nh;n)( 1- Jl + 4r1.c) + h(n)jJl + 4r1.e l j = 0, ... ,n }nz. 
If at least one set Ee is empty then go to CONTINUE. 
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5. When n = 1, for each cET2v with v ~ 2, compute one of the two "squareroots" 
[Jr Jc of r, defined up to sign by the following conditions: 
• for CEC, 

• for C = 00, 

r:. 0: 2 A-
[y rJc = __ c -v + L -,-,c-

i (x-c) i=v-dx-c) 

r- r = +0 --Jr 2 f3c (1) 
[ Jc (X-C)"+l (x-c)" 

o 
[Jr]oo = O:ooxv- 2 + L Ai,ooXi 

i=v-3 

r- [Jr]~ = -f3CXJxv-3 + 0(XV
-

4). 

Now define the set Ec by 

and a "sign" function on Ec by 

if f3c # 0, 

if f3c = 0. 

6. When n = 2, for each CE Tv with v ~ 3, define the set Ec by Ec = {v}. 

Third step: Possible degrees for P and possible values for e 
1. For each family!!. = (eJcEr of elements ec in Ec compute 

2. Select all families!!. satisfying the two following conditions: 
(a) d(!!.)EN, 
(b) when n = 2 or 4, at least two ec are odd and moreover, 

when n = 4 at least two ec are multiple of 3. 
If no family is selected then go to CONTINUE. 

3. For each selected family!!. set 

where b~ is the Kronecker symbol. 

Fourth step: Tentative computation of P 
For each (!!., e) try to find a polynomial P of degree d = d(!!.) satisfying the linear 
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system in the coefficients of P: 

(*)n f ;~_~=~P;-ePi-(i+1)(n-i)rpi+1 for n~i~O l P- 1 =0 

(p; denotes the derivative of Pi with respect to x). 
Output: If a pair (8, P) is found then 

OUTPUT1: The differential equation y" - ry = 0 admits the liouvillian solution 
11 = exp f OJ, where OJ is any solution of the irreducible algebraic equation 

~ Pi . 
1... ---OJ'=O 

i=O (n - i)! 

else 
CONTINUE: If n is not the greatest element in L 

then assign n the next value in L and go to Second step 
else 

OUTPUT2: The differential equation y" - ry = 0 has no liouvillian solution. 

1.3 Comments 

The Kovacic algorithm has been conceived for equations with rational coefficients. 
The various articles or reports on its implementation listed some of the practical 
problems encountered. We have not tried to solve these problems as our purpose 
was to handle families of equations, and from this point of view things are partially 
better. Specifically the problem offactoring the denominator ofr, which is generally 
not an easy task, is avoided here while we deal with normalized equations in which 
the poles of r are a priori given. 

In his original article, Kovacic already mentioned that cases n = 1 and n = 2 can 
generally be carried out by hand or with the help of a calculator. The situation is 
not so simple with parameters as, for instance, the degree of the polynomial P may 
depend on these parameters and the answer in no longer a matter of linear algebra 
(see the last example). Anyway we have been able to give a complete answer in most 
of the cases as long as only the case n = 1 or n = 2 was under consideration. 

When n = 1, the final step is to decide if the second order linear differential 
equation for P equivalent to (*)1 has a polynomial solution. In the two families 
studied (the hypergeometric and the Heun's) this equation belongs to the same 
family. Thus, it could be of interest to first solve this problem, which is a particular 
case of the general problem of finding rational solutions [20] Lemma 3.1 or 
algebraic solutions [25], see also [3]. 

In case it is reducible, the differential equation mayor not have a basis of 
solutions of the form 11 = exp f OJ (OJEC(X)) and it is easy to complete the case n = 1 
in the algorithm in order to compute all such solutions. In the example of the 
confluent hypergeometric equation we observe an exact correspondence between 
this fact and the nature of the differential galois group (see Sect. 3.1.2). Exploring 
this connection could be of interest. 
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2 Justification ofthe Algorithm 

2.1 Some Results From Galois Differential Theory 

From the well known classification of algebraic subgroups of SL(2, C) (see Kovacic 
[12] and Kaplansky [9] Theorem 6.4 and 4.12) one proves: 

Theorem 1. The differential galois group G of the equation 

y" - r(x)y = 0 (2) 

is an algebraic subgroup of SL(2, C) of one of the following forms: 
i) Gis triangularisable and then Eq. (2) is reducible and has a solution oftheform 

exp S w where WEC(X). (case n = 1) 
ii) G is imprimitive and then Eq. (2) has a solution of the form exp S W where W is 

algebraic of degree 2 over C(x). (case n = 2) 
iii) G is primitive and finite, and then Eq. (2) has an algebraic solution of the form 

exp S w where w is algebraic of degree 4, 6 or 12 over C(x). (cases n = 4, 6, 12) 
iv) G = SL(2, C) and then Eq. (2) has no liouvillian solution. 

This formulation was suggested to us by one of the referees. A similar statement 
for equations of order 3 can be found in a recent paper by Singer and Ulmer [21]. 
The already mentioned value for Lmax is a consequence of this theorem. 

Summarizing the different results which can be found in Kovacic [12] one has: 

Proposition 2. Suppose that the Riccati Eq. (3) has an algebraic solution w of minimal 
order n;;;; 2 and let 11 = exp S w. Then there exists a solution ( of the differential 
Eq. (2) and a polynomial Un(X, Y)EC[X, Y] such that 

1. deg Un = n 
2. un(x) = U n(l1, ()h(n)EC(X), where h is the function already defined on Lmax by 

h(l) = 1, h(2) = 2, h(4) = 3, h(6) = 2, h(12) = 1. More explicitely one has: 

U 2(X, Y)=XY 

U 4(X, Y) = X4 + 8Xy3 

U 6(X, Y) = X 5 y - Xy 5 

UdX, Y) = Xlly -11X6y6 _Xyll. 

Note that these polynomials are semi-invariant polynomials under the action of 
G as a subgroup of SL(2, C). 

2.2 Algebraic Solutions of the Riccati Equation 

In this section we look for an algebraic solution of the Riccati Eq. (3) by computing 
its minimal polynomial, if any. 

Let A(w, £!) be a unitary polynomial of degree n: 

A(w,a)=wn- ni,l ai(x) Wi 
- i=O (n - i)! 

(5) 

with coefficients £! = (an - l , .. • , al , ao) in some differential extension of C(x). 
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The polynomial A is the expected minimal polynomial (4) if it is irreducible, it 
has its coefficients in C(x) and if any root of A is a solution of the Riccati Eq. (3). 

Proposition 3. Each root of the polynomial (5) is a solution of the Riccati Eq. (3) if 
and only if Q satisfies the condition 

(n) an = -1 

(-1 bis) a-I =0. 

Proof. Kovacic [12] proved the "if" part (Theorem 2) and the "only if" part 
(Theorem 3) in the case when n = 4, 6 or 12 and A is the expected minimal 
polynomial. However we give a complete proof. 

Let oA and oA denote the derivatives of the function A(w, Q(x)) with respect to 
ow ax 

the independent variables wand x. Let Al (w, Q) be the polynomial of degree n + 1 
in w given by 

oA oA 
A 1(w,Q) = -·(r - w2) +-. 

ow ax 

The condition (#)n says that Al is a multiple of A, more precisely that 

A 1(w,Q)= -(nw+an _ 1)A(w,Q). (6) 

To prove the "only if" part, we therefore have to show that if w is a root of order 
at least p of A then it is a root of order at least p of A 1. Let us suppose then that 

akA 
owk(w,Q)=O, O~k~p-l. [k] 

By differentiating the relation [0] with respect to x one gets 

oA oA 
-(w, a)w' + -(w, a) = 0. 
ow - ox-

Taking into account the Riccati Eq. (3) this means that A 1(w,Q) = 0, which is the 
expected result when p = l. 

In the general case, the k'th derivative (k = 0, 1, ... ,p - 1) with respect to w of 
the polynomial A 1 takes the form 

akA ok+lA akA Ok- 1A ok+1A 
_1 =~-.(r-w2)-2kw--k(k-1)~-+~-. (7) 
owk OWk+1 owk OWk- 1 owkox 

On the other hand by differentiating the relation [k] with respect to x (k = 
0,1, ... , p - 1) one has the relation 

Ok+1A Ok+1A 
-k-1 (w, Q)w' + -k-(W, Q) = 0. 
ow + ow ax 
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Taking into account the Riccati Eq. (3), this gives a
k 
Ak1 (cu, g) = ° for 0;£ k;£ p - 1. 

This ends the proof of the "only if" part. aw 
Conversely suppose now that the relation (6) is satisfied. Let p be the order of 

cu as a root of A(w, g) (this is a well defined natural integer as A is not the null 
polynomial). By differentiating p - 1 times the relation (6) and using the formulas 
(7) one gets 

aPA aPA 
-(cu, a)·(r - cu 2

) + 1 (cu, a) = 0, 
awp - awp - ax -

akA 
since aw

k
(cu,g)=Ofork=O, ... ,p-1. 

On the other hand, by differentiating the relation ~:-P~ ~ (cu, g) = ° with respect 
to x one gets 

aPA aPA 
-(cu,a)cu' + (cu,a) = 0. 
awp - awp - 1ax-

By combining these two formulas and since a
p 

A (cu, a) #- 0, one deduces 
awp -

Proposition 4. A solution of (#)n is rational (gE(c(X)t) if and only if an- 1 EC(X). 

Proof. The equation (n - 1) in (#)n is trivial. By descending induction on i, for 
n - 1 ~ i ~ 0, the equation (i - 1) gives ai - 1 as a rational function of an - 1 and of 
its derivatives. 0 

Remarks 
1. In the system (#)n one can eliminate the ai for i = 0, ... , n - 2. So this system 

is equivalent to a single non linear differential equation of order n for an - 1 • For 
n = 1 this equation is of course the Riccati Eq. (3) itself. 

2. If n is the smallest element of Lmax such that (#)n has a rational solution then 
the corresponding polynomial A(w, g) is irreducible in C(x)[wJ (see Kovacic [12J). 

3. The proof of Proposition 3 relies on the fact that the Riccati equation is of 
order 1. There is no known analogue for this proposition in higher orders so an 
efficient algorithm to compute all the coefficients of a minimal polynomial is much 
more difficult to obtain (see Singer-Ulmer [21J). 

PropQsition 5. Let FEC[X, YJ be a homogeneous polynomial of (total) degree nand 
Y1,Y2 two solutions of the differential Eq. (2). There exists a solution g of (#)n such 
that an _ 1 is the logarithmic derivative of cp(x) = F(y l' Y2). 

Proof. By factoring F in linear terms one sees that it suffices to prove the 
n 

proposition when cp(x) = TI l1i where the l1i are (possibly equal) solutions of the 
i=l 

Eq. (2). 



Kovacic's Algorithm and Its Application to Special Functions 221 

I I n 

Setting Wi =~, one has P..- = I Wi where Wi (i = 1, ... , n) is a solution of the 
Iii <p i=l 

Riccati Eq. (3). 
Let!:! be defined by the relation 

A(w,!:!) = TI (w - wJ 
i= 1 

According to Proposition 3, !:! is a solution of (#)n and obviously 

n <p' 
an-1=Lwi =-, 0 

i= 1 <p 

Corollary 1. If the Riccati equation has an algebraic solution of degree n ~ 2, the 
system (#)n has a rational solution. 

Proof. In the previous proposition take F = Un' Yl = 11, Y2 =, as defined in 

Proposition 2. The logarithmic derivative <p' belongs to C(x) and the result follows 
from Propositions 4 and 5. 0 <p 

This section can be summarized in the 

Theorem 2. If the differential equation y" - ry = 0 has liouvillian solutions then 
1. for some min LmaX' the system (#)m has a rational solution uniquely determined 

from am - 1 , 

2. if n is the smallest such m, then the polynomial (4) associated to a rational 
solution of (#)n is the minimal polynomial of an algebraic solution of the Riccati 
equation, 

3. if n ~ 2 there is a rational solution such that an _ 1 is the logarithmic derivative 
of un (x). 

Remark. The system (#)n can be put in the form (*)n used in the algorithm by setting 
pi p. 

an - 1 = e + - and ai = ~ for i = - 1,0, ... , n - 2. 
P P 

2.3 The Proof 

2.3.1 Conditions on the Poles of r. In [12J Kovacic deduces a set of necessary 
conditions for cases i) to iii) to occur. These conditions concern the poles of r. In 
order to let 00 play the same role as any point in C, we make the change offunction 
and variable defined by 

Y(x) = XY(~} 
The Eq. (2) transforms to equation 

Y"-RY=O with R(x) = :4r(~) 
which is still in reduced form. 

(8) 

(9) 
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The order of CIJ in Eq. (2) is then defined as the order of 0 in (9): 

o( CIJ ) = 4 + deg s - deg t if 
s 

r=-. 
t 

We call the point CIJ a pole of r if o( CIJ) > O. 
Using the same arguments as Kovacic [12] for every point in pl(C) = 

C U { CIJ}, we are led to classify the liouvillian equations according to the following 
list, giving in each case a set of necessary conditions (N.C.): 

r( 
Case 1: the Eq. (2) has a solution 1] such that -EC(X). 

1] 

N.C.: the order of each pole ofr (in pl(C)) is 1 or is even. 

Case 2: the Eq.(2) has a solution 1] such that! is quadratic over C(x). 
1] 

N.C.: r has at least two poles with order either 2 or odd and greater than 2. 

Case 3: the Eq. (2) has a solution 1] such that! is algebraic over C(x) of degree 4, 
6 or 12. 1] 

N.C.: the order of each pole of r is less or equal to 2. Moreover in this case the 
arithmetic conditions listed in First step 5 of the algorithm must be fulfilled. 

Remarks 
1. The condition obtained in Case 2 is stronger than the one given by Kovacic 

as we consider 00 as any other point in Pl(C). 
2. The arithmetic conditions of Case 3 are straightened out in the work of Singer 

and Ulmer [21]; they also give a reference to an old similar result by Fuchs. 

As a consequence of all these conditions the set Lmax can be reduced to the 
subset L. 

2.3.2 The Exponents when n ~ 2. Throughout. the next two sections we suppose 
that the Riccati equation has an algebraic solution of degree n ~ 2. 

For some finite set tf} such that T' c tf} c C, the rational function un(x) 
(Proposition 2) may be written 

un(x) = A TI (x - c)ec 

CE'ii 

with ..tEC and ecEZ. This formula is not unique as we accept ec = O. 
Using Proposition 5 and its corollary, one deduces that the system (#)n has the 

solution 

an - 1 =_1_ L~' 
h(n) CE'iiX - c 

By examining the system (#)n one gets conditions on the exponents ec-

Theorem 3. With the previous notations,for all CEC thefollowing assertions are true: 
i) If C is not a pole of r then ecEh(n){ 0,1, ... , n}. 
ii) If C is a simple pole of r then ec = nh(n). 
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iii) If c is a double pole of r then ec, which must be an integer, is of the form: 

nh(n)(~) ~ ~2- 1 - y 1 + 4etc + h(n)jy 1 + 4etc 

with j E {O, 1, ... , n} and etc defined as in First step 4 of the algorithm. 
iv) Ifn = 2 and c is a pole of order v ~ 3 ofr, then ec = v. 

223 

Proof. Without loss of generality one may suppose c = O. We write e in place of eo 
and et for etc. 

et fJ 
Let us assume firstly that n ~ 2 and that r has the form r = - + - + 0(1). As 

Xl x 
an _ 1 has only simple poles, one can define e and f by the condition an - 1 = 

e -+ f +0(1). 
h(n)x 

If the ai are defined recursively by (#)n it is clear by induction that the valuation 
of ai satisfies val(aJ ~ - (n - i). Let Ai and Bi be defined by 

Ai Bi (1) ai(x)=~+ n-i-1+ 0 n-i-2' 
X X X 

From (#)n one deduces the induction formulas for 0;:;; i;:;; n: 

Ai- 1 = (n - i - h;nJAi - (n - i)(i + l)etAi+ 1 

starting with An + 1 = 0, An = -1 and with the extra condition A -1 = O. 
• In case i) or ii) et = 0 and one gets easily 

(_1)"-i+1 n- i+1( e .) 
A.= TI --]. 

I (n - 1)! j=O h(n) 

e 
The condition A _ 1 = 0 implies that h(n) has to be a natural integer less or equal 

to n. This proves case i). 
• In case ii) one looks now at the induction formula satisfied by Bi , 0;:;; i ;:;; n: 

Bi- 1 =(n-i-l- h;nJBi-fAi-(i+ 1)(n-i)fJAi+1 

starting with Bn = 0 and with the extra condition B-1 = O. Then one proves that 

if the integer 1= _e_ satisfies 1< n then fJ = 0, in contradiction with the order 
h(n) 

of 0 as a pole ofr: 
One has Ai = 0 for n;:;; i < n -1- 1 and An - 1 of. O. So from B-1 = 0 one deduces 
Bi = 0 for 0;:;; i;:;; n -1- 2. In particular 

0= Bn- I - 2 = 0 x Bn- 1- 1 - fJ(n -1)(1 + 1)An- 1 

which implies fJ = o. 
• In case iii) et of. 0 and the induction formula for Ai is not so easy to solve. It is 
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convenient to replace A,. by D,. = ~ which satisfies for 0 :::;; i :::;; n 
(n-i)! - -

(n - i + I)D i- 1 = (n - i - ~e~)Di -1X(i + 1)Di+ 1 
h(n) 

withDn + 1=0,Dn = -1,D_1=0. 

(10) 

We remark that, due to the factor (i + 1) in the last term, if (D i) - 1 5 i 5 n + 1 satisfies 
these conditions then the sequence (Di)iEZ obtained by setting Di ;:;' 6 for i ~ -1 
and i ~ n + 1 also satisfies the induction formula (10). Accordingly its generating 
function <p(w) = L DiWi satisfies the differential equation 

Thus 

iEZ 

(W 2 _ W - 1X)<p'(W) + (~e~ - n(w - l))<P(W) = O. 
h(n) 

<p'(w) 

<p(w) 

e 
--+n(w-1) 

h(n) 

which, if IX -# -~, admits the partial fraction decomposition 
e -+ n(fl·-1) 

L h(n) J 

j= 1,2 (2flj - 1)(w - flj) 

with flj=i( 1 +(-l)j~} 
Hut <p(w) must be a polynomial of degree n and this implies some conditions on 
the partial fraction decomposition of its logarithmic derivative. Assertion iii) 
follows from these conditions. 

Let us now suppose that n = 2 and that 0 a pole of order v > 2 of r. If we write 

r = ~ + o(~) with IX -# 0, one deduces from (#}z: 
XV XV 

a2 = -1 

a1 = ~ + o(~) 
2x X 

The result now follows from the condition a _ 1 = O. 0 

Corollary 2. The statements of Theorem 3 are valid for c = CIJ with 

ero = nh(n) - Lee' 
cd? 
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Proof. The function un(x) associated to the equation obtained by the transformation 
(8) satisfies 

Un(x) = xnh(n)Un(~) 

in which 0 has the given order e 00' D 

2.3.3 End of the Proofwhen n ~ 2. One deduces from Theorem 3i) that ifliouvillian 
solutions of the corresponding type do exist, there is a polynomial P such that 

TI (x - c)ec = p(x)h(n). 
CE'Ii\r 

Lemma 1. The polynomial P just mentioned has degree 

1 
d=n-- Lee' 

h(n)cEr 

Proof. From the definition of P one has 

dh(n) = L ec = L ec - L ec 
CE'{!\r CE'Ii CET' 

ceF' 

= nh(n) - L ec· D 
CEr 

Let e be defined by 

e=-I-L~ 
h(n)eEr x - c 

so that an- 1 = e + pl. Using this decomposition of an- 1 the system (#)n takes the 
P 

form ( * )n given explicitly in the algorithm. 

2.3.4 Sketch of the Proof when n = 1. This time we have to look directly for a 
rational solution w of the Riccati equation Wi + w 2 = r and, contrary to what 
happened for an - 1 when n ~ 2, this solution could have poles of arbitrary order. 

Proposition 6 (Kovacic). If the Riccati Eq. (3) has the rational solution w then any 
pole CEC of w satisfies 

i) if c is not a pole of r or is a pole of order 1 or 2 of r then c is a simple 
pole of w. Its residue ec is given by the formulas of Theorem 3 with n = 1 if one 
sets h(l) = 1, 

ii) If c is a pole of r of even order 2v with v ~ 2, then c is a pole of order v of wand 

e ec 
W= c+--+O(I) 

x-c 



226 A. Duval and M. Loday-Richaud 

2 A. 
where Oc = L ~ is defined up to sign by the condition 

i=v(X-C) 

r_o;=o(_1 ). 
(x - c)" 

For each choice of sign the possible values of ec are given in the algorithm (Second 
step 5.) 

Suitable modifications of these results lead to the value of e 00 and eventually of 

[Jr] 00' This time the exponent ec for the solution w = i at a finite point c is defined 
y 

as ec = Res(w, c). At 00 we set eel) = Res(Q, 0) where Q is the logarithmic derivative 

of Y(x) = Xy(~) (transformation (8)). Therefore we get the relation 

Res (Q, 0) = 1 + Res(w, 00). 

As previously the Riccati equation admits a rational solution if and only if there 
is a polynomial P such that 

P' 

P 

If such a polynomial exists its degree is given by the formula of Lemma 1 and it 
satisfies the following differential equation equivalent to (*)1: 

P" + 20P' + (0' + 02 
- r)P = 0 

where 0 has the value given in Third step 3 of the algorithm. 

(11) 

Remark. The third order differential equation for P equivalent to (#}z is (Kovacic 
[12]) 

pili + 30P" + (302 + 3()' - 4r)P' + (()" + 3(}(}' + (}3 - 4r() - 2r')P = 0 (12) 

which can be seen to have {yi,Y1Y2'Y;} as a fundamental set of solutions where 
{Yu Y2} is a fundamental set of solutions of the second order equation 

Y" + (}y' + (~()' + i(}2 - r)y = 0 (13) 

(the corresponding statement for n > 2 seems not to be true). 
If D denotes the second order equation, we will denote by D(iJ2 the third order 

Eq. (12). More generally one may define D(iJ" for nEN*. Some properties of these 
operators were studied by Singer (see [20] and also [21]). 

3 Examples 

3.1 The Hypergeometric Family 

The hypergeometric fuchsian equation normalized in such a way that its three 
singular points are located at 0, 1 and 00 is 
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x(1 - x)y" + (c - (a + b + l)x)y' - aby = 0 (14) 

where a, band c are complex parameters. 
The reduced form is more conveniently written with the parameters 2, fl and v 

defined by 2 = 1 - c, fl = c - a - b and v = a-b. 
The change offunction y ~ X(.<-1)/2(1 - X)(/L-l)/2 Y puts the equation in reduced 

form with 

22 - 1 fl2 - 1 22 + fl2 - v2 - 1 
r(x)=--+ +-----

4x2 4(1- X)2 4x(1 - x) 

The confluent hypergeometric equation obtained from the previous one by 
making "1 tend to 00" has two classical forms: 

• Kummer's form 

xy" + (c - x)y' - ay = 0 (15) 

• Whittaker's form 

(
1 K 4fl2 - 1) 

y" - ---+ y=O 
4 x 4x2 

(16) 

1· d c c 1 where the parameters of the two equations are mke by K = - - a and fl = - --. 
2 2 2 

Note that the second form is reduced and that the liouvillian change offunction 
y~x-(1/2)-/LeX/2y transforms the first equation into the second one. 

By double confluence, that is making "0 and 1 tend to 00", one gets the parabolic 
cylinder equation 

y" + (v + t - i-x 2 )y = O. 

The following form of this equation is studied by Rehm [15]: 

y" - (a 2x 2 + 2abx + c)y = 0, a i= O. 

(17) 

(18) 

The change of variable x ~ g(ax + b) and the relation v = b
2 

- C -! lead from 
V~ 2a 2 

one equation to the other. We will use Rehm's form in order to compare his results 
with ours. 

Applying the general principle that the more confluent the equation, the easier 
it is to handle, we start with this last case. 

3.1.1 The Parabolic Cylinder Equation. The only singular point of the Eq. (18) 
y" - (a 2x 2 + 2abx + c)y = 0 is located at 00 and, as we suppose a i= 0, it has order 6. 

The only possible value for n is 1. 

One may take [Jr ] 00 = ax + b and then 
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Using Lemma 1 one gets the necessary condition (see Rehm [15]): 

b
Z 

- c. dd' 
-- IS an 0 mteger 

a 

With the other form of this equation this condition reads~. 
We suppose now this condition satisfied and, as the Eq. (18) remains unchanged 

by (a,b)H(-a, -b), one may suppose that this integer is positive, namely that 
bZ -c 
-~=2d+1. 

a 
One has to find a polynomial P of degree d such that 

P" - 2(ax + b)P' + 2daP = 0. 

Under the previous condition such a polynomial always exists (an explicit formula 
is given in [15]), so that the condition is also sufficient. Only one solution (up to 
scalar multiplication) is detected by the algorithm. 

With the help of Kovacic's algorithm, it is very easy to see that the equation 
y" + (bx + c)y = ° (a form of Airy equation when b i= 0) has liouvillian solutions only 
if b = 0, as otherwise o( ex)) = 5 so that yz = ° and y = 1, giving L = 0. 

3.1.2 The Confluent Hypergeometric Equation. We begin by using the Whittaker 
form (16). One has to distinguish three cases, according to the order of rat 0. 

1. If 4,uz - 1 = K = 0, the equation admits trivially the two liouvillian solutions 
e- x

/
z and eX

/
z. They both can be detected by the algorithm. 

2. If 4,uz - 1 = 0, K i= 0, one has L = {I} and an easy computation gives for the 
possible degree of the polynomial d = ± K - 1. Thus we get the necessary condition 

I KEZ* I· 
If this condition is satisfied and if e = ± 1 is (uniquely) defined in such a way that 
eKE - N*, we have to look for a polynomial of degree d = - eK - 1 satisfying the 
(confluent hypergeometric) equation 

xP" + (2 + eX)P' - edP = 0. 

It is well known that the Laguerre polynomial 

L~l)( -eX) = ± em( d ~ 1 )x~ 
m=O d m m. 

is such a solution; thus the given necessary condition is also sufficient. The liouvillian 
solution of(16) given by the algorithm is then 

XL~l)( _ ex)e'x/z. 

3. If 4,uz - 1 i= 0, then once more L = {I} and, if it exists, d takes the form 
d = - i + e,u + e'K. Thus we get the necessary condition 

li+K+,uEZ or i-K+,uEZI 

which allows one or two possibilities for dEN. The equation for P is then 

xP" + (1 + 2e,u + e'X)P' - e'dP = ° 
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which admits the Laguerre polynomial solution 

L~ell( -s'x) = i (s,)m(d +_2Sf1)X~. 
m=O d m m. 

The corresponding liouvillian solution of (16) is 

Translating these results for the Kummer Eq. (15), we discuss the number of 
solutions possibly given by the algorithm in the next proposition. Using the 
relations between the parameters of the two forms of the equation, we have 

2 c 1 1 
4/1 - 1 = c(c - 2) K = - - a - + K + /I = C - a and - - K + /I = a. 

t" '2 '2 t" '2 t" 

Proposition 7. The confluent hypergeometric equation xy" + (c - x)y' - ay = ° has 
liouvillian solutions if and only if 

Moreover 

cE{0,2) and aEZ 

or 

c¢{0,2} and {or aEZ 

c-aEZ 

c 
• if c = ° or c = 2 and a = -, two linearly independent solutions are detected 

2 
c 

• if c = ° or c = 2, aEZ, a =f. -, one solution is detected 
2 

• if c(c - 2) =f. 0, aEZ or c - aEZ, k ~ 2 solutions are detected where 

k=card(Nn{a-c, -a,a-l,c-a-l}). 

But when k = 2 these solutions are linearly independent if and only if 

c ~ a ~ ° or 1 ~ a ~ c - 1. 

These results may be parallelled with the computation of the galois group of the 
Kummer equation performed by Martinet and Ramis [13]: the same values of the 
parameters are the relevant ones. In this table k is the number of linearly 
independent solutions given by the algorithm. 

I k II Differential galois group I 
0 GL(2,C) 

1 C* D< C 

2 C* 

3.1.3 The Fuchsian Hypergeometric Equation. The problem of finding liouvillian 
hypergeometric equations is solved by Kimura [10]. Working without the help of 
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a computer we recover only part of his results but we also obtain formulas 
connecting some usual or higher order hypergeometric functions. 

According to the order of 0, 1 and 00 in r there are five cases to consider. Up to 
a homography leaving the set {O, 1,00} fixed, these cases are: 

Cl .1.2 = 112 = v2 = 1, in which case r has no pole; 
C2 .1.2 = 112 = 1, v2 i= 1, in which case r has two simple poles (0 and 1) and a 

double pole (00); 
C3 .1.2 = 112 i= 1, v2 = 1, in which case r has two double poles (0 and 1); 
C4 .1.2 i= 1,112 i= 1, .1.2 i= 112, v2 = 1, in which case r has two double poles (0 and 1) 

and a simple pole (00); 
C5 .1.2 i= 1,112.. i= 1, v2 i= 1, in which case r has three double poles. 

The case Cl is trivial. In the other cases there is a double pole; thus m + is always 
2 and then 1 EL. Actually L= Lmax except in case C2 where 2¢L. 

Let us try 1 n = 1 I· 
The exponent sets at 0 and 1 are 

Eo=g(1+BoA)IBo= ±1} 
E1 = g(1 + B111)IB1 = ± 1} 

except in case C2 where Eo = E 1 = {1}. 
The exponent set Eoo is 

• Eoo = g(1 + Boov)IBoo = ± 1} in cases C2 and C5 
• E 00 = {O, 1} in case C3 
• E 00 = {1} in case C4. 

The following table shows the degree of a possible P and the condition 
expressing that one such number is a positive integer. 

I Necessary Condition I 
C2 -!(3+EooV) VEl +2Z\{±1} 

C3 -eoo - i(Eo + EdA -

C4 -1 - !(EoA + EIIl) A ± IlE2Z 

C5 -!(1 + EoA + EIIl + Eoo v) A ± Il ± vE2Z + 1 

In case C3 one easily finds the liouvillian solution 

y(x) = X(1 +eOA)/2(1 _ xp -eoA)/2. 

In the three other cases the conditions found for d all reduce to the unique one 

I A ± Il ± V is an odd integer I 
Let us suppose that this condition is fulfilled. By computing in each case the 

value of e one finds the following differential equation for P: 

case C2 x(1 - x)P" + 2(1 - 2x)P' + d(d + 3)P = 0 
case C4 x(1 - x)P" + (1 + BoA + 2dx)P' - d(d + 1)P = 0 
case C5 x(1 - x)P" + (1 + BoA + (2d + Boo V - 1)x)P' - d(d + Boo v)P = O. 
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One may note that the equation as well as the degree d for case C4 is the 
particular case Coo v = 1 of case CS. 

All these differential equations are hypergeometric and do have polynomial 
solutions of the suitable degree d, namely 

( 
- d, d + 31) h' h . s: case C2: zF 1 2 x W IC IS up to a constant lactor the Gegenbauer 

polynomial C~/2(1- 2x) or the Jacobi polynomial p~l,1)(l- 2x) 

cases C4 or CS: zF 1 (- d, - d - Coo vl x ) which is up to a constant factor the Jacobi 
1 + coA 

polynomial p~eo;.,e1l')(1 - 2x). 
These results are summarized in the next proposition which is part A of theorem 

I in Kimura [10]. In 1894, Beke [2] proved the same result in terms of the 
parameters a, b, c, namely that equation (14) is reducible if and only if one of the 
numbers a, b, c - a, c - b is a negative integer (we thank the referee who mentioned 
this fact to us). 

Proposition 8. If the three parameters A, jl, v of the hypergeometric differential 
equation 

[
A2 -1 jl2_1 A2 +jl2_ V2_ 1] 

y"- --+ + y=O 
4x2 4(1 - X)2 4x(1 - x) 

are such that ± A ± jl ± V is an odd integer then the equation has liouvillian solutions. 

If the condition (*) is not fulfilled, we try I n = 2 I in cases C3-CS. 
The arithmetic necessary conditions for the exponents show that among the 

three integers ec exactly one has to be even. Up to a convenient homography let us 
suppose that eoo is even and that eo and e1 are odd. We get the corresponding forms 
of the parameters listed below: 

II Parameters 

C3 },=1+ 1,IEZ 

C4 }, =1 + 1,11 = 1 + m,l # m, I # - m -1,1 + m even 

C5 .Ie = 1 + I, 11 = 1 + m, if v E Z, I + m + v odd 

In cases C4 and CS one can prove that among the possible values for d there is 
always the one given by the following table: 

I d III ~ 0, m ~ ° II ~ 0, m ~ - 111 ~ - 1, m ~ ° II ~ - 1, m ~ - 11 

II-m-2 
l+m-1 m-I-1 

1-I-m-3 
-1-m-2 I 

We may suppose I ~ 0 and m ~ 0 as these conditions are achieved by proper 
transformations on the parameters of the type (I, m)H(I, - m - 1). 

Under these conditions we will study each case separately. 
Let us first prove two lemmas. 
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1 d 
Lemma 2. Let dEN and eE- - N; if e =f. - - the differential equation 

2 2 

4x(1 - x)Y" + 4(dx + e)y' - d(d + 2)y = 0 

has a solution the square of which is a polynomial of degree d. 

P ,{, NOh' . d' h . (-dI2, -1-dI2 1 ) roo). ear t IS equatIOn a mlts t e two solutIons Yl (x) = zF 1 e x 

(
1 - e - dl2 - e - dl21 ) 

and Y2(X) = Xl ~e 2F 1 2 ~ eX. Let us recall that if a or b is a negative 

integer then zF 1 ( a~ b I x ) is a polynomial. Moreover if a and b are both negative 

integers, the degree of this polynomial is min( - a, - b). Therefore if d is even, Yl is 

a polynomial of degree ~. 
2 

If d is odd, we set d = 215 - 1 so that 

( ) 
_ l+ liZ F (1 + 1- 15, I - 15 I ) Y2 X - X 2 1 X 

I +~ 

and y~ is a polynomial of degree d if 0 ~ I ~ 15 - 1. The differential equation also 
admits the solution (near 1) 

YJ(x) = (1 - X)20+1/2~IZFl C ~ ~ ;:'~ ~ 111 - x) 

and if 15 + 1 ~ I ~ 215, y~ is a polynomial of degree d. 

The proof is complete as the condition e =f. - ~ is equivalent to I =f. b. D 
2 

Lemma3. Let dEN, eEt - N and VEe, ift - d ~ e ~ t and ifv~Z or Ivi > d then the 
hypergeometric differential equation 

4x(1 - x)y" + 4((d - 1)x + e)y' + (VZ - d2)y = 0 

has two linearly independent solutions the product of which is a polynomial of degree d. 

Proof. Let us set e = t -I and let D be the given differential equation. The two 
functions 

{ 

_ (l/Z)(d+v) (-t(d+V),t(1-d-V)+II~) 
Yl(X)-X 2Fl 

I-v x 
and 

_ (l/Z)(d~v) (t(V - d),t(1 + V - d) + II~) Y2(X) - x zF 1 
l+v x 

form a fundamental set of solutions of D near 00. Let z(x) be their product. By using 
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the general formula giving the product of two hypergeometric functions one has 
(see Bailey [lJ) 

z(x) = I A.4F3( -j,-i(d-v),i(l+v-d)+I,v-j 11)xd - j 

go J 1 + v, 1 + i(d + v) - j,i(l + d + v) -1- j 

with 

< - i(d + v)j<i(l + v - d) + I)j A. = _---=c __ ~---=c _____ ~ 

J (l-v)jj! 

where we writefor aEC andjEN, < a)j = a(a + 1)·· ·(a + j - 1) ifj > 0 and <a)o = 1. 
For j = d + 1 the term 4F 3 can be written 

F (- d - 1, i(1 + v - d) + I, v - d - 111) 
32 1+v,i(v-d-1)-1 

which, according to Dixon's formula (see [22J), vanishes if and only if 0 ~ 1 ~ d. 
Therefore z(x) has the Laurent series expansion 

z(x) = I AjX
j 

j""d 
with )~d = 1 and L 1 = o. 

On the other hand z(x) is a solution of the third order differential equation D(02 

which can be written in terms of the Euler operator 9 = ~ 
dx 

D3 = (1 - x)293 + 3(1 - x)(dx - il)93 + <P(x)9 + (VZ - dZ)(dx -/)x 

with <P(x) = (3d z - V
2

)X2 + (VZ - dZ - 41d -1- d - i)x + i + 2F + 2/. 
One deduces that the coefficients of z(x) satisfy for jEZ, j ~ d an induction 

formula of the form 

[j] 

where A(j) and B(j) are polynomials in j and one has set Ad+ 1 = o. 
As A(j) = (d - j + l)(vZ - (d - j + l)Z), this coefficient is non zero for 0 ~j ~ d if 

the conditions of the lemma are fulfilled, so that the sequence (Aj)j""d is uniquely 
defined. The relation [ - 1J shows that, as L 1 = 0, A_z = 0 too, and then recursively 
Aj = 0 for j < O. In other words z(x) is a polynomial of degree d. D 

The study of the three cases can now be achieved. 
1. If the condition for case C3 is satisfied one can see that a solution with n = 1 
has already been obtained and, as the differential equation for n = 2 is D(02 if Dis 
the equation for n = 1, in general we get nothing new. 
2. If the conditions for C4 are satisfied we set e = i-I and d = I + m - 1 which 
is an odd integer. With these notations 

and 

e(e - 2) (d + e)(d + e + 2) e2 + (d + e)2 + 2d 
r = --- + + ------

4xz 4(1 - x)Z 4x(1 - x) 

8=~+d+e. 
x 1-x 
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Notice that e i= - ~ as otherwise 1= m. Thus, according to Lemma 2 if D = 4y" + 
2 

48y' + (28' + IF - 4r)y the equation D(i)2, which is equivalent to (*}z, has a 
polynomial solution of degree d. One corresponding liouvillian solution is then 
given by the algorithm. As this solution is the square of a solution of D, only one 
solution is obtained at this step. 
3. If now the conditions for case C5 are satisfied, the same arguments with 
d = 1+ m and the use of Lemma 3 lead to the same conclusion when v is not an 
integer or if I v I > 1+ m. This time the algorithm gives two linearly independent 
solutions. 

Finally if v is an integer such that v + I + m is odd and I v I ~ 1+ m, another 
possible value for the degree is d = 1+ m + Boo v. 

Setting a = - W + m + v), b = -!(/ + m - v), c =! - I and writing down rand 
8 in terms of these coefficients one sees that the differential equation 4y" + 48y' + 
(28' + 82 

- 4r)y = 0 admits the two solutions: 

1 
() 1-c (I+a-c,I+b-cl) Y1 x = X 2F1 X 

2-c 

c-ac-b 
Yz(x)=xc-a-b2F1( , II-X). 

c+I-a-b 

Among the four integers 1 + a - c, 1 + b - c, c - a, c - b at least one is negative so 
that y~ or y; is a polynomial of degree 1+ m ± v. 

We may summarize these results in the following proposition which is consistent 
with Kimura's results: 

Proposition 9. If among the three parameters A, 11, v of the hypergeometric differential 
equation 

at least two belong to ! + Z then the equation has liouvillian solutions. 

Remark. In case C4 as well as in case C5 the third order equation D(i)2 may happen 
to be a generalized hypergeometric equation in x or in 1 - x. This leads to some 
identities listed in the next proposition. 

Proposition 10. Let I, d and p be integers such that I ~ d and let VEC\Z, then 
Identity 1: 

(
-2d+ 1, -2d, -2d-II ) (-d+ 1, -d/ )2 3F2 X =(I-x) 2F1 3 I-x 

-4d, -2d+i 2" 

Identity 2: 

F (-d- P + I,!(v-d),!(v+ I-d)+I,V-d-P-I/I)=o 
4 3 1 + v, i(v - d) - p, i(v + 1 - d) -1- p 
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Identity 3: 

(t(V-d),t(d+1+V)I~)_ (-d,-d-V,-d+VI) 
2F 1 - 3 F 2 1 X 

l+v x -2d,-d+ Z 

Identity 4: 

X dzF1
( - f(v + d},W - d - v} + 11~)zFl(f(V -d},W + v - d} + ll~) 

l-v x l+v x 

= (x --I}d
ZF 1

( -fry + d},f(1 + d - V}-II_l_)zFl(f(V -d},f(l + v + d}-ll_l_) 
l-v I-x l+v I-x 

Proof 

1. The second formula expresses that negative powers of x in z(x) have a zero 
coefficient. 
2. The first and the third formulas come from the fact that the third order dif
ferential equation DGJ

2 

(or the one deduced from the change of variable X 1--+ 1 - x) is 
itself a generalized hypergeometric equation if 1 = d + 1 in case C4 and if 1 = d in 
case C5. 
3. Taking into account the dependence of D3 on d and I, one sees that the change 
of variable X 1--+ 1 - x transforms D3(d, I) in D3(d, d -1). The result follows. 0 

Working "by hand" we have got very few results for n;;: 4 cases. We will not 
mention them here since using Singer and Ulmer's paper [21] one will certainly get 
much better conditions. In these cases the solutions if liouvillian are algebraic and 
listed in Schwarz [17]. 

3.2 The Heun Family 

The Heun equation is the generic differential equation with four regular singular 
points located at 0, 1, c and 00. In its reduced form r has the value 

where 

ABC D E F 
r(x)=-+--+--+-+ +-

x x - 1 x - C x 2 (x - 1f (x - C)2 

A = _ afl _ ay + (j'1 h 

2 2c c 

C = (X'; + fly 
2c 2(c - 1) 

E=~(~-l) 

b1](c - h) 

c(c - 1) 

with a + fl + y - b - 1] = 1 

B = afl _ fly (j1](h - 1) 

22(c-1) c-1 

D=~(~-l) 

F=~G-1) 

(19) 
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The confluent scheme for this equation giving the following list of reduced forms 
can be found in [5J 

• If c -+ 00 one gets the confluent Heun equation for which 

() 
Li2 21]- 1 2(15 + 1]) - 1 f32 - 1 y2 - 1 

rx =~+--+ +--+---
4 2x 2(1 - x) 4x2 4(1 - xf 

• If ~ } -+ 00 one gets the biconfluent Heun equation for which 

f32 15 Li2 - 1 
r(x)=x2 + f3x+~-y +-+--

4 2x 4x2 

• if {c -+ 00 one gets the double confluent Heun equation for which 
1-+0 

Li
2 Y 15 f3 Li

2 

r(x)=~---~-~+-
4 x x2 x3 4X4 

• If I} ~ 00 one get, the ,,'confluent Heun equation for which 

9x4 3 y2 
r(x) = - + _yx2 - f3x + -- Li. 

424 

Working without the help of a computer we have been able to find a complete 
answer for the tri-, double and biconfluent forms and a partial answer for the 
confluent equation, namely the case n = 1. Cases n ~ 4 may occur only for the Heun 
equation. 

3.2.1 The Triconfluent Heun Equation. The only singular point is 00 which has 

order o( 00) = 8. The only possible value for n is 1. One may take [Jr J 00 = ~ x2 + 1:'. 
2 2 

and easily get the two values for a possible degree d = - 1 ± ~ which gives the 

necessary condition 

I f3E3Z* 

If f3 = 3£(d + 1) with £ = ± 1 and dEN, one has to find a polynomial of degree d 
satisfying the differential equation 

y" - £(3x2 + y)y' + (3£dx + Li)Y = o. 
It is not difficult to see that the linear system for the d + 1 coefficients of such a 
polynomial is homogeneous and has d + 1 equations, so that it admits a non trivial 
solution if and only if the following determinant Qd+ l(Li, y) is zero: 
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a -y 2.1 0 0 

3d a -2y 3.2 0 

0 3(d - 1) a - 3y 0 
0 0 3(d - 2) a 0 

0 3.3 a -(d-l)y d(d - 1) 
0 0 3.2 a -dy 

0 0 0 3.1 a 

In conclusion we have 

Proposition 11. A triconfluent Heun equation has liouvillian solutions if and only if 
f3E3Z* and the determinant Qd+ l(a, y) = O. 

3.2.2 The Double Confluent Heun Equation. The following lemma is useful in most 
of the cases we have been able to study completely. 

Lemma 4. Le.t a, b, u, v, W, (EC and dEN. The differential equation 

(bx + ax2)y" + (u + vx - (X2)y' + (w + d(x)y = 0 

is satisfied by a polynomial of degree d if and only if lId + l(a, b, u, v, (, w) = 0 where 
lId + 1 is the determinant 

w u 

d~ w+ l(v+Oa) 

o 
2(u+b) 

o 
o 

o 
o 

o 
o 
o 
o 

o (d-l)~ w + 2(v + la) 3(u + 2b) 0 

o 0 (d - 2)~ w + 3(v + 2a) 4(u + 3b) 

o 
o 

d 

2~ w + (d - l)(v + (d - 2)a) d(u +(d - l)b) 

o ~ w + d(v + (d - l)a) 

Proof. If P(x) =. L AkXk is a solution the Ak satisfy the induction formula 
k=O 

((d - k + 1))-k-1 + [w + kv + k(k - l)a])_k + (k + l)(u + kb)Ak+ 1 = 0 

for all kEZ with Ak = 0 if k < 0 or k ~ d + 1 and Ad =1= O. In other words the vector 
(AD, A1 , ... ,Ad) has to be a non trivial solution of a linear system, the determinant 
of which is lId + l(a, b, u, (, w). 

Notice that this condition can be seen as a polynomial in w of degree d + 1 
and that it is always satisfied when w = u = 0. 0 

1 
In the double confluent Heun equation the change of variable x~- permutes 

x 
f3 and y so that, apart from the trivial case a = f3 = y = b = 0, there are five cases 
to consider: 

Cl: a =1= ° 
C2: a = 0, f3 =1= ° and y =1= 0 
C3: a = f3 = 0, y =1= ° and b =1= ° 
C4: a = f3 = y = 0 and b =1= ° 
C5: a = f3 = b = ° and y =1= 0. 
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Examination of the set L of possible values for n shows that CS cannot be liouvillian. 
On the contrary C4 is the always liouvillian elementary equation x 2 y" - by = O. 
In each of the three remaining cases, only one value for n is possible, namely n = 1 
in Cl and n = 2 otherwise. A complete answer can be obtained, as shown in the 
next proposition. 

Proposition12. The double confluent H eun equation has liouvillian solutions if and 
only if one of the following conditions is satisfied: 

1. a=f3=y=O 
(3 + 2m)(1 - 2m) 

2. a = 0 = 131' and there exists mEZ such that b = ------
16 

. 10013 - 10 I' 
3. a =I 0, ± 13 ± YEaZ* and If Go, Goo E {± I} are such that d = 00 EN then 

a 

IId+ 1 ( 1, 0, aGO, 2( 1 - Go f3/a), - Gooa, W ) = 0 

1 13 132 

where w = b + -GoG oo a 2 
- 100 - + 2' 

2 a a 

Proof. In case Cl the value for a possible degree d appears to be d = - 1 + ± 13 ± I' , 
a 

giving the necessary condition in the third possibility. If this condition is fulfilled, 
there is at least one and at most two possible choices Go and Goo E { ± I} such that 
10013 - 10 00 1' = a(d + 1) for dEN. One has then to look for a polynomial of degree d 
satisfying the differential equation 

x 2 y" + [Goa + 2( 1 - Go f3/a) x + Goo ax2 Jy' + (w - eooexdx)y = 0 
where w has the value given in the proposition. Thus Lemma 4 ends the third case. 

In case C2 one finds - 1 for d so that this case is never liouvillian. 
In case C3 the value for d is the one given in the second possibility. It is 

obtained by using the fact that at least two exponents have to be odd. One deduces 

e = 1 - 2d and the third order differential equation equivalent to (#)2 is 
2x 

x 2y''' + 3x(1 - 2d)y" + (4yx - d(1 - 2d))y' - 4dyy = O. 

An easy computation shows that this equation always admits a polynomial solution 
of the suitable degree. 

The first possibility has already been mentioned. D 

3.2.3 The Biconfluent Heun Equation. According to the value of o( r:tJ) there are three 
cases to consider: 

Cl: ex =I ± 1 
C2: ex = ± 1 and b =I 0 
C3: a = ± 1 and b = O. 

In all cases the only possible value for n is n = 1. The results are summarized in 
the proposition below. 
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Proposition 13. The biconfluent Heun equation has liouvillian solutions if and only 
if one of the following conditions is fulfilled: 

1. a2 = 1, <5 = 0 and Y E 1 + 2Z 
2. a2 = 1, <5 #- 0, yE 1 + 2Z* with Iyl ~ 3 and, if B = sign y, then 

n;IYI-1)/2 ( 0,1,2, B[3, - 2B, B[3 -~) = 0 

3. a#- ± 1, ±a±YE2Z*and,ifBo,BooE{± 1}aresuchthatBooY-Boa=2d*E2N* 
then 

lId*(O, 1, 1 + aBo, Boo[3, - 2B oo ' ~(Boo[3(1 + Boa) - <5)) = O. 

Moreover, in case of liouvillian solutions, at least one of them has the form exp J w 

where w is a rational function. 

Proof. In case Cl d is given by d = - 1 + ~(BooY - Boa), and the differential equation 
is 

xy" + (1 + Boa + Boo[3X + 2BooX2)y' + (w - 2Boodx)y = 0 

with w = ~(Boo[3(1 + Boa) - <5). 
According to Lemma 4 this equation has a solution which is a polynomial of 

degree d if and only if lId + 1(0,1,1 + Boa, Boo [3, - 2B oo , w) = O. 
The two other cases can be deduced from this one: 

• C2 by replacing Boa by 1, 
• C3 by replacing Boa by - 1 and <5 by 0 but this time, as w = u = 0 in Lemma 4 

there is no more condition. 0 

Remark. The case C3 is the particular case of the parabolic cylinder equation (in 

Rehm's form) corresponding to a = 1, b = ~ and c = [32 - y. 
2 4 

3.2.4 The Confluent Heun Equation. We note that if a = (5 = 0 the confluent Heun 
equation is the hypergeometric equation with parameters A = [3, J1 = y and v2 = 
[32 + y2 + 1 - 41]. So we will only take care of the cases where 0(00) = 4 (namely 
a #- 0) or o( (0) = 3 (namely a = 0 and <5 #- 0). In this last cases one sees that L = 0 
unless 0 and 1 are both double poles of r. Taking into account the symmetrical roles 
played by 0 and 1 there are seven cases to consider. The following table lists them, 
indicates the corresponding set L and gives for each case the necessary condition 
obtained for n = 1. 

II Conditions I Nee. Condo when n = 1 ] 
Cl a#0,p2 # 1,y2 # 1 {1,2} + p + Y + 2(Jja)E2Z* 

C2. a#0,y2 # 1,p2 = 1,I]#t {l} ±y±2(Jja)El +2Z\{ + I} 

C3 a#O,/ # 1,p2 = 1,1] =t {I} ± y ± 2(D/a)El + 2Z 

C4 a # 0,p2 = y2 = 1, I] # t, D + I] # t {l} JjaEZ\{ -1,0, I} 

C5 a#O, p2 =y2 = 1, I] =t,D #0 {l} JjaEZ* 

C6 a # 0, p2 = y2 = 1, I] = t, D = ° {I} -

C7 a = 0, p2 # 1, y2 # 1 {2} -
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Case C6 corresponds to the clearly Liouvillian equation 4y" - a2y = O. 
We only give a complete answer for the value n = 1 as shown in the next 

proposition. 

Proposition 14. A non hypergeometric confluent Heun equation admits a solution of 
the form exp S w with WEC(X) if and only if 

and one of the following conditions is satisfied 

1. f32 = 1 and 11 = ~; 
2. y2 = 1 and «5 + 11 = ~; 
3. f32 # 1, y2 # 1 and 

IIi - 2,2,2(1 - sof3), 2(so(a + f3) + SlY - 2), - 2s",a, w) = 0 

with w = 1 - 211 - (1 - sof3)(socp + 1 - Sl y),for at least one choice of signs Si such that 
2d:= sof3 + SlY + 2soo «5/aE2N*; 

4. f32 # 1, y2 = 1, «5 + 11 # ~ and 

IIi - 2,2,2(1 - sof3), 2(sof3 - sooa - 3), - 2s oo a, w) = 0 

with w = 1 - 211 - (1 - sof3)(sooa + 2) for at least one choice of signs So and Soo such 
that 2d + 1: = sof3 + 2soc; «5/aE3 + 2N; 

5. f32=1,y2#l,I1#~and 

with w = 1 - 211 - 2(sooa + 1 - Sl y) for at least one choice of signs Sl and Soo such 
that 2d + 1: = Sl Y + 2s oo «5/aE3 + 2N; 

6. f32 = y2 = 1, 11 # ~,«5 + 11 # ~ and 

lId ( - 2,2,4, - 2(sa + 4), - 2sa, 1 - 211 - 2(sa + 2» = 0 

for at least one choice of the sign S such that d + 1: = S «5/ a E 2 + N. 

Proof. In case C1, if sof3+slY+2soo~=2(d+ 1) the differential equation to be 
considered is a 

2x(1 - x)y" + 2(sooax2 - (sooa + 2 - sof3 - Sl y)x + 1 - sof3)y' + (w - 2s 00 adx)y = 0 

with w = 1 - 211 - (1 - sof3)(l - SlY + sooa). The result follows once more from 
Lemma 4. Note that the polynomial solutions of this equation has been studied 
by Hautot who proves that, if there is one, it is a linear combination of Laguerre 
polynomials (see[7]). 
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The other cases can be regarded as particular cases of Cl in the following way: 

C2: replace coP by 1. 
C3. replace coP by 1 and I] by ~. In this case the differential equation may be 

simplified and there is no additional condition 
C4: replace coP and C1 by - 1 
C5: replace coP by 1, C1r by - 1 and I] by ~. As in case C3 there is no new 

condition. 0 

Concerning the case n = 2 we only mention the two arithmetic necessary con
ditions 

• in case Cl: P and rE~ + Z 
• in case C7: P or rE~ + Z. 

3.2.5 The Heun Equation. A complete study is certainly very difficult as, this time, 
finite galois groups are possible. We just mention that the value n = 1 leads to the 
necessary condition 

I ± a ± P ± r ± ((j -I])E 1 + 2Z I 

and the differential equation to look for has the form 

x(x - 1)(x - c)y" + (ax2 + bx + c)y' + (ex + f)y = O. 

The polynomial solutions of this type of equations are also studied by Hautot in [8]. 

3.3 The Equation y" - (axP + bxq)y = 0 

This equation is studied by Setoyanagi in [19]. 
We assume that p,qEN with p > q and that a,bEC*. 
It is convenient to replace p and q by the parameters sand (J defined by 

{
p-q=(J 

p=2(s(J-1) 

and submitted to the conditions (JEN* and 2(s(J - 1)EN*. 
The equation has one singular point located at 00, with order 0(00) = p + 4. 

The set L is {1} if p is even and 0 if p is odd. Thus we obtain a first necessary 
condition 

S(J -1EN* 

which, from now on, is supposed satisfied. 
Expanding 

r(x)1/2 = a1/2xS<I-1 1 +--( 
b 1 )1/2 
ax" 
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. 1 
III powers of - one finds 

x [0Joo=a1/2xSO'-lSi1(1~2)(~)j~ 
j=O } a Xl 

lS(J - 1 J' with s' - 1 = -(J- where L' J denotes the lower integer part. 

As r - [0J~ = 2a(; )Grx2(SO'-1)-S'0'(1 + 0(1)) one gets with the previous 

notations of the algorithm 

if s¢N* 

if sEN* 

{ 

- ~(s(J - 1) if 

d = 1. b S -~(S(J-1)±a1/2(~)C) if 

s¢N* 

SEN* 

The necessary condition dEN implies SE N* and thus s' = s. If we choose the 
square root a 1

/
2 which induces a + in the formula, we may summarize the various 

hypothesis and necessary conditions in 

(JEN*, sEN*, S(J #- 1 

With these conditions one has to look for a polynomial P of degree d satisfying the 
differential equation 

P" + 28P' + (8' + 82 - ax2sO'-2 - bXO'(2S-1)-2)p = 0 

where 

8 = a1/2(~yjt C ~ j)(~y Xj
O'-l. 

d 

Substituting the polynomial P(x) = L AkXk in the equation gives 
k=O 

s-l 

(k + s(J)(k + S(J - 1)Ak+sO' + L Aj(k)Ak+ jO' - 2a1/2 (d - k)Ak = 0 
j= 1 

(
b)S+j 

with A j(k) = (2k + (s + j)(J - 1 )Lj + (1 - b:;-l)a ~ M j.s 

(20) 

where M j •s = L 2".. 2" . , when S = 1, L = 0 and L j = a 1
/
2 ~ - • 

s-j-1 ( 1 )( 1 ) ( 0) (l)(b)j 
i= 1 S - I 1+ ) 1 } a 
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These relations have to be valid for all kEZ with the extra conditions Ad =1= 0, say 
Ad = 1, and Ak = 0 for k < 0 or k ~ d + 1. The coefficient of Ak is zero if and only if 
k = d. On the other hand the coefficient of Ak+s" vanishes if and only if k + sa = 0 
or 1. Denoting by d = ba + t, 0 ~ t < a the euclidian division of d by a, we get the 
new necessary condition 

I t = 0 or 1 I 

By examining the induction formulas above, one can remark that a solution P, 
if any, takes the form P(x) = xtQ(x"), for some polynomial Q of degree b. The 
differential equation for Q is, if u = xc, 

with 

auQ"(u) + B(U)Q'(U) + C(u)Q(u) = 0 

s-l 

B(u) = a-I + 2t + 2 L LjuS
- j 

j=O 

(21) 

We have been able to discuss completely the problem of existence of a 
polynomial solution with proper degree in the two cases s = 1 and s = 2. 
Paradoxally we have not been able yet to solve the cases s ~ 3, where the problem 
is however overdetermined by s - 1 equations, except for small values of d where, 
as expected, no liouvillian solution is found. 

Case s = 1. Going back to the initial parameters f it means p = 2p' and q = p' - 1, 
pi EN*. The differential Eq. (21) is the confluent hypergeometric equation 

( 
2t - 1 2a 1/2 ) 2a 1/2 

·uQ"(u)+ 1 +--+--u Q'(u)---bQ(u)=O 
pi + 1 pi + 1 pi + 1 

which admits the Laguerre polynomial L~2t-1)/(P'+1)( - ~a1/2 u) as a unique (up 

to constant multiple) polynomial solutioR p + 1 
Thus in this case, the algorithm gives the liouvillian solution 

y(X)=XtL(2t-1 l /(P'+l l (_ 2a
1
/
2 

u)exp [ a
1
/
2 

x P'+ l ] 
~ pi + 1 pi + 1 

= xt 1F1( -b _ 2a
1
/
2 

xP'+l) 
2a 1

/
2 pi + 1 . __ (pi +2t) 

pi + 1 

Case s = 2. The following lemma gives the answer. 

Lemma 5. Let a, b, dEN* such that d = ab + t with t < a and tE{O, I}. In order that 
there exists a sequence (fJ.k)kEZ satisfying the induction formulas (Ek): 

2ka = (2d _ (2k _ 3)a _ 1) _ (d - (k - 2)a)(d - (k - 2)a - 1) 
fJ.k fJ.k - 1 2d + 2a _ 1 fJ.k - 2 
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with Jio = 1 and Jik = 0 for k < 0 or k ~ (j + 1, it is necessary and sufficient that 0- = 1. 

Proof. As the coefficients are rational numbers, if a solution exists, the Jik are 
rational numbers. Let us assume first that 0- > 1. One easily proves by ascending 
induction that for 1 ;;:; k ;;:; (j 

d-(k-1)0-
Jik > Jik - 1 > O. 

2d + 20--1 

Hence for k = (j we get 

One deduces from equation (EH1 ) 

JiH 1 = 0 = (2d + 20- - 1)(0- + 2t - 1)Jio - (0- + t)(o- + t - 1)Jio-1 

and therefore 

which contradicts the previous inequality. 
If now 0- = 1 and thus d = (j the relations (Ed + 1) and (Ed+ 2) are 

2(d + 2)Jid+ 2 = - 2Jid+ 1 

fld+ 1 = 0 

and the flk' 0;;:; k;;:; d have to satisfy a linear homogeneous system of d equations 
which obviously has a solution. This ends the proof of the lemma. D 

d 

Now suppose P(x) = L AkXk is a solution of Eq. (20) with s = 2; then if we set 
k=O 

Jik = (2: ) k )'d _ k,,' the flk have to satisfy the recurrence relations and the limit 

conditions of Lemma 5. Hence the corresponding equation has liouvillian solutions 
if and only if 0- = 1. In that case p = 2 and q = 1 so the equation is a parabolic cylinder 
one (in the form studied by Rehm). 

The results above are summarized in the 

Theorem 4. Let a, bEC* and p, qEN such that p > q . 
• The differential equation 

y" - (ax P + bxq)y = 0 

has no liouvillian solution unless there exist 

{
p = 20-s - 2 

1. two positive integers s, o-E N* such that 
q=p-o-

2. a non negative integer d ~ 0 or 1 modulo 0- such that 
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• The differential equation 

y" - (ax 2q
+ 2 + bxq)y = 0 

has liouvillian solutions if and only if there exists a non negative integer 
d ~ 0 or 1 modulo q + 2 such that 

• The differential equation 

y" - (ax4q + 2 + bx3q + l)y = 0 

has liouvillian solutions if and only if 

q=O 
b2 

and ---w. 
4a 

is an odd integer 

Remarks. 
1. In Setoyanagi's paper [19J the same results are obtained as long as they 

concern cases s = 1 and s = 2. In particular an analogue of Lemma 5 is proved. 
2. The Setoyanagi equation with p = 4, q :;;; 2 and a = ~ is a triconfluent Heun 

equation with 

ifq =2, y =~b, rx=h2 and /3=0 
if q = 1, rx=y=O and /3= -b 

if q = 0, /3=y=O and rx = -b. 

According to the previous results liouvillian solutions are possible only in the 
second case, namely for q = 1. Comparing the conditions obtained in this section 
and in Sect. 3.2.1 one can prove the relation, with the notations of Sect. 3.2.1, 

Qd + 1 (0,0) "" 0 ¢> d = 3<5 + 2 

(a direct proof is easy). 
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Algorithms exist to find Liouvillian solutions of second order homogeneous linear differ-
ential equations (Kovacic, 1986, Singer and Ulmer, 1993b). In this paper, we show how,
by carefully combining the techniques of those algorithms, one can find the Liouvillian
solutions of an irreducible second order linear differential equation by computing only
rational solutions of some associated linear differential equations. The result is an easy-
to-implement simplified version of the Kovacic algorithm, based as much as possible on
the computation of rational solutions of linear differential equations.

c© 1996 Academic Press Limited

1. Differential Galois Theory

The material presented in this section is well known and has been included to make the
exposition self contained. We refer to Kaplansky (1976), Kolchin (1948), Singer (1990)
for further details about this section.

1.1. introduction

A differential field (k, δ) is a field k together with a derivation δ on k. We also write y(n)

instead of δn(y) and y′, y′′, . . . for δ(y), δ2(y), . . .. The field of constants {c ∈ k | c′ = 0} is
denoted C. Unless otherwise stated, a differential equation L(y) = 0 over k always means
an ordinary homogeneous linear differential equation

L(y) = y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0 (ai ∈ k).

In the following we will look at solutions of L(y) = 0 in a differential field extension of
k. A differential field extension of (k, δ) is a differential field (K,∆) such that K is a
field extension of k and ∆ is an extension of the derivation δ of k to a derivation on K.
The differential Galois group G(K/k) of a differential field extension K of k is the set
of k-automorphisms of K which commute with the derivation of K. There is a unique
way to extend the derivation of k to an algebraic extension of k making any algebraic
extension of k into a differential extension.

† Research supported by the CNRS GDR 1026 (MEDICIS), the GDR-PRC 967 (Math-Info), and the
CEC ESPRIT BRA contract 6846 (POSSO).
‡ E-mail: Felix.Ulmer@univ-rennes1.fr
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Definition 1.1. A differential field extension (K,∆) of (k, δ) is called a Liouvillian
extension if there is a tower of fields

k = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,

where Ki+1 is a simple field extension Ki(ηi) of Ki, such that one of the following holds:

(i) ηi is algebraic over Ki, or
(ii) δ (ηi) ∈ Ki (extension by an integral), or

(iii) δ (ηi) /ηi ∈ Ki (extension by the exponential of an integral).

A solution of L(y) = 0 which is contained in:

(i) k, the coefficient field, will be called a rational solution,
(ii) an algebraic extension of k will be called an algebraic solution,

(iii) a Liouvillian extension of k will be called a Liouvillian solution

A solution z of L(y) = 0 is called exponential† if z′/z is in the coefficient field k. In the
following we will have to compute rational and exponential solutions of L(y) = 0. For
this reason we always assume that k is a differential field over which such solutions can
be computed (e.g. (C(x), ddx )). The computation of an exponential solution is usually
much more difficult than the computation of a rational solution.

For k = C(x) and a differential equation L(y) = 0 with coefficients in k, an algorithm
to compute

(i) rational solutions is given in Liouville (1833). More recent algorithms for more
general coefficient fields are presented in Bronstein (1992), Singer (1991);

(ii) algebraic solutions of a second order equation L(y) = 0 is given in Fuchs (1878)
and in Pépin (1881). The study of the third order case is started in Jordan (1878),
a general algorithm was given by Boulanger and Singer, cf. Singer (1979);

(iii) Liouvillian solution of a second order equation is given in Kovacic (1986). A general
procedure for equations of arbitrary order is presented in Singer (1981). The third
order case is treated in Singer and Ulmer (1993b).

Definition 1.2. Let L(y) = 0 be a homogeneous linear differential equation of order
n with coefficients in k. A differential field extension K of k is called a Picard–Vessiot
extension (PVE) of k for L(y) = 0 if

(i) K = k〈y1, . . . , yn〉, the differential field extension of k generated by y1, . . . , yn where
{y1, . . . , yn} is a fundamental set of solutions of L(y) = 0.

(ii) K and k have the same field of constants.

A PVE extension plays the role of a splitting field for L(y) = 0. A PVE exists and is
unique up to differential isomorphisms if the field of constants of k is algebraically closed
of characteristic 0 (Kaplansky, 1976, p. 21 and Kolchin, 1948). In the sequel we will always
assume that the coefficient field is algebraically closed of characteristic 0. By definition the
differential Galois group G(L) of L(y) = 0 is the differential Galois group of K/k, where

† Note that the exponential solutions of L(y) = 0 do not form a ring.
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K is a PVE of k for L(y) = 0. If we choose a fundamental set of solutions {y1, y2, . . . , yn}
of the equation L(y) = 0, then for each σ ∈ G(L) we get σ(yi) =

∑n
j=1 cijyj , where

cij ∈ C. This gives a faithful representation of G(L) as a subgroup of GL(n, C). Different
choices of bases {y1, y2, . . . , yn} give equivalent representations. In the sequel we always
consider this equivalence class of representations as the representation (module) of G(L).
In fact, G(L) is a linear algebraic subgroup of GL(n, C) (Kolchin, 1948; Kovacic, 1986).
We can limit our considerations to differential equations with G(L) ⊆ SL(n, C):

Theorem 1.1. (Kaplansky, p. 41) The differential Galois group of a differential equa-
tion of the form

L(y) = y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0 (ai ∈ k) (1.1)

is a unimodular group (i.e. G(L) ⊆ SL(n, C)) if and only if ∃W ∈ k, such that
W ′/W = an−1.

In particular for a differential equation of the form

L(y) = y(n) + an−2y
(n−2) + · · ·+ a1y

′ + a0y = 0 (1.2)

we have G(L) ⊆ SL(n, C). Using the variable transformation y = z · e
(
−

∫
an−1
n

)
it is al-

ways possible to transform a given differential equation L(y) into an equation L̃(y) of the
form (1.2) without altering the Liouvillian character of the solutions. This transforma-
tion is always performed in Kovacic (1986). The algorithm presented in this paper works
independently of this particular form and avoids unnecessary transformations.

1.2. properties of the differential Galois group

Properties of the equation L(y) = 0 are reflected by properties of the group G(L). To
the equation (1) we associate a linear differential operator:

p(δ) = anδ
n + an−1δ

(n−1) + · · ·+ a0.

The set of differential operators forms a ring k[δ] where multiplication is defined by
δa = aδ + δ(a). The ring k[δ] is a right and left euclidian ring in which a right (resp.
left) least common multiple of differential operators can be computed (Ore, 1933). The
factorization of differential operators in k[δ] is not unique but, as shown in Kolchin (1948),
Singer (1990), or Singer (1996), we have:

Theorem 1.2. The linear differential equation L(y)

(i) factors as a linear differential operator, if and only if G(L) ⊆ GL(n, C) is a reducible
linear group.

(ii) is the least common left multiple of irreducible operators if and only if G(L) ⊆
GL(n, C) is a completely reducible linear group.

Another property of L(y) = 0 that can be characterized by a property of G(L) is the
solvability in terms of Liouvillian solutions. Note that if a second order equation has a
Liouvillian solution, then another Liouvillian solution can be found using the d’Alembert
reduction method. Thus a second order equation has either no Liouvillian solutions or
only Liouvillian solutions.
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Theorem 1.3. (Kolchin, 1948) A differential equation L(y) = 0 with coefficients in
k has only Liouvillian solutions over k if and only if the component of the identity G(L)◦

of G(L) in the Zariski topology is solvable. In this case L(y) = 0 has a solution whose
logarithmic derivative is algebraic over k.

If G(L)◦ is solvable, then it can be put simultaneously in triangular form (Lie–Kolchin
Theorem, Kolchin, 1948) and thus has a common eigenvector z. In particular z′/z is in
the fixed field of G(L)◦ and thus, using the Galois correspondence, algebraic over k of
degree at most [G(L) : G(L)◦] < ∞. In Singer (1981), it is shown that the algebraic
degree of the logarithmic derivative z′1/z1 of a particular solution z1 can be bounded
independently of the equation L(y) = 0 (Singer, 1981; Ulmer, 1992). To compute the
coefficients of the minimal polynomial of u1 = z′1/z1 one notes that all conjugates ui of
u1 under G(L) are also logarithmic derivatives of solutions zi, the minimal polynomial
P (u) of u1 can be written as

P (u) =
m∏
i=1

(
u− δ(zi)

zi

)
(1.3)

= um − δ (
∏m
i=1 zi)∏m
i=1 zi

um−1 + · · ·+ (−1)m
m∏
i=1

δ(zi)
zi

. (1.4)

In particular, the coefficient of um−1 is the negative logarithmic derivative of a product
of m solutions of L(y) = 0. It is possible (Singer, 1979) to construct a differential equation
whose solutions are the products of length m of solutions of L(y) = 0:

Definition 1.3. Let L(y) = 0 be a homogeneous linear differential equation of order
n and let {y1, . . . , yn} be a fundamental system of solutions. The differential equation
L©s m(y) whose solution space is generated by the monomials of degree m in y1, · · · , yn is
called the mth symmetric power† of L(y) = 0.

To construct the equation L©s m(y) one starts with Y =
∏m
i=1 zi, where zi are arbitrary

solutions of L(y) = 0. Taking derivatives of Y and replacing derivatives of order ≥ m
of the zi on the right-hand side by lower order derivatives using L(y) = 0 gives a linear
differential equation for Y of order at most

(
n+m−1
n−1

)
(Singer and Ulmer, 1993a). The

group G(L) operates on the solutions space of L©s m(y) in a natural way which gives
another representation of G(L).

From (1.4) we get that the coefficient of um−1 in the minimal polynomial P (u) is the
negative logarithmic derivative of an exponential solution of L©s m(y).

Example. Let L(y) = y′′ +
3

16x2
y and k = C(x). This equation has a solution whose

logarithmic derivative is a solution of

P (u) = u2 − 1
x
u+

3
16x2

.

† One of the referees proposed the following equivalent definition. The differential equation corre-
sponds to a differential module M together with a cyclic element e such that Le = 0 and L has minimal
order with respect to this property. Let Sm(M) denote the mth symmetric power of M (Lang, 1984,
p. 586). The minimal equation L©s m(y) of the element e⊗· · ·⊗ e ∈ Sm(M) is called the mth symmetric
power of L. Note that e⊗ · · · ⊗ e is not always cyclic.
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The coefficient of u is the negative logarithmic derivative of the solution y = x of

L©s 2(y) = y′′′ +
3

4x2
y′ − 3

4x3
y = 0.

In this case the exponential solution is even rational. ¦
In general the order of L©s m(y) can be less than

(
n+m−1
n−1

)
. For second order equations,

the order is always m+ 1 (Singer and Ulmer, 1993a, Lemma 3.5) and the solution space
of L©s m(y) is isomorphic to the mth symmetric power Sm(V ) (Lang, 1984, p. 586) of
the solution space V of L(y) = 0. In particular the character χm of the representation
of G(L) on the solution space of L©s m(y) is the symmetrization of the character χ of
the representation of G(L) on the solution space of L(y) = 0. For finite groups one can
compute χm from χ (Singer and Ulmer, 1993a).

Definition 1.4. (see, e.g., Sturmfels, 1993) Let V be a C-vector space, call {y1,
. . . , yn} a basis for V , and let G ⊆ GL(V ) be a linear group. Define an action of g ∈
G on C[y1, . . . , yn] by g · (p(y1, . . . , yn)) = p (g(y1), . . . , g(yn)). A polynomial with the
property that

∀g ∈ G, g (p(y1, . . . , yn)) = ψp(g) · (p(y1, . . . , yn)) , with ψp(g) ∈ C

is called a semi-invariant of G. If ∀g ∈ G we have ψp(g) = 1, then p(y1, . . . , yn) is called
an invariant of G.

Clearly, ψp must be a character of degree one. In the above definition the y1, . . . yn are
independent variables. If we evaluate a polynomial p(y1, . . . , yn) by replacing the variables
by the elements of a fundamental set of solutions of L(y) = 0, we get a function of the
PVE associated to L(y) = 0. By differential Galois theory, since an invariant I of degree
m of G(L) is left fixed by G(L), it must evaluate to a rational solution of L©s m(y) = 0.
In this paper we will identify the invariants with this rational solution and by computing
an invariant we always mean computing the corresponding rational solution. Similarly a
semi-invariant of degree m evaluates to an exponential solution of L©s m(y) = 0 and thus,
if it is not 0, to a right factor of order one of L©s m(y).

If L(y) = 0 is a second order equation, then any semi-invariant S of degree m of G(L)
is a non-trivial exponential solution of L©s m(y) = 0. To this semi-invariant corresponds a
character of degree 1 in the decomposition of χm (the character of the representation of
G(L) on the solution space of L©s m(y)). For finite groups, the existence of a non-trivial
semi-invariant of degree m can be deduced from the existence of a character of degree 1
in the decomposition of χm into irreducible characters.

Using this terminology, we see from (1.4) that the coefficient of um−1 in P (u) is a
semi-invariant of degree m of G(L). In Section 2, we will show that to any semi-invariant
of G(L) corresponds a unique polynomial P (u) whose irreducible factors are all minimal
polynomials of logarithmic derivatives of some solutions of L(y) = 0.

Example. Let L(y) = y′′ + 3
16x2 y and k = C(x). we choose the two exponential solutions

y1 = e
∫

1
4x = x

1
4 , y2 = e

∫
3
4x = x

3
4

as a basis of the solution space of L(y) = 0. A PVE of k for L(y) = 0 is the algebraic
extension C(x)(x

1
4 ) and G(L) is cyclic of order 4. The group G(L) is an abelian group

and has four characters of degree one: the trivial character 1, a character ψ1,1 of order 2
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(i.e. (ψ1,1)2 = 1) and two characters ψ1,2 and ψ1,3 of order 4. In the basis {y1, y2}, the
group G(L) is generated by: (

i 0
0 −i

)
.

From the above form we get that χ = ψ1,2 + ψ1,3 and thus that G(L) has two linearly
independent semi-invariants S1,1 = x

1
4 and S1,2 = x

3
4 of degree one corresponding to

the characters ψ1,2 and ψ1,3 . To the logarithmic derivatives of S1,1 and S1,2 correspond
two minimal polynomials

(
u− 1

4x

)
and

(
u− 3

4x

)
of logarithmic derivatives ui = y′i/yi of

solutions of L(y) = 0.
A basis of the solution space of L©s 2(y) = 0 (cf. previous Example) is given by:

(y1)2 = x
1
2 , y1y2 = x, (y2)2 = x · x 1

2 .

In the basis {(y1)2
, y1y2, (y2)2}, the group G

(
L©s 2

)
is generated by: −1 0 0

0 1 0
0 0 −1

.
From the above form we get that χ2 = 1 + 2ψ1,1 and thus that G(L) has an invariant
I2 = y1y2 = x of degree 2 and two linearly independent semi-invariants S2,1 = y2

1 =
x

1
2 and S2,2 = y2

2 = x · x 1
2 of degree 2 corresponding both to the character ψ1,1. To

the logarithmic derivative 1
x of I2 corresponds the polynomial

(
u2 − 1

xu+ 3
16x2

)
. This

polynomial is not irreducible, but is the product of the above polynomials of degree
one corresponding to ψ1,2 and ψ1,3. We will show in this paper that this factorization
corresponds to the factorization I2 = S1,1 · S1,2. ¦

Since exponential solutions (semi-invariants) are usually more difficult to compute
than rational solutions (invariants), we want to compute whenever possible the minimal
polynomials corresponding to rational solutions (invariants) and, if necessary, factor the
corresponding polynomial P (u). In particular we will show that for irreducible second
order equations this will always be possible.

1.3. second order equation

Let L(y) = y′′ + a1y
′ + a0y be a second order equation with coefficients in k and

unimodular Galois group G(L) ⊂ SL(2, C). The logarithmic derivatives of the solutions are
precisely the solutions of the associated Riccati equation Ri(u) := u′+a0 +a1u+u2 = 0.
The possible groups G(L) are the linear algebraic subgroups of SL(2, C) which can be
classified, up to conjugacy, as follows (Kovacic, 1986):

(i) The reducible but non-reductive groups, where a non-trivial G(L)-invariant sub-
space has no complementary G(L)-invariant subspace.

(ii) The diagonal linear algebraic subgroups of SL(2, C).
(iii) The imprimitive subgroups of SL(2, C) which are up to conjugacy:

(a) The finite groups DSL2
n of order 4n (central extensions of the dihedral groups

Dn) and generated by:(
eπi/n 0

0 e−πi/n

)
and

(
0 i
i 0

)
.
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(b) The infinite group:

D∞ =
{(

a 0
0 a−1

)
,

(
0 −a
a−1 0

)}
where a ∈ C∗.

(iv) The primitive finite subgroups of SL(2, C) which are isomorphic to either the tetra-
hedral, the octahedral or the icosahedral group; we denote them respectively ASL2

4 ,
SSL2

4 and ASL2
5 . A definition for these groups is given in Kovacic (1986) or Singer

and Ulmer (1993b).
(v) The group SL(2, C).

In order to bound the degree of an algebraic solution of Ri(u) = 0, we compute
a maximal subgroup Hz having a common eigenvector z, i.e. a reducible subgroup of
G(L) ⊆ SL(2, C). The group Hz is the stabilizer of z′/z and thus, if the index [G(L) : Hz]
is finite, the minimal polynomial of z′/z will be of degree [G(L) : Hz].

Lemma 1.5. Let H be a finite reducible subgroup of SL(2, C) which is not contained in
the center Z (SL(2, C)) of SL(2, C). Then H is cyclic and there exists up to multiples a
unique basis in which H is a diagonal subgroup of SL(2, C).

Proof. Since H is finite, Maschke’s theorem shows that any invariant subspace has a
complementary invariant subspace. Thus, we can put the elements of H simultaneously
in diagonal form. Since H ⊂ SL(2, C) the diagonal entries will be given by characters χ
and χ−1. Therefore the map h ∈ H 7→ χ(h) is an isomorphism of H onto a finite (and
therefore cyclic) subgroup of C. The result now follows from the linear independence of
characters (Lang, 1984). 2

Lemma 1.6. Let L(y) = 0 be an irreducible second order equation over k whose differen-
tial Galois group G(L) is a finite unimodular group. Let Z(G(L)) be the center of G(L).
Then, the number of irreducible minimal polynomials of degree m < [G(L) : Z(G(L))] of
algebraic solutions of the Riccati equation Ri(u) = 0 is equal to 2/m times the number
of maximal cyclic subgroups (i.e. not contained in a larger cyclic subgroup) of index m
of G(L). In particular, this number is always finite. All other solutions of the Riccati
equation are algebraic of degree [G(L) : Z(G(L))].

Proof. Let w be an algebraic solution of Ri(u). The degree m of the minimum polyno-
mial of w equals the index [G(L) : H1] of the stabilizer H1 = StabG(L)(w) of w in G(L).
Note that StabG(L)(w) always contains Z(G(L)). If m < [G(L) : Z(G(L))] then, by the
above Lemma, H1 is a non-central cyclic group having up to multiples a unique basis
{y1, y2} in which it is a diagonal group.

Denote z1 the solution of L(y) = 0 such that z′1/z1 = w. Then z1 spans an H1-invariant
subspace, which by Maschke’s Theorem has a complementary subspace spanned by some
solution z2. Since H1 is also diagonal in the basis {z1, z2}, z1 must be a multiple of
y1 or y2, say y1. The cyclic group H1 cannot be contained in a larger cyclic subgroup
of G(L): from Lemma 1.5 such a group would also be diagonal in the (up to multiples
unique) basis {y1, y2} and thus would be contained in H1, the stabilizer of w = y′1/y1. In
particular H1 is also the stabilizer of y′2/y2 which must be algebraic of the same degree
as y′1/y1.
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It follows that the stabilizer of any algebraic solution of degree m < [G(L) : Z(G(L))]
of Ri(u) = 0 is a maximal cyclic subgroup, and each maximal cyclic subgroup of index
m < [G(L) : Z(G(L))] is the stabilizer of exactly two algebraic solutions of degree m of
Ri(u) = 0. If there are N maximal cyclic subgroups of index m < [G(L) : Z(G(L))], there
are exactly 2N solutions of Ri(u) = 0 which are algebraic of degree m, and we must have
exactly 2N/m minimum polynomials of degree m for these solutions. 2

Using for example the group theory system Cayley one gets:

Corollary 1.7. Let L(y) = 0 be a second order equation over k. For the possible min-
imal polynomials of the algebraic solutions of the Riccati equation we get:

• If G(L) ∼= DSL2
2 (quaternion group), there are exactly three minimal polynomials of

degree 2 and all the others are of degree 4.
• If G(L) ∼= ASL2

4 (tetrahedral group), there are exactly two minimal polynomials of
degree 4, one of degree 6, and all the others are of degree 12.
• If G(L) ∼= SSL2

4 (octahedral group), there is exactly one minimal polynomial of
degree 6, one of degree 8, one of degree 12, and all the others are of degree 24.
• If G(L) ∼= ASL2

5 (icosahedral group), there is exactly one minimal polynomial of
degree 12, one of degree 20, one of degree 30, and all the others are of degree 60.

This gives a partial proof of the following theorem which is the basis of the Kovacic
algorithm:

Theorem 1.4. (Kovacic, 1986) Let L(y) = 0 be a second order linear differential
equation with G(L) ⊆ SL(2, C).

(i) G(L) is a reducible linear group if and only if the differential operator associated to
L(y) factors. In this case L(y) = 0 has an exponential solution.

(ii) If the previous case does not hold, then G(L) is an imprimitive linear group if and
only if L(y) = 0 has a solution whose logarithmic derivative is algebraic of degree 2.

(iii) If the previous cases do not hold, then G(L) is a primitive finite linear group if and
only if L(y) = 0 has a solution whose logarithmic derivative is algebraic of degree 4,
6 or 12.

(iv) If the previous cases do not hold, then G(L) = SL(2, C) and L(y) = 0 has no
Liouvillian solution.

In the above result only the minimal degrees of an algebraic logarithmic derivative is
mentioned. In this paper, in order to use invariants instead of semi-invariants, we will
consider also other solutions, whose minimal polynomial is of higher degree.

2. Algebraic Solutions of the Riccati and Semi-invariants

Let L(y) = y′′ + a1y
′ + a0y be a second order equation with coefficients in k, and

Ri(u) = u′+a0 +a1u+u2 = 0 be the associated Riccati equation. We saw in Section 1.2
that, in order to compute a Liouvillian solution of L(y) = 0, one can compute the minimal
polynomial P (u) = um + bm−1u

m−1 + · · ·+ b0 of an algebraic solution of Ri(u) = 0. The
main reason for the efficiency of the Kovacic algorithm is the fact that, for k = C(x) and
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a1 = 0, the coefficients of P (u) are given by a linear recurrence from the knowledge of
bm−1 (Kovacic, 1986; Duval and Loday-Richaud, 1992). In this section we give a proof
of this fact without assuming that G(L) is unimodular or that k = C(x). The proof also
applies to reducible polynomials, which will be fundamental to our approach.

A differential extension k{u} of k by a differential variable u is obtained by adjoining
to k a variable u and new variables ui for the ith derivative of u. A derivation ∆ on
k{u} is defined by ∆(a) = δ(a) for a ∈ k and ∆(u) = u1 which we also denote by u′,
∆2(u) = u2, . . .. Note that one can also consider u as a usual variable and that we have
k[u] ⊂ k{u} which will result in some abuse of notation in what follows. Also note that
∆ is not a derivation on k[u] and that in the following we will consider simultaneously
different derivations among which some are derivations on k[u] and some are not.

Definition 2.1. Let P ∈ k[u] and D be a derivation on k[u]. A polynomial P is called
special for D if P divides D (P ) in k[u].

The special polynomials exist in wider contexts (Weil, 1994, and references therein).

Lemma 2.2. If P1, P2 ∈ k[u] are special for a derivation D on k[u], then P1P2 is special
for D. Conversely, if P is special for D, then all its factors are special for D.

Proof. If D(P1) = Q1P1 and D(P2) = Q2P2 with Q1, Q2 ∈ k[u], then D(P1P2) =
D(P1)P2 + P1D(P2) = (Q1 +Q2)P1P2.

Conversely, suppose that D(P ) = Q ·P with Q ∈ k[u]. If P = Pn1 P2 where P1 is prime
and P1 and P2 are relatively prime, then D(P ) = QPn1 P2 = nPn−1

1 D(P1)P2 +Pn1 D(P2).
Since Pn1 divides both sides and P1 is prime with P2, P1 must divide D(P1). Similarly P2

must divides D(P2). By induction it follows that all irreducible factors of P are special.
2

Using the following two derivations on k[u]:

∂k

(
m∑
i=0

biu
i

)
=

m∑
i=0

δ(bi)ui

∂

∂u

(
m∑
i=0

biu
i

)
=

m∑
i=0

ibiu
i−1.

We define a derivation DL,k on k[u] by:

DL,k (P (u)) = ∂k (P (u))− (a0 + a1u+ u2)
∂

∂u
(P (u)).

The derivative of a polynomial P (u) =
∑m
i=0 biu

i ∈ k[u] ⊂ k{u} by ∆ can now be
written:

∆ (P (u)) = ∂k (P (u)) + u′
∂P

∂u
(u)

= ∂k (P (u))− (a0 + a1u+ u2)
∂P

∂u
(u) +

(
u′ + u2 + a0 + a1u

) ∂P
∂u

(u)

= DL,k (P (u)) + Ri(u) · ∂P
∂u

(u).
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Lemma 2.3. If K is a differential field extension of k and P (u) ∈ k[u] is special for
DL,K , then P (u) is special for DL,k

Proof. Since P ∈ k[u] and δ(k) ⊂ k, we have that DL,K(P ) = DL,k(P ) is in k[u]. If P
divides DL,k(P ) over K[u], then, by the uniqueness of the euclidian division, P divides
DL,k(P ) over k[u]. 2

Lemma 2.4. (Weil, 1994) All zeroes of P ∈ k[u] are solutions of the Riccati equation
if and only if P is special for DL,k.

Proof. Suppose that P is special and pick any irreducible factor P1 which must again
be special (Lemma 2.2). Since P1 divides DL,k(P1), we have that P1(v) = 0 implies
DL,k(P1)(v) = 0. Since P1 is prime, it can not divide ∂

∂u (P1). From

∆ (P1(u)) = DL,k (P1) (u) + Ri(u) ·
(
∂

∂u
P1

)
(u), (2.1)

we finally get that if P1(v) = 0, then Ri(v) = 0. Since any zero of P is a zero of an
irreducible factor, the result follows.

Conversely, suppose that all zeroes of P (u) are zeroes of Ri(u). Pick an irreducible
factor P1(u) of P (u); then, reasoning as above, we get from (2.1) that, since Ri(u) = 0,
all zeroes of P1 are zeroes of DL,k(P1) and thus that P1 is special. Since all irreducible
factors of P (u) are special for DL,k, P (u) is special for DL,k (Lemma 2.2). 2

Remark. This result also follows from Corrollary 1.6 and Lemma 1.10 of Bronstein (1990).
¦

A polynomial P (u) = um + bm−1u
m−1 + · · · + b0 is special if and only if DL,k (P (u))

is divisible by P (u). Performing the division and setting the remainder equal to 0 gives
the following system (])m for the coefficients bi:

(])m :


bm = 1
bi−1 = −b′i+bm−1bi+a1(i−m)bi+a0(i+1)bi+1

m−i+1 , m− 1 ≥ i ≥ 0.
b−1 = 0

Note that P (u) is special if and only its coefficients bi satisfy the above system. The
last equation b−1 = 0 plays a central role in Kovacic (1986) but is not used in our proofs.
From the form of the system we see that the coefficients bi are all determined from the
knowledge of the coefficient bm−1. A special polynomial is thus uniquely determined by
its degree m and by its coefficient bm−1: we may say that such a bm−1 solves the system
(])m. Note that, if P1 = um + bm−1u

m−1 + · · · and P2 = un +βn−1u
n−1 + · · · are special,

then P1P2 = um+n + (bm−1 + βn−1)um+n−1 + · · · is also special and so bm−1 + βn−1

solves the system (])n+m. Our next step is to characterize the elements bm−1 of k which
solve the system (])m and thus give a special polynomial of degree m.

Theorem 2.1. Let L(y) = y′′ + a1y
′ + a0y be a second order equation with ai ∈ k, then

all zeroes of P (u) = um +
∑m−1
i=0 biu

i with bi ∈ k are solutions of the Riccati equation
Ri(u) = 0 if and only if

(1) the coefficient bm−1 is the negative logarithmic derivative of an exponential solution
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(over k) of L©s m(y) = 0, i.e. bm−1 is the negative logarithmic derivative of a semi-
invariant of G(L) ⊆ GL(2, C).

(2) for i < m−1 the coefficients bi of P are determined from bm−1 by the system (])m.

Proof. Suppose that P (u) ∈ k[u] is special. From Lemma 2.4 we get that all zeroes of
P (u) = 0 are solutions of Ri(u) = 0. From relation (1.4) we get that bm−1 is the negative
logarithmic derivative of an exponential solution of L©s m(y) = 0.

We now show that any exponential solution z of a L©s m(y) = 0 yields a special polyno-
mial of degree m. Consider the polynomial P (u) = um+

∑m−1
i=0 biu

i, where bm−1 = −z′/z
and where the other coefficients bm−2, . . . , b0 are given according to the recurrence (])m.
Since bm−1 ∈ k, all bi will also be in k and thus P (u) ∈ k[u]. Let y1, y2 be a funda-
mental system of solutions of L(y) = 0 and (K,∆) be a PVE of (k, δ) for L(y) = 0.
Since z is a semi-invariant of degree m of G(L), it can be written as a homogeneous form
z = F (y1, y2) of degree m in y1, y2 over C. As C is algebraically closed, F (y1, y2) can
be factored over K as a product of m linear forms: F (y1, y2) =

∏m
i=1(βiy1 − αiy2) with

βi, αi ∈ C. We note that ui = ∆(βiy1 − αiy2)/(βiy1 − αiy2) is a solution of Ri(u) = 0.
Thus all zeros of the polynomial Q(u) =

∏m
i=1(u−ui) ∈ K[u] are solutions of Ri(u) = 0.

The polynomial Q(u) = 0 must be special for DL,K (Lemma 2.4) and its coefficients must
satisfy (])m. In particular, since z′/z = −bm−1 =

∑m
i=1 ui, the coefficients of Q(u) = 0

are in k. Since P (u) and Q(u) are of the same degree and are both constructed from z′/z
and (])m, we have P (u) = Q(u). The polynomial P (u) = Q(u) is special for DL,K and
has coefficients in k. By Lemma 2.3, P (u) is also special for DL,k. From Lemma 2.4 we
get that all roots of P (u) = 0 are solutions of Ri(u) = 0.2

This gives a bijection between monic polynomials of degree m over k whose roots are
solutions of the Riccati equation and exponential solutions of L©s m(y) = 0, i.e. semi-
invariants of degree m of G(L). In particular, if z1 and z2 are two semi-invariants, then
the special polynomial associated with the product z1z2 is the product of the special
polynomials associated with z1 and z2 respectively. In the sequel, we will use this remark
without further mention.

For higher order linear differential equations, the minimum polynomial of an algebraic
solution of the Riccati equation is no longer special, and the bijection does not exist any
more.

3. The Algorithm

In this section, we will always assume that L(y) is a second order equation with
G(L) ⊆ SL(2, C). The previous section shows that there is a bijection between expo-
nential solutions of L©s m(y) = 0 and polynomials of degree m whose zeroes are solutions
of the Riccati. We now propose an algorithm where rational solutions of L©s m(y) = 0 are
used as much as possible instead of exponential solutions.

The proposed algorithm can be outlined as follows:

(i) Test if L(y) has a non-trivial rational (and thus Liouvillian) solution.
(ii) Test if L©s 2 has a non-trivial rational solution. If it is the case, then G(L) is a

reducible subgroup of SL(2, C).

(a) If the space of rational solutions of L©s 2 is of dimension 3, then G(L) = {id,−id}
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and any special polynomial P (u) of degree 2 associated to a non-trivial rational
solution of L©s 2 is reducible. A factor of P (u) gives a Liouvillian solution.

(b) If the previous case does not hold, then G(L) is a completely reducible group
if an only if the special polynomial P (u) of degree 2 associated to a non-trivial
rational solution of L©s 2 factors but is not a square. The two factors of P (u)
give two exponential solutions.

(c) If the above cases do not hold, then the special polynomial P (u) of degree
2 associated to a non-trivial rational solution of L©s 2 is either a square or is
irreducible. In both cases a Liouvillian solution is found.

(iii) Test if L(y) = 0 has a non-trivial exponential (and thus Liouvillian) solution. Such
a solution must then be unique and gives a unique right factor of order one of L(y).

(iv) Test if L©s 4 has non-trivial rational solutions. The special polynomial P (u) associ-
ated to an arbitrary non-trivial rational solution of L©s 4 is either the square of an
irreducible special polynomial of order 2 or is irreducible.

(v) Test for increasing m ∈ {6, 8, 12} if L©s m has a non-trivial rational solution. The
corresponding special polynomial will be irreducible.

(vi) Conclude that L(y) = 0 has no Liouvillian solution.

The steps have to be performed in the given order and the algorithm terminates as
soon as a solution is found in one of the cases. The third step is the only one where
instead of some rational solution one has to compute an exponential solution of L(y)
(which is, however, known to be unique in this case). We note that it is not difficult to
test if a special polynomial P (u), known to be either irreducible or a square, is a square.
This is the case if and only if Q(u) = gcd (P (u), dduP (u)) is not constant in u, in which
case, under the given assumption, (Q(u))2 = P (u).

In the remainder of this section we prove that the proposed algorithm is correct and
compute examples in each case.

3.1. the reducible case

Proposition 4.2 of Singer and Ulmer (1993a) describes the reducible Galois groups, in
particular if L has a rational solution. The next lemma complements this proposition.

Lemma 3.1. Let L(y) be a second order equation with G(L) ⊆ SL(2, C) having no non-
trivial rational solutions. If L©s 2(y) = 0 has a non-trivial rational solution, then G(L) is
a reducible subgroup of SL(2, C).

(i) If the space of rational solutions of L©s 2 is of dimension 3, then G(L) = {id,−id}
and any special polynomial P (u) associated to a non-trivial rational solution of L©s 2

factors.
(ii) If the previous case does not hold, then G(L) is a completely reducible group if

and only if the special polynomial P (u) associated to a non-trivial rational solution
of L©s 2 factors but is not a square. The two factors of P (u) give two exponential
solutions which are linearly independent over C.

(iii) If the above cases do not hold, then the special polynomial P (u) associated to a non-
trivial rational solution of L©s 2 is either a square or is irreducible. In both cases a
Liouvillian solution is found.
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Proof. We first note that if G(L) ⊆ SL(2, C) is irreducible (i.e. primitive or imprimitive),
then L©s 2 has no non-trivial rational solution because there is no invariant of degree 2
in those cases (cf. proofs of Lemmas 3.2 and 3.3). Thus, if L©s 2(y) = 0 has a non-trivial
rational solution, then G(L) ⊆ SL(2, C) is reducible.

Assume that G(L) is completely reducible. For a basis denoted {y1, y2} all elements g
of G(L) must be of the form

g =
(
ag 0
0 a−1

g

)
.

In particular y1 and y2 are semi-invariants and y1y2 is an invariant of G(L).

(i) If G(L) has another linearly independent invariant of degree two, say F (y1, y2) =
α(y1)2 + β(y2)2, then, for g ∈ G(L), we have g · F (y1, y2) = a2

gα(y1)2 + a−2
g β(y2)2.

Thus ∀g ∈ G(L), a2
g = 1 and we get G(L) = {id,−id}. In this case any homogeneous

form of degree 2 is invariant and L©s 2(y) = 0 has a rational solution space of
dimension 3. Any solution of L(y) = 0 is an exponential solution and thus any
polynomial P (u) factors into two linear polynomials.

(ii) If G(L) has no other linearly independent invariant of degree two, then any rational
solution of L©s 2(y) = 0 is a multiple of y1y2 and factors. The polynomial P (u)
associated to a non-trivial rational solution of L©s 2(y) = 0 will be the product of
the distinct minimal polynomials associated to the semi-invariants y1 and y2. In
particular, P (u) is not a square.

Suppose that P (u) factors but is not a square, then each factor is a special polynomial
of order one corresponding to a different logarithmic derivative z′1/z1 and z′2/z2. The
corresponding solutions z1 and z2 must be linearly independent over C. In the basis
{z1, z2}, the group G(L) is diagonal and thus completely reducible.

The only cases left are those where G(L) 6= {id,−id} and P (u) is a square or is
irreducible over k[u]. By the above, G(L) is reducible, but cannot be completely reducible.
2

Remark. The fact that factorization of differential operators is easier in the completely
reducible case was used by Singer (1996). ¦

An example of a completely reducible group is the example given in Section 1.2 which
we now summarize:

Example. Let L(y) = y′′ + 3
16x2 y. This equation has no non-trivial rational solution, and

the equation L©s 2(y) = 0 has a one-dimensional space of rational solutions generated by
x. Thus G(L) ⊆ SL(2, C) is a reducible group and L(y) = 0 factors. Since the rational
solution space of L©s 2(y) = 0 is not of dimension 3, we have G(L) 6= {id,−id}. The
special polynomial obtained from the logarithmic derivative 1/x of x is

u2 − 1
x
u+

3
16x2

which factors into
(
u− 1

4x

)(
u− 3

4x

)
. Since P (u) is not a square, G(L) ⊆ SL(2, C) is a

completely reducible group. From the factorization of P (u), we get the following two
Liouvillian solutions of L(y) = 0:

y1 = e
∫

1
4x , y2 = e

∫
3
4x .
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Viewed as an operator, L is the least common left multiple of δ − 1
4x and δ − 3

4x . ¦

In the following example, we deal with a reducible but not completely reducible linear
group:

Example. Consider L(y) = y′′ +
(

3
16x2 + 1

4(x−1)2 − 1
4x(x−1)

)
y. The equation L©s 2(y) = 0

has no non-trivial rational solution and thus G(L) ⊆ SL(2, C) has no invariant of degree 2.

In this case the exponential solution e
∫

3x−1
4x(x−1) is a semi-invariant of degree one, but there

exists no other linearly independent semi-invariant of degree one. We thus get a unique
polynomial P (u) = u − 3x−1

4x(x−1) of degree one. The group G(L) ⊆ SL(2, C) is reducible
but not completely reducible.
We note that even if no invariant of degree two exists, there could exist other invariants
of higher degree. In this example L©s 4 has a one-dimensional rational solution space
generated by x(x− 1)2.
The example shows that, even if no invariant of degree 2 exists, the equation L(y) could
be reducible, and that in order to proceed in the algorithm, one must look for exponential
solutions of L(y) = 0 at this stage. ¦

3.2. the imprimitive case

In this case we show that the computation of a Liouvillian solution of a second order
equation L(y) = 0 is reduced to the computation of a rational solution of L©s 4(y) = 0
and that the special polynomial associated to the logarithmic derivative is either a square
or irreducible. In this section we need to assume that L(y) = 0 is an irreducible equation.

Lemma 3.2. Let L(y) = 0 be an irreducible second order equation over K whose Galois
group G(L) is unimodular. Then G(L) is an imprimitive subgroup of SL(2, C) if and only
if L©s 4 has a rational solution q. The special polynomial obtained from the logarithmic
derivative of q is then

(i) The square of a unique special polynomial of degree 2 if L©s 4 has a one-dimensional
rational solution space.

(ii) Either the square of a special polynomial of degree 2 or is irreducible if L©s 4 has a
two-dimensional rational solution space, in which case G(L) ∼= DSL2

2 .

Proof. Denote {y1, y2} a basis in which all g ∈ G(L) ⊆ SL(2, C) are simultaneously in
the form (

ag 0
0 a−1

g

)
or

(
0 −ag
a−1
g 0

)
(cf. Section 1.3). Since ∀g ∈ G(L) we have g(y1y2) = ±y1y2, we get that y1y2 is a semi-
invariant of degree 2 and that y2

1y
2
2 is an invariant of degree 4 of G(L). Since L©s 4(y) =

0 has no rational solution if G(L) is a primitive subgroup of SL(2, C) (cf. character
decompositions of the finite primitive groups in the next subsection and Springer, 1973,
for SL(2, C)), we get the first assertion (this result is also proven in Singer and Ulmer,
1993a, Theorem 4.1 or Kovacic, 1986, p. 20).

If the space of rational solutions of L©s 4 is one dimensional then, up to a constant
multiple, this rational solution is the square of y1y2. Thus, the (unique) special polynomial
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corresponding to the (unique) logarithmic derivative of a rational solution y2
1y

2
2 of L©s 4

will be the square of the special polynomial associated with the semi-invariant y1y2. Note
that the special polynomial associated with y1y2 must be irreducible, because G(L) is
irreducible and thus has no semi-invariants of degree 1. Since for second order equations
there is a bijection between rational solutions and invariants, we now look at the ring of
invariants to see if the C-subspace of invariants of degree 4 is of dimension 1. As shown
in Springer (1973, p. 95), the ring of invariants of DSL2

n is generated by:

I1 = y2
1y

2
2 , I2 = y2n

1 + (−1)ny2n
2 , I3 = y1y2(y2n

1 − (−1)ny2n
2 ).

The group D∞ has up to scalar multiples only one invariant y2
1y

2
2 of degree 4. To see this

one looks at the diagonal subgroup and, as in the proof of Lemma 3.1, shows that this
diagonal subgroup would be of order at most 4 making D∞ finite, a contradiction. Thus
the group DSL2

2 is the only imprimitive group for which the space of rational solutions
of L©s 4 is of dimension 2 and not 1.

The group DSL2
2 has 5 irreducible characters, the trivial one denoted 1, 3 characters

ζ1,1, ζ1,2, ζ1,3 of degree one and one character ζ2 of degree two. The non-trivial characters
of degree one have the property that the product ζ1,iζ1,j is 1 for i = j and different
from 1 otherwise. If a second order equation L(y) = 0 has Galois group G(L) ∼= DSL2

2 ,
then the corresponding character of G(L) will be ζ2. The character χm of G(L©s m) can
be computed according to the formula given in Singer and Ulmer (1993a, p. 15):

χ2 = ζ1,1 + ζ1,2 + ζ1,3, χ3 = 2ζ2, χ4 = 2 · 1 + ζ1,1 + ζ1,2 + ζ1,3

this shows that there are three semi-invariants Si associated to the characters ζ1,i (i ∈
{1, 2, 3}) whose squares are rational. The products S1S2, S1S3 and S2S3 are not invari-
ants (i.e. do not correspond to a rational solution) since the products of the associated
characters are not the trivial character. Thus a rational solution of L©s 4 is either the
square of a semi-invariant Si of order 2 (in which case the associated special polynomial
will be a square), or it is not the product of semi-invariants and the associated special
polynomial is irreducible. 2

Example. Consider the irreducible equation

L(y) = y′′ − 2
2x− 1

y′ +

(
27x4 − 54x3 + 5x2 + 22x+ 27

)
(2x− 1)2

144x2(x− 1)2(x2 − x− 1)2
y = 0.

It is unimodular because 2
2x−1 is the logarithmic derivative of 2x − 1. The equation

L©s 4(y) = 0 has a one-dimensional space of rational solutions generated by x(x −
1)(x2−x−1)2. The special polynomial that is associated with the logarithmic derivative
(2x−1)(3x2−3x−1)
(x2−x−1)(x−1)x is:

u4 − (2x− 1)(3x2 − 3x− 1)
(x2 − x− 1)(x− 1)x

u3

+
(2x− 1)2(243x4 − 486x3 + 77x2 + 166x+ 27)

72x2(x− 1)2(x2 − x− 1)2
u2

− (81x4 − 162x3 + 23x2 + 58x+ 9)(2x− 1)3(3x2 − 3x− 1)
144x3(x− 1)3(x2 − x− 1)3

u
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+
(81x4 − 162x3 + 23x2 + 58x+ 9)2(2x− 1)4

20736x4(x− 1)4(x2 − x− 1)4

which is the square of:

u2 −
(2x− 1)

(
3x2 − 3x− 1

)
2x(x− 1)(x2 − x− 1)

u+
(81x4 − 162x3 + 23x2 + 58x+ 9)(2x− 1)2

144x2(x− 1)2(x2 − x− 1)2
.

Since L©s 6 also has a rational solution x2(x − 1)2(x2 − x − 1)2, we get from the above
proof that G(L) is DSL2

3 ¦

The next example has a Galois group G(L) ∼= DSL2
2

Example. Consider the irreducible equation

L(y) = y′′ − 2
2x− 1

y′ +
3(2x− 1)2

(
x4 − 2x3 + x+ 1

)
16x2(x− 1)2 (x2 − x− 1)2 y.

The fourth symmetric power has a two-dimensional rational solution space generated by
J0 = x(x − 1)

(
x2 − x− 1

)
and J1 = x(x − 1)

(
x2 − x+ 1

) (
x2 − x− 1

)
. Thus, G(L) is

the quaternion group and we get the following two special polynomials:

u4 − (2x− 1)(2x2 − 2x− 1)
x(x− 1)(x2 − x− 1)

u3 +
(2x− 1)2(11x4 − 22x3 + 11x+ 3)

8x2(x− 1)2(x2 − x− 1)2
u2

− (2x− 1)3(2x2 − 2x− 1)(3x4 − 6x3 + 3x+ 1)
16x3(x− 1)3(x2 − x− 1)3

u

+
(3x4 − 6x3 + 3x+ 1)2(2x− 1)4

256x4(x− 1)4(x2 − x− 1)4

and

u4 − (2x− 1)(3x4 − 6x3 + 3x2 − 1)
x(x− 1)(x2 − x+ 1)(x2 − x− 1)

u3

+
3(2x− 1)2(9x6 − 27x5 + 19x4 + 7x3 − 8x2 + 1)

8x2(x− 1)2(x2 − x− 1)2(x2 − x+ 1)
u2

− (2x− 1)3(27x8 − 108x7 + 117x6 + 27x5 − 86x4 + x3 + 21x2 + x− 1)
16x3(x− 1)3(x2 − x− 1)3(x2 − x+ 1)

u

+
(2x−1)4(81x10−405x9+621x8−54x7−572x6+204x5+231x4−55x3−48x2−3x+1)

256x4(x− 1)4(x2 − x− 1)4(x2 − x+ 1)
.

From the theorem, we know that each polynomial is either a square or is irreducible. In
this example, the first polynomial is a square and the second is irreducible. ¦

3.3. the primitive case

The following shows that for the primitive case it is always possible to look only for
rational solutions of symmetric powers. However the algebraic solution of the Riccati
found this way will not be of lowest algebraic degree for ASL2

4 and SSL2
4 .

Lemma 3.3. Let L(y) = 0 be a second order equation whose differential Galois group
G(L) is a finite primitive subgroup of SL(2, C).
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• If G(L) ∼= ASL2
4 , then the unique special polynomial obtained from the logarithmic

derivative of a non-trivial rational solution of L©s 6 is irreducible.
• If G(L) ∼= SSL2

4 , then the unique special polynomial obtained from the logarithmic
derivative of a non-trivial rational solution of L©s 8 is irreducible. Also the unique
special polynomial obtained from the logarithmic derivative of a non-trivial rational
solution of L©s 12 is the square of a unique special polynomial of degree 6.
• If G(L) ∼= ASL2

5 , then the unique special polynomial obtained from the logarithmic
derivative of a non-trivial rational solution of L©s 12 is irreducible.

In all cases, it is the special polynomial of lowest order that one can construct using
rational solutions of symmetric powers of L(y).

Proof. The (abstract) group ASL2
4 has seven irreducible characters, the trivial one de-

noted 1, two characters ζ1,1 and ζ1,2 of degree 1, two characters ζ2,1 and ζ2,2 of degree 2
(where the trace of an element of order 3 is different from one and thus the representation
is not in SL(2, C)), another character ζ2 of degree two (corresponding to a representation
in SL(2, C)) and a character ζ3 of degree 3. If a second order equation L(y) = 0 has
Galois group G(L) ∼= ASL2

4 , then the corresponding character of G(L) will be χ = ζ2. The
character χm of G(L©s m) can be computed according to the formula given in Singer and
Ulmer (1993a, p. 15):

χ2 = ζ3 χ4 = ζ1,1 + ζ1,2 + ζ3 χ6 = 1 + 2ζ3
χ3 = ζ2,1 + ζ2,2 χ5 = ζ2,1 + ζ2,2 + ζ2.

Since there are no semi-invariants of degree 2 or 3, the unique special polynomial obtained
from the logarithmic derivative of a rational solution of L©s 6 cannot be the product of
special polynomials of lower order.

The proof in the other cases are similar and can be deduced from the decompositions
that follow:

• The (abstract) group SSL2
4 has eight irreducible characters, the trivial one 1, another

character ζ1,1 of degree 1, one character ζ2 of degree 2 which is not faithful, two
(conjugate) characters ζ2,0 and ζ2,1 of degree 2 (corresponding to representations
in SL(2, C)), two characters ζ3,1 and ζ3,2 of degree 3 and a character ζ4 of degree 4.
For ζ2,i we set j ≡ i+ 1 (mod 2) and get:

χ2 = ζ3,1 χ5 = ζ2,j + ζ4 χ8 = 1 + ζ2 + ζ3,1 + ζ3,2
χ3 = ζ4 χ6 = ζ1,1 + ζ3,1 + ζ3,2 χ12 = 1 + ζ1,1 + ζ2 + ζ3,1 + 2ζ3,2
χ4 = ζ2 + ζ3,2 χ7 = ζ2,i + ζ2,j + ζ4.

In the above case we note that the character χ12 as a unique trivial summand and
thus that L©s 12(y) = 0 has a one-dimensional rational solution space and thus that
(up to multiples) there is a unique invariant of degree 12. But this invariant must
be the square of the semi-invariant of degree 6 since the one-dimensional character
ζ1,1 is of order 2. The special polynomial associated to the invariant of degree 12
must be the square of the unique special polynomial of degree 6.

• The (abstract) group ASL2
5 has nine irreducible characters, the trivial one 1, two

(conjugate) characters ζ2,0 and ζ2,1 of degree 2 (corresponding to two represen-
tations in SL(2, C)), two characters ζ3,1 and ζ3,2 of degree 3, two characters ζ4,1
and ζ4,2 of degree 4, a character ζ5 of degree 5 and a character ζ6 of degree 6. For
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ζ2,i we set j ≡ i+ 1 (mod 2) and get:

χ2 = ζ3,i χ6 = ζ3,j + ζ4,2 χ10 = ζ3,1 + ζ3,2 + ζ5
χ3 = ζ4,1 χ7 = ζ2,j + ζ6 χ11 = ζ2,i + ζ4,1 + ζ6
χ4 = ζ5 χ8 = ζ4,2 + ζ5 χ12 = 1 + ζ3,i + ζ4,2 + ζ5.
χ5 = ζ6 χ9 = ζ4,1 + ζ6.

2

Example. Consider the irreducible equation

L(y) = y′′ −
(
− 3

16x2
− 2

9(x− 1)2
+

3
16x(x− 1)

)
y.

This equation is studied in Kovacic (1986, p. 23), where a minimal polynomial of de-
gree 4 of an algebraic solution of the Riccati equation is given. This minimal polynomial
corresponds to an exponential solution of L©s 4 which is not rational, but which is the
cube root of a rational function. The same equation is also studied in Singer and Ulmer
(1993b, p. 68) where the minimal polynomial of a solution (not of a logarithmic deriva-
tive) is computed.

Using our approach, since L©s 4 has no rational solution we know that G(L) is a primi-
tive subgroup of SL(2, C). Since L©s 6 has a rational solution x2(x−1)2, we get that G(L)
is the tetrahedral group and that the special polynomial associated with the logarithmic
derivative 4x−2

x2−x will be irreducible. This gives the following minimal polynomial for an
algebraic solution of the Riccati:

u6 − 2
(2x− 1)
x(x− 1)

u5 +
5(64x2 − 63x+ 15)

48x2(x− 1)2
u4

− 5(512x3 − 745x2 + 351x− 54)
432x3(x− 1)3

u3

+
5(4096x4 − 7840x3 + 5485x2 − 1674x+ 189)

6912x4(x− 1)4
u2

− (3645x− 16254x2 + 35781x3 − 38720x4 + 16384x5 − 324)
20736x5(x− 1)

u

+
−29889x+ 169209x2 − 506331x3 + 842008x4 + 262144x6 − 735232x5 + 2187

2985984x6(x− 1)6
.

¦

4. Rationality Problem

In order to use differential Galois theory and in particular the existence of a PVE
for L(y) = 0, we needed to assume that the field of constants of the coefficient field
is algebraically closed of characteristic 0. This implies that even if the coefficients of
L(y) = 0 belong to Q(x), the coefficient of a special polynomial could be in Q(x) but
not in Q(x). The question of which algebraic extension of the constant field is needed to
represent a special polynomial is studied in Hendriks and van der Put (1993,1995) and
Ulmer (1994). The following result is trivial but useful, since it connects the approach
used in this paper to the rationality problem:
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Lemma 4.1. Let L(y) = 0 be a linear differential equations whose coefficients belong to a
differential field k0 ⊆ C(x) = k. If a special polynomial P (u) is obtained from an invariant
of degree m corresponding to a solution in k0 of L©s m(y) = 0, then the coefficients of
P (u) are in k0, i.e. no algebraic extension is needed to represent the coefficients of this
particular special polynomial P (u).

To see how to use this result we note that:

(i) The coefficient of any symmetric power L©s m(y) of L(y) are obtained by solving a
linear system over k0 and thus also belong to k0.

(ii) An invariant of degree m is a rational solution of L©s m(y) = 0. By Theorem 9.1 of
Bronstein (1992), there exists a basis of the rational solution space of L©s m(y) = 0
in k0 which can be computed without extending the constant field†.

(iii) If the invariant and thus bm−1 is in k0, then all other coefficients of P (u) obtained
by the recurrence (])m will also be in k0.

In what follows we assume (e.g. using the algorithm given in Bronstein, 1992, Theo-
rem 9.1) that all computed invariants from now on are in k0, the smallest field containing
the coefficients. Thus, if a special polynomial can be computed using an invariant of some
degree (i.e. a rational solution of some symmetric power), then this special polynomial
also has coefficients in k0. Our results imply that this is possible in all cases except for
the non-reductive subgroups G(L) ⊆ SL(2, C). For reducible non-reductive groups, there
is a unique exponential solution, and so the result of Hendriks and van der Put (1995)
quoted above shows that no extension of the constant field is needed to express this
solution‡. Thus, one can always find (at least) one special polynomial without increasing
the constant field.

4.1. the reducible case

If we are in a non-completely reducible case then, as seen just above, there a unique
exponential solution and its logarithmic derivative lies in k0.

In Section 3.1, we showed that the Galois group G(L) 6= {id,−id} is reducible and com-
pletely reducible if and only if it has an invariant of degree 2 such that the corresponding
special polynomial factors but is not a square. In that case, an algebraic extension of
degree 2 of the constant field may be needed to factor the special polynomial, as shown
in this example:

Example. Consider L(y) = y′′ + 7
16x2 y whose coefficients belong to k0 = Q(x) ⊂ Q(x) =

k. A rational solutions of L©s 2 is x and we get the special polynomial

u2 − 1
x
u+

7
16x2

.

† If L(y) = 0 has coefficients in k0 = C0(x) and V is the C0-space of solutions of L(y) = 0 in k0, then

W = C0 ⊗C0 V is the C0-space of solutions of L(y) = 0 in C0k0. In particular, a C0-basis of V will be a

C0-basis of W .
‡ However, it is not certain yet that an extension of the constant field will not be needed during the

computational process that provides this unique exponential solution.
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This special polynomial is irreducible over Q(x), but factors over Q(
√
−3)(x) into(

u− 2−
√
−3

4x

)(
u− 2 +

√
−3

4x

)
.

We get the following two Liouvillian solutions of L(y) = 0:

y1 = e
∫ (

2−
√
−3

4x

)
, y2 = e

∫ (
2+
√
−3

4x

)
.

¦

4.2. the irreducible case

For irreducible equations L(y) = 0 we showed how to construct an irreducible special
polynomial using an invariant. So, in this case, no algebraic extension of the coefficient
field is needed to represent a solution. But, for the quaternion and the tetrahedral groups,
the special polynomial proposed is not of minimal degree. To construct the special poly-
nomial of minimal degree, an algebraic extension of k0 is sometimes necessary. In fact,
there are exactly two cases when one may need to augment the constant field; we now
detail them.

4.3. the group of quaternions

If G(L) ∼= DSL2
2 (the group of quaternions), we saw that there are three irreducible

special polynomials of degree 2 and all the other irreducible ones of degree 4. With our
approach, one can also find the polynomials of degree 2. The idea, explained through the
following example, is to choose the correct linear combination of invariants in order to
guarantee that the corresponding special polynomial is a square.

Example. Consider the equation y′′ + 27x
8(x3−2)2 y = 0 (from Hendriks and van der Put,

1995). Applying our algorithm, we find that G(L) has no invariant of degree less than
4 and that L©s 4(y) = 0 has a basis of rational solutions given by J1 =

(
x3 − 2

)
and

J2 = x(−2 + x3). Thus, G(L) is the quaternion group and we get the following two
special polynomials P1(u) and P2(u):

u4 − 3
x2

x3 − 2
u3 +

3x(4x3 + 1)
4(x3 − 2)2

u2 − 8x6 + 13x3 − 4
8(x3 − 2)3

u+
27x2(−1 + 2x3)

64(x3 − 2)4

and

u4 − 2
(−1 + 2x3)
(x3 − 2)x

u3 +
3x(8x3 − 7)
4(x3 − 2)2

u2 − 16x6 − 19x3 + 1
4(x3 − 2)3

u

+
(4x3 − 3x− 2)(16x6 + 12x4 − 16x3 + 9x2 − 6x+ 4)

64(x3 − 2)4x
.

A simple gcd computation shows that none of these is a square, so they both provide
Liouvillian solutions. We now wish to compute the special polynomials of minimal de-
gree 2 using a linear combination Jλ = J0 + λJ1 and construct the special polynomial
Pλ(u) associated with Jλ. The results of Section 3.2 show that there are exactly three
values of λ such that Pλ is a square (and it is irreducible otherwise). Call Ru the re-
sultant in u of Pλ(u) and ∂

∂uPλ(u); then, we must have Ru(x, λ) = 0 for all x. So, we
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compute the gcd of all coefficients in x and obtain
(
2λ3 + 1

)2 (in fact, the resultant was
−115 964 116 992(x3 − 2)22(1 + 2λ3)2(λx + 1)). Call α a solution of 2α3 + 1 = 0. Then,
Pα is necessarily a square. Actually, we have Pα = Q2

α, where Qα(u) is:

u2 − (2x2 + xα2 − α)
(x2 + 2xα2 − 2α)(x− 2α2)

u+
(4x3 − 3αx− 2)(x+ α2)

4(x2 + 2xα2 − 2α)2(x− 2α2)2
.

Note that there are 3 conjugate solutions of 2α3 +1 = 0 and thus we have three minimum
polynomials of degree 2 given by the above relation. The above process can be applied
to any equation with a quaternion Galois group. ¦

4.4. the tetrahedral group

In the finite primitive cases, Kovacic (1986) already mentioned that one could get the
minimum special polynomials by factoring special polynomials obtained from invariants
of degree 12. In the tetrahedral case, there is a 2-dimensional space of invariants. Taking
the same notation as in the proof of Lemma 3.3, one can see this from:

χ12 = 2 · 1 + ζ1,1 + ζ1,2 + 3ζ3.

Among those invariants of degree 12, two must be the cube of the two semi-invariants of
degree 4, since the corresponding linear characters ζ1,1 and ζ1,2 are of order 3.

One can proceed like for the group of quaternions and look for the linear combinations
of the two invariants of degree 12 whose corresponding special polynomials are the cubes
of one of the two special polynomials of degree 4. The linear combination may require a
quadratic extension of the field of constants of k0.

5. Conclusion

We do not claim that the algorithm presented here is always better/faster than the
Kovacic algorithm. However we feel that the formulation via rational solutions simplifies
the presentation and makes the algorithm easier to implement.

The algorithm presented here is not limited to the case k = C(x) and holds for any
second order equation with unimodular Galois group (i.e. the special form p(x)y′′ −
q(x)y(x) = 0 used in Kovacic (1986) is not always needed). The fact that we reduce
almost everything to the computation of rational solutions of some auxiliary linear dif-
ferential equations allows us to work with complicated singularities without having to
factor polynomials (Bronstein, 1992).

It turns out that an implementation of our approach treats easily examples with several
complicated singularities and finite group (see our examples pages 193 and 198) which
the known implementations of the Kovacic algorithm could hardly solve; in practice, the
only case that remains difficult is the non-reductive case where the Riccati equation has
a unique rational solution.

The necessary conditions used in the Kovacic algorithm can also be used in our
approach to distinguish between the different case. Similar necessary conditions (even
stronger in some cases) to those given in Kovacic (1986) which do not assume the special
form p(x)y′′ − q(x)y(x) = 0 are given in Singer and Ulmer (1994). Necessary conditions
for the group of quaternions are given in Ulmer (1994).

In the case of a finite group, an alternative to our approach is to use the algorithm of
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Singer and Ulmer (1993b) to compute the minimum polynomial of an algebraic solution
of L(y) = 0 instead of its logarithmic derivative.
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Polytechnique 22, 149–193.
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Abstract. In this paper we show how group theoretic information can be used to 
derive a set of necessary conditions on the coefficients of L(y) for L(y) = 0 to have a 
liouvillian solution. The method is used to derive (and improve in one case) the 
necessary conditions of the Kovacic algorithm and to derive an explicit set of 
necessary conditions for third order differential equations. 
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1. Introduction 

In our previous work [20J, [21J, we have shown how group theoretic techniques 
can be used to develop effective algorithms to calculate Galois groups of second 
and third order homogeneous linear differential equations and to decide questions 
about the algebraic nature of the solution of such equations (e.g., solvability in 
terms of liouvillian functions or in terms of linear differential equations of lower 
order). In [12J, Kovacic gave an algorithm to decide if a second order homogeneous 
linear differential equation has liouvillian solutions. In the process of doing this, 
Kovacic derived a very strong set of necessary conditions for the existence of such 
solutions. In this paper, we show how one can derive these conditions from general 
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group theoretic properties. We also derive similar conditions for the third order 
case. 

We shall assume that the reader is familiar with the elementary concepts of 
differential Galois theory and elementary properties of linear operators. The 
necessary facts are reviewed in [20]. We shall need results from [21], but these will 
be stated in full for the convenience of the reader. 

The rest of the paper is organized as follows. In section 2, we give some 
elementary results concerning exponents and monodromy groups. Section 3 
contains the necessary conditions. The last section deals with linear differential 
equations having 3 singular points and examples. 

We wish to thank the referees for pointing out a mistake in the original proof 
of Theorem 3.5 and for suggestions that allowed us to sharpen our original version 
of the necessary conditions for case 2. 

2. Exponents and Monodromy Groups 

In this section we review some facts about formal and analytic solutions of linear 
differential equations. There is a well developed general theory of formal solutions 
at any point (of both systems and single equations) as well as an asymptotic theory 
(cf. [1, 5, 14]). We have restricted ourselves to the most basic facts in order to give 
an elementary and direct exposition of the results that we need. 

In what follows we will frequently wish to consider solutions of a linear 
differential equation that can be expressed as a series in (not necessarily integral) 
powers of x. This motivates the following discussion. 

Let 

L(y) = an(x)y<n) + an_1(x)y(n-l) + ... + ao(x)y 

be a linear differential equation with coefficients in the field <C((x)) offormal Laurent 
series and let ai(x) = In io ai,jx

j where ai,io i= O. If L(y) = 0 has a solution ofthe form 
y = xPIno CjXl, Co i= 0, then formally substituting this expression into L(y) = 0 and 
examining the coefficient of the smallest power of x, one sees that p will satisfy the 
equation 

P(p) = L ak,ko(p)k = 0 

where (p)j=p(p-1) .. ·(p-(j-1)) and the sum is over all k with ko-k= 
mino5i5n {io - i}. P(p) is called the indicial equation of L(y) (at 0). We shall refer 
to the roots of the indicial polynomial as exponents of L(y) (at 0). 

If L(y) has coefficients in <C(x), then for any CE<C we can expand these coefficients 
in powers of (x - c). Analogously, we can define the indicial equation at C and 
exponents at c. Via the transformation x = lit, fx = - t2 fr we can also define the 
indicial equation and exponents at infinity by considering the point t = 0 of the 
transformed equation. We say that x = C is an ordinary point if, for 0 ~ i ~ n, 
ai(x)lan(x) is analytic at x = c (for c = 00 this property is related to the point t = 0 
of the transformed equation). The following lemma contains facts that are easily 
verified by computation (cf. [5], Ch. 4, 5; [14], Ch. IV, V). 

Lemma 2.1. Let L(y) = 0 have coefficients in <c(x) and let CE<C. 
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1. If L(y) = 0 has a formal solution of the form 

y=(x-c)p L ci(x-c)';, riEIR, 0=rO <r1 < ... ,co7"'oO, 
i~O 

then p is an exponent of L(y) at c. 
2. The degree of P(p) is at most n. 
3. If c is an ordinary point then the exponents at care {O, ... , n - I}. 

The converse of part 1 of the above lemma can be false in the case when log terms 
occur in formal solutions. For example, L(y) = x2y" - (3 - 2x)xy' + (3 - 6x)y has 
exponents {I, 3} at 0 and at this point it has a fundamental set of solutions of the 
form {x 3

, -4x 3 1n x + x¢(x)}, where ¢(x) is a power series in x with ¢(O) # O. No 
linear combination of these two solutions can be of the form xljJ(x) where ljJ(x) is a 
power series with 1jJ(0) # o. 

If a point c is not an ordinary point, it is called a singular point. If, in addition, the 
indicial polynomial at this point has degree n, we say that the point is a regular 
singular point. An obviously equivalent way of saving this is that the order of the 
pole of an-i(x)/an(x) at c is at most i. A linear differential equation with only regular 
singular points (including ex)) is called a fuchsian linear differential equation. We 
gather some facts about regular singular points in the following lemma, but first 
give the following definition: 

Definition 2.1. Let {Yl, ... ,Yn} be a fundamental set of solutions of the linear 
differential equation L(y) = O. The mlh symmetric power L®m(y) of L(y) is the 
differential equation of smallest order, such that the solution space of L®m(y) = 0 is 
spanned by {y~, y~-lY2' ... 'y:}. 

Note that this definition is independent of the choice of fundamental solutions 
and that L®m(y) is the linear differential equation of smallest order satisfied by all 
homogeneous forms F(y 1, ... ,Yn) of degree m with constant coefficients in solutions 
Yl' ... , Yn of L(y) = O. See [17] for a further discussion of this concept. An algorithm 
to construct the equation L®m(y) is given in [17] and [20], Section 3.2.2. 

Lemma 2.2. Let L(y) = 0 be of ol'der n and have coefficients in <c(x) and let CE<C. 

1. If c is a regular singular point and p is a root of multiplicity r of the indicial equation, 
then L(y) = 0 has r independent solutions of the form 

Yi = (x - C)PCto ¢i.j(x)(log(x - C))j) (1) 

where i = 0, ... , r - 1, the ¢i)X) are analytic at c andfor each i there is some j such 
that ¢i.j(C) # o. Furthermore, if p + N is not an exponent ofL(y) = Ofor any positive 
N Ell, then L(y) = 0 has a solution of the form (x - c)P cp(x), where cp(x) is analytic 
at c and cp(c) # O. 

2. c is a regular singular point if and only if in any open angular sector n at c, all 
solutions of L(y) = 0 analytic in n, satisfy limx~c(x - C)N Y = 0 for some N ;:;; O. 

3. If all solutions of L(y) = 0 are algebraic over <c(x), then L(y) = 0 is a fuchsian 
equation and at any singular point c there are n distinct rational exponents. 
Furthermore, at any point there is a fundamental set of solutions of the form 
Yi = (x - cr¢;(x) where ¢;(x) is analytic at c, ¢i(C) # 0, and au ... , an are the 
exponents. 
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4. Let L(y) = 0 be afuchsian equation and a), ... , an exponents at some point c. Then 
the mth symmetric power L®m(y) is fuchsian and the exponents at c are in the set 
{(I7=) ai) + tl ijE {I, ... , n}; tEll; t ~ O}. 

Proof. 1 and 2 are proved in [5J, Chap. 5, Sects. 1 ~5 and [14J Chap. V, Sects. 16, 17. 
Lemma 2.2.2 is usually referred to as Fuchs' Criterion (cf. [5J, p. 124 and [14J, 
pp. 65~68). Lemma 2.2.2 implies that if all solutions are algebraic, the equation 
must be fuchsian. To prove 3., let c = 0 and let y), ... , Yn be solutions of L(y) = 0 as 
described in 1. Since these are algebraic cover <c(x), they are also algebraic over 
<C((x)). Let k be the differential field <C((x))(xPI, ... ,xPn ), where p), ... ,Pn are the 
exponents at O. We claim that for each solution Yi of the above form, we must have 
¢i,j = 0 for j = 1, ... , i. If not, then log x would be algebraic over k. The Kolchin~ 
Ostrowski Theorem ([IIJ) implies that logx would be in <c((x)). Since there is no 
element Y in <c((x)) such that y'!y = l!x, we have a contradiction. Therefore each Yi 
is of the form XP'¢i(X), for the ¢i(X), ¢i(O) "" 0 in <c((x)). Since each Yi is algebraic 
over <C((x)), we have that each Pi is rational. We now claim that all the exponents 
of L(y) are distinct. Consider the set of bases B = (Y),.··, Yn) where each Yi = XP'¢i(X), 
¢i(O) "" 0 where P1 ;;:; ... ;;:; Pn and define an order on this set by letting B < B if 
(P1"'" Pn) < (p), ... , Pn) in the lexicographical order. Let B be a maximal element 
of this set, then for this set the Pi are distinct. This will show that there are n distinct 
exponents. Assume not and let j be the smallest index so that all Pi with i > j are 
distinct. We then have that Pj = Pj+ l' Therefore, there is a constant d such that 
Z = Yj - dYj+) = xPt/I(x) for some P > Pj' Replacing Yj+ 1 by z gives a new basis which 
(after we perhaps rearrange the elements) is larger in the ordering. This contradicts 
the maximality of B. 

To prove 4, consider a basis of the solution space of L(y) = 0 of the form 
Yi = (x - c)a'(I~~o ¢i)x)(log(x - c))j) where the ¢i)X) are analytic at c, some 
¢i)C) "" 0, and a1, . .. , an are the exponents of L(y) = 0 at c. Note that L®m(y) has a 
basis of solutions of the form yi1' y~ ... y~n, where i1 + ... + in = m. The second 
assertion of the Lemma implies that c is at worst a regular singular point of L®m(y). 
Let P be an exponent of L®m(y) at c. From 1 we get that L®m(y) = 0 has a solution 
of the form y = (x - c)P(I~=o t/lr{x)(log(x - c))'}, where t/lr(x) is analytic at c, and 
some t/lr(c) "" O. Therefore there exist constants C1 such that 

y= L C1/t'"····y~n 
1=(;" ... ,in ) 

= .L. C1(X-ctlil+ ... +anin(.i <P1,j(X)(IOg(X-C))j) 
1=(", ... ,'n) )=0 

where the sum is over all I = (i), ... , in) with i) + ... + in = m, the <Pl,j(x) are analytic 
at c and for some (I,j), <P1,/C) "" O. Since the <Pl,j(x) contain only nonnegative powers 
of x, comparing the lowest power of log (x) whose coefficient is not zero and taking 
into account possible cancelation, yields the result. • 

For non fuchsian equations very little can be said regarding the relationship 
between the exponents of a linear differential equation and those of its symmetric 
power. The following example shows that one can have a linear differential equation 
with no exponents at 0 while the symmetric square has an exponent at O. Let 

L( = ,,_ 2 , + 2x
2 

- 3x + 2 
y) Y x(x - 2/ x4 (x - 2) y. 
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This equation has a basis of solutions {x exp (l/x), exp ( -1/x)} and no exponents 
at O. The second symmetric power is 

6 4(3x3 
- 6x2 + 8x - 4) I 4(3x3 

- 6x2 + 8x - 4) 
y lII

- y" + Y - Y 
x(x - 2) x4 (x - 2)2 x 5(x - 2)2 

and this has 1 as an exponent since x is a solution. 
We do note that the theory of formal solutions at a point does allow one to give 

apriori bounds on the exponents of the symmetric power even in the non-fuchsian 
case (cf. [5J, Chap. 5, Sect. 2 and [1, 19J). This involves calculating formal exponents, 
a task that is more difficult than calculating exponents defined above. Since this will 
not be needed, we have stated Lemma 2.2.4 just for the fuchsian case. 

Consider the class of linear differential equation with coefficients in <C(x). For 
these equations we can use analytic considerations to define a group called the 
monodromy group that is a subgroup ofthe differential Galois group '9i(L) of L(y) = 0 
over <C(x) (see e.g. [10, 20J). Let c l , ... , cm can be singular points of L(y) = 0 
(including infinity if it is a singular point) and let Co be an ordinary point of the 
equation. We consider these points as lying on the Riemann Sphere S2. Let 
{YI"'" Yn} be a fundamental set of solutions of L(y) = 0 analytic at Co and let y be 
a closed path in S2 - {c l , ... , cm } that begins and ends at Co. One can analytically 
continue {YI"'" Yn} along y and get new fundamental solutions {h,···, Yn} analytic 
at Co. These two sets must be related via (h, ... ,Ynf=MY(YI, ... ,Yn)T where 
M yEGL(n, <C). One can show that My depends only on the homotopy class of y and 
that the mapyH My defines a group homomorphism from n l (S2 - {c l , ... , cm }) to 
GL(n, <C). The image of this map depends on the choice of Co and {Yl, ... , Yn} but is 
unique up to conjugacy and is called the monodromy group of L(y). In general the 
image of this group will be a proper subgroup of '9i(L), but when L(y) is fuchsian, 
the Zariski closure of this group will be the full differential Galois group '9i(L) (cf. 
[23J). In particular if <,§(L) is finite (i.e., all solutions of L(y) = 0 are algebraic) then 
the map is surjective and the monodromy and Galois groups coincide. The fact that 
the monodromy group is a subgroup of the differential Galois group allows us to 
prove the following: 

Lemma 2.3. Let L(y) = 0 be a linear differential equation with coefficients in <C(x), 
assume all solutions of L(y) = 0 are algebraic over <c(x). If a is an exponent at any 
point c, then NaElL for some integer N that is the order of an element of<,§(L). 

Proof. Lemma 2.2 implies that there is a fundamental set of solutions of the form 
Yi = (x - c)a,¢;(x) where ¢i(X) is analytic at c, ¢i(C) i= 0, and al , •.. , an are the 
exponents. If we continue analytically along a small loop around c, we get 
the solutions Yi = e(2"v'~)a,(x - ct'¢;(x). Therefore the diagonal matrix 9 = 
daig (e(2"v'~)al, ... , e(2"v'~)an) is conjugate to an element of the differential Galois 
group. Since gN = 1, we have NaiElL for i = 1, ... , n. • 

The relationship between the exponents of L(y) at C and the eigenvalues of the 
monodromy matrix My corresponding to a simple loop y around c, containing no 
other singular point, is given by the following: 

Lemma 2.4. Let L(y) = 0 be a linear differential equation with coefficients in <c(x), c 
a regular singular point of L(y) = 0 and al , •.. , an the exponents at c. The eigen
values of the monodromy matrix My, corresponding to a loop y around care 
e2"v'~al, ... , e21tv'~an 
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Proof. For convenience let c = 0. Separate the exponents into different sets 
S 1, ... ,S" such that the elements of each set differ by integers, and elements of 
different sets differ by non-integers. Let mj = ISjl and n = m1 + '" + mr . For each 
set Sj' we denote by aj an element with the property that for any integer m ~ 1, 
aj + m¢Sj. From Lemma 2.2 we get that there exists a solution of the form xaj 4>j(x), 

where 4> /x) is analytic at ° and 4>/0) =1= 0. Therefore Aj = e21tJ-=-Taj is an eigenvalue 
of the monodromy matrix. We claim that each Aj is an eigenvalue of multiplicity at 
least mj' Since n = m1 + ... + mr, this will imply that Aj is of multiplicity mj' Since for 
any aESj, Aj = e21tv' - la, we will have established the conclusion of the Lemma. To 
prove the claim, let a 1 , ... , at be the distinct elements of Sj and assume that aiESj 
is a root of multiplicity Si of the indicial polynomial. For each ai there are Si 
independent solutions of the form (1). If y = xai (L~;o 4>j(x)(log(x))j) with ° ~ h < Si 
is one of these solutions, then 

(M y - e21t v'-=-Tai Id)(y) = e21tJ-=-Taixa{Jo 4>ix)(log (x) + 21l:~=1)j) 

- e21tv'-=-Taixa{Jo 4>j(X)(lOg(X))j) 

= xaiCt~ ~j(X)(lOg(X))j), 
where the ~j(x) are analytic at 0. This shows that (My_e21tJ-=-TaiIdYi-l(y)= 
xai~(x), where ~(x) is analytic at 0, and thus we get (My_e21tJ-=-TaildYi(y) =0. 
Note that for distinct a i we get independent solutions of the form (1). Therefore 
the generalized eigenspace corresponding to )'j = e2rrv -=-Taj has dimension at least 
Sl + ... +st=mj . • 

3. Necessary Conditions 

In this section we show how the results of [21 J can be used to derive strong necessary 
conditions for a third order linear differential equation with coefficients in <c(x) to 
have a solution liouvillian over <c(x) (see e.g. [10, 11, 12, 18,20, 21J for definitions). 
We will also derive the necessary conditions of the Kovacic algorithm using our 
approach, and improve them. 

In practice, one is given a linear differential equation L(y) = ° whose coefficients 
lie in F(x), where F is a finitely generated extension of <Q. In order to do our 
calculations, we need to assume that one has algorithms to perform the field 
operations and to factor polynomials over F. When this is the case, it is known that 
the same is true for the algebraic closure F if F ([7J). Although we give necessary 
conditions for certain behavior over <c(x), it is clear from our procedures, that all 
calculations can be done in F(x). We have not addressed the issue of finding the 
most efficient way to calculate in this field. In particular, we assume that all 
polynomials over the field F can be factored into linear factors whenever needed 
(for example, to consider individually each singular point of the differential 
equation). Reducing the need to factor (and work in algebraic extension) would 
increase the efficiency of our procedures. Techniques for attacking this problem are 
discussed in [2, 3]. 
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We shall continue using the philosophy of [20] and [21], that is, to distinguish 
3 different cases (for second order differential equations these correspond to the first 
3 cases of the Kovacic algorithm). If a third order equation L(y) = 0 has a liouvillian 
solution, then one of the following holds (cf. [20]): 

1. The differential Galois group is a reducible subgroup of SL(3, <C) (cf. case 1 in the 
Kovacic algorithm [12]). In this case the computation of the liouvillian solutions 
of L(y) can be reduced by factorisation to the computation of the liouvillian 
solutions of some second order linear differential equation over <C(x) (cf. [21], 
Sect. 2). 

2. The differential Galois group is an imprimitive subgroup of SL(3, <C) (cf. case 2 
in the Kovacic algorithm). In this case all solutions of the third order equation 
L(y) = 0 are Liouvillian, and L(y) = 0 has a fundamental system of solutions 
{yi' Y2, Y3} whose logarithmic derivatives y;/Yi are algebraic of degree 3 over <C(x) 
(cf. [21 J, Sect. 3). 

3. The differential Galois group is a finite primitive subgroup of SL(3, <C) (cf. case 
3 in the Kovacic algorithm). In this case all solutions of L(y) = 0 are algebraic over 
<C(x) (cf. [21J, Sect. 4). 

If none of the above cases holds, then the differential Galois group is an infinite 
primitive subgroup of SL(3, <C) and L(y) = 0 has no liouvillian solutions. Case 1 must 
be tested first, since this case is assumed to not hold in the other case. (Note that the 
above classification can be used for differential equations of arbitrary prime order.) 

In the following, we will assume that the differential Galois group of L(y) = 0 is 
unimodular (i.e. ,,§(L);;;; SL(3, <C)), or equivalently (cf. [IOJ, Chap. VI, Sect. 24) that 
L(y) = 0 is of the form 

L(y) = y'" + Ay" + By' + Cy = 0, A,B, CE<C(X), 

where A is of the form L~' with ni E71 and ltiE<C. If ,,§(L) is not unimodular, we 
i x-ai 

can always transform the equation by a change of variable to an equation where 
A = 0 (cf. [IOJ, Chap. VI, Sect. 24). The new differential equation has liouvillian 
solutions if and only if the original differential equation does. 

3.1. Reducible Case 

In this section we give conditions on the coefficients of L(y) = 0 for this case to 
occur. 

3.1.1. First step. We start by showing that for a given differential equation L(y) = 0 
of arbitrary order n and coefficients in <C(x), all solutions of the form P(x) ITJ,x - ci)a;, 
where P(X)E<C[X], Ci 1= 00 are singular points of L(y) = 0 and ai are exponents of 
L(y) = 0 at Ci , can be computed by only finding polynomial solutions of some /1-th 
order linear differential equations with coefficients in <c(x). 

We first note the following necessary condition: 

Lemma 3.1. (cf. [16], Sect. 178) If a linear differential equation L(y) = 0 of degree /1 

has a solution oftheform P(x) IT/x - ci)Q;, where P(X)E<C[X], Ci 1= 00 are the singular 
points of L(y) = 0, ai are exponents at Ci and P(x) is a polynomial, then there is an 
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exponent eoo at 00 such that the sum (Lia;) + eoo is a non-positive integer. In particular, 
if L(y) = 0 has no singularities other than 00 and has such a solution, then it must have 
a non-positive integer exponent at 00. 

Proof. Each ai is an exponent at the singular point ci. Expanding P(x) fl(x - c;)ai 

in increasing powers of X-I, we see that - deg(P) - Liai is the exponent of the 
leading term. Therefore this must be an exponent eoo at infinity. • 

Lemma 3.2. Let ci, aiE<C and y an m-times differentiable function, then 

( y TI (x - c;)a,)(m) = (.I (qj(X)y(j»)) TI (x - c;)ai, 
l )=0 l 

where q/X)E<C(X). 

Proof. The result is true for m = O. For 1 ~ m we get: 

( )
(rn) ( )(m-l) ( ( ))(rn-l) 

y r; (x - Cit' = y' r; (x - c;)ai + y ~ a;(x - citi - 1 II (x - c;)ai 

( )
(rn-l) (( a.) )(rn-1) 

= y' r; (x - c;)ai + y ~ x ~ C
i 

r; (x - c;)ai . 

Now the result follows by induction by using y' and y L ~ instead of y. • 
i X-Ci 

For a given equation L(y) = 0 of degree n, there are only a finite number of 
singularities and at each singularity ci , there are at most n possible exponents ai • If 
L(y) = 0 has a solution ofthe form P(x) TIi(X - Cfi, where Ci #- 00 are singular points 
of L(y) = 0, P(X)E<C(X) and ai are exponents of L(y) = 0 at ci, then there are at most 
a finite number of possibilities for TIi(X - citi. For each possible term TIi(X - c;)a" 
we consider the differential equation: 

L(y):= L(y TI;(x - citi} = o. 
TI;(x - c;)ai 

From Lemma 3.2 we get that the coefficients of L(y) belong to <c(x). If L(y) = 0 has 
a solution of the form P(x) TIJx - Ci)ai, then L(y) = 0 has a solution P(X)E<C[X]' We 
thus have to compute a basis {PI (x), ... , Pk(X)} (k ~ n) of the polynomial solutions 
of L(y) = 0 to get a basis of the solutions of the form P(x) TIi(X - c;)ai

• 

3.1.2. Necessary Conditionsfor Case 1. If the differential Galois group of a differential 
equation L(y) = 0 of order n is a reducible subgroup of GL(n, <C), then L(y) factors 
as a differential operator and algorithms performing such a factorisation are known 
(cf. [20], Sect. 3.2.1). For a third order equation, this leads either to a right factor 
of order one or to a left factor of order one. Since a left factor of order one leads to 
a right factor of order one of the adjoint differential operator L*(y) (cf. [14], p. 38), 
testing reducibility leads to the computation of a right factor of order one of L(y) 
or L*(y). If an equation has a right factor of order one, then it has a solution y whose 
logarithmic derivative u = y' /y is rational. If L(y) = 0 is of fuchsian type, then any 
solution whose logarithmic derivative is rational must be of the form P(x) TI;(x - c;)ai

, 

where Ci #- 00 are singular points of L(y) = 0 and ai are exponents of L(y) = 0 at Ci 

(cf. [16], Sect. 178). Using Lemma 3.1 and the fact that the adjoint of a differential 
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equation of fuchsian type is also of fuchsian type (This follows from the facts that 
the solutions of L*(y) = 0 are contained in a Picard-Vessiot extension K associated 
with L(y) = 0 (cf. [5], p. 101, Ex. 19; [14], p. 43, Ex. 12 and p. 38) and any element 
of K must have the growth properties described in Lemma 2.2.2) we get: 

Corollary 3.3. Let L(y) = 0 be a third order differential equation which is of fuchsian 
type. If L(y) = 0 is reducible, thenfor either L(y) = 0 or L*(y) = 0 at eachfinite singular 
point ci there are exponents ai such that for some exponent eoo at 00, the sum 
(Li ai) + eoo is a non-positive integer. 

We now consider the non fuchsian case. The riccati equation associated with 
L(y) = y'" + Ay" + By' + Cy = 0 is 

R(u) = u" + 3uu' + Au' + u3 + Au2 + Bu + C = o. 
and the adjoint L*(y) = y'" - Ay" + (B - 2A')y' + ( - C + B' - A")y of L(y) has 
riccati equation: 

R*(u) = u" + 3uu' - Au' + u3 
- Au2 + (B - 2A')u + ( - C + B' - A") = O. 

In our computations we will usually assume that the finite singularity is at O. 
For the Laurent series at 0 or 00 we introduce the following notation: 

A = !y'xa + ... (higher order terms) 

B = pxb + ... (higher order terms) 

C = yxC + ... (higher order terms) 

A = !y'ooxaoo + ... (lower order terms) 

B = Pooxboo + ... (lower order terms) 

C = Yooxcoo + ... (lower order terms) 

For A = AdA2 where AiE<C[X], a oo denotes degAAd - degAA2)' 
If a Puiseux or Laurent series of a solution y of L(y) = 0 or a solution u of R(u) = Q 

exists at the point 0 or 00, we denote them by: 

y = pxr + ... (higher order terms) 

u = IJXh + ... (higher order terms) 

y = Pooxroo + .. , (lower order terms) 

u = IJooXhoo + .. , (lower order terms) 

Necessary conditions for case 1. Let L(y) = ylll + Ay" + By' + Cy be a third order 
linear differential equation with coefficients in <c(x) such that L(y) = 0 and the adjoint 
L*(y) = 0 have no solutions of the form P(x) fli(X - caai

, where P(X)E<C[X], Ci #- 00 
are singular points of L(y) = 0 and ai are exponents of L(y) = 0 at ci. If L(y) is reducible 
over <c(x), then one of the following holds: 

1. C = 0 and 

L(y) = (::2 + A :x + B )( C:}Y») 
2. C#-O and at some finite singular point of L(y) = 0 the coefficients A, Band C have 
exponents a, band c such that one of the following holds: 
(a) A #- 0, a ~ - 2, 3a ~ c and (if B #- 0 then 2a ~ b). 



10 M. F. Singer and F. Ulmer 

(b) BolO, b ~ -4, bE2'll, b ~ ic and (if A # 0 then b ~ 2a). 
(c) C ~ -6, cE3'll, (if A # 0 then C ~ 3a) and (if BolO then C ~ ~b). 
(d) AB # 0, a < - 2, b < - 4, b - a < - 1, 2a < band 2b - a ~ c. 
(e) A#O, a<-2, c<-6, c-a<-4, (c-a)E2'll, 3a<c and (if BolO then 

a + C ~ 2b). 
(f) BolO, C < -6, b < -4, C ~ b - 2, 3b < 2c and (if A # 0 then 2b < a + c). 

3. ColO and for A, Band C, one of the following holds: 
(a) A # 0, aoo ~ 0, 3a oo ~ Coo and (if BolO then 2a oo ~ boo). 
(b) BolO, 0 ~ boo, boo E2'll, boo ~ icoo and (if A # 0 then boo ~ 2a). 
(c) 0 ~ coo E3'll, (if A # 0 then Coo ~ 3a oo ) and (if BolO then Coo ~ ~boo). 
(d) AB # 0,0 < aoo, aa) ~ boo and 2b oo - aoo ~ coo' 
(e) A # 0, 0 ~ ca) - aa)' Ca) - aoo E2'll, 0 < Coo < 3a oo and (ifB # 0 then aoo + Coo ~ 2b oo )· 
(f) BolO, 0 < boo ~ Ca)' 3b oo > 2c", and (if A # 0 then 2b oo > aoo + coo)· 

Example: We use the above necessary conditions to show that for the following 
equation (which is the second symmetric power of the Airy equation) 

d3y dy 
L(y) = - - 4x- - 2y, 

dx 3 dx 

case 1 (of a reducible group '§(L) s;; SL(3,<C)) cannot occur. The point 00 is the only 
singular point of L(y), and the only exponent at 00 is 1/2. From Lemma 3.1 we get 
that L(y) = 0 has no solution of the form P(x) TIJx - cJa;. The first condition above 
cannot hold, since the coefficient of y is not O. Since L(y) = 0 has no finite singular 
point, the above second condition does not hold. Finally, for A = 0, be<) = 1 and 
Coo = 0 the third condition above does not hold. Thus, since L(y) is selfadjoint, 
L(y) = 0 is an irreducible equation. • 

Proof of the Necessary conditions for case 1: We first note that if C = 0, then L(y) = 0 
has a right factor of order one of the form stated. We assume from now on that 
ColO. If L(y) = 0 is a reducible third order differential equation, then either L(y) or 
L *(y) has a right factor of order 1 ([20J). 

1. First assume L(y) = Ll (Lz(y)), where L 2 (y) is of order 1, then R(u) has a solution 
UE<C(X). 
(a) If u has a pole of order bigger than 1 then u must have a pole of order> 1 at 

some singularity of L(y) = 0 which we assume to be O. We have u = YfXh + ... 
(higher order terms) and h < -1. Plugging u into R(u) = 0 we get: 

(Yfh(h-1)xh- Z + ... ) + (3Yf zhxZh - 1 + "')+(Yfahxa + h- 1 + ... ) 
+ (Yf3 X3h + ... ) + (Yf 2axZh +a + ... ) + (f3YfXb +h + ... ) + (yxC + ... ) = 0 

Since h < -1 we get h - 2> 3h, 2h - 1 > 3h and a + h - 1 > a + 2h. For the 
lowest term to cancel one of the following must hold: 

i. If 3h is the lowest exponent, then: 
A. if 3h = 2h + a, in which case A # 0, then a ~ - 2, 3a ~ c and (if BolO 

then 2a ~ b). 
B. if 3h = h + b, in which case BolO, then b ~ -4, bE2'll, b ~ ~c, and (if 

A # 0 then b ~ 2a). 
C. if 3h = c, then c ~ -6, cE3'll, (if A # 0 then c ~ 3a) and (if BolO then 

c ~ ~b). 
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H. If a + 2h is the lowest exponent but not 3h, then: 
A. if a + 2h = h + b, in which case AB =I- 0, then a < - 2, b < - 4, b - a < 

-1, 2a < band 2b - a ~ c. 
B. if a + 2h = c, in which case A =I- 0, then a < - 2, C < - 6, C - a < - 4, 

(c - a)E2Z, 3a < C and (if B =I- ° then a + C ~ 2b). 
HI. If a + 2h and 3h are not the lowest exponents, then B =I- 0, C < - 6, 

b < -4, C ~ b - 2, 3b < 2c and (if A =I-° then 2b < a + c). 
(b) If u has no pole of order bigger than 1, then u is of the form 

y. 
u = I _z_ + Q(x), 

X-C; 

where Q(X)E<C[X]. If Q(x) = 0, then L(y) = ° has a solution of the form 
P(x) IT; (x - C;)Yi, where P(X)E<C[XJ, Ci =I- 00 are singular points of L(y) = ° 
and Yi are exponents of L(y) = ° at Ci. Since we assume that this is not the 
case, we get hoo ~ 0. Plugging u into R(u) = ° we get an equation similar to 
the one in 1 (a) above (the only difference is that we have added the subscript 
OJ ). 

Since hoo ~ ° we get hoo - 2 < 3h oo ' 2hoo - 1 < 3h oo ' a oo + hoo - 1 < a oo + 2h ro . 
For the highest term to cancel one of the following must hold: 

1. If 3h oo is the highest exponent, then: 
A. if 3h oo = a oo + 2h oo , in which case A =I- 0, then a oo ~ 0, 3a oo ~ Coo and (if 

B =I-° then 2a oo ~ boo)· 
B. if 3h oo = boo + hro, in which case B =I- 0, then 0 ~ bcx)) boo E2Z, boo ~ %C oo 

and (if A =I-° then boo ~ 2aro)' 
C. if 3h oo = Coo, then ° ~ Coo dZ, (if A =I- ° then Coo ~ 3a oo ) and (if B =I- ° 

then Coo ~ tboo)· 
H. If a oo + 2hoo is the highest exponent but not 3h oo , then: 

A. if a oo + 2hoo = boo + hoo' in which case AB =I- 0, then 0< aoo , a oo ~ boo 
and 2b oo - a oo ~ Coo' 

B. if a oo + 2hoo = Coo, in which case A =I- 0, then ° ~ Coo - aro' Coo - a oo E2Z, ° < Coo < 3a oo and (if B =I-° then a oo + Coo ~ 2b oo ). 
iii. If boo + hoo is the highest exponents, but not 3h oo or a oo + 2h oo ' then B =I- 0, 

0< boo ~ Coo, 3b oo > 2c oo and (if A =I- 0 then 2b oo > a oo + coo), 

2. Now assume L*(y) has a right factor of order one. Note that L*(y) has the same 
singular points as L(y) = 0. When one expands the coefficients appearing in R*(u) 
and applies the above arguments, one gets the same conditions on a, band C 
(resp. aoo , boo and c",). • 

3.2. Case of an Imprimitive Unimodular Differential Galois Group 

If a third order linear differential equation L(y) = ° with coefficients in <c(x) has a 
differential Galois group which is an imprimitive subgroup of SL(3, <C), then all the 
solutions of L(y) = ° are liouvillian. In fact in this case L(y) = ° has a solution z such 
that u = z' /z is algebraic over <C(x) of degree at most 3 (Theorem 3.3, [21J). The 
minimal polynomial of u can be computed by the method described in Sect. 3.2 of 
[21]. We now derive a necessary condition for this case to hold. 

Since an imprimitive subgroup of prime degree (e.g. 3) is a monomial group 
(cf. [24J, Definition 3.2), we will now derive necessary conditions for the differential 
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Galois group to be monomial. For third (or just prime) order equations, these are 
necessary conditions for the imprimitive case. 

Necessary condition for case 2. Let L(y) = 0 be an irreducible linear differential 
equation of order n over <c(x) with monomial differential Galois group <§(L) ~ SL(n, <C). 
The n-th symmetric power L®n(y) = 0 of L(y) = 0 must have a non trivial solution of 
the form P(x) Di(x - CJ'i, where P(X)E<C[XJ, C; #- 00 are singular points of L®n(y) = 0 
with exponents IXiEtZ. In particular, any singularity of L®n(y) = 0 must have an 
exponent of the form b/2, where bEZ. 

If, in addition, L(y) = 0 is offuchsian type, then at each afthe m singular points ai 
ofL(y) = 0 on the Riemann Sphere there must be exponents IX i.1, IX;,z, ..• , lXi,,, ofL(y) = 0 
at ai such that 

• (2:;= 1 IX;)EtZ, and 

• (2:~= 12:;= 1 IX;)EZ and is non positive. 

Note that the elements IX;,I' IX;,2'" ., lXi,,, are not necessarily distinct. Furthermore, 
note that the above conditions imply that L(y) = 0 has a solution whose square 
is a rational function. For third order equations, the condition that L®\y) = 0 
has a solution whose square is rational is in fact necessary and sufficient (cf. [20J, 
Theorem 4.6). 

Example: We now use the above necessary conditions to show that, for the second 
symmetric power of the Airy equation 

d3 dy 
L(y) = - - 4x- - 2y, 

dx 3 dx 

the case 2 (of an imprimitive group <§(L) ~ SL(3, <C» cannot hold. Since L(y) = 0 is 
not of fuchsian type, we have to compute L®3(y) which gives: 

d7 y d5 y d4 y d3 y d2 y 
L®3(y)= __ 56x--140-+ 784x2 -+ 2352x-

dx 7 dx 5 dx4 dx 3 dx 2 

dy 
- 4(456x3 

- 295)- - 3456x2 y. 
dx 

The only possible exponent of L®3(y) at the unique singular point 00 is 3/2, which 
does not rule out the possibility of an imprimitive group <§(L) ~ SL(3, <C). We thus 
have to test the stronger condition that if <§(L) ~ SL(3, <C) is an imprimitive group, 
thenL®3(y) = 0 must have a solution of the form P(x) DJx - cJai

, where P(X)E<C[XJ, 
C; #- 00 are singular points of L(y) = 0 and aiEtZ. Since 00 is the only singular point 
and 3/2 is the only exponent, Lemma 3.1 implies that L®3(y) = 0 has no non-zero 
solution of this form. Thus case 2 (in which case we always have a liouvillian 
solution) does not hold. • 

Proof of the Necessary conditions for case 2: The "non fuchsian" part of our 
necessary conditions follows from: 

Theorem 3.4 (cf. Proposition 3.6, [20J). If an irreducible linear differential equation 
L(y) = 0 of order n with coefficients in <c(x) has a monomial differential Galois group 
<§(L) ~ SL(n, <C), then the n-th symmetric power L®n(y) = 0 of L(y) = 0 has a solution 
which is the square root of an element of <c(x). At any singularity, L®n(y) = 0 must 
have an exponent of the form a/2, where aEZ. 
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When L(y) is fuchsian we can do better. If for some solutions Yi of L(y) = 0 we 
have (Y1Y2'" Yn)2 is a rational function, then (Y1Yz'" Yn) must be of the form 

P(x) n (x - aJbi/ 2
, 

where P(X)E<C[X], ai are singular points of L(y) = 0 and bJ2 = ei with biE'lL is an 
exponent of L®n(y) = 0 at ai (the apparent singularities may also contribute to P(x)). 
Thus, for some exponent eoo of L®n(y) = 0 at 00 we have that -deg (P) -2:>i = ero • 

Thus ero + Iiei is a non-positive integer. Using Lemma 2.2 we can express the 
exponents of L®n(y) = 0 at ai in terms of the exponents IY.k of L(y) = 0 at ai. We get 
that there exists non negative integers m1 , ••. , mn with I;= 1 mj = n such that 

(where tj are positive integer) is non positive and in'lL. In particular 

is non positive and in'lL. Since ei = I;= 1 mjlY.i.j + ti and ei = bJ2 with biElL, we get 
that I;= 1 mjlY.i.jE±'lL. This proves the fuchsian part of the Theorem. • 

For a second order differential equation L(y) = y" - ry (rE<C(x)), one gets the 
condition of the Kovacic algorithm by looking at the riccati equation of the third 
order linear differential equation L®2(y) = 0 which is (cf. [21], p. 10 and [6]): 

8" + 38'8 + 83 = 4r8 + 2r' 

For a third order differential equation L(y) = 0 the order of L®\y), which is less 
than or equal to 10, is not known in advance (from [20], Lemma 3.5 we get that 
the order an be 7, 9 or 10). This makes a general discussion as in [12] difficult. 

3.3. Case of a Finite Primitive Unimodular Differential Galois Group 

There are, up to isomorphism, only 8 primitive finite subgroups of SL(3, <C). 
Following [20] Sect. 2.2, we denote them A~L" A 5 , As X C 3 , G168 . G168 X C 3 , H~7~, 
H~~3 and F~~3. We note that the last 3 groups are solvable, G168 is the simple group 
of 168 elements and A~L3 is a central extension of A 6 • By Jordan's Theorem, such 
a finite list exists for any degree. 

The order of a one dimensional character ( is the smallest integer i, such that 
((t is the trivial character. If G is a group and VaG-module, then we denote the 
mth symmetric power of V, which is also a G-module, by g'm(v) (cf. [13], p. 586). 

Our necessary conditions in this case are based on the following Theorem: 

Theorem 3.5. Let L(y) = 0 be a differential equation of degree n whose differential 
Galois group is afinite subgroup G of SL(n, <C). We denote by V the solution space of 
L(y) = O. If g'm(v) has a G-summand of dimension I whose character has order i, then, 
at each point c including 00, there exists positive integers m1 , •. ·, mn, with I;= 1 mj = m, 
such that i(I;=o mjej)E'lL, where e1 , ... , en are the exponents of L(y) = 0 at c. 
Proof. There is a natural map cPm of g'm(v) into the Picard-Vessiot extension for 
L(y) = 0 given by sending Z 1 ® ... ® Zm to Z 1····· zm' Since a finite group is 
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completely reducible, the solution space of L®m(y) = 0 is G-isomorphic to a direct 
summand of ym( V) (cf. [20J Lemma 3.5). Let {y 1, ... , Y n} be a fundamental set of 
solutions of L(y) = O. Since G is a finite group and ym(v) has a one dimensional 
summand, there is a homogeneous polynomial P( ¥1' ... , ¥n) of degree m whose 
(possibly trivial) image P(Yl' ... ' Yn) under <Pm is a semi-invariant of G and such that 
P(Yl, ... ,Yn)i is rational (cf. [21J, Proposition 1.6). 

If P(y l' ... ,Yn) # 0, then the exponents of P(y 1, ... ,Yn) at any point c are of the 
form (I;=o mje) + h, where hand mj are positive integers and I,;= I mj = m (cf. 
Lemma 2.2.4). Since (P(YI, .. . , Yn))' is rational, we have i( 0::;= 0 mjej) + h)Ell, thus 
i(I,;=o mjej)Ell. 

N ow assume P(y 1, ... , Y n) = 0 and let' be the character of the one dimensional 
summand of ym(v). In this case we will show that there is a linear differential 
equation L(y) = 0 with the following properties: 

i. L(y) and L(y) have the same differential Galois group G, 
ii. The solution space V of L(y) = 0 is G-isomorphic to V, 

iii. For somefundamental set of solutions {h,···, Sin} of L(y) = 0, P(.YI'···' Sin) # 0 
and P(Sil' ... , .vn) generates a one dimensional invariant subspace of the solution 
space of L®m(y) = 0 corresponding to the character C 

IV. ~ or a!!y point p on the Riemann Sphere, the sets of exponents Iff p of L(y) and 
Iff p of L(y) are the same mod ll. 

Assuming we have constructed L(y), we can finish the proof. We apply the argument 
of the preceding paragraph to the equation L(y) and conclude that, at each point c 
there exist positive integers m1,···, mn;.. with I,;= I mj = m, such that i(I;= 0 '!S ej ) Ell, 
where el , ... , en are the exponents of L(y) = 0 at c. Since the exponents of L(y) and 
L(y) coincide mod ll, we achieve the conclusion of the theorem. 

To construct L(h) we proceed as follows. Let R I , ... , Rn be new variables and 
consider the substitution 

C:) (:::... ::-::) OJ 
Under this substitution, the polynomial P(¥I, ... ' ¥n) becomes P(R I,···, Rn), 

a polynomial with coefficients in K, the Picard-Vessiot extension associated with 
L(y). Since the matrix JyV») is nonsingular, we see that P(R 1 , ••• , Rn) is a non
zero polynomial. Let Q(R 1 , .•• , Rn) be the image of the differential polynomial 
det(Wr(¥I' ... , ¥n)) (where Wr is the wronskian matrix) under this substitution. One 
can select the r;E<C(x) so that p(r 1, ... , r n)· Q(r 1, ... , rn) # 0 (see [15J, p. 35). Let 

We have that h, ... ,Yn belong to K and, by construction, these are linearly 
independent over~. Applying elements of the Galois group G to Yl' . .. , Yn' one sees 
that the <c-span V of these elements is left invariant by G. Furthermore, these 
~lements form a fundamental set of solutions of the linear differential equation 
L(y) = det (Wr(y, YI' . .. , Yn))/det(Wr(h, . .. , Yn)) whose coefficients are left fixed by G 
and so lie in <c(x). 
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Note that the matrix S = (Wr(Yl>"" Yn». (Wr(h, ... , Yn»-I is left invariant by 
the differential Galois group and so has entries in <rex). Comparing first rows of 
(Wr(YI'"'' Yn» and S' Wr(Yl,"" Yn) we have that Yi = L;:~ Sj.WJ with SjE<r(X). The 
map Y f--+ Lj:~ rjyljJ (resp. Y f--+ L;:~ SjYFJ) will take solutions of L(y) = 0 to solutions 

of L(y) = 0 (resp. solutions of L(y) = 0 to solutions of L(y) = 0). Therefore, the 
extension <r(x) (jib ... , Yn) coincides with K. In particular, L(y) and L(y) have the 
same differential Galois group, so property i. holds. To verify that property ii. holds, 
one observes that the matrix of any (J"EG is the same with respect to the bases 
{Yl,"" Yn} and {.vI"'" Yn}· Property iii. follows by construction. To verify property 
iv., let p = 0 and let y = xP Ln anxn be a solution of L(y) = O. We then have that 
Y = L;:~ rjy(jJ will be a solution of L(y) and furthermore it will be of the form 
Y = x P Ln bnxn (the ri are at worst meromorphic at 01 Therefore, if p is an exponent 
of L(y) = 0 at 0, then p + N will be an exponent of L(y) at O. Therefore elements of 
tff 0 are congruent to elements of i 0 mod 7l. Reversing the roles of L(y) and L(y) and 
arguing similarly, one establishes the last property. • 

We now state the necessary conditions for third order equations in this case: 

Necessary conditions for case 3. Let L(y) be an irreducible third order linear 
differential equation with Galois group afinite primitive group ~(L) c SL(3, <r). Then 
L(y) = 0 must be a differential equation of fuchsian type having 3 distinct rational 
exponents at any singularity. Furthermore, if c is any singularity of L(y) = 0 and 
el,e2 ,e3 are the exponents at c, then one of the following holds: 

1. If~(L)~A~L3,then 
(a) each ei is of the form aJmi, where (ai,mJ= 1, ai' mi E71 and Icm(m l ,mb m3 )E 

{I, 2,3,4,5,6,12, 15} and 
(b) th~re exists non negative integers nl> nz, n3 , such that L:= 1 ni = 6 and 

Li= 1 nieiE71. 

2. If~(L) ~ As, then 
(a) each ei is of the form aJmi , where (aj,mJ = 1, a"m j E71 and lcm(m1,m2 ,m3 )E 

{I, 2, 3, 5}, and 
(b) there exists non negative integers nl ,nZ ,n3 , such that L:=1 ni = 2 and 

L:=1 niei E71. 

3. If~(L) ~ As x C3 , then 
(a) each ei is of the form aJmi, where (ai,mi) = 1, ai,miE71 and icm(m1,m2,m3 )E 

{1,2,3,5,6,15}, and 
(b) ther~ exists non negative integers n1,n2,n3 , such that L:=1 ni = 2 and 

3(Li=1 nie;)E71. 

4. If~(L) ~ G16S , then 
(a) each ei is of the form aJmi, where (ai,m.) = 1, ai,m j E71 and Icm(m 1,m2,m3 )E 

{1,2,3,4, 7}, and 
(b) there exists non negative integers n1,n2 ,n3 , such that L:=1ni=4 and 

L:= 1 nieiE71. 

5. ~(L) ~ G168 x C3 , then 
(a) each e; is of the form aJm;, where (ai' m;) = 1, ai' miE71 and lcm(ml> m2, m3)E 

{I, 2, 3, 4, 6, 7,12,21}, and 
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(b) there exists non negative integers »1' n2 , n3 , such that I; = 1 n; = 4 and 
3(L~= 1 n;e;)EZ. 

6. r/(L) ~ H~~~, then 
(a) each e; is of the form adm;, where (a;,m;) = 1, ai,miEZ and /cm(m 1,m2 ,m3)E 

{1,2,3,4,6,9,12,18},and 
(b) there exists non negative integers n1 , n2 , n3 , such that L~ = 1 n; = 6 and 

3(I;= 1 nie;)EZ. 

7. r/(L) ~ H~~3, then 
(a) each ei is of the form ai/mi, where (ai' m;) = 1, ai' m;EZ and lcm(m 1 , m2 , m3)E 

{1,2,3,4,6,12},and 
(b) there exists non negative integers n1 , n2 , n3 , such that I; = 1 n; = 6 and 

I~= 1 n;eiEZ. 

8. r/(L) ~ F~~3, then 
(a) each ei is of the form admi, where (ai' mJ = 1, ai' miEZ and lcm(m i , m2 , m3)E 

{1,2,3,4,6,12},and 
(b) there exists non negative integers n1 ,nl ,n3 , such that I;=lni=3 and 

4(I;=1 nieJEZ. 

In order to exclude this case it is enough to show that none of the conditions on 
the exponents is satisfied. 

Example: The second symmetric power of the Airy equation 

d3y dy 
L(y)=--4x-- 2y 

dx 3 dx 

has an unimodular differential Galois group and is not of fuchsian type. Thus none 
of the necessary conditions 1, 2 and 3 hold and case 1, 2 and 3 can not occur for 
L(y) = O. This proves that L(y) = 0 has no liouvillian solutions. • 

Proof of Necessary conditions for case 3: The conditions that L(y) = 0 is offuchsian 
type and that all exponents are rational are a consequence of the result that any 
solution of L(y) = 0 has to be algebraic in this case (cf. Lemma 2.2.3). 

From Lemma 2.3 we get that all exponents are of the form aim, where m is the 
order of an element of r/(L). The possible set given in the necessary conditions is 
just the set of orders of elements of r/(L). 

For each irreducible three dimensional character X of a finite primitive group 
G, using the recurrence relation given in [20J Sect. 2.3 we can compute the character 
Xm of gm(v). The following are the decompositions of the Xm into irreducible 
characters of G in which a one dimensional summand appears for the first time (For 
example, in 7., X6 is the sum of the trivial character 1, 3 non trivial different one 
dimensional characters (1,1, (1,2 and (1,3' and 3 times the same irreducible eight 
dimensional character (s): 

1. For r/(L) ~ A~L3 we get X6 = 1 + (5,1 + (5,2 + (s + (9' 
2. For r/(L) ~ A5 we get Xl = 1 + (5 
3. For r/(L) ~ A5 x C3 we get Xl = (1 + (5' and (1 is of order 3. 
4. For r/(L) ~ G16S we get X4 = 1 + (6 + (s 
5. For r/(L) ~ G16S x C3 we get X4 = (1 + (6 + (s and (1 is of order 3. 
6. For r/(L) ~ H~~~ we get X6 = (1 + (3 + (S,l + 2(S,2, and (1 is or order 3. 
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7. For ~(L) ~ H~~3 we get X6 = 1 + '1.1 + '1,2 + '1,3 + 3'8' and '1.; is of order 2. 
8. For ~(L) ~ F~~3 we get X3 = '1,1 + '1,2 + '4,1 + '4,2> and 'I,; is of order 4. 

Theorem 3.5 now gives the result. • 
We now show how our approach can be used to get and to improve the necessary 

conditions of the Kovacic algorithm is this case (case 3 in [12]). The finite primitive 
subgroups of SL(2, <C) are the tetrahedral, octahedral and icosahedral group, which 
are denoted resp. A~L2, S~L2 and A~L2 (see e.g. [20] Sect. 2.2) 

Theorem 3.6. Let L(y) be an irreducible second order linear differential equation 
whose differential Galois group is a finite primitive group ~(L) ~ SL(2, <C). Then 
L(y) = 0 must be a differential equation of fuchsian type having 2 distinct rational 
exponents at any Singularity. Furthermore, if c is any singularity of L(y) = 0 and el , e2 

are the exponents at c, then one of the following holds: 

1. ~(L) ~ A~L" then 
(a) each e; is of the form ajm;, where (a;, mJ = 1, a;, m;EZ and lcm (ml' m2)E 

{1, 2, 3,4, 5, 6, 1O}, and 
(b) there exists non negative integers nl , n2 , such that nl +n2 = 12 and n l el +n2e2EZ. 

2. 'l/(L) ~ S;Lz, then 
(a) each e; is of the form ajm;, where (a;,mJ= 1, a;,m;EZ and Icm(m l ,m2 )E 

{l, 2, 3, 4, 6, 8}, 
(b) there exists non negative integers nl, n2, such that nl + n2 = 6 and 2(nl e l + n2 e2 )EZ. 

3. 'l/(L) ~ A;L2, then 
(a) each e; is of the form ajm;, where (a;, mJ = 1, a;, m;EZ and lcm (mJ, m2 )E 

{1,2,3,4,6}. 
(b) there exists non negative integers nl , nz, such that nl + n2 = 4 and 3(nl e l + nze2 )EZ. 

Proof. The proof is similar to the proof of the Necessary Conditions 3. For any 
irreducible character X of degree 2 of A;Lz, S!Lz and A~Lz, we have to find the 
decomposition of the character Xm of gm(v) in which a one dimensional summand 
appears for the first time. Using the same notation as in proof of the Necessary 
Conditions 3 we get: 

1. For A~Lz we get X4 = '1,1 + '1,2 + '3, where 'I'; is of degree 1 and order 3. 
2. For S!L2 we get X6 = 'I + 2'3' where 'I is of degree 1 and order 2. 
3. For A~L2 we get X12 = 1 + '3 + (4 + (5' 

We conclude as in Necessary Condition 3. • 
The above improvement of the necessary conditions given in [12] (see also [6]), 

which impose divisibility conditions on the denominator of the exponents, can also 
be found in a paper ofL. Fuchs (cf. [8]). We note that for the above result one does 
not need to compute the semi invariants, but only the order of a one dimensional 
character. 

3.4. Solvability in Terms of Lower Order Equations 

If a second order equation with unimodular differential Galois group has no 
non-zero liouvillian solutions, then its differential Galois group is SL(2, <C) (cf. [12, 
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20]). If a third order equation L(y) = 0 with unimodular differential Galois group 
has no non-zero liouvillian solutions, then its differential Galois group <§(L) is either 
SL(3, <C) or is congugate to P2(SL(2, <C)) or P2 (SL(2, <C)) x C3 , where 

(

a
2 

2ab b
2
J 

P2(a b) = ac ad + bc bd 
c d c2 2cd d2 

and C3 is the center of SL(3, <C) which is cyclic of order 3 (cf. [20]; Note that 
P2(SL(2, <C)) ~ PGL(2, <C)). If <§(L) is not SL(3, <C), then L(y) = 0 is solvable in terms 
of second order equations (cf. [18]). 

If A1 and Az are the eigenvalues of (: ~). then the eigenvalues of P2 (: ~) 
are {Ai, 1, A~} (since A1A2 = 1). This observation yields: 

Lemma 3.7. Let L(y) = 0 be afuchsian third order linear differential equation whose 
differential Galois group is conjugate to a subgroup of P2(SL(2, <C)) x C3 . Then at 
each singular point, some exponent is of the form';; for some nEZ. 

Proof. The monodromy matrix at any point is an element of the differential Galois 
group. Since the elements of C3 commute with the elements of P2(SL(2, <C)) one sees 
that the eigenvalues of a monodromy matrix are of the form {w),i, w, WA~}, where 
A1 A2 = 1 and w 3 = 1. Since L(y) = 0 is fuchsian, Lemma 2.4 implies that these must 
be of the form {e 21tv'-=Ta 1

, e21tv'-=Ta2 , e21tv'-=Ta3 }. So a2 = ';; with nEZ. • 

In the fuchsian case, the above yields necessary conditions useful in testing 
solvability in terms of second order equation and in computing differential Galois 
groups. This will be used in the next section. 

4. Differential Equations with three Singular Points 

In the previous section we derived necessary conditions on the exponents of a 
differential equation L(y) = 0 with coefficients in <c(x) to have a liouvillian solution. 
By assuming that we have only three singular points, we will be able to sharpen the 
necessary conditions for the finite primitive groups. 

Theorem 4.1. Let L(y) = 0 be a third order linear differential equation over <c(x) 
having three singular points Sl,S2 and S3 and whose differential Galois group <§(L) is 
a finite primitive subgroup of SL(3, <C). Then for each possible group, all lists 
[lcm 1 , Icm2, Icm 3 ] of possible least common multiples lcmi of the denominators di,l' 

n· 1 n· 2 n· 3 
di•2, di,3 of the rational exponents -'-' , -'-' , -'-' , where (n i•j , di) = 1, at Si can be 

di,l di,2 di,3 

derived. 

1. If <§(L) ~ A~L" we get: [2,4, 15], [2,5,12], [2,5, 15], [2,12,15], [2, 15, 15], 
[3,3,4], [3,3,5], [3,3,12], [3,3,15], [3,4,5], [3,4,15], [3, 5, 5], [3,5,12], [3,5,15], 
[3,12,15], [3,15,15], [4,4,4], [4,4,5], [4,4,15], [4,5,5], [4,5,6], [4,5,12], 
[4,5,15], [4,6,15], [4,12,12], [4,12,15], [4,15,15], [5,5,5], [5,5,6], [5,5,12], 
[5,5,15], [5,6,12], [5,6,15], [5,12,12], [5,12,15], [5,15,15], [6,12,15], [6,15, 
15], [12,12,12], [12,12,15], [12,15,15] or [15,15,15]. 
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2. If,§(L) ~ A 5 , we get: [2,3,5], [2,5,3], [2,5,5], [3,3,5], [3,5,5] or [5,5,5]. 

3. If ,§(L) ~ A5 x c3 , we get: [2,3,15], [2,15,15], [3,3,5], [3,3,15], [3,5,6], 
[3,5,15], [3,6,15], [3,15,15], [5,6,15], [5,15,15], [6,15,15] or [15,15,15]. 

4. If ,§(L) ~ G 168' we get: [2,3,7], [2,4,7], [2,7,7], [3,3,4], [3,3,7], [3,4,4], 
[3,4,7], [3,7,7], [4,4,4], [4,4,7], [4,7,7] or [7,7,7]. 

5. If,§(L)~G168 X C3 , we get: [2,3,21], [2,12,21], [2,21,21], [3,3,4], [3,3,7], 
[3,3,12], [3,3,21], [3,4,12], [3,4,21], [3,6,7], [3,6,21], [3,7,12], [3,7,21], 
[3,12,12], [3,12,21], [3,21,21], [4,6,21], [4,12,12], [4,12,21], [4,21,21], 
[6,7,12], [6,7,21], [6,12,21], [6,21,21], [7,12,12], [7,12,21], [7,21,21], [12, 
12,12], [12,12,21], [12,21,21] or [21,21,21]. 

6. If ,§(L) ~ H~~6' we get: [3,3,4], [3,3,12], [3,3,18], [3,4,9], [3,4, 18], [3,9, 12], 
[3,9,18], [3,12,18], [4,9,18], [4,18,18], [9,12,18], [12,18,18] or [18,18,18]. 

7. If,§(L) ~ H~~3, we get: [4,4,4], [4,4,12], [4,12,12] or [12, 12, 12]. 

8. If,§(L) ~ F~~3, we get: [2,4, 12], [2, 12, 12], [3,4,4], [3,4,12], [3, 12, 12], [4,4,6], 
[4,6, 12] or [6,12, 12]. 

Proof. We use the monodromy group of L(y) = 0, which is introduced in the first 
section. To the singular points at S1, S2 and S3 correspond the matrices Ms" MS2 
and MS3 of the monodromy group. The product Ms,Ms2Ms3 corresponds to the zero 
path on the punctured Riemann Sphere and thus must be the identity. Since Ms " 

MS2 and MS3 generate the monodromy group and Ms,Ms2 = Ms~ 1, we get that the 
group ,§(L) is generated by two elements. Using the group theory system CAYLEY 
(see [4]) we can compute all possible sets of two generators for each finite primitive 
subgroup of SL(3, <C) and compute their order and the order of their product. From 
the proof of Lemma 2.3 we get that the order of MSi is the least common multiple 
of the denominator of the exponents at Si. This leads to the possibilities listed 
above. • 

We note that the above possibilities often allow one to distinguish the groups 
A5 from A5 x C3 and G168 from G168 x C3 . 

Example: The following equation due to Hurwitz (see [9]): 

H(y) = x 2(x - Wy''' + (7x - 4)x(x - l)y" 

+ (72(X2 _ x) _ 20 (x -1) + ~x)y' + (792(X -1) + ~ + ~)y 
7 9 4 73 8 63 

is of fuchsian type and has a unimodular differential Galois group. The exponents 
of H(y) = ° at the regular singular points 0, 1 and 00 are respectively {O, -t, -~}, 
g,o, -i} and e/,~,~}. 

We now use the necessary conditions to test the possible structure of the 
differential Galois group ,§(H) ~ SL(3, <C) of H(y) = 0: 

1. Reducibility: Since H(y) is fuchsian, we can use Corollary 3.3. The sum of three 
exponents corresponding to three different singular points is never a non positive 
integer. Thus H(y) = ° has no right factor of order one. The adjoint H*(y) = 0 of 
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H(y) = 0 is: 

y''' + y" + 7 2 5 2 9 y' 
( 

-7x + 4) (llQX
2 

6995 X + 92) 

x(x-l) x 2(x-W 

+ 343 24696 24696 9 Y 
(

12650 X 3 _ 1561655 X 2 + 1143403 X +.!1.1.) 
x 3(x _ 1)3 

The exponents of H*(y) = 0 at 0, 1 and 00 are respectively a, 2, t}, g, 2,~} and 
{ - 2;, _ 2/, _ 2.i}. The sum of three exponents corresponding to three different 
singular points is never a non positive integer. Thus H*(y) = 0 has no right factor 
of order one. This shows, that the differential equation H(y) = 0 is irreducible. 

2. Imprimitivity: We note that at 00, the only sum of three (possibly repeated) 
exponents which is in iZ is the sum ofthe three exponents 17

1
, t and ~ whose sums 

is 4. At 0 the possible sums of three exponents which are in iZ are 0, -1 and 
- 2. Since the sums of three exponents at 1 is ~ -~, we get that no sum of the 
form prescribed in the Necessary Conditions 2 will be a non positive element of 
Z. Thus the differential Galois group <,§(H) of this equation can not be an 
imprimitive group. 

3. Finite primitive groups: Since the list of least common multiples of the denom
inators of the exponents at the singularities is [2,3,7], we get from the .above 
theorem, that if <'§(H) is a finite primitive group, then <,§(H) is isomorphic to G16S 

(note that the Necessary Conditions 3 would lead to the two possibilities 
<,§(H) ~ G16S and <'§(H) ~ G16S x C3 ). 

4. Infinite primitive groups: From Lemma 3.7 it follows that the differential Galois 
group of H(y) = 0 cannot be a subgroup of P2(SL(2, <C)) x C 3, since at 00 no 
exponent is one third of an integer. 

Therefore our necessary conditions show that the group <,§(H) is isomorphic to 
either G 168 or SL(3, <C). In [22] we use the results of [20] and the fact that 
H®4(y) = 0 is only of order 14 to deduce that <'§(H) is not isomorphic to SL(3, <C) 
and thus that <,§(H) ~ G16S ' • 

Example: The general third order linear differential equation Lp(Y) = ° of fuchsian 
type having respectively exponents {O,i-,%}' Uz'~' /z} and Uz,i-,!} at 0, 1, and 00 

is of the form: 

where p is an arbitrary parameter. 
We now use the necessary conditions to test the possible structure of the 

differential Galois group <'§(Lp) S SL(3, <C) of Lp(Y) = 0: 

1 .. Reducibility: Since Lp(Y) is fuchsian, we can use Corollary 3.3. Since all exponents 
of Lp(Y) = ° are non-negative and at 1 and 00 in fact positive, no sum of the 
prescribed form can be a negative integer. Thus Lp(Y) = 0 has no right factor of 
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order one. The adjoint L;(y) = 0 of Lp(Y) = 0 is: 

( 2 2) (205 43 149 -43) 
y'" + x -- 1 + -~ y" + (~-~81 f + ~~-=1 + ~~ +;- y' 

+ ~ + -P-li64 + P 864+ 18 +~~_}_'!+ - P-864 Y 
( 

-1955 1571 2 + 23 -67 +43 2 23) 

(x-1)3 (x-1? x-1 x 3 x 2 x 

The exponents of L;(y) =0 at 0,1 and 00 are respectively {161,2,t}' {t, ~i, in 
and { -1 ~5, -II, -J 3}. The sum of three exponents corresponding to three different 
singular points is never a non positive integer. Thus L;(y) = ° has no right factor 
of order one. This shows, that for any value of p the differential equation LP(y) = ° 
is irreducible. 

2. Imprimitivity: According to the Necessary Conditions 2 the differential Galois 
group r;§(Lp) of this equation can not be an imprimitive group, since, because all 
exponents are non-negative and at 1 positive, the sum of (possibly repeated) three 
exponents at each singular point will never be non positive. 

3. Finite primitive groups: Since the list of least common multiples of the de
nominators of the exponents at the singularities is [6, 12, 12J, we get from the 
above theorem, that if r;§(Lp) is a finite primitive group, then r;§(Lp) is isomorphic 
to F~~3 (note that the Necessary Conditions 3 would only exclude the cases 
r;§(Lp) ~ A5, r;§(Lp) ~ A5 x C3 and r;§(Lp) ~ GI68 ). 

4. Infinite primitive groups: From Lemma 3.7 it follows that the differential Galois 
group of Lp(Y) = 0 cannot be a subgroup of P2(SL(2, <L)) x C3, since at 00 no 
exponent is one third of an integer. 

Therefore our necessary conditions show that for any p, the group r;§(Lp) is 
isomorphic to either F~~3 or SL(3, <L). • 

For second order differential equations with three singular points, the method 
of the above Theorem always leads to at most one possible finite primitive group, 
as the conditions found are exclusive: 

Theorem 4.2. Let L(y) = 0 be a second order linear differential equation over <L(x) 
having three singular points SI' S2 and S3 and whose differential Galois group r;§(L) is 
a finite primitive subgroup of SL(3, <L). Then for each possible group, all lists 
[lcm 1 , lcmz, Icm3J of possible least common multiples lcmi of the denominators di,1, di.2 

n· 1 n· z 
of the rational exponents -'-' ,-'-' ,where (ni,j' di) = 1, at Si can be derived. 

di,1 di,z 

1. If r;§(L) ~ A~L>, we get: [3,3, 10J, [3,4,5], [3,4, 10J, [3,5, 5J, [3,5, 6J, [3,5, IOJ, 
[3,10, IOJ, [4,5, 5J, [4,5, 6J, [4,5, lOJ, [4,6, lOJ, [4,10, lOJ, [5,5, 6J, [5,5, IOJ, 
[5,6, lOJ, [6,6, lOJ, [6,10, lOJ or [10, 10, 10]. 

2. If G(L) ~ S!Ll, we get: [3,4,8], [3,8, 8J, [4,6, 8J or [6,8,8]. 

3. Ifr;§(L) ~ AiL" we get: [3,3, 4J, [3,3, 6J, [3,4, 6J, [4,6, 6J or [6,6,6]. 
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Abstract-There are several definitions of closed form solutions to linear differential equations, In this paper, 
we look for the so-called Liouvillian solutions, Through examples, we give an overview of how the differential 
Galois theory leads to algorithms to find the Liouvillian solutions. We will outline the general ideas and results, 
hut will give examples instead of proofs. 

I. INTRODUCTION 

For a detailed introduction to the differential Galois 
theory see [5, 7, 8, 9]. The recent work on the algo
rithms discussed here can be found in [3,4,13,14]. 

A differential field k is a field together with a deriva
tion O. In this paper, we will always consider k = C(x) 

and 0 = :x' As we will see later, it is important that the 

field <{6 ={a E klo(a) = OJ of constants be algebraically 
closed of characteristic O. A differential field extension 
K of k is a field K containing k together with a deriva
tion A that coincides with 0 on k. 

Example: An algebraic extension of k = C(x) is 
always a differential field extension. The field k(y), 
obtained by adjoining a root of i + xy - I = 0, is a dif
ferential field with the derivation 

y' = -2Y = -6x + 2} Y _ 9 / 
3y +x 4/+27 4/+27 4/+27' 

obtained by differentiating the above equation. 
By analogy to the Galois theory of polynomials, one 

looks for solutions of a linear differential equation 
defined in some differential field extension. 

Example: The equation 

i 6} d
2 

LI(y) = -zY(x) + 1 d y(x) 
dx 4x' + 27 x 

2x vex) = 0 , . 
4x' + 27 

defined over k = C(x) has a solution in an algebraic 
extension key). Indeed the roots of i + XY - I = 0 are 
solutions of this equation. 0 

The computation of the algebraic solutions of a lin
ear differential equation L(y) = 0 over the field of ratio
nal functions was a problem of great interest at the end 

of the last century. P. Pepin, H. Schwarz, L. Fuchs, 
F. Klein, C. Jordan, and others worked on this problem 
and solved it for second-order equations. 

However, algebraic solutions form a small class and 
it is difficult to decide if there is an algebraic solution. 
It is thus more convenient to look for solutions in a 
larger class of differential field extensions, where one 

also allows the symbols f and). 

Definition 1. A differential field extension (K, Ll) of 
(k, 0) is a Liouvillian extension if there is a tower of 
fields 

k = Ko C KI C ... C Kill = K, 

where Ki + I is a simple field extension K;(ll;) of K;, such 
that one of the following holds: 

• 11; is algebraic over Ki, or 
• 0(11;) E K; (extension by an integral), or 
• 0(11;)111; E K; (extension by the exponential of an 

integra\). 
A function contained in a Liouvillian extension of k 

is called a Liouvillian function over k. 

The Liouvillian functions form a large class con
taining all algebraic functions 

Example: There are many ways to write an alge
braic function as a Liouvillian function. The solution 
returned by Maple V. 5 for the above equation LI(y) = 0 
is 

-1I3arctanh(1/9JI2x) + 81) + 1/2In(x) + 1I4In(4/ + 27) 
e 

It is not at all obvious that this solution is algebraic 
and can be written in terms of the roots of y3 + xy - 1 = 
O. Deciding whether a Liouvillian solution is algebraic 
is a difficult problem. 0 

The goal of this paper is to give the ideas behind the 
I This article was submitted by the author in English. modern algorithms for computing Liouvillian solu-

0361-7688/00/2601-0017$25.00 © 2000 MAIK "Nauka/lnterpcriodica" 
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tions. We will give the results for second order equa
tions and only point to the problems when generalizing 
them to third-order equations. We assume the reader to 
be familiar with the basics of the Galois and represen
tation theories and linear algebraic groups. The analogy 
with the classical Galois theory is 

(I) There is a differential Galois theory and the dif
ferential Galois group measures if the equation is solv
able. 

(2) There is an infinite set of possible Galois groups, 
but only a finite number of types (cf. Section 3). 

(3) One can separate types using computations in 
the base fields (like the Galois group is a subgroup of 
An if the discriminant is a square). 

Drawing this analogy and putting it into an algo
rithm is the goal of this paper. Many of the tools needed 
are available in Maple, and we will point them out as 
we go. 

2. DIFFERENTIAL GALOIS THEORY 

For the rest of the paper we fix the notation for a dif
ferential ground field (k, 3) and an nth order linear dif
ferential equation over k 

L(y) = Lai3
i
(y) = 0 (ai E k). 

i=O 

Under our assumption of an algebraic closed field of 
constants of characteristic 0, one can show that a 
unique differential splitting field K for L(y) = 0, called 
the Picard-Vessiot extension (PVE), exists (up to iso
morphisms): 

(i) K = k(y" Y2, ... , Y,) is the differential field gener
ated by k and YI' Y2' ... , Ym where {YI' Yz, ... , YII} is a 
fundamental set of solutions of L(y) = O. 

(ii) K and k have the same field of constants. 
Since the solution space V of L(y) = 0 is a vector 

space over the constants, there is always a technical 
point in controlling the constants. Note that the PVE 
extension is obtained by adjoining a generating set {y" 
... , YII} of the solution space, as well as all the first n-
1 derivatives of each Yi to k. Thus, the extension Klk is 
of a transcendance degree at most nZ over k. 

Example: The PVE extension of the Airy equation 
L(y) = y" - xy = 0 is of transcendance degree 3 over k = 
C(x). There is one relation between YI' Y; ,Yz, y;. 

Definition 2. The differential Galois group of L(y) = 
o is a subgroup of the Galois group of the PVE exten
sion Klk: 

<fi(L) = {a E Aut(Klk)la3 = 3a. 

Example: The solution space of L1(y) = 0 is 
spanned by two solutions of y3 + xy - 1 = O. Since the 
classical Galois group of the polynomial is the symmet
ric group S3' the differential Galois group C§(L1) is also 
S3 (for algebraic extensions, the differential and the 
classical Galois groups coincide). <> 

We will need one property, called normality, of 
C§(L): an element z E K that is not moved by any group 
element; i.e., "i/a E <fi(L), a(z) = z, must be in k. 

The compatibility with the derivation insures that a 
solution of L(y) = 0 is sent to another solution under the 
differential Galois group. In particular, Yi is sent to 

L.; = 1 ai,jYj' which gives a faithful representation p: 
C§(L) --- GL(n, C(6). In the following, we will fre
quently identify C§(L) with its image p(<fi(L». One can 
show that <fi(L) is a linear algebraic subgroup of 
GL(n, <(is). 

Example: Since <fi(L1) == S3' we get that, for an 
appropriate change of the basis {y" Y2} of the solution 
space, p(<fi(L1» is generated by 

a l = (~ 0
1

], az = ( 0 I ], 
o ~- 1 0 

where ~2 + ~ + 1 = O. It is an example of a monomial 
group, i.e., groups whose elements in a certain basis all 
have only one nonzero entry in each row and column. <> 

The solvability in terms of algebraic of Liouvillian 
solutions is measured by the differential Galois group: 

Theorem 1 ([?]). A differential equation L(y) = 0 
with coefficients in k has 

(i) only solutions that are algebraic over k if and 
only if <fi(L) is a finite group, 

(ii) only Liouvillian solutions over k if and only if 
the component of the identity <fi(L)O of <fi(L) in the Zar
iski topology is solvable. 

Unfortunately, the only known way to compute 
<fi(L) is to first solve the equation L(y) = 0 [to]. So the 
knowledge of <fi(L) is not available in the algorithms. 
However, it is possible to list the possible types of 
Galois groups, as we will see. The algorithms then sim
ply work their way through the list. In order to keep this 
list small, we will always assume that the equation 
L(y) = 0 is irreducible; i.e. over k the equation cannot be 
decomposed as a composition of differential operators 
L1(Lz(y». Factorization is always the first step in the 
algorithms. Since factorization algorithms over C(x) 
exist and are implemented in Maple, this is not a 
restriction (cf. [2]). 

3. THE POSSIBLE GALOIS GROUPS 

Assuming that the L(y) is irreducible and has a uni
modular Galois group, the possible Galois groups are 
(see [11, 12] for a precise description) 

(1) for second-order equations: 
(a) The imprimitive subgroups of SL(2, <(is): groups 

whose elements in a certain basis all have only one non
zero entry in each row and each column. 

(b) The finite primitive groups: there are three such 
groups of order 120, 48, and 24. 

(c) The infinite primitive groups: SL(2, <(is). 
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(2) for third-order equations: 

(a) The imprimitive subgroups of SL(3. C(6): groups 
whose elements in a certain basis all have only one non
zero entry in each row and each column. 

(b) The finite primitive groups: there are eight such 
groups of order 1080.648.504. 168. 216. 180. 108. and 60. 

(c) The infinite primitive groups: SL(3. C(6). 
PGL(2. C(6). 

A similar result holds for any order. 

Kolchin's theorem shows that a second-order equa
tion with C§(L). an irreducible subgroup of SL(2. C(6)' 
has a Liouvillian solution if and only if C§(L) is not 
SL(2. C(6) and a third-order equation with C§(L). an irre
ducible subgroup of SL(3. C(6). has a Liouvillian solu
tion if and only ifC§(L) is neither SL(3. C(6) nor PGL(2. 
C(6). Our goal will be to distinguish the different possi
bilities using only the given equation L(y). So we are 
looking for information about CfJ(L) that can be 
obtained from L(y). 

We extend the action of CfJ(L) on the solution space 
V generated by {YI' ...• y,,} to the polynomial ring C(6[YI • 

.... V,,] via 

Vcr E C§(L). f( YI' ... , Y,,) E C(6 [Y I, ... , Yn], 

crf(YI, ... , Y,,) = f(crY I, ... , crY,,). 

and where the action on the Y;'s is the same as the action 
on the y;'s. We used capitals for the unknown Y; 
because, unlike the solutions Y;, there cannot be any 
polynomial relations between the Y;'s. This gives us a 
representation of C§(L) on the space Symll1( V) of homo
geneous polynomials of degree m in C(6[YI • .... V,,] 

•• 111 111-1 In 
whose baSIS IS {Y I 'YI ..... YII }. 

Definition 3. A homogeneous polynomial flYIo .... 
V,,) E Symlll(V) is called an invariant of the differential 
Galois group C§(L) if for all g E CfJ(L) the action of g on 
. fiY Io .... Y,J is trivial. i.e .• gftYI • .... V,,) =flYI • ... , V,,). 

Since the homogeneous components of an invariant 
are also invariants, we will always consider homoge
neous invariants. 

There is an obvious homomorphism <1>: C(6[Y1, ... , 

V,,] - C(6lvlo ... , y,,] c K given by flY Io ... , V,,) ~ fly I , 
... , YII)' For 11 = 2, the morphism <I> is an isomorphism; 
but for 11 2: 3, this may no longer be true. From the nor
mality of PVE extensions we get that invariants are 
mapped to elements of k under this evaluation mor
phism. This will allow us to distinguish groups via 
computations in the ground field (like the discriminant 
is a square in the classical Galois theory). 

Example: Knowing that C§(LI) == S3 in the basis {YI' 
Y2} of the solution space is generated by 

we see that the action of those generators of CfJ(L1) on 
ZI = YIYI, Z2 = YIY2, Z3 = Y3Y3 is given by 

[ 

~-I 0 J [ 0 0 I J 
crl = 0 1 0 ' crz = 0 I 0 . 

o 0 ~ I 00 

In particular, YIYZ is invariant. Thus, we must have that 
YIY2 E C(x). <> 

But unlike in the above example, we usually do not 
know the differential Galois group but have to start 
from the equation L(y) = O. 

4. COMPUTING INVARIANTS 

In order to obtain the invariants we will 
(I) construct an equation whose solution space in 

Symll1(V); 
(2) find the solutions of this equation in k = C(x). 
We start with the computation of rational solutions, 

i.e., solutions in k . 
For k = C(x) the computation of the solution in k of 

L(y) = 0 can be done using linear algebra. We write the 
equation as an equation over C[x] 

n 

'" (i) L(y) = £.JP;(x)y p;(x) E C[x] 

; =0 

and look for a rational solution of the form 

j=1 

The S; E C are singular points of L(y) and must be 
roots of p,,(x); and the a; are exponents at S; and must be 
roots of the indicial equation at S;, which is of order fl . 
Taking the smallest negative integer N; solution of the 
indicial equation at S; (if none exists, there are no ratio
nal solutions), we get a differential equation for fleX) by 
setting 

(i) 

" n 

Ip;(x) 
n(x) I - (i) = = p;(x)(n(x» . s 

; = 0 II N; (x - c;) i = 0 

j=1 

The degree of a polynomial solution of Ln(y) = 0 is 
the negative of a negative integer solution of the indi
cial equation at 00 of LIl(v) = O. Plugging a polynomial 
of a maximal degree with unknown coefficients into the 
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equation gives a linear system for these coefficients. 
For a complete algorithm see [1]. 

Example: In Maple, there is a command ratsols to 
find rational solutions. In the example ~(y) = 0 com-

with(DEtools): 
L2:=symmetric_power(eql, 2, z(x)); 

L2 : = -4 Z3(X) 
4x + 27 

puted below, we also computed the exponents at the 
singularities: 0, 1, 2 at the three roots of 4x3 + 27 and 
-1, 1/2, 2 at 00. From the exponent, we see that a ratio
nal solution must be polynomial of degree 1: 

gen_exp(L2, z(x), T, x = RootOf(4*x A 3+27)); 

[[0, 1, T = x - RootOf(4_Z3 + 27)J, 

[112, T = x - RootOf(4_Z3 + 27)JJ 

gen_exp(L2, z(x), T, x = infinity); 

[[-1, 2, T = llxJ, [112, T 
ratsols(L2, z(x)); 

1 Ix]] 

[xJ 

In order to compute the invariants via their values, 

we have to construct a differential equation L®m (y) 

whose solution space is spanned by {Y~, ym - 1Y2, ... , 

y: }. For that, we proceed as follows: 

(1) Put Y = ZIZ2 ... Zm where Zi are arbitrary solutions 
of L(y) = O. 

(2) Take derivatives of Yand use the rule 

z;n l = ~1 ('iaiz;ilJ. 
n i = 1 

This expresses y(il as a linear combination over k of 
• (ill (i2l (iml h . 

expreSSIOns z 1 Z2 ••• Zm were lj < n. 
(3) Because of the symmetry, there are at most N = 

( n + m - 1) different expressions of this type, and 
n-l 

> with(DEtools): 

{l, Y, Y, ... , yN} must be linearly dependent over k. 

This gives a linear differential equation noted L®m (y) 

(
n+m-l) 

for Y = ZIZ2" 'Zm in order at most . 
n-I 

Example: We have 
checked in Maple using 

> with(Detools): 

Qi 
£1 (y) = ~(y), as can be 

> L2:=symmetric_power(Ll, 2, y(x)); 

So we know that C§(L1) has an invariant of degree 2 
whose value is the rational function x. 

In order to obtain the invariant corresponding to this 
rational solution, we compute a basis of series solutions 
SI(X), S2(X) of L1(y) = 0 at some regular point, say x = O. 
Then we look for a linear combination 

over C(6 which equals the 

> sl:=convert(format_sol(Ll,z(x),x,terms=6) [lJ[lJ,polynom); 

sl := -1 - 1181~ 
> s2:=convert(format_sol(Ll,z(x),x,terms=6) [lJ[2J,polynom); 

s2 := x - 1181x4 

> p:=rem(x-(al*sl*sl+a2*sl*s2+a3*s2*s2),x A 6,x); 

p := 2181a3x5 - 2181alx3 - a3x2 + (1 + a2)x - al 

> eq:={coeffs(collect(p,x),x)}; 

eq := {-2181al, -a3, 2181a3, 1 + a2, -al} 

> solve (eq, (al,a2,a3}); 

{al = 0, a3 = 0, a2 = -1} 
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Thus, for the following basis of solutions of L,(y) = 
o atx = 0 

4 6 
S2(X) = x - 1/81x + O(x ) 

we get that x is the value of the invariant -YV',. <) 

This method will always work for order 2 equations 
and if <P is an isomorphism. To handle the general case 
and get efficient algorithms, one uses first-order sys
tems (cf. [4]). 

5. INY ARIANTS AND LIOUVILLIAN 
SOLUTIONS 

In the sequel we assume that C§(L) is unimodular, 
i.e., a subgroup of SL(n, C(6). This can be achieved (cf. 
[5]) by performing the variable transformation 

( rail ') y = zexp -~ . 

This is not necessary to compute Liouvillian solutions 
(cf. Example L,(v) = 0), but it guarantees that the algo
rithms find all Liouvillian solutions. 

The following result shows that Liouvillian solu
tions are directly linked to the existence of particular 
invariants: 

Theorem 2. [13] {fC§(L) is an irreducible subgroup 
of SL(n, C(6), then the linear differential equation L(y) = 
o has a Liouvillian solutioll {f and only ifC§(L) has a 
homogeneous invariant that factors into linear forms. 

Since a homogeneous polynomial in two variables 
always factors into linear forms, we get 

Corollary I. [6, 14] A second-order linear differen
tial equation L(y) = 0 with C§(L) an irreducible sub
group of SL(2, «;) has a Liouvillian solution if and only 
ifC§(L) has an invariant. 

The corollary shows why second-order examples 
are much easier to handle. Note that even if the group 
is not unimodular, an invariant will give us a Liouviil
ian solution. But in the nonunimodularcase, we have to 
consider so called semi-invariants to get all Liouvillian 
solutions. 

Example: Since the Galois group C§(Lt> of the sec
ond order equation LI(y) = 0 ha is an invariant of degree 
2, we get that LtCv) = 0 has a Liouvillian solution. 

In order to turn our procedure into an algorithm, one 
needs to bound the degree of the minimal invariant that 
factors into linear forms. This can be done using the 
classification of the groups 

Theorem 3. [6, II, 14] A second-order linear differ
ential equation L(v) = 0 with C§(L) an irreducible sub
group of SL(2, «;;) has a Liouvillian soilltion if and only 
ifC§(L) has a homogeneous invariant of degree 2, 4, 6, 
8, or 12. 

A similar result holds for any order. For third-order 
equations, one has to go up to degree 36 [II]. 

Once an invariant (that factors into linear forms) is 
found, it is always possible to construct a polynomial 

P /II /11-' b (u)=u+bm_,u + ... +b,u+o 

having as zero the logarithmic derivative u = z'lz of a 
(special) Liouvillian solution z of L(y). This gives us a 

JII 
Liouvillian solution of the form z = e . For a second-
order equation L(v) = y" + a,y' + au)" the coefficients b j 

of P(u) are obtained from the value lex) of an invariant 
by the following recursion (cf. [6, 14]): 

bIll = I, 
I(x )' 

b",_, - -/(x)' 

b
j

_, = -b;+bm_,b;+a,(i-m)b;+ao(i+ l)b;+, 
m - i + 1 

m-l>i~O. 

The polynomial p(u) obtained will always have the 
root z'/z, but it is not always irreducible and one has to 
factor it. But any factor will also be a valid p(u) (cf. 
[14]). 

Example: For the equation L,(y) = 0, we found an 
invariant of degree 2 whose value was x. Thus, we start 
the recursion with b2 = I and b, = -I Ix and get the poly
nomial: 

2 X 
p(u) = u - lIxu + --=,--

4x' + 27 

The two roots u; of p(u) = 0 give us two solutions 

which can be expressed by Maple (compare with the 
first page) as 

- 113 arctanh( 119J 12/ + 81) + 'I2In(x) 
ZI = e 

1/3 arctanh( 119JI2x' + 8') + 112'n(x) 
Z2 = e 

However, in fact, not only u; = z; Iz; but in this case also, 
Zj is algebraic (which is not obvious from the above 

description). In fact, the Z; = )"i are solutions of the 
following minimal polynomial (computed by lA. Weil) 

16643133 
- 729 Y - 729 Y - 64 Y a + x , 

where a is a root of -63844352 + 5971968x + 
531441x2

• Solving this equation gives us, for example, 
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the following solution of L1(y) = 0: 

3I2V-12/3 + 4J4i + 27. 

It is possible to solve a second-order equation inter
actively on the web: 

http://www-Imc.imag.fr/-bronsteilkovacic
demo.html 

The results for third-order equations are more tricky 
to explain, even if all the results remain valid. The 
reader is referred to the papers [3,4, 13]. 

6. CONCLUSION 

A similar approach works for linear differential 
equations of any order. Currently, implementations 
exist only for n = 2 and n = 3. The bibliography is by no 
means complete. Only a few recent publications 
directly linked to the problem under consideration have 
been quoted, and the reader should go to those papers 
to find more literature on the subject. 
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Liouvillian Solutions of Second Order Linear ODE’s:
The Problem

y ′′ + a1(x)y ′(x) + a0(x)y(x) = 0, ai (x) ∈ k

k is a differential field, e.g C (x), C (x , exp(x))

A solution y is called

1 Rational: if y ∈ k

2 Exponential: if y ′/y ∈ k

3 Liouvillian: if y can be presented by any combination of:
algebraic extensions, arithmetic operations, exp( ), and

∫
The problem is to compute Liouvillian solutions.
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Liouvillian Solutions of Second Order Linear ODE’s:
Algorithms

1 Kovacic, 1977, 1986

If a Liouvillian solution exists then ∃ solution of the form
y = exp

(∫
ω
)

with ω algebraic. Minimal polynomial of ω is
computed using semi-invariants and a recursive formula.

2 Ulmer & Weil, 1996

Compute minpoly ω from invariants (easier to implement).

3 Fakler, 1997, computes algebraic solutions y in nicer form:

Gives the minpoly of y instead of minpoly of ω.

4 Klein (1877) ... Berkenbosch, van Hoeij, and Weil (2002)

Write Liouvillian solutions as hypergeometric functions
composed with a function (called the pullback) in k.
Formulas for pullback given in B.H.W. using semi-invariants.
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L(y) := y ′′ + a1(x)y ′(x) + a0(x)y(x) = 0, ai (x) ∈ k

Write Liouvillian Solutions as H(f ) · exp
(∫

v
)

where H is a
Hypergeometric function from Klein’s table and f , v ∈ k.

Advantage: A more compact representation of the solutions.

Sketch of the Approach:

Invariants =⇒ The differential Galois group G (L) and v .

G (L) and Klein’s table =⇒ H.

a0, a1, v and a pre-computed formula =⇒ f .

Our contribution: Formulas to compute v and f using invariants.

Makes it easy to implement: need only rational sols of linear
ODE’s (and exponential sols of L itself, if L is reducible).

Available in Maple 10 and in Bernina.
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Solutions and Differential Galois Groups

L(y) := y ′′ + a1(x)y ′(x) + a0(x)y(x) = 0, ai (x) ∈ k

May assume a1 = 0.

To L is associated a diff. Galois group G (L).

G (L) is a group of 2× 2 matrices, acts on sol. space.

Discriminate between groups via computing semi-invariants
(Kovacic, Singer-Ulmer) or invariants (Ulmer-Weil)

Invariants are found by finding rational solutions (in k) of an
auxilliary operator: the symmetric power Symm(L).
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Invariants and the UW-Kovacic algorithm

L(y) := y ′′ + a1(x)y ′(x) + a0(x)y(x) = 0, ai (x) ∈ k

Assume L is irreducible (no exponential sols).

Projective group PG (L) := G (L) mod center.

We compute PG (L) (and later also v and f ) from invariants:

1 If ∃ invariant(s) of degree 4: group is Dn or D∞.

(n = 2 is a special case, there we will compute v and f from
the invariant of degree 6).

2 else, if ∃ invariant of degree 6: group is A4

3 else, if ∃ invariant of degree 8: group is S4

4 else, if ∃ invariant of degree 12: group is A5

5 else: group is PSL2 (no Liouvillian solutions).
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Pullbacks

Definition

Let L ∈ C (z)
[ d

dz

]
and L ∈ k

[
∂
]

be differential operators.

1 L is a proper pullback of L by f ∈ k if the change of variable
z 7→ f changes L into L. Then:

Solutions y(z) of L ⇐⇒ Solutions y(f ) of L.

2 L is a (weak) pullback of L by f ∈ k if ∃v ∈ k such that we
can transform L into L by doing a

change of variable: z 7→ f , followed by
scaling: multiplying all solutions by exp(

∫
v).

Then:

Solutions y(z) of L ⇐⇒ Solutions y(f ) · exp(
∫

v) of L.
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Klein’s pullback theorem

To each G ∈ {Dn,A4,S4,A5}, one associates a Standard Equation
(we scaled them in such a way that the invariant has value 1)

StD2 = ∂2 +
4

3

z

(z2 − 1)
∂ − 5

144

z2 + 3

(z2 − 1)2
(1)

StA4 = ∂2 +
2
(
3 z2 − 1

)
3z (z2 − 1)

∂ +
5

144z2 (z2 − 1)
(2)

... (3)

Theorem (Klein)

Let L be a second order irreducible linear differential operator over
k with projective differential Galois group PG (L). If PG (L) is finite
then L is a (weak) pullback of StPG(L).

This means: can write solutions of L as HPG(L)(f ) exp
(∫

v
)

where
HG (z) = Hypergeometric sols of StG .
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The Algorithm: Example of the A4 Group

Suppose for example the input of our algorithm is a differential
operator L with group PG (L) = A4. How would the algorithm
determine PG (L), the pullback f , and the solutions of L?

Group..
1 L irreducible. No invariants of degree 1, 2, 4 and an invariant

of degree 6 with value I6. So the projective group is A4.

Scaling..v
2 Divide solutions of L by I

1/6
6 =⇒ new operator LS that must

be a proper pullback of StA4 (because both operators have
invariant value 1, and y(z) 7→ y(f ) sends 1 to 1).

Pullback..f
3 Write LS = ∂2 + a1∂ + a0. Compute g := 2a1 +

a′
0

a0
, and the

pullback mapping is f = ±
√

1 + 64
5

a0
g2 it is rational!

Solutions: HA4(f ) · I 1/6
6 for any solution HA4 of StA4
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How the pullback formula was found

For G = A4 the pullback formula on the previous page was

f = ±
√

1 + 64
5

a0
g2 where g = 2a1 +

a′
0

a0
.

Our algorithm contains a pullback formula for each group G .
These formulas were found as follows:

Take a standard equation for G from Klein’s table.

Key idea: Scale it so that the invariant has value 1. Doing this
to all operators reduces weak pullpacks to proper pullbacks!

Change of variable z 7→ F . One obtains a differential operator
∂2 + a1∂ + a0 where a1, a0 ∈ C (F ,F ′,F ′′).

Use differential elimination to express F in terms of a1, a0.

For A4 we got F = ±
√

1 + 64
5

a0
g2 where g = 2a1 +

a′
0

a0
.

For S4 we got F = −7
144

g2

a0
.

For other groups: see paper.
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Example: group A4 concretely

L(y) :=

y ′′ − 1
144

404 (ex )2x−27 x2+108 x3+54 x4+9 x6−36 x5+216 (ex )4+···
(x−ex )2(x+ex )2(x−1)2

y = 0

Group
1 No invariants of degree 1 or 2 or 4

2 Invariant of degree 6, value I6 =
(x2−e2x)

2

ex (x−1)3
: Sym6(L)(I6) = 0

=⇒ PG (L) = A4

Normalize
3 Rescale operator L: Get LS such that Sym6(LS)(1) = 0.

LS is a proper pullback of StA4 because Sym6(StA4)(1) = 0.

Pullback
4 Apply pullback formula to coeffs of LS gives pullback f = ex

x
5 Solutions are

(x2−e2x)
2/3

√
x−1

(
C1

2F1

“
[ 7
24

, 19
24

],[ 3
4
], e2x

x2

”
e

x
4 x

7
12

+ C2

e
x
4 2F1

“
[ 13
24

, 25
24

],[ 5
4
], e2x

x2

”
x

13
12

)
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Example: group A5

L(y) := 48x(x − 1)(75x − 139)y ′′ + (2520x2 − 47712x/5 +
3336)y ′ + (36001/75− 19x)y = 0.

1 PG (L) equals A5 in this example.

2 Both the standard Kovacic algorithm and our pullback
method need to compute the invariant of degree 12.

3 However, the pullback method produces much smaller
solutions:

1 Solutions in Maple 9.5 (standard Kovacic): 236789 bytes.
2 Solutions in Maple 10 (using pullback): 1360 bytes.

4 The old output is very large is because it contains an algebraic
function represented by its minimal polynomial, and every
coefficient of this polynomial is a large rational function.

5 In contrast, the output from the pullback method contains
only one large rational function, namely f (which has degree
31 in this example).

M. van Hoeij & J.A Weil – Speaker: Cluzeau Liouvillian Solutions via Algorithmic Klein’s Theorem
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Conclusion

Keys to the algorithm are:
1 We choose standard equations with invariant value 1.
2 Given an equation we want to solve, we compute its invariant,

and then scale it so that it too has value 1.
3 This reduces a weak pullback to a proper pullback,
4 which allows us to find a formula for the pullback.

Easy to implement (one can simply add the pullback formulas
to existing Kovacic implementations).

Slightly faster than Kovacic due to smaller output size.

∃ extensions to order 3 by Berkenbosch (no algo but good)

Other works on special functions using special forms (e.g
Cheb-Terrab 2004) or essential singularities (e.g Bronstein and
Lafaille 2002): get non-Liouvillian functions.

Thank you for your attention.

M. van Hoeij & J.A Weil – Speaker: Cluzeau Liouvillian Solutions via Algorithmic Klein’s Theorem
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Abstract
In this paper we present an algebraic study concerning the general second order 
linear differential equation with polynomial coefficients. By means of Kovacic’s 
algorithm and asymptotic iteration method we find a degree independent algebraic 
description of the spectral set: the subset, in the parameter space, of Liouville inte-
grable differential equations. For each fixed degree, we prove that the spectral set is 
a countable union of non accumulating algebraic varieties. This algebraic descrip-
tion of the spectral set allow us to bound the number of eigenvalues for algebraically 
quasi-solvable potentials in the Schrödinger equation.

Keywords Anharmonic oscillators · Asymptotic iteration method · Kovacic 
algorithm · Liouvillian solutions · Parameter space · Quasi-solvable model · 
Schrödinger equation · Spectral varieties
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1 Introduction

Let us consider the family of second order linear differential equations,
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with polynomial coefficients of bounded degree. This family is parameterized by 
the coefficients of P and Q and therefore endowed of an structure of affine algebraic 
variety. We are interested in characterizing the moduli of Liouville integrable dif-
ferentential equations in (1) and describing how the Liouvillian solutions of those 
integrable equations depend on the coefficients. From a result of Singer [17], we 
expect that this moduli to be enumerable union of constructible set corresponding to 
possible choices of local exponents at infinity of Liouvillian solutions.

With this purpose we explore the application of Kovacic’s algorithm (see [10, 
12]) to the family (1). Some steps of the algorithm, dealing with polynomial solu-
tions of auxiliar equations, are very sensitive to changes of the parameters. However, 
the Asymptotic Iteration Method (see [7]) allows us to describe the algebraic condi-
tions on the parameters giving rise to the existence of Liouvillian solutions.

The structure of the paper is as follows. Section 2 is devoted to the definitions 
of parameter space ℙ2n , spectral set �2n , spectral varieties �2n,d and the statement 
of our first main result, Theorem 2.3. Section 3 is devoted to the definition of pol-
ynomial-hyperexponential solutions, the reduction of the parameter space through 
D’Alembert transformation, and Kovacic’s algorithm. The analysic of equation 
y�� = (x2n + �xn−1)y allows us to prove the non-emptyness of the spectral varie-
ties �2n,kn and �2n,kn+1 (Corolary  3.6). Section  4 contains the results of this paper 
related to Asymptotic Iteration Method. We find a sequence of differential polyno-
mials Δd(a, b) in two variables that codify the equations of the spectral varieties �2n,d 
inpendently of n (Theorem 4.3). The proof of Theorem 2.3 is included at the end of 
the section. Section 5 is devoted to the Liovullian solutions of Schrödinger equations 
with polynomial potentials. We proof that the number of the values of the energy 
parameter allowing a Liouvillian eigenfunction is bounded by the arithmetic condi-
tion which is a simple function of the coefficients of the potential (Theorem 5.2).

2  Parameter space

Let us consider Eq. (1) with polynomial coefficients P(x) =
∑n

j=1
pjx

j ∈ ℂ[x]≤n and 
Q(x) =

∑2n

j=1
qjx

j ∈ ℂ[x]≤2n . We also take into account a non-degeneracy condition 
p2
n
− q2n ≠ 0 , which implies that the equation can be reduced to trace free form with 

a polynomial coefficient of degree 2n. Thus, the parameter space corresponding to 
the family of Eq. (1) is,

that we consider an an affine algebraic variety of dimension 3n + 2 with affine coor-
dinates p0,… , pn, q0,… , q2n . Our purpose is to describe algebraically the spectral 
set 𝕃2n ⊆ ℙ2n . That is, the set of equations in the family (1) admitting a Liouvillian 
solution. An important class of Liouvillian functions, specifically relevant for the 
integrability of Eq. (1) is the following.

(1)u�� + P(x)u� + Q(x)u = 0,

ℙ2n = (ℂ[x]≤n× ∈ ℂ[x]≤2n) − {p2
n
− q2n = 0},
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Definition 2.1 A polynomial-hyperexponential function of polynomial degree d 
and exponential degree k is a function of the form

with Pd(x) and Ak(x) polynomials of degree d and k respectively.

Definition 2.2 The spectral subvariety �2n,d is the subset of �2n corresponding to 
equations in the family (1) having a polynomial-hyperexponentional solution of pol-
ynomial degree d.

Theorem 2.3 Let 𝕃2n ⊂ ℙ2n be the set of equations in family (1) having a Liouvil-
lian solution, and �2n,d be the set of equations in family (1) having a polynomial-
hyperexponential solution of polynomial degree d . The following statements hold: 

(a) For any fixed n ∈ ℕ there is an infinite set of values of d such that �2n,d is not 
empty.

(b) If not empty, �2n,d is an algebraic variety of codimension ≤ n in ℙ2n.
(c) For any d ≠ k the algebraic varieties �2n,d and �2n,k are disjoint in ℙ2n.
(d) Any compact subset of ℙ2n intersects only a finite number of algebraic varieties 

of the family {𝕃2n,d}d∈ℕ.

Furthermore,

Therefore we conclude that �2n is a singular analytic submanifold of ℙ2n consisting 
in the enumerable union of pairwise disjoint algebraic varieties of codimension ≤ n 
in ℙ2n.

In what follows we will deal with the proof of Theorem 2.3 and the calculation of 
the equations of the spectral subvarieties �2n,d in suitable coordinates.

3  Liouvillian solutions

3.1  Reduction of the parameter space

As it is well known, Eq. (1) can be reduced to trace free form

by means of D’Alembert transform u = exp
(
−

1

2
∫ P(x)dx

)
y , where 

R(x) =
P(x)2

4
+

P�(x)

2
− Q(x) . Note that the degree of R(x) is not greater than 

max{deg(Q(x)), 2deg(P(x))} . Note that the family of equations of the form (3) with 

(2)u(x) = Pd(x)e
∫ Ak(x)dx,

�2n =

∞⋃
d=0

�2n,d.

(3)y�� = R(x)y
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R(x) of fixed degree 2n are parameterized by the space 𝕂2n = ℂ[x]2n of polynomials 
of degree 2n that we see as an affine algebraic variety of dimension 2n + 1 , parame-
terized by the coefficients of R(x) and thus isomorphic to ℂ∗ × ℂ2n . Note that the 
family (3) is included in (1), where R(x) ∈ �2n corresponds to (0,−R(x)) ∈ ℙ2n . The 
D’Alembert transformation is a polynomial map in the coefficients of P(x) and Q(x) 
and it can be seen as a retract,

of the natural inclusion 𝕂2n ⊂ ℙ2n . Taking into account that the ratio between u and 
y is the exponential of a polynomial, we obtain that (P(x),Q(x)) ∈ �2n,d if and only 
if R(x) ∈ �2n,d ∩ �2n . Therefore, the analysis of polynomial-hyperexponential solu-
tions of a given polynomial degree can be restricted to the trace free family �2n.

Let us write R(x) =
∑2n

j=0
rjx

j . Equation (3) can be reduced to the case of monic 
polynomial coefficient by the change of variables x ↦ 2n+2

√
1

r2n
x which lead us to the 

equation

For the next step, let us consider �2n ⊂ �2n the family of Eq. (3) with monic polyno-
mial coefficient. It is an an algebraic variety isomorphic to ℂ2n . Since the (2n + 2)-th 
root of r2n is an algebraic multivalued function of r2n , any equation in �2n has 2n + 2 
different equivalent reductions in �2n . This can be seen as an algebraic correspond-
ence C2n ⊂ �2n ×�2n . This algebraic correspondence is a (2n + 2)-fold covering 
space of �2n by the first projection, �1 and the (2n + 2) monic reductions of the equa-
tion of coefficient R(x) are given by �2(�−1

1
({R(x)})) . Note that R(x) is in �2n,d if and 

only if so are any of its monic reductions. Therefore, if suffices to focus our analysis 
to equations in the family �2n.

3.2  Kovacic’s algorithm and adapted coordinates in �
2n

From now on let ��
2n

= �2n ∩�2n be the reduced spectral set consisting of equations 
in �2n having a Liouvillian solution, and let ��

2n,d
= �2n,d ∩�2n be the reduced spec-

tral variety consisting of equations in �2n having a polynomial-hyperexponential 
solution of polynomial degree d.

Note that, since D’Alembert reduction does not affect the polynomial degree of 
polynomial-hyperexponential solutions then a differential equation in the family (1) 
has a polynomial-hyperexponential solution of polynomial degree d if and only if so 
has any of its monic D’Alembert reductions. Therefore, if �2n,d is a subvariety of ℙ2n 
then codim(𝕃2n,d,ℙ2n) = codim(𝕃�

2n,d
,𝕄2n).

Here we will analyze the existence of Liovillian solutions of equations in the 
family �2n . This is done in terms of some known theoretical results obtained by 

dal2n ∶ ℙ2n → 𝕂2n ⊂ ℙ2n, (P(x),Q(x)) ↦ R(x) =
P(x)2

4
+

P�(x)

2
− Q(x) ↦ (0,−R(x))

(4)y�� =

⎛⎜⎜⎜⎝
x2n +

2n−1�
j=0

rj

2n+2

�
1

r2n

xj

⎞⎟⎟⎟⎠
y, ak ∈ ℂ

∗, ai ∈ ℂ.
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application of Kovacic’s algorithm [12]. A first step is to introduce a system of 
coordinates in �2n that fits our analysis of Eq. (3) better than the coefficients of 
R(x). The following Lemma that can be traced back to [15, p. 474], allows to 
decompose the monic polynomial R(x) in a suitable form for the application of 
the algorithm.

Lemma 3.1 Every monic polynomial M(x) of even degree 2n can be written in one 
only way completing squares, that is,

with A(x) = xn +
∑n−1

j=0
ajx

j is a monic polynomial of degree n and B(x) =
∑n−1

j=0
bjx

j 
is a polynomial of degree at most n − 1.

According to the proof given in [1, Lemma 2.4, p. 275] it also clear that 
the decomposition map 𝕄2n → ℂ2n , R(x) ↦ (a0,… , an−1, b0,… , bn−1) where 
R(x) = A(x)2 + B(x) is a regular invertible polynomial map. Therefore, we may 
consider the coefficients of A(x) and B(x) as a system of regular coordinates is 
�2n . The following results gives us precise information about the sets �′

2n
 and 

�′
2n,d

.

Theorem 3.2 [1, Theorem 2.5, pp. 276] Let us consider the differential equation,

with M(x) ∈ ℂ[x] a monic polynomial of degree k > 0. Then its differential Galois 
Group G with coefficients in ℂ(x) falls in one of the following cases: 

1. G = SL2(ℂ) (non-abelian, non-solvable, connected group).
2. G = ℂ∗ ⋉ ℂ (non-abelian, solvable, connected group).
Furthermore, the second case is given if and only if the following conditions holds:
3. M(x) has even degree k = 2n,
4. Writing M(x) = A(x)2 + B(x) as in Lemma 3.1, the quantity ±bn−1 − n is a non-

negative even integer 2d, d ∈ ℤ≥0.
5. There exist a monic polynomial Pd of degree d satisfying at least one of the fol-

lowing differential equations, 

In such case, Liouvillian solutions are given by

(5)M(x) = A(x)2 + B(x),

(6)y�� = M(x)y,

(7)P��
d
+ 2AP�

d
− (B − A�)Pd = 0,

(8)P��
d
− 2AP�

d
− (B + A�)Pd = 0.

(9)y1 = Pde
∫ Adx, y2 = y1 �

e−2 ∫ Adx

P2
d

, or
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A careful read of Theorem 3.2 gives us the following.

Corollary 3.3 The sets �′
2n

 and �′
2n,d

 in �2n satisfy the following. 

1. ��
2n

=
⋃∞

d=0
��
2n,d

.
2. �2n,d is contained in the hypersurface of �2n of equation b2

n−1
− (n + 2d)2 = 0.

Therefore, the sets �2n and �2n,d in ℙ2n satisfy �2n =
⋃∞

d=0
�2n,d.

Proof 

1. It is a consequence of the dichotomy of the Galois group. In case the group is not 
SL2(ℂ) it leads to a polynomial-hyperexponential solution.

2. It is a direct consequence of point 2 in the second part of Theorem 3.2, The last 
statement of the corollary is a consequence of the point 1. and the fact the the 
reductions process from ℙ2n to �2n preserves polynomial-hyperexponential solu-
tions.   ◻

3.3  Canonical equation

The following example:

that we refer to as canonical equation gives us some information about the non 
emptiness of the sets L2n,d for large d. Due to theorem 3.2, if (11) has a Liouvillian 
solution, the parameter � in the canonical coefficient x2n + �xn−1 is forced to be a 
discrete parameter that can be � = 2d + n or either � = −2d − n , where d is a non-
negative integer, which lead us to deal with two different equations,

Proposition 3.4 The differential equation (12) is integrable in the liouvillian sense 
if and only if, d = (n + 1)k or d = (n + 1)k + 1 where k is a non-negative integer.

Proof The differential equation (12), is transformed into the Whittaker differential 
equation,

(10)y1 = Pde
− ∫ Adx, y2 = y1 �

e2 ∫ Adx

P2
d

.

(11)y�� = (x2n + �xn−1)y, � ∈ ℂ.

(12)y�� =(x2n + (2d + n)xn−1)y, or

(13)y�� =(x2n − (2d + n)xn−1)y.
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through the change of variables z = 2

n+1
xn+1 , y = z

−
n

2n+2W . Applying Martinet-Ramis 
theorem, see [13], we have that

which left only two posibilities, d = (n + 1)k or d = (n + 1)k + 1 .   ◻

It is easy to see that the change of variables made in above proof also trans-
form the Eq. (13) into a Whittaker equation. Nevertheless this new equation will 
have parameters � =

2d+n

2n+2
 and � =

1

2n+2
 . So via Martinet–Ramis theorem we can 

enunciate the following result analogous to the previous proposition.

Proposition 3.5 The differential equation (13) is integrable in the liouvillian sense 
if and only if, d = (n + 1)k or d = (n + 1)k + 1 where k is a non-negative integer.

Moreover, the solutions to the Eq. (11) can be explicitly written as

where the polynomials Pd,n can be find by a Frobenius-like method. Having said 
that, it is a tedious process. In any case, for d = (n + 1)k we have that

On the other hand, for d = (n + 1)k + 1

�j j = (n + 1)m , j = (n + 1)m + 1

� = 2d + 2
∏m

r=1
−

(d+2−r(n+1))(d+3−r(n+1))

−2(d+2−r(n+1)−n)−2d

� = −2d − 2
∏m

r=1
−

(d+2−r(n+1))(d+3−r(n+1))

2(d+2−r(n+1)−n)+2d

Corollary 3.6 For any pair (n, d) of degrees with d ≡ 0 or d ≡ 1 mod (n + 1) there 
exist a monic polynomial M(x) of degree 2n such that the equation

(14)W
�� =

(
1

4
−

−2d−n

2n+2

z
+

4(
1

2n+2
)2 − 1

4z2

)
W,

±
−2d − n

2n + 2
±

1

2n + 2
=

1

2
+ k, k ∈ ℤ≥0,

(15)
yd,n(x) = Pd,n(x)e

xn+1

n+1 , if� = 2d + n, or

yd,n(x) = Pd,n(x)e
−

xn+1

n+1 , if� = −(2d + n),

(16)Pd,n(x) = xd +

d∑
j=n+1

�jx
d−j,where�j = 0forj ≠ (n + 1)m.

(17)Pd,n(x) = xd +

d∑
j=n+2

�jx
d+1−j,where�j = 0forj ≠ (n + 1)m + 1.
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has a polynomial-hyperexponential solution of exponential degree n + 1 and polyno-
mial degree d; therefore �2n,d is non-empty.

4  Analysis of auxiliary equations

We refer to Eqs. (7) and (8) as auxiliary equations for Eq. (6). As it is stated in The-
orem 3.2 the existence of a Liouvillian solution of Eq. (6) depends of the existence 
of a polynomial solution of the auxiliary equations. In what follows we will show 
that conditions for the existence of a polynomial solution Pd of given degree is alge-
braic in the coefficients of A(x) and B(x), and therefore in the coefficients of M(x).

4.1  Asymptotic iteration method

The asymptotic iteration method or AIM was introduced by Ciftci et al in [7] as a 
tool to solve homogeneous differential equations of the form

where �0 and r0 are smooth functions defined on a real interval. Nevertheless, the 
method is purely differential algebraic, so we can extent the result to differential 
rings of characteristic zero. By derivation of Eq. (19) we obtain a sequence of dif-
ferential equations,

where the sequences {�j}j∈ℕ and {rj}j∈ℕ are defined by the recurrence,

and the sequence of obstructions,

We say that the AIM stabilizes at p > 0 if �p = 0 . The following statement is a dif-
ferential algebraic translation of [16, Theorem 1].

Theorem  4.1 Let �0 and r0 be elements of a differential field R of characteristic 
zero. If there exist p > 0 such that

then differential equation (19) has general solution,

(18)y�� = M(x)y

(19)y�� = �0y
� + r0y

(20)y(j+2) = �jy
� + rjy

(21)�j+1 = �
�
j
+ rj + �0�j, rj+1 = r�

j
+ r0�j.

�j = rj�j−1 − �jrj−1.

(22)
rp

�p

=
rp−1

�p−1

∶= �,
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in the extension R⟨�, u, u−1, v, �⟩ where u, v, � are solutions of u� = �u , v� = �0v y 
�� = u2v, respectively.

Proof By derivation of Eq. (19) we obtain,

and from there

If condition (22) is satisfied, then we have

On the other hand, from the recurrence, we have,

and replacing into the above equation we obtain,

We have that y(p+1) = c1�p−1uv is a general solution for this equation and finally we 
obtain

that yields the general solution of the statement.   ◻

The AIM method tests whether the auxiliary equations have polynomial solu-
tion. The following statement is a differential algebraic translation of [16, Theo-
rem 2]. There is no difference in the proof, so we refer the reader to the original 
text.

Theorem 4.2 Let �0, r0 be elements in a differential field R of characteristic zero 
that contains ℂ[x] . 

 (i) If (19) has a polynomial solution of degree p, then �p = 0

 (ii) If �p�p−1 ≠ 0 and �p = 0, then the differential equation (19) has a polynomial 
solution of degree at most p.

(23)y = u−1(c2 + c1�), c1, c2 arbitrary constants,

y(p+2) = �py
� + rpy,

log(y(p+1))� =

�p

(
y� +

rp

�p

y
)

�p−1

(
y� +

rp−1

�p−1

y
) .

(y(p+1))� =
�p

�p−1

y(p+1).

�p

�p−1

= log(�p−1)
� + � + �0,

(y(p+1))� = (log(�p−1)
� + � + �0)y

(p+1).

y� + �y = c1uv
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4.2  Liouvillian solutions by means of AIM

Let us proceed to the AIM of auxiliary equations (7) and (8). For Eq.  (7) we 
should start with �+

0
= −2A(x) and r+

0
= B(x) − A�(x) . By the recurrence law (21) 

we have a sequence:

A condition for the existence of a polynomial solution of degree at most p of (7) is 
the vanishing of the polynomial �+

p
= r+

p
�+

p−1
− r+

p−1
�+
p
 . We proceed analogously 

with Eq. (8) obtaining sequences of polynomials r−
p
 , �−

p
 and �−

p
.

In order to model this process, let us consider ℚ{a, b} the ring of differential 
polynomials in two differential variables a, b. We may consider the following ℚ
-linear differential operator in the space of 2 by 2 matrices (Table 1).

We consider the iterations of this map. If we give to the differential variables a, b the 
values of the polynomials A(x) and B(x) we obtain:

Let us define the sequence of universal differential polynomials,

 
As we will see this sequence {Δd}d∈ℕ of differential polynomials governs the 

Liouvillian integrability of Eq. (6) for any even degree 2n of M(x).

[
�+

p+1

r+
p+1

]
=

[
�+
p

r+
p

]�
+

[
−2A(x) 1

B(x) − A�(x) 0

][
�+
p

r+
p

]

� ∶ Mat2×2(ℚ{a, b}) → Mat2×2(ℚ{a, b}), C ↦ �(C) = C� +

[
−2a 1

b − a� 0

]
C

(
�p+1

([
1 0

0 1

]))
(A(x),B(x)) =

[
�p �p−1

rp rp−1

]
.

Δp = − det

(
�p+1

([
1 0

0 1

]))
∈ ℚ{a, b}.

Table 1  First values of the universal differential polynomials Δ
n

Δ0 b − a�

Δ1 2a
(
a�� − b�

)
+ 4ba� − 3(a�)2 − b2

Δ2 −9b2a� − 15(a�)3 − 2(−3a��b� + 2(a2(a(3) − b��) + (a��)2) + (b�)2)

+b(−a(3) + 2a(3b� − 5a��) + 23(a�)2 + b��) + a�(3a(3) − 2a(7b� − 9a��) − 3b��) + b3

Δ3 2(2a�� + 2a(b − 4a�) + 4a3 − b�)(a(4) − 4a2(b� − a��) + b(10a�� − 4b�) + 10a�b� + 8a3(b − a�)

+2a(−a(3) − 14ba� + 12(a�)2 + b�� + 2b2) − 16a�a�� − b(3)) − (−5a(3) + a(26a�� − 10b�)

+12a2(b − 5a�) − 10ba� + 21(a�)2 + 16a4 + 3b�� + b2)(−a(3) − 2a(b� − a��) + 4a2(b − a�)

−6b(a�) + 5a�2 + b�� + b2)
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Theorem 4.3 Equation (6) with M(x) = A(x)2 + B(x) has a polynomial-hyperexpo-
nential solution of polynomial degree d if and only if,

Therefore �′
2n,d

 is an algebraic subvariety of �2n contained in the union of the irre-
ducible hypersurfaces of equations:

Proof Note that, by definition of the sequence Δd we have �+
d
= Δd(A(x),B(x)) . 

Analogously, the application of the AIM to Eq.  (8) produces an obstruction, �−
d
 . 

Note that, because of the symmetry between Eqs. (7) and (8) �−
d
= Δd(−A(x),B(x)).

We need only to check that �±

d−1
�
±

d
≠ 0 for the auxiliar equations. This comes 

easily from the fact that �±

0
= ±2A(x) is of bigger degree than r0 = B ± A� . Note 

that Δd(A(x),B(x))Δd(−A(x),B(x)) is a polynomial in x, a0,… , an−1, b0,… , bn−1 . Its 
coefficients as a polynomial in x are the algebraic equations of the restricted spectral 
variety �′

2n,d
 in �2n .   ◻

Example 4.4 As a first example of AIM applications, let us consider an equation on 
�2

An elementary traslation as x ↦ x + a0 reduces the determination of �′
2 structure to 

an analysis of liouvillian-integrability conditions for quantum harmonic oscillator

These conditions are b2
0
= (2d + 1)2 and Δd(x, b0)Δd(−x, b0) = 0 . It is easy to verify 

that Δd(x, b0) = Δd(−x, b0) = 2d+1
∏d

k=0
d − k . Therefore,

Let us note that for a given equation �2n , conditions bn+1 = 2d + n and 
bn+1 = −2d − n are mutually exclusive. In the first case, auxiliary equation (7) may 
have a polynomial solution but not (8). The opposite occurs in the second case. 
Therefore, we decompose the spectral variety �′

2n,d
 as the disjoint union of two com-

ponents ��
2n,d = �

+

2n,d
∪ �−

2n,d
 . The first component �+

2n,d
 correspond to equations 

whose auxiliary equation (7) has a polynomial solution of degree d and the second 
component �−

2n,d
 correspond to equations whose auxiliary equation (8) has a polyno-

mial solution of degree d.

Definition 4.5 ��
2n,d = �

+

2n,d
∪ �−

2n,d
 , where

and

b2
n−1

= (n + 2d)2 and Δd(A(x),B(x))Δd(−A(x),B(x)) = 0.

bn−1 = 2d + n, −bn−1 = 2d + n.

(24)y�� = ((x + a0)
2 + b0)y.

(25)y�� = (x2 + b0)y.

(26)�
�
2,d ∶ (b0 + 2d + 1)(b0 − 2d − 1) = 0

�
+

2n,d
=

{
bn−1 = 2d + n

Δd(A(x),B(x)) = 0,
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As in the previous Example 4.4 it is always possible to get rid of the coefficient 
an−1 by means of a translation in the x axis. Therefore is convenient to consider the 
sets,

whose equations are easier to describe. For instance, in �4 and �6 we restrict our 
analysis to equations of the forms:

and

respectively. The following calculations of the equations of V+

2n,d
 for n = 2, 3 and 

small values of d, in Tables 2 and 3 is performed by means of the universal differen-
tial polynomials Δd.

4.3  Codimension of the spectral variety

As the degree in x of the polynomials Δp(A(x),B(x)) grows quickly with p and the 
degree of M(x) = A(x)2 + B(x) it seems that the sets �2n,p are smaller as p grows. 
However, a direct analysis of the auxiliary equations allows us to bound the codi-
mension of the spectral varieties �2n,d in �2n . As we have seen before the algebraic 

�
−
2n,d

=

{
bn−1 = −2d − n

Δd(−A(x),B(x)) = 0.

V±

2n,d
= {an−1 = 0} ∩ �

±

2n,d
.

(27)y�� = ((x2 + a0)
2 + b1x + b0)y.

(28)y�� = ((x3 + a1x + a0)
2 + b2x

2 + b1x + b0)y

Table 2  Algebraic equations of restricted spectral varieties V+

4,d
= �

+

4,d
∩ {a1 = 0} for small values of d 

V+

4,0

{
b1 = 2

b0 = 0

V+

4,1

{
b1 = 4

b2
0
+ 4a0 = 0

V+

4,2

{
b1 = 6

b3
0
+ 16a0b0 − 16 = 0

V+

4,3

{
b1 = 8

b4
0
+ 40a0b

2

0
− 96b0 + 144a2

0
= 0

V+

4,4

{
b1 = 10

b5
0
+ 80a0b

3

0
− 336b2

0
+ 1024a2

0
b0 − 3072a0 = 0

V+

4,5

{
b1 = 12

b6
0
− 140a0b

4

0
+ 896b3

0
− 4144a2

0
b2
0
+ 28160a0b0 − 14400a3

0
− 25600 = 0

V+

4,6

{
b1 = 14

b7
0
+ 224a0b

5

0
− 2016b4

0
+ 12544a2

0
b3
0
− 142848a0b

2

0
+ 147456a3

0
b0 + 288000b0 − 884736a2

0
= 0
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equations for �2n,0 are well expressed by the obstruction Δ0(a, b) = b − a� , so 
henceforth we will consider d > 0.

Proposition 4.6 If �′
2n,d is not empty, then codim(��

2n,d,�2n) ≤ n.

Proof Now, let us suppose that Pd =
∑d

k=0
pkx

k is a solution to one of the following 
algebraic equations

where A = xn +
∑n

k=1
an−kx

n−k and B =
∑n

k=1
bn−kx

n−k . Hence the coefficients of the 
polynomial

(29)P��
d
± 2AP�

d
− (B ∓ A�)Pd = 0

Table 3  Algebraic equations of restricted spectral varieties V+

6,d
= �

+

6,d
∩ {a1 = 0} for small values of d 

V+

6,0 ⎧⎪⎨⎪⎩

b2 = 3

b1 = 0

b0 − a1 = 0

V+

6,1 ⎧⎪⎨⎪⎩

b2 = 5

2a1b1 − 8a0 − 2b0b1 = 0

−6a1 − b2
1
+ 2b0 = 0

4a1b0 − 2a0b1 − 3a2
1
− b2

0
= 0

V+

6,2 ⎧⎪⎪⎨⎪⎪⎩

b2 = 7

23a2
1
b0 − 9a1b

2

0
− 14a0a1b1 + 6a0b0b1 − 15a3

1
− 24a1 + 32a2

0
+ b3

0
− 2b2

1
+ 8b0 = 0

9a2
1
b1 − 12a1b0b1 + 6a0b

2

1
+ 24a0b0 − 24a0a1 + 3b2

0
b1 − 12b1 = 0

−3a1b
2

1
+ 36a1b0 + 24a0b1 − 30a2

1
− 6b2

0
+ 3b0b

2

1
− 48 = 0

22a1b1 − 32a0 + b3
1
− 6b0b1 = 0

V+

6,3 ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

b2 = 9

176a3
1
b0 − 86a2

1
b2
0
− 116a0a

2

1
b1 + 16a1b

3

0
− 20a1b

2

1
+ 264a1b0 + 80a0a1b0b1

− 12a2
0
b2
1
− 144a2

0
b0 − 12a0b

2

0
b1 + 120a0b1 − 105a4

1
− 372a2

1
+ 432a2

0
a1

− b4
0
− 36b2

0
+ 8b0b

2

1
− 288 = 0

60a3
1
b1 − 92a2

1
b0b1 + 56a0a1b

2

1
+ 192a0a1b0 + 36a1b

2

0
b1 + 96a1b1 − 48a0b

2

0

− 24a0b0b
2

1
− 288a2

0
b1 − 144a0a

2

1
+ 576a0 + 8b3

1
− 4b3

0
b1 = 0

− 18a2
1
b2
1
+ 372a2

1
b0 − 132a1b

2

0
+ 24a1b0b

2

1
− 72a0a1b1 − 12a0b

3

1
− 72a0b0b1

− 252a3
1
− 288a1 + 12b3

0
− 6b2

0
b2
1
+ 48b2

1
+ 288b0 = 0

4a1b
3

1
− 48a0b

2

1
+ 136a2

1
b1 − 160a1b0b1 + 288a0b0 − 864a0a1 − 4b0b

3

1
+ 24b2

0
b1

+ 192b1 = 0

−52a1b
2

1
+ 144a0b1 + 120a1b0 − 252a2

1
− b4

1
+ 12b0b

2

1
− 12b2

0
− 288 = 0
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in ℂ[x] vanish. This give place to a system of equations which are sufficient condi-
tions for the existence of Pd,

We will denote the coefficient matrix of the system (31) by M±

d,n
(A,B) . Note this 

matrix has size (d + n) × (d + 1) and it also has the property

Remark 4.7 As there is no solution P of degree less than d, then 
rank(M±

d−1,n
(A,B)) = d.

In order to determinate the codimension of �′
2n,d

 around a point (A0,B0) we shall 
choose a suitable d × d submatrix D of M±

d−1,n
(A0,B0) such that its determinant is dif-

ferent from zero. In addition, the vanishing of the determinants of the matrices set by 
adding one of the remaining n rows of M±

d−1,n
(A0,B0) to D, generates n conditional 

equations which guarantees the existence of a non-trivial solution to (31).   ◻

4.4  An example: case n = 3

As an useful example in order to illustrate further computes, specially for look-
ing accurate spectral values on Schrödinger type problems, let us assume that 
A(x) = x3 + a3,1x

2 + a3,2x + a3,3 and B(x) = b2,0x
2 + b2,1x + b2,2 . So, the analysis on 

previous Sect. 4.3 for case n = 3 can be summarized with the following proposition.

Proposition 4.8 A necessary condition for equation

in order to have a polynomial solution of degree d is b2,0 + 3 = −2d for 
d = 0, 1, 2,…

(30)

d∑
k=2

k(k − 1)pkx
k−2 ±

(
2xn +

n∑
k=1

2an−kx
n−k

)(
d∑

k=1

kpkx
k−1

)

−

(
n∑

k=1

bn−kx
n−k ∓ nxn−1 +

n−1∑
k=1

(n − k)an−kx
n−1−k

)(
d∑

k=0

pkx
k

)
= 0

(31)

⎡
⎢⎢⎢⎢⎣

a1 − b0 2a2 2 0 ⋯ 0 0

2a2 − b1 3a1 − b0 4a0 6 ⋯ 0 0

⋱ ∗ ∗

0 0 0 0 ⋯ 2(d − 1) + n − bn−1 (2d + n − 1)an−1 − bn−2
0 0 0 0 ⋯ 0 2d + n − bn−1

⎤
⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎣

p0
p1
⋮

pd

⎤
⎥⎥⎥⎦
= 0.

(32)M±

d,n
(A,B) =

⎡
⎢⎢⎢⎣

0

M±

d−1,n
(A,B) ⋮

∗

0 ⋯ 0 2d + n ± bn−1

⎤
⎥⎥⎥⎦
.

(33)
y�� − (2x3 + 2a3,1x

2 + 2a3,2x + 2a3,3)y
� − ((b2,0 + 3)x2 + (2a3,1 + b2,1)x + a3,2 + b2,2)y = 0
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On the other hand, sufficient conditions are coded by the solutions of the linear 
system associated to the matrix

where

It creates a set of at most two polynomial equations in the variables a3,0 , a3,1 , a3,2 , 
a3,3 , a2,0 , a2,1 , a2,2 which guarantees likewise a non-trivial solution to the associated 
system to M−

d
(A,B) and a polynomial solution to Eq. (33).

Proof This is a restriction of the analysis developed on Sect. 4.3 to n = 3 .   ◻

Generically we can suppose that our d × d principal minor is different from 
zero, so the equations given by Proposition 4.8 are the determinants

and

(34)M−
d
(A,B) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

�0 �0 �0
�1 �1 �1 �1
�2 �2 �2 �2 �2

⋱ ⋱ ⋱ ⋱ ⋱

�d−2 �d−2 �d−2 �d−2 �d−2
�d−1 �d−1 �d−1 �d−1

�d �d �d
0 �d+1 �d+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�k = −a3,2(2k + 1) − b2,2,

�k = −2a3,3(k + 1),

�k = (k + 2)(k + 1),

�k = −2a3,1k − b2,1,

�k = −2k − b2,0 + 1,

k = 0, 1, 2,…

k = 0, 1, 2,…

k = 0, 1, 2,…

k = 1, 2, 3…

k = 2, 3, 4…

(35)Δ1
d,3
(−A,B) =

|||||||||||||||

�0 �0 �0
�1 �1 �1 �1
�2 �2 �2 �2 �2

⋱ ⋱ ⋱ ⋱ ⋱

�d−2 �d−2 �d−2 �d−2 �d−2
�d−1 �d−1 �d−1 �d−1
�d �d �d

|||||||||||||||

= 0

(36)Δ2
d,3
(−A,B) =

|||||||||||||||

�0 �0 �0
�1 �1 �1 �1
�2 �2 �2 �2 �2

⋱ ⋱ ⋱ ⋱ ⋱

�d−2 �d−2 �d−2 �d−2 �d−2
�d−1 �d−1 �d−1 �d−1
0 �d+1 �d+1

|||||||||||||||

= 0
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Several detailed examples of this equations can be found on [8, 19].

4.5  Proof of Theorem 2.3

We can now state the proof, which follows easily from the other results. Statement 
(a) is a direct consequence of Proposition  3.5. Statement (b) is a consequence of 
Theorems  4.3 and Proposition  4.6. Note that, from d’Alembert reduction, the 
codimension of �′

2n,d
 in �2n coincide with that of �2n,d in ℙ2n . Statement (c) and 

(d) are also clear, as �′
2n,d

 is contained in the union of hyperplanes of equations 
bn+1 = 2d + n and bn−1 = −2d − n .   ◻

5  Schrödinger equation

Let us summarize briefly the known results about explicit solutions for the one dimen-
sional stationary Schrödinger equation. We start mentioning that Natanzon in 1971, 
see [14], introduced exactly solvable potentials, which today are known as Natanzon 
potentials. The seminal work of Natanzon inspired further researchers about exactly 
solvable potentials, although in the sense of Natanzon exactly solvable potentials also 
include potentials in where Schrödinger equations have eigenfunctions of hypergeo-
metric type, not necessarily Liouvillian functions. The exactly solvable potentials, 
also known as solvable potentials, we extended to Schrödinger equations with explicit 
eigenfunctions. In this sense, solvable potentials are related to Schrödinger equations 
with eigenfunctions belonging to the set of special functions (Airy, Bessel, Error, Ei, 
Hypergeometric, Whittaker, Heun), not necessarily Liouvillian! Moreover, in case 
of Coulomb and 3D harmonic oscillator potentials correspond to Schrödinger equa-
tions which are transformed into Whittaker differential equations, Martinet-Ramis in 
[13] established the necessary and sufficient conditions to determine the obtaining 
of Liouvillian solutions of the Whittaker differential equations. Recently Combot in 
[9] developed another method to obtain exactly solvable potentials, in the sense of 
Natanzon, involving rigid functions in the sense of Katz.

To avoid confusion between explicit and Liouvillian solutions it was introduced 
the concept of algebraic spectrum in [2]. Also known as Liouvillian spectral set it 
is the set of eigenvalues for which the Schrödinger equation has Liouvillian eigen-
functions, see also [3, 4]. In some scenarios it is known that bounded eigenfunctions 
of Schrödinger operator are necessarily Liouvillian, see [6]. Potentials with infinite 
countable algebraic spectrum are called algebraically solvable potentials and those 
with finite algebraic spectrum algebraically quasi-solvable potentials, for complete 
details see [4, §3.1, pp. 316] and see also [2, 3].

On the other hand, Turbiner in 1988, see [18], following the same philosophy of 
Natanzon, introduced quasi-solvable potentials. The seminal paper of Turbiner leaded to 
the seminal paper of Bender and Dunne in 1996, see [5], in where they obtain a family 
of orthogonal polynomials in the energy values of the Schrödinger equation with sextic 
anharmonic potentials, see also [11] for the study of more general sextic anharmonic 
oscillators. Due to Schrödinger equation with quartic anharmonic oscillator potential 
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falls in triconfluent Heun equation, see [10], it is in some sense a generalized Natan-
zon potential (exactly solvable) although there no exist Liouvillian eigenfunctions. In a 
similar way for algebraically solvable potentials, in [4, §3.1, pp. 316] also was introduced 
the concept of algebraically quasi-solvable potential as those finite non empty algebraic 
spectrum, see also [2, 3]. Examples of algebraically solvable potentials and algebraically 
quasi-solvable potentials (quartic and sextic oscillators) were presented in [2–4] using [1, 
Theorem 2.5, pp. 276], which corresponds to the application of Kovacic algorithm for 
reduced second order linear differential equation with polynomial coefficients.

Let us consider the one dimensional stationary Schrödinger equation

with a polynomial potential U(x). It is clear that the potential U(x) is algebraically 
quasi-exactly solvable if there are some values of � for wich equation (37) has a 
Liouvillian solution. This is equivalent to say that the line,

paremeterized by � , intersects the spectral set �2n.
As it is well know, and we examined in Example 4.4, any quadratic potential is 

quasi-exactly solvable (and more over, exactly solvable). It is also clear that any 
quasi-exactly solvable potential is of even degree. Let us assume from now on that 
U(x) is of degree 2n ≥ 4.

We consider the decomposition −U(x) = A(x)2 + B(x) as in Theorem  3.2. We 
define the arithmetic condition of U(x) as the complex number,

where bn−1 is the coefficient of xn−1 the polynomial B(x) appearing in the unique 
decomposition −U(x) = A(x)2 + B(x) . Note that a necessary condition for U(x) to 
be quasi exactly solvable is its arithmetic condition to be a non-negative integer. In 
such case the intersection between the line:

and �2n is confined to the spectral variety �2n,d.
Let us consider the universal sequence of differential polynomials Δd ∈ ℚ{a, b} as 

in Theorem 4.3. The following lemma allows us to bound the number of admissible 
values of energy (for which the Schrödinger equation admits a Liouvillian solution) of 
any quasi-exactly solvable polynomial potential. Let us make clear that by the degree of 
a differential polynomial Δd in the variable b we mean its ordinary degree: that is we 
consider a, a�, a��,… , b, b�, b��,… as an infinite set of independent variables.

Lemma 5.1 The degree of Δd in the variable b is at most d + 1.

Proof Let us recall the differential polynomials �d and rd appearing in the definition 
of Δd . Let us prove first: 

(37)� �� = (� − U(x))�

{𝜆 − U(x) ∶ 𝜆 ∈ ℂ} ⊆ 𝕄2n

d =
|bn−1| − n

2

{𝜆 − U(x) ∶ 𝜆 ∈ ℂ} ⊆ 𝕄2n
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(a) The degree of �d in the variable b is small or equal to d+1
2

.
(b) The degree of rd in the variable b is small or equal to d+2

2
.

The degree of �0 = −2a in the variable b is 0 an the degree of r0 = b − a� in the vari-
able b is 1. Therefore (a) and (b) hold for d = 0 . Now, from the recurrence law (21) 
we have that the degree in b of �j+1 is at most that of rj and that the degree in b of 
rj+1 is at most a unit bigger that the degree of �j . This proves (a) and (b). The degree 
of �d is at most the maximum between the sum of the degrees of �d and rd−1 and the 
sum of the degrees of �d−1 and rd ; which is at most d + 1 .   ◻

Theorem  5.2 Let U(x) be an algebraically quasi-solvable polynomial potential, 
and let d be its arithmetic condition. The number of values of the energy parameter � 
such that Eq. (37) has a Liouvillian solution is at most d + 1.

Proof Generically, we may consider that U(x) has no independent term. Then 
the condition on � for the existence of a Liouvillian solution is the vanishing of 
Δd(A(x),B(x) + �) which is a polynomial in x of � . The number of values of � for 
which this polynomial vanish can not be greater than its degree in � . Clearly, the 
degree in � of Δd(A(x),B(x) + �) can not exceed the degree in b of Δd(a, b) which is 
bounded by d + 1 by Lemma 5.1.   ◻

Example 5.3 In order to illustrate the procedures developed here let us consider the 
non-singular Turbiner potential

Table 4  Spectral system of 
Schrödinger equation associated 
to (38)

d �
d

1
{

J = 1

� = 0

3
{

J = 2

�2 − 24 = 0

5
{

J = 3

�3 − 128� = 0

7
{

J = 4

�4 − 400�2 + 12096 = 0

9
{

J = 5

− �5 + 960�3 − 129024� = 0

11
{

J = 6

�6 − 1960�4 + 729280�2 − 26611200 = 0

13
{

J = 7

− �7 + 3584�5 − 2934784�3 + 438829056� = 0



1 3

São Paulo Journal of Mathematical Sciences 

where J is a non-negative integer. This potential has been studied in several papers, 
including [5]. Let �d ⊂ �′

6,d
 be the set consisting of all possible values for J and 

� with polynomial hyperexponential solutions of polynomial degree d. In virtue of 
Theorem 4.3 it is a subvariety of V(2J − d − 1) . So, d shall only take non-negative 
odd values (Table 4).

On the other hand, we can easily compute the equations of �d through the univer-
sal differential polynomial Δd(x

3,−(4J + 1)x2 − �) for the auxiliary equation

For the case d = 1 we get the following equations

Taking into account above consideration we compute the first seven equations for �d

6  Final remarks

In this paper we developed a technique to obtain Liouvillian solutions for parameter-
ized second order linear differential equations with polynomial coefficients. In par-
ticular case, we study the set of possible values of energy to get Liouvillian solutions 
of Schrödinger equations with anharmonic potentials. We adapted asymptotic itera-
tion method, Kovacic’s Algorithm and previous results provided in [1–4] in terms 
of algebraic varieties extending slightly the known results about polynomial quasi-
solvable potentials.
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−(−4J − 1)2 − 8(−4J − 1) − 15 = 0.
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Let L(y) = b be a linear differential equation with coefficients in a differential field K. We 
discuss the problem of deciding if such an equation has a non-zero solution in K and give a 
decision procedure in case K is an elementary extension of the field of rational functions or 
is an algebraic extension of a transcendental liouvillian extension of the field of rational 
functions. We show how one can use this result to give a procedure to find a basis for the 
space of solutions, liouvillian over K, of L(y)=0 where K is such a field and L(y) has 
coefficients in K. 

1. Introduction 

In this  p a p e r  the  fo l lowing  two  ques t ions  will be  considered.  Let K be  a d i f ferent ia l  f ie ld  
and  let  a , _ ~ , . . . ,  a0, b E K. Let  L(y)  = yC,)+ a,_~yC,-~)+... + aoy. 

QUESTION 1. W h e n  does  L(y)  = b have non-zero  solut ions  in K and  h o w  can one  f ind  
all such so lu t ions?  

QUESTION 2. When  does  L(y)= 0 have a non-zero  so lu t ion  y such  tha t  y' /y ~ K a n d  
how does  one  find al l  such so lu t ions?  

A n  a lgor i thm is p r e sen t ed  to  answer  these  quest ions when K is an  e lementary  e x t e n s i o n  
of  C(x) or  K is an a lgeb ra i c  extens ion o f  a pure ly  t r anscenden ta l  l iouvi l l ian  e x t e n s i o n  
o f  C(x),  where  C is a c o m p u t a b l e  a lgebra ica l ly  c losed  field o f  character is t ic  zero.  W e  
will  d iscuss  why these are i m p o r t a n t  ques t ions  and h o w  they are  re la ted  to  each  o ther .  
Before  s tar t ing,  let  us  recal l  some  definit ions.  A field K is said to be  a differentialfield 
with de r iva t ion  D : K ~ K  if D satisfies D ( a + b ) = D ( a ) + D ( b )  and D(ab)= 
(Da)b+a(Db) for  a l l  a, b~K.  The  set C(K)={c lDc=O } is a subfield cal led thefieM 
of constants of  K. We will  usua l ly  deno te  the de r iva t ion  by  ', i.e. a' = Da. A good  e x a m p l e  
to keep  in  m i n d  is the  field o f  ra t iona l  func t ions  C(x )  with de r iva t ion  d/dx (C d e n o t e s  
the c o m p l e x  numbers ) .  All  fields in this pape r ,  wi thout  fur ther  men t ion ,  are  o f  charac te r i s -  
t ic  zero. We say  K is a liouvillian extension of  k i f  there  is a tower  of  f ields /c = 
K0 c K~ c �9 �9 �9 c K ,  = K such that  for each i =  1 , . . . ,  n, K~ = Kf-L(tt) where  e i t h e r  (a)  

f X 2 x ~ . 

t~ E K ; - I  or  (b) t~/tl c Ki-1 or  (c) ti is a lgebra ic  over Kg- i .  Fo r  exa mp le  C(x ,  e , e ~" ) is 
a l iouv i l l i an  ex tens ion  of  C(x) .  W e  say K is an elementary extension of  k if t he re  is  a 
t o w e r  o f  fields k = K o =  K1 c �9 �9 ~ K,  = K such that  for  each i = 1 , . . . ,  n, Kj = Ki-i(ti) 
where  e i ther  (a) for some  u ; # 0  in  Ki_~, t~=u~/u~ or  (b) for  s o m e  us in K H ,  t~/ti=u~ 
or (e) tt is a lgebra ic  ove r  Ki_~. For  example ,  C(x,  log x, e ~t~ is an  e lementa ry  e x t e n s i o n  
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of  C(x) .  The example following the definition of liouvillian extension is not an elementary 
extension o f  C(x) since ~ e :  lies in no elementary extension of C(x) (Rosenlicht, 1972). 
We say that w is liouvillian (elementary) over k if w belongs to a liouvillian (elementary) 
extension o f  k. 

Algorithms to answer questions 1 and 2 would be useful in solving two other problems. 
First o f  all, an  answer to question 1 would have a bearing on the Risch Algorithm. In a 
series o f  papers  (Risch, 1968; 1969; 1970), Risch gave a procedure to answer the following 
question: Given o~ in an elementary extension K of C(x) (C a finitely generated extension 
o f  the ra t ional  numbers Q and C(K) = C), decide if ~ a lies in an elementary extension 
o f  K. Liouville 's  Theorem (Rosenlicht, 1972) states that if a has an anti-derivative in an 
e lementary extension of K, then a = v'o + ~ c~( v~/ vi) where Vo ~ K, vl . . . . .  v, ~ CK and 
c; e C, where (~ is the algebraic closure of  C. Risch's algorithm gives a procedure to 
decide if such elements exist. As a corollary of  Liouville's Theorem, one can show that 
i f  c~ is o f  the form f e g with f and g in K, then a has an elementary anti-derivative if 
and only  if y '+g'y  = f  has a solution y in K (i.e. i f  and only if there is a y in K such 
that  (y egy = f  e~). In  general, Risch's Algorithm forces one to deal, again and again, 
with this same question: given f and g in an elementary extension K of  C(x), decide if 
y '+g 'y  = f  has a solution in K. When K is a purely transcendental extension of  C(x), 
one m a y  write K = E(t)  with t '~ E or t ' / t~  E and t transcendental over E. Letting 

"' au(t ) 
Y-- L, E - - + h ( t )  

,=l j~1 (p,( t)) j 

be the part ial  fraction decomposit ion of  y, one can plug this expression into y '+g'y  =f. 
Equat ing powers and using the uniqueness of  partial fraction decompositions, one can 
find a finite number  o f  candidates for the p~s and bound the degree of h. This allows one 
to  find all possible solutions y. (In fact there are now improvements on this idea. Rothstein 
(1976) showed  how one can use "Hermite Reduct ion" to postpone,  as much as possible, 
the need to factor polynomials.)  When K is not a purely transcendental extension of 
C(x),  but  involves algebraics in the tower, things are more complicated. In the purely 
t ranscendental  case, partial  fractions gives us a global normal form that captures all the 
necessary local information (e.g. the factors of the denominators and the powers to which 
they appear) .  When algebraics occur, one does not have this normal form. 
I f  K = E ( t , y )  with y algebraic of  degree n over E(t), one may write y =  
b0+ bl y + ' ' "  + b,-1 y ' - I  with the b~ E E( t ) .  To find the b~, one is forced to work with 
puiseux expansions (a local normal form) at each place of  the function field E(t, y). 
Although Risch showed that this approach does yield an algorithm, it is much more 
complex than the purely transcendental case (Bronstein (1990) has made significant 
improvements  in the Risch algorithm and can avoid puiseux expansions in many situations, 
but  he is still forced to consider them in certain cases). One would like to reduce the 
quest ion of  deciding i f y '+g ' y  = f h a s  a solution in E(t, y) to a similar question in E(t), 
where one  could  apply partial fraction techniques and a suitable induction hypothesis. 
In section 3, we shall see that we can reduce the problem of  solving such an equation 
in an algebraic extension of a field to solving linear differential equations (more than 
one  and possibly of order  greater than one) in that field. We are then forced to answer 
quest ion 1 for that field. 

The second place these questions arise is in the general problem of finding liouvillian 
solutions of  linear differential equations with liouvillian coefficients. In Singer (1981) it 
was shown that  given a homogeneous  linear differential equation L (y )  = 0 with coefficients 
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in F, a finite algebraic extension of  Q(x),  one can find in a finite number  o f  steps, a basis 
for the vector space o f  liouvillian solutions of  L(y )  = 0. I would  like to extend this result  
to find, given a h o m o g e n e o u s  l inear differential equation with coefficients in a l iouvil l ian 
extension K of  r a basis for the liouvillian solutions of  L ( y )  ~ O. One can show tha t  
to solve this problem, it is sufficient to find one non-zero  liouvillian solution. An induct ive  
p rocedure  would  then allow one to find all such solutions (see Lemma 2.5(iii) below).  
To see how problem 2 fits into this, I will outline the p rocedure  to decide if  a given 
L ( y )  = 0 with coefficients in K has a non-zero liouvillian solution.  It  is known (Singer,  
1981) that  if L ( y ) =  0 has a non-zero  liouvillian solution, then there is a solut ion y such  
that u = y ' / y  is algebraic over K o f  degree bounded  by an integer N that  depends  on ly  
on the order  o f  L(y) .  Fur thermore  there are effective estimates f o r / ~  Therefore,  for  some  
m -< N, u satisfies an irreducible equat ion of  the form f ( u )  = u m + a,~_ l u m -1 + . . .  + ao--- 0 
with the a~ E K. We must  now find the possible ai ~ K and test to see if, for  such a choice  
of  az, e I~' satisfies L ( y ) = 0 .  For example,  let us try to determine the possible am-1. I f  
u = ul . . . . .  um are the roots o f f ( u )  = 0 and y~ = e I ut satisfies L ( y )  = 0, then for  i = 2 , . . . ,  m, 
Yl = e I "  also satisfies L ( y ) =  0. We have 

arrl_l ~.~.--(Ul-~...-~-Um)~.--(Y~ll--[-,, .-[.Ytm I =__((Y]*" "Ym)r 
\Yl Ym/ \ Ya Ym / 

One can show that the produc t  y = y ~ . .  �9 y,, satisfies a homogeneous  l inear differential 
equat ion Lm(y) = 0 and  that y ' / y  ~ K. Finding all such solutions is just problem 2 above.  
Theorem 4.2 below states that  for certain liouvillian extensions K, we can fill in the details 
o f  the above a rgument  and give a procedure  to find a basis for  the vector space o f  all 
solutions o f  L ( y ) =  0 that  are liouvillian over K. 

Finally,  we note  tha t  it appears  that to answer one o f  these two questions we need  to 
be able to answer the other. The rest o f  the paper  is o rgan ized  as follows. Section 2 is 
devoted to showing h o w  one can algorithmically reduce question 2 to question 1. Sect ion 
3 contains  procedures  to answer quest ion I in certain cases. Sect ion 4 contains some final 
comments  and open problems.  The results of  this paper  were announced  in Singer (1989). 

2. Reducing Question 2 to Question 1 

In  this section we shall consider  fields of  the form E( t ) ,  where either t ' eE ,  t ' / t  ~ E 
or t is algebraic over E and where E satisfies certain hypotheses.  We shall show that fo r  
these fields, if  we can answer  question 1 algorithmically then we can answer ques t ion 2 
algorithmically.  This is made  precise in Proposi t ion 2.1, but first we need some definitions. 
We call a differential field K a computable differentialfieid if the field operat ions and the  
derivat ion are recursive functions and if we can effectively fac tor  polynomials  over K. 
We say that  we can effectively solve homogeneous linear differential equations over K if  
for any homogeneous  l inear differential equat ion L(y )  = 0 with coefficients in K, we can  
effectively find a basis for the vector  space of  all y e K such that  L ( y ) =  0. We say tha t  
we can effectively find all exponential solutions o f  homogeneous linear differential equations 
over K if  for any homogeneous  linear differential equation L ( y )  = 0 with coefficients in 
K, we can effectively find u ~ , . . . ,  u,, in K such that if  L(e s") = 0 for some u e K, t hen  
e l " / e  h', ~ K for  some i. 

The  main  result o f  this section is: 

PROPosrrIoN 2.1. Let E ~ E(  t) be computable differential fields with C ( E )  = C ( E (  t)), an 
algebraically closed field, and assume that either t' ~ E, t'/ t ~ E, or t is algebraic over E. 
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A s s u m e  that we can effectively solve homogeneous linear differential equations over E ( t )  
and  that  we can effectively f ind  all exponential solutions o f  homogeneous linear differential 
equations over E. Then we can effectively f ind all exponential solutions o f  homogeneous 
linear differential equations over E (  t). 

We will deal  with each o f  the three cases for t separately in the following proposit ions 
and  lemmas .  We start  by defining and reviewing some facts about the Riccati equation. 
I f  u is a differential variable and y = e  ~", formal  differentiation yields yCO= 
Pi(u, u', . . . ,  u (i-1)) e J", where the Pi are polynomials  with integer coefficients satisfying 
Po = 1 a n d  P~ = P~-I + uP~_l. I f  L ( y )  = y("} + A , _ l y  ("-~) + . .  �9 + A oy  = 0 is a linear differen- 
tial equat ion,  then y = e  I" satisfies L ( y ) = 0  if and only if u satisfies R ( u ) =  
P , ( u , . . . ,  u ( " - l ) ) +  A,_~ Pn-~(u, �9 . . ,  u ( '-2)) +" �9 �9 + Ao = 0. This latter equation is called the 
Riccati  equation associated with L ( y ) =  0. We will need the following technical lemma. 

LEMMA 2.2. L e t  E ( t )  be a differential f ield with t transcendental over E and either t '~  E 
or t ' /  t E E. Let  p ( t) be an irreducible polynomial  in E [ t] where p ~ t i f  t ' /  t ~ E. 

(i) Le t  u ~ E ( t) h ave p-adic expansion o f  the form u = u~/p v + higher order terms, where 
y > O, u v # O, and  degt u~ < deg,p. I f y  > 1 then for  i >" 1, P~(u, . . . ,  u (~-1)) = v~v/p~+ higher 
order terms, where v~ r =-- (u~) i rood p. l f  y = 1 then for i >--- 1, Pi(u . . . . .  u (~-~)) = vi /p i + higher 

i ~ l  �9 t 
order terms where v i -  ]-Ij~o ( u l - J p  ) rood p. 

(ii) A s s u m e  that t ' e  E and that u e E ( t )  has (1 / t ) -ad ic  expansion o f  the form u = 
uz, tV+higher  powers o f  1/t ,  u r # O .  I f  y > 0  then the (1 / t ) -ad ic  expansion of  
P i (u  . . . . .  u (i-t/) = u~t ~ + higher powers o f  1/t.  I f  T = O, then the (1 / t ) -adic  expansion of  
Pi( u . . . .  , u (j-l)) = Pi( uo, . . . , u~ H ) )  + higher powers o f  1/t. 

(iii) A s s u m e  that t ' / t ~ E  and that u E E ( t ) .  I f  u has t-adic expansion o f  the form 
u = u v / t  y + higherpowers  o f t ,  y > O, u r ~ O, then P i ( u , . . . ,  u (~-~)) = u ~ / t i v +  higherpowers 
o f  t. I f  u has ( 1 / t ) . a d i c  expansion u = u y t r + h i g h e r  powers o f  1/ t ,  uv#O,  then 
P i ( u , . . . , u ( ~ - l ) ) = u ~ v t i ~ + h i g h e r  powers o f  1 / t  i f  y > O  and  P ( u , . . . , u ( t - 1 ) )  = 
y~(uo . . . .  , u(o~-~))+ higher powers o f  1/ t / f  y = O .  

PROOF. We proceed  in all cases by induction. 
(i): No te  tha t  for p as above,  p does not divide p ' .  First assume that y >  1. I f  i = 1, 

P~ = u, so v t v =  uy. I f  i > 0 ,  then 

_ { u~v,, + . .  ) 
-\p(~+~)~ �9 s i n c e ( i + l ) y > i y + l  

VCi+l)v + .  =pU+l)~ �9 �9 where V(i+l)), ~ (U~/) i+1 m o d p .  

N o w  assume tha t  y --- 1. I f  i = 1 then the result is obvious. For i > 0, 

)(~ P,.+, = P~ + uP, -= ~ - ' ~ F - + "  " " + + . . .  

V/(U 1 - i p ' )  

P 
_ V i+~  + ,  i 
--p~+~ '"  where v~+t~ ~ ( u t - j p ' )  modp .  

j=o  
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(ii) and (iii): The proofs  are similar to (i), proceeding by induct ion and compar ing  
leading terms. 

PROPOSITION 2.3. Let E ~ E ( t ) be computable differential fields with C ( E ) = C( E ( t ) ) and  
assume that either t' e E or t ' /  t e E and that t is transcendental over E. Furthermore, assume 
that we can effectively solve homogeneous linear differential equations over E ( t )  and  that 
we can effectively f ind all exponential solutions o f  homogeneous linear differential equations 
over E. Then we can decide i f  a homogeneous linear differential equation L ( y ) = 0  with 
coefficients in E ( t )  has a solution e I" with u e  E ( t ) .  

PROOF. Assume that t '  e E. We wish to decide if there is a u in E ( t )  such that R ( u )  = 0 
where R ( u )  is the Riccati  equat ion associated with L ( y )  = 0. We shall try and de termine  
the possible partial f rac t ion decompos i t ion  for such a u. Let p( t )  be a monic  i rreducible 
po lynomia l  in E [  t] a nd  let u = u r / p  ~" + u:,_l/p ~-1 +" �9 . ,  where degt us < degt p and  3' > 1. 
I c laim that  one can find 3' and  u v up to some finite set o f  choices. The following m e t h o d  
is very  similar to the N e w t o n  polygon process used to expand algebraic functions.  Let  
L ( y )  = y(") + An-1 y(n-~) + . . .  + A o y  and At = ai~,/p 4, + . . . .  The leading powers in R (u) = 
Pn + A , - a  Pn-i  + ' ' "  + Ao must  cancel. The leading term of AiP~ is (at~,vi~,)fp ~'+~ (using 
the notat ion o f  L e m m a  2.2). Therefore for some i,j, i # j ,  we have o~+ i y =  o g + j T  or  
y =  c e t - a J ( i - j ) .  Fix a value of  y and a corresponding j such that  Cek+ ky<--o~j+jy for  
all o ther  k (of  course we only consider such 3' that are integers > 1). Summing over  all 

h h such that  at, + hy = o9 +j 'y  we have ~ a~,,~Vhv = 0. Lemma 2.2 implies tha t  ~ ah,,,u v = 
0 m o d  p. Since deg, uy < degtp,  this latter equation determines uy up to some finite set 
(to find uy we factor ~ ah~h yh  in ( E ( t ) / p ) [  Y]  and consider the l inear factors). We n o w  

Itu~llJV~ [.(u./p ) alter our  original L ( y ) .  Le t  /~(y) = L ( y  e ) /e  . We n o w  look for  solutions o f  
s  = 0  of  the form e I" with tTe E and tT= f f ~ / p ~ + . . ,  with 8 an integer. We p r oceed  
now as above, except  we only consider those 8 with B < y .  Note that if u =  
ua/p n +.  �9 �9 satisfies R ( u )  = 0 with 8 > 1, then p must occur in the denominator  o f  some  
A~. Therefore,  we cont inue until we can assume that u is of  the fo rm Y. uj~/p~+s, where  
s e E [ t ] .  Some o f  the pj occur  in denominators  of  the A~ and some do not. Let  p = p j  
occur  in the denomina to r  o f  some A~ and let ut = uit. We then look for cancellat ion as 
before. Fixing a value o f  i and  summing over all h such that ah + h = a~ + i, we have that  
Y'. ah,,,VhhO. We have that Vh-----1-I;_~o 1 ( u ~ - j p ' ) m o d p  by Lemma 2.2, so ut will satisfy 

ahc,,,(I-[j--o (Ul - j p  ))----0 m o d  p. Tlais equat ion is a non-zero polynomial  in ul, and  ul is 
assumed to have degree less than the degree o f  p, so we can determine ul up to some  
finite set o f  choices, as before. We can alter L ( y )  as before and assume that  u is o f  the 
form u = ~. uj~/pj + s, where this sum is over all pj that do not occur  in the d e n o m i n a t o r  
of  some Ai. For  such a pj (which we again refer to as p),  the leading term in the p -ad ic  
expans ion  of  R ( u )  is v , / p  ~ (by Lemma 2.2), so v,, = 0  and so Iljffio ( u i - j p ' )  -= 0 m o d  p. 
Therefore  u~ = j p '  for some j, 1 -<j-< n - 1. This allows us to assume that u is of the f o r m  
u = ~  (n jp j ) / p j+  s where the nj are integers and s and the pj are polynomials  no t  yet  
determined.  We now proceed  to determine s = Smt m +" �9 �9 + SO. First assume that  m > 1. 
Expand ing  u in decreasing powers  of  t, we have u = s , , tm+smal le r  powers of t. L e m m a  

= s , , t  + l o w e r  powers of  t. Writing A~ = a , t~ ,+lower  powers  o f  2.2(ii) implies that  P~(u) J ~" 
t, we see that  for  cancellat ion to occur  in R ( u )  we must  have a t +  i m =  a~+jm for  some  
i # j .  Therefore m can be de termined up to some finite set of  possibilities by  cons ider ing  
the possible integer a~ - a j / ( j  - i). We fix such a value o f  m and a j such that o~ + k m  <- 
aj + j m  for  all other  k. Summing  over all h such that ah + hm = a~ + j m ,  we have ~ ans , ,=  O. 
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Therefore  St# is determined up to a finite set of  possibilities. We can again alter L(y)  
until  we are in a posit ion to assume that  u = u 0 + ~  (nip~)/pi. Looking for  cancellation in 
R ( u )  = 0, we have, by  Lemma  2.2(ii), that  ~ atP~(uo, . . . ,  u(0 i-l~) = 0, where the summat ion  
is over all  i wi th  as = m a x j  (as). Therefore e I"0 satisfies s  where / ~ ( y ) = ~  aly (~ 
the s u m m a t i o n  being over  all i with a~ = m a x s ( a j ) .  Since we can effectively find all 
exponent ia l  solutions of  homogeneous  linear differential equations over E, we can find 
a finite set {Vo, . . . ,  vr} such that  eI%/e Io, = r~ e E ( t )  for some i. For each i, we form 
L~(y) = L ( y  elO,)/e I~,. We then have that y = r~ exp 5 (~ (n~p~)/pi) = r i ~PT' will satisfy 
some L ; (y ) .  Since we can effectively solve homogeneous  linear differential equations over 
E( t ) ,  we can find such a solution, and so reconstruct  an exponential  solution of  our 
original differential equation.  

We n o w  deal  with the case when t ' / t  ~ E. We again try to determine the possible partial 
f ract ion expansions  for  solutions of  R ( u ) = 0 .  Let p be  a monic irreducible polynomial  
in E[t] and  assume p # t. I f p  occurs in the denominator  of  u to a power  larger than 1, 
t hen  p m u s t  occur  in the denomina tor  of  some Az. For  these p, we can proceed with the 
reduct ion  used  above. We can therefore assume that  u = ~  ujl/pj+s, where the pj are 
monic  i r reducible  polynomials ,  pj # t and s = s,, / t m +.  �9 �9 + so +" �9 ' + sMt M. We can elimi- 
nate  those  Ps that  appea r  in the denominator  of  some A~ as before and so assume that 
the pj t ha t  appea r  do not occur  in the denomina to r  of  any Ai. Fix some p~, say p. The 
leading te rm in R ( u ) = P ~ ( u ) + A , _ I P , _ ~ ( u ) + . .  "+Ao is (using the notat ion Lemma 
2.2(i)) v J p " ,  where v~ =--~.-~ ( u ~ - j p ' ) m o d p  and ul is the leading coefficient in the 
p -ad ic  expans ion  of u. Since v, = 0, we must  have u~ --jp'  mod p for  some j, 1 ---j -< n - 1. 
Since p is mon ic  and the degree of  p is the same as the degree o f  p' (say N) ,  we have 
that  ul = j p ' -  Nj~p where ~ = t '/t.  Therefore u = ~ ((n~p~+ mt~pi)/p~) + s, where the n~ and 
m~ are integers and degr (n,p ~ + m, ~Pt) < deg, p;. We now will determine the coefficients in 
s = s , , / t  m +.  �9 �9 +SM tM. If  A~ = a,=,/t~'+higher powers of  t, then the leading term in the 
t-adic expans ion  of A~P~ is ~ ~+'~ (a~,ssm)/t , . To get cancellat ion in R ( u )  = 0, we must have 
two such terms being equal.  This determines m up to some finite set of  choices. Selecting 
an rn and  a j such tha t  k m +  an <-jm + a~ for all other k and summing over all h such 

s h that  hm + ah = j m  + %, we have  ~ ah~,~ m = 0. Therefore  sm is determined up to some finite 
set of  possibilities. We can determine SM in a similar way. We can alter L(y )  as before 
until  we are in a posi t ion to assume that u = Uo+Y. (n~p[ + m~p~)/pi. Looking for cancella- 
t ion  in the ( 1 / t ) - a d i c  expansion of  R(u) ,  we have by Lemma  2.2(iii) that 

a h c ~ P h ( U O , . . . ,  U(0 i - I ) )  = 0 where At = a~,t ~' +higher  powers of 1/t  and the summation 
J'u n is over all  h such tha t  0t h = m a x j ( ~ j ) .  Therefore  e satisfies L ( y ) = 0  where L ( y ) =  

5~ a~ry ~ ,  the summat ion  being as before. Since we can  effectively find all exponential  
solutions of  homogeneous  linear differential equations over E, we can find a finite set 
{Vo . . . . .  v~} such that  e I~o /e I~  for some i. For each i, y i=ye - I~ '=  
w, exp(5 ~.. (n,p~ + m,~p,)(p,)= w~ttxm')I-[ p~, ~ E( t ) .  y, also satisfies the linear differential 
equat ion L ~ ( y ) = L ( y  e j , ) /e  I '----0. Since we can effectively solve homogeneous  linear 
differential equations over  E ( t ) ,  we can decide if this equation has a non-zero solution 
in E(t) .  I f  not,  then L ( y ) = 0  has no solution of the desired form and if so, we can 
reconst ruct  a solution o f  the desired form. 

Examples  are now given to illustrate Proposit ion 2.3. 

EXAMPLE 2.3.1. Let E = r  and t = l o g  x. We shall consider the differential equat ion 

_ _  t l ,  , 1 

L ( y ) - y  x ( l o g x + l ) y ' - ( l o g x + l ) ~ y - - O  
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and decide if it has solutions of the form e I' '  with u ~ E(t). We shall assume that  the 
hypotheses of  the theorem are satisfied by E (this will be shown later). The associated 
Riccati equation is 

R(u)=_(u,+u2 ) 1 u _ ( l o g  x + l ) 2 = 0 .  
x(log x +  1) 

Assume that u is a solution of  R(u)  = 0  in E(t) =Q(x ,  log x). I f p ( t )  ~s t +  1 is irreducible 
in E[t], then as we have noted above the order of u at p(t) is bigger than or equal to 
-1 .  At t + l - - - l o g  x + l ,  we may write 

U~, uT-1 ~ . . . .  
u = (log x + 1) v 4 (log x +  1) ~-1 

Substituting this expression in R(u)  and comparing leading terms, one sees that i f  y > 1, 
then the leading term in R(u)  is u ~ ( l o g x + l ) 2 L  If  7 = 1, then the leading term (after 
some cancellation) is u~(log x + 1) 2. This means that u cannot have a pole at log x +  1. 
We therefore have that u = ~ pI/p~ + s where the p~ are irreducible polynomials in E[t], 
not equal to t + l  and s is a polynomial  in E[t]. We now proceed to determine s ( t )=  
Smt" +" " " + So. Plugging into R(u)  and comparing terms we see that m = 1 and sa = =al 
and so s ( t )=+t+So= +log x+so. We therefore alter L(y)  in two ways. Let 

LI(y)  = L(y e-'flogx)/e -II~ 

= Y " ' ~  - 2 x  log 2 x - 2x log x - 1 y ,  + - 2 x  log ~ x - 3x log x - x - 1 

x l o g x + x  x l o g x + x  Y" 

Let 

L2(y) = L(y gt~176 

= y'-t 2 x l ~ 1 7 6  y'+ - 2 x l ~ 1 7 6  y. 
x l o g  x + x  x l o g x + x  

To determine the possible So we consider L~ and L2 separately. In both cases we are 
looking for  solutions o f  this equation of the form y = e I'o+(rp',/p,) with So in E. For  L1, i f  
we expand the coefficients in decreasing powers of log x, we get 

LI(y)  = y"+ (2 log x + .  �9 . ) y ' +  ( - 2  log x + .  �9 .)y = 0. 

e Iso will satisfy/~I(Y) = 2y' . -2y  = 0. By the hypotheses, we can find exponential solutions 
of this latter equation over E = Q ( x ) .  In fact, e x is the only such solution, i.e. the only 
possibility for so is 1. We now modify L1(y) and form 

[q(y) = Ll (y  eX)/e ~ 

= y"-I- 2x log 2 x + 4x log x + 2x -- 1 y,. 

x log x + x  

We are looking for solutions of this latter equation of  the form r(exp(J (~  p~/p~))) with 
r in E(t) ,  that is, solutions in E(t) .  A partial fractions argument shows that the only  
such solutions are constants. This implies that our original equation has a solution of the 
form e I~176247 = e xl~ Repeating this procedure for L2(y) would yield a solution of our  
original equat ion of the form e Ic-~~ = e -x~~ 
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EXAMPLE 2.3.2. Let E = Q(x)  and t = e ~. We shall consider the differential equation 

L ( y )  = y " +  ( - 2  e ~ - 1 )y '+  eZ~y = 0. 

The  assoc ia ted  Riccati equat ion is 

R ( u )  = ( u ' +  u2) + ( - 2  e ~ -  1)u + e2~ = 0. 

One  easily shows that  all solutions in E ( t )  of R ( u ) = 0  must be of  the form u =  
s+Y.(n~pl+m~pg) /p~ where p~ are irreducible in E [ t ]  and not equal to t, and s =  
Sin~tin+ " " " + S~t  M. One easily sees that m = 0. Substituting u in R ( u )  and expanding in 
powers  o f  t, we have 

MsMt M + �9 �9 . + s ~  t T M  + . . . .  2MSMt M+I +" �9 �9 + t 2 = O. 

There fore  M = 1 and sM = 1. Therefore u = t + So + ~ (n,p~ + m,p~)/pt. We alter the equation 
L ( y )  = 0 to get L l (y )  = L ( y  eN*)/e s"') = y " - y ' .  We are looking for solutions of  the form 
e j~~ We find that s o = l  or 0. We now form the equations L ~ ( y ) =  
L~(y  eI~)/e D = y " + y '  and L~2(y) = L~(y e I ~ 1 7 6  ' and look for solutions of  these 
equat ions  that  lie in E ( t ) .  These have solutions e -~, 1 and e x, 1 respectively. Therefore 
the original equat ion L ( y )  has solutions e "* and e ~+"~. 

Note  that  in these last  two examples we have found all exponential  solutions of  L ( y )  = 0, 
not  just  a single one. The algori thm described in Proposi t ion 2.3 can be modified to do 
this, but we would ra ther  do this task in the following 

LEMMA 2.4. L e t  K be a computable differential field. 
(i) A s s u m e  that fo r  any  homogeneous linear differential equation L( y )  = 0 with coefficients 

in K we can decide i f  there exists a u ~ K such that L(e I ' ' )  = 0 and i f  so f ind  such an element. 
Then we can effectively f i n d  all exponential solutions o f  homogeneous linear differential 
equat ions over K.  

(ii) A s s u m e  that we can effectively solve homogeneous linear differential equations over 
K and that  we can f ind  all exponential  solutions o f  homogeneous linear differential equations 
over K. I f  L(  y )  = 0 is a homogeneous linear differential equation with coefficients in K then 
one can f i n d  ui, 1 <- i ~ r and vu , 1 < i <- r, 1 <- j ~- nj, such that i f  u ~ K and L(e I") = 0 then 
there exists an i, 1 ~ i < r and  constants c~s such that e Iu = (~j c~j uo ) e I",. 

PROOF. (i) We proceed  by induction on the order of  the linear differential equation. Let 
L ( y )  = 0 be  a homogeneous  linear differential equation of order n with coefficients in K. 
Decide if  there exists a u e K such that L(e  I") =0 .  I f  no such element exists, we are done. 
Otherwise find such an  element. Let L~(y)  = L ( y  e I " ) / e  f". La(y)  has no term of order 
zero, so we  m a y  write L l ( y ) = / ~ ( y ' ) ,  where /~.(y) has order n - 1 .  By induction we can 
find u l , . . . ,  ur in K such that  if  v is in K and/7(e  S~) = ~ then e l~  S", is in K. Let w E K 
satisfy L(elW) ---- 0. We then  have 0 = / ~ ( ( e l W - " ) ' ) = L ( e  f ..... +cw'-,'~/l~-,)). Therefore 
ef~ ' -" /e  I", E K or (eI~'-") ' =  0. We can conclude that i f  e Iw satisfies L ( y )  = 0, then either 
elW/e l"~+u ~ K or  elW/eS"~ K. 

(ii) Let L ( y )  = 0 be a homogeneous  linear differential equation with coefficients in K. 
We can find u l , . . . ,  u~ such that if  u ~ K and L(e J") = 0, the e I" /e  I", e K. For  each i, form 
L ~ ( y ) = L ( y  eI" , ) / e  I", and  find a basis {%} for the vector  space of  solutions in K of 
L r ( y )  = 0. This choice o f  u~ and u~j satisfies the conclusion of  the lemma. 
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EXAMPLE 2.4.1. We consider the same equation as in Example 2.3.2, L ( y ) =  
y " + ( - 2  e ~ -  1)y '+e2~y =0.  e su is a solution of this equation where u = e x, so we form 
L ~ ( y ) = L ( y  e ~ ) / e ~ X = y " - y  '. Therefore L ( y ) = y ' - y .  This latter equation has solution 
e Iu where u---x. Therefore if  w ~ K = I)(x, e x) and L(e I~) = 0 then either eJ'~/e'~ e K or 
elW/e ~x+~ ~ K. 

LEMMA 2.5. Let K be a computable differential field with an algebraically closed field o f  
constants and L( y ) =  0 a homogeneous linear differential equation with coefficients that lie 
in a finitely generated algebraic extension E of  K. Assume that one can effectively find all 
solutions o f  homogeneous linear differential equations over K and effectively f ind all exponen- 
tial solutions of  homogeneous linear differential equations over K. Then 

(i) One can decide i f  there exists an element u algebraic over K such that L(e b') = 0 
and i f  so f ind a minimal polynomial of  u over 1(. 

(ii) One can find an algebraic extension F o f  E and elements ui, u o. in F such that i f  u 
is an element in F and L(e I~) ---0, then there exist an i and constants c o such that e I~--  
(Ej cu u0 ) e s'''. 

(iii) One can find elements yx, . . . , Yr, liouvillian over K, that span the space o f  aII solutions 
of  L ( y )  = 0 that are liouvillian over K. 

PROOF. (i) This follows f rom the techniques and results of  Singer (1981). For the 
convenience of the reader we outline the proof  here. We know from Theorem 2.4 of  
Singer (1981) that if L ( y )  = 0 has a solution of the prescribed form then it has one where 
u is algebraic over E o f  degree bounded by an integer N that depends only on the order  
n of  L. Furthermore,  there is a recursive function I (n )  such that N<_I(n) .  Therefore u 
will satisfy a polynomial  equation over F of degree at most I ( n ) [ E : F ] .  Fix an integer 
m <--I (n)[E:F].  We wish to decide if there exist a m - i , . . . ,  ao in K such that i f  f (u) - - -  
u m + a,~_lu m-~ +" ' "+ ao = 0, then L(e I") = 0. We shall first determine the possible am-a 
that can occur. We may assume that  E is a normal extension of F and let G = { c q , . . . ,  crt} 
be the galois group o f  E over K. For each o-~ e G, let L~(y)= 0 be the homogeneous  
linear differential equation obtained by applying cr~ to the coefficients o f  L(y)  = 0. Let  
/2 ,(y)=0 be the homogeneous linear differential equation whose solution space is 
{Y~ +" " "+Ym I L~(y~) = 0, i = 1 . . . . .  m} (see Lemma 3.8 of  Singer (1981)). Assuminug that  
f is irreducible, we have that  /~(e Iu,) --0 for all roots ug of f ( u ) =  0. Let y~ = e J ~. We 
see that 

am_l = - ( u l + '  �9 .+u , , )  

+ 
\Yl Ym ] 

Z J 
Let L I ( y ) = 0  be the homogeneous linear differential equation with coefficients in E, 
satisfied by zm --Yl " " �9 ym. This can be calculated from L(y)  using L e m m a  3.8 of  Singer 

A rrl 

(1981). Since z ' / z m  e K, L l ( z m ) = 0  where L l ( y ) = ~ = ~  (L l (y ) )  ~. L t (y )  has coefficients 
in K, so by Lemma 2.4(ii), we can find v~ and v e in K such that z,~ --- (~  cove) e Io, for  
some constants c U. Therefore, for some i, am-t = v~ + (2  co vo)'/(Y~ cevo ). We can conclude 
that we can construct a finite number of  rational functions R,,_~.t(c~.j) with coefficients 
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in K such that  for some choice of  constants cq and i, ar,-~ = Rm-t.~(c~d). To compute  
a m _ e ,  note  tha t  

1--< i , j : ~  m 

Y~Yj 
l~-i,]~m Y i Y j  

= e ( I I  y j )  -~ E ' ' " ' "  Y i z Y i: Yi3 Yi,,, 

where this lat ter  sum is taken over  all permutat ions of  (1 . . . .  , m). Let P(  Y~ . . . . .  Ym) = 
~. YI, Y~z Y~3 " " " Y~o." We can construct a linear differential equation L2(y) with coefficients 
in E, such  that  for any  solutions y~ . . . . .  Ym of L(y)  = 0, L2(P(y~ . . . .  , y, ,))  =0 .  Note that 
t-I Yj = ~.s %vu eft '  for some i and constants c U (as above).  Therefore,  for some i, we have 
tha t  (l-I Y j )am-2=~  cijVO eI~am-2 = P ( Y ~ , . . . ,  Y,~) and so e - S ~ ' P ( y l , . . . ,  y~) is in K. Let 
L2.,(y) ~ L2(eI~'y)/e I~ and let L2.,(y) ~ F~=~ (L2,t(y)) ~',. Since/.~,~(eI~,p(yl . . . . .  y , ) )  --- 0, 
a n d  e - I  ' P (Y l ,  . . . ,  ym)~  K, we have/.a_,i(e -I , P ( y ~ , . . . ,  y,~)) =0.  By assumption,  we can 
find {wv} in K such that  for  each i, {w~.j} forms a basis  of the vector space of solutions 
of  I_a.j(y)=O in K. Therefore,  for some i and constants c o , du, a , , -2=  
c ( ~  y , ) - l p (  y l ,  . .. , y , )  = (~j cuvo " eI~,)-~p(y 1 . . . .  , y , )  = (~j cuvo.)-a(Y.i d~j wo.). We denote 
this ra t ional  funct ion as R2.t. In a similar way we can find, for  the other a ,  _~, expressions 
Rh.t that are rational funct ions of  known quantities with unknown constant coefficients. 
For  all poss ib le  choices of  i = (io . . . .  , i , , - l )  we form 

f , ( u )  = u "  + R m - , . ,  ..... u ~ - ~  + - .  �9 + Ro j0 .  

We wish to determine if there is a choice of constants co., d~ . . . .  such that  any solution 
o f f , ( u ) - - 0  is a solution o f  R(u)  =0,  where R ( u ) = O  is the Riccati equation associated 
with L ( y )  =0 .  I f  we reduce  R(u)  with respect to f~(u) as in Ritt (1966, p. 6), we get a 
r ema inde r  Hi(u)  that must  vanish identically. This forces a collection of  polynomials  
(with coefficients in E )  in the c u, do.,.., to vanish identically. Since we are looking for 
constant  solutions,  there  is an equivalent set of  polynomials  with constant  coefficients. 
We can then  decide i f  there exist constants that  satisfy these polynomial  equations. If  
such a set o f  constants  do not  exist then L ( y )  = 0 does not  have a solution of the desired 
form. I f  such a set does exist, then  we factor  f~(u) to find a minimal  polynomial  for u. 

(ii) We proceed  by induct ion on the order  of  L(y).  I f  the order is 1, then L(y)  = y '+ ay, 
for  some a ~ K. We then  let F - -  E and note that  for any  u in F such that L(e I ~) = 0, we 
have  e I~ = e e f-~,  for some constant  c. Now assume tha t  L(y)  has order n > 1. By part  
(i) o f  this l emma,  we can  decide i f  there is a u algebraic over K such that L(e I") =0 .  Let 
Ll ( y )  = L (y  e I " ) / e  I~. LI(y )  has  no term of order zero so we may write L1(y) = L(Y') ,  
where /~ (y )  has order n - 1 and  coefficients in E(u).  By induction, there exists an algebraic 
extension F o f  E(u)  and elements  v~ in F such that  i f  v is in F and /~(e f~) = 0, then 
eJ~ /e f~ ' eF .  I f  w e F  and  L(e  ) = 0 ,  then /~((e ~- ) ) = 0 ,  so ( w - u )  e - /e  
e I ~ ' = c e  I" for  some constant  c. Therefore e I /eI~,+~eF or e I ~ / e I " ~ F .  Let u~= 
v ~ + u , . . . ,  u~= v~+u, u~+~= u and  L~(y) = L ( y  e~ , ) / e  ~,  for i = l , . . . ,  r + l .  Each L~ has 
coefficients in F, an explicit ly given algebraic extension of K. In Proposi t ion 3.1 we shall 
see that  we  can effectively solve homogeneous  linear differential equations in F. Therefore,  
we can f ind u U such that ,  for each i, {uo.} forms a basis fo r  the set of solutions of L~(y) = 0 
in 17. We have  then  found  the desired u~ and u~. 
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(iii) We again proceed by induction on the order of  L(y). When L(y) has order 1, 
then L ( y ) = y ' + a y  for some a in K. Therefore y~ = e  -I" will satisfy the conclusion of the 
lemma. For n > 1, Theorem 2.4 of  Singer (1981) implies that if L(y)=0  has a solution 
liouvillian over K, then there exists an element u algebraic over K such that L(J")  = O. 
Part (i) of  this lemma lets us decide if this is the case and if so, find such an element. 
For such a u, let L~(y)=L(y  elU)/e ~". Since L~ has no term of order 0, we may write 
LI(y) = f--.(y'), where L(y) has order n - 1. By induction, we can find z~ , . . . ,  zr that span 
the space of solutions o f /Z(y)  = 0 liouvillian over K(u).  e I", e ~" ~ z~ . . . .  , e I" J zr then 
span the solutions of L(y )=  0 liouvillian over K. 

EXAMPLE 2.5.1. Let K = Q(x, log x) and consider the linear differential equation 

L(y )=y"q  4 x l o g x + 2 X y , _  1 
4x 2 log x 4X 2 log X y = 0. 

We will find all liouvillian solutions of this equation. We start by looking for all solutions 
of the form e J" where u is algebraic over K of degree at most 2. In general, we would 
have to decide if there is such a solution with u algebraic over K of degree bounded by 
some computable function of  the order of  L, but in this case we will see that the number  
2 is enough, u satisfies an equation of the form f ( u )=  u2+ au+ b = 0 with a, b ~ K. We 
will furthermore assume that f (u)  is irreducible. We then have that a =-(y '~/y~ +Y~/Y2) 
where y~ and Y2 are solutions of L(y) = 0. We now construct a linear dif[erential equation 
L2(y) satisfied by all elements Yl Y2 where Yl and Y2 are solutions of  L(y)  = 0. An algorithm 
for this is given in Singer (1981). We have 

L2 (y) = y,,,_~ 6x log x + 3x ,, 2 log x + 1 y, = O. 
~ - i i ~ g  x Y q 2x21ogx 

We need to find all solutions y of this latter equation such that y ' /y  a K. An algorithm 
for this is given in Lemma 2.3 and Lemma 2.4. We find that the only such solutions are 
constants. This implies that a = 0 .  To determine b, we note that b=(y~y~.)/yty2, so 
y~y2b =y~y'~. Since YlY2 must be a constant, Y'~Y'2 must be in K. We again construct a 
linear differential equation L3(y) = 0 satisfied by all expressions of  the form y'~ y~. We find 

L3 (y)  = y'" + 18x z log 2 x + 9x 2 log x Y" -~ 38 log 2 x + 43 log x + 6x y, 
2x 3 log 2 x 2x 3 l og  2 X 

16 log 2 x + 3 2 1 o g x +  10 
4 2X 3 log 2 x Y 

= 0 .  

We must find all solutions of  this latter equation in K. An algorithm for this is given in 
Proposition 3.10. We find that the only such solutions are constant multiples of  
1/(4x 2 log x). Therefore f (u)  must be of the form u2+ c/(4x 2 log x) for some constant c. 
If  f (u) = 0, then u 2 = - c / ( 4 x  2 log x) and u' = -�89 log x+4x / (4x  2 log x)] �9 u. Substitut- 
ing these expressions in 

R(u) -~ u2+ u'-~ 4x log x + 2 x  1 
4x 2 log x u 4x 2 log-~ - 0 

we see that c = - 1 .  Therefore f ( u ) =  u 2-1 / (4x  2 log x) so L(y) has solutions of the form 
y = e TM where w = :e(log x) 1/2. These two solutions form a basis for the space of  all solutions 
of L(y)  = 0. 
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PROPOSITION 2.6. Let E c E( t )  be computable differential fields and assume that t is 
algebraic over E and that C ( E ) =  C ( E ( t ) )  is algebraically closed. Assume that we can 
effectively solve homogeneous linear differential equations over E and that we can effectively 
f ind all exponential solutions of homogeneous linear differential equations over E. Then we 
can decide i ra  homogeneous linear differential equation L ( y ) = 0  with coejffTcients in E(  t) 
has a solution e I" with ua  E( t ) .  

PROOF. Let F, ui, u;j be  as in Lemma 2.5 (ii) where E (t) c F. I f  L(e Iv) = 0 for  some u ~ E (t), 
then  there exists an i and constants c~i such that u = u i + ( ~  co.u~i)'/(~, cuuo.). Therefore 
we need to decide if  there exist constants c o. such that  u~ + (Y. c~ uu)'/(~ co.u U) E E(  t). If  
we write this in terms o f  a basis of  F over E (t), this is equivalent to a system of  polynomials 
in the c~, with coefficients in E ( t )  vanishing. There is an equivalent polynomial  system 
with constant  coefficients and we can decide if this has a solution in the subfield of 
constants .  

PROOF OF PROPOSITION 2.1. This follows immediately  f rom Proposit ions 2.3 and 2.6 
and  L e m m a  2.4(i). 

3. Question 1 

In this sect ion we discuss the problem of  answering question 1 for fields of  the form 
E ( t )  where E satisfies a suitable hypothesis and either t ' / t ~ E ,  t '~ E or t is algebraic 
over  E. We actually deal with a slightly more general question related to the following 
definition. Let K be a differential field. We say that we can effectively solve parameterized 
linear differential equations overK if  given a , _ ~ , . . . ,  ao, b , , , . . . ,  bo in K, one can effectively 
find h i , . . . ,  hr in K and a system ~ in m + r  variables with coefficients in C ( K )  such 
that  y~)  + a,~-i y(n-1) + . . .  + aoy ~ ctbl + '  " "+ crab,, for y ~ K and c; in C( K)  if  and only 
i f y  =ylh l  +" " " +yrhr where the Yi ~ C ( K )  and Cl, �9 �9 �9 cm, Yl . . . .  , Yr satisfy ~. Obviously, 
if  K is compu tab l e  and  we can effectively solve parameter ized linear differential equations 
over  K, then  we can effectively solve homogeneous  linear differential equations over K. 
Proposi t ions  3.1 and 3.4 can be proved if both  the hypotheses  and conclusions regarding 
solving parameter ized  l inear  differential equations are replaced by the weaker statement 
that  we can  effectively solve homogeneous  linear differential equations. In  Proposition 
3.9, we need  the  stronger s ta tement  to make  the induction work. We prove these stronger 
s ta tements  with the hope  that  they will be more useful in applications. 

We first deal with the field E( t )  where t is algebraic over E. Let E[D] be the ring of 
differential operators  with coefficients in E. This is the set of  expressions of  the form 
a,Dn+" " "+ ao where mult ipl icat ion corresponds to composit ion o f  these operators. In 
general, this is not  a commuta t ive  ring, since Da = D ( a ) +  aD. It is known that this ring 
has  a r ight  and  left division algorithm (Poole, 1960, p. 31), so we can row and column 
reduce any  matr ix  with coefficierlts in E[D] (Poole 1960, p. 39). 

PROPOSITION 3.1. Let E be a computable differential field and t an element algebraic over 
17,. I f  we can effectively solve parameterized linear differential equations over E then we can 
effectively solve parameterized linear differential equations over E( t). 

PROOF. Let  1, t , . . . ,  t N fo rm a vector space basis of E(t )  over E and let y =  
y o + y ~ t + ' ' "  +yNt  N where Y0 . . . .  , YN are new variables. Using the fact that t' may be 
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explicitly written as an element of E(t) ,  we may then write 

L( y ) = y ( ~  + a~-i y(~- l~+ . . .  + aoy = ctbl +" �9 "+ cmbm 

as 

Lo(Yo . . . .  , y N ) +  L , ( yo ,  . . . ,  y N ) t + "  " "+ L N ( y o  . . . .  , y N ) t  N 

= Bo(Cl . . . .  , Cm)+ BI(Cl . . . .  , era)t+" �9 . + B N ( A , . . . ,  Cm)t N 

where the L, are linear differential equations in the yj with coefficients in E and the B~ 
are linear polynomials in the cj with coefficients in K. We can write this latter expression 
in matrix form A Y = B  where A is an N + l x N + I  matrix with entries in E [ D ] ,  
Y =  (Yo . . . .  , yN)  T and B = (Be, . . . ,  BN) 7". Using row and column reduction, we can find 
matrices U and V with entries in E [ D ]  such that U has a left inverse, V has a right 
inverse and U A V =  C where 

C =  If~176176 ] s  0 " "  

and t h e / ~  are in E [ D ] .  Y is a solution of A Y =  B if and only if W =  V -~ Y is a solution 
of C W =  UB. Solving this latter system is equivalent to solving N +  1 equations/7,f(w~) = 
Y. efl~ U , where the ]91 are in E. Since we can effectively solve parameterized linear differential 
equations in E we can find appropriate h U in E and systems of linear equations ~ .  Using 
these we can construct elements h~ in E ( t )  and a system .~ of linear equations satisfying 
the conditions for L(y)  = ~ c~b~ in the definition o f  effectively solving parameterized linear 
differential equations. 

An example illustrating the above proposition is given in Davenport  & Singer (1986, 
p. 242). We now turn to fields of the form E ( t )  where t ' / t ~  E or t '~ E. 

LEMMA 3.2. Let  E c E ( t )  be computable differen tial fields with C ( E ) = C ( E ( t ) ) ,  t transcen- 
dental  over E and either t ' /  t E E or t' E E. Assume:  

(i) we can effectively solve parameterized linear differential equations over E, 

(ii) i f  t ' / t ~ E  and An,  . . .  , A o ,  B m , . . . ,  B1 are in E[ t ,  t - ' I ,  we can effectively f i nd  an 
integer M such that i f  Y = Yv/ tv +" " "+Yo +" " ' + Y8 t8 with Yi e E, y~y~, # 0, satisfies An Y("~ + 
�9 . . + A o Y = c , , B m +  ." "+ctB1 f o r s o m e  ei~ C ( E ) ,  then 7 < - M a n d  8<-M. 

(iii) i f  t' ~ E and A~, . . . , Ao ,  B, , ,  . . . , B1 ~ E [  t], we can effectively f ind an integer M 
such that if Y=y 0  + . . . + y ~ , F  with y i ~ E ,  y v # 0 ,  satisfies A n Y ( n ) + . . . + A o Y =  
CmBm + " "  +clB1 fo r  some  e~ in C ( E ) ,  then 7 < - M.  

Then we can effectively solve parameterized linear differential equations over E ( t) .  

PROOF. We first consider the case where t ' / t  ~ E. Let 

L ( y )  = y t ~  + a~_l y(~-,~ + . . .  + aoy = c~ bl +" �9 �9 + crab,, (1) 
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with the aj, b~ ~ E ( t ) .  Let p be a monic irreducible polynomial  in E[ t ] ,  p # t, and let 

y = Y ~ + . . .  
p~ 

a f a ~  

at = - ~ +  ' �9 �9 

b~ = b j ~  + . . .  

be the p -ad ic  expans ions  o f  these elements (for convenience we define a ,  = 1 so a.o = 1). 
Differentiat ing,  we see that  

y(j~ = uj 
p,,+i + .  �9 . 

where uj ~ • ~ ( a + 1 ) . �9 �9 ( ce + j - 1)y~ ( p ' )  j mod p. Note  that p '  and p are relatively prime 
so that  uj ~ 0. I f  a > 0, then some ~i > 0 or some fli > 0. Therefore only p # t that occur 
to negative powers in the part ial  fraction decomposi t ion of  a solution of  (1) have this 
proper ty .  We shall first try to bound ~ for such a p. In order for cancellation to occur 
in (1), we must  have that either max;(oz + i+  at)-< max;/3~, in which case we can bound 

or 7 = m a x f ( a  + i + o~i) > maxj/3~. In this latter case we must have ~ a~,u~ =- 0 mod p, 
where the  sum is over all i such that y = t~ + i + at. This latter equation can be rewritten 
as ~ a ~ , , ( ~ a ( a + l ) . . . ( e z + i - 1 ) y ~ ( p ' ) ~ ) - O m o d p .  We can divide by  y,~ and get 

a~,~,(• + 1) �9 �9 �9 ( a  + i - 1 ) (p ' )  i) = 0 mod  p. Since p '  and p are relatively pr ime and, 
for  each i, ai~, and  p are relatively prime, this latter equat ion gives a non-zero polynomial  
that  ~ mus t  satisfy. ~ is therefore  determined up to some finite set of  choices and so we 

. . . cr ~ can effectively find a b o u n d  ~*. Set y = y / p ~ T  p k  ~, where the  pj are those monic 
i r reducible  po lynomia l s  ( #  t) appear ing in the denominators  of  some at or b~ and the o~* 
are the b o u n d s  calculated above.  Substitute this into L ( y )  = c~b~ + .  �9  + crab,, and clear 
denomina tors  to get 

A ,  Y ( " )  + A ~ - I  y ( ~ - l )  + . . .  + Ao Y = craB,, +" " " + c, ,Bm, (2) 

where  

Y =  y v / t  ~ +"  ' "+ yo+"  ' "+ y d  ~ 

with the y~ and the a~,  in E and A~, . . . ,  Ao, B ~ , . . . ,  Bm in E [ t ,  t-~].  By our hypotheses, 
we can find an M such that  8 < - M  and 7 ~ M. 

We n o w  wish to de termine  the yj .  Substituting our expression for Y into (2) and writing 
this in te rms o f  powers  of t, we have 

L N , ( Y r , .  � 9  Y~) t - n '  +" �9 "+ L N 2 ( y ~ , . . . ,  Ys)tN2 

= C m ( c ~ , . . . ,  c , , ) t - ~ +  �9 "" + C N ~ ( C ~ , . . . ,  C, , ) t  u" 

for  some N~ ----- N= and Na----- N4 integers, where the L~ are linear differential equations in 
the yy with coefficients in E and the ~ are linear in the c, with coefficients in E. If  
N3 > N~, we set  CN~ . . . . .  CNt+~ = 0 and  get a system of linear equations ~ for the c~. 
We similarly can  get a system o f  linear equations ~ if N :  > N4. For N~ --- i - N2, we 
have  the equat ions  L ~ ( y , ~ , . . . ,  Yr)  = C ~ ( c ~ , . . . ,  c,,,). This system can be written as A Y  = B, 
where A is an [ N = + N I + I ] x [ N = + N ~ + I ]  matrix with coefficients in E [ D ] ,  Y =  
( Y v , " . ,  y~) r  and  B = ( C v , . . . ,  C~) 7". We can find (as in Proposit ion 3.1) an equivalent 
d iagonal  sys tem C W =  U B  and apply the hypotheses of  this proposi t ion to find linear 
systems ~ in the  cj and  appropr ia te  ho.. Transforming these back to our system A Y =  B 
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and then substituting into y ~ y~t-~'+ . .  . + y d  's gives us the appropriate  h~ for the con- 
clusion of this proposition. We may take Ze=Za~ uZP2 u (w .~) .  

The p roof  when t ' e  E follows in a similar manner  and will be omitted. 

LEMMA 3.3. Let  E ~ E ( t ) be computable differential fields with C ( E ) = C ( E ( t ) ), t transcen- 
dental over E and t'/  t E E. Assume: 

(i) we can effectively f ind all exponential solutions o f  homogeneous linear differential 
equations over E, and 

(ii) for  any u in E, we can decide i f  y '+  uy has a non-zero solution in E ( t )  and f ind  such 
a solution. 

Then given any A,,, . . . ,  Ao, B in , . . . ,  B1 in E[  t, t-l], we can effectively f i nd  an M such 
that i f  Y = y ~ / t v + . . . + y ~ t  ~ with y j ~ E ,  y~ya#O,  satisfies A , , Y t " I + . . . + A o Y  = 
c,,Bm +.  �9 �9 + clB~ for  some c~ ~ C ( E ) ,  then 3`<- M and ~ ~ M. 

PROOF. We first show how to bound 3'. Let 

Ai = ~ +  ' �9 "+ ai~i t ~ 

Cl B 1 +" �9 �9 + craB m = tb-~ + �9 �9 �9 + b.t" 

with the a e in E and the b~ linear in the cj with coefficients in E. Note that (if 3' > O) we 
have 

y t  = _ ~ + . . .  where ui = t v e E. 

Furthermore,  u; ~ 0, since otherwise t would be algebraic over E. Substituting the above 
expression for Y into 

Am yC , ) + . . .  + Ao Y = craB,, +. �9 �9 + cl B1 (3) 

and equating coefficients, we see that 6 = max;(3" + ~ ; ) <  max~/3~, in which case 3  ̀can be 
bounded,  or  ~ > maxl/3i. In this latter case, the leading term on the left hand side of  (3) 
is ~ a~, u~/t v+"' where the summation is over all i such that 3' + ot~ = 6. We then will have 

(Yv~ '" 
0 = t - r  2 ai~,u, = 2  at~, \ - ~ ]  �9 

Therefore,  Z = y v / t  v is a solution of  L ( Z ) = ~  ai, Z m =0.  By our assumptions we can 
find uj and u~j in E such that for some j, y r t - v = Y ,  dsuue Iu, for some constants di. This 
implies that  for some j ,  y ' - u y = O  has a solution in E( t ) .  Finding all such solutions 
allows us to bound 3'. We can bound 8 in a similar way. 

PROPOSITION 3.4. Let E c E ( t )  be computable differential fields with C ( E )  = C ( E ( t ) ) ,  t 
transcendental over E and t'/  t ~ E. Assume  that we can effectively f ind all exponential 
solutions o f  homogeneous linear differential equations over E and that for  any u in E decide 
i f  y '  + uy = 0 has a non-zero solution in E ( t ) and f ind all such a solution if  it exists. Then 
we can effectively solve parameterized linear differential equations over E (  t). 

PROOF. Immediate  from Lemma 3.2 and Lemma 3.3. 



266 M.F. Singer 

EXAMPLE 3.4.1. Let E = Q and t = e ~. Consider  the linear differential equat ion 

L ( y ) = y , , . +  - 2 4 e ~ - 2 5  , 20e ~ 
4eX+5 y + ~ y = 0 .  

We wish to find all solut ions & t h i s  equation in Q(eX). Using p-adic  expansions for p ~ t, 
one  can easily show tha t  any  solution must  be of  the fo rm y ~ / t  r + . . .  + y~ t ~. We therefore 
clear denomina tors  in the above differential equation and consider 

(4t + 5)y"+ ( - 2 4 t  - 2 5 ) / +  20 ty = 0. (4) 

C o m p a r i n g  highest powers  of  t, we see that  y~ t ~ satisfies 4 y " - 2 4 y '  +20y  = 0, This latter 
equat ion has solutions e 5x and e -~ that are exponential  over E = Q. Both of  these are in 
Q(eX). There fo re  6_< 5. Compar ing  lowest powers of  t, we see that y v / t  ~ satisfies 5 / ' -  
2 5 y ' + 2 0 y = 0 .  This latter equat ion has solutions e 4~ and e x in Q(eX). Since y _ 0 ,  we 
conclude that  either 3' = 0 or  yv = 0. Therefore y = ys tS+  . .  . +Yo for some yi constants. 
I f  we substi tute this expression in (4) we get the following 

- 12y4 t s + ( -20y4 - 16y3) t 4 + (-30y3 -- 12y2) t a + ( --3 0y2) t 2 + (20yo -- 20yt ) t = 0. 

Equat ing powers  of t to 0 and  solving gives us that Y2 - Y3 = Y4 = 0 and Yo --- Yl. Therefore, 
solutions of  (4) in E ( t )  are of the form c~eS~+ c2(eX+ 1) where cl and cz are arbitrary 
constants.  

A few words need to be said about  the assumption in the previous proposi t ion that 
for  u e E  we can  decide if  y ' + u y = O  has a solution in E ( t ) .  A priori, this is stronger 
than  the assumpt ion  that  we can decide effectively find all exponential  solutions or all 
solutions of  homogeneous  l inear differential equations over E. Since t ' / t  e E, it is known 
(Rosenlicht ,  1976, Theo rem 2) that  any solution in E ( t )  of  y ' + u y = O  must be of  the 
fo rm y . t  ~ for  some integer n. y. will then satisfy y~, + (u + n ( t ' / t ) ) y .  = 0. We are therefore 
asking to decide if there is some integer n such that this latter equat ion has a non-zero 
solution in E. Similar p rob lems  come up in the Risch algorithm f o r  integration in finite 
terms (we are asking if  f u = log y,, + n log t for some y .  and integer n). We do not know 
how to reduce  this question to the assumptions that we can effectively find all exponential  
solutions or  effectively solve homogeneous  linear differential equations. The following 
1emma shows tha t  there are classes of  fields for which this hypothesis  is true. 

LEMMA 3.5. Let  E c E ( t )  be computable differential f ields with C ( E ) = C ( E ( t ) ) and assume 
t is t ranscendental  over E with t ' / t e  E or t ' ~ E .  

(i) I f  E is an elementary extension o f  C ( x ) ,  x ' =  1, and u e E, then one can decide i f  
y ' +  uy = 0 has a non-zero solution in E ( t )  and f ind  such a solution. 

(ii) I r E  is a purely transcendental  liouvillian extension of  C ( x ) ,  x '  = 1, and u e E, then 
one can decide i f  y '  + uy  = 0  has a non.zero solution in E ( t ) and  f ind such a solution. 

PROOF. In  this p roof  we shall rely heavily on the results of Rothstein & Caviness (1979) 
and the a p p e n d i x  of Singer et al. (1985). I f  t ' e  E, then the Corollary to Theorem 1 of 
Rosenl icht  (1976) implies that  any solution u of  y ' + u y  = 0  in E ( t )  is actually in/3. I f  E 
is an e lementary  extension o f  C ( x ) ,  the result follows f rom Risch (1968). I f  E is a purely 
t ranscendental  l iouvill ian extension of C ( x ) ,  the result follows from Theorem A l ( b )  of  
Singer et al. (1985) and  the fact that we can effectively embed such an extension in a 
log-explicit  extension. We now assume that t ' / t  e E and let t ' / t =  v. 
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(i) Assume that E is an elementary extension of  C(x) .  We can use the Riseh Algorithm 
(Risch, 1968) to decide if  v has an elementary anti-derivative. I f  it does, then we can find 
v t , . . . , v ~  in E such that E ( ~ v ) c E ( l o g v ~  . . . .  , logv~). Since, for each i, E~= 
E(log v ~ , . . . ,  log v~) is an elementary extension of  E, we can inductively decide if log V~+l 
is algebraic over E; (and so in E~) or  transcendental over Ev Therefore we can assume 
that E~ = E (log v ~ , . . . ,  log v~) is a computable differential field. The corollary to Theorem 
1 of Rosenlicht (1976) implies that t is transcendental over E~. E~(t) is a generalized 
log-explicit extension of  C and we can write E~(t)= C ( t ~ , . . . ,  t~) as in (Rothstein & 
Caviness, 1979, Theorem 3.1). It is enough to decide, for a given u in E, if y ' + u y = O  
has a solution in Er(t),  since the corollary to Theorem 1 of Rosenlicht (1976) implies 
that such a solution will lie in E(t ) .  To decide if y'+ uy has a solution in E~(t), we use 
Corollary 3.2 of  Rothstein & Caviness (1979). According to this result, if such a solution 
existed then 

u = c + Y. r~t~ + ~ r~a~ 

where c is a constant, ~ = (i1 t', = a~/ai, for some a, �9 C ( t l , . . . ,  ti-l)}, and $ = {i[ t~/t, = a~ 
for some a~ �9 C ( t ~ , . . . ,  t~_~)}. Writing this last equation as u'---~ r~t~ + ~ r~a'~, and expand-  
ing in terms of a Q-basis o f  C ( t ~ , . . . ,  t,), we can find a rational solution {r~} if  one exists. 
I f  such a solution exists, then y = e l " =  d I-JilL ae I - [ ~  ~' t~, for same constant d. This means  
that for some integer N (that can be determined from the r~) ( y / (d~ /N) )  N ~ E~(t). E , ( t )  
is a computable  field, so to determine if y �9 E, we need only factor y N  _ ( l I~  L a ~' I-[~, E t")N 
over E~(t). 

I f  ~ v is not elementary over E, then E(~ v, t) is a log explicit extension of  C and we 
can proceed as above. 

(ii) Either ~ v is in E or it is transcendental over E. Lemma 3.4 of  Rothstein & Caviness 
(1979) and Theorem A1 of  Singer et al. (1985) imply that one can effectively embed E ( t )  
into a regular (i.e. purely transcendental) log-explicit extension F of C. Furthermore F 
will be of  the form E ( t ~ , . . . ,  t,), with the t~ in E. The corollary to Theorem I of  Rosenlicht 
(1976) implies that t is transcendental over F. Given u in E it is enough to decide if 
y '+ uy = 0 has a solution in F( t ) ,  since the corollary to Theorem 1 of Rosenlicht (1976) 
will imply this solution lies in E. Therefore, let us assume that E is a regular tog-explicit 
extension of  C. Theorem Al(b)  now allows us to decide if y '+ uy = 0 has a solution in 
E( t )  and find such a solution if it does. 

We will now prove a result similar to Lemma 3.3 for fields of the form E ( t )  with t 'E E. 
This l emma will describe an algorithm to find a certain integer M that  bounds the degree 
of solutions in E[t]  of linear differential equations. To show the algorithm is correct, we 
need to consider more general extensions of E and we will prove two simple lemmas  
about these extensions. 

Let E c E ( t )  be countable differential fields, C ( E )  = C ( E ( t ) ) ,  t transcendental over  
E and t' E E. Since C ( E )  is countable we may assume that C ( E )  c C. Let F = C @c~z~ E. 
We first note that t is transcendental over E I f  not, then t" +a,,_~ tn- t+ �9 . .  a 0 = 0  for  
some a~�9 F. Differentiating this equation, we have ntn-~t'+ a'~_~ tn-~+ . . . .  0 so t '=  
( 1 / n ) a ' _ l .  Therefore there exists a u �9 F such that u ' =  t'. Let {y~} = C be an E-basis o f  
F and write u = ~  ylut for  some u ; �9  E. We then have ~ .y~ul= t ' � 9  E. Therefore for some 
i, % = 1 and t ' =  ul. This implies that in E( t ) ,  ( u -  t ) ' = 0  so t � 9  E, a contradiction. 
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We n o w  consider  the field K = F(( t -~ ) ) ,  the field of  formal Laurent  series in t -a with 
coefficients in F. We can extend the derivation on F to K by defining 

a f  =a~ot%+ y. ( iai t '+a~_Ot'  '-~. 
i 0 i '~no 

Let K ~ C - Q  and define an  extension K ( u )  of K where u is t ranscendental  over K and 
u ' /  u = ~ t ' /  t. We then have 

LEMMA 3.6. (i) C ( F )  = C ( K ) .  (ii) C ( K )  = C ( K ( u ) ) .  

PROOF. ( i ) L e t  (Z~, ,0a~t~) '=0.  First assume that no#0 .  We then have a ' o =  
! _ _  ? noa,ot' + a~_~ - O. Therefore  t' ~ ( a~o_J noa,o) , so t -  ( a ,o_J  noa~o) ~ C (  F )  contradicting 

the fact that  t is t ranscendental  over F. I f  no = 0, let n~ < no be the largest integer such 
that  a , , ~ 0 .  We then have a , o ~ a , , - 0  and n~a,,t  + a , , _ ~ - 0  and we get a similar 
contradic t ion as above. 

(ii) I f  C ( K )  is proper ly  contained in C ( K ( t ) )  then there exists an integer n and a 
v e K such that  v ' / v  = nKt ' / t  (Risch, 1969). I f  we write v = a,ot"o+ a , o _ ~ t ' o - ~ + . . . ,  then 

/3 t t n o ~ r t ~ a~ot + (noa,ot + a,o_Ot'o-Z + .  . . 
- - =  . . . . . .  = h i ( - - .  
v a . ~ t  no + �9 . �9 t 

Therefore ,  a ' . o=0  and  (noa~ot '+a'no_O/a.o=nKt' .  This implies that  ( n r - n o ) t ' =  
(a.o_l/a~o)'. Since t~  K, we must have nK - no = 0, contradicting the fact that K ~ Q. 

We need  one more 1emma before we can prove that the algorithm described in Lemma 
3.8 terminates.  

LEMMA 3.7. L e t  K ~ F be differentiaI f ie lds  and assume that we can solve parameterized 
linear dif ferential  equations over K.  Let  A o , .  �9 �9 A~, B ~ , . . . ,  Bm ~ K and let ~ be a set  o f  
homogeneous  linear equations with coegOTcients in C ( K )  and Z l , . . . ,  Zr be elements o f  K 
such that A , y  ~ + .  �9 + Ao y = c,,B,~ +.  �9 �9 + c~ B1 fo r  y E K,  ci ~ C ( K ) i f  and only i f  y = Y. hizi 
f o r  some hi ~ C ( K )  a n d  cl ,  . . . ,  cm, h i , . . . ,  hr satisfy &P. Then for  y ~ K .  C ( F )  and  cie 
C ( F ) ,  we  have  A , y  (~) + .  �9 �9 + A o y  = cmBm +" " " + clBI i f  and  only i f  y = ~ hlz~ fo r  some 
hi ~ C ( F )  and c l , . . . ,  Cm, h~ . . . .  , h~ satisfy Le. 

PROOF. The  p roo f  follows by expanding y ~ K .  C ( F )  in a K-basis  and noting that all 
equat ions (both differential and algebraic) involved are linear. 

LEMMA 3.8. Le t  E ~  E ( t )  be computable differentiable f ields with C ( E ) = C ( E ( T ) ) ,  t 
t ranscendental  over E and  t' ~ E. A s s u m e  that we can effectively solve parameterized linear 
differential equations over E. Let  A ~ , . . . ,  Ao,  B i n , . . . ,  B ~  E [  t]. Then we can effectively 
f i n d  an integer M such t h a t / f  Y = y 0 + "  �9 " + y~.t ~, Yv ~ O, is a solution o f  

A~ yC, ~ + . . .  + Ao Y = c,,B~ + .  �9 �9 + cl B1 (5) 

f o r  some c~ ~ C ( E )  then 7 <  M. 

PROOF. We  shall describe a procedure  that  successively attempts to compute  Yv, Yv-l, �9 �9 �9 �9 
We shall then show tha t  for  some i, in the process o f  computing Yr-i, we shall find a 
b o u n d  for  3'. This  bound  will be independent  of  the cts. At present we have no way of 
giving an a pr ior i  estimate for  the i such that the computat ion of yr_~ gives us the bound 
for 3'. 



Liauvillian Solutions of Differential Equations 269 

Let  
Ai = ai~ t" + . .  �9 + ale 

Bi = b;~ t ~ +.  �9 �9 + bio 

where some a~ , r  and some b ~ 0 .  We replace Y in (5) by Y = y ~ t r +  ," "+Yo and 
equate powers of  t. We first consider the highest power of t, that is t r+~. There are two 
cases: either y + a - < / ~  or y +c~> /3  and 

Lv(yv) = ~,, ,~ . ci~ - - i a y y  = 0 .  
i = 0  

By our  hypotheses, we can find Zv l , . . . ,  z~r, in E such that any solution yr of  Lv(y~) = 0 
in E is of  the form yy = ~ i  c~;z~t for  some c~ in C ( E ) .  I f  there are no non-zero solutions 
of  L r (y r )  =0 ,  we stop and have y ~ / 3  -c~. Otherwise, we now replace y ,  in (5) by ~ c~zy~ 
(where the c,~ are indeterminants) and consider the coefficients of t y+~-l. Either y +  a - 1 --- 
/3 or y + a - l > / 3  and the coefficient of t ~+~-1 is 

L , - I ( Y r - 1 )  = E  ,-,~ " y" tl)~_l - ( E  cvj evj+Z 7c,jfy2) = 0  

where the eyj and frJ are known elements of  E. By our hypotheses we can find 
zr_~,~, . . . ,  Zy-l.~_, in E and a linear system Zey_ l in rr_ t+r  ~ variables with coefficients 
in C ( E )  such that y~_~ = ~  c~_~.~z~,_~.~ is a solution of Lr_l (yr_ t )  --0 for some choice of  
c r .~ , . . . ,  cy.,r, y if  and only if ( C 7 _ 1 , 1 ,  . �9 . , Cy-l ,r: ,_l ,  Cy.1 . . . .  , Cy.rv, 3 ,Cr .1 , . . .  , 3,Cv.r, ) satisfies 
27v_ ~. We can replace ~v-1 with a linear system L~*_~ having coefficients in C[7]  such 
that yr_~ = ~  cv_~,~zr_~.i is a solution of Lv_~(yv_~) = 0  for some choice of  cv.~, . . . ,  cv.~ " 
if and only if (cv_~,t , . . . ,  Cv_l.~,_,, cv ,~ , . . . ,  c v ~..) satisfies .~*_~. Using elimination theory, 
we can effectively find systems c.om it5 m _  m _  ~ _ ,,a , . . . , 6 e , ,  where each 9~ - { f i ,  t - 0 , . . . , f ~ , m , - 0 ,  
gl~)r 0} wheref~} ), g~)~ C ( E ) [ y ]  such that for 3/in some algebraically closed extension 
field k of C (E) ,  3' satisfies some 5e~)if and only if ~*_~ has a solution (cv_x. t . . . . .  cy_ ~,rv_~, 
c~.~,. . . ,  c~,.~,) with (cy,~, . . . ,  cr,,,) # ( 0 , . . . ,  0). We shall deal with two cases: 

Case 1. Each ~~ has only a finite number of  solutions 3,. In this case we can bound  
3, by y _ m a x ( / 3 -  a, integer solutions of the 9~ 

Case 2. Some 3~ ~ has an infinite number of solutions. In this case, such an Sel~) is of  
the form {0 = 0, gl ~) # 0}. When this happens we continue and attempt to calculate yv_a 
in the following way. 

We now replace Yr-~ by F. c~_~jzr_~,g in (5), where the c~_~,j- are undetermined 
coefficients and consider the coefficient of  t ~-~. This will be of the form 

a~. y~_2 - M~_~(cv.~, yc~, d, y (y  - 1)cvj, c~_~,;, 7c~_~,j ) 

where M~_2 is a linear form in the c~.j, ycy, j., y ( y  - 1 )c r j , . . .  with known coefficients from 
E. By our hypotheses, we can find zr_:.~ . . . .  , zr_~.~,_~ in E and a system of linear equations 
Let_ ~ with coefficients in C ( E )  such that Yv-: = Y. cv_:.~ zr_:,~ is a solution of L~,_2(y~,_:) = 0 
for some choice of  (%~, 3,crj, 3'(y - 1)cr. J, c~_~.j, ,/cr_~.j) if and only if (cvd, 3,%j, y ( y  - 
1) crj  , cy_ ~j, 3,c~_~,~, Cy-aj) satisfies ~ _ ~ .  As before, we can absorb 3' into the coefficients 

Z%_a with coefficients in C ( E ) [ y ]  and produce a system of  homogeneous linear equations * 
such that (crj  , 3'cr. j, y ( y - 1 ) c r ,  ;, cy_~,~, "/c~,_~,~, cr_~,j) is a solution of Le~_a if and only 
if (er, j ,  cy_~j, cy-2,i) is a solution of  ~*_~. Again there exist systems S~ a~ . . . .  , S~ ) where 

( 2 )  _ ( 2 )  - -  ( 2 )  - -  �9 ( 2 1  ( 2 )  each S; - { f i , ~ - 0  . . . .  ,f~,., - 0 ,  g~r w~th f ~ j ,  g~ C ( E ) [ y ] ,  such that for any 
3, in some algebraically closed extension k of  C (E) ,  ~*_~w~*_~ has a solution 
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(c~,s, c~_aj ,  c~/-2j) in k with the first r v coordinates  no t  identical ly zero if and only  if y 
satisfies b~ 2~ fo r  some  i. We  again  have two cases: 

Case 1. E a c h  S~ 2~ has on ly  a finite n u m b e r  of  solut ions.  In this ease we can b o u n d  y 
b y  y --- m a x ( f l  - a - 1, integer solut ions o f  the S~ 

Case 2. S o m e  S~ 2) has an  infinite n u m b e r  o f  solutions.  I n  this case such an ,9~ 2) is of  
the  f o r m  {0 = 0, gl 2) ~ 0}. 

I f  we encoun te r  case  2, we cont inue  this process,  otherwise we stop. Assume tha t  we 
do  no t  e n c o u n t e r  case  1 before  the kth repeti t ion o f  the process.  We have at this point  
f o u n d  Zv . l , . . . , Z r . r~ , . . . , Z~_k+l ,~ , . . . , Zv_k+l , r , _k . ,  and  systems of  l inear equat ions 
~,_~,.. �9 . ,  &~ with coefficients in C ( E ) [ y ]  such  that for some c,- in C ( E )  if y = 
y r t r +  �9 �9 �9 is a solut ion o f  (5) with y r # 0  and  7 > 3  - a + k - 1 ,  then there  exist c~,r_j~ 

' ~ - y -  1 U C ( E ) ,  l ~ i ~ r ~ _ j ,  O ~ j < - k - 1  such that  y~ ,_ j -~ '~ , ,C i~ ,_ jZ i~- j  and {c~.v_ j} satisfy * 
(k - l )  ' (k-l)  * . �9 �9 w.LPv*_k+ t . Fur the rmore ,  there  are systems J l  , �9 . . ,  ~,k-~ such tha t  ~v-~  w �9 �9 �9 u 

, c~p(k-1) ~L~r_k+~ has  a so lu t ion  with cva �9 �9 �9 C~.r~ not  all zero i f  and  only  if y satisfies some _~ . 
W e  can  con t inue  if  a n d  on ly  if  some 6~ k-~) is o f  the  form {0 = 0, gl k-l) # 0}. We shall 
show tha t  fo r  some k, we have that  no  6alk-~ is o f  this form. This will show that  the 
a lgo r i t hm terminates .  

We a rgue  by  cont radic t ion ,  so assume the process cont inues  indefinitely. We now think 
o f  C ( E )  as being e m b e d d e d  in C and fix some r ~ C t ranscendenta l  over  C ( E )  (note 
t h a t  C ( E )  is coun tab le  and  so this can be done) .  F o r  each k, We are assuming  that  there 
is an ~ k - l )  o f  the f o r m  {0 =0 ,  g~k-1)~ 0}. Clearly K satisfies S~ k-~). Therefore ,  for this 

we c a n  solve ~*_x u �9 �9 �9 u ~v-k+~ in C with non-zero  c r ,~ , . . . ,  cv. , .  N o t e  that  for  fixed 
ZPv-~ u ' ' ' u L~v_k+ ~ has a solut ion is a k the set  Vk o f  (cv .~ , . . .  , c~,,,~) in C'~ such that  * * 

vec tor  space .  Not ice  tha t  V~ ~ Vk+~ and Vk ~ O. Therefore ,  for some k, we have Vk = Vk+~ = 
�9 �9 �9 ~ 0. This  implies (us ing  L e m m a  3.7) that  there exist c~,~_~ e C, 1 -< i - r~-j, 0 -< r~_~ < oo 
s u c h  tha t  

= ~t.~_jZi,~_j t ~-J 
j~O \ i = !  

is a so lu t ion  o f  A,y(">+ �9 �9 �9 + A o y  = 0 with c , o , . . . ,  C~,r, not  all zero. We can repeat  the 
above  a r g u m e n t  for 7 = ~ - 1 , . . . ,  3' = ~c - n and  p r oduce  n + 1 solutions w~ . . . . .  w,_ ,  in 
E ( ( t - ~ ) ) ( t  ~) o f  A , y ( " ) +  �9 �9 �9 + A o y  =0.  N o t e  tha t  by  looking  at leading terms,  we can see 
tha t  these solut ions are  l inearly independen t  over C ( E )  and  therefore (by L e m m a  3.6) 
over  C ( E ( ( t - ~ ) ) ( f f ) .  Since a h o m o g e n e o u s  l inear differential equat ion can  have at most  
n so lu t ions  l inearly i n d e p e n d e n t  over the constants  (Kaplansky,  1957), this yields a 
con t rad ic t ion .  There fo re  the  process  descr ibed above  terminates. 

PROPOSITION 3.9. Let  E c E (  t) be computable differential f ields with C(  E ) = C(  E ( t ) ), t 
t ranscendental  over E and  t' ~ E. A s s u m e  that we can effectively solve parameterized linear 
differential equations over  E. Then we can effectively solve parameterized linear differential 
equat ions  over E ( t ) .  

PROOF. I m m e d i a t e  f r o m  L e m m a  3.2 and L e m m a  3.9. 

EXAMPLE 3.9.1. Let E = Q ( x )  and  t = l o g x .  Let 

L ( y )  = (x 2 log 2 x ) y " +  (x  log 2 x -  3x log x ) y ' + 3 y  = 0 

We will l o o k  fo r  solut ions y o f  L ( y )  = 0 in E ( t )  = Q(x, log x). Consider ing y as a rational 
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function of t, we see that the only possible irreducible factor of  the denominator  is 
t = log x. I f  we expand y in powers of log x and write y =y~ / ( log  x)'~+ �9 � 9  we see that  
the leading coefficient in L(y)  is y,~[t~(ct + 1 ) - 3 ( - a ) + 3 ] .  Since this must equal zero, we 
have that ( a + 3 ) ( a +  1) =0.  This means that any solution of L ( y ) = 0  in E( t )  is actually 
in E[t]. We let y=yvt~+y~,_lt~-a+ . . .  and substitute into L(y )=0 .  Calculating the 
coefficients of  powers o f  t, we get the following: 

1 Coefficient o f  t t 

y + 2  Lv(yv) 2 . t ..~x y~Wxy v 
_ 2 t~ d -  t + t y + l  Lv-l(Yz,-O-x Y~.-I xYv-a (2yx-3x)y~, 
_ 2 n t + t 2 "t- 

y L~_2(yv_2)-xy.e_2+xy~_~ (2yx -5x )yv_ l+(y -4y  3)y v 

It is easy to see that L~(yv)=0 has only constant solutions in E. Replacing yv by c~.~ �9 1 
in Lv-t(Yv-2) yields the equation x2y'~_~ + xy'r_a = 0 for Y,-1. This new equation has only 
constant solutions in E and places no restrictions on 3'. We let y~_~= cr_~.a �9 1 and 
substitute in the expression Lv_2(yv_2 ). We obtain 

2 t~ t 2 x yr_2+xyv_2+(3 , -43 '+3)cv .1=0 .  

Since cr.~ # 0, this latter equation has a solution in E if and only if 3 '2-43"+3 = 0. This 
implies that 3" -< 3. Therefore y = Y3 t3 -b Y2 t24" Y~ t + Y0- Substituting this expression into 
L(y)  = 0 and calculating the coefficients of  powers of  t, we find: 

l Coefficient of t t 

5 La(ya)=xay~l+xy~a 
4 L2(y2)=x2y~+xy~+3xy~ 
3 Ll (y  I) =x2y~'+xy~+Xy~ 
2 Lo(yo)--x2yg+xy~-xy~-4y2 
1 -3xy~ 
0 3y0 

Successively setting these expressions equal to zero and finding solutions in E yields that  
Y3 and Yl are arbitrary constants and Y2 and Yo are 0. Therefore all solutions of L(y)  = 0 
in Q(x, log x) are of the form c~(log x)3+ c2 log x. 

4. Final Comments 

Using the results of the last two sections, we can answer questions 1 and 2 for certain 
classes of  fields. 

THEOREM 4.1. Let C be an algebraically closed computable field and assume that either: 
(i) K is an elementary extension of C(x) with x'= 1 and C ( K ) =  C, or 

(ii) K is an algebraic extension of  a purely transcendental liouvillian extension of C with 
C ( K ) = C .  

Then one can effectively find exponential solutions of homogeneous linear differential 
equations over K and effectively solve parameterized linear differential equations over K. 
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PROOF. It  is easy to see that  one can find exponential  solutions of  homogeneous  linear 
differential equat ions and  effectively solve parameter ized linear differential equations 
over  C. Us ing  Proposi t ions 2.1, 3.1, 3.4, 3.9 and L e m m a  3.5, one can prove  this theorem 
b y  induct ion on the num ber  of  elements used to define the tower leading to K. 

As a consequence  of  this and Lemma 2.5(ii), one can generalize the results of  Singer 
(1981) in the  following way: 

THEOREM 4.2. Let C and K be as in Theorem 4.1. I f  L ( y ) = O  is a homogeneous linear 
differential equation with coefficients in K, then one can find a basis for the space of  solutions 
o f  L( y ) = 0 liouvillian over K. 

There  r ema in  several open  problems and directions for further research. 
(a) The  algori thms presented above are certainly not very efficient. Efficiency could 

certainly be improved  b y  using (where possible) Hermite  reduction techniques (el. 
Bronstein,  1990). We also have sometimes assumed that  the field of  constants is algebrai- 
cally closed. For  actual  computat ions one has a finitely generated field and one is forced 
to compute  the  necessary algebraic extension. Work needs to be done efficiently to find 
min ima l  algebraic extensions that  are sufficient and also incorporate the D 5 method (Della 
Dora  et aL, 1985; Dicrescenzo & Dural ,  1989). 

(b) There  should be  a more  direct algorithm to solve the prob lem stated in Proposition 
2.6. In part icular ,  one  should not have to first decide if there exists a u algebraic over 
E ( t )  such tha t  L(e f~) = 0 in order  to decide if  there is a u in E( t )  satisfying this property. 
A procedure  jus t  working in E (t)  would be preferable and would possibly avoid the need 
to assume that  the field o f  constants is algebraically closed. 

(e) We do not  have  a priori  bounds on how many cycles are required in the procedure 
presented  in L e m m a  3.8. Is there a simple function f ( n )  (where n is the order of  the 
differential equat ion)  such that the algorithm terminates after f ( n )  steps? 

(d) We  wou ld  like to extend Theorems 4.1 and 4.2 to other classes of fields, in particular 
l iouvill ian extensions of C (not just purely t ranscendental  liouvillian extensions). At 
present  this would require extending L e m m a  3.5 to such fields. This seems to be related 
to the p r o b l e m  of paramete r ized  integration in finite terms ment ioned in Davenpor t  & 
Singer (1986). 
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The author would like to thank the Research Institute for Symbolic Computation (RISC-LINZ) 
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A rationality result for Kovacic's algorithm 

Marius van der Put 

1 Statement of the result 

Consider the second order linear differential equation 
y" = ry, with r E Q(x). Let Qcl denote the algebraic 
closure of the field of rational numbers Q and let G 
denote the differential Galois group over Qcl (x) of this 
equation. Then G C 51(2, Qcl). For any solution y =f. 0 
of the equation the element u = ~ satisfies the Riccati 

equation u' + u2 = r. The main result in [Kov86] is the 
following theorem. 

TheoreIll 1.1 (See [Kov86]) 

1. If there is no algebraic solution over Qcl (x) of the 
Riccati equation then G = 81(2, Qcl). 

2. If there is an algebraic solution of the Riccati equa
tion then the minimal degree n of such an equation 
can be 1,2,4,6,12 and 

(a) if n 1 then G C 

{( ~ C~l) ICEQcl\{O},dEQcl}. 

(b) if n = 2 then G = Dco or G = Dm with 
m ~3. 

(c) if n = 4 then G is the tetrahedra/group. 

(d) if n = 6 then G is the octahedral group. 

(e) if n = 12 then G is the icosahedral group. 

The list of conjugacy classes of algebraic subgroups of 
81(2, Qcl) appearing in above theorem is well known to 
be exhaustive. The Kovacic's algorithm for the calcula
tion of an algebraic solution u uses algebraic extensions 
of Q of arbitrary degree. In [B92] a "rational" version 
of the Kovacic algorithm is indicated for n = 2. 

In this paper we want to proof the following ratio
nality result. 

TheoreIll 1.2 Suppose that the Riccati equation u' + 
u2 = r has a solution, which is algebraic over Qcl (x). 
Then there exists an algebraic solution u of minimal 
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degree n of the Riccati equation such that the coefficients 
of the minimum polynomial of u over Qel(x) lie in a 
field K (x) with [K : QJ ~ 2. Moreover, only in the 
cases: n = 1 and G is the multiplicative group G m or 
a finite cyclic group of order> 2 or n = 4 and G the 
tetrahedral group, a field extension J{ of degree 2 of Q 
can be needed. 

2 The proof 

Again let r E Q(x) and consider the differential equa
tion y" = ry. Suppose that a E Q is a regular point 
of the differential equation. Then there exists two in
dependent solutions Yo, Yl E Q[[x - a]] of this equa
tion. Let F = Q el (x, Yo, Yl, yb, YD. The differential field 
F C Qcl « x - a)) is a Picard-Vessiot extension of Qcl (x) 
associated with the equation y" = ry. By DGal( E / F) 
of an extension of differential fields we denote the group 
of F-linear automorphisms of the field E commuting 
with the differentiation. 

LeIllIlla 2.1 The sequence 

1 -+ DGal(F/Qcl(x)) ~ DGal(F/Q(x)) 

is split exact. 

Proof. We give a description of a splitting homo
morphism S : Gal(Qcl /Q) -+ DGal(F/Q(x)). Let 

co 
ff E Gal(QcI /Q) and L ai(x - a)i E Qel«x - a)). 

i=k 
Then we define the group homomorphism 

s : Gal(Qcl /Q) -+ DGal(QcI«x - a))/Q(x)) 

co co 

by (Sff).'2:ai(x-a)i = '2:ff(ai)(x-a)i 
i=k i=k 

It is easily seen that Sff is a Q(x)-linear automorphism 
of Qcl«x - a)) and that Sff and d~ commute. Fur
ther for all ff E Gal(Qcl /Q) we have (sff)(F) = F, 
because (Sff)Qcl(x) = Qcl(x) and (Sff)(y}n) = y}j) for 
i, j = 0,1. We define Sff to be the restriction of Sff to 
F. It is clear that po s = id. Hence s : Gal(QcI /Q) -+ 



DGal(F/Q(x)) is a splitting homomorphism. The ex
actness of the sequence is now obvious. 

Proof of theorem 1.2. The proof is given case by 
case. 

1. Suppose n = 1. There are three possibilities. 

(a) If G contains the additive group G a then the 
Riccati equation has only one solution U E 
Qel(x). If a E Gal(Qel /Q) then (sa)u is 
also a solution of the Riccati equation. Hence 
(sa)u = u and u E Q(x). 

(b) If G is the multiplicative group Gm or a 
finite cyclic group of order greater than 2 
then there are exactly two solutions Ul, U2 E 
Qcl(x). Hence for all a E Gal(QcI/ /Q) we 
have (saHul,uz} = {Ul,U2}. We conclude 
that Ul, U2 E K(x), where K is a field such 
that [K : Q] 5 2. 

(c) If G is a cyclic group of order equal to 1 or 2 
then the Riccati equation has infinitely many 
solutions U E Qcl(x). Let Uo = !LlJ.. Then 

Yo 
Uo E Qcl(x) n Q«x - a)) = Q(x) and Uo 
satisfies the Riccati equation. 

2. Suppose n = 2. Now G = Doo or G = Dm with 
m ;::: 3. It is not difficult to verify that there 
are exactly two solutions Ul and U2 of the Ric
cati equation, which are quadratic over QcI(x). 
These solutions have the same minimum poly
nomial over Qcl(x). If a E Gal(QcI/Q) then 
(saH Ul, U2} = {Ul' uz}. Hence the coefficients of 
the minimum polynomial over Qcl (x) are fixed un
der sa and so the coefficients are already in Q( x). 

3. Suppose n = 4. Now G is the tetrahedral group 
and #G = 24. If U is a solution of the Riccati e
quation then Hu = {a E G I a(u) = u} is a cyclic 
subgroup of G and u is algebraic of degree [G : Hu] 
over QC1(x). Conversely if He G is a cyclic sub
group then there are solutions U of the Riccati 
equation algebraic of degree [G : H] over Qcl(x), 
which are fixed under the action of H. Moreover, 
if #H ;::: 3 then there are exactly two solutions of 
the Riccatti equation algebraic of degree [G : H] 
over Qcl(x), which are fixed under the action of H. 
In the tetrahedral case n = 4 and there are four 
cyclic subgroups of G of order 6. Hence there are 
eight solutions Ul, ... ,us of the Riccati equation 
which are algebraic of degree 4 over QcI (x) and 
there are two monic irreducible polynomials P, Q 
of degree 4 over Qcl(x), such that (PQ)(u l ) = 
o for i = 1, ... ,8. Suppose a E Gal(QcI /Q) 
then (sa){ul,.'" us} = {Ul,"" us} and thus 
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(sa)(PQ) = PQ and (S)a{P, Q} = {P, Q}. Hence 
the coefficients of P and Q lie in K(x) where K 
satisfies [K : Q] 5 2. 

4. Suppose n = 6. Now G is the octahedral group 
a.nd #G = 48. There are three cylic subgroups of 
order 8. Hence there are six solutions Ul, ... ,U6 

of the Riccati equation which are algebraic of de
gree 6 over QcI (x) and there is a unique mon
ic irreducible polynomial P such that P( Ui) = 0 
for i = 1, ... ,6. Suppose a E Gal(Qcl/Q) then 
(.sa){ul, ... ,U6} = {Ul, ... ,U6}. Therefore the 
coefficients of P are in Q(x). 

5. Suppose n = 12. Now G is the icosahedral group 
and #G = 120. There are six cylic subgroup
s of order 10. Hence there are twelve solutions 
Ul, ... ,UIZ of the Riccati equation which are alge
braic of degree 12 over QcI (x) and there is a unique 
monic irreducible polynomial P such that P( Ui) = 
o for i = 1, ... ,12. Suppose a E Gal(Qcl/Q) then 
(.~a){ul,,,,,U12} = {Ul, ... ,UlZ}. It follows that 
the coefficients of P are in Q( x). 

In section 4 we will see that in the tetrahedral case 
quadratic field extensions of Q can occur. However in 
the tetrahedral case there are exactly 6 solutions of the 
Riccati equation of degree 6. These solutions have the 
same minimum polynomial P over QcI. The coefficients 
of this polynomial are in Q(x). 

3 Flemarks on lemma (2.1) 

Let V denote the two-dimensional vector space over Qcl 
of the solutions of y" = ry in F. The two-dimensional s
pace Vo := QYO+QYl has the property that V00QQcl = 
V and the natural action of Gal(Qcl/Q) on this tensor 
product coincides with the action on V by the splitting 
homomorphism s. 

For simplicity we have made the choice of Q 
and Q(x) in Thm 1.2. This choice can be replaced 
(without any change in the proof) by a field C of con
stants of characteristic zero and the function field C(X) 
of an absolutely irreducible curve X over C such that X 
has a C.-rational point xo which is a regular point of the 
differential equation. Indeed, the Picard-Vessiot field of 
the differential equation can be found inside the field of 
fractions of the completion of the local ring of X 0\ Cel 

at xo and the Galois group of C el /C acts. in a nat~ral 
way on this field. \ 



In the general case: J{ a differential field with a (non 
algebraically closed) field of constants e one denotes by 
J{+ = J{ eel the compositum of the fields J{ and eel. 
The Picard-Vessiot field F of a differential equation over 
J{ is seen as a field extension of /{+. One can show 
(using an algebraic construction of the Picard-Vessiot 
field) that the following natural sequence is exact: 

1 -+ DGal(FI/{+) -+ DGal(FI/{) 

-+ Gal(/{+ I/{) -+ 1 

We note that in general Gal(I{+ 1 J{) is a proper sub
group of Gal( eel 1 C) since /{ and eel need not be lin
early disjunct over e. We do not know in this general 
situation that the sequence above splits. However, Thm 
1.2 remains valid in this case and takes the form: 

Let n E {1, 2, 4,6, 12} denote the znteger correspond
ing to the differential Galois group G = DGal( F 1 f{+). 
There is a subfield L, J{ C L C /{+ wzth [L : /{] ::; 2 
and a solution U 01 the Riccati equation whzch zs algebra
ic over f{+ with degree n such that the monic minimal 
equation of U over K+ has its coefficients in L. 

In stead of using the splitting, one can lift any ele
ment of Gal(K+ 1 K) to a differential automorphism of 
F over K. That suffices for the proof of the various cas
es, except for the case n = 1 and G is a group of order 
1 or 2. 
There one needs the following ad hoc arguments: If 
G = 1 then F = K+. Let y # 0 be a solution of the 
differential equation. Then K(y) is an extension of f{ 
of some degree d and equals K( z) where z is a constant. 
Write y = fo + 11Z + ... + Id_1 Zd- 1 with all J; E K. 
Clearly If' = r Ii and since some Ii # 0 the Ricatti e
quation has a solution in J{. 

If G has order 2 then by using an algebraic construction 
for the Picard-Vessiot field one can show the existence 
of L as in the statement with [L : Kj ::; 2. 

4 Examples of the quadratic ex
tension 

We will show that for n = 1 and G the multiplicative 
group or a finite cyclic group of order > 2 and n = 4 
and G is the tetrahedral group any quadratic extension 
K of Q does occur. 

1. G is the multiplicative group G m or a finite cyclic 
group of order > 2. Let the field f{ be given as 
K = Q(.\) where .\2 E Z is a square free integer 
(# 0,1). Take UO,U1 E Q(X),U1 # 0 and write 
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u = Uo + .\U1' The equation u' + u 2 = r E Q(x) is 

equivalent to Uo = -1/2~ and r = u6+uO+.\2ur. 
Any choice of U1 # 0 determines some Uo and 
r and an equation y" = ry. The corresponding 
Riccati equation has at least the two solutions 

tt' 
Uo ± .\U1. The equation y' = (-1/2~ + .\U1)Y 
determines the differential Galois group which can 
be a finite cyclic group or the multiplicative group 
G m . 

For a general choice of U1 the differential Galois 
group will be G m . 

If one chooses U1 = b(X2~A2l with a,b E Z \ {O}, 
b ~ 1 and g.c.d(a, b) = 1 then y = (x
.\)O+:l'bl(x + .\)(j--:l'bl satisfies the equation y' = 
(-1/25.. + .\U1)Y and G is a finite cyclic group of 

ttl 

order b if a is odd and b is odd and of order 2b if 
a is even or b is even. 

2. Let L R denote the differential operator (lx)2 - R, 
where R = 16X(~-ll - 16~2 - 9(x:'ll2' The differ
ential Galois group of LR is the tetrahedral group. 
There are exactly eight solutions U1 , ... ,Us of the 
Riccati equation U' + U2 = R which are algebraic 
of degree 4 over QeI (x) and there are two mon
ic irreducible polynomials PR,QR E Qcl(x)[T] 
of degree 4 such that (PRQR)(Ui) = 0 for i = 
1, ... ,8. One can show that these polynomi
als satisfy PR, QR E Q(x)[T] and PR(x, T) = 
QR(x~l' T). An explicit calculation of PR, QR is 
done in [Kov86], section 5.2. 

According to F.Klein, the differential operator LR 
with the tetrahedral group as differential Galois 
group is the 'universal' in the following sense: 
Let Lr denote the differential operator (it)2 - r 
with r E QeI(t) and suppose that the differential 
Galois group of this equation is also the tetrahe
dral group. Then there exists exactly two Qel_ 
linear field endomorphisms <PI, <P2 : Qel(x) -+ 

Qel(t) such that (<P;)*LR = Lr . Moreover <P1 = 
<P2oB where B is the Qel-linear field automorphism 
of Qel (x) given by x f-+ x: l' The explicit expres
sion for r is 

with <P = <P1 or <P = <P2 and I = -it. 
We refer to [BD79], theorems 3.4 and 3.7, for the 
statement above and we note that the 'unique
ness of the pullback' claimed in theorem 3.7 
does not hold in the tetrahedral case be
cause B*LR = LR. In the other two cases 
(with octahedral or icosahedral group) the 
uniqueness of the pullback is valid. 



Let <fJ be <fJI or <fJ2. Let UI, ... , Us be the eight so
lutions of the Riccati equation u' + u2 = r,which 
are algebraic of degree 4 over Qc1(t) . If Pr = 
PR(<fJ(x),T) and Qr = QR(<fJ(x),T) then Pr,Qr 
are the unique monic irreducible polynomials such 
that (PrQr )(ud = ° for i = 1, ... ,8. 

We come now to the construction of the example. 
Fix a field K = Q(..\), where ..\2 E Z is a square 
free integer (# 0,1). Let <fJ : Qcl(x) -+ Qc1(t) 
be the Qcl-linear field isomorphism given by x ...... 
l+;.W We note that (<fJoB)(x) = l-;>.t = r(<fJ(x), 
where r is any automorphism of Qcl (t) satisfying 
ret) = t, r(..\) = -..\. Then L := <fJ*LR has the 
form ( d~)2 - r>. with 

32..\2 3..\2 
r = - 9(1- 4..\2t2)2 + 4(1 _ 4..\2t2 ) E Q(t) 

The differential Galois group of L is of course 
the tetrahedral group. Let P := PR(<fJ(x),T) and 
Q := QR(<fJ(x),T). Then P and Q are the mini
mum polynomials of the eight solutions of the Ric
cati equation u' +u2 = r which are algebraic of de
gree 4 over Qcl(t). Clearly P,Q E K(x)[T]. Take 
a r as above and extend r as an automorphism of 
Qcl(t)[T] by reT) = T. Then 

rP = PRe r( <fJ(x)), T) = PR (<fJ(!j
x2 l' T) 

= QR(<fJ(X) , T) = Q 

Hence P, Q do not belong to Q(t)[T]. This finishes 
the example. 

5 Differential equations of or-
der 3 

Consider the third order linear differential equation 
y'" + py' + qy = 0, with p, q E Q(x). Let G C 
SI(3, Qcl) be the differential galois group over Qcl (x) 
of this equation. For any solution y # 0 of the equa
tion the element u = ~ satisfies the Riccati equation 
u" + 3uu' + u3 + pu + q = O. The analogue of theorem 
1.1 can be found in [SU92]. We will use their terminol
ogy and description of finite primitive groups. 

Definition 5.1 A group H C SI(3, Qcl) IS called 1-
reducible if the elements of the group have a common 
eigenvector. 

Theorem 5.2 (See [SU92].) 

1. If there is no algebraic solution over Qc1(x) of 
the Riccati equation then G = SI(3, Qcl) or 
GjZ(G) = PSI(2, Qcl) or G is a reducible but not 
a I-reducible group. 
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2. If there IS an algebraic solution of the Riccati equa
tIOn then the minimal degree n of such an equation 
can be 1,3,6,9,21,36 and 

(a) ifn = 1 then G IS a I-reducible group. 

(b) if n = 3 then G is an imprimitive group. 

(c) if n = 6 then GjZ(G) is isomorphic to F36 
or A5 . 

(d) If n = 9 then GjZ(G) is isomorphic to H72 
or H216. 

(e) ifn = 21 then GjZ(G) = G168 

(f) Ifn = 36 then GjZ(G) = A6 

Theorem 5.3 Suppose that the Riccati equation u" + 
3uu' + u3 + pu + q = ° has a solution, which is algebraic 
over Qc1 (x). Then there eXists an algebraic solution u 
of minimal degree n of the Riccati equation such that 
the coefficients of the minimum monic polynomial of u 
over Qc1(x) lie In a field K(x) with 

1. [K : Q] ~ 6 if the equation is reducible. 

2. IX: Q] ~ 2 in case GjZ(G) = F36 . 

3. K = Q in all other cases. 

Proof The method of the proof in section 2 car
ries over for order 3 equations. Assume that the Riccati 
equation has at least one algebraic solution. We distin
guish three cases. 

(1) G is a reducible group. We will restrict ourselves 
to the worst case and leave the other cases to the reader. 
Suppose that the vectorspace of solutions of the third 
order linear differential equation decomposes into a di
rect sum of three one dimensional G-stable subspaces 
and suppose that the corresponding Riccati equation 
has exactly three solutions U1 , U2, U3 E Qcl (x). Then S(J" 
permutes these three solutions for all (J" E Gal( Qcl jQ). 
We conclude that Ul, U2, U3 E K(x), where K C Qcl is 
a field such that Gal(KjQ) is isomorphic to a subgroup 
of S3 and [K : Q] ~ 6. A rather trivial example is the 
following: 
Let T3 + pT + q E Q[11 denote an irreducible polynomi
al with Galois group S3' Then the differential equation 
y"' +py' +qy = 0 has as basis for the solutions Yi := eex • ., 
where ,C¥l, 0'2, 0'3 are the three zeros of the polynomial 
T3+pT+q. The 'only' relation satisfied by Yl, Y2, Y3 over 
the field QC1(x) is YIY2Y3 = 1. The differential Galois 
group is therefore a maximal torus in SL(3, Qcl) and 
there are precisely three solutions of the Riccati equa
tion, namely 0'1,0'2,0'3. This shows that K = Q( 0'1,0'2) 

is the smallest possible field such that the rational solu
tions of the Riccati equation are in f{ (x). 



(2) G is an imprimitive group. In this case there are 
three solutions of the Riccatti equation which are cu
bic over Qcl (x) and there are no algebraic solutions of 
lower degree. These three solutions have the same min
imum polynomial over Qcl (x). Hence the coefficients 
of the minimum polynomial are fixed under su for al
l u E Gal( Qcl / Q) and therefore the coefficients of the 
minimum polynomial are in Q(x). 

(3) G is a finite primitive group. Let n be the mini
mal degree of an algebraic solution of the Ricatti equa
tion. Define the two sets 

u = {u , u is an algebraic solution of 

the Riccati equation of degree n} 

and 

1l = {H C G , H is reducible and [G : H) = n}. 

The order of the first set is a multiple of n. Con
sider the map from U to 1l given by u 1-+ Hu where 
Hu := {u E G , u(u) = u}. Clearly Hu is a reducible 
group and [G : Hul = [Qcl(x,u) : Qcl(x)] = n. Con
versely one can verify for each primitive group separate
ly that any H E 1l is a non-commutative subgroup of G 
and therefore fixes only one line in the space of solutions 
of the third order linear differential equation. Hence H 
fixes precisely one u E U. Then one has to count the 
number of elements in 1l. Using [SU92], one counts that 
the order of 1l is n except for the case F36 . In that case 
n = 6 and the order of 1l (and hence of U) is 12. It 
follows that only in this last case one can possibly have 
a field K which is a quadratic extension of Q. 

Remark. In theorem (5.3) we have for simplicity 
given a formulation with Q as field of constants. The 
remarks of section 3 for the order 2 equations apply also 
to order 3 equations. 
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1.14 NonLiouvillian Solutions for Second Order
Linear ODEs

By L. Chan, E.S. Cheb-Terrab



ar
X

iv
:m

at
h-

ph
/0

40
20

63
v3

  2
7 

M
ay

 2
00

4

Non-Liouvillian Solutions for Second Order Linear ODEs

L. Chan
Department of Pure Mathematics

University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1

kclchan@pythagoras.math.uwaterloo.ca

E.S. Cheb-Terrab
CECM, Department of Mathematics

Simon Fraser University
Vancouver, British Columbia, Canada, V5A 1S6

Maplesoft, Waterloo Maple Inc.
Waterloo, Ontario, Canada, N2V 1K8

ecterrab@cecm.sfu.ca

ABSTRACT
There exist sound literature and algorithms for computing
Liouvillian solutions for the important problem of linear
ODEs with rational coefficients. Taking as sample the 363
second order equations of that type found in Kamke’s book,
for instance, 51% of them admit Liouvillian solutions and so
are solvable using Kovacic’s algorithm. On the other hand,
special function solutions not admitting Liouvillian form ap-
pear frequently in mathematical physics, but there are not
so general algorithms for computing them. In this paper
we present an algorithm for computing special function so-
lutions which can be expressed using the 2F1, 1F1 or 0F1

hypergeometric functions. The algorithm is easy to imple-
ment in the framework of a computer algebra system and
systematically solves 91% of the 363 Kamke’s linear ODE
examples mentioned.

Categories and Subject Descriptors
I.1 [Symbolic and algebraic manipulation]: Algorithms.

General Terms
Algorithms, design, theory.

Keywords
Linear ordinary differential equations, Non-Liouvillian solu-
tions, hypergeometric solutions.

Introduction
Given a second order linear ODE

y′′ + A(x) y′ +B(x) y = 0 (1)

where the quantity1 A′/2+A2/4−B is a rational function of
x, the problem under consideration is that of systematically

1This quantity is an invariant under transformations of the
dependent variable - see (12).
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computing solutions for this ODE even when the solutions
admit no Liouvillian form2.

The first thing to note is that non-Liouvillian solutions
which are representable symbolically not as unknown infi-
nite sums can be represented using special functions, e.g.
Bessel, Hermite or Legendre functions [1]. In turn, these
and most of the special functions frequently appearing in
mathematical physics happen to be particular cases of the

pFq hypergeometric function for p equal to 0, 1 or 2 and q
equal to 0 or 1 (see [2]). For example, the Bessel functions
can be expressed in terms of 0F1, all cylindrical functions
as well as the Hermite, Laguerre, Whittaker and error fam-
ily of functions can be expressed in terms of 1F1, and all
Chebyshev, Gegenbauer, Jacobi, Legendre and some others
can be expressed in terms of 2F1.

One natural approach is then to directly attempt the com-
putation of hypergeometric function solutions of these 0F1,

1F1 and 2F1 types, since in this way we cover at once so-
lutions involving all the related special functions. Such an
approach was developed during the year 2001 (see [3]), it
became the main algorithm of the Maple computer algebra
system for this type of problem since then and it is the sub-
ject of this paper. The algorithm consists of an equivalence
approach to the pFq differential equations, is formulated in
sec. 1, 2 and 3, and computes solutions of the form

y = P (x) pFq

(

..; ..;
αxk + β

γ xk + δ

)

(2)

where P (x) is an arbitrary function and {α, β, γ, δ, k} are
constants.

It is important to note that the idea of seeking hyperge-
ometric function solutions for (1) or using an equivalence
approach for that is not new. In ’89 Kamran and Olver
[4] showed how to use an equivalence approach to compute
Bessel function solutions to eigenvalue problems. Hyper-
geometric solutions were also discussed by Petkovsek and
Salvy [5] in ’93. Some of the more recent developments
were presented as computer algebra algorithms too. For
instance, a classic invariant theory approach was presented
during 2000 by von Bülow in [6]; in 2001 Willis [7] presented
a semi-heuristic algorithm for computing special functions

2Functions that can be expressed in terms of exponen-
tials, integrals, and algebraic functions, are called Liouvil-
lian functions. The typical example is exp(

∫

R(x), dx) where
R(x) is rational or an algebraic function representing the
roots of a polynomial.



solutions. In 2002 Bronstein and Lafaille [8] presented an
approach for resolving an equivalence under rational trans-
formations, between two linear equations in normal form,
whenever one of them has an irregular singularity3.

There is natural intersection between what these algo-
rithms can solve but none can claim to extensively cover
the portions of the problem covered by all the others. If
compared with the algorithm presented in this paper - we
called it hyper3 - these other algorithms, both those devel-
oped before and after hyper3:

• Do not resolve in a systematic manner all of the 2F1,

1F1 and 0F1 equivalences;

• Do not handle the problem of an invariant involving
fractional or abstract powers;

• Do not explore automorphisms to avoid uncomputed
integrals in the solution.

Also, hyper3 does not require solving systems of algebraic
equations nor computing Groebner basis nor running differ-
ential elimination processes nor eliminating parameters by
composing resultants (all of them expensive computational
processes), thus resulting in a fast and smooth algorithm
with little computational cost. These facts, combined with
the range of problems it solves, for instance taking Kamke’s
book [12] as a testing arena, are at the base of the role hy-
per3 has today in the Maple differential equation libraries.

1. COMPUTING 2F1, 1F1 AND 0F1 HYPER-
GEOMETRIC SOLUTIONS

To compute pFq solutions to (1), the idea is to formulate
an equivalence approach to the pFq underlying hypergeo-
metric differential equations; that is, to determine whether
a given linear ODE can be obtained from one of the 2F1,

1F1 or 0F1 ODEs, respectively given by

(

x2 − x
)

y′′ + ((a+ b+ 1) x− c) y′ + b a y = 0,
xy′′ + (c− x) y′ − a y = 0,

xy′′ + cy′ − y = 0,
(3)

where {a, b, c} are arbitrary constants, by means of a trans-
formation of a certain type. If so, the solution to the given
linear ODE is obtained by applying the same transformation
to the solution of the corresponding pFq ODE above.

This approach of course also requires determining the val-
ues of the hypergeometric parameters {a, b, c} for which the
equivalence exists, and it is clear that its chances of success
depend crucially on how general is the class of transforma-
tions being considered. For instance, one can verify that for
linear transformations4

x → F (x), y → P (x) y (4)

with arbitrary F (x), P (x), the problem is too general in that
to solve it requires solving first the given ODE, so that the
approach is of no practical use [6].

3That also leads to 1F1 solutions of the form (2), including
its particular 0F1 case, whenever the point of application of
1F1 is rational in the independent variable.
4The problem of equivalence under transformations {x →
F (x), y → P (x) y + Q(x)} for linear ODEs can always be
mapped into one with Q(x) = 0, see [9].

The transformations considered in this work are

x → αxk + β

γ xk + δ
, y → P (x)y (5)

with P (x) arbitrary and {α, β, γ, δ, k} constant with respect
to x. These transformations, which do not conform a class in
the strict sense5, can be obtained by sequentially composing
three different transformations each of which does constitute
a class. The sequence starts with linear fractional - also
called Möbius - transformations

M := x → αx+ β

γ x+ δ
, (6)

is followed by power transformations

x → xk, (7)

and ends with linear homogeneous transformations of the
dependent variable

y → P y (8)

So, we are talking of an algorithm that systematically com-
putes, when they exist, solutions of the form

y = P (x) pFq

(

..; ..;
αxk + β

γ xk + δ

)

(9)

where pFq is any of 2F1, 1F1 or 0F1.

1.1 Transformations y → P (x) y of the depen-
dent variable

The first thing to note is that transformations of the form
(8) can easily be factored out of the problem: if two equa-
tions of the form (1), with coefficients {A(x), B(x)} and
{C(x), D(x)} respectively, can be obtained from each other
by means of (8), the transformation relating them is com-
putable from these coefficients. For that purpose, we rewrite
both equations in normal form, for instance for (1) use

y = u e−
∫

A/2 dx (10)

to obtain

u
′′ =

(

A′

2
+

A2

4
−B

)

u (11)

and the transformation relating the two hypothetical ODEs
exists when the two normalized equations are equal; the
transformation relating them being y = u e

∫

(C−A)/2 dx. In
what follows we will refer to

I(x) =
A′

2
+

A2

4
−B, (12)

the coefficient of u in (11), as the invariant [10], regardless of
the fact that this object is only an absolute invariant under
(8) and not under (6) or (7).

5By class of transformations we mean a set of transforma-
tions closed under composition.



1.2 Transformations x → F (x) of the indepen-
dent variable

By changing x → F (x) in (1), the invariant I1 of the
changed ODE can be expressed in terms of the invariant I0
of (1) by

I1(x) = F ′2I0(F (x)) + S(F ′) (13)

where S(x) is the Schwarzian [11]

S(F ′) =
3F ′′2

4F ′2
− F ′′′

2F ′
; (14)

The form of S(F ′) is particularly simple when F (x) is a
power transformation (see (23)) and also when F (x) is a
Möbius transformation (6), in which case S(F ′) = 0. These
are key facts permitting a simple formulation and resolution
of the equivalence.

2. MÖBIUS TRANSFORMATIONS AND A
CLASSIFICATION OF SINGULARITIES

The first ODE in (3) has 3 regular singularities, at 0, 1
and ∞. The second ODE in (3), also known as the confluent
hypergeometric equation, has a regular singularity at 0 and
an irregular one at ∞. The third ODE in (3) also has one
regular and one irregular singularity at 0 and ∞, but we
considered the case separately in order to obtain solutions
directly expressed in terms of simpler (Bessel) functions. As
we shall see, the structure of the singularities of these equa-
tions is a key for resolving related equivalences and Möbius
transformations preserve that structure. These transforma-
tions only move the location of the poles. For example, the

0F1 hypergeometric equation

x y′′ + c y′ − y = 0 (15)

has one regular singularity at the origin and one irregular
at infinity. The transformed ODE, obtained from (15) by
means of (6)

y′′ +
(α (δ c+ 2 γ x) + γ (2− c) β)

(αx+ β) (γ x+ δ)
y′

− (α δ − γ β)2

(γ x+ δ)3 (αx+ β)
y = 0 (16)

also has one regular and one irregular singularity, respec-
tively located at −β/α and −δ/γ. In the case of the 2F1

equation (see (3)), under (6) the three regular singularities
move from {0, 1,∞} to {−δ/γ,−β/α, (δ − β)/(α− γ)}. So,
from the structure of the singularities of an ODE, not only
one can tell with respect to which of the three differential
equations (3) could the equivalence under (6) be resolved,
but also one can extract information regarding the values of
the parameters {α, β, γ, δ} entering the transformation.

Reversing the line of reasoning, through Mobius transfor-
mations one can formulate a classification of singularities
of the linear ODEs “equivalent” to the pFq equations (3),
based on how the invariant of each of these equations is
transformed. Concretely, after transforming the 2F1 equa-
tion, the invariant of the resulting equation has the form

I
2F1

=
ω2x

2 + 2ω1x+ ω0

(σ1x+ σ2)
2 (σ3x+ σ4)

2 (σ5x+ σ6)
2

(17)

where all {ωi, σj} can be expressed in terms of {a, b, c} and
{α, β, δ, γ} respectively entering the 2F1 equation (3) and
the transformation (6). The invariant of the transformed

1F1 equation has the form

I
1F1

=
ω2x

2 + 2ω1x+ ω0

(σ3x+ σ4)
2 (σ5x+ σ6)

4
(18)

and that of the transformed 0F1 equation has the form

I
0F1

=
ω1x+ ω0

(σ3x+ σ4)
2 (σ5x+ σ6)

3 (19)

These transformed invariants are all of the form

I
pFq

=

∏m
i=1 (aix+ bi)

∏n
i=1 (cix+ di)

qi
(20)

Cancellations between factors in the numerator and denom-
inators of (20) may also happen and, independent of that,
some coefficients {ai, ci} can be zero6. So the degrees with
respect to x of the numerators and denominators of (17),
(18) and (19) can be lower than the maximum implicit by
these equations; in this way the problem splits into cases.

Taking these possible cancellations into account, from the
structure of the invariants (17), (18) and (19), the different
cases for each of the 2F1, 1F1, 0F1 classes were determined.
With this classification in hands, from the knowledge of the
degrees with respect to x of the numerator and denominator
of the invariant (20) of a given ODE, one can tell whether or
not it can be obtained from the 2F1, 1F1 or 0F1 equations
(3) using (6). These observations can be summarized in a
classification table as follows, using the symbol

[≤ p, [q1∗, q2∗, ..., qn∗]]
where p is the degree in x of the numerator of (20) and qi are
the powers of the factors entering the denominator of it. The
symbol ≤, when present, refers to the value of p (can be less
or equal to). The symbol ∗, when present, means there can
be factors canceling between numerator and denominator, so
that the actual value of the related qi can be lower (provided
p is also lower by the same amount). For example,

[≤ 2∗, [2∗, 2∗]] (21)

represents the following possible seven different “lists of val-
ues” (herein referred as cases) for the degrees of the numer-
ator and denominator of the invariant

[2∗, [2∗, 2∗]] = [2, [2, 2]], [1, [1, 2]], [0, [1, 1]], [0, [0, 2]]
[1∗, [2∗, 2∗]] = [1, [2, 2]], [0, [1, 2]]

[0, [2, 2]]
(22)

With this notation, the classification of all the possible cases
equivalent to the 2F1, 1F1 and 0F1 equations under Möbius
transformations is as shown in Table 1.

6Provided that, in (6), αδ− γβ 6= 0 and also that in (1) the
invariant remains finite, i.e. its denominator is not zero.



Class Cases Number of cases

2F1 [<= 2∗, [2∗, 2∗, 2∗]], [<= 2∗, [2∗, 2∗]] 14

1F1 [2∗, [2∗, 4]], [<= 2, [6]], [<= 2, [4]], [2∗, [2∗]], [2, [0]] 13

0F1 [1∗, [2∗, 3]], [<= 1, [5]], [<= 1, [3]], [1∗, [2∗]], [1, [0]] 9
Table 1. Classification of linear ODEs equivalent to pFq ODEs under Möbius

3. TRANSFORMATIONS X → XK OF THE
INDEPENDENT VARIABLE

Using the results of the previous sections it is possible to
resolve the equivalence of a given linear ODE (1) and the
hypergeometric equations (3) under compositions of trans-
formations (8) of the dependent variable y(x) and Möbius
transformations (6) of the independent variable x. In this
section a worth additional level of generalization is obtained
by composing those two transformations with transforma-
tions x → xk of the independent variable.

The first thing to note regarding power transformations
is that, unlike Möbius transformations, they do not preserve
the structure of singularities. The change in the invariant
due to x → xk, however, has a simple and tractable struc-
ture. The Schwarzian (14) is given by:

S(F ′) =
k2 − 1

4x2
(23)

So, the changed invariant I1 shown in (13) can be expressed
in terms of I0 by

x2I1(x) +
1

4
=

(

(

xk
)2

I0(x
k) +

1

4

)

k2 (24)

This naturally suggests the introduction of a “shifted” in-
variant J(x)

Ji(x) = x2Ii(x) +
1

4
(25)

for which the transformation rule under x → xk has the
simple form

J1(x) = k2J0(x
k) (26)

The equivalence of two linear ODEs A and B under x →
xk can then be formulated as follows: Given J1A(x) and
J1B(x), compute kA and kB entering (26) such that the de-
grees with respect to x of J0A(x) and J0B(x) are minimized.
This approach is systematic: equations A and B are related
through power transformations only when J0A = J0B and,
if so, the mapping relating A and B is just x → xkA−kB .

The computation of k minimizing the degrees of J0 in (26)
is formulated as follows. Given the set

A :=
pi
qi
, i = 1 to m (27)

of (possibly rational) numbers entering as exponents in the
powers of the independent variable found in J1, compute the
smallest rational number k̃ such that multiplying by it each
element of A, all of them become integers. Then the value
of k minimizing the degrees of J0 is k = 1/k̃.

4. SUMMARY OF HYPER3 - EXAMPLES
An itemized description of the algorithm, discussed in the

previous subsections to resolve the equivalence proposed in
the introduction, is as follows.

1. Rewrite the given equation (1) we want to solve in
normal form

y′′ = I(x)y (28)

where I(x) is the invariant (12).

2. Compute J1(x), the shifted invariant (25), and use
transformations x → xk to reduce to the integer mini-
mal values the exponents of powers entering J0(x); i.e.,
compute k and with it compute J0(x) in (26).

3. From (25), compute I0(x) and classify its structure of
singularities according to Table 1, to tell whether an
equivalence under Möbius transformations is possible
and to which of the 2F1, 1F1 or 0F1 equations (3).

4. When the equivalence is possible, from the singular-
ities of I0(x) and by comparing it with the invariant
(20) of the transformed pFq equation7, compute the
parameters {a, b, c} entering the pFq equation (3) such
that the equivalence exists as well as the parameters
{α, β, γ, δ} entering the Möbius transformation (6).

5. Compose the three transformations to obtain one of
the form

x → αxk + β

γxk + δ
, y → P (x)y

mapping the pFq equation involved into the ODE be-
ing solved.

6. Apply this transformation to the known solution of the

pFq equation resulting in the desired ODE solution.

An example of the 2F1 class

Consider the second order linear ODE

y′′ =
2 (ν − µ) x2 − 3x4 − 2 (µ+ ν)− 1

x5 − x
y′

+
ν (ν + 2 (µ+ 1))

x6 − x2
y (29)

This equation has regular singularities at {0, 1,−1, i,−i}.
Following the steps outlined in the Summary, we rewrite
the equation in normal form and then compute the value

7At this point, J0(x) and the shifted invariant of the
pFq equation have the same degrees.



of k leading to an equation with minimal degrees for the
powers entering J0(x) in (26). The value found is k = 2. So,
using8

t = x2, u =
√
x e

(

∫ 2(ν−µ)x2
−3 x4

−2 (µ+ν)−1

2 (x−x5)
dx

)

y, (30)

the given equation (29) can be obtained from

u′′ =

(

µ2 + 2 (ν2 − µ− 2)
)

t2 + 2
(

µ2 − ν2
)

t+ µ (µ+ 2)

4 t2(t− 1)2 (t+ 1)2
u,

(31)
which is in normal form and has an invariant with “minimal
degrees” with respect to power transformations (7).

In step 3, analyzing the invariant of (31) (coefficient of u
in its right-hand-side), the equation has now three regular
singular points, at {0, 1,−1}. Using the notation of sec. 1.2,
the degrees with respect to t of the numerator and of each of
the linear factors entering the denominator are [2, [2, 2, 2]].
The equation matches the classification Table 1 presented
in sec. 1.2 and is identified as equivalent to the 2F1 equation
under Möbius transformations (6).

So we proceed with step 4, equating the invariant of (31)
with the invariant (17) written in terms of {a, b, c, α, β, γ, δ},
from where we compute the values of the hypergeometric
parameters {a, b, c} entering the 2F1 equation (3), such that
the equivalence under Möbius exists, as well as the Möbius
transformation itself, obtaining

{a =
ν

2
, b =

ν

2
− µ, c = −µ} M := x =

2 t

t− 1

The transformation mapping the 2F1 equation (3) at these
values of the parameters {a, b, c} into (31) is then obtained
composing the Möbius transformation above with one of the
form (8), computed as explained in sec. 1.1, resulting in

x =
2 t

t− 1
, y =

tµ/2 (t− 1)(ν−µ−1)/2

(t+ 1)(ν+1)/2
u(t) (32)

At this point, we have the transformation (32) mapping (3)
into (31), and the transformation (30), mapping (31) into
the equation (29) we want to solve. Composing these trans-
formations, in step six we obtain the solution of (29)

y =
xν

(x2 − 1)
ν
2

2F1

(

ν

2
,
ν

2
− µ; −µ;

2x2

x2 − 1

)

C1

+
xν+2µ+2

(x2 − 1)1+µ+ν/2
(33)

2F1

(

ν

2
+ 1, 1 + µ+

ν

2
; 2 + µ;

2 x2

x2 − 1

)

C2

where C1 and C2 are arbitrary constants.
As mentioned in the introduction, an implementation of

the algorithm being presented is at the core of the current
Maple ability to solve this type of problem. The time con-
sumed by this Maple implementation to compute the solu-
tion (33) performing all the steps mentioned is 0.4 seconds

8This transformation is the composition of t ≡ xk = x2 with
a transformation of the form (10) so that (31) is normalized.

in a Pentium IV, 2 GigaHertz computer. The Maple com-
mand line to compute this solution directly using hyper3 is:
> dsolve(ode,[hyper3]);.

An example of the 1F1 class

As an example which also requires an extension of the
algorithm to handle symbolic powers in the invariant (12),
consider Kamke’s second order linear equation 2.15:

y′′ +
(

µx2σ + ν xσ−1
)

y = 0 (34)

where µ, ν and σ are constants with respect to x. This
equation is already in normal form and the shifted invariant
(25) for it is

J1(x) = 1/4 − x2 (µx2σ + ν xσ−1) (35)

To compute the values of k entering (26) and leading to
J0(x) with minimized integer powers, in (27), instead of

restricting k̃ to be a rational number, we allow it to de-
pend on symbolic variables. So we compute k̃ such that
the set of exponents entering (35), A := {2σ + 2, σ + 1},
becomes a set of integers after multiplying each element of
it by k̃, resulting in9 k̃ = 1/(σ + 1). In summary, using
{

t = x σ+1, u(t) = x σ/2 y(x)
}

, Kamke’s equation (34) can

be obtained from the following equation, which is already
in normal form and has an invariant with minimized integer
degrees, free of symbolic powers

u
′′ = −

(

4µ t2 + 4 ν t+ σ2 + 2σ
)

4 (σ + 1)2 t2
u (36)

Proceeding with step 3, the invariant is the coefficient
of u in the above and the degrees with respect to t of its
numerator and factors in its denominator match the Table 1
of sec. 1.2, identifying (36) as equivalent to the 1F1 equation
under Möbius transformations (6).

As in the previous example, in step 4, comparing the in-
variant of (36) with the invariant (18) of the transformed

1F1 equation, we compute the values of the parameters en-
tering the 1F1 equation (3) such that the equivalence exists,
as well as the parameters entering the Möbius transforma-
tion. Composing all the transformations, we arrive at the
solution for Kamke’s example 2.15

y = e






−

i
√
µxσ+1

σ + 1







(

1F1

( √
µσ + i ν

2
√
µ (σ + 1)

;
σ

σ + 1
;
2 i

√
µ

σ + 1
xσ+1

)

C1 (37)

+ 1F1

(√
µ (σ + 2) + i ν

2
√
µ (σ + 1)

;
σ + 2

σ + 1
;
2 i

√
µ

σ + 1
xσ+1

)

xC2

)

where C1 and C2 are arbitrary constants. The time con-
sumed by the implementation in Maple to perform these
steps and return the solution above is again 0.4 seconds, as
in the previous example. This also illustrates that, for typ-
ical problems, the additional handling of symbolic powers
does not imply on any important performance cost.
9To perform this computation, it suffices to sequentially take
the gcd between each of the elements of A.



5. ON THE COMPUTATION OF THE SEC-
OND INDEPENDENT SOLUTION

The algorithm presented is based on computing a trans-
formation mapping a pFq equation into a given linear ODE,
then applying that transformation to the solution of the

pFq equation to obtain the solution for the given problem.
This process has a subtlety: depending on the values of the
hypergeometric parameters, we may have only one indepen-
dent solution available for the pFq equation. In these cases,
the second independent solution can be obtained through
integration: if y = S(x) is a solution of (1), then

y =

∫

e(
∫

A(x)dx)

S(x)2
dxS(x) (38)

is a second independent solution directly computable from
S(x) and A(x).

This approach, however, frequently introduces uncompu-
table integrals, thus complicating further manipulations and
undermining the usefulness of the result. As an example of
this situation, for the 2F1 equation,

(

x2 − x
)

y′′ + ((a+ b+ 1) x− c) y′ + b a y = 0, (39)

the two independent solutions are:

y = 2F1 (a, b; c; x) C1 (40)

+ x1−c
2F1 (b− c+ 1, a− c+ 1; 2− c; x) C2

but for c = 1 these two solutions are equal. Using the inte-
gration recipe (38), a second independent solution is

y =

∫

e





∫

(a+ b+ 1) x− 1

x2 − x
dx





2F1 (a, b; 1; x)
2

dx 2F1 (a, b; 1; x) (41)

Although the inner integral, with rational integrand, is easy
to compute, the outer integral, with 2F1 (a, b; 1; x)

2 in its
denominator, is uncomputable in current computer algebra
systems.

The approach used in hyper3 to minimize the occurrence
of uncomputable integrals consists of exploring the group
of automorphisms of the 2F1 equation in order to make c
not an integer when that is possible. Recalling, the group
elements and their action are

Group element Action on the plane
g1 : x → x (0 → 0, 1 → 1,∞ → ∞)
g2 : x → 1− x (0 → 1, 1 → 0,∞ → ∞)
g3 : x → 1/x (0 → ∞, 1 → 1,∞ → 0)
g4 : x → 1/(1− x) (0 → 1, 1 → ∞,∞ → 0)
g5 : x → (x− 1)/x (0 → ∞, 1 → 0,∞ → 1)
g6 : x → x/(x− 1) (0 → 0, 1 → ∞,∞ → 1)
Table 2. Group of automorphisms of the 2F1 equation

These transformations, known to act as permutations on
the set {0, 1,∞}, also act as permutations on a set {λ, µ, κ}
related to the hypergeometric parameters {a, b, c} by

λ = 1− c, µ = a+ b− c, κ = a− b (42)

These three parameters are the exponent differences of the
normal form of the 2F1 equation (3), at {0, 1,∞} respec-
tively. The action of each gi on these parameters is obtained

from Table 2 by respectively changing {0, 1,∞} by {λ, µ, κ}.
Hence, the solution (40) can be written in different manners,
by changing the application point of the 2F1 function using
the gi, permuting accordingly the parameters {λ, µ, κ} en-
tering the 2F1 function and multiplying the result by the
proper non-constant factor10.

For example, when c is an integer but a + b is not an
integer, applying g2 and permuting the parameters µ ↔ λ,
the power x1−c entering (40) becomes a power with non-
integer exponent. Using this mechanism, for (39) at c = 1,
instead of the solution with integrals (41) we obtain two
independent solutions free of uncomputed integrals:

y = 2F1 (a, b; a+ b; 1− x) C1 (43)

+ (x− 1)1−b−a
2F1 (1− b, 1− a; 2− b− a; 1− x) C2

When c and a + b are both integers, g2 does not resolve
the problem, but if a − b is not an integer then g3 does,
since it permutes the integer λ = 1− c with the non-integer
κ = a − b. For example, for a = 2/3, b = 1/3, c = 1, (39)
becomes

2 y/9 + (2x− 1) y′ +
(

x2 − x
)

y′′ = 0 (44)

Applying g3 and permuting the parameters λ and κ, we ob-
tain the following two independent solutions free of integrals

y = x−1/3
2F1 (1/3, 1/3; 2/3; 1/x) C1 (45)

+ x2/3
2F1 (2/3, 2/3; 4/3; 1/x) C2

When all of c, a+ b and a− b are integers, these permuta-
tions are in principle of no use, but still for some cases the
solution can be represented free of integrals. This is the case
of Legendre’s equation. Recalling the relationship between
the associated Legendre function of the first kind and the
hypergeometric 2F1 function11,

LegendreP (a, b, z) = (46)

(z + 1)1/2 b
2F1 (a+ 1,−a; 1− b; (1− z)/2)

(z − 1)1/2 b Γ (1− b)
,

whenever the group elements of Table 2 can map the 2F1

function solution into one of the form above, one indepen-
dent solution can be expressed using LegendreP and the sec-
ond one is obtained from the first one replacing LegendreP
by the associated function of the second kind LegendreQ.
For example, for

y/4 + (2 x− 1) y′ +
(

x2 − x
)

y′′ = 0 (47)

we have µ = κ = λ = 0, so c = 1 and both a + b and a − b
are integers. A solution free of integrals is

y = LegendreP (−1/2, 2x− 1) C1 (48)

+ LegendreQ (−1/2, 2x− 1) C2

10These multiplicative factors are different for each g1; we
omit them here for brevity.

11We use here the Maple convention for the branch cuts of
LegendreP; the idea being discussed is independent of that.



Conclusions
In this presentation we discussed an algorithm for second
order linear ODEs, we called it hyper3, for computing non-
Liouvillian solutions by resolving an equivalence to the 2F1,

1F1 and 0F1 equations. Taking Kamke’s book as testing
arena, this algorithm is the most successful one of the cur-
rent set of linear ODE algorithms of the Maple system. From
the 363 corresponding examples of Kamke’s book having ra-
tional coefficients, hyper3 alone solves 331 (91 %), followed
by Kovacic’s algorithm solving 181 (50 %). Moreover, from
these 181 examples admitting Liouvillian solutions, hyper3
solves 163 (90 %).

The fact that, for 90% of these equations admitting Li-
ouvillian solutions, the solution can also be computed as a
hypergeometric one of the form (9) is a good indication that
the restriction used to make the algorithm feasible is appro-
priate. The fact that around one half of Kamke’s examples
only admit special function solutions of non-Liouvillian form
also illustrates the relevance of this type of solution in the
general framework of linear ODE problems popping up in
applications.

Despite the simplicity of the approach, till the end of 2001,
when the routines for this algorithm were developed, no
equivalent or similar algorithms were available in any of the
Axiom, Maple, Mathematica, MuPAD or Reduce computer
algebra systems (CAS). These CAS failed in computing spe-
cial function solutions but for occasional success, e.g., by
previous to hyper3 Maple routines able to resolve an equiv-
alence under only power transformations of the form (7)
[13], or an equivalence under only Möbius transformations
and only with respect to the 2F1 class [14].

Since at the core of hyper3 there is the concept of singular-
ities, two natural extensions of this work consist of applying
the same ideas to compute solutions for linear ODEs of or-
der three and higher [15] and for second order equations
of Heun type. The latter have four regular singular points
or any combination of singularities derived from that case
through confluence processes [16]; one example of these are
Mathieu equations. Related work is in progress [17, 18].
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Using the representation theory of groups, we are able to give simple necessary and

sufficient conditions regarding the structure of the galois groups of second and third
order linear differential equations. These allow us to give simple necessary and sufficient

conditions for a second order linear differential equation to have liouvillian solutions and

for a third order linear differential equation to have liouvillian solutions or be solvable
in terms of second order equations. In many cases these conditions also allow us to

determine the group.

1. Introduction

Let k be a differential field†† with algebraically closed field of constants C and L(y) = 0

a linear differential equation‡‡ with coefficients in this field. One can form the mth

symmetric power L⃝s m(y) of L(y) which is the smallest order nonzero linear differential
equation satisfied by themth power of any solution of L(y) = 0. In this paper we show how
factorization properties of these symmetric powers can be used to determine structural
properties of the galois groups of second and third order linear differential equation. This
in turn will allow us to give necessary and sufficient conditions for these linear differential
equations to have liouvillian solutions. For example we show (Corollary 4.4):

Let L(y) = y′′ + ry = 0 be a second order linear differential equation with
r ∈ k. L(y) = 0 has liouvillian solutions if and only if L⃝s 6(y) is reducible.

For third order equations we have similar conditions and are also able to characterize
those equations that are solvable in terms of lower order equations (Corollary 4.8):

† Partially supported by NSF Grant 90-24624
‡ Partially supported by Deutsche Forschungsgemeinschaft, while on leave from Universität Karlsruhe.

The second author would like to thank North Carolina State University for its hospitality and partial
support during the preparation of this paper.
†† of characteristic zero as are all the fields in this paper.
‡‡ All linear differential equations in this paper are homogeneous

0747–7171/90/000000 + 00 $03.00/0 c⃝ 1997 Academic Press Limited
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Let L(y) = y′′′ + ry′ + sy = 0 be a third order linear differential equation with
r, s ∈ k. L(y) = 0 is solvable in terms of lower order linear differential equations
if and only if L⃝s 4(y) has order less than 15 or is reducible.

Factorization properties can also be used to determine galois groups in many cases.
For example (see Section 2.2 for the definition of the Tetrahedral Group and Theorem
4.3):

Let L(y) = y′′ + ry = 0 be a second order linear differential equation with

r ∈ k. The galois group of L(y) = 0 is the Tetrahedral Group ASL2
4 if and only if

L⃝s 2(y) is irreducible and L⃝s 3(y) is reducible.

Our results show that one can reduce many questions concerning the galois groups
of linear differential equations to factoring associated differential equations. This under-
scores the importance of finding efficient factorization algorithms, (c.f., [0, 0]).

The main tool of this paper is representation theory and the results spring from the
following facts. The first fact (due to Chevalley) is that if one is given an algebraic sub-
group H of GL(n, C) then there is a faithful representation Φ : GL(n, C) → GL(m, C)
for some m such that Φ(H) is uniquely determined by its set of invariant subspaces in
Cm (c.f., Theorem 11.2 of [0]). The second fact is that given a faithful representation of
an algebraic group, any other representation can be constructed from this representation
using the tools of linear algebra, i.e., tensor product, duals, direct sums and subspaces.
Furthermore, if the group is the galois group of a linear differential equation and the rep-
resentation is the representation on the solution space of the linear differential equation,
then one can mimic this construction at the level of the equation to produce an equation
whose solution space corresponds to the other representation (c.f., [0, 0, 0, 0, 0]). The
final fact that we use is that the solution space of a linear differential equation has a
subspace of dimension m invariant under the action of the galois group if and only if the
equation has a factor of order m, [0]. Combining these facts one sees that one should
be able to determine the galois group of a linear differential equation by considering the
factorization properties of certain associated operators. This philosophy has been suc-
cessfully used in [0, 0, 0, 0, 0]. In this paper, we apply this philosophy to the study of
second and third order linear differential equations. Except for the last fact we do not use
the full theoretical power of the above facts, but rather calculate directly for the groups
involved. In particular we show that in this case it is enough to consider just symmetric
powers of small order.

The paper is organized in the following manner. Section 2 contains a description of
the groups that can appear as galois groups of second and third order linear differential
equations as well as facts about their representation theory. Section 3 reviews facts from
the formal theory of linear differential equations and galois theory. In section 4, we present
the main results. Section 5 is devoted to examples.

We wish to thank John Cannon for making available to us a copy of Cayley and the
the Institute für Algorithmen und Kognitive Systeme of the University of Karlsruhe for
allowing us to use their computer algebra systems.

2. Group Theory

To any homogeneous linear differential equation L(y) = 0 of order n with coefficients
in a differential field k (with algebraically closed field of constants C), one can associate a
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group of n× n matrices G(L) ⊆ GL(n, C) called the differential galois group of L(y) = 0
(see [0] or [0] for an exposition of this theory; for concreteness, one may let k = Q(x)
and C = Q) . Differential and algebraic properties of the equation are mirrored by
group theoretic properties of this group. This section is devoted to studying properties
of subgroups of SL(n, C). The reader interested only in the form of the algorithms and
willing to accept certain group theoretic facts, may proceed to the next section.

Let V denote a finite dimensional vector space of dimension n over an algebraically
closed field C.

Definition 2.1. A subgroupG ofGL(V ) is said to act irreducibly if the onlyG-invariant
subspaces of V are {0} and V . The group G is completely reducible if there are minimal
G-invariant subspaces V1, · · · , Vk such that V = V1 ⊕ · · · ⊕ Vk.

According to Maschke’s theorem, every finite subgroup of GL(V ) is completely re-
ducible. We shall see (in sections 3 and 4) that L(y) = 0 has a galois group that acts
reducibly if and only if L(y) is reducible and that one can test directly if this occurs (A
differential equation L(y) with coefficients in k is called reducible if L(y) can be written
as L1(L2(y)), where L1(y) and L2(y) are differential equations with coefficients in k of
order > 0. L(y) = 0 is irreducible if it is not reducible). We shall need finer group theo-
retic information when the equation (and therefore the galois group) is irreducible. The
following definitions are crucial to studying this situation.

Definition 2.2. Let G be a subgroup of GL(n, C) acting irreducibly, i.e. G is a linear
group acting irreducibly on the vector space V of dimension n over C. Then G is called
imprimitive if, for k > 1, there exist subspaces V1, · · · , Vk such that V = V1⊕· · ·⊕Vk and,
for each g ∈ G, the mapping Vi → g(Vi) is a permutation of the set S = {V1, . . . , Vk}. The
set S is called a system of imprimitivity of G. If all the subspaces Vi are one dimensional,
then G is called monomial. An irreducible group G ⊆ GL(n, C) which is not imprimitive
is called primitive.

We note that since an imprimitive group G is assumed to act irreducibly on V , we
have that G acts transitively on the Vi. In particular, all the Vi have the same dimension.

Definition 2.3. A group G ⊆ GL(n, C) whose elements have a common eigenvector is
called 1-reducible.

In [0] it is proven that, if an irreducible differential equation L(y) = 0 has a liouvillian
solution, then G(L) ⊆ GL(n, C) has a 1-reducible subgroup H of finite index and that
there is a solution z of L(y) = 0 such that the algebraic degree of u = z′/z over k is
≤ [G(L) : H] .

In this section we will analyse imprimitive and primitive subgroups of G ⊆ GL(n, C)
and also see what consequences we can draw from assuming that such a group has a
1-reducible subgroup of finite index.

2.1. Imprimitive Groups

When n is prime any system of imprimitivity for an imprimitive subgroup G ⊆
GL(n, C) contains only subspaces of dimension one (and therefore G must be a monomial
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group). The subgroup leaving one of these subspaces fixed will be a 1-reducible subgroup
of index n. We therefore have the following:

Proposition 2.1. ([0]) Let n be a prime number and let G ⊆ GL(n, C) be an imprimitive
group. Then G is a monomial group and contains a 1-reducible subgroup of index n.

2.2. Primitive Groups

The differential galois group G(L) of a linear differential equation is a linear algebraic
group which, after a suitable change of variables (cf. Theorem 3.3), can be assumed
to be unimodular, i.e. G(L) ⊆ SL(n, C). We thus restrict ourselves to linear algebraic
subgroups of SL(n, C) (see [0], [0] or [0] for the appropriate definitions). We have the
following general result:

Lemma 2.2. Let G ⊆ GL(n, C) be a primitive group. If H is a normal 1-reducible sub-
group of G, then H is a subgroup of the group of scalar matrices.

Proof. We say a subspace W ⊆ Cn is a maximal eigenspace of H if each element of
H acts by scalar multiplication on W and W is maximal with respect to this property.
Let W be the set of maximal eigenspaces of H. By hypothesis, this set is non-empty. If
W1, . . . ,Wm+1 are elements of W such that Wm+1 ∩ (W1 + . . . +Wm) ̸= {0}, then one
can easily show that m = 1 andW1 =W2. This implies that W is finite and that the sum
V ′ of the elements of W is a direct sum. Note that H is normal in G so G permutes the
elements of W and so leaves V ′ invariant. Since G is irreducible, we have V ′ = Cn and
so W is a system of imprimitivity of G, unless W contains just one element. Therefore,
we can conclude that the elements of H are all scalar matrices. 2

Proposition 2.3. Let G ⊆ SL(n, C) be a primitive linear algebraic group. Then:

1 either G is finite or Go, the connected component of the identity of G, is a semisim-
ple subgroup of GL(n, C),

2 if G also contains a 1-reducible subgroup of finite index, G must be finite,

3 if n = 2 or 3, and Go is semisimple, then Go acts irreducibly on Cn.

Proof. (c.f., [0] p. 301 for a similar result) Assume that G is primitive and not finite.
Let R(Go) be the radical of Go. Note that R(Go) is normal in G. Since R(Go) is con-
nected and solvable, the Lie-Kolchin Theorem ([0], p. 113) implies that the elements of
R(Go) have a common eigenvector, i.e. R(Go) is 1-reducible. Therefore, we can conclude
from Lemma 2.2 that the elements of R(Go) are all scalar matrices. Since there are only
a finite number of such matrices in SL(n, C), we must have that R(Go) is trivial and so
Go is semisimple. This proves 1.

If G also contains a 1-reducible subgroup of finite index, then it contains a 1-reducible
normal subgroup of finite index. Lemma 2.2 implies that this latter group consists only
of scalar matrices and, since G ⊆ SL(n, C), must be finite. Therefore, G is finite. This
proves 2.

If Go is semisimple, then any invariant subspace has a complementary invariant sub-
space. If n = 2 or 3, and Go has a non-trivial invariant subspace, then Go must have an
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invariant subspace of dimension 1. This means that Go is 1-reducible and so by 2., G is
finite, a contradiction. Therefore Go acts irreducibly. 2

Proposition 2.3 reduces the question of finding the primitive subgroups of SL(n, C) to
the question of finding the finite primitive subgroups and the semisimple subgroups. We
begin with the latter. A connected semisimple group is a quotient (by a finite group) of
a direct product of simple groups ([0], p. 167). The simple algebraic groups and their
representations are well understood. In particular, by comparing dimensions one can
see that the only semisimple subgroup of SL(2, C) is SL(2, C). Therefore any primitive
proper subgroup of SL(2, C) is finite. For n = 3, it is shown in ([0], p. 674) that the
only connected proper semisimple subgroup of SL(3, C) that acts irreducibly on C3 is
conjugate to the representation of SL(2, C) given by

ρ3

([
a b
c d

])
=

 a2 2ab b2

ac ad+ bc bd
c2 2cd d2


This is just the irreducible three dimensional representation of SL(2, C) (see Proposi-
tion 2.4 and the discussion after it). ρ3(SL(2, C)) ∼= SL(2, C)/{±1} and we shall refer to
this group as PSL2. The normalizer of PSL2 in SL(3, C) is PSL2 ×C3 where C3 is the
three element subgroup of scalar matrices ([0], p. 674). Therefore any non-finite proper
primitive subgroup of SL(3, C) is conjugate to either PSL2 or PSL2 × C3.

We now turn to the finite primitive subgroups of SL(2, C) and SL(3, C).
One knows the finite primitive subgroups of PGL(3, C) (c.f., [0]). From this list, one

can derive the primitive subgroups of SL(3, C) (c.f., [0]). Any finite primitive group of
SL(3, C) is isomorphic to one of the following groups:

1 The Valentiner Group ASL3
6 of order 1080 generated as a transitive permutation

group of 18 letters by:

(1,2,4)(3,8,13)(5,7,9)(6,10,12)(11,15,14),

(1,3)(2,6)(4,5)(7,12)(8,9)(10,13),

(1,4)(3,8)(5,9)(6,11)(10,14)(12,15),

(1,4,8,3,5,9)(2,7,13)(6,12,10)(11,16,14,17,15,18),

(1,5,8)(2,7,13)(3,4,9)(6,12,10)(11,15,14)(16,18,17).

We have ASL3
6 /Z(ASL3

6 ) ∼= A6.

2 The simple group G168 of order 168 defined by:

{X,Y |X7=(X4Y )4=(XY )3=Y 2=id}.

3 G168 × C3, the direct product of G168 with the cyclic group C3 of order 3.

4 A5, the alternating group of five letters.

5 A5 × C3, the direct product of A5 with a cyclic group C3 of order 3.

6 The group HSL3
216 of order 648 defined by:

{U,V,S,T | U9=V 4=T 3=S3=(UV )3=id,V S=TV

V T=S2V,[U6,V ]=[U6,T ]=[U,S]=id,[U,V 2]=S}.

The group HSL3
216 /Z(H

SL3
216 ) is the hessian group of order 216.
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7 The group HSL3
72 of order 216 generated by the elements S, T , V and UV U−1 of

HSL3
216 .

8 The group FSL3
36 of order 108 generated by the elements S, T and V of HSL3

216 .

If G/Z(G) is a simple group, then G also is a perfect group (i.e. equals its commutator
group). In this case any representation of G belongs to SL(n, C). But for the groups
HSL3

72 and FSL3
36 there exist irreducible representations in GL(3, C) which do not belong

to SL(3, C). Note that if g ∈ SL(3, C) has order 2, then the trace of g is −1, and if g
has order 4, then the trace cannot be I, −I or −1. Considering the character tables of
these groups, one sees that this restriction implies that there are only two irreducible
characters of degree 3 left for HSL3

72 and FSL3
36 . For the computations in the rest of the

paper we will only have to consider these characters.
The finite primitive subgroups of SL(2, C) are isomorphic to one of the following groups

(c.f., [0, 0]):

1 The icosahedral group ASL2
5 of order 120 generated as a transitive permutation

group of 24 letters by:

(1,4,2)(3,20,5)(6,13,14)(7,22,8)(9,24,10)(11,21,12)(15,23,16)(17,19,18),

(1,6,5,3,15,2)(4,12,21,20,22,7)(8,19,18,11,10,9)(13,17,16,23,24,14),

(1,3)(2,5)(4,20)(6,15)(7,21)(8,11)(9,18)(10,19)(12,22)(13,23)(14,16)(17,24),

(1,3)(2,5)(4,20)(6,15)(7,21)(8,11)(9,18)(10,19)(12,22)(13,23)(14,16)(17,24).

2 The octahedral SSL2
4 of order 48 given by:

{X,Y |X3=Y 8=id,Y X2=XY 3}.

3 The tetrahedral group ASL2
4 of order 24 generated by X and Y 2.

We note that, the tetrahedral group has two faithfull irreducible representations in
GL(2, C) which do not belong to SL(2, C).

2.3. The characters of symmetric products

The main idea of this paper is that for n = 2 or 3, one can distinguish between
the various primitive groups by decomposing small symmetric powers of the original
representation. We do this calculation in this section.

The first step is to calculate the characters χm of themth symmetric powers. We follow
the presentation in ([0], p. 181). Let z be a variable and define the functions on GL(n, C),
q0, . . . , qn, via the formula:

det(I − zg) = q0 − q1z + q2z
2 − . . .± qnz

n

for g ∈ G. Note that q0 = 1 and qn = det(g). The characters χm of the symmetric power
Sm(Cn), then satisfy the following recursion:

χ0 = 1

χl − q1χl−1 + q2χl−2 − . . .± qnχl−n = 0

for l = 1, 2, . . . and χ−1, χ−2, . . . are set equal to zero. If G ⊆ SL(2, C) we have that
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q0 = q2 = 1 and q1 = χ, the character of the representation of G on C2. We get the
following:

χ2 = χ2 − 1

χ3 = χ3 − 2χ

χ4 = χ4 − 3χ2 + 1

χ5 = χ5 − 4χ3 + 3χ

χ6 = χ6 − 5χ4 + 6χ2 − 1

For G ⊆ SL(3, C), we have that q0 = q3 = 1, q1 = χ, the character of the representation
of G on C3 and q2 = χ̄, where χ̄(g) = χ(g−1). We get the following:

χ2 = χ2 − χ̄

χ3 = χ3 − 2χχ̄+ 1

χ4 = χ4 − 3χ̄χ2 + 2χ+ χ̄2

χ5 = χ5 − 4χ̄χ3 + 3χ2 + 3χ̄2χ− 2χ̄

For higher dimensional representations of G the power maps (cf. [0]) are needed in the
formula for χi (see e.g. [0] for details and further references).

Proposition 2.4. (See [0], pages 150, 180) SL(n, C) acts irreducibly on Cn and all sym-
metric powers Sm(Cn) of Cn.

In fact, any irreducible representation of SL(2, C) is of the form Sm(C2) for n =
0, 1, 2, . . . (S0(C2) is the trivial one dimensional representation). Note that PSL2 is just
the image of SL(2, C) in SL(S2(C2)) ∼= SL(3, C). For m odd, these representations are
faithful representations of SL(2, C) and for m even, these have kernel {±1} (and so factor
through PSL2). Therefore the irreducible representations of PSL2 are Sm(C2),m =
0, 2, 4, . . .. A character of a representation of SL(2, C) is determined by its behavior on
the diagonalizable elements of SL(2, C), since these are Zariski dense in this group. If

ϕm is the character associated with Sm(C2) and g =

(
a 0
0 a−1

)
is a diagonal element,

then ϕm(g) = am + am−2 + . . .+ a−m. We use this notation in the following:

Proposition 2.5. Let χ be the character of the irreducible representation of PSL2 on
C3 and χm the character of the representation on Sm(C3). We then have the following
decompositions:

1 χ2 = ϕ4 + ϕ0
2 χ3 = ϕ6 + ϕ2
3 χ4 = ϕ8 + ϕ4 + ϕ0
4 χ5 = ϕ10 + ϕ6 + ϕ2

Proof. To verify these formulas, it is enough to evaluate the χm on the diagonal el-

ements of PSL2. Such a diagonal element is of the form

 a2 0 0
0 1 0
0 0 a−2

. Therefore,
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χ(g) = a2 +1+ a−2 = χ̄(g). Using the formulas χ2 = χ2 − χ̄, χ3 = χ3 − 2χχ̄+1, etc., we
are able to verify the above formulas. 2

For each finite primitive subgroup of SL(2, C) and SL(3, C), using its character table
(computed using the group theory system Cayley [0]) and the orthogonality relations of
characters, we can decompose the characters of the symmetric product (computed using
the computer algebra system AXIOM, cf. [0]). The result is summarised in the following
two tables, where the numbers 4, 32 in the column A5 and the row 3 of Table 2 means that
the 3-th symmetric product of the character of any faithfull irreducible representation of
A5 in SL(3,C) has an irreducible summand of degree 4 and two irreducible summands
of degree 3.

ASL2
5 SSL2

4 ASL2
4

2 3 3 3

3 4 4 22

4 5 3, 2 3, 12

5 6 4, 2 23

6 4, 3 32, 1 32, 1

Table 1

PSL2 A5 G168

PSL2 × C3 A5 × C3
FSL3
36 G168 × C3

ASL3
6 HSL3

72 HSL3
216

2 5, 1 5, 1 3, 3 6 6 6 6

3 7, 3 4, 32 12, 42 7, 3 10 8, 2 8, 2

4 9, 5, 1 52, 4, 1 35 8, 6, 1 9, 6 62, 3 62, 3

5 11, 7, 3 5, 4, 34 37 8, 7, 32 15, 32 6, 35 9, 6, 32
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Table 2

For later use we note that in the decomposition of the third symmetric product of
FSL3
36 , the two one dimensional characters ψi are of order 4, i.e. ψ4

i = 1 but ψ2
i ̸= 1.

3. Differential Equations

3.1. Galois Theory

In this section we first briefly review some facts about differential algebra and the
existing algorithms for computing liouvillian solutions of linear differential equations.
For a more complete exposition we refer to [0, 0, 0, 0].

A differential field (k, δ) is a field k together with a derivation δ on k. A differential
field extension of (k, δ) is a differential field (K,∆) such that K is a field extension of k
and ∆ is an extension of the derivation δ to a derivation on K. In this paper we always
assume that k is a field of characteristic 0 and that the field C = kerk(δ) of constants of

δ in k is algebraically closed (e.g. (Q(x),
d

dx
)).

We also write y(n) instead of δn(y) and y′, y′′, . . . for δ(y), δ2(y), . . .. Unless otherwise
stated, a differential equation L(y) = 0 over k always means an ordinary homogeneous
linear differential equation

L(y) = y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0 (ai ∈ k).

Definition 3.1. A differential field extension (K,∆) of (k, δ) is a liouvillian extension
if there is a tower of fields

k = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,

where Ki+1 is a simple field extension Ki(ηi) of Ki, such that one of the following holds:

ηi is algebraic over Ki, or
δ (ηi) ∈ Ki (extension by an integral), or
δ (ηi) /ηi ∈ Ki (extension by the exponential of an integral).

A function contained in a liouvillian extension of k is called a liouvillian function over k.

In [0] J. Kovacic gives an algorithm to find a basis of the liouvillian solutions of a
second order linear differential equation with coefficients in k0(x), where k0 is a finite
algebraic extension of Q. In [0] the first author gives a procedure to find a basis of the
liouvillian solutions of a linear differential equation L(y) = 0 of arbitrary degree n with
coefficients belonging to a finite algebraic extension of Q(x).

Definition 3.2. Let K1 and K2 be two differential extensions of k. A differential k-
isomorphism between K1 and K2 is a field isomorphism that leaves k fixed and commutes
with δ. The differential galois group G(K/k) of a differential field extension K of k is the
set of all differential k-automorphisms of K.

Definition 3.3. Let L(y) = 0 be a homogeneous linear differential equation of degree
n with coefficients in a differential field k. A differential field extension K of k is called
a Picard-Vessiot extension (PVE) of k for L(y) = 0 if the following holds:
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K = k < y1, y2, . . . , yn >, the differential field generated by k and y1, y2, . . . , yn,
where {y1, y2, . . . , yn} is a fundamental set of solutions of L(y) = 0.
K and k have the same field of constants.

We denote G(L) the differential galois group of a PVE associated to L(y) = 0.

A PVE of k associated with L(y) = 0 is well defined and unique up to differential
k-isomorphisms if kerk(δ) is an algebraically closed field of characteristic 0. It may be
viewed as the splitting field for the equation L(y) = 0. The differential galois group G(L)
of L(y) = 0 is a linear algebraic group, and there is a galois correspondence between
differential subfields of K/k and linear algebraic subgroups of G(L) (see, e.g. [0, 0]). If we
choose a fundamental set of solutions {y1, y2, . . . , yn} of the equation L(y) = 0, then for
each σ ∈ G(L) we get σ(yi) =

∑n
j=1 cijyj , where cij ∈ C. This gives a faithful represen-

tation of G(L) as a subgroup of GL(n, C). Different choices of basis {y1, y2, . . . , yn} give
equivalent representations. This equivalence class of representations is fundamental to
our approach. In the sequel we always consider this representation as the representation
of G(L).

The following known results show that many properties of the equation L(y) = 0 and
of its solutions are related to the structure of the group G(L):

Theorem 3.1. (see e.g. [0], §22, [0], §33) The differential equation L(y) = 0 of degree
n over k factors as a differential operator over k if and only if G(L) ∈ GL(n, C) is
a reducible linear group. Let V be the solution space of L(y) = 0. G(L) leaves an m
dimensional subspace of V invariant if and only if L(y) = Ln−m(Lm(y)) where Ln−m(y)
and Lm(y) have coefficients in k and are of order m− n and m.

Theorem 3.2. (see e.g. [0]) A differential equation L(y) = 0 with coefficients in k has

only solutions which are algebraic over k if and only if G(L) is a finite group,
only liouvillian solutions over k if and only if the component of the identity G(L)◦
of G(L) in the Zariski topology is solvable. In this case L(y) = 0 has a solution
whose logarithmic derivative is algebraic over k.

The following theorem will enable us to always assume that the differential galois group
G(L) ⊆ GL(n, C) of a differential equation L(y) = 0 of degree n is unimodular.

Theorem 3.3. ([0], p. 41) The differential galois group of an differential equation of the
form

L(y) = y(n) + an−2y
(n−2) + · · ·+ a1y

′ + a0y = 0 (ai ∈ k) (3.1)

is a unimodular group (i.e. G(L) ⊆ SL(n, C)).

Using the variable transformation y = z · exp
(
−
∫
an−1

n

)
it is always possible to trans-

form a given differential equation L(y) into an equation LSL(y) of the form (3.1). For
L(y) = y′′′ + a2y

′′ + a1y
′ + a0y we get:

LSL(y) = y′′′ +

(
a1 −

a2
2

3
− a′2

)
y′ +

(
a0 −

a1a2
3

− a′′2
3

+
2a2

3

27

)
y.
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The above form is a sufficient but not necessary condition for G(L) to be unimodular.

3.2. Linear Operators

We first collect some basic facts on linear differential operators. Linear differential
operators can be seen as skew polynomials which can be manipulated almost in the same
way as ordinary polynomials.

3.2.1. Factorization of linear differential equations

Let k be a field and δ be a derivation on k. In order to define the notions of irreducibility
and factorization for a linear differential equation

L(y) = anδ
n(y) + an−1δ

(n−1)(y) + · · ·+ a0y = 0

of degree n and coefficients in k we look at the associated differential operator:

p(δ) = anδ
n + an−1δ

(n−1) + · · ·+ a0

We now replace Dn by δn in p(δ) and consider

p(D) = anD
n + an−1D

(n−1) + · · ·+ a0

as a skew polynomial in D. From δ(ay) = δ(a)y+ aδ(y) one gets the rule Da = aD+ aδ.
We denote k[D, δ] the set of all such skew polynomials. This is an example of what is
called an Ore ring in the litterature.

In [0] an algebraic theory of k[D, δ] is given. It is shown there that the usual polynomial
addition and a multiplication defined by Da = aD+ aδ and distributivity makes k[D, δ]
into a (non commutative) ring which has a left and right euclidean algorithm. The degree
of p(D) is defined to be the usual polynomial degree of p(D) in D. Since k is a field, the
degree of a product is the sum of the degrees.

Definition 3.4. A linear differential operator p(D) ∈ k[D, δ] is reducible, if ∃q1(D),
q2(D) ∈ k[D, δ] of degrees > 0 such that p(D) = q1(D) q2(D). If p(D) is not reducible,
then p(D) is called irreducible. A linear differential equation is called reducible (resp.
irreducible) if the associated differential operator is reducible (resp. irreducible).

If L(y) is reducible, then L(y) can be writen as L1(L2(y)), where L1(y) and L2(y)
are differential equations of degree > 0. We point out that a factorization of differential
equation is usually not unique:
Example: We give two irreducible decompositions of a third order differential operator:

d3

dx3
− 8x2 − 2x− 3

2x(4x+ 1)

d2

dx2
− 12x+ 11

4x(4x+ 1)

d

dx
+

4x+ 5

4x(4x+ 1)

=

(
d2

dx2
+

4x+ 3

2x(4x+ 1)

d

dx
− 4x+ 5

4x(4x+ 1)

)(
d

dx
− 1

)
=

(
d

dx
− 4x2 + x− 1

x(4x+ 1)

)(
d2

dx2
+

1

2x

d

dx
− 1

4x

)
This shows that different irreducible decompositions, where the degrees are permuted,
are possible.
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In general, although the irreducible factors are not unique, their degrees are unique (up
to permutation) (see [0]). By Theorem 3.1, any irreducible subspace of the solution space
of L(y) = 0 corresponds to a right factor of L(y). Therefore for a completely reducible
galois group (for example, a primitive galois group) the irreducible factors correspond
to irreducible invariant subspaces. In this case, any permutation of the degrees gives a
(possibly different) factorization. Further properties of factorizations and an algorithm
computing a factorization of a reducible differential equation L(y) with coefficients in
C(x) can be found in [0, 0, 0].

An Eisenstein criterium for linear differential equation is given in [0]. Another condition
for irreducibility is given in [0], p. 293.

3.2.2. Symmetric power of a differential equation

In this section we show how, given some linear differential equations, one can construct
the following equations:

Theorem 3.4. (cf. [0]) Let L1(y) = 0 and L2(y) = 0 be linear differential equations of
degree respectively n1 and n2 and fundamental system respectively S1 = {u1, · · · , un1

}
und S2 = {v1, · · · , vn2

}. Then one can construct a differential equation:

L(y) = L1(y)⃝s L2(y) = 0 of degree n3 ≤ n1n2, whose solution space is spanned by
S = {u1v1, · · · , un1

v1, · · · , un1
vn2

}.
L(1)(y) = 0 of degree n ≤ n1, whose solution space is spanned by the set S(1) =
{δ (u1) , · · · , δ (un1

)}.

Proof. In order to construct L1(y)⃝s L2(y) = 0 we take two “arbitrary” solutions u and
v of L1(y) = 0 resp. L2(y) = 0 and differentiate their product:

Y = uv

δ(Y ) = δ(u)v + uδ(v)

· · ·

δm(Y ) =

m∑
j=0

(
m

j

)
δj(u)δm−j(v).

On the right side we can always replace terms δn1(u) and δn2(v) by derivatives of lower
order using L1(u) = 0 and L2(v) = 0. On the right side there are then at most n1n2
different terms δi(u)δj(v) where i < n1 and j < n2. This shows that for some m ≤ n1n2
the set {Y, δ(Y ), · · · , δm(Y )} is linear dependent over k, which gives a differential equation
for Y = uv.

For L1 =
∑n1

i aiδ
i(y) the differential equation L(1)(y) is given by:

If a0 = 0, then L(1)(y) =
∑n1

i=1 aiδ
i−1(y).

If a0 ̸= 0 then

L(1)(y) = anδ
n(y) +

n−1∑
i=0

(δ(ai+1) + ai)δ
i(y)− δ(a0)

a0

(
n∑

i=1

aiδ
i−1(y)

)
.
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In [0] it is shown that S (resp. S(1)) spans the solution space of L1(y)⃝s L2(y) = 0 (resp.
L(1)(y) = 0). 2

An important special case of the above construction is:

Definition 3.5. The linear differential equation

L⃝s m(y) =

m︷ ︸︸ ︷
L(y)⃝s · · ·⃝s L(y) = 0

is called symmetric power of order m of L(y) = 0.

In order to compute L⃝s m(y), one can also differentiate um, where u is an “arbitrary”
solution of L(y) = 0. It can be shown that the differential equation of lowest degree for
um is just L⃝s m(y) (note that um has to be a solution of L⃝s m(y)). The order of L⃝s m

is at most
(
n+m−1
n−1

)
, where n is the degree of L(y) (cf. [0]).

Example: For the the Airy equation L(y) =
d2y

dx2
− xy = 0 we get

L⃝s 2(y) =
d3y

dx3
− 4x

dy

dx
− 2y

L⃝s 6(y) =
d7y

dx7
− 56x

d5y

dx5
− 140

d4y

dx4
+ 784x2

d3y

dx3
+ 2352x

d2y

dx2

−4(576x3 − 295)
dy

dx
− 3456x2y.

Note that
(
L⃝s 2

)⃝s 3
= L⃝s 6(y).

Let L(y) have order n and let L(y) = 0 have solution space V in some Picard-Vessiot
K extension of k. There is a natural map Φm of the mth symmetric power Sm(V ) (c.f.,
[0], p. 586) into K given by sending z1⃝s . . .⃝s zm to z1 · . . . · zm. The image of this map
is the solution space of L⃝s m(y) = 0. The following lemma summarizes the properties of
Φm needed later:

Lemma 3.5. 1 Φm is a G(L) morphism of G(L) modules.
2 If all representations of G(L) are completely reducible, then the solution space of
L⃝s m(y) = 0 is G(L)-isomorphic to a direct summand of Sm(V ).

3 If n = 2, then Φm is a bijection for all m. In particular, L⃝s m(y) = 0 has order
m+ 1.

4 If n = 3 and Φi is a bijection for i < m, then the dimension of the kernel of Φm

is at most 1. In this case, the order of L⃝s m(y) = 0 is either 1
2 (m + 2)(m + 1) or

1
2 (m+ 2)(m+ 1)− 1.

5 If n = 3 and Φi is a bijection for i < m−1, then the dimension of the kernel of Φm

is at most 3. In this case, the order of L⃝s m(y) = 0 is at least 1
2 (m+2)(m+1)− 3.

Proof. 1. is obvious and 2. follows from 1. and complete reducibility. Now assume
n = 2. If Φm is not injective, then there is a homogeneous polynomial F of degree m
with coefficients in C such that F (y1, y2) = 0 for some linearly independent solutions y1
and y2 of L(y) = 0. Since C is algebraically closed, F may be written as a product of
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linear polynomials, so F (y1, y2) = 0 would imply that y1 and y2 are linearly dependent,
a contradiction. This proves 3.

Assume n = 3 and assume Φi is a bijection for i < m. Let {y1, y2, y3} be a basis of
V . We then have that if P ̸= 0 is a homogeneous polynomial of degree i, i < m, then
P (y1, y2, y3) ̸= 0. Let W = {F | F is a homogeneous polynomial of degree m with coeffi-
cients in C such that F (y1, y2, y3) = 0}. Each non-zero F in W must be irreducible, since
otherwise we would have P (y1, y2, y3) = 0 for some homogeneous P of degree less thanm.
If the kernel of Φm has dimension at least 2, then there would be two relatively prime irre-
ducible homogeneous polynomials F1 and F2 such that F1(y1, y2, y3) = F2(y1, y2, y3) = 0.
The resultant Resy3(F1, F2), of F1 and F2 with respect to y3, is an homogeneous poly-
nomial F (y1, y2) of degree m

2 in y1 and y2 which must be zero. As in the previous case,
a factorization of F (y1, y2) yields a contradiction. This proves 4.

Again assume n = 3 and assume Φi is a bijection for i < m − 1. Let {y1, y2, y3} be a
basis of V . If Φm−1 is a bijection then by what we have just shown, the kernel of Φm

has dimension at most 1. Assume Φm−1 is not a bijection. This means that the kernel
of Φm−1 has dimension 1. Identifying the symmetric powers with spaces of homogeneous
polynomials, we let P be a homogeneous polynomial of degree m − 1 that spans this
kernel. We see, as above, that P must be irreducible. Let W = {F | F is a homogeneous
polynomial of degree m with coefficients in C such that F (y1, y2, y3) = 0}. If F ∈ W
and P does not divide F , then arguing with resultants as in the previous case, we would
have a contradiction. Therefore, P divides all the elements of W . This means that W is
a subspace of the space of homogeneous polynomials of degree m spanned by Y1P, Y2P
and Y3P . Therefore the dimension of W is at most 3. 2

The following will give us a criterium to test if the galois group is monomial. As we
have noted at the beginning of section 2.1, if n is prime, then a subgroup of GL(n,C) is
imprimitive if and only if it is monomial. If n is not prime, there are always non-monomial
imprimitive subgroups of GL(n,C).

Proposition 3.6. If an irreducible linear differential equation L(y) = 0 of order n with
coefficients in k has a monomial differential galois group G(L) ⊆ SL(n, C), then the n-th
symmetric power L⃝s n(y) = 0 of L(y) = 0 has a solution which is the square root of an
element of k.

Proof. If G(L) ⊆ SL(n, C) is a monomial group, then there is a basis {y1, · · · , yn} of
the solution space of L(y) = 0 such that all matrices σ ∈ G(L) contain only one non zero
element in any row and any column. Such a matrix σ has n non zero entries a1, · · · , an,
and since it is an element of a unimodular group, its determinant ±a1a2 · · · an is 1. For
any σ ∈ G(L) we get

σ(y1y2 · · · yn) = ±(a1a2 · · · an)(y1y2 · · · yn) = ±det(σ) · (y1y2 · · · yn)
= ±y1y2 · · · yn.

This shows that (y1y2 · · · yn)2 is invariant under G(L) and thus belongs to k. Since
y1y2 · · · yn is a solution of L⃝s n(y) = 0, we get that L⃝s n(y) = 0 has a solution which is
the square root of an element of k. 2
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4. Main results

4.1. Galois groups and symmetric powers

In this section we describe the behavior of the galois group in terms of properties
of various symmetric powers of the differential equation. This will give necessary and
sufficient conditions for a second or third order linear differential equation to have a
liouvillian solution. We start with second order equations. In what follows k will always
be a differential field with algebraically closed field of constants C.

Theorem 4.1. Let L(y) = 0 be a second order homogeneous linear differential equation
with coefficients in k and unimodular differential galois group.

1 L(y) is reducible if and only if L(y) = 0 has a solution y ̸= 0 such that y′/y ∈ k.
In this case G(L) ⊆ SL(n, C) is reducible.

2 Assume L(y) is irreducible. Then G(L) is imprimitive if and only if L⃝s 2(y) = 0
is reducible. In this case L⃝s 2(y) = 0 has a solution y ̸= 0 such that y2 ∈ k. and
G(L) ∼= C∗ ⋊ Z/2Z or the dihedral group D2n.

3 Assume G(L) is primitive. Then L⃝s 6(y) = 0 is reducible if and only if G(L) is a
finite group.

4 G(L) ∼= SL(2, C) if none of the above hold.

Proof. Theorem 3.1 handles case 1. Therefore assume that L(y) is irreducible. In this
case the galois group is either primitive or imprimitive. As we noted in the discussion
following Proposition 2.3, the only primitive subgroups of SL(2, C) are either finite or
all of SL(2, C).

Assume L⃝s 2(y) is reducible. Lemma 3.5 implies that the solution space of L⃝s 2(y)
is G(L)-isomorphic to the second symmetric power of the solution space of L(y) = 0.
Therefore this symmetric power must be reducible. Table 1 shows that G(L) cannot be
a finite primitive group. Proposition 2.4 shows that G(L) cannot be SL(2, C). Therefore
G(L) must be imprimitive. Proposition 3.6 implies that L⃝s 2(y) has a solution y ̸= 0
such that y2 ∈ k. Furthermore G(L) must be a monomial group which in this case means
that it is a subgroup of C∗ ⋊ Z/2Z. Either it is the full group or it must be a proper
subgroup, in which case it is finite and must be a dihedral group. Conversely, if G(L) is
imprimitive, proposition 3.6 implies that L⃝s 2(y) is reducible.

Now assume that G(L) is primitive. We then have that G(L) is one of the finite prim-
itive groups or all of SL(2, C). Table 1 implies that L⃝s 6(y) is reducible. Conversely,
Proposition 2.4 implies that L⃝s 6(y) is irreducible if G(L) ∼= SL(2, C).

Finally, any proper subgroup of SL(2, C) is either reducible, imprimitive or a finite
primitive group so the final statement above is true. 2

In cases 1, 3, and 4 of the above, one can give simple criteria to determine the galois
group. We do this in the next three propositions. Case 2 is more problematic and we
discuss this following these three results.

Proposition 4.2. Let L(y) = 0 be a second order homogeneous linear differential equa-
tion with coefficients in k and unimodular differential galois group. Assume L(y) is re-
ducible (and so has a solution y ̸= 0 such that y′/y ∈ k).
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1 If L(y) = 0 has a unique (up to constant multiple) solution y ̸= 0 such that y′/y ∈ k,
then G(L) is conjugate to a subgroup of

T =

{(
a b
0 a−1

)
| a, b ∈ C, a ̸= 0

}
Furthermore, G(L) is a proper subgroup of T if and only if ym ∈ k for some positive
integer m. In this case, G(L) is conjugate to

Tm =

{(
a b
0 a−1

)
| a, b ∈ C, am = 1

}
where m is the smallest positive integer such that ym = 1.

2 If L(y) = 0 has two linearly independent solutions y1 and y2 such that y′i/yi ∈ k, i =
1, 2, then G(L) is conjugate to a subgroup of

D =

{(
a 0
0 a−1

)
| a ∈ C, a ̸= 0

}
In this case, y1y2 ∈ k. Furthermore, G(L) is conjugate to a proper subgroup of D if
and only if ym1 ∈ k for some positive integer m. In this case G(L) is a cyclic group
of order m where m is the smallest positive integer such that ym1 ∈ k.

Proof. If L(y) = 0 has a solution y ̸= 0 such that y′/y ∈ k then y is an eigenvector for
all the elements of G(L) so G(L) is conjugate to a subgroup of T . If L(y) = 0 has two
linearly independent solutions y ̸= 0 such that y′/y ∈ k then the elements of G(L) have
two independent common eigenvectors so G(L) is conjugate to a subgroup of D.

Assume case 1 holds and select a basis of the solution space such that G(L) ⊆ T . The

map sending σ =

(
a b
0 a−1

)
to a is a homomorphism of G(L) to C∗. If the image

of G(L) is a proper subgroup of C∗, then this image is a finite cyclic group. Therefore,
G(L) = Tm. Let y be a common eigenvector of G(L). We then have σ(ym) = (ay)m = ym

for any σ ∈ G(L) since a is an mth root of 1. Clearly, m is the smallest positive integer
such that ym ∈ k. This proves 1.

Assume L(y) = 0 has two linearly independent solutions y1 and y2 such that y′i/yi ∈
k, i = 1, 2. With respect to y1 and y2 G(L) may be identified with a subgroup of D. D
is isomorphic to C∗ so any proper subgroup is a finite cyclic group. Furthermore, for any
σ ∈ G(L), σ(y1y2) = ay1a

−1y2 = y1y2 so y1y2 ∈ k. The remaining claim follows as above.
2

When k = C(x), x′ = 1, one has algorithms to decide this question (see the factoriza-
tion algorithms mentioned above and also [0, 0]). [0] also mentions the idea of seeing how
many solutions one has of a specified form to determine the galois group.

Proposition 4.3. Let L(y) = 0 be a second order homogeneous linear differential equa-
tion with coefficients in k and unimodular differential galois group. Assume G(L) is prim-
itive.

1 L⃝s 3(y) factors over k if and only if G(L) ∼= ASL2
4 . In this case, L⃝s 3(y) = L1(L2(y))

where L1(y) and L2(y) have order 2.
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2 Assuming L⃝s 3(y) irreducible, then L⃝s 4(y) factors over k if and only if G(L) ∼=
SSL2
4 . In this case, L⃝s 4(y) = L1(L2(y)) where L1(y) and L2(y) have orders 3 and

2.
3 Assuming L⃝s 4(y) irreducible, then L⃝s 6(y) factors over k if and only if G(L) ∼=
ASL2

5 . In this case, L⃝s 6(y) = L1(L2(y)) where L1(y) and L2(y) have orders 4 and
3.

4 G(L) ∼= SL(2, C) if and only if L⃝s 6(y) is irreducible over k.

Proof. Lemma 3.5 states that the solution space of L⃝s m(y) = 0 is isomorphic to the
mth symmetric power of V , the solution space of L(y) = 0. Table 1 gives the decom-
positions of these spaces for small m and Proposition 3.1 gives the first three results.
Proposition 2.4 gives the final result. 2

Proposition 4.4. Let L(y) = 0 be a second order homogeneous linear differential equa-
tion with coefficients in k and unimodular differential galois group. G(L) ∼= SL(2, C) if
and only if L⃝s 6(y) is irreducible over k. Therefore, L(y) = 0 has liouvillian solutions if
and only if L⃝s 6(y) is reducible.

Proof. If G(L) ∼= SL(2, C), then Proposition 2.4 implies L⃝s 6(y) is irreducible over k.
Conversely, if G(L) is a proper subgroup of SL(2, C), then Theorem 4.1 implies that
L(y), L⃝s 2(y), or L⃝s 6(y) are reducible. If L(y) is reducible then the solution space V of
L(y) = 0 has a G(L) invariant subspace W . S6(W ) will be a G(L) invariant subspace of
S6(V ), so L⃝s 6(y) will be reducible. Similarly, if W is a proper G(L) invariant subspace
of S2(V ), then S3(W ) will be a proper G(L) invariant subspace of S6(V ). The final
statement follows from the fact that any proper subgroup of SL(2, C) has a component
of the identity that has dimension less than 3. 2

Proposition 4.4 can be improved if one knows a priori that L(y) = 0 has no algebraic
solutions (for example, if k = C(x) and L(y) = 0 is not fuchsian). In this case, the proof
shows that G(L) ∼= SL(2, C) if and only if L⃝s 2(y) is irreducible over k (in fact, if and
only if L⃝s 2(y) = 0 has a solution y ̸= 0 such that y′/y ∈ k). This fact is the basis of
the necessary conditions for liouvillian solutions developed by Kaplansky [0]. The above
shows that they are also sufficient in this case.

We note that it is not so simple to distinguish between the cases of a finite and an
infinite group when G(L) is imprimitive. This question is discussed in [0] and depends
on being able to decide : given an element u algebraic over k, determine if there is a
non-zero integer n such that y′/y = nu has a solution y algebraic over k. This question
is decidable when k = C(x), x′ = 1.

We now discuss the relationship between our ideas and Kovacic’s algorithm and we
assume the reader is familliar with [0]. Kovacic’s algorithm deals with four cases. His
first case corresponds to the case when the equation (and therefore also the group) is
reducible. The second case corresponds to the galois group being an imprimitive group.
Kovacic shows that in this case the linear differential equation L(y) = 0 has a solution
y ̸= 0 such that u = y′/y satisfies an irreducible polynomial equations u2+a1u+a0 = 0.
Kovacic’s algorithm attempts to find this equation. The coefficient a1 is of the form

a1 =
y′
1

y1
+

y′
2

y2
= (y1y2)

′

y1y2
for some solutions y1, y2 of L(y) = 0. In particular, this implies

that L⃝s 2(z) = 0 has a nonzero solution z such that z′/z is rational. By considering the
structure of the galois group, Kovacic can in fact show that z2 is rational. Kovacic further
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shows that the coefficient a0 is completely determined once a1 is known. Therefore, a
careful reading of Kovacic’s proof shows that he has proven parts 1. and 2. of Theorem 4.1.
Case 3 of Kovacic’s algorithm corresponds to the galois group being a primitive proper
subgroup of SL(2, C) and therefore being finite. Kovacic shows that in this case, L(y) = 0
has a solution y ̸= 0 such that u = y′/y satisfies an irreducible polynomial equation
um + am−1u

m−1 + . . . + a0 = 0 for m = 4, 6, or 12. The form of am−1 shows that
for m = 4, 6, or 12 L⃝s m(z) = 0 has a nonzero solution z such that z′/z is rational.
In particular, L⃝s m(z) = 0 will have a factor of order 1 in one of these cases. Kovacic
again shows that the other coefficients ai are completely determined by an−1 and so, he
shows that (assuming cases 1 and 2 do not hold) a necessary and sufficient condition that
L(y) = 0 has an algebraic solution is that for m = 4, 6, or 12 the equation L⃝s m(z) = 0
has a nonzero solution z such that z′/z is rational. Kovacic shows this using the internal
structure (e.g., existence of ”large” abelian subgroups) of the finite primitive subgroups
of SL(2, C). This could also be shown just from the representation theory in the spirit of
Theorem 4.1. When one uses the representation theory as we did, one is naturally led to
consider higher order factors of the symmetric powers. One can then find necessary and
sufficient conditions in terms of the factorization of symmetric powers of relatively small
order. This leads to our distinction of the cases of the algorithm in [0] using L⃝s m(z) = 0
for m ∈ {2, 3, 4, 6} instead of m ∈ {2, 4, 6, 12} (see [0]: p. 5 and p. 32):

Corollary 4.5. Let L(y) = 0 be a second order homogeneous linear differential equa-
tion with coefficients in k and unimodular differential galois group. Then one of the
following holds:

1 The equation L(y) = 0 has a solution of the form e
∫

ω where ω ∈ k if and only if
L(y) = 0 is reducible.

2 Assume that the above does not hold. The equation L(y) = 0 has a solution of the

form e
∫

ω where ω is algebraic over k of degree 2 if and only if L⃝s 2(y) = 0 is
reducible. In this case G(L) is an imprimitive subgroup of SL(2, C).

3 Assume that the above does not hold, then

(a) The equation L(y) = 0 has an algebraic solution of the form e
∫

ω where ω is
algebraic over k of degree 4 if and only if L⃝s 3(y) = 0 is reducible. In this case
G(L) ∼= ASL2

4 .

(b) The equation L(y) = 0 has an algebraic solution of the form e
∫

ω where ω
is algebraic over k of degree 6 if and only if L⃝s 4(y) = 0 is reducible and
L⃝s 3(y) = 0 is irreducible. In this case G(L) ∼= SSL2

4

(c) The equation L(y) = 0 has an algebraic solution of the form e
∫

ω where ω
is algebraic over k of degree 12 if and only if L⃝s 6(y) = 0 is reducible and
L⃝s 4(y) = 0 is irreducible. In this case G(L) ∼= ASL2

5 .

4 The differential equation has no liouvillian solutions. In this case G(L) ∼= SL(2, C).

Proof. The first case is trivial, so assume G(L) acts irreducibly.
If G(L) ⊆ SL(2, C) is an irreducible algebraic group which is not imprimitive and not

finite, then the last case holds.
If G(L) ⊆ SL(2, C) is a finite primitive group, then G(L) ∼= ASL2

4 , SSL2
4 or ASL2

5 . Table
1 proves the facts about the decomposition of the symmetric powers. That the algebraic
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degree 4, 6, 12 for ω is best possible follows from [0] p. 32 (or [0, 0]).
Since G(L) acts irreducibly (i.e. case 1 does not hold), we get from Theorem 4.1 and

Table 1 that G(L) is imprimitive if and only if L⃝s 2(y) = 0 is reducible. The fact that
the algebraic degree 2 for ω is best possible follows from [0] p. 32 (or [0, 0]). 2

We do not make any claims that the above conditions yield, at present, an algorithm
that is better than Kovacic’s. Kovacic analyses the situation much further and gives more
information than we do above (see [0] for improvements of Kovacic’s algorithm and ap-
plications and [0] for generalizations to higher order equations of some of Kovacic’s other
ideas and necessary conditions). We do claim that our results show the importance of
factorization algorithms and the need for finding more efficient ways to factor linear op-
erators. They are also readily generalized to higher order equations and can be used over
any differential field in which there exists an algorithm to factor differential operators.

We now turn to third order equations. We state our results first for groups that are
not primitive and then for primitive groups.

Theorem 4.6. Let L(y) = 0 be a third order linear differential equation with coefficients
in a differential field k with algebraically closed field of constants whose differential galois
G(L) group is unimodular.

1 L(y) = 0 is reducible if and only if L(y) = 0 has a solution y ̸= 0 such that y′/y ∈ k
or L∗(y) = 0, the adjoint of L(y) = 0, has a solution y ̸= 0 such that y′/y ∈ k (if
L(y) = y′′′ + py′ + qy = 0, then L∗(y) = y′′′ + py′ − (q − p′)y = 0) .

2 Assume L(y) is irreducible. Then G(L) is imprimitive if and only if L⃝s 3(y) = 0
has a solution y ̸= 0 such that y2 ∈ k. In this case G(L) is isomorphic to a subgroup
of C∗⋊S3, where S3 is the symmetric group on three letters. If G(L) is isomorphic
to a subgroup of C∗ ⋊ A3, where A3 is the alternating group on three letters, then
the above solution y is already in k.

3 Assume L(y) is irreducible and 2. does not hold, then G(L) is a primitive group.

Proof. L(y) = 0 is reducible if and only if L(y) = L2(L1(y)) or L(y) = L1(L2(y))
where L1(y) and L2(y) are of order 1 and 2 respectively with coefficients in k. If L(y) =
L1(L2(y)) then taking adjoints, we have L∗(y) = L∗

2(L
∗
1(y)). Therefore (1) holds.

Now assume that G(L) is irreducible. If G(L) is imprimitive, then Proposition 2.1
implies that L⃝s 3(y) = 0 has a solution y ̸= 0 such that y2 ∈ k. Now assume the conditions
of 2. hold. Table 2 implies that these conditions cannot hold if G(L) is primitive, unless
G(L) ∼= FSL3

36 . Since y2 ∈ k, we must have that χ2 = 1 where χ is the associated character
of the one dimensional invariant subspace generated by y of the third symmetric power
of the solution space S of L(y) = 0. If G(L) ∼= FSL3

36 , then all one dimensional characters
in the decomposition of the third symmetric power of S have degree 4, i.e. χ2 ̸= 1, χ4 = 1
(see remark after Table 2). We cannot be in this case. 2

Theorem 4.7. Let L(y) = 0 be a third order linear differential equation with coefficients
in a differential field k with algebraically closed field of constants, whose differential galois
group G(L) is unimodular. Assume that G(L) is primitive.

1 If L⃝s 2(y) has order 5 or factors then G(L) is isomorphic to PSL2, PSL2 × C3,
A5, A5 × C3 or FSL3

36 . In this case one of the following holds
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G(L) ∼= FSL3
36 if and only if L⃝s 2(y) has a factor of order 3, or

G(L) ∼= A5 or A5 × C3 if and only if L⃝s 3(y) has a factor of order 3 and a
factor of order 4, or
G(L) ∼= PSL2 or G(L) ∼= PSL2 × C3 if and only if the previous two cases do
not hold.

2 If L⃝s 2(y) has order 6 and is irreducible, then one of the following holds

G(L) ∼= G168 or G168 × C3 if and only if L⃝s 3(y) has a factor of order 3.
G(L) ∼= ASL3

6 if and only if L⃝s 4(y) is reducible and L⃝s 3(y) is irreducible.
G(L) ∼= HSL3

72 if and only if L⃝s 5(y) has more than 2 factors of order 3.
G(L) ∼= HSL3

216 if and only if L⃝s 5(y) has exactly 2 factors of order 3 and L⃝s 2(y)
has a factor of degree 2.
The galois group is SL(3, C) if and only if none of the above happen.

Proof. The proof proceeds by examining Table 2. Let V be the solution space of L(y) =
0. If L⃝s 2(y) has order 5 or factors, then S2(V ) must have an invariant subspace. This
can only happen if G(L) is one of the groups mentioned. Lemma 3.5.3 implies that the
order of L⃝s 2(y) is at least 5, so G(L) ∼= FSL3

36 if and only if L⃝s 2(y),has a factor of order
3. Lemma 3.5.4 implies that L⃝s 3(y) has order at least 7. Therefore if G(L) ∼= A5 or
A5 × C3 then L⃝s 3(y) has a factor of order 3. This does not happen in the other cases
considered, therefore 1. holds.

Assume L⃝s 2(y) has order 6 and is irreducible. Table 2 implies that G(L) ∼= G168 or
G168×C3 or ASL3

6 or HSL3
72 or HSL3

216 or SL(3, C). From Table 2 we get that G(L) ∼= G168

orG168×C3 if and only if L⃝s 3(y) has a factor of order 3. If G(L) ̸∼= G168 orG168×C3, then
none of the mth symmetric powers, m = 2, 3, 4, 5 of V have a 1 dimensional invariant
subspace for these groups, so the mth symmetric powers of L(y) have order exactly
1
2 (m+2)(m+1). Table 2 describes how these symmetric powers factor and 2. summarizes
the distinguishing cases.

If the galois group is SL(3, C) then all symmetric powers are irreducible, so the theorem
follows. 2

One can use Table 2 to state other necessary and sufficient conditions for the primitive
groups. For example, if L⃝s 2(y) has order 6 and is irreducible then G(L) ∼= ASL3

6 if and
only if L⃝s 3(y) is irreducible and L⃝s 4(y) factors. Since it is not clear which criteria will
be most usefull, we have just stated one set of criteria to give a taste of what can be done.
The above theorems allows us to give criteria for a third order linear differential equation
to be solvable in terms of lower order linear differential equations (c.f., [0], for third order
equations this concept coincides with the concept of “solving in terms of second order
equations” or “eulerian” [0, 0]).

Corollary 4.8. A third order linear differential equation L(y) = 0 with coefficients
in a differential field k with algebraically closed field of constants and whose differential
galois group G(L) is unimodular, is solvable in terms of lower order linear differential
equations if and only if L⃝s 4(y) has order less than 15 or factors.

Proof. We first note that L(y) = 0 is solvable in terms of lower order linear differential
equations if and only if G(L) is a proper subgroup of SL(3, C). To see this we use the
criterion of [0], Theorem 1 (c.f., [0] Theorem 5.1, p. 48): L(y) = 0 cannot be solved in
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terms of lower order linear differential equations if and only if G(L) has a lie algebra
g that is simple and such that if ρ : g → gl(m,C) with m < n, then ρ ≡ 0. The
simple lie subalgebras of sl(3,C) are sl(3,C) and sl(2,C) (c.f., [0]). Since sl(2,C)

has a representation of smaller degree, the only simple lie algebra having no nontrivial
representations of lower order is sl(3,C). Therefore L(y) = 0 cannot be solved in terms
of lower order linear differential equations if and only if G(L) = SL(3, C). Therefore if
L⃝s 4(y) has order less than 15 or factors, then G(L) ̸= SL(3, C), so L(y) = 0 is solvable
in terms of lower order linear differential equations.

Now we note that G(L) is a proper subgroup of SL(3, C) if and only if G(L) acts
reducibly or is imprimitive or is a primitive proper subgroup of SL(3, C). If G(L) acts
reducibly, then the solution space V of L(y) = 0 has an invariant one or two dimensional
subspace W . S4(W ) will be a proper invariant subspace of S4(V ), so L⃝s 4(y) has order
less than 15 or factors. If G(L) is imprimitive, then Theorem 4.6 implies that L⃝s 3(y) has
a factor of order 1. Therefore the solution space Z of L⃝s 3(y) = 0 has a one dimensional
invariant subspace. Let p span this space and y1, y2, y3 be a basis of V . Then y1p, y2p, y3p
spans an invariant subspace of the solution space of L⃝s 4(y) = 0 and so must factor or
have order at most 3. Finally, if G(L) is a primitive proper subgroup of SL(3, C), then
Table 2 shows that L⃝s 4(y) has order less than 15 or factors. 2

One also can give necessary and sufficient conditions for the existence of liouvillian
solutions:

Corollary 4.9. Let L(y) = 0 be an irreducible third order linear differential equation
with coefficients in a differential field k with algebraically closed field of constants whose
differential galois G(L) group is unimodular. L(y) = 0 has a liouvillian solution if and
only if

1 L⃝s 4(y) has order less than 15 or factors, and
2 one of the following holds:

L⃝s 2(y) has order 6 and is irreducible, or
L⃝s 3(y) has a factor of order 4.

Proof. L(y) = 0 has a liouvillian solution if and only if it is solvable in terms of lower
order linear differential equations and its galois group is not PSL2 or PSL2 × C3. The
result now follows from Theorem 4.6 and Table 2. 2

We now show how our apporach can be used to distinguish the different cases for the
algebraic degree of the logarithmic derivative of a liouvillian solution in the algorithm
given in [0] using the bounds given in [0] Theorem 5.2 and the improvement of this
bounds given in [0].

Corollary 4.10. Let L(y) = 0 be an irreducible third order linear differential equation
with coefficients in a differential field k with algebraically closed field of constants whose
differential galois G(L) group is unimodular.

1 L(y) has a solution whose logarithmic derivative is algebraic of degree 3 if and only
if L⃝s 3(y) has a solution y ̸= 0 such that y2 ∈ k. In this case G(L) is an imprimitive
subgroup of SL(3, C).
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2 If the above does not hold, then

(a) L(y) has an algebraic solution whose logarithmic derivative is algebraic of degree
6 if and only if L⃝s 3(y) has an irreducible factor of order 4. In this case G(L) ∼=
A5, A5 × C3 or FSL3

36 .
(b) L(y) has an algebraic solution whose logarithmic derivative is algebraic of degree

9 if and only if L⃝s 3(y) has an irreducible factor of order 2. In this case G(L) ∼=
HSL3

216 or HSL3
72 .

(c) L(y) has an algebraic solution whose logarithmic derivative is algebraic of degree
21 if and only if L⃝s 3(y) has an irreducible factor of order 3 and L⃝s 2(y) is
irreducible of degree 6. In this case G(L) ∼= G168 or G168 × C3.

(d) L(y) has an algebraic solution whose logarithmic derivative is algebraic of degree
36 if and only if L⃝s 3(y) is irreducible of degree 10 and L⃝s 4(y) is reducible. In
this case G(L) ∼= ASL3

6 .

3 If none of the above holds, then L(y) = 0 has no liouvillian solutions.

Proof. If L⃝s 3(y) has a solution y ̸= 0 such that y2 ∈ k, then G(L) is an imprimitive
subgroup of SL(3, C) (Theorem 4.6). In this case L(y) = 0 has a solution whose loga-
rithmic derivative is algebraic of degree 3 (Theorem 5.2 of [0]). The only if part follows
from the fact that the finite primitive group the bounds given in the Theorem are best
possible (cf. [0]), Theorem 4.4).
If the first case does not hold, then G(L) is a primitive subgroup of SL(3, C). If L⃝s 3(y)
has a factor of order 4, or L⃝s 2(y) is irreducible of degree 6 or L⃝s 3(y) is irreducible
of degree 10, then G(L) ̸∼= PSL2 or PSL2 × C3. If L

⃝s 3(y) or L⃝s 4(y) is reducible,
then G(L) ̸∼= SL(3, C) (cf. Proposition 2.4). Thus G(L) is a finite primitive subgroup of
SL(3, C). The conditions of the symmetric powers of L(y) = 0 now follow from Table
2 and the algebraic degree of the logarithmic derivative from Theorem 4.4 of [0]. This
proves 2.

If G(L) is not an imprimitive group and not a finite primitive subgroup of SL(3, C),
then the irreducible equation L(y) = 0 has no liouvillian solutions (cf. [0]), Corollary
3.7). 2

The above result shows that with the necessary and sufficient conditions given in this
paper, one has to look for at most one possible degree of logarithmic derivative of the
solution of L(y) = 0. This gives a substantial simplification of the algorithm given in [0]
for third order differential equations.

5. Examples

Using our results, we want to decide if the differential equation

L(y) =
d3 y

dx3
+

32x2 − 27x+ 27

36x2(x− 1)2
d y

dx
− 64x3 − 81x2 + 135x− 54

72x3(x− 1)3
y = 0

has a liouvillian solution.
The equation L(y) = 0 is reducible if and only if L(y) = 0 or its adjoint L∗(y) = 0 has

a right factor of order 1. This is equivalent to saying that either L(y) = 0 or L∗(y) = 0
has a solution whose logarithmic derivative is rational (cf. [0]). Since no such solution
exists (this could be computed for example using an algorithm implemented by Manuel
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Bronstein in the computer algebra system AXIOM, cf. [0]), we get that L(y) = 0 is
irreducible.

We now test if the differential galois group is an imprimitive subgroup of SL(3, C).
This is the case (cf. Theorem 4.6) if and only if L⃝s 3(y) =

d7y

dx7
+

224x2 − 189x+ 189

18x2(x− 1)2
d5y

dx5
+

−2240x3 + 2835x2 − 4725x+ 1890

36x3(x− 1)3
d4y

dx4

+
340480x4 − 574560x3 + 1263465x2 − 969570x+ 280665

1296x4(x− 1)4
d3y

dx3

+
−358400x5 + 756000x4 − 2036475x3 + 2275560x2 − 1284255x+ 289170

432x5(x− 1)5
d2y

dx2

+

(
1003520x6 − 2540160x5 + 8042895x4 − 11711070x3

576x6(x− 1)6

+
9723735x2 − 4309200x+ 793800

576x6(x− 1)6

)
d y

dx

+

(
−1576960x7 + 4656960x6 − 16875810x5 + 30150225x4

864x7(x− 1)7

+
−32863320x3 + 21565845x2 − 7858620x+ 1224720

864x7(x− 1)7

)
y

has a solution y such that y2 ∈ Q(x).
Since x2(x − 1)2 is a solution of L⃝s 3(y) = 0, we get that G(L) is an imprimitive

subgroup of SL(3, C). Thus L(y) = 0 has a solution whose logarithmic derivative is
algebraic of degree 3 (cf., Corollary 4.10).

We note that our approach does not determine the group G(L) in the imprimitive case.
But since in this example L(y) = 0 is the second symmetric power of the equation

d2 y

dx2
+

(
3

16x2
+

2

9(x− 1)2
− 3

16x(x− 1)

)
y = 0

whose differential galois group is ASL2
4 ([0], p. 23), we get by construction that G(L) ∼= A4

(from Table 1 it now also follow that L(y) = 0 is irreducible).
For third order differential equations very few examples can be found in the literature.

We shall show how one can construct such examples for the primitive groups. Assume,
we are given a finite group G and a differential equation of arbitrary order with G as
its galois group. Let us also assume we know that G has an irreducible representation
of degree n. We shall show how to construct a differential equation of order n having
the image of G in GL(n) as its galois group. The idea behind this construction is that
such a differential equation will occur as a factor of some other equation that we can
construct. This will also allow us to construct a differential equation for a group G from
the knowledge of an irreducible polynomial P (Y ) ∈ Q(x)[Y ] whose Galois group is G.

The validity of our construction depends on the following result of Burnside which
shows that if V is a faithful G-module, then any irreducible G-module is a G-summand
of V ⊗n = V ⊗ . . .⊗ V︸ ︷︷ ︸

n times

for some n ≥ 1:
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Theorem 5.1. ([0],[0] p. 25) Let V be a finite dimensional vector space and G ⊂ GL(V )
a finite group. If W is a finite dimensional vector space on which G acts irreducibly, then
for some n ≥ 1, W appears as a direct summand of V ⊗n.

We shall also need the following result which shows that one can construct a linear
differential equation whose solution space is isomorphic to the tensor product of the
solution spaces of two given linear differential equations.

Proposition 5.2. Let L1(y) = 0 and L2(y) = 0 be linear differential equations with
coefficients in Q(x) of orders n and m respectively. One can effectively construct a linear
differential equation L1 ⊗ L2(y) = 0 with coefficients in Q(x) having the following prop-
erty: if K is a Picard-Vessiot extension of Q(x) such that L1(y) = 0 (resp. L2(y) = 0) has
n (resp. m) linearly independent solutions in K, then the solution space of L1⊗L2(y) = 0
is G(K/Q(x)) isomorphic to V1⊗V2 where V1 (resp. V2) is the solution space of L1(y) = 0
(resp. L2(y) = 0) in K.

Proof. Let L
(i)
2 (y) = 0 be the differential equation whose solution space is {y(i) | y ∈

V2} and let α be a nonsingular point of L1⃝s L
(i)
2 (y) for i = 0, . . . ,m − 1. Such a point

exists and can be effectively found since each L
(i)
2 (y) = 0 and so, each L1⃝s L

(i)
2 (y) can

be effectively constructed. For notational convenience, we assume α = 0. Let t be any

integer greater than or equal to the orders of the L1⃝s L
(i)
2 (y). Note that if z is a solution

of L1⃝s L
(i)
2 (y) = 0 and z(0) = z′(0) = . . . = z(t)(0) = 0, then z = 0.

Let K be a Picard-Vessiot extension of Q(x) and let w1, . . . , wm be a basis of the solution

space V2 of L2(y) = 0 in K. Let ui =
∑m−1

j=1 xj·tw
(j)
i . One can show that the ui are linearly

independent (since det(w
(j)
i ) ̸= 0) and that they form a basis of a G(K/Q(x)) module

isomorphic to V2. Let y1, . . . , yn be a basis of V1 in K and consider the elements {yiuj}
in K. We claim that these are linearly independent over the constants. To see this, let∑

i,j cijyiuj = 0 for some constants cij . This implies that
∑m−1

k=0 x
k·t∑

i,j cijyiw
(k)
j = 0.

Note that each zk =
∑

i,j cijyiw
(k)
j is a solution of L1⃝s L

(k)
2 (y) = 0 and so has a zero of

order at most t − 1 at x = 0 if zk ̸= 0. Therefore each term xk·t
∑

i,j cijyiw
(k)
j is either

zero or has a zero of order between k · t and k · t+ t− 1. Since these terms sum to zero,

each of them must equal zero. Therefore, for each k, 0 ≤ k ≤ m − 1,
∑

i,j cijyiw
(k)
j = 0.

Since det(w
(k)
j ) ̸= 0, we have for each j, 1 ≤ j ≤ m,

∑n
i=1 cijyi = 0. Since the yi are

linearly independent, we have all cij = 0. Therefore the elements {yiuj} are linearly
independent over the constants. One now sees that they form the basis of a G(K/Q(x))
module isomorphic to V1 ⊗ V2. Proceeding as in Theorem 3.4, one sees that these form
the basis of the solution space of a linear differential equation L1 ⊗ L2(y) = 0 with
coefficients in Q(x) and that this operator can be constructed just knowing L1(y), L2(y)
and the integer t. 2

Corollary 5.3. Let L(y) = 0 be a linear differential equation of order n with coeffi-
cients in Q(x). For any m, one can effectively construct a linear differential equation
L⊗m
1 (y) = 0 with coefficients in Q(x) having the following property: if K is a Picard-

Vessiot extension of Q(x) such that L1(y) = 0 has n linearly independent solutions in
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K, then the solution space of L⊗m
1 (y) = 0 is G(K/Q(x)) isomorphic to V ⊗m where V is

the solution space of L(y) = 0.

Combining Theorem 5.1 and Corollary 5.3, we see that the desired differential equation
will eventually occur as a factor of some L⊗m(y) = 0. The orders of these equations grow
very quickly. Sometimes one can find the desired differential equation by looking at only
symmetric powers:
Example: The differential equation

d2y

dx2
+

21

100

x2 − x+ 1

x2(x− 1)2
y = 0

is irreducible and G(L) ∼= ASL2
5 (see [0], p. 342). According to Table 1, the third symmetric

power of this differential equation

L(y) =
d3y

dx3
+

21(x2 − x+ 1)

25x2(x− 1)2
d2y

dx2
+

21(−2x3 + 3x2 − 5x+ 2)

50x3(x− 1)3
y

is irreducible and has galois group A5. In order to prove that G(L) ∼= A5 using factoriza-
tion of differential operators over over Q(x), it is enough (cf., Theorem 4.6 and 4.7) to
show that:

1 L(y) is irreducible.

2 L⃝s 3 has no solution y such that y2 ∈ Q(x).

3 L⃝s 2 has order 5 or factors.

4 L⃝s 3 has a factor of order 3.

We note that, since L⃝s 2 is the fourth symmetric power of the above second order equa-
tion, L⃝s 2 will be of order 5 in this case (cf., Lemma 3.5). In this case, the fact that L⃝s 3

has no solution y such that y2 ∈ Q(x) will follow from a factorization of L⃝s 3, which (if
G(L) ∼= A5) will have no factor of order 1.

Assume we are given an irreducible polynomial P (Y ) ∈ Q(x) such that the galois
group of P (Y ) = 0 is G and an irreducible representation of G ∈ GL(V ). Assume P (Y )
has degree n. Differentiating P (Y ) = 0, and successively solving for the derivatives of
Y and reducing mod P (Y ). we get for i = 0, . . . , n expressions of the form Y (i) =
ai,o + ai,1Y + . . . + ai,n−1Y

n−1, with the ai,j ∈ Q(x). These n + 1 expressions in the
n terms Y j must be linearly dependent over Q(x), so we can find a linear differential
equation L(y) = y(n)+ . . .+ a0y = 0 with n′ ≤ n and coefficients in Q(x) whose solution
space is spanned by the roots of P (Y ) = 0. Note that G(L) is G. For some value of m,
L⊗m(y) = 0 has a solution space having a subspace G(L) isomorphic to W . Therefore
some factor of L⊗m(y) = 0 will have a solution space G(L) isomorphic to W .

There are two problems in using the above method. The first is that one needs to
determine the representation (or at least its character) of G(L) on the solution space of
L(y) = 0 in order to be able to predict for which value of m L⊗m(y) = 0 has a solution
space having a subspace isomorphic to W . The second problem is that L⊗m(y) = 0 may
have many factors of the same order whose solution spaces are different G-modules. One
is faced with the problem of determining which factor gives the desired representation.
Nonetheless, the above argument shows that such an operator always exists. We now
give an example, where some of these problems can be avoided.
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Example: We will show how a third order differential equation with differential galois
group G168 can be constructed using the polynomial

Y 7 − 56Y 6 + 609Y 5 + 1190Y 4 + 6356Y 3 + 4536Y 2 − 6804Y − xY 3(Y + 1)− 5832,

which is irreducible over Q(x) and has galois group G168
∼= PSL2(7) (se e.g. [0], p. 188).

Using the variable transformation Z = Y − 1
7 we get the irreducible polynomial

Y 7 − 735Y 5 − (x+ 10290)Y 4 − (33x− 4116)Y 3 − (408x− 979608)Y 2

−(2240x− 7020524)Y − (4608x− 15731352),

which we denote P (Y ), whose galois group over Q(x) is also G168. We denote y1, . . . , y7
the solutions of P (Y ) = 0 and K the splitting field of P (Y ) = 0 over Q(x). The functions
y1, . . . , y7, whose derivatives all belong to K, will satisfy a differential equation L(y) = 0
of order at most 7 with coefficients in Q(x). If L(y) = 0 is of degree 7, then G(L)
is equivalent to a permutation representation of degree 7 of G168. Such a permutation
representation has an invariant subspace generated by y1+ . . .+y7. Since y1+ . . .+y7 = 0
by construction, the functions y1, . . . , y7 must satisfy a differential equation L(y) = 0 of
degree at most 6, and computation shows that L(y) = 0 is in fact of degree 6. This
differential equation is not of the form given in Theorem 3.3, but since G168 is a perfect
group, the corresponding differential galois group will be unimodular. The group G168 has
6 irreducible characters: the trivial charcater χ1, two characters χ3,1 and χ3,2 of degree
3 and the characters χ6, χ7, χ8 of degree 6, 7 and 8. According to these characters, if
L(y) = 0 is reducible, then it either has an irreducible factor of order 3 or only irreducible
factors of order 1. The last case clearly can not happen. Thus, if a factorization of
L(y) = 0 does not produce an irreducible third order equation (one can show that this
is not possible), then L(y) = 0 is an irreducible equation of order 6 with G(L) ∼= G168.
Using the above Corrolary 5.3 we can construct an equation L⊗m(y) = 0 whose solution
space is isomorphic to V ⊗m where V is the solution space of L(y) = 0. From Theorem
5.1 we get that for some m the character of G(L⊗m) contains a character of degree 3 of
G168. Decomposing powers of χ6 we get:

(χ6)
2 = χ1 + 2χ6 + χ7 + 2χ8

(χ6)
3 = 2χ1 + 3χ3,1 + 3χ3,2 + 10χ6 + 8χ7 + 10χ8

Thus by factoring L⊗3(y) = 0 one will get an irreducible third order differential equation
with galois group G168.

The above example shows that working with tensor products instead of symmetric
products leads to differential equations of very large order containing a large amount of
redundancy. This is the reason why we have stated our main results using symmetric
powers instead of tensor powers.
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In this paper we show that the index of a 1-reducible subgroup of the differential Galois

group of an ordinary homogeneous linear differential equation L(y) = 0 yields the best
possible bound for the degree of the minimal polynomial of an algebraic solution of the

Riccati equation associated to L(y) = 0. For an irreducible third order equation we show

that this degree belongs to {3, 6, 9, 21, 36}. When the Galois group is a finite primitive
group, we reformulate and generalize work of L. Fuchs to show how to compute the

minimal polynomial of a solution instead of the minimal polynomial of the logarith-

mic derivative of a solution. These results lead to an effective algorithm to compute
Liouvillian solutions of second and third order linear differential equations.

0. Introduction

The computation of the algebraic solutions of a linear differential equation L(y) = 0
over the field of rational functions was a problem of great interest of the end of last
century. P. Pepin, H. Schwarz, L. Fuchs, F. Klein, C. Jordan and others worked on this
problem and gave a solution for second order equations (cf. (Baldassarri and Dwork
(1979)), the intoduction of Boulanger (1898), and Gray (1986)). Many of the earliest
contributions to the representation theory of finite groups have been made in connection
with differential equation (e.g. Jordan’s Theorem) and it was the starting point for the
classification of the finite primitive groups. In this paper we will focus on the ideas of
Fuchs. In Fuchs (1878), Fuchs showed how the (then new) tools of invariant theory could
be used to construct, in many cases, the minimal polynomial of an algebraic solution of
a second order linear differential equation.

The more general question of finding the liouvillian solutions of a linear differential
equation, in which case the differential Galois group can be infinite, leads to the theory
of linear algebraic groups. But for a primitive unimodular Galois group, all liouvillian
solutions are algebraic (cf. Ulmer (1992)) and in this case the approach of Fuchs can

† Partially supported by NSF Grant 90-24624
‡ Partially supported by Deutsche Forschungsgemeinschaft, while on leave from Universität Karlsruhe.

The second author would like to thank North Carolina State University for its hospitality and partial
support during the preparation of this paper.
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be used. This leads to an effective method for computing the minimal polynomial of a
solution in this case. This computation is much more linear than the computation of
the minimal polynomial of the logarithmic derivative of a solution which is performed

in the algorithm proposed by Kovacic for second order equations† and in the general
algorithm proposed by the first author (cf. Kovacic (1986) and Singer (1981)). In the
direct computation of a minimal polynomial of a solution, the knowledge of the finitely
many possibilities for the differential Galois group can be used not only to bound the
degree of the minimal polynomial, but also to compute the coefficients of this polynomial.
In this paper we propose the following method for the computation of liouvillian solutions:

i) Case 1: If the differential Galois group is a reducible linear group, then a factorisa-
tion of the differential equation is used to reduce the problem to a linear differential
equation of lower order. In this paper we show how this can be done for third order
equations.

ii) Case 2: If the differential Galois group is an imprimitive linear group, then the
algorithm proposed in Singer (1981) by the first author is used. For second (resp.
third) order equations, this leads to the computation of a solution whose logarithmic
derivative is algebraic of degree 2 (resp. 3), in which case this general algorithm is
still practicable.

iii) Case 3: If the differential Galois group is a primitive finite linear group, then we
show how the method of Fuchs can be extended to compute the minimal polynomial
of an algebraic solution in a very efficient way.

In our approach, we assume that, over the differential field k of coefficients of L(y) = 0,
algorithms computing a factorisation, a solution whose logarithmic derivative is in k (for
case 2) and a solution which is in k (for case 3) of a of linear differential equation exist
(see Section 1 for a discussion and references).

In this paper we discuss explicitely second and third order differential equation, but
the extension of the method of Fuchs for case 3 to higher order equations is now straight-
foward.

The paper is organized as follow: in the first section we derive some results from
differential Galois theory. In the second section we show how, using factorisation, case 1
of a reducible third order linear differential equation can be be reduced to the problem
of finding liouvillian solutions of a second order equation. In the next section we derive
exact possible algebraic degrees of the logarithmic derivative of a second or third order
equation. We then briefly discuss the algorithm given by the first author which is used
in case 2, where the Galois group is an imprimitive linear group. In the last and main
section we focus on differential equations with primitive differential Galois groups. We
first compute a bound for the algebraic degree of a solution and then use the semi-
invariants of the Galois group to compute the coefficients of the minimal polynomial of
an algebraic solution. We also apply the method to a second and a third order linear
differential equation with primitive Galois group and compute the minimal polynomial
of a solution in both cases.

† In fact, an algorithm (with some mistakes) to find the minimal polynomial of the logarithmic
derivatives of a solution of a second order linear differential equation was first given by Pepin one
hundred years before Kovacic (1986) and Singer (1981) (cf. Pépin (1881)). Furthermore, in Pépin (1881),
Pépin is able to use his method to verify the Schwarz list of hypergeometric equations with algebraic
solutions (cf. Boulanger (1898))
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1. Differential Galois Theory

In this section we first briefly review some facts about differential algebra and the
existing algorithms for computing liouvillian solutions of linear differential equations.
For a more complete exposition we refer to Kaplansky (1957), Kovacic (1986), Singer
(1981) or Singer (1990). In the following we will use the same notation as in Ulmer
(1992) or Singer and Ulmer (1992).

A differential field (k, δ) is a field k together with a derivation δ on k. A differential
field extension of (k, δ) is a differential field (K,∆) such that K is a field extension of k
and ∆ is an extension of the derivation δ to a derivation on K. In this paper we always
assume that k is a field of characteristic 0 and that the field C = kerk(δ) of constants of

δ in k is algebraically closed (e.g. (Q(x),
d

dx
)).

We also write y(n) instead of δn(y) and y′, y′′, . . . for δ(y), δ2(y), . . .. Unless otherwise
stated, a differential equation L(y) = 0 over k always means an ordinary homogeneous
linear differential equation

L(y) = y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0 (ai ∈ k).

In the following we will have to compute rational solutions z of L(y) = 0 (i.e. z ∈ k),
and solutions of L(y) = 0 whose logarithmic derivative is rational (i.e. z′/z ∈ k). Al-
gorithms computing such solutions for various coefficient fields are described in Bron-
stein. (1992), Liouville (1833), Schlesinger (1895) (volume II, §177) and Singer (1991)
(cf. Proposition (2.3)). In the following we always assume that k is a differential field

over which such solutions can be computed (e.g. C(x),
d

dx
)). The computation of a so-

lution whose logarithmic derivative is rational is usually much more difficult than the
computation of a rational solution.

Definition 1.1. A differential field extension (K,∆) of (k, δ) is a liouvillian extension
if there is a tower of fields

k = K0 ⊂ K1 ⊂ · · · ⊂ Km = K,

where Ki+1 is a simple field extension Ki(ηi) of Ki, such that one of the following holds:

i) ηi is algebraic over Ki, or
ii) δ (ηi) ∈ Ki (extension by an integral), or
iii) δ (ηi) /ηi ∈ Ki (extension by the exponential of an integral).

A function contained in a liouvillian extension of k is called a liouvillian function over
k.

In Kovacic (1986) an algorithm is given to find a basis of the liouvillian solutions of
a second order linear differential equation with coefficients in k0(x), where k0 is a finite
algebraic extension of Q. In Singer (1981) the first author gives a procedure to find a
basis of the liouvillian solutions of a linear differential equation L(y) = 0 of arbitrary
degree n with coefficients belonging to a finite algebraic extension of Q(x).

We refer to Kaplansky (1957), Kovacic (1986), Singer (1981), Singer (1990), Ulmer
(1992) or Singer and Ulmer (1992) for the definition of a Picard Vessiot extension (PVE)
K associated with L(y) = 0, which can be viewed as a splitting field of L(y) = 0, and of
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the differential Galois group G(L) of L(y) = 0, which consists of the automorphisms of a
PVE K of k that commute with δ.

If we choose a fundamental set of solutions {y1, y2, . . . , yn} of the equation L(y) =
0, then for each σ ∈ G(L) we get σ(yi) =

∑n
j=1 cijyj , where cij ∈ C. This gives a

faithful representation of G(L) as a subgroup of GL(n, C). Different choices of bases
{y1, y2, . . . , yn} give equivalent representations. This equivalence class of representations
is fundamental to our approach. In the sequel we always consider this representation as
the representation of G(L).

Many properties of the equation L(y) = 0 and of its solutions are related to the
structure of the group G(L):

Theorem 1.1. (see e.g. Kolchin (1948)) A differential equation L(y) = 0 with coeffi-
cients in k has

i) only solutions which are algebraic over k if and only if G(L) is a finite group,
ii) only liouvillian solutions over k if and only if the component of the identity G(L)◦

of G(L) in the Zariski topology is solvable. In this case L(y) = 0 has a solution
whose logarithmic derivative is algebraic over k.

The following theorem will enable us to always assume that the differential Galois
group G(L) ⊆ GL(n, C) of a differential equation L(y) = 0 of degree n is unimodular.

Theorem 1.2. (Kaplansky (1957), p. 41) The differential Galois group of a differential
equation of the form

L(y) = y(n) + an−1y
(n−1) + · · ·+ a1y

′ + a0y = 0 (ai ∈ k) (1.1)

is a unimodular group (i.e. G(L) ⊆ SL(n, C)) if and only if ∃W ∈ k, such that W ′/W =
an−1.

Using the variable transformation y = z · exp
(
−
∫
an−1

n

)
it is always possible to trans-

form a given differential equation L(y) into an equation LSL(y) of the form:

L(y) = y(n) + an−2y
(n−2) + · · ·+ a1y

′ + a0y = 0 (ai ∈ k). (1.2)

For L(y) = y′′′ + a2y
′′ + a1y

′ + a0y we get:

LSL(y) = y′′′ +

(
a1 −

a2
2

3
− a′2

)
y′ +

(
a0 −

a1a2
3

− a′′2
3

+
2a2

3

27

)
y.

Lemma 1.3. Let k ⊂ K be differential fields of characteristic zero with the same field of
constants and y ∈ K with y′/y ∈ k. If y is algebraic over k, then the minimal polynomial
of y over k is of the form yn − a = 0 for some a ∈ k,

Proof. Let y′/y = u ∈ k and

yn + an−1y
n−1 + . . .+ a0 = 0

be the minimal polynomial of y over k. Differentiating we have:

nuyn + (a′n−1 + (n− 1)uan−1)y
n−1 + . . .+ a′0 = 0.
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Comparing coefficients we have

nuai = a′i + iuai (i = 1, . . . , n− 1).

If for some i, 0 < i < n, ai 6= 0, we have that

(n− i)u =
a′i
ai
,

we then have

(yn−ia−1
i )′

yn−ia−1
i

= 0.

Therefore yn−ia−1
i is a constant (in k). This further implies that y would satisfy a poly-

nomial of degree less than n, a contradiction. Therefore, for each i, 0 < i < n, we have
ai = 0. 2

Corollary 1.4. Let k ⊂ K be as above, where the field of constants is algebraically
closed.

i) If for y ∈ K algebraic over k we have y′/y algebraic over k of degree m, then the
minimal polynomial P (Y) = 0 of y over k is of the form

Yi·m + am−1Y
i·(m−1) + . . .+ a1Y

i + a0 (aj ∈ k, m = [k(y′/y)/k])

ii) The extension k(y)/k(y′/y) is a normal extension. If H is the maximal subgroup
of the Galois group G of K/k with the property that ∀h ∈ H,h(y′/y) = y′/y, then
there is a normal subgroup N of H such that H/N is a cyclic group of order i.

iii) If T is a set of left coset representatives of H in G, then P (Y) = 0 can be written
in the following way:

P (Y) =
∏
σ∈T

(
Yi − (σ(y))i

)
(1.3)

Proof. i) By the previous theorem, the minimal polynomial of y over k(y′/y) is of
the form yi−a = 0 for some a ∈ k(y′/y). Let m = [k(y′/y) : k], then y is a solution
of a polynomial of the form:

amYi·m + am−1Y
i·(m−1) + . . .+ a1Y

i + a0 (aj ∈ k)

Since [k(y) : k] = [k(y) : k(y′/y)] · [k(y′/y) : k] = i · m, y cannot be a solution
of a polynomial of lower degree over k. Thus the above polynomial is the minimal
polynomial of y over k.

ii) To the tower of fields k ⊆ k(y′/y) ⊆ k(y) ⊆ K corresponds the tower of groups
G ⊇ H ⊇ N ⊇ {id}. Since k contains all the i-th roots of unity, the polynomial
yi − a = 0 splits over k(y′/y) and thus k(y) is a normal extension of k(y′/y). Thus
N is a normal subgroup of H and the Galois group of k(y)/k(y′/y) is isomorphic
to H/N and is a cyclic group.

iii) Since yi is left fixed by the elements of H, we can use a set of left coset represen-
tatives T of H in G to write the minimal polynomial of yi is the following way:∏

σ∈T

(
Y − σ(yi)

)
.
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This gives the following polynomial for y:

P (Y) =
∏
σ∈T

(
Yi − (σ(y))i

)
.

Comparing degrees as above, we get that P (Y) is the minimal polynomial of y.
2

In the following we will need some differential equations associated to L(y) = 0:

Theorem 1.5. (cf. Singer (1980)) Let L1(y) = 0 and L2(y) = 0 be linear differential
equations of degrees respectively n1 and n2 and fundamental systems respectively S1 =
{u1, · · · , un1

} und S2 = {v1, · · · , vn2
}. Then one can construct a differential equation:

i) L(y) = L1(y)⃝s L2(y) = 0 of degree n3 ≤ n1n2, whose solution space is spanned by
S = {u1v1, · · · , un1v1, · · · , un1vn2}.

ii) Lδ(y) = 0 of degree n ≤ n1, whose solution space is spanned by the set Sδ =
{δ (u1) , · · · , δ (un1

)}.

In Singer (1980) and Singer and Ulmer (1992) algorithms to construct the above equa-
tions are given. The equation

L⃝s m(y) =

m︷ ︸︸ ︷
L(y)⃝s · · ·⃝s L(y) = 0

is called the symmetric power of order m of L(y) = 0 and is of order at most
(
n+m−1
n−1

)
.

Let L(y) have order n and let L(y) = 0 have solution space V in some Picard-Vessiot
extension K of k. There is a natural G(L) morphism Φm of G(L) modules from the mth

symmetric power Sm(V ) (c.f., Lang (1984), p. 586) into K given by sending z1⃝s . . .⃝s zm
to z1 · . . . · zm. The image of this map is the solution space of L⃝s m(y) = 0. If all
representations of G(L) are completely reducible (e.g. if G(L) is finite), then the solution
space of L⃝s m(y) = 0 is G(L)-isomorphic to a direct summand of Sm(V ) (cf. Singer and
Ulmer (1992), Lemma 3.5). If I is an (semi-) invariant of degree m of the representation
of G(L), then by the computation of the (semi-) invariant I we will always mean the
computation of the image Φm(I) up to a constant multiple. For an invariant I of degree
m, Φm(I) is a rational solution of L⃝s m(y) = 0. If I is a semi-invariant, then there exists
a one dimensional character χ of the group G(L) such that

∀σ ∈ G(L), σ(I) = χ(σ) · I.

In particular, if j is the smallest integer j such that χj is the trivial character, then Φm(Ij)
is a rational solution of L⃝s (m·j)(y) = 0. A bound for j follows from the character table of
the group G(L). The one dimensional characters χ corresponding to the semi-invariants
and the number of linear independent semi-invariants corresponding to a given character
of degree one can be found by decomposing the character of the representation of G(L)
on the mth symmetric power Sm(V ) (cf. Singer and Ulmer (1992), section 2.3). For later
reference, we summarize those simple facts:

Lemma 1.6. Let L(y) = 0 be a linear differential equation with coefficients in k whose
differential Galois group G(L) ⊂ GL(n, C) is finite. If I is a semi-invariant of degree m
of G(L) and Φm(I) 6= 0, then Φm(I) is a non trivial rational solution of L⃝s (m·i)(y) = 0,
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where i divides the order of a one dimensional character χ of G(L). If I is an invariant,
then i = 1. The possible characters χ corresponding to the semi-invariants can be found
by decomposing the character of the representation of G(L) on the mth symmetric power
Sm(V ).

2. Case 1: a reducible differential Galois group

The equation L(y) factors as a linear differential operator, if and only if G(L) is a
reducible linear group (see e.g. Kolchin (1948)). The factorisation of a differential oper-
ator is not unique (see e.g. Singer and Ulmer (1992), section 3.2.1), but an algorithm
for computing a factorisation of a differential operator with coefficients in Q(x) is well
known (see e.g. Grigor’ev (1990) and Schlesinger (1895)). For third order equations a
factorisation can be found by computing the rational solutions of the Riccati equation
of both L(y) = 0 and of its adjoint. In this section we show how, for a third order differ-
ential equation, one can use only one factorisation of L(y) in order to find all liouvillian
solutions of L(y) = 0.

We will use the well known reduction method of d’Alembert, which allows one to
reduce the order of a linear differential equation L(y) =

∑n
i=0 aiy

(i) = 0 using a non
trivial solution y1. The problem of finding further solutions of L(y) = 0 reduces to
finding the solutions of

L̃(y) =

n∑
i=0

ai

(
y1

∫
y

)(i)

= 0,

since from a fundamental set of solutions y∗1 , · · · , y∗n−1 of L̃(y) = 0 we get a fundamental
system of solutions

y1, y1 ·
∫

(y∗1) , · · · , y1 ·
∫ (

y∗n−1

)
of L(y) = 0.

If a second order equation is reducible, then after computing a solution whose logarith-
mic derivative is rational, one gets a second linearly independent liouvillian solution using
the above. Thus, for second order equations, either none or all solutions are liouvillian.
This is no longer true for higher order reducible equations:

Lemma 2.1. Let L(y) = y′′′+Ay′+By = 0 be a reducible third order differential equation
with A,B ∈ Q(x).

i) If L(y) = 0 has a solution z such that z′/z = u ∈ Q(x), then the reduction method
of d’Alembert gives the equation

L̃(y) = y′′ + 3u′y′ +
(
3u′′ + 3(u′)2 +A

)
y.

If L̃(y) = 0 has no non zero liouvillian solutions, then z is, up to a constant multiple,
the only liouvillian solution of L(y) = 0. If L̃(y) = 0 has a non zero liouvillian
solution, then applying again the method of d’Alembert gives 3 linear independent
liouvillian solutions.

ii) If L(y) = 0 has no solution z such that z′/z = u ∈ Q(x), then any factorisation
algorithm will give a factorisation L(y) = L1(L2(y)), where L2(y) is of order 2.
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Either L2(y) = 0 has only liouvillian solutions, in which case the procedure of
d’Alembert will produce a third liouvillian solution of L(y) = 0 which is not a
solution of L2(y) = 0, or L(y) = 0 has no liouvillian solution.

Furthermore, one can determine algorithmically which of these cases hold.

Proof. If L(y) = 0 has a solution z such that z′/z = u ∈ Q(x), then the reduction
method of d’Alembert always gives an equation

L̃(y) = y′′ + 3u′y′ +
(
3u′′ + 3(u′)2 +A

)
y.

whose coefficients belong to Q(x). The equation L̃(y) = 0 is a second order equation
which can be solved using the Kovacic algorithm or the algorithm presented in this paper.
Since a second order linear differential equation has either only liouvillian solution or no
liouvillian solutions, we get the result.

If a third order differential equation L(y) = 0 has no solution z such that z′/z =
u ∈ Q(x), then any factorisation of L(y) will be of the form L1(L2(y)), where L2(y)
is a second order linear differential equation. We now apply the Kovacic algorithm to
L2(y) = 0. If L2(y) = 0 has a liouvillian solution, then L2(y) = 0 and thus L(y) = 0
will have two linear independent liouvillian solutions. Using the reduction method of
d’Alembert we will get a third solution of L(y) = 0 which is not a solution of L2(y) = 0.
If V is the subspace of liouvillian solutions of L(y) = 0, then L2(y) maps V into the
solution space of L1(y) = 0. If L2(y) = 0 has no liouvillian solutions, then L2(y) cannot
vanish on V . So V has dimension at most 1. Since V is a G(L) invariant subspace of
the solution space of L(y) = 0, there is a non zero z ∈ V so that z′/z ∈ Q(x). Since we
assume that there are no such solutions, V has dimension zero. 2

3. Optimal bounds for the logarithmic derivative and case 2: an imprimitive
differential Galois group

It is well known, that for a differential equation L(y) = 0, one can construct a non
linear differential equation R(u) = 0, called the Riccati equation associated to L(y),
such that the logarithmic derivative u = z′/z of any solution of L(y) = 0 is a solution
of R(u) = 0. The Riccati equation associated to L(y) = y′′′ + a2y

′′ + a1y
′ + a0y is

R(u) = u′′ + 3uu′ + a2u
′ + u3 + a2u

2 + a1u+ a0.
The known algorithms computing liouvillian solutions of a linear differential equation

L(y) = 0 use the fact that if L(y) = 0 has a liouvillian solution, then L(y) = 0 has a
solution z such that z′/z is algebraic of bounded degree. In Ulmer (1992) a sharp bound
for the degree of the minimal polynomial of an algebraic solution of R(u) = 0 is derived.

In this section we will first derive the exact degrees of the minimal polynomial P (u) of
an algebraic solution of R(u) = 0 for a third order differential equation and then present
the general method given in Singer (1981) to compute the coefficients of P (u). If L(y) = 0
has a liouvillian solution, this, of course, allows us to find a liouvillian solution of the form

y = e
∫

u. When G(L) is an imprimitive linear group, we show that the minimal degree of
P (u) is 3 and we offer no alternative to the general method of Singer (1981). On the other
hand, when G(L) is a finite primitive linear group (in which case the minimal degree of
P (u) is much larger), we shall show in the next section how to determine directly the
minimal polynomial of a solution of L(y) = 0. Nonetheless, we shall need the information
found in this section.
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3.1. The degree of an algebraic logarithmic derivative of a solution

In this section we assume the reader familiar with the notion of a reducible, imprimitive
or primitive linear group and with the notion of a projective representation (see e.g.
Huppert (1983), (Curtis and Reiner, I. (1962)), Issacs (1976) or Ulmer (1992)).

Since a normal abelian subgroup of a primitive group G is contained in the center
Z(G) of G, we get from Jordan’s Theorem (see Jordan (1878) and (Curtis and Reiner
(1962))) that for a finite primitive group G, there are only finitely many possible groups

G/Z(G). If a group G̃ ⊆ PGL(n,C) is the image (under the canonical map) of a primitive

subgroup of GL(n,C), we call G̃ a primitive subgroup of PGL(n,C).

Definition 3.1. A group G ⊆ GL(n, C) whose elements have a common eigenvector is
called 1-reducible.

In Ulmer (1992) Theorem 3.4 it is proven that, if an irreducible differential equation
L(y) = 0 has a liouvillian solution, then G(L) ⊆ GL(n, C) has a 1-reducible subgroup H
of finite index and that there is a solution z of L(y) = 0 such that the algebraic degree
of u = z′/z over k is ≤ [G(L) : H]. In fact the minimal index of a 1-reducible subgroup
of G(L) is the best possible bound for the degree of an algebraic solution of the Riccati
equation of L(y) = 0:

Lemma 3.1. If a differential equation L(y) = 0 of degree n has a solution z such that
u = z′/z is algebraic of degree m, then G(L) ⊆ GL(n, C) has a 1-reducible subgroup H of
index m.

Proof. Let H be the subgroup of G(L) which keeps u = z′/z fixed. For any σ ∈ G we
have (

σ(z)

z

)′

=
σ(z′)z − z′σ(z)

z2

= σ(z)

σ(z′)

σ(z)
− z′

z

z

=
σ(z)

z

(
σ

(
z′

z

)
− z′

z

)
= 0.

Thus σ(z)/z = cσ ∈ C or σ(z) = cσz. This shows that z is a common eigenvector of H
and that H must be a 1-reducible subgroup of G(L). Since H is the stabiliser of u, the
orbit of u under the action of G(L) is of length [G(L) : H]. Thus [k(u) : k] = [G(L) : H].
2

A Schur representation group (Γ, π) of a group G (see e.g. Huppert (1983) p. 630) is a
central extension of G having the universal property that, if a projective representation
P of G of degree n is given, there exists a representation D of Γ such that the following
diagram commutes:
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G

Γ GL(n,C)

PGL(n,C)-

-

? ?

π Pn

P

D

where Pn : GL(n,C) 7−→ PGL(n,C) = GL(n,C)/Z(GL(n,C)) denotes the canonical
homomorphism.

A Schur represention group is usually not uniquely defined, but for our purposes, the
knowledge of only one Schur representation group (which by a theorem of I. Schur exists
for any finite group G) is necessary (see Ulmer (1992)). There is a routine to construct
a Schur representation group of a finite group in the group theory system Cayley, see
Cannon (1984). We make the following definition:

Definition 3.2. We denote by F a function whose value F(n) gives the minimal value,
such that for each finite primitive subgroup G ⊆ PGL(n, C), any primitive representation
of degree n of a Schur representation group of G has a 1-reducible subgroup of index
≤ F(n).

In Ulmer (1992) it is shown that the above function F(n) is well defined. The following
result of Ulmer (1992) shows that the bound in the imprimitive case is always small
compared to the bound in the primitive case:

Theorem 3.2. If an irreducible differential equation L(y) = 0 of degree n with coeffi-
cients in a differential field k, whose field of constants is algebraic closed, has a liouvillian
solution over k, then L(y) = 0 has a solution z such that

i) if G(L) ⊆ GL(n, C) is an imprimitive group, then u = z′/z is algebraic over k of
degree at most max

d|n,d>1
{d! · F(n/d)}.

ii) if G(L) ⊆ GL(n, C) is a primitive group, then u = z′/z is algebraic over k of degree
at most F(n).

We note that if n is prime, one can get a better bound in the imprimitive case (Ulmer
(1992), Lemma 4.2). In this case u = z′/z can be chosen to be algebraic of degree n.

In order to compute the bound F(n) one needs a list of the finite primitive subgroups
of PGL(n,C). For n = 3 such a list is given for example in Blichfeld (1917):

(i) A6, the alternating permutation group of 6 letters.
(ii) G168, the simple group of order 168.
(iii) A5, the alternating permutation group of 5 letters.
(iv) H216, the Hessian group of order 216, which is isomorphic to the permutation group

of 9 letters generated by the permutations (4, 5, 6)(7, 9, 8) and (1, 2, 4)(5, 6, 8)(3, 9, 7).
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(v) H72, the normal subgroup of order 72 of the group H216.
(vi) F36, a normal subgroup of order 36 of the group H72 (there are 3 such groups,

which are all isomorphic).

From such a (finite) list of the finite primitive subgroups of PGL(n,C) the bound F(n)
can always be computed using the characters of the subgroups of corresponding Schur
representation groups. Let G be a finite primitive subgroup of PGL(n,C), ΓG a Schur
representation group of G and ρ(ΓG) an irreducible representation of degree n of ΓG with
character ζ. The restriction of ρ(ΓG) to a subgroup H is 1-reducible if and only if there
is a one dimensional character ψ of H such that the scalar product (ψ, ζ|H) 6= 0, where
ζ|H denotes the restriction of ζ to H (cf. Curtis and Reiner (1962), §38). Considering
the finitely many primitive groups G and the finitely many subgroups H of ΓG will give
F(n).

For n = 3 the computation is simplified by the fact that a 1-reducible subgroup ρ(H)
of a irreducible finite group ρ(ΓG) ⊆ GL(3, C) is either abelian or C3 is a direct sum of
an irreducible one dimensional representation of H and an irreducible two dimensional
represention of H. Let ζ be the character of ρ(ΓG). If ρ(H) is 1-reducible, then either
ζ|H is the sum of 3 characters of degree 1, or ζ|H is the sum of two characters χ1 and
χ2 of H, where χ1(1) = 1 and χ2(1) = 2. We note also that, if a subgroup H of Γ has no
irreducible character of degree 3, then ρ(H) must be 1-reducible.

We now look at a Schur representation group Γ of the above groups, constructed using
Cayley (for the non simple groups these groups are not all isomorphic, so we will only
give the generators and relations of the groups which have been used). Using character
tables (also computed in Cayley) we performed the following case-by-case study (In the
appendix the character tables of the subgroups of index ≤ 6 of the Schur representation
group of A5 are given):

(i) Γ/Z(Γ) ∼= A6. All subgroups of index 36 have no irreducible character of degree 3
and thus are 1-reducible. In order to see that 36 is the smallest index of a 1-reducible
subgroup of ρ(Γ) we need to look at all subgroups whose index is less than 36 (We
note that the kernel of an irreducible representation of degree 3 of Γ is always of
order 2 and thus elements of order 3 have trace 6= 3):

(a) Any subgroup H of index 30 contains an element g of order 4. If ζ is an ir-
reducible character of degree 3 of Γ, then ζ(g) = −1. But for any irreducible
character χ1 of degree 1 of H we get χ1(g) = 1, and for any irreducible char-
acter χ2 of degree 2 of H we get χ2(g) = 0. Thus ζ|H can not be the sum of
3 character of degree 1 and since χ1(g) + χ2(g) = 1, we have χ1 + χ2 6= ζ|H.
Thus ρ(H) can not be a 1-reducible subgroup of ρ(Γ).

(b) Any subgroup H of index 20 contains an element g of order 3 with the property
that for any irreducible character χ1 of degree 1 of H we get χ1(g) = 1, and
for any irreducible character χ2 of degree 2 of H we get χ2(g) = 2. But for any
irreducible character ζ of Γ, we have ζ(g) 6= 3. Since ζ|H can not be the sum
of 3 character of degree 1 and χ1 + χ2 6= ζ|H, ρ(H) can not be a 1-reducible
subgroup of ρ(Γ).

(c) Any subgroup H of index 18 contains an element g of order 4. If ζ is an ir-
reducible character of degree 3 of Γ, then ζ(g) = −1. But for any irreducible
character χ1 of degree 1 of H we get χ1(g) = 1, and for any irreducible char-
acter χ2 of degree 2 of H we get χ2(g) = 0. Since ζ|H can not be the sum
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of 3 character of degree 1 and χ1 + χ2 6= ζ|H, ρ(H) can not be a 1-reducible
subgroup of ρ(Γ).

(d) Any subgroup H of index 15 contains an element g of order 4. If ζ is an ir-
reducible character of degree 3 of Γ, then ζ(g) = −1. But for any irreducible
character χ1 of degree 1 of H we get χ1(g) = 1, and for any irreducible char-
acter χ2 of degree 2 of H we get χ2(g) = 0 or χ2(g) = 2. Since ζ|H can not
be the sum of 3 character of degree 1 and χ1 + χ2 6= ζ|H, ρ(H) can not be a
1-reducible subgroup of ρ(Γ).

(e) Any subgroup H of index 10 has no irreducible character of degree 2. For an
element of order 3 of H and any irreducible character χ1 of degree 1 of H we
get χ1(g) = 1 and ζ|H can not be the sum of 3 character of degree 1. Thus
ρ(H) can not be a 1-reducible subgroup of ρ(Γ).

(f) Any subgroupH of index 6 contains an element g of order 4. If ζ is an irreducible
character of degree 3 of Γ, then ζ(g) = −1. But for any irreducible character
χ1 of degree 1 of H we get χ1(g) = 1, and for any irreducible character χ2 of
degree 2 of H we get χ2(g) = 0. Since ζ|H can not be the sum of 3 character of
degree 1 and χ1 + χ2 6= ζ|H, ρ(H) can not be a 1-reducible subgroup of ρ(Γ).

(ii) Γ/Z(Γ) ∼= G168. All subgroups of index 21 of G have no irreducible character of
degree 3, and thus are 1-reducible. In order to see that 21 is the smallest index of
a 1-reducible subgroup of Γ we need to look at all subgroups whose index is less
than 21 (We note that the kernel of an irreducible representation of degree 3 of Γ
is always of order 2 and thus elements of order 7 have trace 6= 3):

(a) The subgroups of index 16 are all conjugate and have no representation of
degree 2. For an element g of order 7 of H and any irreducible character χ1 of
degree 1 of H we get χ1(g) = 1 and ζ|H can not be the sum of 3 character of
degree 1. Thus no subgroup of index 16 can be a 1-reducible subgroup of ρ(Γ).

(b) Any subgroup H of index 14 contains an element g of order 4. If ζ is an ir-
reducible character of degree 3 of Γ, then ζ(g) = −1. But for any irreducible
character χ1 of degree 1 of H we get χ1(g) = 1, and for any irreducible char-
acter χ2 of degree 2 of H we get χ2(g) = 0. Since ζ|H can not be the sum
of 3 character of degree 1 and χ1 + χ2 6= ζ|H, ρ(H) can not be a 1-reducible
subgroup of ρ(Γ).

(c) The subgroups of index 8 are all conjugate and have no irreducible character
of degree 2. For an element of order 7 of H and any irreducible character χ1 of
degree 1 of H we get χ1(g) = 1 and ζ|H can not be the sum of 3 character of
degree 1. Thus no subgroup of index 8 can be a 1-reducible subgroup of ρ(Γ).

(d) Any subgroup H of index 7 contains an element g of order 4 whose conjugacy
class contains 6 elements. If ζ is an irreducible character of degree 3 of Γ,
then ζ(g) = −1. But for any irreducible character χ1 of degree 1 of H we
get χ1(g) = 1, and for any irreducible character χ2 of degree 2 of H we get
χ2(g) = 0 or χ2(g) = 2. Since ζ|H can not be the sum of 3 character of degree
1 and χ1 + χ2 6= ζ|H, ρ(H) can not be a 1-reducible subgroup of ρ(Γ).

(iii) Γ/Z(Γ) ∼= A5. All subgroups of index 6 of Γ have no irreducible character of degree
3, and thus are 1-reducible. In order to see that 6 is the smallest index of a 1-
reducible subgroup of Γ we need to look at all subgroups whose index is less than 6.
These non abelian groups are all conjugate and of index 5. A subgroup H of index
5 contains an element g of order 4. If ζ is an irreducible character of degree 3 of
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Γ, then ζ(g) = −1. But for any irreducible character χ1 of degree 1 of H we get
χ1(g) = 1, and for any irreducible character χ2 of degree 2 of H we get χ2(g) = 0.
Since ζ|H can not be the sum of 3 character of degree 1 and χ1 + χ2 6= ζ|H, ρ(H)
can not be a 1-reducible subgroup of ρ(Γ).

(iv) From the presentation {a, b | a3 = b3 = (ab)4 = [(aba)2, a] = id} of H216, Cayley
computes the following Schur representation group

{a, b, c, d | a3c = b3 = (ab)4c = a−1b−1a−1(a−1b−1)2(aba)2bd−1

= [a, c] = [b, c] = [a, d] = [b, d] = [c, d] = id}.

We will only considere the faithfull representation of degree 3, since the non faithfull
represenation of degree 3 of Γ has non central elements in its kernel. Any subgroup
H of index 9 has an element g of order 4. If ζ is a faithfull irreducible character of
degree 3 of Γ, then ζ(g) = 1. But for any irreducible character χ′ of degree 3 of H
we must have χ′(g) = −1. Thus χ′ 6= ζ|H and H must be a 1-reducible subgroup
of Γ. In order to see that 9 is the smallest index of a 1-reducible subgroup of Γ we
need to look at all subgroups whose index is less than 9. Since those groups are all
non abelian and the irreducible representation ρ(Γ) of degree 3 is assumed faithfull,
ζ|H can not be the sum of 3 character of degree 1.

(a) The subgroups of index 8 are all conjugate and have no irreducible character of
degree 2. Thus no subgroup of index 8 can be a 1-reducible subgroup of ρ(Γ).

(b) The subgroups of index 6 are all conjugate and have no irreducible character of
degree 2. Thus no subgroup of index 6 can be a 1-reducible subgroup of ρ(Γ).

(c) Any subgroup H of index 4 contains an element g of order 3 whose conjugacy
class in H contains 1 element. If ζ is an irreducible character of degree 3 of
Γ, then ζ(g) 6= 3. But for any irreducible character χ1 of degree 1 of H we
get χ1(g) = 1, and for any irreducible character χ2 of degree 2 of H we get
χ2(g) = 2. Since χ1 + χ2 6= ζ|H, ρ(H) can not be a 1-reducible subgroup of
ρ(Γ).

(d) Any subgroup H of index 3 contains an element g of order 3 whose conjugacy
class in H contains 24 elements. If ζ is an irreducible character of degree 3 of
Γ, then ζ(g) 6= 3. But for any irreducible character χ1 of degree 1 of H we
get χ1(g) = 1, and for any irreducible character χ2 of degree 2 of H we get
χ2(g) = 2. Since χ1 + χ2 6= ζ|H, ρ(H) can not be a 1-reducible subgroup of
ρ(Γ).

(v) From the presentation {a, b, c | a2b−2 = aba−1b = c4 = acb−1c−2 = id} of H72,
Cayley computes the following Schur representation group Γ:

{a, b, c, d | a2b−2 = aba−1b = c4d = acb−1c−2

= [a, d] = [b, d] = [c, d] = id}.

All subgroups of index 9 of Γ have no irreducible character of degree 3, and thus are
1-reducible. In order to see that 9 is the smallest index of a 1-reducible subgroup of
Γ we need to look at all subgroups whose index is less than 9. Since those groups
are all non abelian and all irreducible representations ρ(Γ) of degree 3 are faithfull,
ζ|H can not be the sum of 3 character of degree 1.

(a) The subgroups of index 8 are all conjugate and have no irreducible character of
degree 2. Thus no subgroup of index 8 can be a 1-reducible subgroup of ρ(Γ).
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(b) Any subgroup H of index 4 contains an element g of order 3 whose conjugacy
class contains one element. If ζ is an irreducible character of degree 3 of Γ, then
ζ(g) 6= 3. But for any irreducible character χ1 of degree 1 ofH we get χ1(g) = 1,
and for any irreducible character χ2 of degree 2 of H we get χ2(g) = 2. Thus
χ1 + χ2 6= χ and ρ(H) can not be a 1-reducible subgroup of ρ(Γ).

(c) Any subgroup of index 2 has no irreducible character of degree 2. Thus no
subgroup of index 2 can be a 1-reducible subgroup of ρ(Γ).

(vi) From the presentation {a, b | a4 = (ab−1)2 = b4 = (ab)3 = id} of F36, Cayley
computes the following Schur representation group Γ:

{a, b, c, d | a4c−1d2 = (ab−1)2d = b4 = (ab)3d

= [a, c] = [b, c] = [a, d] = [b, d] = [c, d] = id}.

All subgroups of index 6 of Γ have no irreducible character of degree 3, and thus are
1-reducible. In order to see that 6 is the smallest index of a 1-reducible subgroup of
Γ we need to look at all subgroups whose index is less than 9. Since those groups
are all non abelian and all irreducible representations ρ(Γ) of degree 3 are faithfull,
ζ|H can not be the sum of 3 character of degree 1.

(a) The subgroups of index 4 are all conjugate and have no irreducible character of
degree 2. Thus no subgroup of index 4 can be a 1-reducible subgroup of ρ(Γ).

(b) Any subgroup H of index 2 contains an element g of order 3 whose conjugacy
class in H contains 1 element. If ζ is an irreducible character of degree 3 of
Γ, then ζ(g) 6= 3. But for any irreducible character χ1 of degree 1 of H we
get χ1(g) = 1, and for any irreducible character χ2 of degree 2 of H we get
χ2(g) = 2. Thus χ1 + χ2 6= ζ|H and ρ(H) can not be a 1-reducible subgroup
of ρ(Γ).

Since, as noted above, any imprimitive subgroup of GL(3,C) has a 1-reducible sub-
group of index 3 (Ulmer (1992), Lemma 4.2) we get:

Theorem 3.3. If an irreducible third order linear differential equation L(y) = 0 with
coefficients in k has a liouvillian solution, then L(y) = 0 has a solution z, such that for
the logarithmic derivative u = z′/z of z one of the following holds:

i) u is algebraic of degree 36 over k and G(L)/Z(G(L)) ∼= A6.

ii) u is algebraic of degree 21 over k and G(L))/Z(G(L) ∼= G168.

iii) u algebraic of degree 9 over k and G(L)/Z(G(L)) is isomorphic to H72 or H216.

iv) u is algebraic of degree 6 over k and G(L)/Z(G(L)) is isomorphic to F36 or A5.

v) u is algebraic of degree 3 over k and G(L) ⊆ GL(3,C) is an imprimitive group.

For each group G(L) ⊆ GL(3, C) the numbers given above are best possible.

Proof. That there exists a solution whose logarithmic derivative is of the given degree
follows from Theorem 3.4 of Ulmer (1992) and the previous discussion. From Lemma 3.1
we know that the degree [k(u) : k] is precisely the index of a 1-reducible subgoup of G(L).
Since the above numbers are the minimal index of a 1-reducible subgroup of G(L), they
are best possible. 2
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A similar calculation can be done to show that for second order equations, the best
possible degrees are: 4 if G(L)/Z(G(L)) ∼= A4, 6 if G(L)/Z(G(L)) ∼= S4 and 12 if
G(L)/Z(G(L)) ∼= A5 (cf. Ulmer (1992)). This gives an alternative proof of theorem 1
of Kovacic (1986).

We point out that the above result is derived without explicitely determining the
possible finite primitive unimodular Galois groups of L(y) = 0 but follows just from the
knowledge of the list of the finite primitive subgroups of PGL(3, C).

3.2. Computing the coefficients of a minimal polynomial of an algebraic
solution of known degree of the riccatti

Since we have just produced the exact minimal degrees of an algebraic solution u of the
Riccati equation, we now briefly review the method given in Singer (1981) to computes
the coefficients of the minimal polynomial of u. This method is the only known method
which can be used in the case of an imprimitive differential Galois group of order n ≥ 3.

We start by describing an algorithm for finding all solutions y of L(y) = 0 such that
δ(y)/y ∈ C(x). Let S be the set of singular points of L(y). At each point c ∈ S one can
determine a finite set Pc of elements of C(x) of the form

fc =
α1c

x− c
+

α2c

(x− c)2
+ . . .+

αnc

(x− c)n

or fc = α1cx + . . . + αncx
n if c = ∞, such that if y is a solution of L(y) = 0 such that

y′/y ∈ C(x) then

y = P (x)e

(∫ ∑
c∈S

fc

)

= P (x)
∏
c∈S

(x− c)α1ce

(
α2c

x− c
+

α3c

(x− c)2
+ . . .+

αnc

(x− c)n

)

for some choice of fc ∈ P and P (x) ∈ C[x]. Futhermore, the degree of any possible P (x)
can be bounded in terms of the α1c. A method for determining the sets Pc is given in
(Schlesinger (1895), Vol. II.1 Section 177). A modern presentation using Newton polygons
and emphasizing computational aspects and an implementation in DESIRE is given in
Grigor’ev (1990) and Tournier (1987). This reduces the problem of finding such solutions
to the problem of determining the coefficients of the possible P (x), a problem in linear
algebra. A related method is given in Singer (1991).

Let L(y) = 0 be an irreducible differential equation and P (u) the minimal polynomial
of an algebraic logarithmic derivative δ(y1)/y1 of a solution y1 of L(y) = 0. Any solution
of P (u) = 0 is then a logarithmic derivative of a solution of L(y) = 0 and we get:

P (u) = um + cm−1u
m−1 + . . .+ c0

= (u− y′1
y1

) (u− y′2
y2

) . . . (u− y′m
ym

) ,

where the yi are solutions of L(y) = 0. The coefficients ci ∈ k are homogeneous forms of
degree m− i in the m logarithmic derivatives {y′1/y1, · · · , y′m/ym}.
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We have

cm−1 =
y′1
y1

+
y′2
y2

+ · · ·+ y′m
ym

=
(y1y2 · · · ym)′

y1y2 · · · ym
.

The product y1y2 · · · ym is a solution of L⃝s m(y) = 0. Thus cm−1 is a rational loga-
rithmic derivative of a solution of L⃝s m

(y) = 0.
Using cm−1 we can now compute the other coefficients ci. The coefficient ci can be

written as:

ci =
∑

1≤k1<···<ki≤m

(
y′k1

yk1

· · ·
y′ki

yki

)
.

Let

vi = ciy1y2 . . . yn

=
∑

1≤k1<···<ki≤m

y′k1
y′k2

. . . y′ki

∏
j ̸=k1,···,ki

yj .

Note that vi is a solution of (Lδ)
⃝s i

(y)⃝s L⃝s (m−i)(y), where Lδ(y) is a differential equa-
tion which is satisfied by the derivatives of solutions L(y) = 0. We then have:

v′i
vi

=
c′i
ci

+
(y1y2 . . . yn)

′

y1y2 . . . yn

=
c′i
ci

+ cm−1.

Therefore, vi is the solution of a linear differential equation (that we can construct) and
the logarithmic derivative of vi is rational. We can describe all such solutions. Simillarly,
y1y2 . . . yn is also a solution of a linear differential equation and its logarithmic derivative
is also rational. Since ci = vi/(y1y2 . . . yn), we can determine the degrees of the numerator
and denominator of ci using the algorithm described at the beginning of this section to
determine the possible candidates for vi and (y1y2 . . . yn).

We therefore are able to determine bounds on the degrees of the numerators and
denominators of the coefficients of a minimal polynomial. To determine the actual num-
bers that can appear as coefficients of these numerators and denominators, one must
differentiate P (u) = 0 repeatedly, solve for the higher derivatives of u, and reduce the
Riccati equation R(u) = 0 mod P (u). This will give algebraic conditions on the numbers
appearing in the coefficients of P (u) (a similar method is used in the last section).

We note that for second order linear differential equations, R(u) has order 1. In this
case , it is showed in Kovacic (1986) that for 0 ≤ i ≤ n− 2 a simple recursion gives each
ci in terms of the cj with j > i. Therefore in the second order case it suffices to just find
the possible cm−1. We do not know a similar statement for higher order equations.

4. Case 3: a primitive unimodular Galois group

In this section we show that in this case, where the bound for the algebraic degree
of an algebraic solution of the Riccati is large compared to the imprimitive case (cf.
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Theorem 3.2 and 3.3), the difficult computation of a rational solution of some Riccati
can be avoided. We will reduce the problem to the computation of a rational solution
of some symmetric power and a Gröbner basis computation. In contrast to the previous
section where only a projective representation of G(L) was used, a list of the possible
Galois groups will be needed. We start by giving this list (taken from Blichfeld (1917)
and (Miller, Blichfeld and Dickson (1938)) ) for second and third order equations.

4.1. The primitive unimodular groups of degree 2 and 3

4.1.1. The primitive unimodular groups of degree 2

Up to isomorphism, there are 3 primitive unimodular groups of degree 2. According
to Miller, Blichfeld and Dickson (1938) we define the following matrices:

T =

(
i 0
0 −i

)
S =

 i− 1

2

i− 1

2
i+ 1

2

−i− 1

2

 U =


1 + i√

2
0

0
1− i√

2



S′ =

(
ξ3 0
0 ξ2

)
U ′ =

(
0 1

−1 0

)
T ′ =

(
α β
β −α

)
,

where ξ5 = 1, α =
ξ4 − ξ√

5
and β =

ξ2 − ξ3√
5

.

Then the groups are the following:

(i) The icosahedral group ASL2
5 of order 120 is generated by S′, U ′ and T ′. We have

ASL2
5 /{±1} is isomorphic to the alternating group A5 of 5 letters.

(ii) The octahedral group SSL2
4 of order 48 is generated by S and U . We have SSL2

4 /{±1}
is isomorphic to the symmetric group S4 of 4 letters.

(iii) The Tetrahedral group of ASL2
4 of order 24 is generated by S and T . We have

ASL2
4 /{±1} is isomorphic to the alternating group A4 of 4 letters.

When one looks at a character table of ASL2
4 , one sees 3 irreducible representations

of degree 3, but since in SL(2,C) the trace of an element of order 3 is −1, only one of
these is in SL(2,C). The groups ASL2

5 and SSL2
4 have two non conjugate representation

in SL(2,C). But the non equivalent representations can be obtained from each other
using the Galois group of Q(

√
2, ξ) over Q. This follows from the fact that under the

automorphism sending
√
2 to −

√
2 the trace of U will change and that under the auto-

morphism sending
√
5 ∈ Q(ξ) to −

√
5 the trace of an element of order 10 will change.

This will allow us to work with only one representation and to get the complete result
by applying the corresponding automorphism.
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4.1.2. The primitive unimodular groups of degree 3

Up to isomorphism, there are 8 primitive unimodular groups of degree 3. According

to Miller, Blichfeld and Dickson (1938)† we define the following matrices:

E1 =

 1 0 0
0 ξ4 0
0 0 ξ

 E2 =

 −1 0 0
0 0 −1
0 −1 0

 E3 =
1√
5

 1 2 2
1 s t
1 t s



E4 =
1√
5

 1 2λ2 2λ2
λ1 s t
λ1 t s

 S =

 β 0 0
0 β2 0
0 0 β4

 R =
1√
−7

 a b c
b c a
c a b



S1 =

 1 0 0
0 ω 0
0 0 ω2

 T =

 0 1 0
0 0 1
1 0 0

 U =

 ε 0 0
0 ε 0
0 0 εω



V = ρ

 1 1 1
1 ω ω2

1 ω2 ω

 Z =

 ω 0 0
0 ω 0
0 0 ω


where ξ5 = 1, s = ξ2+ξ3, t = ξ+ξ4,

√
5 = t−s, ε6+ε3+1 = 0 (ε9 = 1), ω = −ε3−1 (ω3 =

1), β7 = 1, a = β4 − β3, b = β2 − β5, c = β − β6,
1√
−7

=
β + β2 + β4 − β6 − β5 − β3

7
,

λ1 =
−1±

√
−15

4
, λ2 =

−1∓
√
−15

4
and ρ =

1

ω − ω2
.

Then the groups are the following:

(i) The Valentiner group ASL3
6 of order 1080 is generated by E1, E2, E3 and E4. We

have ASL3
6 / < Z > is isomorphic to the alternating group A6 of 6 letters.

(ii) The alternating group A5 of five letters generated by E1, E2 and E3.
(iii) The direct product A5 × C3, of A5 and the cyclic group C3 of three elements,

generated by E1, E2, E3 and Z.
(iv) The simple group G168 of order 168 generated by S, T and R.
(v) The direct product G168 × C3, of G168 and the cyclic group C3 of three elements,

generated by S, T , R and Z.
(vi) The group HSL3

216 of order 648 generated by S1, T , V and U , whose projective
representation is the Hessian group of order 216.

(vii) The group HSL3
72 of order 216 generated by S1, T , V and UV U−1.

(viii) The group FSL3
36 of order 108 generated by S1, T and V .

As in the previous case, all non equivalent representations of these groups in SL(3,C)
can be obtained using the Galois group of the field to which the coefficients of the matrices
belong. The groupHSL3

72 has two faithfull non conjugate representations in SL(3, C) which

† The matrix T used here corresponds to the inverse of the matrix T used in Miller, Blichfeld and

Dickson (1938) and the definition of ASL3
6 and A5 correspond to the definitions given in exercise 3 and

4 p. 252 of Miller, Blichfeld and Dickson (1938)
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are sent to each other by the automorphism σ : ε 7→ ε2 of the Galois group of Q(ε)/Q,
since the trace of M = UV U−1V T−1UV U−1 is ω, while the trace of σ(M) is ω2. The
automorphism σ also sends the two faithfull non conjugate representations of FSL3

36 in
SL(3, C) to each other, since the trace of M = V S2TST−1 is ω, while the trace of σ(M)
is ω2. This will allow us to work with only one representation and to get the complete
result by applying the corresponding automorphism. We also note that for HSL3

72 and
FSL3
36 only the representations where the elements of order 4 all have trace 1 belong to
SL(3,C).

We point out that the above groups do not in general correspond to the Schur repre-
sentation groups used in the previous section. For example, the group ASL3

6 is of order
1080 while the Schur representation group of A6 is of order 2160.

4.2. Algebraic degree of a solution

From Theorem 3.3 and Theorem 3.8 of Ulmer (1992) we see that for the computation of
an algebraic logarithmic derivative u = y′/y of a solution y, the most difficult cases, where
the algebraic degree of u is large, are those of a finite primitive unimodular differential
Galois group. In this case all solutions will be algebraic and we shall show how to compute
the minimal polynomial of such a solution. From Corollary 1.4 we get that the number
of coefficients of the minimal polynomials of y and y′/y are the same. In this section we
will derive a bound for the algebraic degree of a solution y of L(y) = 0. We note that
from k(y′/y) ⊆ k(y) the index of a 1 reducible subgroup of G(L) is a lower bound for the
degree of a solution (cf. Lemma 3.1).

For a second order differential equation L(y) = 0 an old result of P. Pepin and L. Fuchs
(see Fuchs (1875) and the introduction in Boulanger (1898)) shows that the degree of
P (y) is always the largest possible degree, which is the order of G(L). This can be seen
in the following way: If L(y) = y′′ − ry (r ∈ k), then the Wronskian y′1y2 − y1y

′
2 of two

solutions y1 and y2 of L(y) = 0 is a constant c (see e.g. Kaplansky (1957), p. 40). Thus

y2
y1

= c

∫
1

y21

If y1 and y2 are algebraic over k, then the integral on the right hand side must be algebraic
and thus a rational function in y1 over k. Since any solution can be used as y1, we get
that for any solution y1 of L(y) = 0 the field k(y1) is the full Picard-Vessiot extension
K associated to L(y) = 0 . Thus any solution is a primitive element of K and must be
of degree G(L).

The following Theorem shows that the above result of Pepin and Fuchs no longer holds
for third order differential equations:

Theorem 4.1. Let L(y) be an irreducible third order linear differential equation with
Galois group a primitive group G(L) ⊂ SL(3,C). If L(y) = 0 has a liouvillian solution
then all solution are algebraic and there is a solution z whose minimal polynomial P (Y)
is of the form

Yd·m + am−1Y
d·(m−1) + . . .+ a1Y

d + a0 (ai ∈ k)

such that one of the following holds:

(i) If G(L) ∼= ASL3
6 , m = 36 and d = 6.
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(ii) If G(L) ∼= A5, m = 6 and d = 2.
(iii) If G(L) ∼= A5 × C3, m = 6 and d = 6.
(iv) If G(L) ∼= G168, , m = 21 and d = 2.
(v) If G(L) ∼= G168 × C3, , m = 21 and d = 6.
(vi) If G(L) ∼= HSL3

216 , m = 9 and d = 9.
(vii) If G(L) ∼= HSL3

72 , m = 9 and d = 3.
(viii) If G(L) ∼= FSL3

36 , m = 6 and d = 6.

The above numbers are also the minimal degree of an algebraic solution, except for the
group FSL3

36 , where there also exists a solution whose minimal polynomial is of degree 27
instead of 36.

In order to prove the above result we need a result linking the permutation represen-
tation of G(L) on the solutions of P (Y ) = 0 and the linear representation of G(L) on the
solutions of L(y) = 0.

Lemma 4.2. Let G be a finite group and V a finite irreducible G-module over a field of
characteristic 0 with character χ. Let {v1, . . . , vm} be a G-invariant subset of V and Vm
be the associated permutation G-module. Then V is a direct summand of Vm and∑

g∈G

χ(g) · fix(g) = t · |G| > 0,

where fix(g) is the number of vectors in {v1, . . . , vm} left fixed by g and t is the multi-
plicity of V in Vm.

Proof. By the definition of Vm we can identify a basis {z1, . . . , zm} of Vm with the
set {v1, . . . , vm} in such a way that the action of G on these two sets are the same. We
now define a map φ : Vm 7−→ V by φ(zi) = vi (i ∈ {1, . . .m}). This clearly defines a
G-morphism. According to Maschke’s Theorem, Vm is completely reducible and thus the
direct sum of the image φ(Vm) and the kernel of φ. Since V is an irreducible G-module,
φ(Vm) = V . This shows that V is a direct summand of Vm.
If we denote χm the character of Vm, then the orthogonality relations give us∑

g∈G

χ(g) · χm(g) = t · |G| > 0.

With respect to the basis {z1, . . . , zm}, an element g ∈ G has a 1 in the (i, i) place if zi is
left fixed and a 0 otherwise. Therefore the trace of this matrix is fix(g) and the formula
now follows. 2

Proof of Theorem 4.1 For each possible group G(L) we know the index m of a one
reducible subgroup H of smallest index (Theorem 3.3). If G(L) 6∼= FSL3

36 and G(L) 6∼=
G168 × C3, then using Cayley one can show that all groups H of index m are con-
jugate so that one can choose any of these groups to perform the computations in the
following. If G(L) ∼= FSL3

36 , then two non conjugate groups H have to be considered. If
G(L) ∼= G168 × C3, then m = 21, but the groups of index 21 which have an irreducible
representation of degree 3 cannot be 1-reducible, since from the character tables we get
that in such a representation there is an element of order 2 whose trace is −1, but in
any 1-dimensional representation of G168 × C3 this element has a trace 1 and in any
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2-dimensional representation this element has trace 2. Those subgroups of G168 × C3 of
index 21 which are always 1-reducible are all congugate and we can choose any of them.

From Theorem 3.3 we get that L(y) = 0 has a solution y such that [k(y′/y) : k] = m.
From Corollary 1.4 we get that the differential Galois group of k(y)/k(y′/y) is cyclic.
If K denotes the PVE of L(y) = 0, then the extension k(y) is an intermediate field of
K/k(y′/y). The differential Galois group of K/k(y′/y) is isomorphic to H and the Galois
group of k(y)/k(y′/y) is a cyclic factor of H (cf. Corollary 1.4). Since we know the pos-
sible groups H, using Cayley we can compute the order d of all possible cyclic factor
groups of H. We get:

i) If G(L) ∼= ASL3
6 , A5 × C3, G168 × C3, H

SL3
72 or FSL3

36 , then d belongs to {1, 2, 3, 6}.
ii) If G(L) ∼= A5 or G168 then d belongs to {1, 2}.
iii) If G(L) ∼= HSL3

216 , then d belongs to {1, 3, 9}.

From Corollary 1.4 we get that the minimal polynomial of y must be of the form:

P (Y) = Yd·m + am−1Y
d(m−1) + . . .+ a1Y

d + a0 (aj ∈ k)

Since G(L) ⊆ SL(3,C) is irreducible, the splitting field of P (Y) = 0 is a Picard Vessiot
extension for L(y) = 0 (cf. Ulmer (1992), Corollary 2.4). Thus G(L) is the (classical)
Galois group of P (Y) = 0 (cf. Ulmer (1992), Lemma 1.1) and must have a faithfull
representation as a transitive permutation group of degree d ·m. Using Cayley one can
see that for a faithfull transitive representation of

(i) ASL3
6 of degree 36 ≤ j ≤ (6 · 36), j must be 45, 90, 108 135, 180 or 216.

(ii) A5 of degree 6 ≤ j ≤ (2 · 6), j must be 6, 10 or 12.
(iii) A5 × C3 of degree 6 ≤ j ≤ (6 · 6), j must be 15, 18, 30 or 36.
(iv) G168 of degree 21 ≤ j ≤ (2 · 21), j must be 21, 24, 28 or 42.
(v) G168 × C3 of degree 21 ≤ j ≤ (6 · 21), j must be 21, 24, 42, 63, 72, 84 or 126.
(vi) HSL3

216 of degree 9 ≤ j ≤ (9 · 9), j must be 81.
(vii) HSL3

72 of degree 9 ≤ j ≤ (6 · 9), j must be 27, 36 or 54.
(viii) FSL3

36 of degree 6 ≤ j ≤ (6 · 6), j must be 18, 27 or 36.

For each possible j above, we construct all transitive permutation representations of the
corresponding differential Galois group G(L) (note that it is enougth to let G(L) act
on the cosets of one representant of each set of conjugate subgroups) and compute the
corresponding permutation representation P with character χP of degree j. If for all
irreducible characters χ of degree 3 of G, the scalar product χ and χP is 0, then from
Lemma 4.2 we get that G(L) cannot permute the j solutions according to P . If this is
the case for all transitive permutation respresentations of degree j, then we can exclude
the possibility j.

For the groups ASL3
6 , A5, G168, G168 ×C3 and HSL3

216 only the numbers j = d ·m given
in the Theorem are still possible and must thus be minimal.

For the groups HSL3
72 the values 3 · 9 and 6 · 9 and for FSL3

36 the values 27 and 6 · 6
are still possible. We will show by examining the matrices defining the three dimensional
representations that in both cases there is always a solution of degree 27 which will then
be the minimal degree.

A representation G in SL(3, C) of the group HSL3
72 is generated by the matrices S1, T ,
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V and UV U−1 given in section 4.1.2. A 1-reducible subgroup H of index 9 is generated by
S1TUV U

−1, S1TUV U
−1V and S1T

−1S−1
1 T . The solution y = (0,−1, 1) is left invariant

by the first two matrices and sent to ωy by the last matrix. This shows that y3 is left
invariant by H and, since by the above no solution of lower degree is possible, that for
this representation of G(L) ∼= HSL3

72 the equation L(y) = 0 has a solution of the form
stated. Since we can map this representation of HSL3

72 to a non equivalent one by the
automorphism σ : ε 7→ ε2 of the Galois group of Q(ε)/Q and that the given eigenvector
and eigenvalues of the elements of H belong to Q(ε), it follows that for the representation
σ(G) the group σ(H) will have the above properties of H. This shows that a differential
equation whose Galois group is isomorphic to HSL3

72 will always have a solution of degree
3 · 9 and of the form stated.

A representation G in SL(3, C) of the group FSL3
36 is generated by S1, T and V of

section 4.1.2. The cyclic subgroup F generated by S−1
1 T−1S1V

−1 is of order 4 and index
27. The solution y = (−ε3, 1, 0) is left invariant by F . Since from the above we know that
no solution of lower degree is possible, the degree of y must be 27. This shows that for
this representation of FSL3

36 , a solution of degree 27 always exists. Since we can map this
representation of HSL3

72 to a non equivalent one by the automorphism σ : ε 7→ ε2 of the
Galois group of Q(ε)/Q and that the given eigenvector and eigenvalues of the elements
of H belong to Q(ε), it follows that for the representation σ(G) the group σ(F ) will have
the above properties of F . This shows that a differential equation whose Galois group is
isomorphic to FSL3

36 will always have a solution of degree 27. On the other hand, since
6 · 6 is the only possibility left of the form 6 · i, there will also always exists a solution of
degree 6 · 6. This completes the proof of Theorem 4.1.

We also note that the result of Fuchs and Pepin, which states that for second order
equations the degree of an algebraic solution always corresponds to the order of the
primitive unimodular group G(L) (i.e. any solution is a primitive element of the PVE)
can also be proven using the method above.

4.3. Decomposition of the coefficients in terms of (semi-)invariants

In this section as in the previous one we deal with the case of a differential equation
L(y) = 0 whose Galois group G(L) is a finite primitive unimodular group. We show how
the coefficients of the minimal polynomial of a solution of L(y) = 0 can be computed
using a basis of the ring of invariants of G(L) (see e.g. Cox, Little and O’Shea (1992),
Chapter 7). This approach is not new and has been successfully used in Fuchs (1875)
for the case of second order differential equation. In this section we will describe this
procedure and show how it can be generalized to higher order equations.

Let L(y) = 0 be a differential equation of degree n with finite primitive differential
Galois group G(L) ⊆ SL(n, C). Let {y1, y2, . . . , yn} be a basis of the solution space of
L(y) = 0 corresponding to the representation G(L), H a 1-reducible subgroup of G(L)
of minimal index m and T a set of left coset representatives of H in G(L). Let y be a
common eigenvector of H, then by Corollary 1.4 we get that the minimal polynomial of
y is the form

P (Y) =
∏
σ∈T

(
Yd − (σ(y))d

)
= Yd·m + αd(m−1)Y

d(m−1) + . . .+ αdY
d + α0 (m = |G(L)/H|),



Liouvillian and Algebraic Solutions 23

where any coefficient αi is a polynomial of degree d·m−i in {y1, y2, . . . , yn}. By construc-
tion these polynomials are invariant under the action of G(L) and thus can be expressed
in terms of the elements of a basis of the ring of invariants (or semi-invariants) of G(L).
This can be done in the following way:

i) Choose a representation G(L) ⊆ SL(n, C) of the differential Galois group of L(y) =
0 (i.e. fix a basis of the solution space) and compute a basis {b1(y1, . . . , yn), . . . , bj(y1, . . . , yn)}
of the ring of invariants of G(L).

ii) Compute a 1-reducible subgroup H of minimal index of G(L) and a common eigen-
vector y for the matices of H.

iii) Compute a set of left coset representatives T of H in G(L).
iv) Compute the polynomial

P (Y) =
∏
σ∈T

(Yd − σ(z)d)

= Yd·m + γm−1(y1, . . . , yn)Y
d·(m−1) + . . .+ γ0(y1, . . . , yn),

where m = |G(L)/H| and d is the index of a normal subgroup F of H such that
H/F is a cyclic group.

v) Using the Gröbner basis algorithm, express γi(y1, . . . , yn) in terms of polynomials in
the invariants {b1(y1, . . . , yn), . . . bj(y1, . . . , yn)} (cf. Cox, Little and O’Shea (1992),
Chapter 7, §3, Prop. 7. In practice an Ansatz turned out to be more effective).

The above computation has to be done once for the finitely many primitive finite sub-
groups of SL(n,C).

In the following we will use semi-invariants of G(L) to represent the coefficients of
P (Y ), since they are usually of lower degree.

4.3.1. Second order equations

For second order equations the decomposition of the coefficients αi(y1, . . . , yn) in terms
of {b1(y1, . . . , yn), . . . bj(y1, . . . , yn)} has been computed by Fuchs in Fuchs (1875) for

ASL2
4 and SSL2

4 . In the following we show that the result for second order equations can
be obtained by our approach and restate Fuchs’ results.

The second order case is simplified by the following facts:

i) According to the result of Pepin and Fuchs, we must have d ·m = |G(L)| (i.e. any
solution is a primitive element of the PVE associated to L(y) = 0).

ii) Any one reducible subgroup is abelian and (assuming G(L) unimodular) is a cyclic
group, so that a common eigenvector is just an eigenvector of a generator.

We have to deal with each group separetely.

The tetrahedral group ASL2
4 :

We consider the algebraic extension Q(ω) of the rational numbers, where ω is a root
of ω4 − 2ω3 + 5ω2 − 4ω + 1. We have i =

√
−1 = −2ω3 + 3ω2 − 9ω + 4 and

√
−3 =

4ω3 − 6ω2 + 16ω − 7. The group ASL2
4 is generated by the matrices S and T of section

4.1.1 which are defined in Q(ω).
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We denote {y1, y2} the basis corresponding to the above representation. In this repre-
sentation, the ring of semi-invariants of ASL2

4 is generated by (see Miller, Blichfeld and
Dickson (1938), p. 224):

I1 = y41 + 2
√
−3y21y

2
2 + y42 ,

I2 = y1y2(y
4
1 − y42),

I3 = y41 − 2
√
−3y21y

2
2 + y42 ,

together with the relation 12
√
−3I22−I31+I33 = 0. We will only need I1 and I2 to represent

the coefficients of P (Y ).
A maximal 1-reducible subgroup of ASL2

4 is the cyclic group of order 6 generated by
the matrix TS−1 which has an eigenvector z = (ω3 − ω2 + 3ω − 1)y1 + y2. A set of left
coset representatives T of < TS−1 > in ASL2

4 is{
id, S, S−1, TS

}
and the minimal polynomial of z is given by:

P (Y) =
∏
σ∈T

(Y6 − σ(z)6),

which is:

Y24 + 48ω3(y2y
5
1 − y52y1) Y

18

+
(
(−780ω2 + 780ω − 210)y121 + (−1824ω3 + 2736ω2 − 1368ω + 228)y22y

10
1

+(25740ω2 − 25740ω + 6930)y42y
8
1 + (3648ω3 − 5472ω2 + 2736ω − 456)y62y

6
1

+(25740ω2 − 25740ω + 6930)y82y
4
1

+(−1824ω3 + 2736ω2 − 1368ω + 228)y102 y
2
1 + (−780ω2 + 780ω − 210)y122

)
Y12

+
(
(6816ω3 + 2496ω2 − 7488ω + 2496)y2y

17
1

+(97088ω3 − 326784ω2 + 255744ω − 61568)y32y
15
1

+(−231744ω3 − 84864ω2 + 254592ω − 84864)y52y
13
1

+(−291264ω3 + 980352ω2 − 767232ω + 184704)y72y
11
1

+(291264ω3 − 980352ω2 + 767232ω − 184704)y112 y
7
1

+(231744ω3 + 84864ω2 − 254592ω + 84864)y132 y
5
1

+(−97088ω3 + 326784ω2 − 255744ω + 61568)y152 y
3
1

+(−6816ω3 − 2496ω2 + 7488ω − 2496)y172 y1
)
Y6

+
(
(780ω2 − 780ω + 209)y241 + (−8688ω3 + 13032ω2 − 6672ω + 1164)y22y

22
1

+(−135720ω2 + 135720ω − 36366)y42y
20
1

+(304080ω3 − 456120ω2 + 233520ω − 40740)y62y
18
1

+(1134900ω2 − 1134900ω + 304095)y82y
16
1

+(−295392ω3 + 443088ω2 − 226848ω + 39576)y102 y
14
1

+(1194960ω2 − 1194960ω + 320188)y122 y
12
1

+(−295392ω3 + 443088ω2 − 226848ω + 39576)y142 y
10
1

+(1134900ω2 − 1134900ω + 304095)y162 y
8
1

+(304080ω3 − 456120ω2 + 233520ω − 40740)y182 y
6
1

+(−135720ω2 + 135720ω − 36366)y202 y
4
1

+(−8688ω3 + 13032ω2 − 6672ω + 1164)y222 y
2
1

+(780ω2 − 780ω + 209)y242
)

Using the Gröbner basis algorithm in Axiom (cf. Jenks and Sutor (1992)) we can
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represent the coefficients of P (Y ) as polynomials in the invariants I1 and I2:

Y24 +
(
48ω3I2

)
Y18

+
(
(−780ω2 + 780ω − 210)I31 + (−6144ω3 + 9216ω2 − 4608ω + 768)I22

)
Y12

+
(
(6816ω3 + 2496ω2 − 7488ω + 2496)I2I

3
1

+ (167936ω3 − 565248ω2 + 442368ω − 106496)I32
)
Y6

+(780ω2 − 780ω + 209)I61

The above representation shows that the semi-invariant I2 is a rational function and
thus an invariant, and that I1 is the cube root of a rational function. This last fact can
also be derived using the one dimensional characters of ASL2

4 (cf. Lemma 1.6), since in
the decomposition of the character of the sixth symmetric product of a two dimensional
character of ASL2

4 there is exactly 1 one dimensional character ϕ which is of order 3 (i.e.
ϕ3 = 1, ϕ 6= 1). This also shows that, up to a constant, there is exactly one solution of
L⃝s 6(y) = 0 which is the cube root of a rational function.

We note that there are other minimal polynomials of solutions that can be derived
using either another representation of the group, another eigenvector of a cyclic subgroup
of order 4 or another cyclic subgroup of order 4. In Fuchs (1878) p. 21 the following
decomposition of a polynomial P (Y ) is given:

Y24 − 3φY18 + (−3χ3
1 − 78χ3)Y12 + (−χ3

1φ+ 10χ3φ)Y6 − 27χ6,

where χ is an invariant of degree 4 of ASL2
4 , χ1 (the Hessian of χ) is another invariant of

degree 4 and φ (the jacobian of χ1 and χ) is an invariant of degree 6.
We note that our invariants differ from those of Fuchs because we select a different basis
for our representation.

The octahedral group SSL2
4 :

We consider the algebraic extension Q(i,
√
2) of the rational numbers. The group SSL2

4

is generated by the matrices S and U of section 4.1.1.
We denote {y1, y2} the basis corresponding to the above representation. In this repre-

sentation, the ring of semi-invariants of SSL2
4 is generated by (see Miller, Blichfeld and

Dickson (1938), p. 224):

I1 = y1y2(y
4
1 − y42),

I2 = y81 + 14y41y
4
2 + y82 ,

I3 = y121 − 33y81y
4
2 − 33y41y

8
2 + y122 ,

Together with the relation 108I41 − I32 + I23 = 0. We will only need I1 and I2 to represent
the coefficients.

A maximal 1-reducible subgroup of SSL2
4 is the cyclic group of order 8 generated by

the above matrix U and y1 is an eigenvector of U . A set of left coset representatives T
of < U > in SSL2

4 is {
id, S, US, U2S, S−1U, SUS

}
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and the minimal polynomial of z is given by:

P (Y) =
∏
σ∈T

(Y8 − σ(z)8)

Using the Gröbner basis algorithm in Axiom II we can represent the coefficients of P (Y )
as polynomials in I1 and I2. We get the following representation for P (Y ):

Y48 − 5

4
I2 Y

40 +
35

128
I22 Y

32 +

(
1351

128
I41 − 25

1024
I32

)
Y24

+

(
265

1024
I2I

4
1 +

65

65536
I42

)
Y16 +

(
39

32768
I22I

4
1 − 1

65536
I52

)
Y8 +

1

65536
I81

The above representation shows that I2 is a rational function and that I1 is the fourth
root of a rational function. Since in the decomposition of the character of the sixth
symmetric product of a faithfull two dimensional character of SSL3

4 there is exactly 1 one
dimensional character ϕ which is of order 2 (i.e. ϕ2 = 1, ϕ 6= 1), we get that I1 is the
square root of a rational function (cf. Lemma 1.6). This is also derived by L. Fuchs (cf.
Fuchs (1878) p. 13). The decomposition of the characters also shows that there will be,
up to a constant, exactly one rational solution of L⃝s 6(y) = 0 and exactly one solution of
L⃝s 6(y) = 0 which is the square root of a rational function, and thus, up to a constant,
exactly one choice for I1 and I2.

The above polynomial was obtained using only one representation of SSL2
4 , which

has in fact two faithfull non equivalent representations in SL(2, C). Since there is an
automorphism σ of the Galois group of Q(i,

√
2)/Q sending this representation to a

non equivalent representation, σ(P (Y)) would be the minimal polynomial of a solution
for this representation. Since the above decomposition of P (Y) contains only rational
coefficients, any representation of SSL2

4 in SL(2, C) will lead to a solution whose minimal
polynomial is of the above form.

We again note that there are other minimal polynomials of solutions that can be
derived using either another representation of the group, another eigenvector of a cyclic
subgroup of order 6 or another cyclic subgroup of order 6. In Fuchs (1878) p. 21 the
following decomposition of a polynomial P (Y) is given:

Y48 − 20χ1 Y
40 + 70χ2

1 Y
32 + (−100χ3

1 − 14 · 3088χ4)Y24

+(65χ4
1 + 40 · 424χ1χ

4)Y16 + (−16χ5
1 − 1248χ2

1χ
4)Y8 − 162χ8,

where χ is an invariant of degree 6 of SSL2
4 and χ1 (the Hessian of χ) is another invariant

of degree 8.

The icosahedral group ASL2
5 :

We consider the algebraic extension Q(ξ) of the rational numbers, where ξ5 = 1. The
group ASL2

5 is generated by the matrices S′, U ′ and T ′ of section 4.1.1.
We denote {y1, y2} the basis corresponding to the above representation. In this repre-

sentation, the ring of invariants of SSL2
4 is generated by (see Miller, Blichfeld and Dickson

(1938), p. 224):

I1 = y1y2(y
10
1 + 11y51y

5
2 − y102 ),

I2 = −y201 − y202 + 228(y151 y
5
2 − y51y

15
2 )− 494y101 y

10
2 ,

I3 = y301 + y302 + 522(y251 y
5
2 − y51y

25
2 )− 10005(y201 y

10
2 + y101 y

20
2 ),
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Together with the relation I23 + I32 − 1728I51 = 0.
A maximal 1-reducible subgroup of ASL2

5 is the cyclic group of order 10. Such a group
H is generated by the matrix U2S, which has an eigenvector z = y1. A set of left coset
representatives T of H in ASL2

5 is{
id, U, T−1, UT−1, ST−1, TST, S−2T, TS−2T,USTS−2, US−1T, S2T−1, US−2T−1

}
and the minimal polynomial of z is given by:

P (Y) =
∏
σ∈T

(Y10 − σ(z)10)

Using an Ansatz we can represent the coefficients of P (Y ) as polynomials in the invariants
I1, I2 and I3 we get the following representation for P (Y ):

Y120 +
374

625
I2 Y

100 − 1001

3125
I3 Y

90 − 142373

1953125
I22 Y

80

+
78254

9765625
I2I3Y

70 +

(
832814147

5273437500000
I32 − 8910209

42187500000
I23

)
Y60

− 81631

30517578125
I3I

2
2 Y

50 +

(
−39788034

152587890625
I51I2 −

158499

19073486328125
I42

)
Y40

+

(
−611864

762939453125
I51I3 +

1254

95367431640625
I32I3

)
Y30

+

(
103862

476837158203125
I51I

2
2 +

3124

298023223876953125
I52

)
Y20

+

(
4

2384185791015625
I51I2I3 −

1

298023223876953125
I42I3

)
Y10

+
1

298023223876953125
I101

Since ASL2
5 has only one irreducible character of degree 1, any invariant will be rational

and thus not hard to compute. Since there is no polynomial relation between I1, I2
and I3, we get that, up to a constant multiple, there will be one polynomial solution
of L⃝s 12(y) = 0, L⃝s 20(y) = 0 and L⃝s 30(y) = 0. This can also be derived from the
decomposition of the characters of the 12-th, 20-th and 30-th symmetric product of the
irreducible characters of degree 3 of ASL2

5 .
As for SSL2

4 there is an element σ of the Galois group of Q(ξ)/Q sending the above
representation in a non equivalent representation. Thus σ(P (Y)) would be the minimal
polynomial of a solution for this representation. Since the above decomposition of P (Y)
contains only rational coefficients, any representation of ASL2

5 in SL(2, C) will lead to a
solution whose minimal polynomial is of the above form.

In Fuchs (1878) (cf. p. 16) no explicit decomposition of a polynomial P (Y ) is given.

4.3.2. Third order equations

For third order equations it is not the case that any solution of L(y) = 0 is a primitive
element of the PVE extension associated to L(y) = 0. For G(L) ∼= HSL3

216 the order of
the minimal polynomial of a primitive element (which always exists) is 648, while from
Corollary 4.1 there is a solution whose monic minimal polynomial is of order 81 where
at most 9 non zero coefficients have to be computed.
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In this section we present results involving groups, so that only the decomposition of
the coefficients in terms of the fundamental invariants remains to be done. To illustrate
the procedure for third order differential equations, we perform the decomposition of the
minimal polynomial in the case G(L) ∼= A5.

We consider each group separetely:

The Valentiner group ASL3
6 :

The group ASL3
6 is generated by the matrices E1, E2, E3 and E4 given in section

4.1.2. The 1-reducible subgroups of index 36 are all conjugate. Such a 1-reducible group
H is generated by E1, (E3E

2
1E4E

−1
1 )2 and E2. If we denote {y1, y2, y3} the basis of the

solution space corresponding to the above representation, then the solution z = y1 spanns
a one dimensional invariant subspace of H.
A set of left coset representatives T of H in ASL3

6 is{
id, E3, E4, E3E4, E1E3, E3E1E3, E1E4, E4E1E4, E

−2
1 E3, E

−2
1 E4, E4E

−1
1 E3,

E1E4E
−1
1 E3, E

2
1E4E

−1
1 E3, E

2
1E4E

−1
1 , E3E

2
1E4E

−1
1 , E−1

1 E3E
2
1E4E

−1
1 ,

E−1
1 E3E4, E4E

−1
1 E3E4, E1E4E

−1
1 E3E4, E2E

2
1E4E

−1
1 E3, E

2
1E3, E1E4E3,

E4E1E4E3, E
−2
1 E4E3, E4E

−2
1 E4E3, E2E1E4E

−2
1 E3, E4E

2
1E3E4E

−1
1 ,

E3E
−2
1 E3E4, E1E3E

−2
1 E4, E

2
1E3E4, E3E

−1
1 E3E4, E2E4E

−1
1 E3,

E−1
1 E4E1E3, E3E

2
1E3E4E

−1
1 , E1E4E

−1
1 E3E4E1E3, E1E4E

2
1E4E3E

−1
1

}
and the minimal polynomial of z is given by:

P (Y) =
∏
σ∈T

(Y6 − σ(z)6)

The simple group A5:

The group A5 is generated by the matrices E1, E2 and E3 given in section 4.1.2. The 1-
reducible subgroups of index 6 are all conjugate. Such a 1-reducible group H is generated
by E1 and E2. If we denote {y1, y2, y3} the basis of the solution space corresponding to
the above representation, then the solution z = y1 spanns a one dimensional invariant
subspace of H.
A set of left coset representatives T of H in A5 is{

id, E3, E1E3, E3E1E3, E
−2
1 E3, E

2
1E3

}
and the minimal polynomial of z is given by:

P (Y) =
∏
σ∈T

(Y2 − σ(z)2)

In the given representation (cf. reference to F. Klein in Miller, Blichfeld and Dickson
(1938), p. 254), the ring of invariants of A5 ⊂ SL(3,C) is generated by:

I1 = y21 + y2y3,

I2 = 8y41y2y3 − 2y21y
2
2y

2
3 + y32y

3
3 − y1(y

5
2 + y53)

I3 = 320y61y
2
2y

2
3 − 160y41y

3
2y

3
3 + 20y21y

4
2y

4
3 + 6y52y

5
3

−4y1(y
5
2 + y53)(32y

4
1 − 20y21y2y3 + 5y22y

2
3) + y102 + y103 ,
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and an invariant I4 of degree 15. Using an Ansatz we can represent the coefficients of
P (Y ) as polynomials in the invariants I1, I2 and I3. We get the following representation
for P (Y ):

Y12 − 2I1 Y
10 +

7

5
I21 Y

8 +

(
−12

25
I31 +

2

25
I2

)
Y6 +

(
11

125
I41 − 6

125
I1I2

)
Y4

+

(
− 26

3125
I51 +

6

625
I21I2 −

64

625 · 320
I3

)
Y2 +

(
1

3125
I61 +

1

3125
I22 − 2

3125
I2I

3
1

)
The group A5 × C3:

This group is the direct product of the previous group with the center of SL(3,C)
generated by Z. The 1-reducible subgroups of index 6 are all conjugate. From the previous
case we get a 1-reducible group H ×C3 generated by E1, E2 and Z which has the same
set of left coset representatives T in A5 × C3 has H in A5. Since C3 consists of scalar
multiplications, the common eigenvector z = y1 of H given in the previous case will be
a common eigenvector for H × C3.
The function z3 of the PVE is left invariant by the normal subgroup C3, which shows
that k(z3)/k has Galois group A5. Since z

′/z is left fixed by H, the same holds for
(z3)′/z3. From Corollary 1.4 and the bound for d computed in Theorem 4.1 we get that
the minimal polynomial P3(Y ) of z3 over k is given by:∏

σ∈T
(Y2 − σ(z3)2)

The following polynomial P (Y ) has z as a solution:

P (Y) =
∏
σ∈T

(Y6 − σ(z)6)

and comparing degrees (cf. Theorem 4.1), we get that P (Y ) is the minimal polynomial
of z.

The simple group G168:

The group G168 is generated by the matrices S, T and R given in section 4.1.2. The
1-reducible subgroups of index 21 are all conjugate. Such a 1-reducible group H is gener-
ated by S−2RS and RS−1RTS. If we denote {y1, y2, y3} the basis of the solution space
corresponding to the above representation, then the solution

z =
(
β5 + β4 + β2 + 1

)
y1 +

(
β5 + β

)
y2 + y3

spanns a one dimensional invariant subspace of H.
A set of left coset representatives T of H in G168 is{

id, T, T−1, S−1T−1, S−2, S−1, SR,RSR,RS−1RS−1, RS−3, S, TS−1, S−1T,

SRT,RSRT,RS−1RS−1T, STSR,RSTSR,RTS2, TS2, RSRT−1
}

and the minimal polynomial of z is given by:

P (Y) =
∏
σ∈T

(Y2 − σ(z)2)
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The group G168 × C3:

This group is the direct product of the previous group with the center of SL(3,C)
generated by Z. The 1-reducible subgroups of index 21 are not all conjugate. From the
previous case we get a 1-reducible group H×C3 generated by S−2RS, RS−1RTS and Z
which has the same set of left coset representatives T has H in G168. Since C3 consists
of scalar multiplications, the common eigenvector z of H given in the previous case will
be a common eigenvector for H × C3.
As in the case A5 × C3 we get the following minimal polynomial for z over k.

P (Y) =
∏
σ∈T

(Y6 − σ(z)6).

The group HSL3
216 :

The group HSL3
216 is generated by the matrices S1, T , V and UV given in section 4.1.2.

The 1-reducible subgroups of index 9 are all conjugate. Such a 1-reducible group H is
generated by U2V −1S1 and V −1U2S1. If we denote {y1, y2, y3} the basis of the solution
space corresponding to the above representation, then the solution −ε3y1 + y2 spanns a
one dimensional invariant subspace of H.
A set of left coset representatives T of H in HSL3

216 is{
id, V, V 2, V −1, T−1, S−1, V −1T−1, V S−1, V 2UT−1S

}
and the minimal polynomial of z is given by:

P (Y) =
∏
σ∈T

(Y9 − σ(z)9)

The group HSL3
72 :

The group HSL3
72 is generated by the matrices S1, T , V and UV U−1 given in section

4.1.2. The 1-reducible subgroups of index 9 are all conjugate. Such a 1-reducible group H
is generated by S1TUV U

−1, S1TUV U
−1V and S1T

−1S−1
1 T . If we denote {y1, y2, y3} the

basis of the solution space corresponding to the above representation, then the solution
z = −y2 + y3 spanns a one dimensional invariant subspace of H.
A set of left coset representatives T of H in HSL3

72 is{
id, T, T−1, S, S−1, TS, U−2V U−1, STS, U−1V −1U

}
,

and the minimal polynomial of z is given by:

P (Y) =
∏
σ∈T

(Y3 − σ(z)3)

The group FSL3
36 :

The group FSL3
36 is generated by S1, T and V of section 4.1.2. A 1-reducible group H

is generated by S−1T , STS and V 2T . If we denote {y1, y2, y3} the basis of the solution
space corresponding to the above representation, then the solution y1 + y2 + ωy3 spanns
a one dimensional invariant subspace of H.
A set of left coset representatives T of H in FSL3

36 is{
id, V, V 2, V −1, T−1, V −1T−1

}
,
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and the minimal polynomial of z is given by:

P (Y) =
∏
σ∈T

(Y6 − σ(z)6)

5. Computing a solution

Let L(y) = 0 be an equation of degree n with coefficients in k and finite primitive
Galois group G(L) ⊂ SL(n,C). Then the decomposition of the coefficients of the minimal
polynomial P (Y) of a solution given in the previous section reduces the computation of
the coefficients of P (Y) to the computation of finitely many semi-invariants of G(L) and
of the constants of the semi-invariants, which can be done using a Gröbner basis (for
second order equation only gcd computation are needed). In fact, since the coefficients
are invariants of G(L), only powers of the semi-invariants which are rational functions
have to be computed. This reduces the computations to the computation of rational
solutions of some symmetric power of L(y) = 0.

To compute the coefficients of P (Y) one can proceed in the following way:
From the a representation of the minimal polynomial P (Y ) of a solution y of L(y) = 0

in terms of the semi-invariants of G one can compute the coefficients of P (Y ) in the
following way:

i) Compute the set L of i-th symmetric powers L⃝s i(y) of L(y) = 0, where i belongs
to the set of orders of the semi-invariants appearing in the decomposition of the
coefficients of P (Y ).

ii) for each equation in L, compute a solution fi such that f ji ∈ k, where j belongs
to the set of orders of the one dimensional characters of G(L) (cf. Lemma 1.6). In
general the possible j’s can be further restricted by looking at the decomposition
of P (Y ) in terms of the semi-invariants of G(L) and noting that the coefficients of
P (Y ) must be rational.

iii) For each possible value fi (defined up to a constant ci) of the invariants Ii obtained,
replace Ii by ci · fi in P (Y ) = 0. This gives a new polynomial Q(Y ) = 0 whose
coefficients are polynomials in the variables ci over k.

iv) For s ≤ n, using Q(Y ) = 0, express the derivatives Y (s) of Y as a polynomial in
Y and replace Y (s) by this value in L(y) = 0. This gives a polynomial P (Y ) = 0
whose coefficients are polynomials in the variables ci over k.

v) compute the rest R(Y ) of the division of P (Y ) by Q(Y ) and determine the constants
ci by setting all coefficients of R(Y ) equal to 0. For i ≥ 2 this can be done using a
Gröbner basis.

vi) If a non trivial solution set {ci} is found, then replacing ci by these values in Q(Y )
gives the minimal polynomial of a solution of L(y) = 0.

The above method is based on the fact that the polynomial Q(Y ) is at least square
free. If the cases are considered without knowing the group G(L), then one has to start
with the cases where the polynomial to be constructed is of smallest degree (e.g. first
the case ASL2

4 , then SSL2
4 and then ASL2

5 ) and test if the resuling polynomial is square
free. Another possibility would be to use the method given in Singer and Ulmer (1992) to
determine the differential Galois group of L(y) = 0 and make sure that the assumption
on G(L) is correct.
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Example. We now apply the above method to compute the solutions of the differential
equation

L(y) =
d2 y

dx2
+

(
3

16x2
+

2

9(x− 1)2
− 3

16x(x− 1)

)
y = 0

which is also studied in Kovacic (1986), p. 23 and Ulmer (1991), p 452. From the result
of Kovacic (1986) we know that G(L) ∼= ASL2

4 . This could also be computed using the
result of Singer and Ulmer (1992) by showing that L⃝s 2(y) is irreducible and L⃝s 3(y) is
reducible.

In Section 4.3.1 we decomposed the coefficients of P (Y ) and noted that the only semi-
invariants present are I1, a semi-invariant of degree 4, and I2, a semi-invariant of degree
6. Furthermore, one can see from the form of the coefficients of P (Y ) (or from the orders
of the associated characters) that I1

3 and I2 are rational. To compute I1 we compute the
4-th symmetric power of L(y) = 0:

L⃝s 4(y) =
d5 y

dx5

+
5(32x2 − 27x+ 27)

36x2(x− 1)2
d3 y

dx3

−5(64x3 − 81x2 + 135x− 54)

24x3(x− 1)3
d2 y

dx2

+
5(1760x4 − 2970x3 + 6615x2 − 5103x+ 1458)

324x4(x− 1)4
d y

dx

−5(1792x5 − 3780x4 + 10395x3 − 11718x2 + 6561x− 1458)

324x5(x− 1)5
y

= 0 .

We must find a solution y of this equation such that y3 ∈ C(x). Since only I1
3 is needed,

it is enough to compute the rational solution y3 of L⃝s 12(y) = 0 (cf. Lemma 1.6). To
compute y one can either use the algorithm described at the begining of Section 3.2 or
more simply proceed as follows: Let

y =

(
P (x)

∏
i

(x− αi)
ni

)1/3

,

where P (x) is a polynomial, {αi} are the singular points of L⃝s 4(y) and ni are non-
negative integers. This implies that for each i, n1/3 is an exponent at αi and that the
exponent at infinity is −1

3 (deg(P ) +
∑
ni). Checking the possibilities shows that P (x)

must be constant and that I2 must be a constant multiple of x(x− 1)4/3 or x(x− 1)5/3.
From a similar computation we get the solution x2(x − 1)2 for L⃝s 6(y) = 0 (see e.g.

Ulmer (1991)).
We set I1 = c1x(x− 1)4/3 and I2 = c2x

2(x− 1)2 in P (Y ) and get a polynomial Q(Y )
whose coefficients are polynomials in c1 and c2. Using Q(Y ) = 0 we write Y ′ and Y ′′

as a fraction of polynomials in Y and substitute those in L(y) = 0. The numerator of
the rational function in Y obtained in this way is a polynomial P (Y ) having a common



Liouvillian and Algebraic Solutions 33

solution with Q(Y ) = 0. The pseudo remainder R(Y ) of P (Y ) and Q(Y ) = 0 is a
polynomial in Y of degree at most 23 which must be zero. Thus all coefficients of R(Y )
must be zero, which gives a set of polynomials in c1, c2 and x. Equating coefficients of
powers of x to zero, gives a set of polynomials in c1 and c2. We now can compute a
Gröbner basis to find the constants c1 and c2 and get:

[432c21c
4
2 + c41, (−48ω3 + 72ω2 − 192ω + 84)c21c

4
2 + c31c

2
2]

In order for Q(Y ) = 0 to be an irreducible polynomial we must have c1 6= 0 and c2 6= 0.
Setting c2 = 1 we get c1 = 48ω3 − 72ω2 + 192ω − 84, which we also write

√
−432. This

gives the following minimal polynomial of a solution of L(y) = 0:

Y24 +
(
48ω3x2(x− 1)2

)
Y18

+
(
(−780ω2 + 780ω − 210)

(√
−432

)3
x3(x− 1)4

+(−6144ω3 + 9216ω2 − 4608ω + 768)x4(x− 1)4
)
Y12

+
(
(6816ω3 + 2496ω2 − 7488ω + 2496)

(√
−432

)3
x5(x− 1)6

+ (167936ω3 − 565248ω2 + 442368ω − 106496)x6(x− 1)6
)
Y6

+(780ω2 − 780ω + 209)
(√

−432
)6
x6(x− 1)8

2

The above shows that for the Tetrahedral group (as for any second order equation
with primitive unimodular Galois group) the computation of the minimal polynomial of a
solution is reduced to the computation of two semi-invariants (i.e. solutions of symmetric
powers whose power is rational) and two constants. In fact one constant can be choosen
arbitrary so that only one constant remains to be computed. This shows that for second
order equations the constant can be computed using only gcd computations. In the
paper of Fuchs it is shown that using the Hessian H(I1) and Jacobian J(I1,H(I1)) of
an invariant I1 of lowers degree, one gets the other invariants. For the tetrahedral group
ASL2

4 one has (Miller, Blichfeld and Dickson (1938), p. 226)

I3 =
H(I1)

48
√
−3

=
1

48
√
−3

∣∣∣∣∣∣∣∣∣
∂2I1
∂y1∂y1

∂2I1
∂y1∂y2

∂2I1
∂y2∂y1

∂2I1
∂y2∂y2

∣∣∣∣∣∣∣∣∣

I2 =
J(I1, I3)

−32
√
−3

=
1

−32
√
−3

∣∣∣∣∣∣∣∣
∂I1
∂y1

∂I1
∂y2

∂I3
∂y1

∂I3
∂y2

∣∣∣∣∣∣∣∣
Fuchs then shows how, as a function in x, for a given differential equation L(y) = y′′ −
r(x)y = 0 the Hessian χ1 and Jacobian φ of an invariant χ of minimal degree can be
written as a polynomial in χ(x) and derivatives of χ(x). He proves the following relations
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(Fuchs (1878), pp. 21-22):

χ1(x) = c

[(
d log χ(x)

dx

)2

+ 4
d2 log χ(x)

dx2
− 16r

]
χ(x)2

φ(x) =
√

−χ1(x)3 + 64χ(x)3,

where c is a constant that can be computed (Fuchs (1878), p. 22). If we let χ be the invari-
ant I1 used in Miller, Blichfeld and Dickson (1938), these formulas also yield expressions
for I2 and I3.

This reduces the above to the computation of one semi-invariant of lowest degree and
one constant.

We now compute an example of a third order differential equation:

Example. We now apply the above method to compute the solutions of the differential
equation

L(y) =
d3y

dx3
+

21(x2 − x+ 1)

25x2(x− 1)2
dy

dx
+

21(−2x3 + 3x2 − 5x+ 2)

50x3(x− 1)3
y ,

which is irreducible and has Galois group A5 (cf. Singer and Ulmer (1992), section 5).
Since the invariants of A5 ⊂ SL(3,C) are of order 2, 6 and 10, we have to compute

rational solutions of the second, 6-th and 10-th symmetric powers of L(y) = 0. The
equation L⃝s 2(y) = 0 has no non trivial rational solution. The subspaces of rational
solutions of L⃝s 6(y) = 0 and L⃝s 10(y) = 0 each are one dimensional and generated by
x4(x− 1)4 and x6(x− 1)6(x2 − x+ 1) respectively.

We set I1 = 0, I2 = c2x
4(x − 1)4 and I3 = c3x

6(x − 1)6(x2 − x + 1) in P (Y ) and get
a polynomial Q(Y ) whose coefficients are polynomials in c2 and c3. Using Q(Y ) = 0 we
write Y ′ and Y ′′ as a fraction of polynomials in Y and substitute those in L(y) = 0. The
numerator of the rational function in Y obtained this way is a polynomial P (Y ) having
a common solution with Q(Y ) = 0. The pseudo remainder R(Y ) of P (Y ) and Q(Y ) = 0
is a polynomial in Y of degree at most 11 which must be zero. Thus all coefficients of
R(Y ) must be zero, which gives a set of polynomials in c2 and c3. We now can compute
a Gröbner basis to find the constants c2 and c3 and get:

[− 1

256
c32c

3
3 + c82,−

1

256
c2c

4
3 + c62c3,−

1

256
c53 + c52c

2
3]

Since I1 = 0, we must have c2 6= 0 and c3 6= 0 in order for Q(Y ) = 0 to be an irreducible
polynomial with Galois group A5. Setting c3 = 1 we get c52 = 1/256. This gives the
following minimal polynomial of a solution of L(y) = 0:

Y12 +
2

25

x4(x− 1)4

2 5
√
8

Y6 − 64x6(x− 1)6(x2 − x+ 1)

625 · 320
Y2 +

1

3125

(
x4(x− 1)4

2 5
√
8

)2

2

The above method turned out to be very efficient. The computation of a minimal
polynomial (assuming known the decomposition of the minimal polynomial in term of
the invariants) could be done in both cases in much less than 1 CPU hour on an IBM RISC
6000 with 64MB of main memory. An attempt to compute the minimal polynomial of
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the logarithmic derivative of a solution of the above second order equation (which is used
as an example in Kovacic (1986)) using the implementation in MAPLE of the Kovacic
algorithm on a SUN 4 with 20MB of main memory did not give any result within 10
CPU hours.

We note, that the above computations can always be done in an algebraic extension
Q(α) of Q containing the finite singular points of L(y) = 0, the entries of the matrices in
the transversal T , the coordinates of the common eigenvector of the choosen 1-reducible
subgroup H and the coefficients of the invariants of G(L). Thus no additional algebraic
extension is needed at runtime. However, as show in both examples, the coefficients of
P (Y ) = 0 (i.e. the result of the Gröbner basis computation) do not in general belong
to Q(α)(x). Note that the final Gröbner basis computation will yield polynomials whose
roots generate an extension F of Q(α) such that the coefficients belong to F (x).

A. The character tables of the subgroups of index ≤ 6 of the Schur
representation group of A5

We denote G the Schur representation group of A5 wihch is of order 120. The table of
the irreducible characters of degree ≤ 3 of G produced by Cayley is:

class 1 2 3 4 5 6 7 8 9
conj 1 1 20 30 12 12 20 12 12
order 1 2 3 4 5 5 6 10 10

χ1 1 1 1 1 1 1 1 1 1
χ2 2 −2 −1 0 z1 −1− z1 1 −z1 1 + z1
χ3 2 −2 −1 0 −1− z1 z1 1 1 + z1 −z1
χ4 3 3 0 −1 −z1 1 + z1 0 −z1 1 + z1
χ5 3 3 0 −1 1 + z1 −z1 0 1 + z1 −z1

where z1 = −1− ω2 − ω3 and ω = e2πi/5.
The subgroups of G of index ≤ 6 are of index 5 or 6.
The subgroups of index 5 are all congugate and the table of the irreducible characters

of degree ≤ 3 of of such a group produced by Cayley is:

class 1 2 3 4 5 6 7
conj 1 1 4 4 6 4 4
order 1 2 3 3 4 6 6

χ1 1 1 1 1 1 1 1
χ2 1 1 −1− J J 1 −1− J J
χ3 1 1 J −1− J 1 J −1− J
χ4 2 −2 −1 −1 0 1 1
χ5 2 −2 −J 1 + J 0 J −1− J
χ6 2 −2 1 + J −J 0 −1− J J
χ7 3 3 0 0 −1 0 0

where J = e2πi/3.
The subgroups of index 6 are all congugate and the table of the irreducible characters

of degree ≤ 3 of of such a group produced by Cayley is:
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class 1 2 3 4 5 6 7 8
conj 1 1 5 5 2 2 2 2
order 1 2 4 4 5 5 10 10

χ1 1 1 1 1 1 1 1 1
χ2 1 −1 −I I 1 1 −1 −1
χ3 1 1 −1 −1 1 1 1 1
χ4 1 −1 I −I 1 1 −1 −1
χ5 2 −2 0 0 z1 −1− z1 −z1 1 + z1
χ6 2 −2 0 0 −1− z1 z1 1 + z1 −z1
χ7 2 2 0 0 z1 −1− z1 z1 −1− z1
χ8 2 2 0 0 −1− z1 z1 −1− z1 z1

where I = e2πi/4, z1 = −1− ω2 − ω3 and ω = e2πi/5.

Acknowledgment: We would like to thank J. Cannon for his support regarding the
group theory system Cayley and M. Bronstein for his help with Axiom.
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Abstract

The singularity structure of a second-order ordinary differential equation with polynomial coefficients often

yields the type of solution. If the solution is a special function that is studied in the literature, then the result

is more manageable using the properties of that function. It is straightforward to find the regular and irregular

singular points of such an equation by a computer algebra system. However, one needs the corresponding

indices for a full analysis of the singularity structure. It is shown that the θ-operator method can be used as

a symbolic computational approach to obtain the indicial equation and the recurrence relation. Consequently,

the singularity structure which can be visualized through a Riemann P-symbol leads to the transformations

that yield a solution in terms of a special function, if the equation is suitable. Hypergeometric and Heun-type

equations are mostly employed in physical applications. Thus only these equations and their confluent types are

considered with SageMath routines which are assembled in the open-source package symODE2.

Keywords: Ordinary differential equations, symbolic analysis, special functions

1 Introduction

Mathematical analysis of physical problems generally requires the methods of solving ordinary differential equations
(ODEs). Numerical solutions of the initial and boundary value problems are often sufficient to give a concrete idea
about the behavior of the system, whereas the analytic solution of an ODE in closed form, especially in terms
of special functions may have more importance than constituting an exact solution. In some systems, the type of
solution has the potential to reveal the symmetries of the system. For example, the emergence of the hypergeometric
function in the solutions may indicate the conformal symmetry [1–4].

The applications of the general and confluent hypergeometric equation have dominated the 20th-century [5]. Al-
though the mathematical theory of the Heun equation and its confluent forms are far from complete, these functions
have been known and employed by experts in the area for many years [6,7]. Besides, the number of their applications
increased substantially after the implementation of the Heun functions in the computer algebra system Maple [8]
in 2005 [9–12]. The implementation of the Heun type functions in Mathematica in 2020 is another big leap for the
Heun community [13, 14].

Most of the free and open-source computer algebra systems and packages involve the solutions of the hypergeometric
equation, its confluent form, and related equations at least numerically [15–18]. However, the symbolic solutions of
the Heun type equations are defined only in Maple and Mathematica which are commercial systems. The numerical
evaluation of the general Heun and singly confluent Heun functions are studied by Motygin using the freely available

∗E-mail: birkandant@itu.edu.tr
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GNU Octave language [19–21]. The recent work by Giscard and Tamar also deals with the numerical calculation
of the Heun type functions [22]. The work is in progress for numerical treatment of the Heun type equations under
Python, and the initial results of the work are presented in [23].

A historical review on computer algebra systems is given in [24] along with gravitational applications. The general
methods for obtaining symbolic solutions to ODEs and a review of comprehensive literature before the year 2000 are
given in [25]. Among the papers released prior to 2000, we should cite the seminal paper of Kovacic [26] and Duval
and Loday-Richaud’s work in which the hypergeometric and Heun type equations are studied in particular [27].
Among the papers on the solutions of ODEs in terms of special functions that are published after 2000, we can cite
Bronstein and Lafaille [28], Chan and Cheb-Terrab [29], and van Hoeij with his collaborators [30–32].

SageMath is a free and open-source general-purpose computer algebra system licensed under the GPL [15]. Sage-
Math offers a Python-based language and it is built on many open-source packages such as Maxima, SciPy, NumPy,
and matplotlib. A variety of modules are present for many areas such as differential geometry and tensor calcu-
lus [33, 34] that enable calculations on quantum field theory and general relativity [35].

We will focus on the singularity analysis and symbolic solutions of the hypergeometric and Heun type equations
using the SageMath system and present the open-source package symODE2 which allows users to analyze these
equations symbolically without using a commercial program.

This paper is organized in the following way: In the second section, we present the code structure of our package and
give a comparison with the existing codes. In the third, fourth, and fifth sections, we briefly explain the analysis
of the singularity structure, series solutions, and change of variables for a second order ODE with polynomial
coefficients, respectively. In the sixth section, we explain our approach for finding the symbolic solutions of the
hypergeometric and Heun type equations. Section seven involves our conclusions and we describe the standard
forms of the equations in the appendix.

2 The code structure of the symODE2 package

The symODE2 package is written under SageMath 9.1 using a laptop computer with Intel(R) Core(TM) i7-6500U
CPU @ 2.50GHz and 8 GB memory. The operating system is Windows 10 Enterprise ver.1909. It is also tested
under SageMath 9.2.

The package consists of two main parts:

• ode2analyzer.sage for the general analysis and,

• hypergeometric_heun.sage for the symbolic solutions of the equations.

hypergeometric_heun.sage calls the routines defined in ode2analyzer.sage when needed.

We suggest the user put these two files in the same directory. The parts of the package and a sample worksheet
can be downloaded from the address [36]:

https://github.com/tbirkandan/symODE2

The User Manual which can be found at the same address contains detailed explanations of the routines and the
analysis of the cases in the sample SageMath worksheet.

2.1 General analysis (ode2analyzer):

The first part, ode2analyzer contains the routines that

– finds the singularity structure of the input ODE. The output is an array that involves the locations of the
singularities, indices of the regular singularities, and the ranks of the irregular singularities.
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– finds the indices and/or the recurrence relation with respect to a regular singular point using the θ-operator
method which will be defined below.

– performs a change of variables.

– finds the normal form of a second-order ODE. For an input in the form (1), the output is in the form (4).

2.2 Symbolic solutions of special ODEs (hypergeometric heun):

The second part, hypergeometric_heun contains the routines that

– finds the type of the ODE using its singularity structure and solves it using the routines defined below.

– uses a change of variables list in order to bring the input ODE into a special form that is recognized in the
package.

– solves a hypergeometric equation.

– solves a confluent hypergeometric equation.

– solves a general Heun equation.

– solves a (singly) confluent Heun equation.

– solves a double confluent Heun equation.

– solves a biconfluent Heun equation.

– solves a triconfluent Heun equation.

2.3 Comparison with the existing codes

symODE2 is the first freely available, open-source package that allows a symbolic treatment of the Heun-type
equations and it is written on SageMath which is also a freely available, open-source program. Therefore, symODE2
provides a free alternative to the commercial programs Maple and Mathematica when the problem is expressing
the solutions of these equations symbolically.

symODE2 uses the internal functions of SageMath for the numerical analysis of the hypergeometric-type equations.
The numerical treatment of the Heun-type equations is not implemented in SageMath. However, this work is in
progress under Python in order to reach a larger community, and SageMath will be able to use the Python code
directly [23]. The commercial programs Maple and Mathematica provide numerical operations as well as symbolics
for both hypergeometric and Heun-type equations. Maple and Mathematica also provide the derivatives of the
Heun-type functions, unlike symODE2.

The Heun-type equations are implemented in Mathematica in 2020. Figure (2) that will be given in Section (4)
below is created using symODE2 and it can be used as a comparison with the Mathematica results as explained.

The Maple implementation of the Heun-type equations goes back to 2005 and many of the Heun-related applications
in the literature published after this year are likely to be done by employing this program. The literature-based
cases given in the sample SageMath worksheet [36] and described in the User Manual show that the results obtained
by symODE2 agree with the ones in the literature.
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3 Singularity analysis

A second order ODE can be written in the form,

f1(x)
d2y(x)

dx2
+ f2(x)

dy(x)

dx
+ f3(x)y(x) = 0. (1)

From this point on, the coefficient functions f1,2,3(x) will be regarded as polynomials in the parameter x, and the
x-dependence of the function y will be omitted.

We can denote p(x) = f2(x)/f1(x) and q(x) = f3(x)/f1(x) to obtain,

d2y

dx2
+ p(x)

dy

dx
+ q(x)y = 0. (2)

If the functions p(x) and q(x) are analytic at a point x = x0, then x0 is an “ordinary point” for this ODE.

The points that make p(x) or q(x) divergent are called the singular points or singularities of the ODE. If x∗ is a
singular point and if (x−x∗)p(x) and (x−x∗)

2q(x) are both analytic at x = x∗, then x∗ is called a “regular singular
point”. Otherwise, the singular point is “irregular” [37]. The singularity behavior at x → ∞ can be analyzed by
performing the transformation x̃ = 1/x and checking the behavior at x̃ = 0. If all the singular points of an ODE
are regular, then the ODE is said to be a “Fuchsian equation”.

If the singularity at x = x∗ is irregular but (x−x∗)
kp(x) and (x−x∗)

2kq(x) are analytic where k is the least integer
satisfying this condition, then the irregular singular point at x = x∗ has a rank (k−1) [37]. Consequently, a regular
singular point is of rank-0 as k = 1.

We can write the equation (2) in normal form in which the coefficient of the first derivative vanishes. We define
y(x) = g(x)w(x) and for

g(x) = e−
1

2

∫
x

p(x′)dx′

, (3)

we obtain
d2w

dx2
+ q′(x)w = 0, (4)

where

q′(x) = q(x) − 1

2

dp(x)

dx
− p(x)2

4
. (5)

Our code transforms the input equation into the normal form in order to deal with the singular points of only one
function, namely q′(x). Although the package involves a routine for general change of variables, the results of the
transformation x̃ = 1/x is included in the function that finds the singularity behavior as the analysis of x → ∞
case is inevitable.

4 Series solution around a regular singular point

An indicial equation can be defined for a regular singular point [7]. For a finite regular singular point x∗ we have,

r(r − 1) + p∗r + q∗ = 0, (6)

where p∗ and q∗ are the residues of p(x) and (x − x∗)q(x) at x = x∗, respectively. For the regular singularity at
infinity, one can write

r(r + 1)− p∞r + q∞ = 0, (7)

where p∞ and q∞ are the residues of p(x) and xq(x) at x → ∞, respectively.

The roots r = r1 and r = r2 of the indicial equation are called the “indices” or “characteristic exponents”, or
“Frobenius exponents” of the corresponding regular singularity [7]. The sum of the all (2n) indices corresponding
to all (n) regular singular points in a Fuchsian equation should be equal to n− 2 [38].
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One can find at least one series solution, the “Frobenius solution” of the form,

y =

∞
∑

n=0

Cn(x − x∗)
n+r, (8)

near a finite regular singular point x∗, r being a characteristic exponent associated with x∗. The details on the
second solution and the solution around infinity can be found in [7]. We substitute the solution (8) into equation
(1) to obtain a recurrence relation among the coefficients Cn. For example, the hypergeometric equation admits a
two-term recurrence relation which connects Cn with Cn−1, while the Heun equation has a three-term recurrence
relation connecting Cn, Cn−1 and Cn−2.

The θ-operator method yields the indicial equation and the recurrence relation for a regular singular point with less
effort than the formal Frobenius series calculation. Following [39], we define D = d

dx
and,

θ = x
d

dx
= xD, (9)

θ(θ − 1) = x2D2. (10)

Similarly, we have
xnDn = (−1)n(−θ)n, (11)

where

(−θ)n =

n−1
∏

j=0

(−θ + j), (12)

is the generalized factorial notation. A general nth order ODE can be written as

[a0(x)D
n + a1(x)D

n−1 + ...+ an(x)]y = 0. (13)

Using eq.(11), we can write the equation in the θ-form, namely

[A0(θ) + xA1(θ) + x2A2(θ) + ...+ xmAm(θ)]y = 0, (14)

if the coefficients of the original equation are polynomials in x. Here, A0,1,...,m(θ) are polynomials in θ.

Let us assume that x = 0 is a regular singular point and seek a series solution in the form (8) for x∗ = 0. It
is known that any polynomial expression in θ operating on xn yields the same polynomial in n times xn, thus
P (θ)xn = P (n)xn [39]. Using this property, we get

∞
∑

n=0

Cn[A0(n+ r)xn+r +A1(n+ r)xn+r+1 + ...+Am(n+ r)xn+r+m] = 0. (15)

In order to have an arbitrary C0, the indicial equation is obtained as A0(r) = 0. Let us shift the indices in the sum,

∞
∑

n=0

[CnA0(n+ r) + Cn−1A1(n+ r − 1) + ...+ Cn−mAm(n+ r −m)]xn+r = 0, (16)

and the recurrence relation reads

CnA0(n+ r) + Cn−1A1(n+ r − 1) + ...+ Cn−mAm(n+ r −m) = 0. (17)

For a regular singular point x∗ other than zero, one should make the transformation x′ = x − x∗ and do the
calculation for x′. For the details of the θ-operator method, proofs and examples, we refer the reader to [39].

In our code, the function that finds the indices and the recurrence relation for a given regular singular point is
based on the θ-operator method.
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The hypergeometric function is implemented in SageMath as hypergeometric([a,b],[c],x). Therefore we can
verify our recurrence relation graphically as seen in Figure (1).

0.1 0.2 0.3 0.4 0.5 0.6 0.7
x

0.5

1

1.5

2

2.5

2F1([5,-10],[1],x)
SageMath
Recurrence relation

Figure 1: Plot of the hypergeometric function found by our recurrence relation result and the internal command of
SageMath.

We should note that finding a solution using the recurrence relation generally requires more effort than presented
here. Methods such as analytic continuation should be carefully applied in order to deal with the circle of convergence
of the series solution [20, 21].

We can also plot the series solution for the general Heun equation in Figure (2) using a similar code with an array
of plots and compare it with the plot given in the Wolfram Blog post [14] to see that they are similar. The details
of this analysis can be found in the User Manual and the sample SageMath session [36].

-0.2 0 0.2 0.4 0.6 0.8
x

2

4

6

8

10

12

14

HG(a1, q,α, β, γ, δ, x)

Figure 2: Plot of the general Heun function similar to the one given in [14].

6



5 Change of variables for a second order ODE

For an ODE of the form (1), we can change the independent variable from x to t(x) using

dy

dx
=

dt

dx

dy

dt
, (18)

d2y

dx2
=

(

dt

dx

)2
d2y

dt2
+

d2t

dx2

dy

dt
. (19)

As an example, let us make the change x →
√
t. Then t = x2 and

dy

dx
= 2

√
t
dy

dt
, (20)

d2y

dx2
= 4t

d2y

dt2
+ 2

dy

dt
, (21)

and the ODE becomes

4tf1(t)
d2y(t)

dt2
+ 2

[

f1(t) +
√
tf2(t)

]dy(t)

dt
+ f3(t)y(t) = 0. (22)

6 Hypergeometric and Heun-type equations

The code attempts to find symbolic solutions of some special ODES, namely, the hypergeometric equation, the Heun
equation, and their confluent forms. The analysis of the equations is based on the singularity structure. Locations
of the singularities and corresponding characteristic exponents play a major role in the method. Using particular
substitutions and transformations, the input equation is brought into a standard form that can be recognized by
the routines.

A basic example of our approach can be given by using the hypergeometric equation. The Riemann P -symbol for
the standard form of the hypergeometric equation (29) is

P







0 1 ∞
0 0 a x

1− c c− a− b b







. (23)

Here, the locations of the singular points are given in the first row and each column exhibits the characteristic
exponents of the corresponding singular points as found by our code in the sample worksheet.

Let us study a more general second order ODE with three regular singular points (x1, x2, x3) and corresponding
indices (ci1, ci2, i = 1, 2, 3), namely,

P







x1 x2 x3

c11 c21 c31 x
c12 c22 c32







. (24)

The substitution,

u(x) →
{

(

x−x1

x−x3

)c11(x−x2

x−x3

)c21
u(x), if x3 6= ∞,

(x− x1)
c11(x− x2)

c21u(x), if x3 = ∞,
(25)

brings the P -symbol in the form

P







x1 x2 x3

0 0 c31 + c11 + c21 x
c12 − c11 c22 − c21 c32 + c11 + c21







. (26)

The transformation,

x → (x2 − x3)(x − x1)

(x2 − x1)(x − x3)
, (27)
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moves the locations of the singular points from (x1, x2, x3) to (0, 1,∞) as in the standard form of the hypergeometric
equation [42]. Now we have,

P







0 1 ∞
0 0 c31 + c11 + c21

(x2−x3)(x−x1)
(x2−x1)(x−x3)

c12 − c11 c22 − c21 c32 + c11 + c21







, (28)

which corresponds to the standard form of the hypergeometric equation. We note that the sum of the indices is
not changed. A similar analysis of the general Heun equation can be found in [42].

Our approach is similar to this example for other equations: we change the indices of the regular singular points
and move the locations of the singular points in order to obtain a standard form. After reaching the standard
singularity structure of an equation that can be recognized by the code, the parameters are read either from the
characteristic exponents or by matching the final form of the input equation with the standard equation in their
normal forms.

The polynomial coefficients of the normal forms are matched in the confluent cases. The parameters of these ODEs
can be found by solving single equations, i.e. the code finds some parameters by solving algebraic equations that
depend only on one parameter. The rest of the parameters are found by substitution. For the Fuschian ODEs, the
parameters are read from the characteristic exponents, e.g. the non-zero exponent of the singular point at zero in
the hypergeometric equation yields 1− c, etc.

We find the parameters with this method and use the Maple or Mathematica forms of the solutions to substitute
these parameters. The standard forms of the equations are given in the Appendix.

The hypergeometric equation has three pairs of Frobenius solutions around its three regular singular points and
these solutions can be transformed into other solutions via specific transformations [41]. The number of all solutions
of the hypergeometric equation is 24. The number of total solutions is 192 for the general Heun equation [43]. The
user of our code may need to use some transformations or function identities in order to obtain the desired form of
the solution [38, 41, 43].

The results of the hypergeometric and confluent hypergeometric equations are numerically usable as these functions
are defined in SageMath. However, the numerical solutions of the Heun-type functions are not defined. The
numerical solutions of the general Heun and (singly) confluent Heun functions are defined by Motygin for GNU
Octave/MATLAB [20, 21]. GNU Octave/MATLAB commands can be run in a SageMath session. However, this
procedure is not straightforward and it is beyond the scope of this work. The method given in [22] can also be
employed in order to obtain numerical results. An optimized implementation of Giscard and Tamar’s method is in
progress, and the initial results of this work are presented in [23].

Several applications with symODE2 can be found in the User Manual and the sample worksheet of the code [36]
based on the results obtained in [5, 41, 44–53].

7 Conclusion

We proposed an open-source package under SageMath for symbolic analysis of second-order ordinary differential
equations with polynomial coefficients. Our approach was based on the singularity structure, namely, the locations
of the singularities, corresponding characteristic exponents, and the ranks of the irregular singular points of the
equation.

The singularity structure, indices, and recurrence relations associated with the regular singular points, and symbolic
solutions of the hypergeometric equation, Heun equation, and their confluent forms could be found using the package.

Using particular substitutions and transformations, the singularity structure of the input equation was brought in
a standard form that could be recognized by the routines. After being reached the standard singularity structure of
an equation, the parameters were obtained either using the characteristic exponents or by matching the final form
of the input equation with the normal form of the standard equation.
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As they were defined in SageMath, the results of the hypergeometric and confluent hypergeometric equations were
numerically usable, unlike the Heun-type functions.

We presented that our code worked properly with a number of tests. We also mentioned that some transformations,
substitutions, or identities might be needed in order to reach the results of the literature.
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A Appendix: Hypergeometric and Heun type equations in DLMF,

Maple, Mathematica, and symODE2

The standard forms of the equations may be defined differently in the literature and in the computer algebra
systems. Here, we consider DLMF, a well-known library of mathematical functions [41], and two computer algebra
systems, Maple and Mathematica which can work with hypergeometric and Heun type functions. We also note the
standard forms of the equations used in the symODE2 code.

In the Appendix of the User Manual, we also give a lists of correspondence of the parameters in these programs [36].

A.1 Hypergeometric equation

In DLMF [41],

x(1 − x)
d2y

dx2
+ [c− (a+ b+ 1)y]

dy

dx
− aby = 0. (29)

In Maple [54],

x(x − 1)
d2y

dx2
+ [(a+ b+ 1)x− c]

dy

dx
+ aby = 0, (30)

with solution hypergeom([a,b],[c],x).

In Mathematica [55],

−
(

x(x− 1)
d2y

dx2
+ [(a+ b+ 1)x− c]

dy

dx
+ aby

)

= 0, (31)

with solution Hypergeometric2F1[a,b,c,z].

All equations coincide and they have three regular singularities located at {0, 1, ∞}. symODE2 uses this form of
the equation as well.

A.2 Confluent hypergeometric equation

In DLMF [41],

x
d2y

dx2
+ (b − x)

dy

dx
− ay = 0. (32)

In Maple [54],

x
d2y

dx2
+ (c− x)

dy

dx
− ay = 0, (33)

with solution hypergeom([a],[c],x).
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In Mathematica [56],

x
d2y

dx2
+ (b − x)

dy

dx
− ay = 0, (34)

with solution HypergeometricU[a,b,x].

All have one regular singularity located at {0} and one irregular singularity of rank-1 at {∞}. The equations
coincide and symODE2 also uses this form of the equation.

A.3 (General) Heun equation

In DLMF [41],
d2y

dx2
+

(

γ

x
+

δ

x− 1
+

ǫ

x− a

)

dy

dx
+

αβx − q

x(x − 1)(x− a)
y = 0, (35)

and in Maple [57],
d2y

dx2
+

(

γ

x
+

δ

x− 1
+

ǫ

x− a

)

dy

dx
+

αβx − q

x(x − 1)(x− a)
y = 0, (36)

where ǫ = α+ β + 1− γ − δ with solution HeunG(a, q, α, β, γ, δ, x).

In Mathematica [58],

d2y

dx2
+

(

γ

x
+

δ

x− 1
+

α+ β + 1− γ − δ

x− a

)

dy

dx
+

αβx− q

x(x− 1)(x− a)
y = 0, (37)

with solution HeunG(a, q, α, β, γ, δ, x).

All have four regular singularities located at {0, 1, a, ∞}. symODE2 uses the same structure of the equation.

A.4 (Singly) Confluent Heun equation

In DLMF [41],
d2y

dx2
+

(

γ

x
+

δ

x− 1
+ ǫ

)

dy

dx
+

αx − q

x(x − 1)
y = 0. (38)

In Maple [57],

d2y

dx2
− −x2α+ (−β + α− γ − 2)x+ β + 1

x (x− 1)

dy

dx

− [(−β − γ − 2)α− 2 δ]x+ (β + 1)α+ (−γ − 1)β − 2 η − γ

2x (x− 1)
y = 0, (39)

with solution HeunC(α, β, γ, δ, η, x). This form can be transformed into

d2y

dx2
+

(

β + 1

x
+

γ + 1

x− 1
+ α

)

dy

dx
+

(

µ

x
+

ν

x− 1

)

y = 0, (40)

where

δ = µ+ ν − α
β + γ + 2

2
, (41)

η =
(α− γ)(β + 1)− β

2
− µ. (42)

In Mathematica [58],
d2y

dx2
+

(

γ

x
+

δ

x− 1
+ ǫ

)

dy

dx
+

αx − q

x(x − 1)
y = 0, (43)
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with solution HeunC(q, α, γ, δ, ǫ, x).

All have two regular singularities located at {0,1} and an irregular singularity of rank-1 at {∞}. symODE2 uses
the Maple form.

A.5 Double confluent Heun equation

In DLMF [41],
d2y

dx2
+

(

δ

x2
+

γ

x
+ 1

)

dy

dx
+

αx − q

x2
y = 0. (44)

This equation has two irregular singular points of rank-1 located at {0, ∞}.
In Maple [57],

d2y

dx2
− αx4 − 2 x5 + 4 x3 − α− 2 x

(x− 1)
3
(x+ 1)

3

dy

dx
− −x2β + (−γ − 2α)x− δ

(x− 1)
3
(x+ 1)

3 y = 0, (45)

with solution HeunD(α, β, γ, δ, x). This equation has two irregular singular points of rank-1 located at {-1, 1}.
In Mathematica [58],

d2y

dx2
+

(

γ

x2
+

δ

x
+ ǫ

)

dy

dx
+

αx − q

x2
y = 0, (46)

with solution HeunD(q, α, γ, δ, ǫ, x). This equation has two irregular singular points of rank-1 located at {0, ∞}.
symODE2 uses the Mathematica form.

A.6 Biconfluent Heun equation

In DLMF [41],
d2y

dx2
−

(γ

x
+ δ + x

) dy

dx
+

αx − q

z
y = 0. (47)

In Maple [57],
d2y

dx2
− β x+ 2 x2 − α− 1

x

dy

dx
− (2α− 2 γ + 4)x+ β α+ β + δ

2x
y = 0, (48)

with solution HeunB(α, β, γ, δ, x).

In Mathematica [58],
d2y

dx2
+

(

γ

x
+ δ + ǫx

)

dy

dx
+

αx− q

x
y = 0, (49)

with solution HeunB(q, α, γ, δ, ǫ, x).

All have one regular singularity located at {0} and one irregular singularity of rank-2 at {∞}. symODE2 uses the
Mathematica form.

A.7 Triconfluent Heun equation

In DLMF [41],
d2y

dx2
+ (γ + x)x

dy

dx
+ (αx − q) y = 0. (50)

In Maple [57],
d2y

dx2
− (3x2 + γ)

dy

dx
+ [(β − 3)x+ α]y = 0, (51)

with solution HeunT(α, β, γ, x).
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In Mathematica [58],
d2y

dx2
+ (γ + δx+ ǫx2)

dy

dx
+ (αx − q)y = 0, (52)

with solution HeunT(q, α, γ, δ, ǫ, x).

All have one irregular singularity of rank-3 at {∞}. symODE2 uses the Mathematica form.
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Abstract. Differential Galois theory takes the approach of algebraic Galois theory and
applies it to differential field extensions generated by appending solutions to differential
equations. In doing so, it uncovers both the same relationship between the solutions to
differential equations and the structure of the differential splitting field, and the same
solubility conditions for differential equations, as the algebraic Galois theory found for
polynomial equations.

This paper provides an informal exposition of the equivalence, through the presentation
of simple, concrete examples of each differential analogue. Most of the literature is purely
abstract and the algebraic theory employed is heavy. Hopefully, this introduction will be
accessible to anyone with a basic knowledge of algebraic Galois theory and differential
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AN INTRODUCTION TO DIFFERENTIAL GALOIS THEORY 1

1. Introduction

In the early 19th century, Evariste Galois discovered a relationship between the struc-
ture of the splitting field of an irreducible polynomial and the roots of the polynomial.
In particular, he found that the subfields of the splitting field are in bijection with the
subgroups of the group of automorphisms of the splitting field that fix the base field. This
group is called the Galois group of the polynomial and the splitting field is said to be
a Galois extension of the base field or, simply, Galois. This relationship between the
Galois group and the Galois extension is given by the Fundamental Theorem of Galois
Theory.

Theorem 1.1. If L/K is Galois with Galois group G, F = {F is a field | K ⊆ F ⊆ L},

and H = {H|H ≤ G} then

(1) There is a bijective map H → F defined by H → F ⇐⇒ σ(x) = x ∀σ ∈ H, x ∈ F .

(2) The map is order inverting. If H1 → F1, H2 → F2 then F1 ⊂ F2 ⇐⇒ H2 < H1.

(3) F ∈ F is Galois over K ⇐⇒ F is the image of a normal subgroup of G

Note that if H ≤ G then the set LH = {x ∈ L|σ(x) = x ∀σ ∈ H} is always a subfield
of L and L

H is referred to as the fixed field of H.

Galois’ work uncovered a solvability condition for polynomial equations: a polynomial
is solvable by radicals if and only if its Galois group is solvable. By demonstrating that
the Galois group of a general polynomial of degree 5 or higher was not solvable, Galois
confirmed Abel’s proof that a general polynomial of degree 5 or more not solvable by
radicals.

Example 1.2. Consider P (x) = (x2 − 2)(x2 − 3) ∈ Q[x].

P (x) has four real roots over Q, ±
√
2 and ±

√
3, so L = Q�

√
2,
√
3� is the splitting field

for P (x) over Q. The extension L/Q is Galois with the intermediate fields Q�
√
2�, Q�

√
3�,

and Q�
√
6�.

To identify the Galois group, G = Gal(L/Q), note that since ±
√
2 are the roots of x2−2

and ±
√
3 are the roots of x2 − 3, any Q-automorphism of L must map ±

√
2 → ±

√
2 and

±
√
3 → ±

√
3.

Thus, the Galois group is G = {1, σ, τ, στ} where

σ :

�√
2 → −

√
2

√
3 →

√
3

τ :

�√
2 →

√
2

√
3 → −

√
3

στ :

�√
2 → −

√
2

√
3 → −

√
3

The subgroups of G are H1 = 1, H2 = {1, τ}, H3 = {1, σ}, H4 = {1, στ}, and G.

As σ and τ are automorphisms σ(
√
6) = σ(

√
2)σ(

√
3) = −

√
6 and τ(

√
6) = τ(

√
2)τ(

√
3) =

−
√
6. And, since the group operation in G is composition, στ(

√
6) = τσ(

√
6) =

√
6. The

bijection promised in (1.1) maps G → Q, H2 → Q�
√
2�, H3 → Q�

√
3�,H4 → Q�

√
6�, and

H1 → Q�
√
2,
√
3�.

The equivalence of the structures of the Galois extension and the Galois group can be
seen in the diagrams:
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H1

H2 H3 H4

G

Q

Q�
√
2� Q�

√
3� Q�

√
6�

Q�
√
2,
√
3�

L
G

L
H2 L

H3 L
H4

L
H1

Clearly Q�
√
2�, Q�

√
3�, and Q�

√
6� are all Galois over Q and it is easy to verify that

H2, H3, and H4 are all normal subgroups of G.

The idea of developing an analogue to algebraic Galois theory for differential equations
originated with Sophus Lie in the early 1870’s. Lie found that if a group of transformations
under composition permutes the integral curves of a differential equation of the form
Xdy − Y dx = 0, the group may be used to find an integrating factor for the equation.
Additionally, he discovered necessary and sufficient conditions for the existence of the
transformation group. [Ref5]

In the late 19th Emile Picard and Ernst Vessiot applied the theory of Lie groups to
uncover a solvability condition for first order linear, homogeneous differential equations
almost exactly equivalent to Galois’ solvability condition for polynomials. Analyzing the
relationship between the differential field extensions obtained by appending solutions to
differential equations over a base field, and the group of symmetries of those roots they
found that an ordinary, linear, homogeneous differential equation is solvable by quadra-
tures if and only if its differential Galois group is solvable.

In a striking parallel to the development of algebraic Galois theory Ellis Kolchin, be-
lieving Picard-Vessiot theory was limited by the lack of a formal theory of linear algebraic
groups, extended the work of Joseph Ritt in differential algebra to develop this theory. Us-
ing his new theory of algebraic matrix groups, Kolchin was able to formalize and extend the
work of Picard and Vessiot. The Fundamental Theorem of Picard-Vessiot Theory stated
below is due to Kolchin and it is his work that is generally referred to as Picard-Vessiot
theory, or differential Galois theory, today. [Ref9]

Theorem 1.3. If L/K is a Picard-Vessiot extension with differential Galois group G then

(1) There is an inclusion reversing bijective map between the set of Zariski closed

subgroups H of G and the set of differential fields F with K ⊂ F ⊂ L given by

H → L
H

(2) An intermediate differential field F = L
H

is a Picard-Vessiot extension ⇐⇒

H � G.

In this paper, we will informally explore the Picard-Vessiot theory. Each object in the
Picard-Vessiot theory will be introduced and developed as an analogue to its algebraic
counterpart.
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Algebraic Galois Theory Picard-Vessiot Theory
Polynomial Linear Differential Operator
Root of polynomial Solution to differential equation
Splitting field Picard-Vessiot extension
Galois group Differential Galois Group
Solvable Galois Group Solvable Galois Group

As each object is introduced, it will be illustrated by example. Wherever possible, the
same examples will be carried through the introduction of multiple objects.

2. Differential Rings and Fields

Before we can discuss the differential Galois theory, we need a few definitions.

Definition 2.1. Here are the basic definitions of differential rings and fields we will need:

(1) A derivation of a ring R is a map d : R → R such that ∀r, s ∈ R

(a) d(r + s) = d(r) + d(s)
(b) d(rs) = d(r)s+ rd(s)

(2) A differential ring is a commutative ring with identity and a defined derivation.

(3) A differential field is a field with a defined derivation. Of course, every differential
field is also a differential ring.

(4) An element in a differential ring or field is constant ⇐⇒ its derivation is 0.

(5) An ideal I ⊆ R is a differential ideal if it is closed under the derivation.

(6) A differential automorphism is an automorphism, σ, that respects the deriva-
tion: σ(r�) = [σ(r)]� ∀r ∈ R

Proposition 2.2. Here are some basic facts of differential rings and fields we will need:

(1) If R is an integral domain with derivation d, d extends uniquely to the quotient

field with the usual quotient rule: d( r
s
) = d(r)s−rd(s)

s2
.

(2) If R is a commutative differential ring and A is a multiplicative system of R the

derivation of R extends to the ring A
−1
R uniquely in the same way.

(3) If R is a differential ring then the derivation of R can be extended to the polynomial

ring R[X1, X2, . . . , Xn] such that (ΣaiX i)� = Σ(a�
i
X

i + aiiX
i−1

X
�)

(4) If K is a differential field and L/K is a separable algebraic extension, the deriva-

tion of K extend uniquely to L and every K-automorphism of L is a differential

automorphism.

(5) If K is a differential field and R ⊃ K is a differential ring then any maximal ideal,

I ⊂ R, is a prime ideal.

Examples:

(1) Any commutative ring, R, with identity may be given a differential structure by
defining d(r) = 0 ∀r ∈ R. Thus, Q, R, and C are all differential fields in which
every element is constant.
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(2) The polynomial rings Q[x], R[x], and C[x] with the usual derivation d(x) = 1 are all
differential rings. Likewise, the polynomial rings in n indeterminates Q[x1, . . . , xn],
R[x, . . . , xn], and C[x, . . . , xn] with d(xi) = 1 ∀i are all differential rings.

(3) The fields of rational functions, Q(x), R(x), and C(x) are all differential fields with
the usual derivative.

(4) The ring of infinitely differentiable real valued functions with their usual deriva-
tives is a differential ring and the field of meromorphic functions with their usual
derivatives is a differential field.

(5) If R is a differential ring then the ring R[x1, . . . , xn] with the derivation extended
by defining d(xi) = xi+1 for i ≤ n − 1 and d(xn) to be a member of R[x1, . . . , xn]
is a differential ring.

In this construction, each xi is a differential indeterminate and the elements of
R[x1, . . . , xn] are differential polynomials in the indeterminate x1.
If R was a field, this derivation extends uniquely to the quotient field R�x1, . . . , xn�

All of the above propositions and examples were taken from chapter 5 of [Ref1]. Some
proofs are available there.

The original Picard-Vessiot theory was established in the case where the base field is of
characteristic 0 and the field of constants is algebraically closed. Kolchin was able to prove
his results for fields of arbitrary characteristic. Recently, the results have been shown to
obtain for any closed real field of constants. [Ref10]

3. Linear Differential Operators

The ring of differential operators over a differential field K is simply a polynomial
ring in one indeterminate, the derivation d, and is analogous to the usual polynomial ring
K[x] over a field.

Definition 3.1. The ring of differential operators over a differential field K is the
noncommutative ring of all polynomials in d with coefficients in K .

K[d] = {L = and
n + an−1d

n−1 + . . .+ a1d+ a0 | ai ∈ K ∀i}

The product d · a in the ring of differential operators is defined by d · a = a
� + ad.

Powers of d act on members of K and its differential extensions as repeated applications
of the derivation. Every L ∈ K[d] acts on any differential extension of K to create a
degree n differential polynomial in one differential indeterminate, giving rise to a linear
homogeneous differential equation of order n.

L(Y ) = anY
(n) + an−1Y

(n−1) + . . .+ a1Y
� + a0Y = 0.

A differential equation written in the form of a differential polynomial is called a scalar
equation.

Every order n ordinary linear homogeneous differential equation may also be represented
as the 1st order matrix differential equation Y

� = AY , A ∈ GLn(K). The derivation of
M = (mij) ∈ gln(K) is given by M

� = (mij)�.

Letting bi =
ai
an
, it is clear that y is a solution of L(Y ) = anY

(n) + an−1Y
(n−1) + . . . +
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a1Y
� + a0Y = 0 if and only if

�
y, y

�
, . . . y

n−1
, y

n
�T

satisfies the matrix equation





y

y
�

...
y
n−1

y
n





�

=





0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
...

0 0 0 . . . 1
−b0 −b1 −b2 . . . −bn−1









y

y
�

...
y
n−1

y
n





As all the differential equations we consider in this paper will be linear homogenous
ordinary equations, we will not continue to qualify each equation as such.

A solution to a differential equation is the equivalent of a root of a polynomial in the
algebraic Galois theory. Unlike the algebraic setting, there are three distinct types of
solutions to a differential equation with coefficients in the differential field K.

(1) y is algebraic over K.
(2) y is the integral of a member of K.
(3) y is the exponential of an integral of a member of K

If CK is the field of constants of K then all CK-linear combinations of solutions to a
differential equation with coefficients in K are also solutions of the differential equation.

Examples:

(1) Let K = C(x) with the standard derivation and consider the scalar differential
equation L(Y ) = Y

�� + 1
x
Y

� = 0.

By inspection, y1 = 1 and y2 = lnx are two solutions that are linearly independent
over C. y1 = 1 is an algebraic element of K and y2 = ln x is the integral of 1

x
∈ K.

If c1, c2 ∈ C, then the linear combination c1+c2 · lnx is also a solution of L(Y ) = 0.

(2) The first order matrix equation for the differential equation in example 1 is�
y

y
�

��

=

�
0 1
0 −

1
x

��
y

y
�

�
. The solution vectors are (1, 0)T and (ln x,

1
x
)T .

(3) Let K = C(x) with the standard derivation and consider the scalar equation
L(Y ) = Y

�� + Y = 0.

By inspection, y1 = sin x and y2 = cos x are two solutions of L(Y ) = 0 that
are linearly independent over C. Additionally, it’s easy to see that y3 = e

ix and
y4 = e

−ix are another pair of solutions that are linearly independent over C.
Note that the set of solutions {y1, y2, y3, y4} is not linearly independent over C as,
for example, y1 =

i

2(y4 − y3)

(4) The matrix equation for the differential operator in example 3 is

�
y

y
�

��

=

�
0 1
−1 0

��
y

y
�

�
.

The solution vectors are (sinx, cosx)T , (cosx,−sinx)T or (eix, ieix)T , (e−ix
,−ie

−ix)T

As a polynomial of degree n has at most n distinct roots, a differential equation of order
n has at most n linearly independent solutions. It is a well known fact that an n

th order
differential equation will always have a full set of n linearly independent solutions.
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Definition 3.2. If K is a field of characteristic 0 and L(Y ) = 0 is an n
th order differential

equation with coefficients in K, then

(1) {y1, . . . , yn} is a fundamental set of solutions if and only if L(yi) = 0 for
1 ≤ i ≤ n and the yi are linearly independent over K.

(2) If {y1, . . . , yn} is a fundamental set of solutions to L(Y ) = 0 with the associated
matrix equation Y

� = AY then the fundamental solution matrix for Y � = AY

is

MA =





y1 y2 . . . yn

y
�
1 y

�
2 . . . y

�
n

...
... . . .

...
y
n−1
1 y

n−1
2 . . . y

n−1
n





(3) The Wronskian determinant of any set {y1, . . . , yn} is

W (y1, . . . , yn) =

��������

y1 y2 . . . yn

y
�
1 y

�
2 . . . y

�
n

...
... . . .

...
y
n−1
1 y

n−1
2 . . . y

n−1
n

��������
= detMA

Since W (y1, . . . , yn) is the determinant of an n by n matrix, W (y1, . . . , yn) �= 0 if
{y1, . . . , yn} is a fundamental set of solutions to the differential operator L(Y ) = 0.

Note that any fundamental set of solutions to an n
th order differential equation with

coefficients in K forms a basis for an n-dimensional vector space over CK . This is the
solution space of L(Y ) = 0

Examples:

(1) {1, ln x} is a fundamental solution set for L(Y ) = Y
�� + 1

x
Y

� = 0.

MA =

�
1 ln x

0 1
x

�
is a fundamental solution matrix for

�
y

y
�

��

=

�
0 1
0 −

1
x

��
y

y
�

�
.

W (1, ln x) = detMA = 1
x
�= 0 for all x in the domain of ln x.

(2) {sinx, cosx} and {eix, e−ix} are fundamental solution sets for L(Y ) = Y
��+Y = 0.

The matrices

�
sin x cos x

cos x −sin x

�
and

�
e
ix

e
−ix

ie
ix −ie

−ix

�
are fundamental solution ma-

trices for the first order matrix equation

�
y

y
�

��

=

�
0 1
−1 0

��
y

y
�

�
.

W (sin x, cos x) = det

�
sin x cos x

cos x −sin x

�
= −1

W (eix, e−ix) = det

�
e
ix

e
−ix

ie
ix −ie

−ix

�
= −2i.

4. Picard-Vessiot Extensions

The Picard-Vessiot field of L(Y ) = 0 with coefficients in a differential field K is
analogous to the splitting field of the polynomial P (x) over K. It is the smallest extension
of K that contains a fundamental solution set for L(Y ) = 0.
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Definition 4.1. If L(Y ) = 0 has order n with coefficients in the differential field K then
a differential extension L ⊇ K is a Picard-Vessiot extension if

(1) L = K�y1, . . . , yn� where {y1, . . . , yn} is a fundamental set of solutions to L(Y ) = 0.

(2) L contains no constants that were not in K; CL = CK .

If L/K is a Picard-Vessiot extension then L is the Picard-Vessiot field of L(Y ) = 0.

The condition that CL = CK insures that L is the minimal extension of K that contains
a fundamental set of solutions to L(Y ) = 0.

Examples:

(1) If K = C(x) with standard derivation, the Picard-Vessiot field of L(Y ) = Y
�� +

1
x
Y

� = 0 is L = K�ln x�.
(2) The Picard-Vessiot field of L(Y ) = Y

��+Y = 0 overK = C(x) is L = K�sinx, cosx�.

Theorem 4.2. There exists a Picard-Vessiot extension for L(Y ) = 0 over K if

(1) K has characteristic 0 and the field of constants CK is algebraically closed.

(2) If CK is a closed real field.

(3) L(Y ) = 0 has an irreducible auxiliary polynomial P (x) = 0 with coefficients in

CK. In this case, the Picard-Vessiot extension of L(Y ) = 0 is isomorphic to the

splitting field of P (x) = 0.

The Picard-Vessiot field of a differential equation L(Y ) = 0 is unique up to isomorphism.

If CK is algebraically closed, the Picard-Vessiot field L/K for L(Y ) = 0 may be con-
structed as follows:

(1) Adjoin a fundamental solution set {y1, . . . yn} and their first n − 1 derivatives to
obtain K[yij], a differential ring in n

2 indeterminates.

These may be structured as the matrix (yij) where y0j is the j
th solution and

y(i+1)j = y
�
ij
for 0 ≤ i ≤ n− 2, ynj = −an−1y(n−1)j − . . .− a1y1j − a0y0j.

(2) Localize by W (y1, . . . , yn) to obtain R = K[yij][W−1] the full universal solution
algebra for L.

(3) Any maximal ideal P of a full universal solution algebra is a prime ideal [Crespo]
so the quotient R/P , the Picard-Vessiot ring, is an integral domain.

(4) The Picard-Vessiot field L is the field of quotients of the Picard-Vessiot ring.

This procedure is described in more detail, with proof of (3), in [Ref1].

Examples:

(1) Let K = C(x) with the usual derivative, a ∈ C and consider the differential equa-
tion L(Y ) = Y

� − a

x
Y = 0. If y is a solution to L(Y ) = 0 and W = y. If a /∈ Z

then y /∈ K. [Ref2]

(a) If a = n

m
∈ Q then adjoining y to create the full universal solution algebra

K[y, 1
y
] introduces the relationship y

m − x
n = 0. Note that (ym − x

n) is a
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maximal differential ideal so is a prime ideal. The Picard-Vessiot field is the
field of fractions of the quotient K[y, 1

y
]/(ym − x

n), K�x
n
m �.

(b) If a /∈ Q then there is no non-trivial proper differential ideal so the Picard-
Vessiot extension is the field of fractions of K[y, 1

y
].

(2) Let K = C(x) with the usual derivative and consider Y (3) − 2Y = 0 which has the
auxiliary polynomial P (x) = x

3−2. The roots of P are 3
√
2, ρ 3

√
2, and ρ

2 3
√
2 where

ρ = e
2πi
3 so {e

3√2x
, e

ρ
3√2x

, e
ρ
2 3√2x} form a fundamental set of solutions. Thus, the

Picard-Vessiot extension is C�e 3√2x
, e

ρ
3√2x

, e
ρ
2 3√2x�.

5. The Differential Galois Group

Definition 5.1. If L/K is a Picard-Vessiot extension for L(Y ) = 0, the differential
Galois group of L ⊃ K isG(L/K) = GK(L), the group of all differentialK-automorphisms
of L.

As the members of the algebraic Galois group are exactly those transformations under
which the polynomial is invariant, the members of GK(L) are the automorphisms under
which the differential operator is invariant. If σ ∈ GK(L) and y is a solution of L(Y ) = 0,
σ(y) is also a solution. Thus, σ maps each yi in the fundamental solution set to a CK-linear
combination of the yi: σ(yi) = Σcjyi where cj ∈ CK for j = 1, . . . , n. Like the algebraic
Galois group, the members of the differential Galois group are completely determined by
their action on the generators of L/K.

Definition 5.2. A linear algebraic group is a subgroup G ⊆ GLn(CK) that is the set
of zeros of of a system of polynomials in n

2 variables with coefficients in CK .

While algebraic Galois groups are subgroups of Sn, differential Galois groups are linear
algebraic groups. In particular, if L(Y ) = 0 has order n, GK(L) is a Lie subgroup of
GLn(CK).

Examples:

(1) Let K = C(x), L = K�ln x� be the Picard-Vessiot field for L(Y ) = Y
�� + 1

x
Y

� = 0.
Any differential K-automorphism in GK(L) must fix the solution y = 1 ∈ CK and
map ln x to c1 + c2ln x.

Further, σ ∈ GK(L) =⇒ σ(d(ln x)) = d(σ(ln x)) =⇒ c2
x
= 1

x
=⇒ c2 = 1.

Thus σ ∈ GK(L) maps ln x → ln x+ c where c ∈ C and GK(L) is isomorphic to

C. GK(L) is the subgroup of GL2(C) generated by

�
1 c

0 1

�
for c ∈ C.

To verify this is a subgroup ofGL2(C) we compute

�
1 c1

0 1

��
1 c2

0 1

�
=

�
1 c1 + c2

0 1

�

(2) Let K = C(x) and L = K�sin x, cos x� be the Picard-Vessiot field for L(Y ) =
Y

�� + Y = 0.

AnyK-automorphism of L, must map sinx → asinx+bcosx, cosx → csinx+dcosx

and satisfy:
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σ(d(sin x)) = d(σ(sin x)) σ(d(cos x)) = d(σ(cos x))

σ(cos x) = d(asin x+ bcos x) σ(−sin x) = d(csin x+ dcos x)

csin x+ dcos x = acos x− bsin x −asin x− bcos x = ccos x− dsin x

From which it immediately follows that a = d and b = −c.

GK(L) is the subgroup of GL2(C) generated by

�
a b

−b a

�
a, b ∈ C not both zero.

As

�
a b

−b a

��
c d

−d c

�
=

�
ac− bd ad+ bc

−(ad+ bc) ac− bd

�
, GK(L) is a subgroup ofGL2(C).

(3) Let K = C(x), L = K�xa� be the Picard-Vessiot field for L(Y ) = Y
� − a

x
Y = 0. If

y is a solution of L(Y ) = 0 then σ ∈ GK(L) must be defined by σ(y) = cy.

(a) If a = n

m
, then y is algebraic over K with minimal polynomial of degree m

so σ ∈ GK(L) must map y → cy where c ∈ C is an m
th root of unity. Thus

GK(L) is cyclic of order m.

(b) If a /∈ Q then y is not algebraic over K then σ(y) = cy is a differential K-
automorphism ∀c ∈ C and GK(L) = GL1(C).

(4) If K = C(x) and L = C�e 3√2x
, e

ρ
3√2x

, e
ρ
2 3√2x� is the Picard-Vessiot field for L(Y ) =

Y
(3) − 2Y = 0.

Suppose σyi = c1y1 + c2y2 + c3y3. Computing dσ(yi) and σ(dyi) as in example (2)

above shows that any K-automorphism of L must be of the form σ :






y1 → c1y1

y2 → c2y2

y3 → c3y3

Thus GK(L) = (C∗)3, the group of invertible, diagonal matrices in GL3(C) .

6. The Galois Correspondence

The correspondence between the subgroups of the differential Galois group and the
intermediate fields in the Picard-Vessiot extension is exactly analogous to the Galois cor-
respondence in algebraic Galois Theory.

Theorem 6.1. If L/K is a Picard-Vessiot extension with differential Galois group G then

(1) There is an inclusion reversing bijective map between the set of Zariski closed

subgroups H of G and the set of differential fields F with K ⊂ F ⊂ L given by

H → L
H

(2) An intermediate differential field F = L
H
is itself a Picard-Vessiot extension ⇐⇒

H � G.

A proof of this theorem is section 6.3 in [Ref1].

Definition 6.2. A subgroup H ⊆ G is Zariski closed if H is a linear algebraic group.



10 BRUCE SIMON

Example:

(1) Let K = C(x) and consider the linear differential operator L(Y ) = Y
� − Y = 0.

y = e
x is a solution to L(Y ) = 0 and L = K�ex� is the Picard-Vessiot extension.

The differential Galois group is GK(L) = C
∗.

The Zariski closed proper subgroups of C
∗ are the groups of units of order n:

µn = (e
2πi
n ), n ≥ 2. µn is the set of simultaneous solutions to x

n − 1 = 0.

The intermediate differential fields of L/K are L ⊃ En ⊃ K where En = K�enx�,
n ≥ 2. If m divides n, the Galois correspondence is given by:

C(x) = K

K�enx�

K�emx�

K�ex� = L

Differential Fields

⇐⇒

⇐⇒

⇐⇒

⇐⇒

GK(L) = C
∗

(e
2πi
n )

(e
2πi
m )

1

Zariski Closed Subgroups

Since C
∗ is commutative, H = µn � C

∗ for all n. L
H = K�enx� is the Picard-

Vessiot extension for L(Y ) = Y
� − nY = 0.

7. Solvability

The algebraic Galois’ theory established a solvability condition for polynomials given
by the following theorem.

Theorem 7.1. A polynomial over a field of characteristic 0 is solvable by radicals ⇐⇒

it has a solvable Galois group.

Definition 7.2. G is solvable if there is a chain of subgroups 1 = G0 ⊂ G1 . . . ⊂ Gn = G

such that Gi+1 � Gi and Gi+1/Gi is abelian.

Definition 7.3. Let K be a differential field, L(Y ) = 0 a differential equation over K. A
solution y /∈ K is Liouvillian if

(1) y is algebraic over K
(2) y is the integral of an element in K

(3) y is the exponential of an element in K

Picard and Vessiot stated an almost identical condition for a linear differential equation
to be solvable in terms of Liouvillian functions. Their statement was ”given a formal
modern proof” by Kolchin. [Ref2]

Theorem 7.4. Let K be a differential field, L the Picard-Vessiot field for L(Y ) = 0 over

K. L(Y ) = 0 is solvable by Liouvillian functions ⇐⇒ the identity component of GK(L)
is solvable.
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Singer provides several equivalent and stronger statements, with proofs, as well as ex-
amples in section 1.5 of [Ref2].

8. Concluding Thoughts

We have confined ourselves here to the basics of the direct question of differential Galois
theory: given an easily solved differential equation, what is the Picard-Vessiot extension,
the differential Galois group and the Galois correspondence. There was a great deal of
interest in developing algorithms for finding differential Galois groups in the late 1990’s
and early 2000’s. The article by van der Put referenced below provides a summary of those
activities and some applications. More recently, work seems to be focused on algorithms
for parameterized differential Galois theory.

The inverse question, ”given a differential field K with field of constants C and a linear
algebraic group G defined over C find a linear differential equation defined overK whose
differential Galois group is G” is also being studied. Crespo and Hajto give several sug-
gested references in the last chapter of their book (Pg. 213). The preliminary paper by
Harbater, Hartmann, and Maier referenced below claims a positive solution to the problem
over Laurent series fields of characteristic 0, namely that every algebraic group over such
a field is the Galois group of a differential equation.

Singer discusses several applications of differential Galois theory in mathematics in
section 1.3 of his lectures beginning on page 18.
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Given a second order linear differential equations with coef-
ficients in a field k = C(x), the Kovacic algorithm finds all
Liouvillian solutions, that is, solutions that one can write
in terms of exponentials, logarithms, integration symbols,
algebraic extensions, and combinations thereof. A theorem
of Klein states that, in the most interesting cases of the Ko-
vacic algorithm (i.e when the projective differential Galois
group is finite), the differential equation must be a pull-
back (a change of variable) of a standard hypergeometric
equation. This provides a way to represent solutions of the
differential equation in a more compact way than the for-
mat provided by the Kovacic algorithm. Formulas to make
Klein’s theorem effective were given in [4, 2, 3]. In this pa-
per we will give a simple algorithm based on such formulas.
To make the algorithm more easy to implement for various
differential fields k, we will give a variation on the earlier
formulas, namely we will base the formulas on invariants of
the differential Galois group instead of semi-invariants.
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1. INTRODUCTION
The Kovacic algorithm [19] computes closed form (Liou-

villian) solutions of second order linear differential equations
over k = C(x). Since the appearance of [19], many papers
have studied and refined the method. The version given in
[27] uses invariants instead of the semi-invariants, which is
easier to implement especially for differential fields k more
complicated than C(x). The paper [15] gives good formulas
for computing algebraic solutions (after [25]). The common
basis of these algorithms is to derive solutions from (semi)-
invariants of the differential Galois group (see section 3).

Another approach is the Klein pullback method: Klein
([18], also [1, 5, 2]) showed that if the projective differential
Galois group is finite, then the equation is a pullback of an
equation in a finite list of well-known standard hypergeo-
metric equations. This means that the solutions are of the
form e

R

gH(f) where f, g ∈ k and H is a standard hyperge-
ometric function H(x) = 2F1([a, b], [c], x) whose parameters
a, b, c appear in a finite list. Interest in this method has
recently been revived [5, 20, 21] for classifying work, but
finding pullback functions still relied on skill.

In [4, 2, 3] Berkenbosch and the authors of this paper give
(surprisingly simple) formulas for computing the pullback
function f (as well as the function g). In [2, 3] Berkenbosch
generalizes Klein’s theorem to third order operators.

Our formulas from [4, 2, 3] rely on computing semi-invariants
of the differential Galois groups, which is well-mastered for
differential equations with coefficients in C(x). For more
general differential fields, however, it may be easier (as noted
in [27]) to use algorithms that compute invariants of the dif-
ferential Galois group instead of semi-invariants. In order to
use invariants, we will need to give formulas that are slightly
different from those given in [4, 2, 3].

The contribution in this paper is of algorithmic nature:
we give an algorithm for solving second order differential by
pullbacks for a general differential field k by constructing
new formulas which rely on invariants only. A field k is
admissible for our algorithm if:

k is an effective (computable) field (this includes extracting
square roots), one has an algorithm for computing rational
solutions of linear differential equations with coefficients in
k and an algorithm for computing exponential solutions of
second order differential equations.

Examples of admissible fields are Liouvillian extensions
of C(x) ([24]). Implementations of the above assumed al-
gorithms are available for fields such as C(x), C(x, exp(f))
([8]), quadratic extensions of C(x) ([10]), etc. For those



fields k, the algorithm proposed here for computing Liouvil-
lian solutions will be easy to implement.

Although we recall the main ideas in sections 3, we assume
in this paper that the reader has an elementary knowledge of
differential Galois theory ([23]) and of the Kovacic algorithm
[19, 23]. The algorithm in section 2 below follows the lines
of the rational version of the Kovacic algorithm given in [27].

Section 2 contains the algorithm. Most of the remain-
der of the paper is devoted to its correctness and optional
improvements. Section 3 contains material and definitions
from differential Galois theory and Kovacic’s algorithm; sec-
tion 4 recalls the pullback formulas from [4, 2, 3] for the case
k = C(x), Section 5 proves the pullback formulas for a gen-
eral differential field and the correctness of the algorithm.

Finally, we remark that some recent papers [7, 12] showed
how to solve certain classes of second linear differential equa-
tions as pullbacks of differential equations corresponding to
special functions (Airy, Whittaker, etc). The present work is
complementary to those whenever the differential equation
has more than 3 singularities and the projective differential
Galois group is not PSL2.
Acknowledgments. The authors would like to thank M.
van der Put, M. Bronstein, M. Loday-Richaud and specially
M. Berkenbosch for fruitful discussions while preparing this
work. We thank the referees for their comments.

2. THE ALGORITHM
In this section, we state the algorithm assuming the reader

is familiar with notations and concepts from differential Ga-
lois theory and Kovacic’s algorithm; unfamiliar readers should
proceed first to the next sections for explanations and come
back to this section afterward.
Let k denote a differential field of characteristic 0. We con-
sider the differential operator

L = ∂2 + A1∂ + A0 ∈ k[∂] (2.1)

This corresponds to the differential equation y′′ + A1y
′ +

A0y = 0. We assume that there exists w ∈ k such that

A1 = −w′

w
(this is not restrictive since after a simple trans-

formation one may assume the stronger condition A1 = 0,
see section 3).

We define the following standard differential operators

Sts
Dn

= ∂2 +
x

x2 − 1
∂ − 1

4n2(x2 − 1)
, n ∈ N (2.2)

Sts
G = ∂2 +

(8x + 3)

6 (x + 1) x
∂ +

(6ν − 1)(6ν + 1)

144 (x + 1)2 x
(2.3)

for (G, ν) ∈ {(A4, 1/3), (S4, 1/4), (A5, 1/5)}.

Sti
D2

= ∂2 +
4

3

x

(x2 − 1)
∂ − 5

144

x2 + 3

(x2 − 1)2
(2.4)

Sti
Dn

= Sts
Dn

, n > 2 (2.5)

Sti
A4

= ∂2 +
2

`
3x2 − 1

´

3x (x2 − 1)
∂ +

5

144x2 (x2 − 1)
(2.6)

Sti
S4

= ∂2 +
1

4

(5x − 2)

(x − 1) x
∂ − 7

576

1

(x − 1)2 x
(2.7)

and Sti
A5

= Sts
A5

. These are well studied hypergeometric
operators and their solutions are well-known. There are var-
ious ways to express the solutions of the above operators, one
can use the hypergeometric function 2F1, or algebraic func-

tions, or (if G is not A5) nested radicals. We propose the

2F1 representation as the default choice because it is the
most compact representation. Moreover, converting these

2F1’s to algebraic functions or nested radicals is easier to
implement (table lookup) than the reverse conversion.

The m-th symmetric power L©s m of L is the operator
whose solutions are spanned by products of m solutions of
L. Given differential operators L ∈ k[∂] and ∂−b, b ∈ k, the
notation L ⊗ (∂ − b) refers to the operator whose solutions

are the solutions of L multiplied by the solution e
R

b of ∂−b.
Given a differential operator L = ∂2 + a1∂ + a0, we define

its g-invariant to be gL := 2a1 +
a′
0

a0
.

We can now state the algorithm. The steps have to be per-
formed in the given order, and the algorithm exits when a
solution is found.
Pullback Algorithm, general k:
Input: L with G(L) ⊂ SL2(C)
Output: Liouvillian solutions, expressed via solutions of
the above standard operators

1. Determine if L has a solution y such that y′/y ∈ k (an
exponential solution). If so, return a basis of Liouvil-
lian solutions of L [15, 2, 19, 27, 23]

2. Let B4 be a basis of solutions in k of L©s 4

(a) If B4 contains one element i4, let ∂2 +a1∂ +a0 :=

L ⊗ (∂ +
i′
4

4i4
). Return 4

√
i4 e±

R √−a0 or use sec-
tion 5.3.

(b) (implementation of this step is optional). If B4

contains two elements then let m = 6 and take
solutions as in step 3 below (B6 will have one
element i6), or use section 5.4.

3. For m in 6, 8, 12, let Bm be a basis of solutions in
k of L©s m. If Bm contains one element im, then let

L = ∂2 + a1∂ + a0 := L ⊗ (∂ +
i′
m

mim
). Now return the

following basis of solutions of L

m
√

im H1(f), m
√

im H2(f)

where H1(x),H2(x) is a basis of solutions of Sti
G and

where G and f are determined as follows:

(a) If m = 6, then G := A4 and f :=
q

1 + 64
5

a0

g2

L

.

This f will be in k.

(b) If m = 8, G := S4 and f = − 7
144

g2

L

a0
.

(c) If m = 12, G := A5 and f = 11
400

g2

L

a0
.

The name of the standard operators refers to the pro-
jective differential Galois group PG(L) (see section 3
below) of L.

4. Otherwise the operator has no Liouvillian solutions.

The above algorithm is correct but improvements are possi-
ble. In step 2a where B4 has one element, we have PG(L) =
Dn for some n > 2. If an integration algorithm for the field
k(
√−a0) is available, then we could use it to try to simplify

the expression e±
R √−a0 . However, if n 6= ∞ then there is

an alternative that is likely to be more efficient. To imple-
ment this alternative, one starts by running a subroutine
of the integration algorithm ([6]) that determines n. When



n is found, if n 6= ∞, then instead of running the remain-
der of the integration algorithm one proceeds by using the
formulas in section 5.4.

Implementation of step 2b is optional. In step 2b, the pro-
jective Galois group is D2 (this denotes C2 ×C2). If step 2b
is not implemented, then in the D2 case the algorithm will
proceed to step 3a and compute solutions using formulas
meant for A4. Although these formulas give correct solu-
tions for the D2 case (note that D2 � A4 and that these
two groups have the same invariants of degree 6) one can
find better (more compact) solutions in this case by using
equation (2.4) and the formula from section 5.4.

3. DIFFERENTIAL GALOIS THEORY
For completeness and to set notations, we briefly recall the

rational Kovacic algorithm from [27]. Let L = ∂2+A1∂+A0

where A0, A1 ∈ k. We consider a second order ordinary
linear differential equation

Ly = 0, y′′ + A1y
′ + A0y = 0. (3.8)

We assume that A1 = f ′

f
for some f ∈ k; this can be

achieved after a change of variable y 7→ ye
R A1

2 which turns
the equation (3.8) into the reduced form y′′ − ry = 0 with

r =
A2

1

4
+

A′
1

2
− A0.

Given two linearly independent solutions of (3.8), say y1, y2

(either “formal” or “actual functions on some open set”), the
field K := k(y1, y2, y

′
1, y

′
2) is a differential field (a field closed

under differentiation) and is generated, as a differential field,
by y1 and y2 over k. This field K is called a Picard-Vessiot
extension of (3.8). The solution space in K is the C vec-
tor space generated by y1 and y2, denoted by V in all that
follows. The group of differential automorphisms of K over
k (i.e., automorphisms of K over k that commute with ∂)
is called the differential Galois group of (3.8) over k. We

denote it by G(L) = GalK/k(L). The condition A1 = f ′

f

ensures that G(L) ⊂ SL2(C).
The projective Galois group is defined by

PG(L) := G(L)/(G(L) ∩ C∗),

where G(L) ∩ C∗ denotes the subgroup of those g ∈ G that
act on V as scalar multiplication.
Multiplying the solutions by e

R

b for b in k changes the Galois
group G(L) but not the projective Galois group PG(L). The

operator whose solutions are y·e
R

b, with y solution of L(y) =
0, is denoted L⊗ (∂ − b). We will say that two operators L1

and L2 are projectively equivalent when there exists b ∈ k
such that L1 = L2 ⊗ (∂ − b). It is easy to see that L1,
L2 are projectively equivalent if and only if they have the
same reduced form. If L1, L2 are projectively equivalent
then PG(L1) = PG(L2).

3.1 Invariants and Semi-Invariants
The key to Kovacic’s algorithm is that the existence of

Liouvillian solutions is (for second order equations) equiva-
lent with the existence of a semi-invariant of the differential
Galois group.

Definition 3.1. Fix a basis y1, y2 of the solution space
V of L.

1. A homogeneous polynomial I(Y1, Y2) ∈ C[Y1, Y2] is
called an invariant with respect to the differential op-
erator L if its evaluation h := I(y1, y2) is invariant

under the action of the differential Galois group G(L)
of L. In other words h ∈ k. This function h is then
called the value of the invariant polynomial I.

2. A homogeneous polynomial I(Y1, Y2) ∈ C[Y1, Y2] is
called a semi-invariant with respect to a differential

operator L if
h′

h
∈ k where h := I(y1, y2).

We will list a few well known facts, for more details see
[25, 23, 19]. For second order operators, there is a one to
one correspondence between the (semi)-invariants of degree
m and their values (for higher order operators this need not
be the case). The values of invariants of degree m are pre-
cisely the rational solutions of L©s m, i.e solutions in k. The
values of the semi-invariants of degree m are the so-called
exponential solutions of L©s m, that is, those solutions h of
L©s m for which h′/h ∈ k.
The operator L©s m can be easily computed from the recur-
sion given in (1.14) in [11] (see also [9]): Let L0 = 1, L1 = ∂
and

Li+1 = (∂ + iA1)Li + i(m − (i − 1))A0Li−1

for 0 < i ≤ m, then Lm+1 = L©s m.

3.2 The Subgroups ofSL2(C)

Invariants and semi-invariants are elements of C[Y1, Y2].
In the algorithm we will not calculate the invariants them-
selves, but only their values. For each semi-invariant, we will
only compute the logarithmic derivative h′/h of the value h
of a semi-invariant. So in the following, when we write that
there are n semi-invariants of degree m, we are counting
the number of distinct h′/h ∈ k for which h is a solution
of L©s m. And when we write that there are n invariants of
degree m, we mean that the set of solutions of L©s m in k
has a basis with n elements.

We recall the classification of subgroups of SL(C) (see e.g
[19, 25, 27, 23]) and the invariants and semi-invariants of
lowest degree. The group is reducible if there is at least
one invariant line in V . A non-zero element of that line is
an exponential solution, i.e., a solution whose logarithmic
derivative is in k (see [23, 27, 15, 2] for more on this case).
The rest of the classification (irreducible cases) is in the
above references:

Lemma 3.2 (Imprimitive groups).
Assume that G(L) ⊂ SL2(C) and that G(L) is imprimitive,
i.e. irreducible and there exist two lines l1, l2 ⊂ V such that
G(L) acts on {l1, l2} by permutation. Then PG(L) ⊂ D∞
(infinite dihedral group). Three cases are to be considered.

1. PG(L) = D2. Three semi-invariants S2,a, S2,b, S2,c of
degree 2 (S2

2,x is invariant), two invariants I4,a, I4,b

of degree 4. One invariant I6 of degree 6, with I6 =
S2,aS2,bS2,c. Note that the notation D2 does not refer
to the cyclic group C2 but to C2 × C2.

2. PG(L) = Dn, n > 2. One semi-invariant S2 of degree
2, one invariant I4 = S2

2 of degree 4, and another
invariant I2n of degree 2n.

3. PG(L) = D∞ has only one semi-invariant S2 of degree
2 and one invariant I4 = S2

2 of degree 4.



Lemma 3.3 (Primitive groups). Assume G is prim-
itive, i.e neither reducible nor imprimitive, and G(L) ⊂
SL2(C). Four cases are to be considered.

1. PG(L) = A4; two semi-invariant S4,a, S4,b of degree
4, one invariant I6 of degree 6, and one invariant I8

of degree 8, with I8 = S4,aS4,b

2. PG(L) = S4; one semi-invariant S6 of degree 6, one
invariant I8 of degree 8.

3. PG(L) = A5; one invariant I12 of degree 12.

4. G = SL2(C); no semi-invariants and no Liouvillian
solutions.

The degrees for the (semi)-invariants of these groups al-
low to give a list of possible symmetric powers L©s m to in-
vestigate. This is the key to the Kovacic algorithm (semi-
invariants) or its Ulmer-Weil rational variant [27] (invari-
ants). Computing invariants (or semi-invariants), one can
find the type of the differential Galois group (a little more
needs to be done to discriminate Dn from D∞, see section
4.4). We summarize this in the following immediate corol-
lary

Corollary 3.4. In the Pullback algorithm from section
2, in the case of step 1 the group is reducible, in case of step
2a the projective Galois group is D∞ or some Dn, n > 2. It
is D2 in case of step 2b, A4 in step 3a, S4 in step 3b, A5 in
step 3c, and PSL2 otherwise.

For each possible finite projective group, pullback formulas
can be computed; this is done in the next section.

4. PULLBACK FORMULAS, CASE K = C(X)

In this section, we recall our work with Maint Berkenbosch
from [4, 2]. The next subsection is standard material [1, 2,
5, 20, 21]

4.1 Standard equations
If y1, y2 is a basis of solutions of L, then define CL :=

C( y1

y2
), which is a subfield of the Picard-Vessiot extension

K. The field CL does not depend on the choice of basis
(replacing y1, y2 by another basis corresponds to a Möbius

transformation of y1

y2
). Replacing y1, y2 by e

R

vy1, e
R

vy2 for
some function v does not affect CL either. In fact, given two
operators L1 and L2, one has CL1

= CL2
if and only if L1

and L2 are projectively equivalent.
The projective Galois group PG(L) acts faithfully on CL.

The field C
PG(L)
L of invariants under this action can, by

Luroth’s theorem, be written as C(f) for some f ∈ k. We
say that an operator St is a standard equation for PG(St)

if C
PG(St)
St equals C(z) for some z with z′ = 1.

Now assume that L has projective group PG and St is
a standard equation with projective Galois group PG. If
CPG

L = C(f), then z 7→ f maps CPG
St to CPG

L . This, and the
fact that CL determines L up to projective equivalence, are
key ideas in Klein’s theorem below. Before stating this, we
set a family of standard equations. All other standard equa-
tions can then be found using Möbius x 7→ (ax+ b)/(cx+d)
and projective equivalence L 7→ L⊗ (∂+v) transformations.

A standard equation for each finite projective differential
Galois group can be found among the hypergeometric equa-
tions

StPG = ∂2 +
a

x2
+

b

(x − 1)2
+

c

x(x − 1)

where the coefficients a, b, c are related to the differences
λ, µ, ν of the exponents at 0, 1, and ∞ by the relations

a =
1 − λ2

4
b =

1 − µ2

4
and c =

1 − ν2 + λ2 + µ2

4
.

More precisely, one can choose (λ, µ, ν) =
`1

2
,
1

2
,
1

n

´
for

PG = Dn,
`1

3
,
1

2
,
1

3

´
for PG = A4,

`1

3
,
1

2
,
1

4

´
for PG = S4

and
`1

3
,
1

2
,
1

5

´
for PG = A5.

The index PG refers to the projective differential Galois
group of StPG corresponding to the chosen values of a, b, c.
These equations and their solutions are well known.

4.2 Klein’s theorem

Definition 4.1. Let L1 ∈ C(z)
h d

dz

i
and L2 ∈ k

h
∂

i
be

linear differential operators.

1. L2 is a proper pullback of L1 by f ∈ k if the change of
variable z 7→ f changes L1 into L2.

2. L2 is a (weak) pullback of L1 by f ∈ k if there exists
v ∈ k such that L2 ⊗ (∂ + v) is a proper pullback of L1

by f .

Theorem 4.2 (Klein, [18, 1, 2]). Let L be a second
order irreducible linear differential operator over k with pro-
jective differential Galois group PG(L). Then, PG(L) ∈
{Dn, A4, S4, A5} if and only if L is a (weak) pullback of
StPG(L).

Let L have a projective differential Galois group PG(L) and
suppose the standard equation with projective differential
Galois group PG(L) has H1, H2 as a C-basis of solutions.
The theorem of Klein says that L is a pullback of StPG(L).
Suppose we know f and v as in definition 4.1, then a C-basis

of solutions of Ly = 0 is given by H1(f)e
R

v and H2(f)e
R

v.
H1 and H2 are known for all standard equations. To get

the solutions in explicit form one should then determine the
projective differential Galois group and, in case it is finite,
determine f and v. It was remarked in [1, 5] (and somehow
in [18]) that f can be expressed as a quotient of invariants of
the differential Galois group, but this idea was not used al-
gorithmically. We will build f (and v) using semi-invariants
in section 4, and using invariants in section 5.

The difficulty lies in the fact that L is a weak pullback
of a standard equation, i.e it is only projectively equivalent
to a proper pullback of the standard equation. The key to
formulas is to compute a normal form such that the normal
form of L will be a proper pullback of its standard form.

Suppose that L has a differential Galois group G (and
projective group PG) with semi-invariant S of degree m
and value σ. And suppose the value of S with respect to the
standard operator StPG equals σ0 (modulo C∗). Then, the
value of S w.r.t. both the differential operator SG = StPG⊗
(∂z +

σ′
0

mσ0
) and the differential operator L = L⊗ (∂x + σ′

mσ
)

is equal to 1 and the following property holds.



Lemma 4.3. L is a proper pullback of SG.

Proof. The (semi)-invariant of SG corresponding to σ
(in the above notations) has value 1 so it is mapped to 1
under any pullback transformation z 7→ f . L is a weak
pullback by Klein’s theorem, so L⊗ (∂ − v) will be a proper

pullback for some v; but its (semi)-invariant is e
R

mv , which
should be 1, so v must be 0 and hence L must be a proper
pullback.

A direct examination (and relevant choices of standard
equations) in each case will provide the pullback function f .

4.3 Formulas: the primitive case
The projective Galois group is in {A4, S4, A5} in this sec-

tion. The standard equation in reference is StPG y = 0

where the differences of exponents are λ =
1

3
at x = 0,

µ =
1

2
at x = 1, and ν =

1

3
for A4,

1

4
for S4 and

1

5
for A5

at x = ∞.

The differential Galois group of this equation has a semi-
invariant S of degree m = 4 in the case of A4, degree m = 6
in the case of S4 and m = 12 in the case of A5 with value
σ0(x) = x−m/3(x−1)−m/4. The new equation SG = StPG⊗
(∂ +

1

3x
+

1

4(x − 1)
) now has an invariant of degree m with

value 1. Rearranging it (via a Möbius transform, to obtain
nicer formulas), we get the normalized standard equation:

Sts
PG := ∂2 +

1

6

(8 x + 3)

(x + 1) x
∂ +

s

(x + 1)2 x

with s = (6ν−1)(6ν+1)
144

(recall that ν is 1
3
, 1

4
, 1

5
for cases

A4, S4, A5 respectively). It has exponents ( ν
2

+ 1
12

,− ν
2

+ 1
12

)

at −1, (0, 1
2
) at 0 and (0, 1

3
) at ∞ where ν has the previous

value in each case.

Lemma 4.4. Let L = ∂2 + a1∂ + a0 be a normalized op-
erator with PG(L) ∈ {A4, S4, A5} (i.e it has an invariant
of degree m with value 1 for the above values of m). Define

gL := 2a1 +
a′

0

a0
. Then L is a proper pullback of Sts

PG and
the pullback mapping is

f := 9s
g2
L

a0

Proof. Lemma 4.3 shows that L is a proper pullback
z 7→ f of Sts

PG for some f . Computing this pullback and

equating it to L gives the relations a1 = f ′

2f
+ 5f ′

6(f+1)
− f ′′

f ′

and a0 = sf ′2

(f+1)2f
whence

a′
0

a0
= − 2f ′

f+1
− f ′

f
+ 2f ′′

f ′ and the

formula follows by simple elimination.

In fact, the formula was not obtained that way: as we know
that L is a proper pullback and that the solution f is unique
(by Klein’s theorem and our normalization), we compute the
expression of the image of Sts

PG under a generic pullback
and perform differential elimination [13, 14] (there are other
ways to find the formula but this way was the least amount
of work). In the same way one can obtain formulas for other
choices of standard equations but those turn out to be larger.

So, given L = ∂2 + A1∂ + A0 with finite primitive pro-
jective group, the pullback function is found the following
way:
Pullback for A4, S4, A5, semi-invariant version

Input: L = ∂2 + A1∂ + A0 with PG(L) ∈ {A4, S4, A5}.
Output: Pullback function f .

1. For m ∈ {4, 6, 12} check for a semi-invariant of degree
m and call v its logarithmic derivative.

2. If yes, the projective group PG(L) is known. Let L =
L ⊗ (∂ + 1

m
v); this is a proper pullback of Sts

PG with
invariant value 1.

3. Write L = ∂2 + a1∂ + a0. Compute gL := 2a1 +
a′

0

a0
,

and the pullback mapping is f := 9s
g2

L

a0

Remark 4.5. The change of variable z 7→ f changes gSt

to gSt(f) · f ′. Now, gSt = − 1
3(x+1)

and the relation gL =

− f ′

3(f+1)
yields another method to find f . This approach will

fail for imprimitive groups because then gL will be zero.

4.4 Formulas: the imprimitive case
In this case, the projective Galois group is PG(L) = Dn

for n ∈ N. To simplify formulas, here, we choose the stan-

dard equation with exponent differences
1

2
at +1 and −1 and

1

n
at infinity. It has a semi-invariant S2 = Y1Y2 of degree 2

and two semi-invariants Sn,a = Y n
1 +Y n

2 and Sn,b = Y n
1 −Y n

2

of degree n. The chosen standard equation

Sts
Dn

= ∂2 − z

z2 − 1
∂ − 1

4n2

1

z2 − 1

has exponents
`
0,

1

2

´
at +1 and −1 and

`−1

2n
,

1

2n

´
at ∞; it

has a semi-invariant of degree 2 and value 1.
An operator L = ∂2 + a1∂ + a0 is a proper pullback of

SDn
if a0 = − 1

4n2

f ′2

f2 − 1
and a1 = −1

2

a′
0

a0
. The equation

Ly = 0 admits the solutions y1, y2 = exp

Z
±
√
−a0 i.e.

y1 = 2n

q
f +

p
f2 − 1 and y2 = 1/y1. The number n can

thus be determined with (a subroutine of) the algorithm of
elementary integration ([6]) applied to

√−a0.
For N ∈ N, the expressions yN

1 and yN
2 are permuted by

the Galois group and are found to be a basis of solutions of
LN := ∂2 + a1∂ + N2a0. In particular L2n has solutions f
(rational) and

p
f2 − 1. Once n is known, we would like to

compute f from a rational solution F of L2n. However, we
would only know it up to a constant so we use its logarithmic
derivative:

Lemma 4.6. Let L = ∂2 + a1∂ + a0 be an irreducible
operator with an invariant of degree 2 with value 1. As-
sume that PG(L) = Dn. Let F be a rational solution of

∂2 + a1∂ + 4n2a0 and let u := F ′

F
. Then the solutions of L

are y1 = 2n

q
f +

p
f2 − 1 and y2 = −2n

q
f +

p
f2 − 1 with

f =
r

1

1+ u2

4n2a0

.

Proof. By the above discussion, ∂2 + a1∂ + 4n2a0 has a
rational solution and F = cf for some constant f . Now we
have f ′2 = −4n2a0(f

2 − 1). Dividing out by f2 yields the
formula.

Remark 4.7. Despite the square root in the expression
of f , the function is rational. However, if the constant field
of k is not algebraically closed, a quadratic extension of the
constants may be needed in computing this square root (see
also [2, 16] and references therein).



Pullback Formula for Dn, semi-invariant version

Input: L = ∂2+A1∂+A0 with PG(L) = Dn (n unknown).
Output: Pullback function f and the solutions.

1. Compute a semi-invariant of degree 2 and compute its
logarithmic derivative v.

2. If yes, let L = L ⊗ (∂ + 1
2
v); it is a proper pullback of

SDn
with invariant value 1.

3. Denote L = ∂2 + a1∂ + a0. Determine a candidate
for (a multiple of) n. (note: if there is more than one
semi-invariant of degree 2, then n = 2)

4. Compute a rational solution F of Ln := ∂2 + a1∂ +

4n2a0 and let u = F ′

F
.

5. Return the solutions y1 = e
R

v

2
2n

q
f +

p
f2 − 1 and

y2 = e
R

v

2
−2n

q
f +

p
f2 − 1 with f =

r
1

1+ u2

4n2a0

.

5. PULLBACK FORMULAS, GENERAL K

5.1 Standard Equations
The algorithm for general k uses only invariants (not semi-

invariants). Hence, the relevant normal form for the stan-
dard and target equations will be the one for which an appro-
priate invariant (often one with the lowest degree) has value
1. For a projective group PG, a standard equation with
semi-invariant of lowest degree with value 1 (resp. with in-
variants of lowest degree value 1) will be denoted Sts

PG (resp.
Sti

PG).
A second idea that we will use is the fact that D2 ⊂ A4 ⊂ S4.
So, a standard equation for D2 (resp. A4) is a pullback of
some StA4

(resp. StS4
). Transformations between those

equations can be found in [26] (or can be recomputed, as
below).

Like in the previous section, we will proceed in reverse
order of the classification to give the pullback formulas

5.2 Primitive Cases

5.2.1 Icosaedral case A5

The group is determined by an invariant of degree 12, as
in the C(x) case, so we use the formula from section 4.3.

5.2.2 Octaedral case S4

Let Sts
S4

denote the standard equation from section 4.3
with projective Galois group S4. It has an invariant of degree
6 with value 1. However our target differential operator L
has G(L) ⊂ SL2. It only has a semi-invariant S6 of degree 6
and an invariant I8 of degree 8. Having computed the value
of the (semi)-invariant of degree 8 of Sts

S4
, we tensor Sts

S4

with ∂ − 1
24(x+1)

(and, via a Möbius transform, change the

singularities to 0, 1 and ∞ to simplify the formula of lemma
5.1) to obtain the standard operator

Sti
S4

= ∂2 +
1

4

(5x − 2)

(x − 1) x
∂ − 7

576

1

(x − 1)2 x

Its exponents are (0, 1
2
) at 0, (− 1

24
, 7

4
) at 1, and (0, 1

4
) at ∞;

it has an invariant of degree 8 with value 1.
We assume that the differential operator L has projective
Galois group S4 and G(L) ⊂ SL2(C). Thus L has an invari-
ant of degree 8 with value σ. We normalize L by tensoring

with ∂ + σ′

8σ
so its normal form has an invariant of degree 8

with value 1.

Lemma 5.1. Let L = ∂2+a1∂+a0 ∈ k[∂] be a normalized
differential operator with projective Galois group PG(L) =
S4 (L is normalized to have an invariant of degree 8 with
value 1). Define gL := 2a1+

a
0′

a0
. Then L is a proper pullback

of Sti
S4

and the pullback mapping is

f = − 7

144

g2
L

a0

Proof. That L is a proper pullback of Sti
S4

follows from
lemma 4.3. Pick an unknown function f and form the change

of variable x = f in Sti
S4

. We obtain a0 = − 7
576

f ′2

(f−1)2f
and

a1 = − f ′′

f ′ + 1
2

f ′

f
+ 3

4
f ′

f−1
Performing standard differential

elimination on the latter, see [13, 14] and references therein,
yields the above formula.

With this formula, the algorithm in section 4.3 is straight-
forward to adapt (compute an invariant of degree 8 of L
instead of a semi-invariant of degree 6).

5.2.3 Tetrahedral case A4

Let Sts
A4

denote the standard equation from section 4.3
with projective Galois group A4. It has an invariant of de-
gree 4 with value 1. As G(L) ⊂ SL2(C), our L has only
semi-invariants in degree 4, but it has an invariant in degree
6. So, proceeding as in section 5.2.2 (with lemma 3.3.1 in
mind) yields a new standard operator Sti

A4
for A4 with an

invariant of degree 6 having value 1:

Sti
A4

= ∂2 +
2

`
3x2 − 1

´

3x (x2 − 1)
∂ +

5

144

1

x2 (x2 − 1)

Its exponents are (0, 1
3
) at 1 and -1, and (− 1

12
, 5

12
) at 0 (the

point ∞ is non-singular).
We assume that the differential operator L has projective

Galois group A4 and G(L) ⊂ SL2(C). Thus L has an invari-
ant of degree 6 with value σ. We normalize L by tensoring

with ∂ + σ′

6σ
so the resulting normal form L has an invariant

of degree 6 with value 1.

Lemma 5.2. Let L = ∂2+a1∂+a0 ∈ k[∂] be a normalized
differential operator with projective Galois group PG(L) =
A4, i.e L has an invariant of degree 6 with value 1. Then
L is a proper pullback of Sti

A4
. Let gL := 2a1 +

a
0′

a0
. Then

the pullback mapping is

f = ±
s

1 +
64

5

a0

g2
L

Proof. One can use the same differential elimination ar-
gument as for lemma 5.1. Note that Klein’s theorem shows
that 1 + 64

5
a0

g2 must be the square of an element of k.

Remark 5.3. The appearance of a square-root is no sur-
prise because the standard equation for A4 has a symmetry
(exchange 1 and −1) so there are two solutions to the pull-
back problem (see [16, 2] and references therein), each ”at-
tached” to one of the two semi-invariants of degree 4. In
the algorithm in section 4.3 we need to choose one of the
two semi-invariants, hence the (apparent) uniqueness of the
pullback formula there.



An alternative approach to find and prove the formula in
the lemma 5.2 is the following. As L is a pullback of Sti

A4,
it is also a pullback of Sti

S4
because A4 ⊂ S4. Now apply

the S4 formula to the A4 standard equation, solve, and one
obtains lemma 5.2. The same idea can also be used for D2.

5.3 Dihedral GroupsDn, n > 2

The case PG(L) ⊂ D∞ is characterized by the existence
of an invariant I4 of degree 4. We assume that PG(L) 6= D2

so the space of invariants of degree 4 has dimension 1 (and
I4 is the square of a semi-invariant of degree 2). Tensoring

L with ∂ +
I′
4

4I4
, we obtain a normalized operator L which

has an invariant of degree 2 with value 1. So we can use the
algorithm from section 4.4 (start at step 3) and obtain the
pullback function.

Remark 5.4. The difficulty in this subsection lies in de-
ciding whether PG(L) is some Dn or D∞. Computing n
is achieved by computing the torsion of some divisor from
the integration algorithm, which can be achieved under our
assumptions on k, see [6] or [2, 3].

5.4 Quaternion Group D2

There is a problem to choose a relevant normalization be-
cause the space of invariants of degree 4 is two-dimensional
and, in our normalizations, we would need to choose one
among those that is a square of a semi-invariant of degree 2
in order to use the formulas from section 4.4. Although this
is possible (e.g [27]), we propose a few simpler approaches
(the reader is welcome to select whichever one she likes best).
As G(L) ⊂ SL2(C), the operator has a unique (up to con-
stants) invariant of degree 6 with value σ (the product of the

three semi-invariants of degree 2). Tensoring L with ∂ + σ′

6σ
,

we obtain a normalized operator L whose invariant of degree
6 has value 1.

Approach 1: We have D2 ⊂ A4. Moreover, L has an in-
variant of degree 6 with value 1. So L is a proper pullback
of Sti

A4
from section 5.2.3 and the pullback is computed di-

rectly with the algorithm from section 5.2.3. The good point
is that no work is needed; the bad point is that the solutions
will be given in terms of the solutions of Sts

A4
which is not

very good if, for example, we want the minimal polynomial
or an expression by radicals.

Approach 2: In approach 1, we have computed a pullback

F from Sti
A4

so solutions of L are eHi(F ) with eHi solutions

of Sti
A4

. Now we precompute the pullback from Di
2 to Ai

4.
First send singularities to 0, 1,∞ by a Möbius transform;
next, tensor by a first order operator so that the exponents
are (0, 1/3) at 0 and ∞. Changing x to x3, the preimages of
0 and ∞ will have exponents (0, 1) so they will be ordinary,
while the preimages of 1 (i.e 1, j, j2) will have exponent dif-
ferences 1/2: the resulting equation is thus a standard D2

equation. Sending the singularities to −1, 1,∞ and tensor-
ing by a first order operator finally sends us to the standard

operator StD2
. We find that eHi(

3
√

−3(x2−1)
x3−9 x

) = Hi(x) with

Hi solutions of Sti
D2

. So the solutions of L will be Hi(f)
where f is a root of the third degree equation

`
3
√
−3(f2 − 1)

´
− F

`
f3 − 9 f

´
= 0 (5.9)

By Klein’s theorem, the latter has three roots f in k which
can be computed, e.g by factoring the above. We note that,

because the solution is not unique, factoring is inevitable in
this process.

6. CONCLUSION

Theorem 6.1. The algorithm of section 2 is correct.

Proof. The steps compute the projective Galois group
by [27] or corollary 3.4. Step 2a is sections 5.3 and 4.4; Step
2b is sections 5.4 and 4.4; Step 3a is section 5.2.3; Step 3b
is section 5.2.2; and Step 3c is sections 5.2.1 and 4.3.

The algorithm presented here is very easy to implement
for an admissible differential field. Further improvements
and speedups can be provided in the case when k = C(x).
The algorithm is implemented in Maple 9.5. A draft imple-
mentation (and a maple worksheet to check most formulas
of this paper) can be consulted at http://www.unilim.fr/

pages_perso/jacques-arthur.weil/issac05/

Denote H(x) = 2F1([−1/60, 11/60], [2/3], 1/(x+1)) which
is one of the solutions of Sts

A5
. The Kovacic algorithm pro-

duces the minimal polynomial mK of y′/y for some solution
y of Sts

A5
, whereas Fakler’s algorithm [15] produces the min-

imal polynomial mF of a solution y of Sts
A5

. Note that mF

is preferable over mK .
Now consider the following example: L = 48x(x − 1)(75x −
139)∂2+(2520x2−47712x/5+3336)∂−19x+36001/75 which
has projective Galois group A5. The pullback function f is
rather large (the degree is 31). By default our algorithm uses
hypergeometric functions to denote the answer. In essence
this means that x in the expression H(x) above is being re-
placed by f . To get a solution of L in the same format as
would have been produced by Kovacic’s resp. Fakler’s algo-
rithm, one essentially has to substitute f for x in the solu-
tion that these algorithms provided for Sts

A5
. However, this

substitution will lead to a large expression because x occurs
many times in the expression mK resp. mF and all those oc-
currences are replaced by f . We compared the kovacicsols
command in Maple 9.5 (which follows the usual Kovacic al-
gorithm) with the algorithm presented here. The size of the
output (measured with the command length) in Maple 9.5
was 236789 whereas for the new algorithm the size is only
1360. Note that this new algorithm is scheduled to appear
in the kovacicsols command in the next version of Maple.
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We give a survey of some methods for finding formal solutions of differen- 
t im equations. These include methods for finding power series solutions, 
elementary and liouvillian solutions, first integrals, Lie theoretic methods,  
transform methods,  asymptotic methods. A brief discussion of difference 
equations is also included. 

In this paper, I shall discuss the problem of finding formal expressions that  rep- 
resent solutions of differential equations. By using the te rm "formal", I wish to 
emphasize the fact  tha t  most of the time I will not be concerned with questions 
of where  power series converge or in what domains the expressions represent func- 
tions. I shall talk about power series solutions, solutions that  can be expressed 
in terms of special functions such as exponentials, logarithms, or error functions, 
solutions given implicitly in terms of elementary first integrals and Lie theoretic 
techniques. I shall briefly mention transform methods, asymptotic expar~sions 
and devote a final section to a short discussion of formal solutions of difference 
equations. 

There  are many open problems in these areas and I have included my favorite 
ones. I hope they will stimulate further work. 

I would like to thank Bob Caviness, Leonard Lipshitz, Marvin Tretkoff, and  the 
referees for helpful comments on an earlier version of this paper. 

I. P o w e r  Series  So lut ions  of Differential  E q u a t i o n s  

My aim here is to contrast  what is known about linear differential equations 
with what is known about non-linear differential equations. Good general ref- 
erences for information about linear differential equations are Poole (1960) and 
Schlesinger (1895). Consider the linear differential equation 

z(y) = an_l(x)y/n-1) + . . .  + a0(x)Y = 0 

This is an e x p a n d e d  and revised version of talks presented at the Computers and Mathematics 
Conference at Stanford University, August 29, 1986 and ISSAC '89, Portland, Oregon, July 17, 
1989. The preparat;ion was partially supported by NSF Grants DMS-84-20075 and DMS-88- 
03109. 

0747-7171/90/070059+36 $03.00/0 �9 1990 Acadcrnir Press Limited 



60 M . F .  Singer 

where the ai(x) E C((x)), the field of formal Lanrent series wi th  finite principal 
parts. The  point x = 0 is called an ordinary point of L(y) if 0 is not  a pole of 
any of the at(z). When this is the case L(y) = 0 will have n linearly independent  
solutions yl = Eaijx.J, 0 < i < n - 1, in C[[x]], the ring of formal power series 
(furthermore, each of these solutions will converge in some neighborhood of 0, if 
the ai(x) converge in this neighborhood).  Such a fundamenta l  set of solutions can 
be found by setting aij = 0 for 0 < i, j < n - 1, j # i, and a i i =  1, and  using the 
differential equation to find alj, j >_ n, by recursion. If some at(z) has a pole at 
0, we say 0 is a singular point of L(y). We say the 0 is a regular singular point  if 
in any open angular sector a at 0 all solutions y of L(y) = 0, analytic in f/, satisfy 
lira zNy = 0 for some N > 0. Fuchs showed tha t  this is equivalent to saying that  
z"~0 
the order of the pole of each at(x) at 0 is < n - i. If we let g = x --d - dx, we may write 

for some bi(x) E C((x)). In these terms, 0 is a regular point  if and only if 0 is not 
a pole of any of the bi(x). Let bi(x) = Ebijx j and 

b )k n - 1  P()O = )~" + ~-l,o + . . .  + bo,o. 

P(A) is called the indicial polynomial  of L(y) at 0. If 0 is a regular singular point 
of L(y), then there exist n linearly independent  solutions of L(y) = 0 of the form 

Yl = x)"(CPlo 4- ~11 logx 4 - . . .  4- ~pi~;(log x) s') 

with qoij E C((z))  and %i a root of P(,X) = 0 of multiplicity sl ( e o d d i n g t o n  & 
Levinson (1955), Ch. 4). Once the Ai are determined,  the  r can be found us- 
ing a recursive procedure,  due to Frobenius, similar to the ordinary point  case. 
This method  has been implemented by several people (e.g. Lafferty (1977), Dav- 
enport: (1988), Della Dora (19Sla), (19Slb), Watanabe  (1970), Tournier  (1987)). 
When  0 is not a regular singular point~ we say tha t  0 is an irregqlar singular point. 
In this case, there exists n linearly independent  solutions of the  form 

Yi : eQi(x)x"Yi((~O "~ ~P~I logx + . . .  + 9~i~,(log x) a') (1) 

where Qi(x) is a polynomial  in a-1/q  ;, qi a positive integer, 7i E C, si a positive 
integer, and ~ij E C[[xa/q~]l. Schlesinger (1987) (Vol. I, Sec. 110) describes a 
method  for finding qi and Qi and a more mode rn  algori thm based on Newton 
polygon calculations is given in Della Dora (1981c) (see also Levelt (1975)). Once 
qi and Qi are found, one makes a change of variable y = eQ~(~)z and proceeds 
as in the regular singular point case. An implementa t ion,  in the  DESIR system, 
is described in Della Dora (1981c) and Tournier  (1987). One can make  similar 
definitions with respect to any point x = a or even the point  of infinity (this latter 
case reduces to the  point t = 0 after we make a change of coordinates t = -} and 
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_.ddt = - t  2 ~ .  All the above algorithms force one to work with algebraic numbers, 
even if the original equation has coefficients that are polynomials with rational 
coefficients. A method that minimizes the amount of factorizations needed to do 
these calculations is presented in (Della Dora et al., (1985). 

We now consider a system of linear differentiM equations 

y ,  _ A ( x ) y  (2) 
xq 

where A(x)  e Mn(C[[x]]), the ring of n x n matrices with entries in C[[x]], and 
q is a non-negative integer. If q = 0, we say that 0 is an ordinary point and if 
q :> 1, we say that 0 is a singular point. The definitions (in terms of the growth 
of solutions near 0) of regular and irregular singular point carry over to this case, 
but there is no analogue of the criteria of Fuchs to distinguish between these two. 
To do so, we can proceed in several ways. One way (the cyclic vector method) is 
to convert the system (2) to a single nth order equation and then use Fuchs' crite- 
ria (Adjamagbo (1988), Bertrand (1985), I(atz (1986), Malgrange (1974), (1981), 
Ramis (i978), (1984)). A second method is due to Moser (1960). This method 
considers transforms Y ~ B Y  with/3 E Mn(C(x)) and their effect on (2). One 
gets an equation of a similar form with a possibly different value of q. One tries 
to find a matrix B so that the resulting q is minimal. When this happens, it is 
known that q = 1 if and only if 0 is a regular singular point. Both methods are 
discussed, with implementations in mind, in Hillali (1982), (1983), (1986), (1987a), 
(19875), (1987c), Hillali & Wazner (1983), (1986a), (19865). Other criteria and 
methods for determining if a singular point is regular are discussed in Gerard and 
Levelt (1973) (c.f. in particular Theorem 4.5). These papers also discuss how one 
can use either method to calculate other invariants of (2) (e.g. Malgrange index, 
Katz invariants). 

The formal solutions given by (1) do not necessarily involve convergent series. 
It is known that if the ai(x) are analytic in a neighborhood of the origin, then 
in any sufficiently small sector at the origin, there are analytic solutions having 
(1) as asymptotic expansions. Questions regarding calculating these solutions are 
addressed in Loday-mehaud (1988), Ramis (1978), (i984), (i985a), (19855), and 
Ramis & Thomas (1981). 

Before leaving linear differential equations, it should be noted that some work 
has been done to implement methods of expressing solutions of linear differential 
equations in terms of series involving Chebyshev polynomials Geddes (1977) or 
other special functions Cabay & Labahn (1989) and Chaffy (1986). 

We now turn to nonlinear differential equations. Although some work regarding 
algorithms for finding series solutions of nonlinear differential equations has been 
done in the past (e.g. Fitch, Norman ~ Moore (1981), (1986) and Geddes (1981)) 
the first generM algorithm was presented in Denef & Lipshitz (1984). They show 
that given a set S of ordinary polynomial differential equations in yl, . .  �9 , ym with 
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coefficients in Q[x] and initial conditions, one can decide if S has a solution in 
K[[xl] satisfying these initial conditions, where K = C, R, or Qv' Their basic idea 
in this is to  show how one can find an integer N such that the system S is solvable 
if and  only if S has  a solution rood x N. This lat ter  condition reduces to checking 
the  solvability of a system of linear equations. Although their algori thm is very 
explicit, it does not  seen to be efficient. 

Deciding if a sys tem of ordinary polynomial differential equations has a power 
series solution is a delicate question. In Denef & Lipshitz (1984), it is also shown 
tha t  there  is no algori thm to decide if such a system has a convergent solution or if 
such a system has  a non-zero solution. The si tuation for part ial  differential equa- 
tions is worse. Denef  and Lipshitz show that there is no algori thm to decide if a 
l inear par t ia l  differential equation with coefficients in Q [ z l , . . .  , zg] has a solution 
in C[[a : l , . . .  ,xg]]. Furthermore,  there are systems of partial differential equa- 
tions having infinitely many power series solutions, none of which are computable 
(i.e., the sequence of coefficients cannot be generated by a Turing machine). 

In Grigor 'ev g~ Singer (1988), the authors consider a Newton polygon method to 
O o  

find solutions of differential equations of the form y = ~ aiz  ~ where the ai 6 C 
i=0 

and the  fli are real wi th  fl0 > fll > . . . .  They  show that  if such an expression 
satisfies a polynomial  differential equation p(x, y, y ' , . . .  ) = 0, then limfll = -oo .  
Fur thermore ,  given arly such y and p(x, y, y ' , . . .  ), there exists an N such that  for 
any z = ETix 8~ satisfying p(x, z, z ' , . . .  ) = 0 wi th  ai = 7i and fli = 6i for all i with 
fli > N,  then  o~i = 7i and fll = 6i for all i ( that  is, each y is finitely determined).  
The  au thors  give a method  for enumerat ing solutions of this form of a differential 
equat ion and  show that  it is an undecidable problem to determine if a system of 
polynomial  differential equations has a solution of this form. 

We have not yet  ment ioned power series solutions of MgebrMc equations. Algo- 
r i thms for finding the Puiseux expansions (power series in rational powers of x) 
of algebraic functions are well known Knuth (1981), Ch. 4.7. The  fastest to date 
is due  to the  Chudnovskys (i985). They have shown how algorithms for finding 
power series solutions of linear differential equations can be used to find Puiseux 
expansions of algebraic functions. The key observation is that  if y satisfies an 
irreducible equation f ( z , y )  = 0 of degree n over C(x),  then  [ C ( x , y ) :  C(x)] = n 
and y' = - f ~ / f v  E C(x ,y ) ,  so C ( x , y )  is closed under  the derivation '. This im- 
plies tha t  y , y ' , . . .  ,y(") must be linearly dependent over C(z) ,  so y satisfies n th  
order  linear differential equation over this field. This equation can be calculated 
f rom ] ( z ,  y)  and then  using an efficient version of the Frobenius algorithm one can 
calculate the  Puiseux expansion of y. They  are able to show that  one can compute 
the  first N terms of this expansion in O(dN) operations and O(dN) space, where 
d is the  to ta l  degree of f ( x , y ) .  

Other  papers concerning power series solutions of differential equations are Bo- 
gen (1977), Fa teman (1977), Lamnabhi-Lagarrigue & Lamnabhi  (1982), (1983), 
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Norman (1975), and Stoutemyer (1977). 

I I .  C losed  F o r m  So lu t ions  

We are concerned here with expressing the solutions of differential equations in 
terms of some given class os functions (e.g., exponentials, integrals and algebraic 
functions). We begin by considering the simplest differential equation 

y ' = a  

and ask when a solution (i.e., y -- f a)  can be expressed in terms of elementary 
functions, that  is, in terms of sin, cos, exp, log, azctan, etc.; the functions of 
e lementary  calculus. For example, y' -- (2x)exp(x 2) has an  elementary solution 
y --- exp(x 2) but  y' = exp(z 2) does not (although this is not  obvious). We wish 
to give the informal notion of expressible in elementary terms some mathemat ica l  
rigor. This is done using the notion of a differential field. A field F is said to be 
a differential field with derivation I if , : F --+ F satisfies (a q- b)' --- a I -F b t and 
(ab)' = a'b + ab' for all a, b e F. The constants of F are {c I c e F and c' -- 0} and 
are denoted by C(F). For example, C(x) with the derivation d/dx in a differential 
field as is the field of meromorphic functions on a connected open set in C with the  
usual  derivation. To formalize the  notion of elementary function, first notice tha t  
if one thinks in terms of functions of a complex variable, then sin, cos, tan, arctan,  
etc. can all be expressed in terms of exp and log. This motivates the following 
definition. Let F C E be differential fields. We say E is an elementary extension 
of F if there is a tower of fields F -- E0 C . . .  C E ,  = E where Ei = E i_ l ( t / )  
and either (i) t/ is algebraic over Ei-1,  or (ii) t~/ti -- u~ for some u/ E El-1  
(i.e., ti = exp(u/)), o r  (i/i) t~ = u}/ui f o r  s o m e  us e Ei-1 (i.e., tl = log(u/)).  
We say that  y is elementary over F if y belongs to an elementary extension of 
F .  For example, y = exp(x log(x + V/z))is elementary over C(x), since y belongs 
to the  last member  of the tower C(z) C C(z, v"~) C C(x, v/~,log(x + v/~)) C 
C(x,  v~ ,  log(x + x/~), exp(x log(z + v/~)). 

Our  naive question "When can we express a solution of y' = a in terms of 
e lementary  functions?" can now be formalized as "Given ~ differential field F and 
an element c~ of F,  when does y' = a have a solution in an elementary extension 
of F?"  The answer is given by Liouville's Theorem: Let F be a differential field of 
characteristic zero and c~ E F.  If yl = ~ has a solution in an elementary extension 
K of F,  with C(F) = C(K),  then 

m U~ ' 
V I O~ ----- + > .  Ci 

i=1 ~ti 

where  v and the us are in F and ci are constants of F. In other words, if c~ 
has an elementary ant/derivative, then f = ,  + Eci log(us), where v and the 
ui only involve those functions that  already appear in c~. The condition on the  
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constants  is technical  but  necessary (if we work over the complex numbers,  there 
is no problem; see Pdsch (1969) and Davenport,  Siret &: Tournier (1988) for a 
fur ther  discussion of this issue). Special cases of the above theorem were originally 
proved by  Liouville (1833), (1835). Ostrowski gave a proof of this theorem in 
the context  of differential fields in Ostrowski (1946). The  work of Liouville and 
Ostrowski is discussed in Rift (1948), along with additional work of Mordukhai- 
Boltovski and Rift.  A completely algebraic proof was first given by Rosenlicht in 
Rosenlicht (1968) (see also Rosealicht (1976)). The best place to read a proof of 
this theorem is Rosenlicht (1972). 

To get a feeling for why Liouville's Theorem is true, one should consider the 
following pieces of evidence. First, the theorem is true when a is in C(x).  In this 
case we may  expand a in partial  fractions a = p ( x )  + ~ ~ .  a i j ( x  - bi) - m i  . When 

i 3 
we integrate  ~, each term contributes something in C(x), except if n i j  = 1, in 
which case we get log(x - bi), which appears linearly. Secondly, we can look at the 
general case and ask: If we need a new algebraic, log or exponential  to integrate an 
expression, how can this new function appear in the antiderivative. For example, if 
f a is an algebrMc function of a,  then  we can sum the conjugates of f a and divide 
by their  number  and get a new antiderivative of a that  is a rational function of a.  
Since the  antiderivative is unique up to additive constant, the original algebraic 
funct ion must be a rational function of a (i.e. no non-rational algebraic functions 
are needed).  Now assume that  we needed a new logarithm or an exponential to 
express our  antiderivative. For example, assume that  f a = (exp(u))n + . . . .  When  
we differentiate bo th  sides of this equation, we get a = n u ' ( e x p ( u ) )  n + . . . .  Since 
we are assuming tha t  exp(u) does not already occur in a ,  we must  have n = 0. 
If f a = ( l o g ( u ) ) n . . .  , then a = n ( u ' / u ) ( i o g ( u ) )  '~-1 + . . . .  Since we assume tha t  
log(u) does not appear  in a,  we must have n = 1, i.e. the new log appears linearly. 
This heuristic a rgument  can be formalized and is the basis of the argument in 
Rosenlicht (1972). 

Liouville's Theo rem gives a criterion for a function to have an elementary 
antiderivative and  in l~osenlicht (1972) this is used to show tha t  f exp(x 2) is 
not  elementary.  A general algorithm to decide if a function, elementary over 
C(x)  has an e lementary  antiderivative was given by Risch in a series of paper  
(Risch (1968), (1969), (1970)). The  algorithm takes as input an elementary tower 
K ( x )  c E1 = K(x, l)c . . .  c E , ,  = K ( X , t l , . . .  , t , , )  (where is a f initely gen- 
erated  field of characterist ic zero) and an element ~ in Em and decides if it is of 
the  form prescribed by  Liouville's Theorem. If it is, the algori thm produces such 
an expression, lZisch (1969) t rea ted  the case of a purely transcendental  integrand. 
Improvements  of this algorithm were made by many  people (Bronstein (1988), 
Davenpor t ,  Siret & Tournier (1988), Davenport  (1983) (this has a large and use- 
ful bibl iography),  Davenport  (1986), Epstein (1975), Geddes ~ Stefanus (1989), 
Horowitz (1969), (1971), Kaltofen (1984), Norman (1983), Norman & Daven- 
por t  (1979), Norman  & Moore (1977), Rothstein (1976), (1977), Trager (1976), 
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(1984), Yun (1977)). In Risch (1968) and tLisch (1970), Risch outlined an algo- 
rithm for the mixed case; the case where algebraics are also allowed in the defining 
tower of ce. This algorithm is much more complex than the previous one. When 
c~ is algebraic over C(x), new ideas and improvements were given by Trager and 
Davenport (Trager (1979), (1984), Davenport (1981)). Bronstein has generalized 
and applied these ideas to the general case in Bronstein (1990). The Risch al- 
gorithm for purely transcendental elementary functions has been implemented in 
most computer algebra systems. Bronstein's algorithm is being implemented at 
present in the SCRATCHPAD system. 

All algorithms proceed by induction on the length of the defining elementary 
tower for a (the method of Norman & Moore (1977) does not, but it is known 
not to be an algorithm, see Norman & Davenport (1977) and Davenport (1986)). 
A particular a can belong to several different elementary towers. For example 
VUexp(x) belongs to both C(x, v/~, exp(z)) and C(x, log(x), exp(x § log(x)). 
The first of these fields is built up using algebraic elements, while the second is 
purely transcendental. The efficiency of the algorithms depends heavily on the 
particular choice of defining tower. Some work has been done with regards to 
selecting a good defining tower (Davenport (1986) and Bronstein (1988)) but 
much more can be done. This motivates the following problem: 

Problem 1. What is the "best" field of definition for an elementary function? 
Can one decide if a given elementary function belongs to a purely transcendental 
elementary extension of C(x)? 

Several generMizations of the Liouville Theorem have been made. Risch (1976) 
gives a Liouville type theorem for integration in terms of real elementary func- 
tions and Bronstein gives an algorithm in Bronstein (1989). In Singer, Saunders 
& Caviness (1985), a Liouville type theorem is presented, Mong with algorithmic 
considerations, that deals with integration in terms of a class of functions that 
includes the elementary functions as well as the error function and the logarithmic 
integral. This work has been generalized by Cherry (Cherry (1985), (1986)) and 
Knowles (1986). In these papers the structure of the defining tower plays a crucial 
role in the algorithmic results and these algorithms only treat certain classes of 
functions (in particular, they do not handle functions that are built up using al- 
gebraic functions). Using ideas developed in algebraic/(-theory, Baddoura (1989) 
gives a Liouville type theorem and algorithm for integration in terms of elemen- 
tary functions and dilogarithms. Baddoura's work also only deals with a restricted 
class of functions. There are still many open problems concerning generalizations 
of Liouville's Theorem and the interested reader is referred to the above papers. 
Some heuristics are also given in Picquette (1989). 

So far we have only considered indefinite integrals. Heuristic techniques for eval- 
uating definite integrals are discussed in Geddes &: Scott (1989), Kolbig (1985) and 
Wang (1971). Recently, Almkvist ~ Zeilberger (1989) have proposed a method for 
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evaluat ing expressions of the form f ( x )  = f :  F(x ,  y)dy, for example 

+oo 

They consider functions F(x ,  y) that  satisfy a pair of linear partial differential 
equations of the  form 

.0"F 
P(x ,  v, a / 0 . ) F  = p . ( . ,  ~)~-;~. + . . .  + p0( . ,  ~ )F  = 0, and 

. 0mF  
Q(x, v, O/Ov)F = qm(z, v ) ~  + . . .  + q0(z, v)F = 0, 

with coefficients that  are polynomials in x and y (these functions are called D- 
finite (Lipshitz (1988)). In this case it is known that  f ( x )  will satisfy an ordinary 
linear differential equation 

, , dNf  
c(x, a/dx)f = a N ~ ) ~  + . . .  + do(X)/= 0 

(see Lipshitz (1988)). L can be found using an elimination algorithm. One then 
solves L(~, d/d~)f = 0 in terms of some class of functions (if this is possible, see 
below) and  compares initial conditions to get a closed form expression for f(x) .  

We now turn to the problem of solving more complicated differential equations 
in closed form. We start by considering linear differential equations 

L ( y )  - -  y(n)  + a n _ l y ( n - a )  _{_ . . .  + a o y  = O. 

When the  ai axe constants, we teach our undergraduates how to express all solu- 
tions as sums of products  of polynomials and exponentials. An implementation of 
an algori thm to do this is described in Tournier (1979). When the ai are ratio- 
nal functions, some heuristics and special cases are discussed in Malta (1982) and 
Schmidt  (1979) and implementations of variation of parameters and the method 
of undetermined coefficients are discussed in Schmjdt (1976) and Rand (1984). 

We now turn to some general algorithms. Assume that  the ai E k(x), where k 
is some finitely generated extension of Q. The question of when L(y) = 0 has only 
solutions that  are algebraic over k(x) was originally treated by F. Klein in 1877 
when n = 2. Klein showed that  if L(y) = 0 has only algebraic solutions then there 
is a change of variables x = ~p(t) such that the  new equation is of a very special 
form, tha t  is it appears in a list of all linear differential equations with three singu- 
lar points  and only algebraic solutions discovered by H. A. Schwarz around 1870 
(see Gray (1986) for a discussion of the work of Klein, Schwarz and their contem- 
poraries). A modern discussion of Schwarz's list and related material appears in 
Matsuda  (1985). Klein's method  was made effective by Baldassaxri and Dwork in 
Baldassaanri & Dwork (1979) and Baldassarri (1980). For n > 2, P. Painlev$ and 
his s tudent  A. Boulanger gave a decision procedure in 1898 (a similar procedure 
was rediscovered by the present author in 1979, see Singer (1980)). 

The  next  natural  class of functions are the liouvillian functions. These are 
the  functions tha t  can be built up from k(x) using integration, exponentiation, 
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algebraic functions and composition (a formal definition is given below). These 
functions are named after J. Liouville, who was the first to give necessary and 
sufficient conditions for a second order homogeneous linear differential equation 
to have a solution of this form, Liouville (1839), (1841) and Ritt (1948). When  
n = 2, Kovacic (1986) gave an algorithm to decide if all solutions of L(y) = 0 can 
be expressed in terms of liouvillian functions and showed how to exhibit a basis 
when this is the case. Kovacic's algorithm is very explicit and parts of it have 
been implemented in MACSYMA (Saunders (1981)) and MAPLE (Char (1986)) 
(see also Smith (1984)). Improvements to this algorithm have been given in Duval 
& Loday-Richaud (1989). For n >_ 2, an algorithm is presented in Singer (1981) 
to decide if L(y) = 0 has a non-zero liouvillian solution and, if so, shows how 
to construct a vector space basis for the space of all such solutions (some of the 
ideas already occur in Marotte (1898), but I was not aware of this at the t ime 
Singer (1981) was written). A natural generalization of this is to find an effective 
procedure to produce for a given linear differential equation L(y), with coefficients 
in a liouvillian extension of Q(x), a basis for the liouvillian solutions of L(y) = O. I 
have recently shown (Singer (1988c)) that  one can do this if the linear differential 
equation has coefficients in a purely transcendental liouvillian extension of C(z) 
or in an elementary extension of C(x). The algorithm presented there is extremely 
inefficient and can use improvement and generalization to handle the complete 
liouvillian case. 

Problem 2. Find an efficient algorithm to decide if an n th  order linear differen- 
tial equation with rational function (or liouvillian) coefficients has a liouvillian 
solution. 

Some progress has been made on this problem. A problem that comes up  in 
Singer (1981) is the problem of factoring linear differential equations. Schwarz dis- 
cusses an algorithm (with implementation) for this in Schwarz (1989) and Grigor'ev 
discusses another algorithm and gives complexity bounds in Grigor'ev (1988). In 
Singer (1981), group theoretical methods were used to obtain certain bounds (see 
below) and Ulmer (1989) shows how stronger techniques from group theory yield 
bet ter  bounds. 

Other work on deciding if linear differential equations have liouvillian solutions 
appears in Watanabe (1981), where techniques are developed to transform a given 
linear equation to a hypergeometric equation and Watanabe (1984), where change 
of variable techniques are discussed that will take a linear differential equation 
with coefficients in a liouvillian extension of C(x) to one with coefficients in C(x). 

I will now give a sketch of some of the ideas involved in Kovacic (1986) and 
Singer (1981), and start by defining some notions from differential algebra (Ka- 
plansky (1957) and Kolchin (1973) are good references for this). Let  F be a 
differential field of characteristic 0. If L(y) = 0 is an nth  order linear differential 
equation with coefficients in F,  we can formally adjoin to F a set of n solu- 
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flions Y l , . . .  ,Y,~ of L(y) = O, linearly independent  over C, and their derivatives. 
W h e n  C is algebraically closed, we can choose Yl , . . .  , Y- so tha t  the field K = 

, o ( n - l )  ( n - l )  F ( y l , . . .  ,yn, y~ , . . .  , yn , . . .  ,ul , . . .  ,y  ) contains no new constants (note 
_ ( , n )  

that  this field is closed under  ' since Yl , m >_ n, can be  expressed in terms of 
lower order  derivatives of yi using L(yi) = 0). Such a K is unique up to a differen- 
tim F- i somorph l sm and is called the Picard-Vessiot extension of F cq~esponding 
to L(.V) -- 0. Let  O = {a [a  is an automorphism of K, a(u)'  = a(u') for all u E K 
and a(v) = v for all v E F}.  G is called the ~alois zroup of the equation L(y) = 0 
over F (or  of the  field K over F ) .  If y E K is any solution o f L ( y )  = 0 and 
~r E G, then  ~r(y) is also a solution of L(y) = 0. One can show that  this implies 
tha t  y = Yl, cjyj for some cj E C. Therefore, for each i, cr(yl) = ~cijyj for some 
clj E K.  In this way we may associate a matr ix  (c/j) with  every ~ E G. (cij) 
is invertible,  so this gives us an isomorphism of G into GL(n,  C), the group of 
invertible n x n matrices over C. Identifying G with its image, it can be  shown 
that  G = GL(n, C) n V,  where V C C n~ is the zero set of some collection of poly- 
nomials  (such a set is said to be closed in the Zariski topology).  There is a galois 
theory  t ha t  identifies differential subfields K1, F C K1 C K, with Zariski closed 
subgroups  of G (a closed subgroup corresponds to the field of elements left fixed by 
all i ts  members;  in paxficular F corresponds to G). We can formalize the notion of 
solvable in terms of liouvillian functions. K is said to be a liouvillian extension of k 
if there is a tower of fields k = K0 C . . .  C Kn = K such that  Ki = Ki-1 (ti), where 
ei ther t~ E Ki-1 or t~/ti E Ki-1 or ti is algebraic over Ki-1 ( the first two cases 
cor respond to ti being an integral or an exponential).  A fundamenta l  theorem 
states  tha t  L(y) = 0 is solvable in terms of liouvillian funct ions (i.e. its Picard- 
Vessiot extension lies in a liouvillian extension of F )  if and only if its galois group 
contains a solvable subgroup of finite index (Kaplansky (1957), Kolchin (1973), 
Singer (1988b)) .  

Let  us now consider the problem of finding liouvillian solutions of L(y) = O. For 
simplicity, let us just  t ry to decide if all solutions of L(y) = 0 are liouvillian. The 
galois theory  implies tha t  this is the  case if and only if the galois group of L(y) has a 
solvable subgroup of finite index. An effective version of the Lie-Kolchin Theorem 
asserts tha t  in this case G will have a subgroup H such that  the elements of H 
can s imultaneously be  put  in upper triangular form and such that  the index of H 
is b o u n d e d  by I (n ) ,  a computable  function of n. If y is a common eigenvector of 
H ,  then  cr(y'/y) = cy' /cy = y ' /y  so y ' /y  is left fixed by H .  This implies that  y ' /y  
is algebraic over F of degree bounded by  I(n).  Therefore if L(y) = 0 is solvable 
in te rms  of liouvillian functions, L(y) = 0 will have a solution y such that  y ' /y  is 
algebraic over F of degree bounded by I(n). We now must decide if L(y) = 0 has 
such a solution. The idea is to look for candidates for the minimal polynomial of 
u = y ' /y .  If p(u)  = u N + bN_l(x)u N-1 + . . .  + bo(z) (N  < I(n))  is the minimal 
polynomial  of such a u, then one can show tha t  there exist solutions z l , . . .  , ZN 
of L(y)  -- 0 such that  each b~ will be the ith symmetric  funct ion of the z} /z j .  By 
s tudying the  poles of the coefficients of L(y) = 0, we can bound  the number  mad 
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order of the poles and zeroes of the hi. This allows us to bound the degrees of the 
numerators  and denominators of the bi. Therefore if L ( y )  = 0 has only liouvillia~n 
solutions, it will have a solution y such that  u = y ' / y  satisfies a polynomial over 
k(x) of degree < I ( n )  whose coefficients have numerators and denominators os 
effectively bounded degrees. Elimination theory then allows us to decide is such a 

solution exists and produces u. We then use the change 'of variables y - z e f  u to 
get a new equation L * ( z )  = 0 of lower order and proceed via induction. Actually, 
to make the induction work we prove a stronger result: given a linear differentied 
equation with coefficients in an algebraic extension of Q(x), one can find in a finite 
number of steps a basis for the space of liouvillian solutions of L ( y )  -- 0. This is 
done in Singer (1981). 

So far, we have only been considering homogeneous linear differential equations, 
but one can ask the same questions about non-homogeneous linear differential 
equations L ( y )  = b. Such questions are considered in Davenport (1984), (1985), 
Davenport  & Singer (1985), (1986), where in addition some open problems are 
mentioned. 

We now turn to the general problem of solving a homogeneous linear differential 
equation L ( y )  = 0 of order n in terms of algebraic combinations and superpo- 
sitions of solutions of linear differential equations of lower order (not necessarily 
homogeneous). In this context, asking for l]ouvillian solutions of a linear differ- 
ential equation is the  same as asking: When can it be solved in terms of first 
order linear equations (all solutions of first order linear equations are liouvillian 
and liouvillian functions are built up using algebraic combinations of solutions of 
y' = a a n d  y' - ay = 0)? 

One can next ask: When can the solutions of a homogeneous linear differentia] 
equation be expressed in terms of solutions of linear differential equations of or- 
der at most two. Special cases of this question have been considered by Clausen, 
Goursat, Bailey, Ramanujan  and others (Erdelyi et al. (1953)), who tried to un- 
derstand when the product  of two generalized hypergeometric functions is again a 
generalized hypergeometric function. They discovered beautiful formulas, such as 

1Fl(a ,  p; z ) l F l ( a , p ; - z )  = 2F3(~,p - a;p,  (1/2)p, (1/2)(p + 1); z2/4) 

I formalized the notion of solvability in terms of second order linear differential 
equations in Singer (1985). Briefly, a homogeneous linear differential equation is 
said to be solvable in terms of second order linear differential equations if the 
associated Picard-Vessiot extension lies in a tower of fields, each generated over 
the previous one by either an algebraic element or a solution of second order  lin- 
ear differential equation (we consider first order linear differential equations to be 
degenerate second order equations and allow them as well). In Singer (1985), I 
gave a criterion in terms of the galois group, for a homogeneous linear differential 
equation L(y) = 0, with coefficients in an arbitrary differential field k of charac- 
teristic 0, to be solvable in terms of second order linear differential equations. For 
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example, if L(y) has order 3, then it is solvable in terms of second order linear 
differential equations if a~d only if one of the following holds: (i) L(y) = L1 (L2(y)) 
or L(y)  = L2(LI(y)),  where LI(y)  and L2(y) are linear homogeneous differential 
polynomials  of orders 1 and 2 respectively, with coefficients algebraic over k, or 
(ii) L(y) = 0 has a basis of its solution space of the form 

Yl = bo u2 -[- bl(u2) # q- b2(u2)" 

y2 -- bouv + bl(uv)' + b2(uv)" 

y3 = b o .  2 + bl(v ) ' + '' 

where the bl are algebraic over k and {u, v} is a basis of the solution space of a 
second order homogeneous linear differential equation of order 2 with coefficients in 
k (for example, t he  solution space of y"' - 4xy' - 6y = 0 is spanned by (u2) ', (uv)',  
and (v2) ', where {u, v} is a basis for the solutions of y " - z y  = 0). In Singer (1985), 
I show how this can be used to give a decision procedure to determine if an 
arbitraxy third order homogeneous linear differential with coefficients in Q(x) can 
be solved in terms of second order linear differential equations. 

The  general problem of solving homogeneous linear differential equations in 
terms of lower order linear differential equations is considered in Singer (1988a) 
(see Singer ~ Tretkoff (1985) for a discussion of a related problem). Again this 
notion can be formalized in terms of towers of fields. Necessary and sufficient 
conditions can be given in terms of the Lie algebra of the galois group. One result 
is tha t  a homogeneous linear differential equation cannot be solved in terms of 
lower order linear differential equations if and only if the Lie algebra of its galois 
group is simple and has no non-zero representations of smaller degree. I do not 
know of any general algorithms, and pose 

Problem 3. Give an effective procedure to decide if a homogeneous linear dif- 
ferential equation can be solved in terms of linear differential equations of lower 
order. (One can show that  a solution of Problem 6 below would yield a solution 
of this.) 

When  we consider the question of solving a third order homogeneous linear 
differential equation in terms of second order linear equations, the algorithm given 
in Singer (1985) does not allow us to restrict in advance the kind of second order 
equations we can use. This suggests 

Problem 4. Give a procedure to decide if a homogeneous linear differential equa- 
t ion can be solved in terms of solutions of a restricted class of linear differential 
equations (e.g., Bessel functions). 

Recall t ha t  a power series F(x,  y) in two variables is D-finite if f satisfies a 
system of non-zero differential equations of the form P(x, y ,O/Ox)F = 0 and 



Formal Solutions of Differential Equations 71 

Q(a, y, O/Oy)F = O. For example, algebraic functions of two variables are D- 
finite. As mentioned above if F is such a function then f (x)  --" f~ F(x,y)dy will 
sat is4ya linear differential equation over C (x). The sohtions of the hyp ergeometric 
equation can be expressed in this form 

fo 1 f(a, b, c; x) = r(b)r(c - ~) tb-'(1 - ( 1  - xt)-~dt 

Poole (1960). This leads to the following question. 

Problem 5. Find a procedure to decide if a linear differential equation has a 
nonzero solution of the form fb f (a ,  y)dy, where f is an algebraic function of two 
variables, and produce one if it does. 

Related to the problem os solving linear differential equations in finite terms is 
the problem of deciding if two linear differential equations are equivalent under 
a change of coordinates (Berkovich, Gerdt, Kostova~Nechaevsky (1989), Kararan 
& Olver (1986), Neuman (1984), (1985)) and finding linear differential operators 
that  commute with a given linear differential operator (which then can be used to 
find solutions of the original operator, see Gerdt & Kostov (1989)). 

In most of the above considerations, the galois group os a homogeneous linear 
differential equation plays a crucial role. Yet unlike the situation with algebraic 
equations, there is no known algorithm to calculate the gMois group of a homoge- 
neous linear differential equation (i.e. produce a set of polynomials defining this 
group in GL(n, C) C C ~2 ) or even its dimension as an algebraic variety (for n = 2 
or 3 this can be done as a consequence of the  algorithms described above, but for 
n > 3, nothing is known). This suggests 

Problem 6. Give an algorithm that will find the galois group of any homoge- 
neous linear differential equation with coefficients in Q(x), or at least calculate its 
dimension. 

There has been some recent activity concerning calculation of the differential ga- 
lois groups of certain classes of linear differential equations. In Beukers, Bronawell 
8z Heckman (1988), Beukers & Heckman (1987) and Katz (1987), the authors are 
able to extract representation theoretic information about the galois groups from 
information at the singular points of the differential equation and combining this 
with information about root systems of simple Lie groups, can give usable suffi- 
cient conditions for an nth  order linear differential equation to have a "large" galois 
group (i.e. the galois group contains SL(n, C) or SP(n, C)). Katz is able to refine 
these techniques in Katz (1989) to calculate the Lie algebra of the gaiois groups 
of many differential equations. In Dural & Mitschi (1988) and Mitschi (1989a), 
(1989b), the authors use the theory of the "savage ~rl" (see below) developed by 
Ramis (1985a), (1985b), (1988) and Martinet & Ramis (1988) to explicitly calcu- 
late the galois groups of generalized confluent hypergeometric equations. 
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Rela ted  to the galois group is the notion of the monodromy group. Given 
a homogeneous linear differential equation L(y)  with coe fc i en t s  in C(x),  let 
{ a l , . . . ,  am} be the  singular points (possibly including co) and let y l , . . .  , y ,  be 
a fundamen ta l  set of solutions at a regular point a0. Given any pa th  "r in the Rie- 
m a n n  sphere S 2 - {an , . . .  , am}, we can analytically continue Ya,.-.  , Y- around "r 
and get a new fundamenta l  set of solutions. This new set is a linear combination of 
the old set, so we can associate to -), an invertible matr ix A. r. A 7 depends only on 
the  homotopy  class of 7 and we get a homomorpkism from 7r1(S 2 - { a l , . . . ,  am}) 
to G L( n ,  C) called the monodromy representat ion of the  differential equation. The 
image of this homomorphism is called the monodromy group (see Poole (1960) and 
Katz  (1976)).  In general, it is very difficult to compute  this group. Problem 6 can 
therefore be  res ta ted for monodromy groups. 

W h e n  all the singular points of L(y)  are regular singular points, we know, 
(e.g., Tretkoff  & Tretkoff (1979)) that  the Zariski closure of the monodromy group 
is the  galois group. This is not  the case when we have irregular singular points 
(e.g. the  monodromy  group of yt _ y = 0 is trivial but  the galois group is C*). 
Recall tha t  at a singular point (for simplicity, we assume this to be 0), there are 
n l inearly independent  solutions of the form 

Yl = eQ'(Z)xT' (~i0 + ~it log x + . . .  + ~i~, (log z) ~') 

where Qi(x)  is a polynomial  in x -1/q~ , ql a positive integer, 7i E C, si a positive 
integer, and ~oij �9 C[[xl/q']]. Let v = L C M { q i }  and t = x 1/~. Let K = C{t)[t-1],  
the ring of meromorphic  functions in t and/~" = C[[t]][t -a] = C((t)) .  In this situa- 
tion, Ramis  defines a group to replace the classical monodromy group. This group 
is genera ted  by three subsets: the exponential torus, the formal monodromy and 
the Stokes matrices.  Let E be the Picard-Vessiot extension of C{x}[x -a] gener- 
ated by the  yi. The  exponential toms  is defined as follows: K(eQ*(~), . . .  , eQ-(*)) 
is a Picard-VessJot extension of K whose galois group over K is (C*) r for some 
r. Ramis  calls this group the exponential torus T and shows that  it is a sub- 
group of the  galois group of E over C{x}[x-1]. One can also form the extension 
F = f ( ( l o g t , { t T ' } ,  {eQ'}) of K.  Note that  E is a subfield of this extension. The 
map t --. t. exp(2wi /v)  induces an automorphism of F,  which in tu rn  induces an au- 
tomorph i sm of E.  In this way we can consider Z / v Z  a subgroup of the gMois group 
of E over C{x}[x-~];  this is called the formal monodromy. Al though the ~p~j above 
are formal  series, it is known that  in sufficiently small angular sectors, they are 
the asympto t ic  expansions of analytic functions. Ramis shows tha t  by demanding 
a special k ind of asymptot ic  expansion (this is the notion of k-summability) then 
one can canonically select the sectors and canonically select the analytic functions 
represent ing these formal solutions (strictly speaking this s ta tement  is only true 
under  an addit ional  assumption on the Newton polygon of the linear differential 
equat ion dual  to the  one under consideration. The technically correct s ta tement  
can be found  in the  above references, but the above s tatement  gives the flavor of 
the result) .  These sectors overlap and on the overlap the respective solutions are 
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related to each other by a matrix change of basis. The matrices gotten in this way 
are called the Stokes matrices and Ramis shows that they are also in the galois 
group of E over C{x}[x-1]. Ramis is finally able to show that  the Zariski closure 
of the  group generated by the exponential torus, the formal monodromy and the 
Stokes matrices is the local galois group, i.e. the galois group of E over C{x}[x-1]. 
Ramis also shows that one can formally construct a group l-I, the "savage lh:' such 
that  any group generated by the exponential torus, formal monodromy and Stokes 
matrices of a singular point is a representation of 1-I. This gives a generalization 
of the  classical monodromy representation at a point. 

The  exponential torus and the formal monodromy can be calculated from the 
formal expressions (above) for the solutions Yi. When one has integral representa- 
tions of the solutions yl (for example as G-functions) then one can also calculate 
the Stokes matrices. Furthermore, if the differential equation has only two sin- 
gular points, one regular and one irregular, then the local galois group a~ the 
irregular singular point is the same as the global galois group (i.e. the galois group 
over C(x)). This is the ideal used in Duwl (1989), Dural 8z Mitschi (1988) and 
Mitschi (1989a), (1989b). 

We now turn to non-linear differential equations. A liouville type theorem de- 
scribing the form of elementary solutions of such equations was given by Mordukhai- 
Boltovski (see Rift (1948)) for first order non-linear differential equations with 
coefficients in C(x), and generalized to higher order equations in Singer (1975), 
Risch (1979) and Rosenlicht (1977). Mordukhai-Boltovski's theorem states that  if 
f ( x ,  y, y~) = 0 is a polynomial first order differential equation with coefficients in 
C tha t  has an elementary solution, then the equation has a solution of the form 

y = G(x,~o + al log~01 + . . .  + at log~r) 

o r  

y = G(x, exp(~0 + al log901 + . . .  + ar log~r))  

where the ai are in C, G is an Mgebraic function of two variables and the ~i axe 
algebraic functions of one variable. Except in special cases, I do not know how to 
make this result effective. 

Problem 7. Give a procedure to decide if a polynomial first order differential 
equat ion f ( x ,  y, y~) = 0 has an elementary solution and to find one if it does. 

The  final issue I wish to bring up in this section is the general question of decid- 
ing if a set of polynomial differential equations {p~ = 0} in Yl, . . .  ,Y~ (say with 
coefficients in Q) is consistent, that  is, if the equations have any solutions at M1. 
Closely related to this problem is the problem of determining if every solut:ion of 
a set of differential equations {pa = 0} is also a solution of another differential 
equat ion q = 0. Rift gave an effective procedure for this (Ritt  (1966)) and in the 
process initiated the study of differential ideals and differential algebra in general. 
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Note that  when we say solution, we mean an analytic solution (Rubel (1983) dis- 
cusses the failure of differential algebra to deal with non-analytic solutions). This 
procedure was generalized by Seidenberg (1956) and Grigor'ev (1989). Recently 
Wu has implemented parts of Ritt 's procedure (Wu (19873), (1987b), (1989)) 
(see also Wang (1987)). In particular, he can show that  Newton's laws can be 
mechaaaically derived from Kepler's laws. Besides considering the efficiency of 
Pdtt's algorithms, there are still problems in effective differential ideal theory that 
axe open and deserve more attention. We mention one and refer the reader to 
m t t  (1966) and Kolchin (1973) for relevant definitions 

Problem 8. Give an algorithm that  finds the minimal prime components of a 
radical differential ideal. 

There are well known algorithms that find the prime components of a radical 
ideal of (nondifferential) polynomials, but this problem is open in the differential 
case. 

Related to the ideal theory of differential equations is the question of finding 
Groebner basis for systems of linear partial differential equations (Galligo (1985) 
and Chen (1989), Kandri-Rody & Weispfenning (1990)), the general problem of 
simplifying systems of differential equations (Wolf (19853), (1985b)), and the prob- 
lem of generating all integrability conditions for systems of partial  differential equa- 
tions (Schwarz (1984)). In Galligo (1985), the author also mentions other problems 
concerning D-modules, that is modules over the ring C[xl, �9 . .  , x n ,  O / O x l , . . .  , O/Ox~ 
These modules have been useful in studying properties of solutions of systems of 
linear differential equations. 

III. First Integrals 

In elementary courses in differential equations, I discuss the  predator-prey equa- 
tions 

= ax  - b z y  

~/ = - c y  + d x y  

and show that the function 

F ( x , y )  = d x  + by - c l o g x -  a logy 

is constant on solution curves ( x ( t ) ,  y ( t ) ) .  By studying the critical points of F ( x ,  y)  

one can then show that all solution curves are closed, that  is, all solutions are 
periodic. A non-constant function that is constant on solution curves is called 
a first integral. In Singer (1977) and Prelle K: Singer (1983), we showed that if 
differential equations have elementary first integrals, they must be of a very speeiM 
form. For example, if 

= Q(x, v) (3) 
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where P and Q axe polynomials with complex coefficients, has an elementary first 
integral, it has one of the form 

F(x ,y )  = vo(z,y) + Ecilog(vi(x,y)) 

where the ci are constants and the vl are algebraic functions of two variables. 
Furthermore, we showed in Prelle & Singer (1983), that if (3) has an elementary 
integral then there exists an R with R '~ E C(x, y) for some nonzero integer n, such 
that d(RQ dx - .RP dy) = 0 (i.e. 0(~yQ) + ~ = 0). Such an R is called an 
iptegrating factor and once one is determined, we show in Prelle ~ Singer (1983) 
how to determine if (3) has an elementary first integral. Let R be an integrating 
factor and write R n = I-[ f/~; where fl are irreducible polynomials and nl are 
nonzero integers. One can show (Prelle ~ Singer (1983)) that since R is an 
integrating factor of (3) we must have fi[ Dfi where D = P ~  + QT~0~. Conversely, 
Darboux showed that if one could find all irreducible f such that  f [Df,  then 
one could decide if there is an integrating factor (see Ince (1944), p. 31). We 
also know, (:louunolou (1979), p. 109 and Singer (1988)) that  for each system (3) 
there is an integer N such that  if f is irreducible and f [ D f ,  then the degree of 
f is less than N ,  but we do not know any effective procedure for determining 
N. N does not depend only on the degrees of P and Q in (3) but also on the 
coefficients as the  following example shows. Let P = (n + 1)~ and Q - ny, then 
D = (n + 1)x o + ny-~-ffy. One checks that f = x n - yn+l satisfies f = n(n + 1)Dr. 
The problem of finding integrating factors and elementary first integrals reduces 
to 

Problem 9. Given D = p O  + Q ~ ,  with P,Q e C[x,y], effectively bound the 

degrees of all f in C[x, y] that  are irreducible and satisfy f I Dr. 

Both Poincar~ (1934) and Painlev@ (1972) worked on this problem and gave 
partiM results. A modern account of related work appears in Jouanolou (1979). 

Even without solving Problem 9, one can use the algorithm outlined in Prelle 
Singer (1983) by arbitrarily assigning a bound to the degree of the f ' s  such that  
f [Df.  The drawback is that the algorithm will sometimes not find a first integral 
when one exists. This approach has been implemented in Shtokhamer, Glinos 
Caviness (1986) with surprising success. 

Prelle ~: Singer (1983) also contains results that imply that  if an nth order 
differential equation f ( x , y ,  y t , . . .  ,y(~)) = 0 has an elementary first integral, it 
must be of a very special form. These other results have not been made effective. 
Risch (1976) contains related results. 

Singer (1988) contains the foundations of a theory of liouvillian first integrals, 
that is liouvillian functions of several variables that are constant on solution curves 
of differential equations. This paper also contains algorithmic considerations. For 
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exaraple, I show that  one can decide if (3) has a liouvillian first integral if one can 
decide the  following question: 

Problem 10. Given P, Q in C[x,y] and a, b in C(x,y),  decide if DU + aU = b 
has a solution a in C(x, y), where D = P(O/Ox) + Q(O/ay) ,  and if so find such a 
solution. 

Except in special cases I am unable to give such a procedure, nor am I able to 
reduce this question to the previous question. 

There axe several other approaches to finding first integrals. The approach using 
Lie methods  is described below. Schwarz (1985) and Wolf (1987n), (19875) de- 
scribe methods  that  search for polynomial first integrals of an a priori bounded de- 
gree. In Goldmun (1987~), (19875) and Sit (1989), the authors describe a method 
to find polynomial  first integrals (or more generally, first integrals that  are sums 
of monomials  with real or complex exponents) with an a priori bounded number 
of terms. 

IV.  Lie M e t h o d s  

Both the  problem of finding closed form solutions of differential equations and 
the problem of finding integrating factors can be attacked using Lie group methods. 
The  basic idea is to find a group of symmetries of the differential equations and 
then  use this group to reduce the order or the number  of variables appearing in the 
equation. I will exhibit this idea by discussing Lie's discovery that  the knowledge 
of a one-parameter  group of symmetries of an ordinary differential equation of 
order n allows us to reduce the problem of solving this equation to that  of solving 
a new differential equation of order n - I and integrating. In the case of a first 
order equation, I will also discuss how the knowledge of a one-parameter group of 
symmetr ies  allows one to construct an integrating factor. I will be closely follow- 
ing the expositions in Markus (1960), pp. 1-80 and 01ver (1979), (1986), ca .  2, 
a l though most of the results mentioned here can be found (in one form or another) 
in Lie's original works (for example, the comments following Example IV.5 appear 
as Satz 3 of Lie (1922). 

There seem to be no totally general methods for finding the symmetry group 
of a differential equation, but there are methods that  do handle large classes of 
equations. In Schwarz (1988), Schwarz gives an introduction to Lie methods and 
dlfferentiM equations with a special emphasis on the use of computer  algebra in 
comput ing  symmetries. Sample programs and many examples, including symme- 
tries of partial differentiM equations are also given there. Implementat ions are also 
discussed in Char (1980) and the works of Steinberg. Olver (1986), Schwarz (1988) 
and Steinberg (1983), (1985) are a good source of additional references. 

I s tart  with several key definitions. A local one-parameter group acting on R 2 
is an open set V, {0} • R 2 C V C R x R 2 and a C ~ map  r : V --+ R 2 such 
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that  (1) r (x, y)) = (x, y) for all (x, y) E R 2, and (2) r r (x, y))) = r + 
h,(x,y)) whenever g,h E R, (x,y) E ~2 and (h,(x,y)), (g,r and  (g + 
h, (x, y)) are in V (i.e., whenever (2) makes sense). If Y = R x R 2, we say r is 
global. We sometimes will write r y) for r (x, y)). 

EXAMPLE I V . l :  (Olver (1979), p. 204) Let V = {(t, (x, y)) I ty 7~ 1} and let 

r  (~, ~)) = 1 " tv '  L - - t y  

Note that  this cannot  be extended to a global group acting on R 2. 

An infinitesimal one-parameter  group is a system of differential equations d~ - s  

I(X, y), ~ = g(x ,y)  (or, more geometrically, the vector fietd f (x ,  y ) ~ + g ( x ,  y ) ~ ) .  
Given a local one paramete r  group qh(t, (x, y)) = (F(t, (x, y)), G(t, (x, y))), we can 

define an infinitesimal one parameter  group by -~t = ~(F(t '(x 'Y))t=o'  -~t = 

~ ( G ( t ,  (x, y)) ~=0" Conversely, given an infinitesimal one-parameter  group,  if 

x( t , (x0,y0)) ,  y(t,(xo,yo))are the solutions corresponding to x(0) = x0 and  
y(0) = Y0, then  r = (x(t,(xo,yo)),y(t,(xo, yo))) defines a local one- 
parameter  group acting on N 2. This allows us to move back and for th between 
these two notions. 

EXAMPLE IV.2:  In Example  IV. l ,  the infinitesimal one-parameter group is 

0 20 

If x : / o  + g ~  is an infinitesimal o~e-para~oter group, we say that (x0, y0) 
is a critical point  if f(x0,Y0) = g(z0, Y0) = 0. If (z0,Y0) is not a critical point ,  
it is called a regular point  and one can show (Markus (1960), p. 14) that  there 
is a change of coordinates u(x,y),v(x,y) near (xo,Yo) such that  in these new 
coordinates X = o .  

Given a local one-parameter  group qh, and a differential equation F (x ,  y, yl) = 0, 
we say tha t  Ct. is a symmet ry  group of F(x, ~t, u') = 0 if the following holds: if 1' is 
the graph of a solution y(x) of F(x,y,y') = 0 through (x0,y0) then, if t is close to 
0, there is an open neighborhood Ut of (x0, Y0) such that  r 71U:) is the g raph  of 
a solution of f ( x ,  y, y') = 0 through r Y0) (i.e. r takes solutions to  solutions). 
Luckily, one never needs to verify this condition directly. If X = f o  + g0-~ is 
the infinitesimal one-parameter  group associated with Ct, one can show tha t  r is 
a symmet ry  group of F(x ,  y, y') ~- 0 if and only if X I ( F ( x ,  y, y')) = 0 whenever  
F(x, Y,V') = 0 where 

0 0(o  (0,) )0 
x I = I N + g N +  N + N N N (v')~ Oy' 
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Here we are  thinking of x, y, and y' as three independent  variables. (To unders tand 
wha t  is happening  geometrically, it is convenient to think in terms of manifolds. 
A local one  pa ramete r  group acting on R 2 is a local action of the  Lie group (R, +)  
on R 2. One  can define the local action et of  R on any manifold. As with one- 
pa rame te r  groups, such an action corresponds to a vector field X on the manifold. 
The  act ion et induces an action of R on the 1st je t  space of the manifold and 
X1 is the  corresponding vector f idd  on this je t  space. F(z ,y ,y ' )  = 0 defines a 
submanifo ld  of the  j e t  space and the condition that  the action of R leave this 
invariant is precisely that  X~(F(x, y,y')) = 0. For details and generalizations of 
this approach, see Olver (1986).) 

EXAMPLE IV.3: (Olver (1986), p. 136) Let et  be  the one-parameter  group defined 
by e t (x ,  y)  = (etx, ety). The associated infinitesimal one-parameter  group is X = 
X O - -  O ~-~-,-y~-~. Consider a differential equation y' = F (~)  = 0, that  is, a homogeneous 

equat ion.  One easily checks that  X = X~ and X1 ( y ' -  F(s  ) = O. One can 
also see directly that  solutions of a homogeneous equat ion are mapped  to other 
solutions under the groups of dilations. 

We  have already mentioned that  at a regular point (x0,Y0), one can choose 
coordinates  u(x, y),v(x,y) so that  Z = ~ .  In this coordinate system we also 
have Xl  = ~'~. Assume that  yl _= F ( z , y )  is a differential equat ion such that 
X I ( y ' - F ( x ,  y)) = 0 when y ' - F ( x ,  y) = 0. If we write the differential equation in 
the new coordinates, say $ = a(u,v) ,  then the condition Xl ( $  - a (= ,  v)) = 0 
when dv G(u, v) implies tha t  a-~G(u v) = 0. Therefore, G(u,v) H(u) is 
independent  of v and v = f H du + c. Rewriting this in terms of the original 
eoorchnates gives us a solution of the  differential equation. 

EXAMPLE IV.4:  This is a continuation of the previous example. If we let u = it 

and v logx ,  then  X = x~-~, + V ~  becomes X = 0 = ~--~,. Assuming that  y = y(x) 
and v = v(u) ,  we have that 

dy 1 + u-~V 4 
dx dv 

so the  equat ion ~ F (~)  becomes a. 1 = ~-~ = T~-:'-ff-~" This has a solution v = 

f d= F-T~y-~_, + c. 

For example,  if 

dx z2 = _ _ -  + z 

then F ( u )  = u 2 + 2u. In the coordinates u = ~, v = logx,  we have 

dv 1 
du u2 + u 

The solution is ~ = - l o g  (1 + ~) + c, so U ~ Z : ~  
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This idea can be generalized to higher order equations. Let F(x,  y , . . .  , y(n)) = 0 
be  an n th  order differential equation. The definition of a one-pararneter group 
being a symmetry group of F ( x , y , . . .  ,y(n)) = 0 is the same as before. This  
again can be s tated in terms of the associated infinitesimal one-parameter group 
f o +  o ~d g~-~ : et is a local one-parameter symmetry  group of F(x,  y , . . .  , y('O) = 0 
if and only if 

" OF 
x F= f a--+ =o ,,,he,, F(x,y, . y("))=O, cgz ~ j=O 

where go = g 

0 1+J-1 Ogk-1 (k+l)_ (Of Of ,'~ 
and gj = ~ E ~ ' g  K-~x + "-~Y Y ) Y(j) 

k=O 

When this happens, one chooses local coordinates u(x, y), v(x, y) such that X = Ov 

and  writes the equation in the new coordinates as G(u, v , . . . ,  v (n)) = 0 (where 
v r a, 0a = O, so the equation really = ~-~). The condition .XnG = 0 becomes ~ -  
is G(u, v l , . . .  ,v  (n)) = O. Letting w = v t, we see that  finding a solution of 
G(u,  w , . . .  ,w (n-l))  = O, integrating w = f v du and rewriting in the old coor- 
dinate  system, solves the original equation. Therefore, the existence of a one- 
pa ramete r  group of symmetries of the equation allows us to reduce the order of 
the  equation. 

EXAMPLE IV.5: (Olver (1986), p. 142) Consider the equation y" + p(x)y '  + 
q(x)y  = O. The group et(x,  y) = (x, ety) is a one-parameter group of symmetries  
of this equation. The associated one-parameter infinitesimal group is X ---- y~-~. 

If we let u = x and v = logy,  then X = ~-~. Since y = e v, yl = vre,  and  
y"  = (v" + (v')2)e ~, the equation becomes v" + (v') 2 +pv'  + q = 0. Letting w = v' 
we get the usual Riccati equation w ~ + w 2 + pw + q = 0. Solving this and let t ing 

y = e ~ = e f  ~ solves the original equation. 

I now mention a result related to Section III. Consider a di~erential equa- 
t ion Y' = Q(*'~)P(x,y) which we write as Q(x,y)d~ - P ( x , y ) d y  = 0. One can show 

(Olver (1986), p. 139 or Markus (1960), p. 18) that  if this differential equat ion  
has a local one parameter  symmetry group with ~ssociated infinitesimal group 

y)s  + then 

1 
.R(x, y) -- f ( x , y ) Q ( x , y )  - g (x , y )P(x ,  y) 

is an  integrating factor, that  is d(RQ dx - R P  dy) = O. 

EXAMPLE IV.6: Consider again a homogeneous equation y~ = F (~)  bu~ write 
8 O this as F (~) d x - d y  = 0. Since the group associated with x ~ 7 + y  ~ is a symmet ry  

group  of this equation, R =  ( z F  (~) - y ) - I  is an integrating factor. 
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This result is the basis of many heuristics (Char (1980)). The main problem 
with applying the above ideas is that it is difficult, in genera/, to find an infinites- 
imal one-parameter group satisfying the appropriate conditions and once such a 
group is found, finding the change of coordinates to make X = o .  This problem 
is discussed in Olver (1979), (1986) and Char (1980), (1981). One can also find 
non-trivial applications in these references as well as the works of Miller, Schwaxz 
and Steinberg listed in the references. Other works of interests are Belinfante 

Kolman (1979), Beyer (1979), Bluman ~ Cole (1974), Campbell (1966), Co- 
hen (1911), Fushchich & Kornya/a (1989), Kersten (1986), Ovsiannikov (1982), 
Reiman (1981), Roseman & Schwarzmeier (1979), and Winternitz (1983). 

I close this section by mentioning the equivalence problem and the method of 
Cartan. The equivalence problem is the problem of determining when two systems 
of ordinary or partial differential equations can be mapped to each other by an 
appropriate change of coordinates and the method of Caxtan is a method to solve 
this problem. This method was turned into an algorithm by Gardner and applied 
to a diverse collection of problems (Gardner (1983), (1989), Kaxnran (1988)). 
Caxtan's equivalence method has been used to determine possible symmetry groups 
of differential equations in Hsu 8z Kamran (1988) and Kamran ~ Olver (1988). 

V. T r a n s f o r m  M e t h o d s  

The basic idea behind transform methods is to transform a differential equation 
into an algebrMc equation, solve the algebraic equation and then transform back 
(occasionally, one just transforms the original equation into a simpler differential 
equation and then tries to solve the simpler equation). An elementary example is 
the effect of the Laplace Transform on linear differential equations with constant 
coefficients. The Laplace Transform of a function f ,  defined on [0, co), is L(f)  = 

n 

F(z) = f~o e_=tf(t)dt" Using the fact that L ( f  (~)) = z n L ( ] ) -  ~, zn-kf(k-1)(O),  
kml 

one can easily transform any system of linear differentia/equations with constant 
coefficients into a system of linear (algebraic) equations with polynomial coeffi- 
cients. One solves this and inverts the transform to get solutions of the origi- 
nal equations. This has been implemented in MACSYMA, see Avgoustis (1977), 
Claxkson (1989) and Rand (1984). More general transform techniques axe dis- 
cussed in Glinos ~ Saunders (1984), where implementations of techniques from 
the operational calculus axe discussed. 

VI .  Asymptotics 

A problem here is to find algorithms that will generate formulas such as 

Z ~ dt x + x _ ~  I)!(io; ( ( l_~gXx)  logt - logx (logx) ~ + . . . + ( n -  x)" + o  ),; 



Formal Solutions of Differential Equations 81 

or other expressions that describe the growth behavior of solutions of linear dif- 
ferential equations. There have been various at tempts to give algebraic substance 
to asymptotic expansions and estimates, that  is, make a calculus of asymptotic 
expressions. Early work includes the considerations of du Bois-Reymond (see the 
bibliography in Hardy (1910), (1912)). Recently, this area has been given a firm 
algebraic footing in the works of Boshernitzan, Rosenlicht aaad van den Dries (see 
the references). I hope that some of their work can be made effective. Along these 
lines I propose the following problems 

Problem 11. Find an algorithm that solves the following: Given a real elementary 

function f ,  find a real elementary function F such that f :  f ,,~ F (i.e. lira - ~  = 
~ - " + O Q  

1) if such an F exists. 

Some work on this problem appears in Bourbaki (1961) and Rosenlicht (1980), 
and a solution of this would be a first step towards algorittm]ically generating 
expressions like (4). For an overview of the many pitfalls associated with a t tempts  
to make a calcuhs of these generalized asymptotic expansions, as well as other 
useful information on asymptotics, see Olver (1974), especially Ch. 1, Sec. 10 and 
Olver (1980), especially See. 3. 

Let P and Q be polynomials in y with coefficients that are real liouvilliaa func- 
tions. All solutions of 

y,= P(Y) 
Q(y) 

that are differentiable in a neighborhood of +c~ are ultimately monotonic (Rosen- 
licht (1983a)). When P and Q have coefficients in R[x], Hardy showed that  any 
such solution y satisfies either y ,~ axbep 0:) or y ~ axb(log x) 1/c where b is a real 
number, p(x) a polynomial and c an integer (Hardy (1910), Bellman (1969)). 

Problem 12. Find an analogue of Hardy's result in the general case of P and Q 
having real liouvillian functions as coefficients. 

Formal methods involving asymptotics have been very useful in perturbat ion 
theory. Here we are given a differential equation that depends on a parameter e and 
we wish to find series in e that represent quantities associated with this equation 
(e.g. solutions, limit cycles, Poincar4 maps). This usually is done by substituting 
the power series in e into an equation, equating powers of e, deriving new equations 
for the coefficients and solving these new equations. Computer algebra systems 
such as MACSYMA have been successfully used in this problem. There is an 
enormous literature on this subject and the reader is referred to Rand (1984) and 
Rand & Armbruster (1987) for details and a large bibliography. 
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VII. Difference Equations 

The  general problem here is: Consider the questions raised in I -VI  above in the 
context of difference equations. Aside from heuristics (Cohen L: Kateoff (1977), 
Hayden ~ Lamagna  (1986), Ivie (1977) and Moenck (1977)), there are a few recent 
algorithmic results. In 1977, Gosper (Gosper (1977), (1978)) gave an algorithm 

n 

which gives a closed form expression for S(n) = E y(x)  when S ( n ) / S ( n  - 1) is 
X-R-1 

a rational function.  This algorithm has been successfully used to generate and 
generalize some very interesting formulas. Problems of this kind can be given 
a formal sett ing using difference fields. A difference field is a field F with an 
au tomorphism a (Cohn (1966)). If F = C(x) the automorphism one usually has 
in m i n d  is a ( f ( x ) )  = f ( x  'b 1). We can define the usual difference operator by 
A f  -- a ( f )  - f .  The problem of finding a closed form expression for S(n) = 

f ( x ) ,  then becomes: Given a difference field F and f E F ,  compute, if it 
x = l  
exists, an element g in a suitable extension of F such that  Ag _,. f .  Kerr has 
investigated this problem in Karr (1981), (1985). He rigorously defines what is 
meant  by "summat ion  in finite terms" in terms of towers of difference fields. These 
towers axe called 1-I ~ fields and are the analogue of elementary extensions in the 
theory of integration in finite terms. Karr shows how to solve an arbitrary first 
order linear difference equation in a given l-I ~ field and how to make a judicious 
choice of such an extension. He also gives a liouville type theorem for summation 
in finite terms. An exposition of some aspects of Gosper's and Karr's work can be 
roland in Lafon (1982). 

Problem 13. Generalize Karr's work to n th  order linear difference equations. 

Recently, Zeilberger (Zeilberger (1989)) uses a setting similar to that  in his work 
n 

on integrals to give an algorithm for evaluating sums of the form a(n) = ~ F(n ,  k) 
k = l  

where F ( n  + 1, k ) / F ( n , k )  and F ( n , k  + 1 ) / F ( n , k )  are rational functions of n and 
k. 

Della Dora, Tournier and Wazner have considered the problem of finding power 

series solutions of linear difference equations L(y) = ~ ai6iy = 0,  where a~ E C(x) 
i = l  

and 6( f ( x ) )  = f ( x  - 1). In Della Dora & Tournier (1984) they look for solutions 

) of the form y(x) = #~ aj(x) ,+j  , where (x)~ = 1-'(x + 1)/1-'(x - A + 1). They 
.= 

pursue the me thod  of Boole, a method  similar to the Probenius method  for solving 
linear differential equations. This method only works under certain regularity 
condit ion imposed on the eoefficients of L(y). In Della Dora &Wazne r  (1985), 
they pursue a Newton polygon method  that  handles a more general case. In 
Barkatou (1989), Barkatou considers systems of linear difference equations and 



Formal Solutions of Differential Equations 83 

gives an algorithm (along the lines of Moser's algorithm for differential equations) 
to reduce such a system and decide if it has a regular singularity. 

Another approach to difference equations is discussed in Della Dora 8z Tournier (1986) 
and Tournier (1987) based on ideas of Pincherle and recent improvements of 
J. P. Ramis and A. Dural. The idea is to use the transform P[qo] = f7 t -* - lq~  
where 7 is a suitably chosen path,  to transform the difference equation into a linear 
differential equation, use the techniques developed to understand the solu~ions of 
this new differential equation, and then transform back. The original motivation 
for Della Dora et al's interest in difference equations was to understand the growth 
properties of the coei~cients appearing in the formal expansions of solutions of a 
linear differential equation at irregular points. These coefficients satisfy difference 
equations. The Pincherle-Ramis method converts this problem back to a more 
tractible problem again involving linear differential equations, gives a remarkable 
and very pretty circle of ideas. 

In Maeda (1987), Maeda discusses Lie method for difference equations. 

F ina l  C o m m e n t s  

In the previous sections, I have mentioned how techniques for finding formal 
solutions have been implemented in computer algebra systems. Besides solving 
differential equations, computer algebra can be used to generate differential equa- 
tions and manipulate differential equations (of course, generating, manipulat ing 
and solving are not mutually exclusive). In Wang (1986) and Tan (1989), the 
authors describe the symbolic software FINGER that automatically generates 
the element equations for the finite element method (see also l~oache ~z Stein- 
berg (1985), (1988)). Another example of using symbol manipulation packages to 
generate equations is in Hirschberg ~ Schramm (1989), where the authors describe 
a package that generates the equations of motion of certain robot systems given 
the masses, moments  of inertia, position of mass centers and connection joint 
locations. A good example of using a computer algebra systems to manipulate  
differential equations can be found in Davenport, Siret & Tournier (1988), p. 29~ 
where the authors show how to use IVIACSYMA to obtain successive derivatives 
of y with respect to x, starting from g(x, y) = 0. They get expressions containing 
partial derivatives of g and are then able to specialize this to a particular g. Other 
examples can be found in Rand (1984) and Rand ~ Armbruster (1987). Another  
example of manipulation is given in Grossman & Larson (1989), where the authors 
give an efficient algorithm for evaluating higher order differential operators (such 

~ a  j o as Ea E2 E1 - Ea E1 E~ - E2 E1 E3 + E1 E2 E3, where Ei = i ~ ) .  

All the problems discussed here have their roots in the 19th century and many 
of them have effective solutions that were outlined at that  time. With  the rise of 
symbolic computation systems, these solutions take on a new relevance. I have 
included the following textbooks and guides to the old literature in the references: 
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Bieberbach (19a5), Gray (1986), Hilb (1915a), (1915b), Hille (1976), Ince (1944), 
Kamke (1971), Poole (1960), Schlesinger (1895), (1909), Vessiot (1910), Zwill- 
inger (1989). 
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ON SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS 
WITH ALGEBRAIC SOLUTIONS 

By F. BALDASSARRI and B. DwoRK 

Introduction. We consider second order linear differential op- 
erators 

L =D2 +B.D + C, 

D = d/dx, B, C E C(x). The singular points of L consist of the poles 
of B and C and possibly the point at infinity. 

H. A. Schwarz [15] determined all such operators with three singu- 
lar points whose kernel consists of algebraic functions. His method was 
to show that if B and C lie in R(x) then the monodromy group can be 
calculated from the group generated by the reflections relative to three 
circles which meet at angles determined by the exponent differences 
of L. He used this to show that the solutions of L are all algebraic if 
and only if these angles coincide with the angles of a spherical triangle 
whose vertices are fixed points of three rotations any pair of which 
generates a finite rotation group. 

The Schwarz list of 15 reduced curvilinear triangles contains a 
basic sublist of exponent differences 

group type order = M 

I - n dihedral 2n 2 2 n 

II 2~- 
1 1 

tetrahedral 12 

IV - 
1 1 

octahedral 24 2 3 4 

VI - 
1 1 

icosohedral 60 2 3 5 
42 
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the first case corresponding to an infinite series of dihedral groups. 
Klein asserted [10, pp. 132-135] that he had determined all differ- 

ential equations of second order with only algebraic solutions. This 
widely accepted assertion is quite misleading. One may pose two questions 

(0.1) Given n + 1 points {ai, . . ., a,n, oo}, determine all second order 
linear differential equations with only algebraic solutions and 
with these points as singularities. 

(0.2) Given a second order linear differential equation L, determine 
in a finite number of steps whether the solutions of L are all 
algebraic. 

The method of Klein is better adapted to problem (0.2) than to 
problem (0.1). His method (cf. Theorem 3.4 below) is based on the 
fact that (excluding the cyclic case) L has only algebraic solutions if and 
only if it is a weak pullback by a rational map of an element in the 
basic Schwarz list. To decide whether L as given by (3.3) is the pullback 
of Lo is equivalent to the determination of the existence of a rational 
solution x of the non-linear third order differential equation (3.7.3). 
With an a-priori bound for the degree of x this can be reduced to a 
purely algebraic problem. Klein illustrated this program [12] by ex- 
hibiting cases XII, XIV, XV of Schwarz as pullbacks of VI (the other 
cases on the full Schwarz list had been previously checked off in that 
way by Brioschi [2]). Klein did not for example show by his method 
that the Schwarz list is exhaustive, a reasonable step in illustrating a 
credible program for problem (0.1). 

It is our understanding that Problem 0.1 is still open for n 2 3 
(i.e. four or more singular points). In the present article we carry out 
the Klein program for Problem (0.2). The new ingredients of our work 
are 

(0.3) A general formula (Section 1) for the degree of the pullback 
mapping. 

(0.4) A decision procedure (Section 6) for the existence of an algebraic 
solution of a linear first order differential equation over a Riemann 
Surface. (Correction: This procedure is not new. See R. H. Hisch, 
Bull. Amer. Math. Soc. 76 (1970), pp. 605-608). 

The degree calculation is needed to carry out Klein's method for 
checking whether L is a pullback of II, IV or VI but the method breaks 
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down if we must test whether the group of L is one of the two infinite 
series. The cyclic case is treated in Section 4 but the main point in the 
dihedral case is the reduction (Section 5) to problem (0.4) mentioned 
above. 

In a subsequent article we shall explain how Klein's program may 
be extended to second order differential equations defined over a Rie- 
mann Surface. 

In Section 8 we indicate connections with Grothendiecke's conjec- 
ture and the work of Katz. We note that the conjecture is still open for 
four or more singular points (unless the differential equation "comes" 
from algebraic geometry). Even if verified it would not respond to Prob- 
lem (0.2). 

We note that Forsyth [3, p. 184] discussed Problem (0.2) along the 
lines of Klein. His treatment cannot be taken seriously. 

We regard the present article as expository. Indeed a superior 
decision procedure (over the sphere) has been given by L. Fuchs (cf. 
items 19, 20, 21, 22, 23, 25, Vol. II of his collected works). This may 
be explained quite easily. 

For each integer m let Lm be the linear differential equation of 
order m + 1 satisfied by all homogeneous forms of degree m in solu- 
tions yl, y2 of the second order linear differential equation L given by 
(4.1). If L has only algebraic solutions then (cf. Theorem 3.8 below) L12 

must have at least one solution which is the radical of a rational func- 
tion. If L12 has such a solution but L2 does not then (Fuchs p. 45 loc cit) 
all solutions of L are algebraic. If L2 has such a solution, X, but L does 
not then 42 is a rational function and 4 = yly2, a product of independ- 
ent solutions of L. Putting r = y2/yl we obtain 

r (0.5) 

where w = yly2' -y2y1' is a constant which may be calculated from 

_W2 =42L( ) + 2( ) -4Qj (0.6) 

In this case Problem (0.2) is reduced to determining whether r as given 
by (0.5) is algebraic, a problem evidently untreated by Fuchs. Our 
Section 6 serves then to fill in this gap in the treatment of Fuchs. If 
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L has itself a solution which is the radical of a rational function then 
the solutions of L are all algebraic only if L satisfies the criteria for the 
cyclic case (cf. Section 4 below). Finally we note that the question of 
whether L12 has a solution, v, which is the radical of a rational function 
is elementary since v must be of the form 

n 

H (x - aiY)ig(x) 

where g is a polynomial whose degree as well as the values of the c1i are 
determined up to a finite set of possibilities by the exponents of L at its 
singularities {ai, . . ., an, oo}. 

1. Pullbacks on Riemann Surfaces. Let L be a second order dif- 
ferential equation with coefficients in an algebraic function field K of 
characteristic zero and algebraically closed field of constants k. Hence 
choosing x E K, x 0 k, we may write 

L =D2 +AD +B (1.1) 

where A, B E K and D = d/dx. Letting r be the Riemann surface cor- 
responding to K, we view L as being equivalent to L1 also defined over 
K if a ratio of solutions (at some point of r) of L is also a ratio of solu- 
tions of L1. Thus in particular we identify L with 

Li = D2 + B1 (1.2) 

where 

B1 =B- 1 A' -- A2 A'= 
2 4 d 

since 

Li= L 0 where '/=-- A 6 ~~~~~~2 

(notice that 0 does not lie in K but is defined locally on r). 
We shall assume that at each point, P, of r, L has two independent 
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solutions of the form 

y = tai(l + bit + bi2t2 + ) =1, 2 (1.3) 

where t is a local uniformizing parameter, ai E k and the bij also lie 
in k. Because of our definition, the pair (oa , al2) is not well defined but 
their difference is well defined up to sign. For a fixed model we have 
(al, ce2) = (0, 1) for almost all points and so if we choose any archi- 
medean valuation of k and setting -y(P) = j al - a 21 for each point 
P of r, we see that -y(P) - 1 = 0 for almost all P. Let S be any finite 
subset of r and put 

A(S, L) = S (^y(P) - 1). (1.4) 

For S large enough we obtain a limiting value A(L) independent of S, 
but depending on the valuation of k chosen for the construction. 

Now let Ko be an algebraic extension of K and let r denote the 
mapping ro - r of the corresponding Riemann surface. Let Lo be the 
pullback of L by ir (i.e. if r is ratio of two solutions of L then r a X is 
ratio of two solutions of Lo). Using the same valuation of k we may 
define A(Lo). 

LEMMA 1.5 Let g (resp: go) be the genus of r (resp: ro), let M 
be the mapping degree, then 

M[A(L) - 2(g - 1)] = A(Lo) - 2(go - 1). (1.5.1) 

Proof. For P E r, let Po be a point of ro above P. Let e(Po) be the 
relative ramification. If a 1, 0 2 are exponents at P of a model of L, then 
a i * e(Po) are exponents at Po of Lo. Thus 

-y(Po) = -y(P) * e(Po) 

which shows that 

f S i(PO)s-M so a (P)s (1.6) 

If S is any finite subset of r and So is the set of all points of r above 5, 
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then 

A(So, Lo) + card So = M(,A(S, L) + card S). (1.7) 

The Hurwitz genus formula states that 

2(go - 1)- 2M(g - 1) M card S - card So (1.8) 

provided S contains all points of r which ramify in ro. The lemma now 
follows by taking 5, so large that in (1.7) we may replace A(So, Lo) 
(resp A(S, L)) by A(Lo) (resp: A(L)) and using (1.8) to eliminate the 
terms involving cardinality. 

In the application below go = gi = 0 and the exponent differences 
are all rational. Besides, coordinate functions t, x will be fixed on ro, 
r (that is Ko = k(t), K = k(x)) and by the weak pullback of L to 
(ro, t) we will denote the model of the pullback of L to ro, which is in 
the form (1.2) with respect to the coordinate function t. 

The point in the lemma is that L, Lo, r and ro may be given with- 
out the relation r between r and ro being known. In that situation for 
given set S of r there is no way to determine the lifting, So, to ro. We 
can determine the set T of singularities of L and To of singularities of 
Lo but To need not coincide with r-'(T), the problem being that rami- 
fication points of r may produce singular points of Lo and again if 
-y(P) = l/e and Po covers P with ramification e then Po is not a singu- 
larity of Lo since the exponent difference at Po would be 1. The situ- 
ation would be different if we viewed L as determining the solution 
space rather than ratios of solutions. 

2. Finite homography groups. We review (following Halphen [6]) 
the theory of such groups. Let G be a finite group of homographies 

at + b 
ct + d 

where a, b, c, d lie in C and ad - cb ? 0. Thus G may be viewed as 
a finite set of automorphisms of the function field H = C(t). By Luiroth's 
theorem, the fixed field HG is generated by a single element y and so 
is of genus zero. Let Pi, ..., Ps be the points of HG which ramify in H, 
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let M be the order of G and let e, be the relative ramification of H over 
HG at one point of H above P,. It then follows that there are M/ei 
places of H above P, and each place has ramification ei, which shows 
that if we use the Hurwitz genus formula we have 

0 = 2(1 - M) + S (e, - l)M/ei. 

and so 

s ~~~~2 l l/e, = s -2 + (2.1) 

Since each e, 2 2, we obtain 

s/2 2 ll/e, > s - 2 

which shows that s = 2, 3. 
If s = 2, we use ei c M to conclude from (2.1) that 

e = e2 = M 

which shows that the Galois group G coincides with the ramification 
group at Pi and hence G is cyclic. 

If s = 3 then (2.1) becomes 

1 1 1 2 
ei e2 e3 M 

a diophantine equation with only 4 types of solutions as given by the 
table in the Introduction. (The point is that we cannot have ei 2 3 for 
all i and so can assume e, = 2. Furthermore e2, e3 cannot both exceed 
3. Thus e2 = 2 or 3.) 

Let G be a finite group of homographies. Then for each 0 E G we 
may choose a matrix 

(ao bo \ 
A0 E SL(2, C) (2.3) 

\o do 
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such that 

0(t) = aot + bo (2.4) 
cot + do 

Of course A0 is only determined mod ? 1 and hence if 0, wo E G, we have 

AoA, = h(6, <p)Ao, (2.5) 

for suitable h (0, (p) E {? 1}. It is clear that h is a 2-cocycle for G with 
coefficients in {?1} with trivial action of G on {?1}. (The example 
of the 4-group generated by x - ? 1/x shows that h need not be co- 
homologically trivial). For later use we define a mapping k of G X G 
into ? 1 and a mapping ko of G into ? 1 by the formulas 

k(4, O)Ao -,o = AO -y1Ao (2.6.1) 

ko(4) = HI k(t, 0) (2.6.2) 
OEG 

For u E C, we define 

Fu(t) = II (t-ou) (2.7) 
OEG 

if Ou is finite for all 0. Whenever Ou is infinite we replace the factor t - Ou 
by -(aou + bo). Thus Fu is a polynomial of degree M - au where au is 
the number of 0 E G such that Ou = oo. We note that 

?Fpu (t) = Fu(t)/(cpu + dE,)GU 

for all 4 in G, the sign being given by H h (064, 4), the product being 
over all 0 such that Ou = oo. 

If we put t = tl/t2, we obtain 

Aut2MFu(t) = H [ti(cou + do)- t2(aou + bo)] (2.8) 
OEG 

where M = order of G 

Au= (cou + do) 
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the product being over all 0 E G such that Ou ? oo. If so E G then putting 

(pI(tl, t2) = afti + bft2 

(p2(tl, t2) = cptl + dct2 

we obtain (p(t) = sp1(tl, t2)/1p2(tl, t2) and so 

Au(p2(t1, t2)MFu((p(t)) = H [pl(tl, t2). (COU + do) 

- p2(tl, t2)(aou + bo)] 

= H [ti(cy-lu + d,-10) 

- t2(al,-Iu + bS,-0)Jk(k, 0) 

= Aut2MFu(t)ko(O). 

This shows that 

Fu (p(t)) = (ck o+ d-)M Fu(t). (2.9) 

The key point is that the ratio between Fu (ep(t)) and Fu (t) is independent 
of u. Thus if v lies in another orbit, we see that Fu/Fv is an absolute 
invariant under G, and so lies in HG, the subfield of H = C(t) fixed 
by G. 

Putting x = Fu(t)/Fv(t) we see that H D HG D C(x) and hence 

deg H/C(x) > M 

while the equation 

0 = Fu(t) - xFv(t) 

is a polynomial in t of degree M, which shows that 
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This shows that 

HG = C(x). 

LEMMA 2.10. If u, v, w are points of C then the polynomials Fu, 
Fv, Fw are linearly dependent over C. 

Proof. We may assume u, v, w to lie in distinct G-orbits and deg 
Fw = M. Then HG is generated over C by Fu/Fw and also by Fu/Fv. 
This shows that Fu/Fw and Fu/Fv are related by a homography. Hence 
there exist a, b, c, d in C such that 

Fu aFu + bFv 
Fw cFu + dFv 

Since Fu and Fw are relatively prime, we conclude that Fw divides cFu + 
dFv but deg Fw = M 2 deg (cFu + dFv) which shows that up to a 
non-zero constant factor, 

Fw = cFu + dFv. 

This completes the proof of the lemma. 

THEOREM 2.11. If G is a finite non-cyclic group of homographies 
of order M then there exist polynomials Pi, P2, P3 of degree M/ei 
(i = 1, 2, 3) (or possibly M/ei - lfor one i) such that 

11 + 1 + 2 (2.2) 
ei e2 e3 M 

p1e, + P2e2 + P3e3 = 0, (Pi, Pj) = 1 for i ?j (2.11.1) 

Pi(ot) = Pi(t)/(cot + do)M/ei VO E G. (2.11.2) 

Proof As before let H = C(t), HG the fixed field under G. The 
extension H/HG ramifies at 3 valuations of HG. If ai is such a place 
of HG, let Pi be the polynomial whose roots are the finite extensions 
of ai to H. This means that the degree of Pi is M/ei unless the infinite 
place of H lies above ai. It is clear that p,e, is an invariant constructed 
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from an orbit and after adjusting constant factors, equation (2.11.1) 
follows from Lemma 2.10, equation (2.11.2) follows from (2.9) and (2.2) 
has been previously established. 

To formulate the converse of the above theorem we consider solutions 
of the equation 

Q e, + Q2 e2 + Q3 e3 = 0 (2.12) 

in C[t] such that Ql, Q2, Q3 are relatively prime in pairs and such that 
if (say) 

deg Q3e3 < deg Q,ei = deg Q2e2 = M (2.13) 

then 

degQ3e3 M mod e3. 

LEMMA 2.14. 

1 + 1 + 1 2'-, 1 + 2 (2.14.1) el e2 e3 M 

and equality holds if and only if the equation 

-x = (t) (2.15) 
Q3 e3 

defines an extension C(t) of C(x) ramified only at 0, 1, Xo with ramifi- 
cation el, e2, e3 at each point of t-sphere above the indicated points of 
the x-sphere. If equality holds then there exists a constant c such that 

Q2e2-l = c(eiQi'Q3- e3Q3'Ql) (2.15.1) 

Proof. We assume that either deg Q1ei = M for i = 1, 2, 3 or 
equation 2.13 holds. We put (wi, W2, W3) = (0, 0, 0) in the first case 
and (0, 0, M-deg Q3e3)/e3 in the second case. 

We put a. = 0, in the first case and a. = w3e3 -1 in the second 
case. In either case it represents the contribution of the point t = oo to 
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the Hurwitz genus formula for the genus of C(t) as an extension of 
C(x). This formula may be written 

01= 1 (2.16) 
0=1-M +-1 ENi(ei-1)+ 2Uoo +E (2.16) 2 __l 

where Ni = deg Qi and E 2 0 is a correction term introduced to allow 
for the possibility that 

(a) Ramification may occur at points other than x = 0, 1, oo 
(b) the zeros of Qi may be non-simple. 

Since 

M = (Ni + wi)ei, 

we deduce from (2.16) 

M ( 1 +-+ 1 -1) =2E + iW3?O (2.17) 
el e2 e3 (1+ W3 W3 :P O. 

This proves the inequality which appears in the statement of the 
lemma. Equality holds if and only if both E = 0 and w3 = 0, 1. This 
completes the proof of the lemma. 

Now assume equality holds. Let 

H = elQl'Q3- e3Q3'Ql 

K = e2Q2'Q3- e3Q3'Q2 

By dividing equation (2.12) by Q3e3 and differentiating 

Qle-lH + Q2e2-lK = 0. 

Since Q, and Q2 are relatively prime, Q2eri divides H. Since Q, and 
Q3 are relatively prime, H cannot be zero. Equation (2.15.1) now follow 
by comparison of degrees of two sides. 

PROPOSITION 2.18. Let ei, e2, e3 be given positive integers. Let 
C(t) be algebraic over C(x) ramified at x = a,, a2, a3 (and possibly 
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elsewhere). Suppose that at each place of C(t) above ai the ramification 
index is divisible by e,. 

Let z be a multivalued function on the x-sphere having only a,, a2, 

a3 as critical points, suppose each branch of z is locally algebraic and 
that each branch at ai lies in C(((x - ai) 1/ei)). Then z E C(t). 

Proof. The function z is everywhere uniform on the t-sphere and 
hence is rational function of t. 

Definition. A solution of (2.12) is called primitive if equality holds 
in (2.14.1). 

LEMMA 2.19. If (Ql, Q2, Q3) is a primitive solution of (2.12) and 
(Pl, P2, P3) is an arbitrary one, then there exist polynomials f, g such 
that 

Pi = Qi (f) gM/ei i=1, 2, 3. 

Proof. Define z, t algebraic over Z(x) by setting 

|-x = Q (Z) 
Q 3e3 

(2.19.1) 

|-x = P (t) P3 e3(t 

We apply proposition 2.18 and lemma 2.14 and conclude that 

z E C(t), i.e. z=flg, 

where f, g E C[t], (f, g) = 1. Equation (2.19.1) gives 

ple _ Qlei(f/g) [gNQj(f/g)]ei 

P3e3 Q3 e3(f/g) [gN3Q3(f/g)]e3 ge3w3 

P2e2 Q - 1 = Q2e(f/g) _ [g2 Q2(f/g)]e2 

P3e3 Q3 3(f/g) [gN3Q3(f/g)]e3 ge3w3 

(with no loss in generality we take 3 as in the proof of Lemma 2.14). 
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By hypothesis 1 = (Ql, Q2). From this we deduce that gNi Q1 (f/g) 
and gN2 Q2(f/g) are relatively prime. Again (Pl, P2) = 1 by hypothesis 
and the lemma follows from our relations. 

COROLLARY 2.20. If (Pl, P2, P3) and (Ql, Q2, Q3) are both prim- 
itive solutions then the rationalfunction f/g represents a homography. 

Proof. In this situation, equation (2.19.1) shows that z and t are 
rational functions of each other, hence z is homographic image of t. 
We can now formulate a converse of Theorem 2.11. 

THEOREM 2.21. If (Ql, Q2, Q3) is a primitive solution of (2.12) 
then the equation 

-x = Qlel(t)/Q3 e3(t) (2.21.1) 

defines a galois extension C(t) of C(x) of degree M. 

Proof. Consider 

h(y) = xQ3e3(Y) + Q1ei(y) 

as polynomial in Y with coefficients in C(x). Clearly t is a root and by 
the corollary if t1 is another root then ti is homographic image of t. 
Thus h splits in C(t). It is easy to check that h is irreducible in C(x)[Y] 
and so deg C(t)/C(x) = m as asserted. 

Note: The extension C(t)/C(x) is ramified only at 0, 1, oo. This 
completes the demonstration that the finite subgroups of the group of 
homographies are uniquely determined up to inner automorphisms by 
the invariants ei, e2, e3. 

The existence of the indicated groups is demonstrated by writing down a 
primitive solution in each case. 

For future use we note that these groups correspond to the case in 
which s = 3 in equation (2.1) and hence to the non-cyclic finite groups 
of homographies. 

1. Dihedral group of order 2n 

(Xin + X2n)2 - (Xln - X2n)2 = 4(XlX2) 
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2. Tetrahedral 

12 3f2 = 13-q023 

f = XlX2(Xl 4-X24) 

= X14 + 2-3X12X22+ X24 

02 =X14-2 -3XI2X22+X24 

3. Octahedral 

W3- K2 = 108f4 

f = XlX2(Xl4-X24) 

W = X18 + 14X14X24 + X28 

K = X 12-33X18X24 - 33X14X28 + X212 

4. Icosahedral 

1728fs = T2 + H3 

f = XIX2(Xl' + 11Xl5X25 -X210) 

H = -(X120 + X220) + 228(X,'5X25 -X5X2 5) 

- 494X,'?X210 

T = X,30 + X230 + 522(X125X25 -X5X225) 

- 10005(X120X210 -XIoX220) 

3. Pullbacks on the gauss sphere. We consider hypergeometric 
differential equations in normalized form: For X, , v elements of C, let 

LA,1.V,p = D 2 + 2 + B 
( + X (3.1) x2 (X - 1)2 x(x - 1) (31 

with 

D -=d 
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4A = 1 - X2 

4B = 1 -2 

4C = X2 + i2 - P-1 

This is the unique second order differential equation with rational co- 
efficients, singular points only at 0, 1, oo, with constant wronskian and 
with exponent differences X, , v at 0, 1, oo respectively. 

If (Q1, Q2, Q3) is a primitive solution of (2.12) then by setting 

-X = Ql el (t)/Q3 e2 (t) (3.2) 

we obtain an extension Ko = C(t) of C(x) = K such that the pullback 
of Lx,1,V = L in the sense of Section 1 has eiX, e211, e3v as exponent 
differences. In particular if 

(X\ , e V) = e2 e3 

then the pullback has only unity as exponent difference, and no loga- 
rithmic singularities and is Fuchsian. Hence the pullback has no singu- 
larities and hence is d2/dt2. 
The function t is a ratio of solutions of this equation and so this algebraic 
function of x is a ratio of solutions of Ll/e,l/e2,i/e3. We summarize: 

THEOREM 3.2.1. If E,=13 (1l/ei) > 1 then all solutions ofL /e1,i/e2,1/e3 

are algebraic and t given by (3.2) is a ratio of solutions and the group of 
C(t, x)/C(x) is dihedral, tetrahedral, octahedral, icosahedral depending 
on the values of (ei, e2, e3). 

Let 

L = dt2 + Q(t) (3.3) 

be a normalized second order linear differential operator defined over 
C(t) whose solutions are locally algebraic. Let r be a ratio of solutions 
and let G be the group of homographies corresponding to the action of 
monodromy upon r. As is well known the finiteness of G is equivalent 

This content downloaded from 80.7.164.251 on Wed, 11 Jun 2014 17:15:15 PM
All use subject to JSTOR Terms and Conditions



58 F. BALDASSARRI AND B. DWORK 

to the condition that all solutions of L be algebraic functions. We will 
refer to G as the projectivized monodromy group of L. 

THEOREM 3.4. (Klein) If G is finite but not cyclic then L is the 
pullback by a rational map of one of the hypergeometric operators 
L e1 1ie2,iie3 with Ei=13 (1/ei) > 1. Conversely such a pullback has a finite 
projectivized monodromy group. 

Proof. The converse follows directly from Theorem 3.2.1. 
If G is finite non-cyclic then by Theorem 2.11 there exists a primi- 

tive solution of (2.12) for suitable eI, e2, e3 such that Qlel/Q3e3 is in- 
variant under G. Thus 

-t (t) = (T(t)) (3.5) 
Q3 e3 

is invariant under analytic continuation on the t-sphere, and hence is a 
rational function of t. Comparing this with equation (3.2) we see that 
r(t) is a ratio of solutions of Lile,lle2,iie3 if we replace x by (t). This 
completes the proof of the theorem. 

Suppose now that the projectivized group of L is finite and not 
cyclic. Hence according to the theorem L is a pullback of some L ile, ,1/e2,1/e3 

by a rational map. This map need not be unique. To see this let Lo = 
d2/dt2 so that Lo is pullback of Lile,ile2,iie3 (E (l/ei) > 1) by means 
of equation (3.2). If we put 

t' = at 

where a is an arbitrary homography and put 

Q,e, 
-X = (t) (3.6) Q3 e3 

then Lo is again pullback of Liie,,11e2,11e3 by Xi. If Xi were to equal X 
for all a, we could conclude that X is a constant. 

The point in this example is that Lo has the trivial projectivized 
group while L1/el,l/e2,l/e3 has a non-trivial group. In general if L is a pull- 
back of L1e,,1e2,11e2 then the group of L is a subgroup of that of L11e,,11e2,11e3,. 
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THEOREM 3.7. (Klein [12]). If L and Liiej1,ie2,jie3 have the same 
group and if ei ? e2 then the pullback mapping is unique. 

Proof By hypothesis there exists x E C(t) such that r, a ratio of 
solutions of L, satisfies 

-x = 
e (r). (3.7.1) 

Field theoretically we have the lattice shown. 

C(r, t) 

I 
C(T) C(t) 

I/ 
c(T) fl C(t) 

C(x) 

The projectivized group G of L coincides with the galois group of 
C(r, t)/C(t) and hence by the usual identification with the group of 
c()/(Cc(r) n C(t)). On the other hand the group of L I/el,j/e2,I/e3 coincides 
with the group of C(r)/C(x). The hypothesis of equality of groups is 
equivalent to the assertion that 

C(r) n C(t) = C(x). (3.7.2) 

This condition fixes x up to homography. By an elementary calculation, 
L as given by (3.3) is the pullback of 

Lo = 
d- 2 + q(x) 

under the mapping x = x(t) if 
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a formula which may also be written in terms of the Schwarzian deriva- 
tive. The key point is that 

1 (X" )' _ 1 ( X )2 = 2 {x, t} (3.7.4) 
2 kx /4k x'/2~X 

remains invariant under homographies 

ax +b 
X - 

x + d ad-bc = 1 
cx + d 

Since x is fixed up to homography, equation 3.7.3 implies that if 
y = y(t) is also a pullback mapping then 

q(x)x'2 = q(y)y'2 (3.7.5) 

ax +b 
- cx + d (3.7.6) 

and q is given by (3.1) with (X, t, v) = (l/el, 1/e2, 1/e3). Note that 
A, B, C in (3.1) are each distinct from zero. This shows that 

A + B + C 
x2 (X-i)2 x(x-1) 

: (Y-1) YYI)] (cx+d) d (3.7.7) 

We consider four cases. Since a and c cannot simultaneously be 
zero we exhaust all possibilities. 

Case 1 c, a, a-c all distinct from zero. 

The right side of (3.7.7) lies in x-4 C[[x-']]. The corresponding 
Laurent series for the right side is 

(A + B + C)x-2 + (2B + C)x-3 modx-4 
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This shows that 

A +B+C=O 

2B + C =O 

and hence A = B contrary to hypothesis. 

Case 2 a = 0, c ? O. 

Here we may let c = 1, b =-1. The right side of 3.7.7 is 

A + B + C 
(x + d)2 (x + 1 + d)2(x + d)2 (x + 1 + d)(x + d)2 

Comparing poles we see that as sets {O, 1} = {-d, -d - 1}. Hence 
d = -1 and now multiplying both sides of (3.7.7) by x2 and setting 
x = 0 we obtain A = B contrary to hypothesis. 

Case 3 c = 0, a ? O. 

We may set a = 1 = d. Proceeding as in the previous case we 
obtain {O, 1} = { -b, 1 - b} as sets. Hence b = 0 and therefore 
y = x as asserted. 

Case 4 a = c ? O. 

Here we may let a = c = 1, d = b + 1. Proceeding as in Case 2, 
{0, 1} = { -b, -b - 1} as sets. Hence b = -1 and now multiplying 
both sides of (3.7.7) by (x - 1)2 and setting x = 1, we obtain A = B 
contrary to hypothesis. 

THEOREM 3.8 (Klein [12]) In the notation of equation 3. 7.1, let 

r =y1/y2 

with yl, Y2 solutions of L, and let 

w = Y2Y1' -y1y2', 
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(prime denotes differentiation with respect to t). Let Q3(y1, y2) denote 
the form of degree M/e3, 

Q3(yl, y2) = y2M/e3Q Q3 (7) 

Then 

Q3(y1,y2) 
- C W 

X1-?1ed(J- X)l-(l/e2)M1/2e3 (3.8.1) 

for some constant C. 

Proof. Taking the derivative of both sides of equation (3.7.1) and 
applying (2.15.1) gives 

w Q1 ei-1 Q-2e,-l 
X' = C 2 llloe- 

y22 Q3e3+1 

We multiply by y2 2Q32e3'M/X' . This gives 

Q3(y I y2 ) 2e3/M = CW ( e, 1-(1/ed )(Se 1-(l/e2) 
X' \Q33 /3 

Equation (3.8.1) now follows from 2.15, 2.12. 

4. Cyclic Case. Let 

dt L =D2-Q, D-dt (4.1) 

be a given 2nd order differential operator with Q E C(t). We again 
assume that all solutions of L are locally algebraic. Our object is to 
decide in a finite number of steps whether the projectivized group is 
cyclic. While there are of course an infinite set of cyclic groups, in the 
present situation there is an a-priori bound for the order of the group. 
The group G is generated in any case by the transformations corre- 
sponding to local monodromy around singular points. In general this 
gives no upper bound for the order of G but if G is cyclic then its order 
is bounded by the least common multiple of the denominators of the 
exponent differences. This will not be used in the following. 
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Let T be a ratio of solutions of L. If G is cyclic then replacing T by 
some homographic image if necessary, we may suppose that the ele- 
ments of G are of the form 

T - wr (4.2) 

where w runs through the mth roots of unity in C. Hence Tm is invariant 
under the monodromy group and thus an element of C(t), say 

Tm = t E C(t). (4.3) 

Then by a classical calculation two independent solutions of L are given 
by 

A 

- 2 i'1/( 1/nl)4 

v =u 

This shows that u'/u and v'/v lie in C(t). 

THEOREM 4.4. Let L as given by (4.1) have solutions which are 
locally algebraic. Then the projectivized group of L is cyclic if and only 
if the Riccati equation 

y'+ y2 = Q (4.5) 

has two distinct rational solutions. 

Proof. The necessity of this condition has been explained. Con- 
versely if y is a rational solution of (4.5) then y can have only simple 
poles since by hypothesis the singularities of L are all regular which 
means that the poles of Q are at most of order two. If we write 

i=1I (t - t')2 (t-cxj) (4.6) 

then we must have 

n 

E Bi = 0 (4.7.1) 
i=1 
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-4Ai = 1 - Xi2 (4.7.2) 

where Xi is the exponent difference at ali (i = 1, ..., n) 

n 

1 -X2 =- 4 E (Ai + aiBi). (4.7.3) 

We may write a rational solution of (4.5) in the form 

Ci 
N 1 

_ i + (4.8) 7 I.=I t - 0i j=1 t -As.8 

where O1, ..., ON are all distinct and are distinct from the singularities 
of L. Indeed equation (4.5) implies that 

L = (D + r7) (D - r7) (4.9) 

and so each exponent of D - r7 must be an exponent of L which shows 
that 

Ci= 2 i=1,..., n (4.10) 

and these numbers are rational by hypothesis. Now corresponding to the 
rational solution of (4.5) given by (4.8), there is an algebraic solution 
of L given by 

N ,, 

y = H (t - ,) (t - cei)ci (4.11) 

If equation (4.5) has two distinct solutions, then the ratio, T, of the 
corresponding solutions of L would be the ratio of two functions of the 
form given by 4.11 and hence Tr" E C(t) for suitable integer m. This 
completes the proof of the Theorem. 

COROLLARY 4.12. Each rational solution of (4.5) is of the form of 
equation (4.8) where (c,, ..., c,,) satisfies (4.10) and 

N + E ci + 1 _ Ax- 0. 
j=1 2 
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Proof We need only check the estimate for N. As in the proof of 
the theorem, the exponent of D - r7 at infinity must also be an exponent 
of L at infinity. The corollary follows directly. 

What is the set of all rational solutions of the Riccati equation? 

THEOREM 4.13. If the Riccati equation (4.5) has more than two 
solutions in C(t) then the projectivized group of L is trivial, (i.e. all the 
exponent differences are integers). 

Proof. Let r/i, 72, 3 be solutions of equation (4.5) and let ui be 
solution of L, such that 

7i = ui'/ui (i = 1, 2, 3) 

Then 

m7-7 = Wi,,,UiU, 

where wi, is the associated wronskian of L. Let T U2/Ul, SO 

T = u u = const. - 3/2- 773. 
U1 U21U2U3 

Thus T lies in C(771, 772, 773). This completes the proof. 

5. Dihedral case. Part I. Let L be as in equation (4.1). We now 
wish to determine whether the projectivized group is dihedral. 

THEOREM 5.1. If the projectivized group of L is dihedral then the 
Riccati equation (4.5) has a solution in a quadratic extension of C(t). 

Proof. The conventional hypergeometric differential operator 

x(1 -x)D2 + -(y - +3 + 1)x)D-aO3 (5.1.1) 

has exponent differences 1 -y, -y -oa-, a - at 0, 1, oo and no 
other singularities. Putting 

?' 2 ' 3 2' z' 2 

we obtain a differential equation with exponent differences 1/2, ,u, 1/2 
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which by explicit calculations (going back to Gauss) has (1 + Nx) and 
(1 - Vx/)M as solutions. If we replace x by x(t) then the normalized pull- 
back is satisfied by (1 ? x)'/VW4 where w = (1 - x)-'(-Tx)'. From 
this the Riccati equation has solution 

j~x' 1 R'(52 
2 x(l x) 4 R 

where 

X/ 
2 x(l - x) 

Now by Theorem 3.2, if L has a dihedral group of order 2 m then L 
is the pullback of L 1/2, 1/m, 1/2 by a rational map x = x(t). This completes 
the proof of the theorem. 

We now study the existence of solutions of equations (4.5) in 
quadratic extensions. 

LEMMA 5.3 (Fuchs). Let L2 be the third order linear differential 
equation satisfied by all binary quadratic forms in yi, y2, a pair of 
independent solutions of L. Suppose that the Ricatti equation (4.5) has 
no solution in C(t). Then equation (4.5) has a solution in a quadratic 
extension field of C(t) if and only if L2 has a solution whose square lies 
in C(t). 

Proof. If equation (4.5) has a solution 7II in a quadratic extension 
field, then we may write 

7 = y + 4RY (5.3.1) 

with 'y and R in C(t). By hypothesis -'Rk 0 C(t) and hence 1q2 = z - 

VR is a distinct solution of (4.5). We may choose yi solution of L 
(i = 1, 2) such that 

77i = yi' /yi (5.3.2) 

and then 

2VR = 77i - 2 = w/yly2 (5.3.3) 
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where w is the wronskian of L. Since w is a constant, we conclude that 
1/ R is a constant multiple of y1y2 and hence satisfies L2. This proves 
the assertion is one direction. 

Conversely if z E C(t) and v'_ is a solution of L2 then Vz is a quad- 
ratic form in solutions of L. Since such a quadratic form may be fac- 
tored there are two possibilities: 

VP = U 2 (5.3.4) 

H = U1 U2 (5.3.5) 

where u1, U2 are independent solutions of L. The first case is ruled out 
by the hypothesis that equation 4.5 has no solution 1/4 z'/z E C(t). We 
now put 7i = ui'/ui (i = 1, 2) and calculate from (5.3.5), 

71 + 72- = z' (5.3.6) 

while precisely as 5.3.3 

?71 -?2 = W/UIU2 = W/H (5.3.3') 

where again w is a determination of the wronskian of L. Equations 
(5.3.3'), (5.3.6) show that (4.5) has a solution in a quadratic extension 
of C(t). This completes the proof of the lemma. 

We now briefly discuss the existence of a solution z of L2 whose 
square lies in C(t). Such a solution must be of the form 

n 

t = H (t -Xi)kiog (5.4) 

where aoi, . O.., an are the finite singularities of L, g is a polynomial 
different from zero at each ai. Each ki must be a half integer with 

ki = 1 +Xfi, 1 (5.5) 

while 

E ki + degg 1, 1 ? X. (5.6) 
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This gives a finite set of possibilities for the ki and the degree of g and 
the determination of g is reduced to a problem in linear algebra. 

6. Dihedral Case. Part II. Let L be a 2nd order differential oper- 
ator as in equation (4.1). In Section 5 we showed that if L has the di- 
hedral group then L decomposes into linear factors in a quadratic 
extension of C(t). Such decompositions were studied in that section. To 
determine whether the group is indeed dihedral we must now be pre- 
pared to answer the following question: Given r7 algebraic over C(t) does 
the equation 

Y' = Yq7 (6.1) 

have a solution algebraic over C(t)? (For our application we may assume 
7 is in a quadratic extension of C(t)). This is equivalent to the condition 
that there exist m E N such that mr7 is logarithmic derivative of element 
of C(t, r7). The difficulty is that of finding an a-priori bound for m. 

In the classical theory of hypergeometric functions this problem 
did not arise, as, for n = 2, the field C(t, 7) is either C(V4), C( t - 1) 
or C(t, t(t - 1)) and so in all cases of genus zero and hence equation 
(6.1) may be analyzed without difficulty. 

We now consider a generalization of the above problem. 
Let w be a differential with at most simple poles and with rational 

residues at each pole on a curve C defined over a field K of characteristic 
zero. To determine in a finite number of steps whether mw is a loga- 
rithmic differential for some (unknown) m E Z. 

By solving this question we solve the problem of Section 5. As 
general references for this discussion see [13, 16]. At each point P of C 
we write 

w = np dtp + Up. (6.2) 

where tp is a local parameter at P, wp is regular at tp and np is a rational 
number which we may assume to be in Z. Let 

S = 2 npP (6.3) 

a divisor of C of degree zero. 
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There are two steps 

I. Find an integer m such that either mS? is principal or S is of 
infinite order in the Jacobian of C. 

II. Decide whether mS? is principal and if it is find 0 in the func- 
tion field of C such that 

(0) = mS 

Suppose I and II carried out, then put 

WCI - dO nmw. (6.4) 0 

We note that w 1 is a differential of the first kind. If wO = 0 then the 
problem has an affirmative solution. If wO ? 0 then Nwi is never loga- 
rithmic regardless of N E N and hence the problem has a negative 
solution. 

I. We choose a non-singular model for C in P3. Let K be a field of 
definition of both C and of the divisor S. 

Case 1. K is an algebraic number field. 

Let pi, p2 be primes of K extending distinct rational primes pi, 
P2 such that the reductions C,, C2 of C are non-singular. Let G1 (j = 
1, 2) be the group of points on the Jacobian J(C,) of the reduced curve 
Cj which are rational over the residue class field KX and which are of 
order prime to p1. Let ei be the exponent of Gj. Thus (ei, pi) = 1 and 

ejGj = 0. (6.5) 

LEMMA 6.6. If the image of S in J(C) is offinite order then 

ele22 - 0. 

Proof. If S is of finite order then there exists pi im, (pi, m) = 1 
such that 

plimi n 0. (6.6.1) 
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Hence p1i QC is of order prime to p1. But the mapping 

J(C)(K) - J(C1)(K1) 

of the group of K-rational points of J(C) into the group of Ki-rational 
points of J(C1), is injective on the subgroup of elements of order prime 
to pi. The image of p1iis is rational over K1 and of order prime to pi, 
hence is annihilated by ei. Thus 

eip1ii - 0 (6.6.2) 

likewise 

e2p2ig : 0 

for some unknownj. We choose a, b E Z such that 

apli + bp2i = 1 

and conclude that 

ele2$2 = ele2(apiiC + bp2jg) - 0. 

This completes the proof of the lemma. 

Case 2. K is finitely generated over Q. 

We choose a specialization K -K' such that K' is an algebraic 
number field and C - C', a non-singular curve. Since 

J(C)(K) tor J(C ')(K ' )tors 

is an injection, we may repeat case 1. This completes the treatment of 
problem I. 

II. We choose a plane curve model for C with only ordinary singular 
points Pi, ..., P, the multiplicity of Pi being sj. Let D = 

Ej=, sjPj. Put 
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L =Lo -L. 

Lo and L. being positive divisors. 
Construct a curve B having intersection with C containing D + Lo. 

Write 

c nfB = D + Lo + X, 

where X is a positive divisor. Let 1 = degree B. Then 

Lo -Loo 

if and only if there exists a curve B' of degree 1 such that 

B' n C=Lo. +D +X. 

This construction involves only linear algebra and the calculation of X. 
If Lo L.o then Lo - L = (B/B'). The solution of part II involves 
the application of this procedure to mS. 

7. Decision Procedure. Let L be a second order differential op- 
erator defined over C(t). We may suppose L is given by (3.3). Our object 
is to give a decision procedure for determining whether all the solutions 
are algebraic. 

We may assume that all singularities of L are regular, and that all 
exponents are rational numbers. Our object is to determine whether 
the projective monodromy group G of L is one of the five finite types. 
We apply the procedure of Section 4 to determine whether G is cyclic. 
If it is we are done. Conversely if we exclude the possibility that G is 
cyclic, we then use the procedure of Section 5, Section 6 to determine 
whether G is dihedral. Having decided that G is neither cyclic nor di- 
hedral we consider successively the three remaining finite possibilities, 
i.e. G may be the tetrahedral, octahedral or icosahedral group. The 
reason for proceeding in this sequence is we wish to use the uniqueness 
theorem of Klein (3.7). 
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We now consider whetherL is the pullback byx = x(t) of Ll/e,1l/e2,1/e3 

(cf. equation 3.1) where 

(e e2 e3) 2 3 3 

(1 1 1) 

(2 3 5) 

and where we may assume that we have already excluded previous ele- 
ments in this list of three possibilities. 

We are to decide whether there exists a rational function x which 
satisfies (3.7.3). Here q(x) is given explicitly by (3.1), i.e. 

ei2 e22 ei2 e22 e32 
4q(x)= 2 + + x(x-1) 

x2 (X-12 x( 

Let a,, .. ., a", ao be the singularities of L. Let the exponent dif- 
ferences be XI, X2, ..., X n X . We know that these numbers are 
rational and we take them to be positive. We define 

A(L) = (XI + + X +n + X.) (n 1) 

Thus 

A(Liie1,,ie2 
Ile3) = 

+ 1 + 1 ei e2 e3 

It follows from Section 1 that if L is a pullback of L /ej,/Xe2,I/e, by x = x(t) 
then the mapping degree (i.e. the maximum of the degrees of numerator 
and denominator) must be 

M-A(L)/A(Lo). 
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We normalize by insisting that the denominator is monic and we 
interpret equation 3.7.3 as a set of algebraic relations among the at 
most 2M + 1 unknown coefficients of the numerator and denominator 
of x (we must consider M + 1 possibilities as the exact degree of the 
denominator is not fixed). We thus arrive at M + 1 algebraic sets which 
have in all, at most one rational point. By elimination theory we should 
not only be able to decide whether a rational solution of 3.7.3 exists but 
we should indeed be able to determine the solution itself. 

8. Conjecture of Grothendieck. Let L again be a second order 
differential operator but for simplicity we suppose that the coefficients 
lie in Q(t). For almost all p we may consider L, the reduction of L 
modulo p on F,p(t). Clearly L, acts as linear operator on F,p(t) as vector 
space over Fp(t0). Let Kp be the dimension of the kernel of Lp viewed 
as vector space over Fp (tP). 

As a special case of a general conjecture of Grothendieck, it is 
conjectured: 

(8.1) If Kp = 2 for almost all p then all the solutions of L are algebraic 
functions. 

The converse of this statement is known. 
The general conjecture has been verified by Katz [8] for the case in 

which L is a suitable direct factor of the Fuchs-Picard equation. In 
particular it is known to be valid in the case of second order operators 
with 3 singular points. The conjecture is completely open in the case of 
Heun's differential equation [17, p. 576] (second order, four singular 
points), the point being that in the case of 3 singular points, the inte- 
gral formula of Euler reveals the cohomological nature of the gauss 
hypergeometric functions but no integral formula is known for the 
solutions of the Heun differential equation. 

For the case of 3 singular points there is a simple algorithm for the 
calculation of Kp. For 4 or more singular points no such algorithm is 
known. Thus even if Grothendieck's conjecture were confirmed, it is 
not clear that it would give a response to problem (0.2). 

It may be useful to explain briefly how one could use Katz's result 
to verify Schwarz's list. We know from Ihara that the differential equa- 
tion for F(a, b; c; x) has Kp = 2 if and only if the minimal representa- 
tive mod p of c lies between the corresponding representatives of a and 
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of b. Using the criterion of Grothendieck it is easy to check that each 
equation in Schwarz's list has only algebraic solutions. 

To show that Schwarz's list is exhaustive one must start with the 
fact that the list consists of classes of exponent differences. Two sets 
(XI, X2, X3) and (Xi', X2', 3') of exponent differences are said to be 
equivalent [14, p. 119] if 

Xi' = CiXi + ,Ui 

where cE = ?1, each it E Z and it + ,U2 + t3 _0 mod 2. The central 
point is that if the sets of exponent differences are equivalent then the 
monodromy groups are isomorphic. This can be shown either by Rie- 
mann's method of calculating the monodromy group or by Gauss's 
relations among contiguous hypergeometric functions [5, Section 34]. 

Consequently we may assume that (XI, X2, X3) form a reduced set 
of exponent differences, i.e. 

i ? X1 > O (8.2) 

1-X1+Xi for i?j. (8.3) 

We follow Schwarz's theory of curvilinear triangles to show that if all 
solutions are algebraic then 

3 

Xi > 1. (8.4) 
i=l 

We now use Section 4 to show that the cyclic case can only occur with 
exponent differences (1/n, 1, 1/n), and the method of Section 5 to show 
that the dihedral monodromy group can occur only if the exponent dif- 
ferences are 1/2, 1/2, 1/m. This leaves only the tetrahedral, octahedral 
and icosahedral groups. The elements of these groups have orders 2, 3, 
4, 5, and hence the Xi have these integers as denominators. This con- 
dition together with (8.2) shows that there are only a finite number of 
possibilities; use of (8.3) and (8.4) further reduces the list. Furthermore 
orders 4 and 5 do not occur simultaneously. By these considerations 
we arrive at the Schwarz list together with the additional candidates: 
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Exponent differences Spherical excess 

1 2 2 3 
2' 5' 5 10 

2 1 1 1 
3'3'4 4 

2 2 1 2 
5' 5' 3 15 

2 2 1 4 
3' 5' 5 15 

3 2 1 1 
5'5'5 5 

3 2 2 2 
5'5'5 5 

3 1 1 4 
5' 3' 3 15 

These are excluded by means of Grothendieck's criterion, i.e. by the 
converse of (8.1). 

It is not clear that this mixture of methods of Schwarz and Katz 
is any improvement over the original method of Schwarz. We note that 
for the case of 4 singular points there is no theory of reduced set of 
exponent differences. In the case of 4 singular points, the monodromy 
group depends not only on the exponential differences and singular 
points but also upon an additional parameter. One does not know how 
to infer isomorphism of monodromy groups from relations concerning 
the parameters [1, p. 311-329]. 

This content downloaded from 80.7.164.251 on Wed, 11 Jun 2014 17:15:15 PM
All use subject to JSTOR Terms and Conditions



76 F. BALDASSARRI AND B. DWORK 

REFERENCES 

1. L. Bieberbach, Theorie dergewohnliclen differentialgleichungen, Berlin 1953. 
2. M. Brioschi, "La the'orie des formes dans l'integration des e'quations differentielles 

line'aires du second ordre" Math. Ann. 11 (1877), pp. 401-411. 
3. A. Forsyth, Theory of Differential Equations, Vol. IV, Cambridge, 1900-1902. 
4. E. Goursat, "Sur l'e'quation differentielle line'aire qui admet pour integrale la serie 

hyperge'ome'trique," Ann. Sc. de l'Ecole Norm. Sup. X (1881) supple'ment, 
pp. 3-142. 

5. _ _, Lecons sur les series hypergeometriques, Paris 1936, 1938. 
6. G. H. Halphen, "Sur la reduction des equ. diff. lin...." Oeuvres, Vol. 3, Paris 

1921, pp. 1-260. 
7. E. L. Ince, Ordinary Differential Equations, London 1927. 
8. N. Katz, "Algebraic solutions of differential equations," Inv. Math. 18 (1972), pp. 

1-118. 
9. , "Deligne's work on Hilbert's 21st Problem" AMS Symposia Pure Math. 

XXVIII (1976), pp. 537-538. 
10. F. Klein, "Lectures on the Icosahedron," London 1913. 
11. , "Ueber lineare Differentialgleichungen," Math. Ann. 11 (1877), pp. 115- 

118. 
12. ,"Ueber lineare Diff." Math. Ann. 12 (1878), pp. 167-179. 
13. S. Lang, Abelian Varieties, New York 1959. 
14. E. Poole, Linear Differential Equations, Oxford 1936. 
15. H. A. Schwarz, "Ueber diejenigem Falle, in welchen die Gaussische hypergeometrische 

Reihe eine algebraische Function ihres vierten Elementes darstellt.," Journal 
f.d. reine und angew. Math. 75, pp. 292-335. 

16. R. J. Walker, Algebraic Curves, Princeton 1950. 
17. Whittaker and Watson, Course of Modern Analysis, 4th Edition, Cambridge 1927. 

This content downloaded from 80.7.164.251 on Wed, 11 Jun 2014 17:15:15 PM
All use subject to JSTOR Terms and Conditions



574

1.22 On second order homogeneous linear differential
equations with Liouvillian solutions

By Winfried Fakler. Vniversitiit Karlsruhe. Karlsruhe, Germany. Elsevier Science. Theoret-
ical Computer Science 187 (1997) 2748.



Theoretical 
Computer Science 

ELSEVIER Theoretical Computer Science 187 (1997) 2748 

On second order homogeneous linear differential equations 
with Liouvillian solutions’ 

Winfried Fakler * 

Vniversitiit Karlsruhe, Institut fiir Algorithmen und Kognitive Systeme, D-76128 Karlsruhe, Germany 

Abstract 

We determine all minimal polynomials for second order homogeneous linear differential equa- 

tions with algebraic solutions decomposed into invariants and we show how easily one can 

recover the known conditions on differential Galois groups [ 10,17,24] using invariant theory. 
Applying these conditions and the differential invariants of a differential equation we deduce an 

alternative method to the algorithms given in [lo, 18,241 for computing Liouvillian solutions. 
For irreducible second order equations our method determines solutions by formulas in all but 
three cases. 

Keywords: Differential Galois theory; Differential equations; Liouvillian solutions; Invariants; 
Differential invariants 

1. Introduction 

Algorithms computing algebraic solutions of second order differential equations are 

well-known since last century. Already in 1839, J. Liouville published such a proce- 

dure. However, the degree of the minimal polynomial of a solution must be known. 

Among other renowned mathematicians, Fuchs [4,5] developed from 1875 to 1877 

a method for computing algebraic solutions, which is based only on binary forms. He 

wanted to clear up the question of when a second order linear differential equation has 

algebraic solutions and he solved it by determining the possible orders of symmetric 

powers associated with the given differential equation for which at least one needs to 

have a root of a rational function as a solution (see e.g. [4, No. 22, Satz]). Thereby, he 

gave a method - presumably, without taking note of it - that remains valid for deter- 

mining Liouvillian solutions of irreducible linear differential equations of second order. 

Modem algorithms for computing Liouvillian solutions are based on differential 

Galois theory. These algorithms determine a minimal polynomial of the logarithmic 

derivative of a Liouvillian solution since one knows that these derivatives are algebraic 
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of bounded degree (see [15, Theorem 2.41). This approach for second order equations 

stems from Kovacic [lo] and has been implemented in Maple and some other computer 

algebra systems. A more accessible version of this algorithm was given by Ulmer and 

Weil [24] and is implemented in Maple, too. 

Even when the solutions are algebraic, one can determine the minimal polynomial 

of a solution. In Singer and Ulmer [ 181 this is used to solve equations with a finite 

primitive unimodular Galois group by extending the Fuchsian method to arbitrary order. 

For this, one first has to compute a minimal polynomial decomposed into invariants 

for every possible Galois group. 

In this paper we take up the ideas from Fuchs once again, Applying invariant theory 

we reformulate these ideas and state them more precisely. From that we obtain an 

alternative method for computing Liouvillian solutions. Unlike the known algorithms 

[ 10,18,24] we compute for irreducible second order equations - except for three cases 
- all Liouvillian solutions directly by formulas and not via their minimal polynomials 

(Theorem 11). 

In the three exceptional cases we get a minimal polynomial of a solution using 

exclusively absolute invariants and their syzygies by computing - depending on the 

case - one rational solution of the 6th, 8th or 12th symmetric power of the differential 

equation and determining its corresponding constant (Theorem 16). There is no need 

for a Griibner basis computation in these cases. In [4, p. 1001 and [ 18, p. 671 one 

needs to substitute in these cases a minimal polynomial decomposed into invariants in 

the differential equation. But this is very expensive. 

We note, that it is possible to extend the algorithm presented here at least to all 

linear differential equations of prime power order. 

The paper is organized as follows. In the rest of this section we briefly introduce 

differential Galois theory and the concept of invariants. In Section 2 we summarize im- 

portant properties of linear differential equations with algebraic solutions, which we use 

in Section 3 to compute minimal polynomials decomposed into invariants. In Section 4 

we show, how easily one can obtain the known criteria for differential Galois groups 

[ 10, 17,241 using invariant theory. These criteria result in an algorithm for computing 

Liouvillian solutions of a second order linear differential equation which is presented 

in Section 5. Finally we give for every (irreducible) case an example. 

The rest of this section and the following one contains nothing new, but are included 

to complete the picture. 

1.1. D@erential Galois theory 

For the exact definitions of the following concepts we refer to [8,9,16]. 

Functions, which one gets from the rational functions by successive adjunctions of 

nested integrals, exponentials of integrals and algebraic functions, are the Liouvillian 
functions. 

A diSj^erential field (k, ‘) is a field k together with a derivation ’ in k. The set of 

all constants V = {a E k ( a’ = 0) is a subfield of (k, ‘). 
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Let % be algebraically closed and k be of characteristic 0. Consider the following 

ordinary homogeneous linear differential equation 

L(y) = y(“) + a,_, y("-1) + . . . + a*y' + soy = 0 (Ui E k) (1) 

over k with a system {yt,. . . , y,,} of fundamental solutions. 

By extending the derivation ’ to a system of fundamental solutions and by adjunction 

of these solutions and their derivatives to k in a way the field of constants does not 

change, one gets K=k(yl,..., y”), the so-called Picurd-T/essiot extension (PVE) of 

L(y) = 0. With the above assumptions, the PVE of L(y) = 0 always exists and is unique 

up to differential isomorphisms. This extension plays the same role for a differential 

equation as a splitting field for a polynomial equation. 

The set of all automorphisms of K, which fix k elementwise and commute with the 

derivation in K, is a group, the differential Gulois group Q(K/k)=B(L) of L(y)=O. 

Since the automorphisms must commute with the derivation, they map a solution to 

a solution. Therefore 9?(L) operates on the v-vector space of the fundamental solu- 

tions and from that one gets a faithful matrix representation of B(L), hence Y(L) is 

isomorphic to a linear subgroup of GL(n,%?). Moreover, it is isomorphic to a linear 

algebraic group. Furthermore, there is a (differential) Galois correspondence between 

the linear algebraic subgroups of 9(L) and the differential subfields of K/k (see [8, 

Theorems 5.5 and 5.91). 

The choice of another system of fundamental solutions leads to an equivalent rep- 

resentation. Hence, for every differential equation L(y) = 0, there is exactly one repre- 

sentation of 3(L) up to equivalence. 

Many properties of L(y) = 0 and its solutions can be found in the structure of 9(L). 

Such an important property is: The component of the identity of Y(L)” of Y(L) in 

the Zariski topology is solvable, if and only if K is a Liouvillian extension of k (see 
Kolchin [9, Section 25, Theorem]). By this, we have a criterion to decide whether 

a linear differential equation L(y) = 0 has Liouvillian solutions. An ordinary homoge- 

neous linear differential polynomial L(y) is called reducible over k, if there are two 

homogeneous linear differential polynomials Ll(y) and Lz(y) of positive order over k 

with L(y) =Ll(Ll(y)), otherwise L(y) is called irreducible. L(y)=0 is reducible, if 

and only if the corresponding representation of 9(L) is reducible (see [9, Section 22, 

Theorem 11). If an irreducible linear differential equation L(y) = 0 has a Liouvillian 

solution over k, then all solutions of L(y) = 0 are Liouvillian (see [15, Theorem 2.41). 

However, if L(y) = 0 is reducible then Liouvillian solutions only possibly exist. Against 

this, a second order linear differential equation has either only Liouvillian solutions or 

no Liouvillian solutions (see e.g. [24, Section 1.21). 

1.2. Invuriunts 

In this section we introduce informally some concepts of invariant theory. For the 

exact definitions we refer the reader to [20,19] or [14]. 
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Let V be a finite dimensional g-vector space and G a linear subgroup of GL(V). 
An (absolute) invariant is a polynomial function f E %[V] which remains unchanged 
under the group action, i.e. f =f o g for all g E G. If, for some g E G, f and fog 

differ from each other only by a constant factor then the polynomial function f is 
called a relative invariant. The set of all invariants of G forms the ring of invariants 

9?[ VIG. For irreducible groups G E GL( V), the rings of invariants %[ VIG are finitely 
generated by Hilbert’s finiteness theorem (see e.g. [20]). 

For finite groups G E GL( V) the Reynolds operator RG( f) = ( l/]GJ)&G f og maps 
a polynomial function f E U[V] to the invariant RG(f) E %?[VIG. With the Hessian 

H(Zl) = det(a2Zi/& c%,) and the Jacobian .Z(Zl , . . . ,I,) = det(aZi/ilaai) it is possible to 
generate new invariants from the invariants Ii(v), . . . ,Zn(v) (see e.g. [20, 19, 141). 

Molien and Hilbert series (see e.g. [20]) of a ring of invariants allow us to decide 
whether a set of invariants already generates the whole ring. 

Let V be the g-vector space of a system of fundamental solutions of L(y) = 0 and 
let Z(v) E %?[ I’]“@) be an invariant of g(L). If one evaluates the invariant Z(v) with 
the fundamental solutions and takes into account that exactly the elements u E k are 
invariant under the Galois group g(L) then Z( yi, . . . , y,,) must be an element of k. An 
important tool for computing such an element are the symmetric powers of L(y) = 0. 

The mth symmetric power L@“(y) = 0 of L(y) = 0 is the differential equation whose 
solution space consists exactly of all mth power products of solutions of L(y) = 0. 
There is an efficient algorithm to construct symmetric powers described e.g. in [17, 

p. 201 or [2, p. 141. 

2. Algebraic solutions 

In this section we briefly give some important properties of linear differential equa- 
tions with algebraic solutions. 

Theorem 1 (Ulmer [22, Theorem 2.21; Singer [15, Theorem 2.41). Let k be a differ- 
ential field of characteristic 0 with an algebraically closed field of constants. Zf an 
irreducible linear difSerentia1 equation L(y) = 0 has an algebraic solution, then 
_ all solutions are algebraic; 
- Y(L) is finite; 
_ the PVE of L(y) = 0 is a normal extension and coincides with the splitting field 

k(yl,...,y,). 

For many statements on differential equations it is assumed that the Galois group 
corresponding to L(y) = 0 is unimodular (i.e. C SL(n, U)). 

Theorem 2 (Kaplansky [8, p. 411; Singer and Ulmer [18, Theorem 1.21). Let L(y) be 
the linear difj”erentia1 equation (l), then 9(L) is unimodular, if and only if there is 
a W E k such that W’IW = a,_l. 
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Using the variable transformation y = z . exp( - J a,_r/n), it is always possible to 

transform the equation L(y) = 0 into the equation 

LSL(Z) =Zcn) + b,_*Zcne2) + ’ ’ ’ + blZ’ + bl)Z = 0 (bi E k). 

According to Theorem 2, B&L) is unimodular. For second order equations we get 

&L(Z) = z” + (a0 - a:/4 - ai/2)z = 0. 

Under such a transformation it is clear that L(y) = 0 has Liouvillian solutions if and 

only if &L(Z) = 0 has Liouvillian solutions. Furthermore, if L(y) = 0 has only algebraic 

solutions, then &L(Z) = 0 has only algebraic solutions (cf. [22, p. 1841). 

Theorem 3 (Singer and Ulmer [ 18, Corollary 1.41). Let k c K be a dzjterential field 
of characteristic 0 and let the common field of constants of k and K be algebraically 

closed. If y E K is algebraic over k and y’Jy is algebraic of degree m over k, then 
the minimal polynomial P(Y) = 0 of y over k can be written in the following way 

P(Y) =Yd.m + U&Yd++‘) + . . . + 110 = n (Yd - (a(y))d), 
0El 

(2) 

where [k(y) : k(y’/y)] = d = (H/NI, H/N is cyclic, aj E k, H = S(K/k(y’/y)) is a 
1 -reducible subgroup of G = %(K/k) and F is a set of left coset representatives 
of H in G of minimal index m. 

3. Minimal polynomials decomposed into invariants 

Theorems 3 and 1 imply that any irreducible linear differential equation L(y) = 0 

with algebraic solutions has a minimal polynomial P(Y) of the form (2). Therefore, it 

remains to compute for any finite differential Galois group such a minimal polynomial. 

In this section, we compute for any finite unimodular group a minimal polynomial 

written in terms of invariants. The restriction to unimodular groups is necessary, since 

only these groups are all known. However, Theorem 2 ensures that we can construct 

a linear differential equation with unimodular Galois group from any linear differential 

equation L(y) = 0. 

3.1. Imprimitive unimodulur groups of degree 2 

The finite imprimitive algebraic subgroups of SL(2, U) are the binary dihedral groups 

DzLz of order 4n [24]. These are central extensions of the dihedral groups D,. They 
are generated by [19, p. 891 

ZJ,,=(~: e_Oi,n) and v=(: i). 

A simple calculation shows that these representations are irreducible. The invariants of 

the binary dihedral groups are generated by 

14 = y:y:, Izn=y:“+(-l)“yP, 12n+2 = YlYZ(Y:” - (-l)“Y22”) 
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and they satisfy the relation 

Iin+ - z‘& + (- 1)*4I;+l = 0: 

see [19, p. 951. Let {yi, yz} be a set of fundamental solutions of an equation 

of second order. 

Theorem 4. Let L(y) = 0 be an irreducible second order linear dtserential 
over k with a jinite unimodular Galois group 9(L) Z Dz’2. Then 

P(Y)=Y4” -z2,YZ”+(-l)“zqn 

(3) 

L(Y) = 0 

equation 

is a minimal polynomial decomposed into invariants for a solution of L(y) = 0. 

Proof. The degree of a minimal polynomial for a solution of L( y) = 0 of order 2 equals 

the order of the group Y(L), see e.g. [18, p. 551. Comparing this with P(Y) from 

Theorem 3 shows that d . m = 19(L)[. H = (u,) with IHI = 2n is a maximal subgroup 

of g(L). H is a cyclic group and hence Abelian and l-reducible and the elements of 

H have the common eigenvector z = yi (z is a solution of L(y) = 0). F = {u$ vu:} is 

a set of left coset representatives of H in Y(L). 
Together with m = [9(L) : H] = 2 and thus d = 2n one can calculate the minimal 

polynomial in the following way: 

P(Y) = OPT (Y2n - a(z)2”) 

= (Y2n - (-y1,j2”)(Y2” - (-iy2)2”) 

= Y4n - (y:” + (-l)“yP)Y2” + (-l)“y:“y22”. 

Decomposing this expression into the above mentioned invariants completes the 

proof. q 

3.2. Primitive unimodular groups of degree 2 

Up to isomorphisms, there are three finite primitive unimodular linear algebraic 

groups of degree 2. These groups are the tetrahedral group (AiL’), the octahedral 

group (Sp) and the icosahedral group (A?), see e.g. [24]. 
In contrast to Fuchs, the minimal polynomials in this section are determined using 

exclusively absolute invariants. The definitions of the matrix groups stem from Miller 

et al. [ 11, p. 22 11, while the necessary l-reducible subgroups, left coset representa- 

tives and eigenvectors are found in [18]. All the fundamental invariants are computed 

with the algorithms and implementations given in Fakler [2,3] (see also the relative 

invariants given in [l 1, p. 2251). 
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3.2.1. The tetrahedral group 

Y24 + 48ZIY18 + (9013 + 228Zf)Y12 + (288Z1 ZJ + 2368Zf)Y6 

- 31; + 36Z;Z3 - 108Zf 

is a minimal polynomial decomposed into invariants for the tetrahedral group. The 

invariants of this group are generated by 

11 = ;R,:L,(Y:Y2)(Y) = NY: - y:y*, 

z, = -$(I,) = y; + 14y;y; + y;, 

13 = &I(z~,z2)=y;2 - 33y:y; - 33y;y; + y:* 

and they satisfy the relation Zz - 12 + 108Zf = 0. 

Using Molien and Hilbert series one can show that the ring of invariants can be 

written as the direct sum of graded W-vector spaces 

WYl, Y*l@ =~[h,z2,131 =~[4,z21 @ 13 . ~[b,z,]. 

In this expression for the minimal polynomial, Z, was multiplied by --p3 and Z3 by the 

factor-~~2+~~-~,where~4-2~3+5~2-4~+1=0,2 andi=fl=2p3- 

3/L* + 9/l - 4. 

The above representation needs an algebraic extension. It can be an advantage to 

choose a representation which is less sparse but does not require an algebraic extension. 

One obtains such a representation e.g. by computing a lexicographical Griibner basis 

from the three equations of the fundamental invariants for y3 + y1 F 13 + 12 F I,: 

Y24 + 10Z*Y’6 + 513Y’* - 15Z,2Y8 - Z*Z3Y4 + Zp. (4) 

In this expression for a minimal polynomial decomposed into invariants for the tetra- 

hedral group II was multiplied by k, 12 by - & and Z3 by the factor - A. 

3.2.2. The octahedral group 

y4* + 20Z1Y4’ + 70Z,2Y32 + (27021; + 100Z;)Y24 + (- 10601,Z; + 65Zf)Y16 

+ (78Z;Z; + 16Z;)Y* + 1; 

is a minimal polynomial decomposed into invariants for the octahedral group. The ring 

of invariants of this group is generated by 

Zl = $&b(YfY;)(Y) = Y28 + 14YfY;+ Yk 
4 

z* = &H(ZI) = Y:Y:” - 2Y:Y; + Y:OYL 

z3 = -$jJ(Z*?Z2)=Y1Y:7 - 34y:yi3 + 34yi3y: - Yi7Y2. 

’ This algebraic extension becomes necessary for computing an eigenvector. 
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These three invariants satisfy the sysygy Zi + 1081,” - Z:Z2 = 0. That this syzygy is 

the only relation among the fundamental invariants is confirmed by the Molien and 

the Hilbert series. They also show, that the ring of invariants decomposes as the direct 

sum of graded V-vector spaces 

WY*, Y2P =~[b,z22,131 =v]Zl,Z21 @ Z3 ’ g[Zl,Z21. 

In the above-mentioned expression for the minimal polynomial Ii was multiplied by 

- & and Z2 by the factor k. 

3.2.3. The icosahedral group 

Y”’ + 20570Z2Y100 + 91Z3Y9’ - 86135665Z;Y*’ - 78254Z2Z3Y7’ 

+ (149937016901; + 11 137761250Z;)Y6’ + 897941Z,2Z3Y5’ 

+ (-116029192951; + 273542733750Z;Z2)Y4’ 

+ (-1517341; - 6953000Z;)Z3Y30 + (503123324Z; - 7854563750Z;Z;)Y2’ 

+(1331Z,4 + 500Z;Z2)ZsYi” 10 +3125Z, 

is a minimal polynomial decomposed into invariants for the icosahedral group. The 

three invariants 

z1= -&+Y~Y;)(Y)=YlY:l - llYfY,6 - Y:lY2, 

Z2 = - $+(I, ) = y;” + 228~;~;~ + 494~1”~;’ - 228~;‘~; + y:“, 

13 = &J(Zl,Z2) = y23o - 522~;~;~ - 10005y;“y;o 

- 10005y;“Y;o + 522~:~~; + y;‘, 

are the fundamental invariants of the icosahedral group and satisfy the algebraic relation 

Z3’ - 1; + 17281; = 0. 

Molien and Hilbert series verify that this relation is the only syzygy and show that 

the ring of invariants decomposes as the direct sum of graded W-vector spaces 

WYl, Y2P =~[~1,~2,~3]=~[~1,~21 @I3 ’ +9[b,121. 

In the above-mentioned expression for the minimal polynomial Ii was multiplied by 

&, 12 by -& and Z3 by the factor -A. 

4. Criteria for differential Galois groups 

The numbers and degrees of the invariants of all finite unimodular linear algebraic 

groups determined in the previous section yield conditions for the Galois group of a 

second order differential equation. In this section, we show how easily one can recover 

the known results (see [ 10, 17,241) using invariant theory. 
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If the Galois group Q(L) is an imprimitive group, it is not easy to distinguish 

between a finite and an infinite group (see [ 17, p. 251). The only infinite imprimitive 

unimodular Galois group of degree 2 is 

L&,= { (; .“,), (.!!r ia)} where aE@*. 

This group has only one hmdamental invariant 14 = y:yg (see [24, Section 3.21). 

The following lemma allows a simple method to distinguish all Galois groups 

Y(L) for which an irreducible second order linear differential equation L(y) = 0 has 

Liouvillian solutions. This is no longer true in higher order. 

Lemma 5 (cf. Sturrnfels [20, Lemma 3.6.31; Schur and Grunsky [14, p. 471). A bi- 

nary form of positive degree over k cannot vanish identically. In particular, this 
holds for homogeneous invariants in two independant variables. 

Rational solutions of the mth symmetric power L@.(y) = 0 correspond to 

homogeneous invariants of degree m of ‘9(L) (cf. [2,18]). Hence, as a conse- 

quence of Lemma 5, any invariant of degree m corresponds bijectively to a non-trivial 

rational solution of the mth symmetric power of L(y) = 0 (see [18, Lemma 

3.5 (iii)]). 

Corollary 6 (see Ulmer and Weil [24, Lemma 3.21). Let L(y) = 0 be an irreducible 

second order linear differential equation over k with 9(L) S DtL2. Then L@‘(y) = 0 
has a non-trivial rational solution. In particular, 

(1) L@‘(y) = 0 has two non-trivial rational solutions, if and only if 9(L) g DiL2. 

(2) Otherwise, L@(y) = 0 has exactly one non-trivial rational solution. 

Proof. Dy has two fundamental invariants of degree 4 (see Section 3.1). All the 

other binary dihedral groups D, sLz have exactly one fundamental invariant of fourth 

degree. 0 

The determination of the fundamental invariants of all finite unimodular groups in 

the last section allows the following result. 

Proposition 7. Let L(y) = 0 be a second order linear differential equation over k with 
O- an unimodular Galois group 9(L). If L (y) = 0 has a non-trivial rational solution 

for m = 2 or odd m E N, then L(y) = 0 is reducible. 

Proof. If L(y) = 0 is irreducible, L@“(y) = 0 has at most non-trivial rational solutions 

for even m > 4. q 

It ought to be clear that the practical use of such a statement is restricted. However, 

the following proposition allows effective computations. 
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Proposition 8 (see Ulmer and Weil [24, Lemmata 3.2 and 3.31). Let L(y)=0 be an 

irreducible second order linear difSerentia1 equation over k with an unimodular Galois 

group Y(L). Then the following holds 

(1) 9(L) is imprimitive, tf and only tf L@‘( y) = 0 has a non-trivial rational solution. 

(2) C!?(L) 2 D,, if and only if L@‘“(y) = 0 has exactly one non-trivial rational solu- 
tion for any m E N. 

(3) ‘9(L) 2 DzL2, if and only ifL@“( y) = 0 has one and L@‘“( y) = 0 has two or exactly 

one non-trivial rational solution depending on whether 412n or not. 

(4) 9(L) is primitive and finite, if and only if Lo”< y) = 0 has none and L@‘*(y) = 0 

has at least one non-trivial rational solution. 
(5) B(L) %A,SL2 (tetrahedral group), if and only if L@‘(y) = 0 has none and 

L@‘(y) = 0 has a non-trivial rational solution. 

(6) ‘9(L) Z S4sL2 (octahedral group), if and only if L@“(y) = 0 for m E (4, 6) has none 

and L@“(y) = 0 has a non-trivial rational solution. 

(7) ‘9(L) 2 A? (icosahedral group), zf and only tf LO”(y) = 0 for m E (4, 6, 8) has 

none and LO”(y) = 0 has a non-trivial rational solution. 

(8) 9(L) 2 SL(2,%), zf none of the above cases hold. 

Proof. From Corollary 6 and the above remarks on the infinite imprimitive group D, 

one gets immediately (l)-(3). 

The Galois group of an irreducible linear differential equation L(y) = 0 is irreducible 

(see [9, Section 22, Theorem 11). An irreducible group is either imprimitive or primi- 

tive. Comparing the degrees of the fundamental invariants of the three finite primitive 

unimodular linear algebraic groups of degree 2 and the fact that there is no infinite 

primitive algebraic subgroup of SL(2,V) (see [17, p. 131) together with Lemma 5 

yields (4). (5)-(7) are simple consequences of Lemma 5 and the invariants computed 

in the previous section. 

If none of the above cases hold, then Y(L) is primitive and infinite and thus, as 

stated above, equals SL(2,V). 0 

As a consequence, we get a nice criterion to decide, whether an irreducible second 

order linear differential equation has Liouvillian solutions (cf. [17, Proposition 4.4; 10; 

4, Satz II, No. 17 and Satz I & II, No. 201). 

Corollary 9. Let L(y) = 0 be an irreducible second order linear difSerentia1 
equation over k with an unimodular Galois group Q(L). Then L(y)=0 has a 

Liouvillian solution, tf and only tf L@‘*(y) = 0 has a non trivial rational 
solution. 

In particular, L(y) = 0 has a Liouvillian solution, tf and only tf Lo”< y) = 0 has a 
non-trivial rational solution for at least one m E (4,6,8,12). 
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Proof. L(y) = 0 has a Liouvillian solution, if and only if the corresponding Galois 

group is either imprimitive, or primitive and finite. Now, the result follows from 

Proposition 8. 0 

5. An alternative algorithm 

In this section we derive a direct method to compute Liouvillian solutions of irre- 

ducible second order linear differential equations with an imprimitive unimodular Galois 

group. Computing a minimal polynomial is no longer necessary, but to compute it is 

still possible. When the differential equation has a primitive unimodular Galois group, 

we show how one can determine a minimal polynomial of a solution by knowing the 

group explicitly and using all the fundamental invariants. There is no longer a need to 

substitute a minimal polynomial decomposed into invariants in the differential equation 

as it is in [4, p. 100; 18, p. 671. 

Let { ~1,. . . , ye} be a system of fundamental solutions of ,5(y) = 0 and 

Yl ... yn y 
Y: .‘. Y:, Y' 

A=. . . . . . 

40 
f : 

Y1 ... n 
y(n) y(“) 

Further let K = &l/ay(‘) (i = 0 >..., n), and let W = W,, the Wronskian, and W’ = Wn-] 

its first derivative. With this, the differential equation L(y) =0 is uniquely deter- 

mined by 

qy)dLy(“)-W (n-l)+!% ‘“-2’+...+(_l)n~y=0 
W WY wy W 

or 

ai=(-1)“-‘$ (i=O,...,n - 1). 
n 

Transforming a fundamental system into another system of fundamental solutions of 

L(y) = 0 does not change ,5(y) = 0, e.g. the coefficients are differentially invariant under 

the general linear group GL(n, g). Because these transformations depend on L(y) = 0, 

we will denote their group with G(L). 

The coefficients a& are nth order differential invariants. They form a basis for the 

differential invariants of G(L), see [13, p. 161. Hence, one can represent any differential 

invariant of G(L) as a rational function in the as,. . . , a,_~ and their derivatives. 

Definition 10. Let L(y) = 0 be a linear differential equation with Galois group 29(L) 

and I an invariant of degree m of Q(L). The rational solution R of the mth symmetric 

power L@“(y) = 0 corresponding to I, is called the rationalvariant of I. An algebraic 

equation, which determines the constant c (c E %?, c # 0) for I I-+ c . R, R # 0 is the 

determining equation for the rationalvariant R. 
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5.1. The imprimitive case 

All imprimitive Galois groups possess the common invariant I, = yfyz (see 
Sections 3.1 and 4), which consists of a single monomial. This common invariant 
allows to compute Liouvillian solutions with ease. 

Theorem 11. Let L(y) = 0 be an irreducible second order linear dtfferential equation 

with an imprimitive unimodular Galois group Y(L). Then L(y) = 0 has a fundamental 
system in the following two solutions 

and y2= fiexp 

Thereby, W is the Wronskian, r is the rationalvariant of the invariant Id = & . r 

(CE@, C#O) and 

4r”r - 3(r’)2 W2 

16r2 
+ FC2 

its determining equation. 

In particular, (cf [4, p. 

+gal+ao=O 

llS]), ifal =0 then 

and yz=fiexp 

(5) 

form a system of fundamental solutions, where C is determined by Eq. (5). 

Proof. Let r be a rational solution of L@“(y) = 0 with I4 = y: y; = c . r (c E %?, c # 0). 

Hence, it is yz = $. If we substitute this expression for y2 and for yi its derivative 
in the Wronskian W = y1 yi - y{ ~2, we have 

A_ 7-l W -- 
Y1 -4y 2&T (6) 

or 

respectively. Substituting yi in the differential equation L(y) = 0 we obtain the deter- 
mining Eq. (5) for the constant c = l/C’. 

If al = 0 e.g. W is constant, then yi is simplified to fiexp[- 5 J-$] and we get 

with C = W/& for Eq. (5) 

4r”r - 3(r’)2 1 -2 

1 6r2 
+GC +ao=O. q 

Remark 12. Eq. (6) is already the solved minimal polynomial of the logarithmic 
derivative of a solution, which is computed in the second case of Kovacic’s algo- 
rithm [lo]. Indeed, Kovacic has used the invariant I4 to prove the second case of his 
algorithm [lo, p. lo]. 
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In the case of an imprimitive unimodular Galois group, L@“(y) = 0 has exactly one 

non-trivial rational solution except for 0; * by Proposition 8. Now, suppose L@‘(y) = 0 
has exactly one non-trivial rational solution. Then, using Theorem 11, we can directly 
compute both Liouvillian solutions of L(y) = 0. Since the determining equation for the 
constant C must be valid for all regular points of L(y) = 0, we only have to evaluate 
this equation for an arbitrary regular point. 

When L@‘(y) = 0 has two linearly independent non-trivial rational solutions ri and 
F-2 (e.g. 9(L) Z Dy ) then we have two ways to compute Liouvillian solutions. In the 
first way we only set Y = ciri + czr2 and C = 1 and get the solutions by solving the 
determining Eq. (5). 

The second possibility is to compute a further non-trivial rational solution r3 of 

L@“(y) = 0. With this rational solutions one makes the ansatz 

and 

14a = CI rl + c2r2, hb = c3rl + C4r2, 

substitute into the syzygy 

1; - I&& + 4Ii:, = 0. 

16 = c5r3 

From the numerator of the thereby obtained rational function we get a system of 
polynomial equations for the constants cl,. . . , 125. Solving this system can be done by 
computing a lexicographical Grobner basis (cf. [20]). This gives a necessary condition 
for the previous invariants. It can be made sufficient by choosing the constants in a way 
that makes &,ldb and I, non-trivial and furthermore Ida and 146 linear independent. 
Since there are infinite many solutions for the invariants this is always possible. Using 
Theorem 11 we can now compute the Liouvillian solutions from the just constructed 
invariant &. 

Another way to compute the solutions is to solve the minimal polynomial of Theo- 
rem 4 explicitly. 

The condition that a linear differential equation in the imprimitive case has algebraic 
solutions is based on a Theorem of Abel, see [4, p. 1181. One can state this condition 
more precisely as follows. 

Lemma 13. Let L(y) = 0 be a second order linear difSerentia1 equation with a jinite 
imprimitive unimodular Galois group Y(L). Then the following equation holds: 

s 

I2n+2 + 12, a 

5 = kz log IZnf2 - I2&’ 

Proof. Theorem 4 implies that the solutions of L(y) = 0 are of the form 

(7) 
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Substituting Ii,, by syzygy (3) together with further manipulations gives 

.Y1,2 = ?z 2n 

d 

u2n+2 + 12, a 

2@ . 

Once more applying syzygy (3) on 1i+l and manipulating we get by Theorem 11 

and therefore 

s 

* L ,og -r2n+2 + I2ndz 

4n 12n+2 - 12n& q 

The solutions of ,C(y) = 0 are algebraic, if and only if one can write the integral 
J W/G in the form (7). 

Remark 14. It seems Lemma 13 allows us to determine explicitly the (imprimitive) 
Galois group of L(y) = 0. We will study this in a seperate paper. 

5.2. The primitive case 

This section presents the tools for determining the rationalvariant of an invariant of 
degree m. The idea stems from [S, p. 221. 

Lemma 15. Let yl, y2 be independent functions in x, and let f(yl, ~2) and g(y1, ~2) 

be binary forms of degree m and n, respectively. Then the following identities hold 

(1) for the Hessian off (yl, ~2) 

H(f) = $ [($J+rn ($l+rnal (5) +rn2a0] f2 

(for al = 0, cf [5, p. 221) and 

(2) for the Jacobian of _OYI, ~2) and dyl, ~2) 

J(f,g)= 
mfg’ - nf ‘9 

w . 

Thereby, W is the Wronskian of yl and y2 and further a0 = WO/ W and al = - WI/W 
are dtrerential invariants of second order. 

Proof. For an arbitrary binary form f(yl, y2) = CEO b&-‘yi the following identity 
holds 
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In particular, this is valid for the forms 8f jay, = f,, and af lay2 = f,, of degree m - 1: 

From this one gets the identities by reverse substitution in H(f) = fy,,,, fyzvz - fyIY2fyzY, 
and J(f,g) = f,,g,, - fy2gYI if one takes the Wronskian and the differential equation 

A/W = 0 for n = 2 into account. 0 

Thus, it suffices to compute the non-trivial rational solution of the smallest possible 

symmetric power of L(y) = 0. The two remaining fundamental rationalvariants can be 

determined with Lemma 15. If the rationalvariants are known, one gets the constants 

from the sygyzies. 

Theorem 16. Let L(y) = 0 be an irreducible second order linear differential equation 
over k with finite primitive unimodular Galois group S(L) and let Y be the smallest 
rationalvariant (e.g. I, = c. r (c E %?, c # 0)). If one sets the Wronskian W = 1 in the 

case of al = 0, then a determining equation for the rationalvariant r for each case is 
given by 

9(L) 2 ‘44sL’ : (25J(r,I1L(r))~ + 64I1Z(r)~)c~ + lo6 . 108r4 = 0, 

Y(L) = sp : (49J(r,H(r))2 + 144H(r)3)c - 1 18013952r3H(r) = 0, 

Y(L) ” A? : ( 121b(r,H(r))2 + 400H(r)3)c + 708624400. 1728r5 = 0. 

Proof. Let us denote H(f)=(1/W2)I?(f), J(f,g)=(l/W).?(f,g) and for constant 

W let J(f,H(f))=(1/W3)J”(f,fi(f)). Then 

H(c . r) = c’H(r) = &B(r), 

J(c . r,H(c . r)) = c3.1(r,H(r)), 

and for constant W (e.g. al =0) 

J(c . r,H(c . r)) = &J?(r)). 

Furthermore, let Ii = c . r. Substituting the respective expressions for the fundamental 

invariants in the corresponding syzygies, see Section 3.2, one obtains in the case of 
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For satisfying these equations one can arbitrary choose one of the two non-zero con- 

stants c and IV, respectively. The assertion follows from the previous relations by 

setting W = 1 in each of them. In a similiar way, one gets for ai # 0 the equations 

It is possible to solve the determining equation for the smallest rationalvariant 

through evaluation of an arbitrary regular point of L(y) = 0, since it must hold for 

all regular points. 

Consequently, Theorem 16 allows to determine for second order linear differential 

equations with primitive unimodular Galois group a minimal polynomial of a solution 

without a Grobner basis computation. 

5.3. The algorithm 

Based on the results of the previous two sections, we propose the following method 

as an alternative to the already known algorithms of [ 10,18,24]. Thereby, for solv- 

ing a reducible differential equation we refer to one of these procedures. Computing 

rational solutions can be done e.g. with the algorithm described in [l]. Moreover, ra- 

tionalvariants can be determined by the method of van Hoeij and Weil [25] without 

computing any symmetric power. 

Algorithm 1 

Input: A linear differential equation L(y) = 0 with 9(L) C SL(2, %?). 

Output: Fundamental system of solutions { yi , ~2) of L(y) = 0 or minimal polynomial 

of a solution. 



0) 

(ii) 

(iii) 

(iv) 
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Test, if L(y) = 0 is reducible. If yes, then compute an exponential and a further 
Liouvillian solution by applying e.g. one of the previous algorithms. 

Test, if i?“(y) = 0 has a non-trivial rational solution. 
(a) If the rational solution space is one-dimensional: Apply Theorem 11. 

(b) If the rational solution space is two-dimensional: 
Either set r = ciri + c2r2, C = 1 and apply Theorem 11, 

06 OY compute the rational solution of L (y) = 0 and determine the three ra- 
tionalvariants Ida, 146 and I6 (with a Grijbner basis computation) from syzygy 
(3) for n = 2. Subsequently3 substitute the rationalvariants in Eq. (8). 

Test successively, for m E {6,8,12}, if L@“(y) = 0 has a non-trivial rational so- 
lution. If yes, then: compute both remaining rationalvariants with Lemma 15 and 
determine their constants (Proposition 8) by Theorem 16. Substituting the ratio- 
nalvariants in the matching minimal polynomial decomposed into invariants from 
Section 3.2 gives the minimal polynomial of a solution. 
t(y) = 0 has no Liouvillian solution. 

In the following we solve for each of the cases 2(a), 2(b) and 3 of Algorithm 1 an 
example with the computer algebra system AXIOM 1.2 (see [7]). 

Example 17 (see Ulmer and 
uation 

Weil [24, p. 1931, Weil [26, p. 931). The differential eq- 

L(Y) = y” - &Y’ + 
(27x4 - 54x3 + 5x2 + 22x + 27)(2x - 1)2 y = o 

144X2(X - 1)2(x2 - x - 1)2 

is irreducible and has a unimodular Galois group, since W’/W = 2/(2x - 1) and W E k. 

Its fourth symmetric power L@“(y) = 0 has a one-dimensional rational solution space 
generated by Y =x(x - 1 )(x2 - x - 1)2. 

The constant C is determined by 

(36C2 - 4)x2 + (-36C2 + 4)x + 9C2 - 1 

36x6 - 108x5 + 36x4 + 108x3 - 36x2 - 36x 

=. 

or e.g. for the regular point no = 2 by 

9c2 - l=O. 

For the integral SW/&& one gets 

SJ 

2x-l 
= ; log 

(-2X-l)~x~+2X2-1 

9x(x - 1)(x2 -x - 1)2 (-2x+3)dm+2x2 -4x+ 1’ 

Therefore L(y) = 0 has a fundamental system in the solutions 

y1,2 = 

(-2X+3)Jx~+2x2-4x+l 

(-2.X - l)Jxx7x’-iT+2.X’ - 1 . 

3 Or apply Theorem 11 to the rationalvariant of Id9 
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To this fundamental system corresponds the invariant 1, =x(x - 1)(x* - x - 1 )*. Sub- 

stituting both solutions in I,,, for n = 3 we get 

16 =4x*(x - 1)*(x* --x - l)*. 

Hence, 9(L) g Dy . By the relation (3) we obtain the remaining fundamental invariant 

z*=~~~1~+4~~=2r*(~*-X+l)(X-l)*(X*-X-l)3. cl 

Example 18 (see 
equation 

L(y) = y” + 

Ulmer [23, p. 396; 271). Consider the irreducible differential 

27x 
qx3 -2)2y=o 

constructed from Hendriks. Its 4th symmetric power L@‘(y) = 0 has a two-dimensional 

rational solution space, generated by rl =x3 - 2 and r2 =x(x3 - 2). Corollary 6 implies 

that Y(L) % 02s”’ is the corresponding Galois group of L(y) = 0. The rational solution 

space of L@“(y) = 0 is generated by r3 =(x3 - 2)*. 

Substituting the ansatz 

z,, = Cl (x3 - 2) + c*x(x3 - 2), &b = c3(x3 - 2) + cd(x3 - 2), 

1, = cs(x3 - 2)* 

in the relation (3) for n = 2 gives the necessary condition: 

(C: - c2ci + 4cz)n’* + (-clci - 2c2cyq + 12 qc~)xl’ 

+( -~c~c~Q-c~c:+ 12~f~2)~'~+(-8~:+6~2~~-~l~:-24~:+4~~)~~ 

+(6c1c42 + l2C2C3Cq - 72~1~:)~~ i-(12C1C3C4 + 6~2~: - 72cfc2)X7 

+(24c: - 12c2c; + 6qc; +48c; -24&x6 

+(-12C& -24QC3Cq + 144C,C;)X5 +(-24C,c$q - 12C& + 144C&)x4 

+(-32~: + 8~7.C: - 12~~~32 - 32~; +48&x3 

+(8qc; + 16c2c3c4 - 96qc;)x* 

+(16qc3c4 + 8c2c: - 96&)x + 16~: + SC& - 32~; =O. 

In order to satisfy this condition all the coefficients must vanish identically. For in- 

stance, we can add c4 - A = 0 to the coefficient equations and compute for this system 

a lexicographical Grijbner basis for cl + cz + c3 + q + ~5. If one computes an ideal 

decomposition from this result with the algorithm groebnerFactorize and take therein 

the secondary condition cg # 0 into account, one gets the (parametrized) ideal (A # 0) 

{i3c, + $c3c5, * PC* - ;c:, c: - 213, c4 -A, c; + $n">, 
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or the variety 

9 = I 
{c,_-y}, {_32}, 

{c,=m,c,=(&~Fi& ;)m}, {c4 = A), 

(,= l ~qzc5=*dqq-s} 
I 

45 

B contains all possible choices for the constants of the fundamental invariants. For 
instance, the points (cl, ~2, ~3, ~4) = (i -aA, - k GA, aA, A) satisfy the suITi- 
cient condition for the rationalvariants. Substituting these points in Eq. (8) for n = 2, 

we get the two solutions 

Y1,2 = :1(x3 - 2)(3x + 3%! f 2dw)). Cl 

Example 19 (see Singer and Ulmer [18, p. 681; Kouacic [lo, p. 231, [24,6]). In or- 
der to illustrate the given method in the primitive case, we consider the irreducible 
differential equation [lo] 

2 3 

9(x - 1)2 - 16x(x - 1) 
y=o. 

Its 4th symmetric power L@“(y) = 0 has no non-trivial rational solutions. While L@“(y) 
= 0 has the rationalvariant Y =x2(x - 1)2 which generates its one-dimensional rational 
solution space. Therefore, by Proposition 8 Q(L) SAY is the corresponding Galois 
group of L(y) = 0 (cf. [lo]). For W = 1, the further two rationalvariants are computed 
with 

H(r) = Tx’(x - 1)s 

and 

J(r,H(r)) = - Yx3(x - 1)4(x - 2). 

From these rationalvariants one gets the determining equation of Y: 

(c2 +27648)x”j + (-8~~ - 221184)~‘~ + (28~~ + 774144)~‘~ 

+ (-56~~ - 1548288)~~~ +(70c2 + 1935360)~‘~ 

+ (-56~~ - 1548288)x” + (28~~ + 774144)x” 

+ ( -8c2 - 221 184)x9 + (c2 + 27648)x8 = 0, 

respectively, e.g. for the regular point x0 = 2 the equation 

c2 + 27648 = 0. 
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Hence, c = f 96G. Substituting 

11 = ; .c.r=24J--5x2(x- 1)2, 

I, = -& * +iyr) = 432X2(x - 1)3, 

13 = -A . f . $‘J(r,H(r))= 10368a x3(x - 1)4(x - 2), 

in the minimal decomposed into invariants (4), we obtain the minimal polynomial of 
a solution: 

Y24 -4320x2(x- 1)3Y16+518402/-3 x3(x - 1)4(~-2)Y’2 -2799360x4(x- 1)6Y8 

+ 4478976n x5(x - 1)7(x - 2)Y4 + 2985984x*(x - l)! 0 

6. Conclusions 

The work of Fuchs is difficult to read. The author has first developed the algorithm 
presented here by himself and noticed afterwards that it is basically a reformulation 
and improvement of the Fuchsian method. Nevertheless, our method is essentially more 
efficient. The reason for this lies in using all absolute fnndamental invariants of the 
Galois group associated with the differential equation; this enables us to compute the 

constants from the syzygies. 
But in principle our algorithm cannot be more efficient than the algorithm given 

by Ulmer and Weil [24]. Indeed, both methods have the same time complexity. The 
algorithm from Ulmer and Weil computes a minimal polynomial of the logarithmic 
derivative of a solution via a recursion for the coefficients in all cases, while our 
method tries to determine the solutions explicity as much as possible. If the associated 
Galois group is the tetrahedral or the octahedral group one can represent both algebraic 
solutions in radicals. 4 

We feel that this paper shows the connection between determining the Galois group, 
the rationalvariants and the Liouvillian solutions of a given (irreducible) second order 
differential equation very clearly. For instance, in the imprimitive case it is easier to 
compute first the Liouvillian solutions and determine from them the (possibly) missing 
rationalvariants and the Galois group. Against it, in the primitive case the better way 
is to compute first the Galois group and to determine from it the remaining rational- 
variants and the minimal polynomial of a solution. The behaviour in the case of Dp 
is somehow special (cf. [23]). Also it becomes clear, that a Liouvillian solution or a 
minimal polynomial of a solution always contains all fundamental rationalvariants. 

4 The basic ideas to solve this problem are described in [20, Problem 2.7.51 (cf. also [26, Section IIIS]). 
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ABSTRACT
We describe a new algorithm for computing special function
solutions of the form y(x) = m(x)F (ξ(x)) of second order
linear ordinary differential equations, where m(x) is an ar-
bitrary Liouvillian function, ξ(x) is an arbitrary rational
function, and F satisfies a given second order linear ordi-
nary differential equation. Our algorithm, which is based
on finding an appropriate point transformation between the
equation defining F and the one to solve, is able to find all
rational transformations for a large class of functions F , in
particular (but not only) the 0F1 and 1F1 special functions
of mathematical physics, such as Airy, Bessel, Kummer and
Whittaker functions. It is also able to identify the values of
the parameters entering those special functions, and can be
generalized to equations of higher order.

1. INTRODUCTION
Algorithms and software for computing closed form solu-
tions of linear ordinary differential equations have improved
significantly in the past decade, but mostly in the direc-
tion of computing their Liouvillian solutions (see e.g. [1, 8,
9]). In particular, computing the Liouvillian solutions of
second order linear ordinary differential equations has be-
come a routine task in recent versions of several computer
algebra systems. The situation is different with respect to
solving such equations in terms of non–Liouvillian special
functions. While it is possible to detect whether the solu-
tions of an equation can be expressed in terms of the solu-
tions of equations of second order [7], there is no complete
algorithm for deciding whether such solutions can be ex-
pressed in terms of the solutions of specific equations, usu-
ally the ones defining known special functions. This is a
restricted instance of the equivalence problem for second-
order linear ODEs [3]: given a target equation y′′ = uy with
u ∈ C(x) and a known fundamental solution set {F1, F2}
(for example the Airy equation y′′ = xy), and an arbitrary
input equation y′′ = vy with v ∈ C(x), to find functions

m(x) and ξ(x) such that {m(x)F1(ξ(x)), m(x)F2(ξ(x))} is a
fundamental solution set of y′′ = vy. This is the equivalent
to looking for a point transformation of the form

x → ξ(x) y → m(x)y (1)

that transforms y′′ = uy into y′′ = vy. It is classically
known that all second-order linear ODEs are equivalent un-
der the group of transformations of the form (1), hence that
an appropriate transformation always exists [4]. However,
the functions ξ(x) and m(x) are given implicitely by differen-
tial equations themselves, so this does not provide explicit
solutions in terms of F . We are interested in this paper
in determining whether an explicit transformation of the
form (1) exists, with ξ ∈ C(x) and m a Liouvillian function,
and to compute it when it exists. Applying the transfor-
mation (1) to y′′ = uy and matching the coefficients of the
resulting equation with y′′ = vy (or equivalently, substitut-
ing y = m(x)F (ξ(x)) in y′′ = vy) one obtains the equations

m = ξ′−1/2 and

3ξ′′2 − 2ξ′ξ′′′ + 4u(ξ)ξ′4 − 4vξ′2 = 0 , (2)

so the remaining problem is to solve the above equation ex-
plicitely. Methods using that approach have appeared, in
particular [10], who proceeds heuristically by trying various
candidates functions ξ with undetermined constants param-
eters in (2). Each attempt yields systems of algebraic equa-
tions for the undetermined constants (and parameters of the
special functions), and those equations can then be solved
by existing computer algebra systems.

Our main contribution in this paper is an algorithm for com-
puting all the solutions ξ ∈ C(x) of (2). Our algorithm is
applicable whenever the target equation y′′ = uy has an ir-
regular singularity at infinity, in addition to any number
of affine singularities of arbitrary type. This allows our
algorithm to handle the 0F1 and 1F1 special functions of
mathematical physics (e.g. the Airy, Bessel, Kummer and
Whittaker functions) as well as non-hypergeometric ones.
We also show that if the input equation has no Liouvillian
solution, then our algorithm decides whether there is any
solution of the form m(x)F (ξ(x)) for F any solution of the
target equation. Our algorithm has been implemented in the
computer algebra system Maple and our implementation
can be tried interactively on the web1. While the abilities

1http://www.inria.fr/cafe/Manuel.Bronstein/
cathode/kovacic_demo.html



of the Maple 7 differential equations solver have also been
improved regarding solutions in terms of special functions2

our algorithm is able to solve a larger class of examples, e.g.

4(x−1)8
d2y

dx2
= (3−50x+61x2−60x3+45x4−18x5+3x6)y(x) ,

whose solutions can be expressed in terms of Airy functions
with rational functions as arguments (see examples below).

We would like to thank the referees for their numerous com-
ments, in particular for pointing out the link with the equiv-
alence problem.

2. FORMAL CHANGE OF VARIABLE
The differential equations for ξ and m that result from hav-
ing (1) map a given operator to another given one can al-
ways be obtained by substituting y = m(x)F (ξ(x)) in the
corresponding differential equation, and this is a classic con-
struction. We describe it in this section using differential
polynomials and linear algebra, in a way that is easily per-
formed in a computer algebra system for linear operators of
arbitrary order.

Let (k,′ ) be a differential field, k[D;′ ] be the ring of dif-
ferential operators with coefficients in k, and L = Dn +∑n−1

i=0 aiD
i ∈ k[D;′ ] be an operator of order n > 0. Let

M, Z be differential indeterminates over k, G0, . . . , Gn−1

be algebraic indeterminates over k〈M, Z〉 and extend the
derivation ′ to k {M, Z} [G0, . . . , Gn−1] via G′i = Z′Gi+1 for
0 ≤ i < n − 1 and G′n−1 = −Z′

∑n−1
i=0 aiGi. Let y = MG0.

Since y is a linear form in G0, . . . , Gn−1 and ′ preserves the
total degree in G0, . . . , Gn−1, the successive derivatives of
y are all linear forms in G0, . . . , Gn−1, so y, y′, . . . , y(n) are
linearly dependent over k〈M, Z〉. Since for i < n, Gi ap-

pears with the nonzero coefficient MZ′i in y(i) but does not
appear in y(i−1), the elements y, y′, . . . , y(n−1) must be lin-
early independent over k〈M, Z〉, so there is a unique linear

dependence of the form y(n) +
∑n−1

i=0 biy
(i) = 0, which can

be computed by linear algebra over k〈M, Z〉. Define then

LM,Z = Dn +

n−1∑
i=0

biD
i ∈ k〈M, Z〉[D;′ ]

to be the generic M − Z associate of L.

Given a differential extension K of k and any m, ξ ∈ K such
that mξ′ 6= 0, we can specialize LM,Z at M = m and Z = ξ,
and we denote the resulting operator Lm,ξ. If k contains an
element x such that x′ = 1 and if the elements of k can be
viewed as functions3 in x, then for any f ∈ k, we write f(ξ)
for the result of evaluating f at x = ξ. Replacing each ai by
ai(ξ) in Lm,ξ, we obtain a new operator, which we denote
Lx→ξ,y→my. By construction, it has the following property:
if L(y) = 0 for some y in a differential extension of k, then
Lx→ξ,y→my(my(ξ)) = 0. So if F1, . . . , Fn is a fundamental
solution set of L, then mF1(ξ), . . . , mFn(ξ) are solutions of

2See e.g. http://lie.uwaterloo.ca/odetools/hyper3.htm
where the candidate ξ = (axk + b)/(cxk + d) is tried.
3This is obviously the case when k = C(x) for some con-
stant field C, and Seidenberg’s Embedding Theorem [5, 6]
implies that is is also the case when k is a finitely generated
differential extension of Q(x).

Lx→ξ,y→my. Since,

Wr(mF1(ξ), . . . , mFn(ξ)) = mnξ′NWr(F1, . . . , Fn)(ξ)

for some integer N > 0, it follows that mF1(ξ), . . . , mFn(ξ)
is a fundamental solution set of Lx→ξ,y→my (in other words,
the transformation (1) sends L into Lx→ξ,y→my).

Let now R = Dn +
∑n−1

i=0 ciD
i ∈ k[D;′ ] be another operator

and suppose that there exist m, ξ in a differential exten-
sion of k such that mξ′ 6= 0 and mF1(ξ), . . . , mFn(ξ) are
solutions of R. Then, mF1(ξ), . . . , mFn(ξ) is a fundamental
solution set of both R and of Lx→ξ,y→my. Since they are
both monic and of order n, we must have R = Lx→ξ,y→my.
Equating the coefficients of the same powers of D in R and
Lx→ξ,y→my yield a system of n nonlinear ordinary differen-
tial equations that m and ξ must satisfy. Finding a funda-
mental solution set of the form mF1(ξ), . . . , mFn(ξ) of R is
thus reduced to solving those equations.

We can also ask a weaker question, namely does R admit
some solution of the form mF (ξ) where F is a nonzero so-
lution of L and mξ′ 6= 0. In that case, we can only say
that R and Lx→ξ,y→my have a nontrivial right factor in
k〈m, ξ〉[D;′ ], so we cannot generate equations for m and
ξ. However, if we request in addition that R be irreducible
in k〈m, ξ〉[D;′ ], then the existence of such a solution implies
that R = Lx→ξ,y→my, hence that m and ξ satisfy the n
equations generated. In particular, a second order equation
with no Liouvillian solution over k must be irreducible over
any Liouvillian extension of k, so if such an equation has
a solution of the form mF (ξ) with mξ′ 6= 0 and m and ξ
Liouvillian over k, then R = Lx→ξ,y→my.

3. SECOND ORDER EQUATIONS
We carry out explicitly in this section the derivation of the
above nonlinear differential equations in the case of second-
order operators. Computing the generic M −Z associate of
L = D2 + a1D + a0 ∈ k[D;′ ], we get

y = MG0, y′ = M ′G0 + MG′0 = M ′G0 + MZ′G1 ,

and

y′′ = M ′′G0 + M ′G′0 + M ′Z′G1 + MZ′′G1 + MZ′G′1

= M ′′G0 + (2M ′Z′ + MZ′′)G1 −MZ′2(a0G0 + a1G1)

= (M ′′ − a0MZ′2)G0 + (2M ′Z′ + MZ′′ − a1MZ′2)G1 .

A calculation of the linear dependence between y, y′ and y′′

shows that

LM,Z = D2 −
(

2
M ′

M
+

Z′′

Z′
− a1Z

′
)

D (3)

−
((

M ′

M

)′
− M ′2

M2
− M ′

M

Z′′

Z′
+ a1Z

′M
′

M
− a0Z

′2
)

.

Let now v ∈ k be given. As explained in the previous section,
if there are m and ξ in a differential extension of k such that
mξ′ 6= 0 and either

• mF1(ξ) and mF2(ξ) are solutions of y′′ = vy, where
and F1, F2 is a fundamental solution set of L, or

• mF (ξ) is a solution of y′′ = vy, where F is some solu-
tion of L, m and ξ are Liouvillian over k and y′′ = vy
has no Liouvillian solution,



then D2 − v = Lx→ξ,y→my. Using (3) and equating the
coefficients of D1 and D0 on both sides, we get

2
m′

m
+

ξ′′

ξ′
− a1(ξ)ξ

′ = 0 (4)

and(
m′

m

)′
− m′2

m2
− m′

m

ξ′′

ξ′
+ a1(ξ)ξ

′m
′

m
− a0(ξ)ξ

′2 = v . (5)

Equation (4) implies that

m′

m
=

1

2

(
a1(ξ)ξ

′ − ξ′′

ξ′

)
(6)

and using that to eliminate m′/m from (5) we obtain

3ξ′′2 − 2ξ′ξ′′′ +
(
a1(ξ)

2 + 2a′1(ξ)− 4a0(ξ)
)
ξ′4 − 4vξ′2 = 0 ,

(7)
which is equation (2) when a1 = 0 and a0 = −u.

4. RATIONAL SOLUTIONS FOR ξ
We now proceed to show that for a large class of target
operators L, there is an algorithm for computing all the
rational solutions ξ of (7). Suppose from now on that our
differential field k is a rational function field k = C(x) where
x′ = 1 and c′ = 0 for all c ∈ C. Recall that the order at
∞ is the function ν∞(q) = − deg(q) for q ∈ C[x] \ {0}, and
given an irreducible p ∈ C[x], the order at p is the function

νp(q) = max{n ∈ Z such that pn|q}

for q ∈ C[x] \ {0}. Both functions are extended to fractions
via ν∞(a/b) = ν∞(a) − ν∞(b) and νp(a/b) = νp(a) − νp(b).
By convention, ν∞(0) = νp(0) = +∞. Furthermore, for
a, b ∈ C(x), they satisfy the following properties (where ν
stands for either ν∞ or νp):

• ν(ab) = ν(a) + ν(b),

• ν(a + b) ≥ min(ν(a), ν(b))

• ν(a) 6= ν(b) =⇒ ν(a + b) = min(ν(a), ν(b)),

• ν(a) < 0 =⇒ ν(b(a)) = −ν∞(b)ν(a),

• ν∞(a) < 0 =⇒ ν∞(a′) = ν∞(a) + 1,

• νp(a) < 0 =⇒ νp(a′) = νp(a)− 1.

Given an hypothesis on the pair (a0, a1), the following gives
an ansatz with a finite number of undetermined constants
for the rational solutions of (7).

Theorem 1. Let
∏

i Qi
i be the squarefree decomposition

of the denominator of v ∈ C(x). If ν∞(a2
1 + 2a′1 − 4a0) < 2,

then any solution ξ ∈ C(x) of (7) can be written as ξ = P/Q
where

Q =
∏

i

Qi
(2−ν∞(a2

1+2a′1−4a0))i+2 ∈ C[x] , (8)

and P ∈ C[x] is such that either deg(P ) ≤ deg(Q) + 1 or

deg(P ) = deg(Q) +
2− ν∞(v)

2− ν∞(a2
1 + 2a′1 − 4a0)

(9)

Proof. Write

∆ = a2
1 + 2a′1 − 4a0 , δ = ν∞(∆)

and suppose that δ < 2. The solution ξ = 0 can certainly
be written in the above form, so let ξ ∈ C(x)∗ be a nonzero
solution of (7), and p ∈ C[x] be an irreducible such that
νp(ξ) < 0. Then, νp(ξ′′2) = νp(ξ′ξ′′′) = 2νp(ξ) − 4 and
νp(ξ′4) = 4νp(ξ)− 4. In addition,

νp(a1(ξ)
2 + 2a′1(ξ)− 4a0(ξ)) = νp(∆(ξ)) = −δνp(ξ) ,

so

νp

(
(a1(ξ)

2 + 2a′1(ξ)− 4a0(ξ))ξ
′4) = (4− δ)νp(ξ)− 4 .

Since δ < 2, (4− δ)νp(ξ)− 4 < 2νp(ξ)− 4, so

νp

(
3ξ′′2 − 2ξ′ξ′′′ + (a1(ξ)

2 + 2a′1(ξ)− 4a0(ξ))ξ
′4) =

(4− δ)νp(ξ)− 4 .

Thus, we must have νp(4vξ′2) = (4 − δ)νp(ξ) − 4. Since
νp(4vξ′2) = νp(v) + 2νp(ξ)− 2, we get

νp(v) = (2− δ)νp(ξ)− 2 ≤ −3 .

This implies that the affine poles of ξ are among the poles
of v of multiplicity 3 or more. Furthermore,

νp(ξ) =
νp(v) + 2

2− δ
(10)

so ξ must be of the form ξ = P/Q where P ∈ C[x] and

Q =
∏

i

Qi
(2−δ)i+2

Suppose now that deg(P ) > deg(Q)+1. Then, ν∞(ξ) < −1,
so ν∞(ξ′4) = 4ν∞(ξ) + 4 and

ν∞(a1(ξ)
2 − 4a0(ξ)) = ν∞(∆(ξ)) = −δν∞(ξ) ,

which implies that

ν∞
(
(a1(ξ)

2 + 2a′1(ξ)− 4a0(ξ))ξ
′4) = (4− δ)ν∞(ξ) + 4 .

In addition, ν∞(ξ′′2) = 2ν∞(ξ) + 4 and either ν∞(ξ′ξ′′′) =
2ν∞(ξ) + 4 when ν∞(ξ) < −2, or ν∞(ξ′ξ′′′) ≥ −1 when
ν∞(ξ) = −2. Since δ < 2, (4 − δ)ν∞(ξ) + 4 < 2ν∞(ξ) + 4,
and (4− δ)ν∞(ξ) + 4 = 2δ − 4 < −1 when ν∞(ξ) = −2, so

ν∞
(
3ξ′′2 − 2ξ′ξ′′′ + (a1(ξ)

2 + 2a′1(ξ)− 4a0(ξ))ξ
′4) =

(4− δ)ν∞(ξ) + 4

in any case. We must then have ν∞(4vξ′2) = (4−δ)ν∞(ξ)+
4. Since ν∞(4vξ′2) = ν∞(v) + 2ν∞(ξ) + 2, we get

ν∞(v) = (2− δ)ν∞(ξ) + 2 (11)

and the theorem follows.

We note that the upper bound deg(P ) ≤ deg(Q) + 1 can be
improved when δ < 0. In that case, if deg(P ) = deg(Q) + 1,
then ν∞(ξ) = −1, so an argument similar to the above shows
that

ν∞
(
3ξ′′2 − 2ξ′ξ′′′ + (a1(ξ)

2 + 2a′1(ξ)− 4a0(ξ))ξ
′4) = δ < 0 .

We must then have ν∞(4vξ′2) = δ, so ν∞(v) = δ and (9)
holds. Therefore, when ν∞(a2

1 + 2a′1 − 4a0) < 0, either
deg(P ) ≤ deg(Q) or deg(P ) is given by (9).



When it is applicable, Theorem 1 yields an immediate al-
gorithm for computing all the solutions ξ ∈ C(x) of (7)
given v ∈ C(x) as input: we substitute

∑n
j=0 cjx

j/Q for ξ

in (7), where Q is given by (8), n is the upper bound on
deg(P ) given by Theorem 1 and the cj are undetermined
constants. This yields a nonlinear system Σ of algebraic
equations for the cj , whose solutions correspond to all the
solutions ξ ∈ C(x) of (7). Since any constant satisfies (7), Σ
always has the line of solutions (c0, . . . , cn) = λ(q0, . . . , qn)
where Q = q0 + q1x + · · · + qnxn (note that n is always at
least deg(Q)). Those solutions do not satisfy the condition
mξ′ 6= 0, so we adjoin to Σ the additional equation

n∑
j=0

(qjcN − qNcj)wj = 1 (12)

where w0, . . . , wn are new indeterminates and N is chosen
such that qN 6= 0. Any solution of this augmented system
must satisfy qjcN 6= qNcj for some j, which implies that the
corresponding ξ ∈ C(x) is a nonconstant solution of (7). In
addition, when a0 and a1 contain parameters (as in the case
of families of special functions, e.g. Bessel functions), con-
sidering them as unknowns in Σ allows the values of those
parameters to be found also (this is illustrated in the ex-
amples below). Essentially all the computation time of our
algorithm is spent finding a solution of Σ, a problem whose
complexity is exponential in deg(P ).

Our approach can obviously be used to find all the rational
solutions ξ ∈ C(x) of (7), it just means searching for so-
lutions of Σ in C rather than C. Of more interest, it can
also be used to find some algebraic function solutions of (7).
Indeed, equations (10) and (11) provide the ramifications of
ξ at the singularities of the equation and at infinity, so it is
natural to look for solutions of the form

ξ = P
(
x1/(2−ν)

) ∏
i>2

Q
(i−2)/(2−ν)
i (13)

where ν = ν∞(a2
1 + 2a′1 − 4a0) and P ∈ C[x]. To bound

deg(P ), we note that (11) is valid for ν∞(ξ) ≤ −2 only, so
either

deg(P ) < (2− ν∞(a2
1 + 2a′1 − 4a0))(deg(Q) + 2)

or

deg(P ) = (2− ν∞(a2
1 + 2a′1 − 4a0)) deg(Q) + 2− ν∞(v) .

As for rational functions, substituting a candidate with un-
determined constant coefficients for ξ yields a nonlinear al-
gebraic system for those coefficients. This method does not
yield all the algebraic functions solutions of (7) however.

Once a nonconstant solution ξ is found (rational or other-
wise), the corresponding m is given by (6), which can be
integrated yielding

m = ξ′−
1
2 e

1
2

∫
a1(ξ)ξ′ (14)

5. CLASSICAL SPECIAL FUNCTIONS
We now apply the algorithm of the previous section to classi-
cal classes of 0F1 and 1F1 special functions, all satisfying the
hypothesis of Theorem 1. Although Kummer and Whittaker
functions are rationally equivalent, we explicit the solving al-
gorithm for both of them, allowing users to choose one over
the other.

5.1 Airy functions
The operator defining the Airy functions is L = D2 − x, so
a1 = 0, a0 = −x and equation (7) becomes

3ξ′′2 − 2ξ′ξ′′′ + 4ξξ′4 − 4vξ′2 = 0 . (15)

Since a2
1 + 2a′1 − 4a0 = 4x, ν∞(a2

1 + 2a′1 − 4a0) = −1 < 0,
so by Theorem 1 and the remark following it, any solution
of (15) must be of the form ξ = P/Q where

Q =
∏

i

Qi
3i+2 ∈ C[x] ,

and P ∈ C[x] is such that either deg(P ) ≤ deg(Q) or

deg(P ) = deg(Q) +
2− ν∞(v)

3
.

Finally, since a1 = 0, equation (14) becomes

m =

√
1

ξ′
(16)

5.2 Bessel functions
The operator defining the Bessel and modified Bessel func-
tions is

L = D2 +
1

x
D + ε− ν2

x2

where ε = 1 for the Bessel functions and ε = −1 for the
modified Bessel functions. Therefore, a1 = 1/x and a0 =
ε− ν2/x2, so equation (7) becomes

3ξ′′2 − 2ξ′ξ′′′ + (4ν2 − 1)
ξ′4

ξ2
− 4εξ′4 − 4vξ′2 = 0 . (17)

Since

a2
1 + 2a′1 − 4a0 =

4ν2 − 1

x2
− 4ε ,

ν∞(a2
1 + 2a′1 − 4a0) = 0 < 2, so by Theorem 1, any solution

of (17) must be of the form ξ = P/Q where

Q =
∏

i

Qi
2i+2 ∈ C[x] ,

and P ∈ C[x] is such that either deg(P ) ≤ deg(Q) + 1 or

deg(P ) = deg(Q) + 1− ν∞(v)

2
.

Finally, since a1 = 1/x, equation (14) becomes

m =

√
ξ

ξ′
(18)

5.3 Kummer functions
The operator defining the Kummer functions is

L = D2 +
(ν

x
− 1

)
D − µ

x
,

so a1 = ν/x− 1, a0 = −µ/x and equation (7) becomes

3ξ′′2−2ξ′ξ′′′+(ν2−2ν)
ξ′4

ξ2
+(4µ−2ν)

ξ′4

ξ
+ξ′4−4vξ′2 = 0 .

(19)
Since

a2
1 + 2a′1 − 4a0 = 1 +

4µ− 2ν

x
+

ν2 − 2ν

x2
,



ν∞(a2
1 + 2a′1 − 4a0) = 0 < 2, so by Theorem 1, any solution

of (19) must be of the form ξ = P/Q where

Q =
∏

i

Qi
2i+2 ∈ C[x] ,

and P ∈ C[x] is such that either deg(P ) ≤ deg(Q) + 1 or

deg(P ) = deg(Q) + 1− ν∞(v)

2
.

Finally, since a1 = ν/x− 1, equation (14) becomes

m = e−
1
2

∫
ξ

√
ξν

ξ′

5.4 Whittaker functions
The operator defining the Whittaker functions is

L = D2 −
(

1

4
− µ

x
− 1/4− ν2

x2

)
,

so a1 = 0, a0 = −1/4+µ/x+(1/4−ν2)/x2 and equation (7)
becomes

3ξ′′2 − 2ξ′ξ′′′ +

(
1− 4µ

ξ
− 1− 4ν2

ξ2

)
ξ′4 − 4vξ′2 = 0 . (20)

Since

a2
1 + 2a′1 − 4a0 = 1− 4µ

x
− 1− 4ν2

x2
,

ν∞(a2
1 + 2a′1 − 4a0) = 0 < 2, so by Theorem 1, any solution

of (17) must be of the form ξ = P/Q where

Q =
∏

i

Qi
2i+2 ∈ C[x] ,

and P ∈ C[x] is such that either deg(P ) ≤ deg(Q) + 1 or

deg(P ) = deg(Q) + 1− ν∞(v)

2
.

Finally, since a1 = 0, equation (14) becomes

m =

√
1

ξ′
(21)

as in the case of Airy functions.

6. EXAMPLES
6.1 Airy functions
We start by solving the equation given at the end of the
introduction in terms of Airy functions. The equation is
y′′ = vy with

v =
3− 50x + 61x2 − 60x3 + 45x4 − 18x5 + 3x6

4(x− 1)8
,

so ν∞(v) = 2 and its denominator is 4(x − 1)8. Therefore,
any solution ξ ∈ C(x) of (17) must be of the form

ξ =
P

(x− 1)3

where P ∈ C[x] is of degree 0, 1, 2 or 3. Substituting ξ =
(c0 + c1x + c2x

2 + c3x
3)/(x − 1)3 in (15) yields a system

of 14 algebraic equations. The nonconstant condition (12)
becomes

(3c0 + c1)w1 + (−3c0 + c2)w2 + (c0 + c3)w3 − 1 = 0

and solving the resulting system for c0, c1, c2, c3, w1, w2 and
w3 yields the 3 solutions

ξ =
x(x− 2)

(x− 1)2
and ξ = −

(
1±

√
−3

) x(x− 2)

2(x− 1)2
.

Using (16) we compute

m =

√
1

ξ′
= c(x− 1)3/2

for some constant c. Therefore, a basis of the solutions of
y′′ = vy is given by

(x− 1)3/2Ai

(
x(x− 2)

(x− 1)2

)
and (x− 1)3/2Bi

(
x(x− 2)

(x− 1)2

)
where Ai and Bi are Airy functions.

6.2 Bessel functions
We now look for solutions in terms of modified Bessel func-
tions of

y′′ − (v0 + v1x)ny = 0 where n > 0 and v1 6= 0 . (22)

Letting v = (v0 + v1x)n, ν∞(v) = −n and its denominator
is 1, so any solution ξ ∈ C(x) of (17) must be a polynomial
of degree 0, 1, or 1 + n/2. Substituting ξ = c0 + c1x in (17)
yields

c4
1(1 + 4εc2

0 − 4ν2) + 8εc0c
5
1x + 4εc6

1x
2

(c0 + c1x)2
= −4c2

1(v0 + v1x)n ,

whose only solution for n > 0 and v1 6= 0 is c1 = 0. There-
fore, any nonconstant solution must be a polynomial of de-
gree exactly 1+n/2, which implies that there can be such so-
lutions only when n is even. We proceed with n = 4, which is
the smallest even value for which Maple 7 is unable to solve
the above equation. Substituting ξ = c0 + c1x + c2x

2 + c3x
3

in (17) yields a system of 15 algebraic equations. The non-
constant condition (12) becomes

c1w1 + c2w2 + c3w3 + 1 = 0

and solving the resulting system for c0, c1, c2, c3, w1, w2, w3

and ν with parameters v0 and v1 and ε = −1 yields the 4
solutions

ν = ±1

6
, ξ = ±1

3

(v0 + v1x)3

v1
.

Using (18) we compute

m =

√
ξ

ξ′
= c

√
v0 + v1x

for some constant c. Therefore, a basis of the solutions
of (22) for n = 4 is given by

√
v0 + v1x I1/6

(
1

3

(v0 + v1x)3

v1

)
and

√
v0 + v1x K1/6

(
1

3

(v0 + v1x)3

v1

)
where Iν and Kν are the modified Bessel functions of the
first and second kinds.



6.3 Whittaker functions
For an example with two parameters to identify, we look for
solutions in terms of Whittaker functions of

y′′ + (ax4 + bx)y = 0 where a 6= 0 , (23)

which is Kamke’s example 2.16 [2] with a specific integer
choice for c. Letting v = −(ax4 + bx), ν∞(v) = −4 and its
denominator is 1, so any solution ξ ∈ C(x) of (20) must be
a polynomial of degree 0, 1, or 3. Substituting ξ = c0 + c1x
in (20) yields

4ac4
1x

6 + lower terms = 0 ,

which implies c1 = 0 whenever a 6= 0. Therefore, any non-
constant solution must be a polynomial of degree exactly 3.
Substituting ξ = c0+c1x+c2x

2+c3x
3 in (20) yields a system

of 15 algebraic equations. The nonconstant condition (12)
becomes

c1w1 + c2w2 + c3w3 + 1 = 0

and solving the resulting system for c0, c1, c2, c3, w1, w2, w3, ν
and µ with parameters a and b yields the 2 solutions

µ =
1

6

b√
−a

, ν = ±1

6
, ξ =

2

3
x3√−a .

Using (21) we compute

m =

√
1

ξ′
=

c

x

for some constant c. Therefore, a basis of the solutions
of (23) is given by

1

x
M b

6
√
−a

, 1
6

(
2

3
x3√−a

)
and

1

x
W b

6
√
−a

, 1
6

(
2

3
x3√−a

)
where Mµ,ν and Wµ,ν are Whittaker functions.

6.4 An algebraic transformation ξ
We illustrate the use of the algebraic candidate (13) by solv-
ing the Airy equation y′′ = xy in terms of modified Bessel
functions, thereby recovering classical expressions of Airy
functions as Bessel functions. Letting v = x, ν∞(v) = −1
and its denominator is 1, so any solution ξ ∈ C(x) of (17)
must be a polynomial of degree 0 or 1. Substituting ξ =
c0 + c1x in (17) yields

−4c4
1x

3 + lower terms = 0 ,

which implies c1 = 0, hence that (17) has no nonconstant
rational solution. However, formula (13) yields the algebraic
candidate ξ = P (

√
x) where P is a polynomial of degree

0, 1, 2 or 3. Substituting ξ = c0+c1x
1/2+c2x+c3x

3/2 in (17)
yields a system of 17 algebraic equations. The nonconstant
condition (12) becomes

c1w1 + c2w2 + +c3w3 + 1 = 0

and solving the resulting system for c0, c1, c2, c3, w1, w2, w3

and ν with ε = −1 yields the 4 solutions

ν = ±1

3
, ξ = ±2

3
x3/2 .

Using (18) we compute

m =

√
ξ

ξ′
= c

√
x

for some constant c. Therefore, a basis of the solutions of
the Airy equation y′′ = xy is given by

√
x I1/3

(
2

3
x3/2

)
and

√
x K1/3

(
2

3
x3/2

)
where Iν and Kν are the modified Bessel functions of the
first and second kinds. It follows that the Airy functions Ai
and Bi can be expressed as linear combinations

√
x

(
c1I1/3

(
2

3
x3/2

)
+ c2K1/3

(
2

3
x3/2

))
and the constants c1 and c2 can be found by looking at their
values at two points.
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I. INTRODUCTION 

In the recent paper/ I / an algorithm for finding a "closed
form" solution of the following differential equations is gi
ven 

y " .. a(x) y '+ b(x) y = 0 • ( I ) 

where a and b are rational functions of th~ independent vari
able x. The "closed-form" solution means the Liouvillian 
solution,i.e. one that can he, expressed in terms of algebraic 
functions,exponentials and indefinite integrals,see(Kovacic IIi, 
for precise definition. Kovacic's algorithm provides 
a Liouvillian solution of (I) or reports that no such solution 
exists. The main result obtnined by Kovacic is the following. 

Theorem. Equation (I) has a Liouvillian solution if and 
only if it has a solution of the form 

y ~ explr(~) - a/2) dx I. 

where w is an algebra~c function of x of degree I, 2, 4, 6 
or 12. The last means that w, satisfying the Ricatti equation 

Wi. W 2 = R( x) • R = a I '2 .. a 2 '4 - b 

solves a polynomial equation O(w. x) ~ 0, where O(w. X) = 

N 
= l: g (xl wi. gi are rational functions of x and N E 11.2.4.6.121-

i ~ 0 1 

An algorithm for finding the polynomial 0 is based on the 
knol~ledge of the even order poles of Rand consi sts in construc
ting and testing a finite number of possible candidates for O. 
If each candidate is not a desired polynomial then eq.(I) has 
no Liouvillian solutions. 

Kovacic's algorithm has been a)~cady implemjnfed in the 
Computer Algehra Systems MACSYMA' 2, and MAPLE a .Our implemen
tation is based on the Computer Algebra System FORMAC, see/'ll. 
In the second section of this paper we Rive the comp
lete algori thm descript ion in such a ,~ay that an interested 
reader can immediately st."1rt to implement it using <I suitable :\ 

@ 06~"ruan'III"li'I IDIC'IltT)'T IIJlI!PIII,III: IIccn('JI.ODIIIID1 lJ.y6nl. t !lS7 



Computer Algebra System. In the third (final) section some 
implementation aspects and the computational experience in the ,~, 
FORMAC are discussed. ,~, 

2. ALGORITHM DESCRIPTION 

Notation: 

C denotes the complex numhers; C(~, the rational functions 
over C;C[xl,the polynomiil1s over C, Z the integers, L a fi
nite set. For s, t <;: C[x] gt;d\" t) denotes the greatest common 
divisor of sand t, deg t the Il'ading degree of t and lc(t) 
the leading coefficient of t. 

Problem: 

Given R <;: C(x) N 

"Find G(w, x) E I. g,(x)w i , gl' <;: C(x), N <;: 11,2,4,6,121. 
'- 0 1 

such thal:- Wi + w2 = Rand G(w, xl " O. 

Algorithm: 

I. Partitioning of R 
L': =:J1J 
R: = sit; [5, t <;: C~xl. ged (s, t) " 1, le(t) ~ 1'] 
m': = degs - degt; 
Computer the squrre-free factorization of t : 
t: = tl' t;, ••• ' te; [te ~ 1]. 

2. Necessary conditions for N 
if "I t 2k-!l,,1' and (m/2 € l or m < -2) then L: = L U 111; 

k>O ' 

if3 t2k+1 ~1 or t2~l' then L.:= LuI2\; 
k>O 

if"l t =1 and m S-2 then L':" LuI4,6,12\; 
k> 2 k 

if L:~ ,!Z then return 'no solution exists'; 

3. Constructing of candidates 

do: = !4(m1n(2,-m) - degt - 3degt1);' 00: '" 'A(t'/t + 3tiltl); 

Find th.: roots e I of t 2 ; (i '" 1. 2 ..... n I! ] 

fori: =1 to ne do begin dl : '" 0,/1 + 4lim(x- CI )2R; °1 : = dl/(x - el ); end; .-oc t 

if m ~ -2 then begin ni" n2 + 1; 0n
2

: = 0 ; end' 

if m < -2 then dn2 : = 1 else if m '" -2 then 

d n : = 0,/1' + 41c(8) /le(t) ; 
2 

2 



if 1 ~ L then begin 
Find the roots c i of t

4
·t e · •.. ·te; [i = n2+1,n 2+2, ..•• nl 

for i : = n 2 + 1 to n do begin 
v: = m1/2; m i is the order of the pole c j in Rl 

dk 11 --
for k:=O to v-I do "v-k: = - -eex-c.) v'R(x)Y 

dx~] x=c]' 
. v k 

d I : = 2,1. 1; tJ i' = 2 ~ "k I (x - c . ) 
end; k= 1 1 

if m> -2 then begin 
n:=n+l; 
v: = m/2; 

for k: = 0 
k 

to v+l do "1)_k:=-~ex!)'v'R(lIX))lx=o; 
dx 

v 
" . =2 ~ " x k on' k 

k = 0 
end; 

end 'if 1 ~ L ' ; 

4. Testing of candidates 
for each N (; L 

ifN=1 then 
for j: = 0 to 
for f:=1 to 

J: = 1; 

[in increasing order] do begin 
k: =n else k: ~n2; 
k do S j : = - N 12 ; 
(N + 1) k do begin 

while 8 j = N/2 

8 j : = sJ +1; 
k 

do begin s : = -N/2; j : = j + 1 ; 

d: = N . do - 1 81 d 1; 
1= 1 

if d ~ Z and d > 0 then begin 
k -

8:=N.tJo + ~ 8
1

tJ
I

; 
1 ~ 1 

d 
P: = ~ a xl; [with undetel"mined al] 

1=0 I 

P N : = P; 

for i: '" N step -1 to 0 do P1_ 1 : ~ - P; - 8P I -

- (N + 1) (1 + 1 ) RP I + 1 ; 

Solve equation' P-1 ~ 0' for P 

end; 

(1 inear algebraic system for a 11 
if solution P ~ P is found 

N 
then return 0: ~ ~ 

I ~ 0 

"nd 'i f d ... ·: 

I 
cu P I 

(N -1)' I r-p 



end 'for f'; 
end 'for each N ; 
return 'no solution exists'; 

3. IMPLEMENTATION IN FORMAC 

The above algorithm is implemented in the FORMAC Computer 
Algebra System. The choice of FORMAC is caused by its high 
execution velocity and comparatively small memory needed, 
so that one can run our program in IBM and derivative compu
ters with 512K memory. To implement Kovacic's algorithm we 
developed a number of routines extending the capabilities 
of FORMAC, such as polynomial division, polynomial gcd's 
computation, square-free polynomial factorization, determi
nation of the rational roots of polynomials, partial fraction 
decomposition of rational functions, solving the linear al
gebraic systems. 

The algorithm requires exact numeric computations to be 
carried out in a quadratic extension of the initial number 
field F. which includes the coefficients and the even order 
poles of R. The current version of our program can be applied 
to the limited class of eqs.(I) with F-Q (rational number 
field). It means that the program works with the numbers of 
the form q 1 + qev'Q'Swhich are automatically simplified to the 
canonical form: qi + q:v'm (q I' q'l € Q. m is a square-free 
integer). To extend the class of input equations it's suffi
cient to modify the procedure SIMP implementing the simpli
fication of "numeric expressions". 

The program has been tested successfully on examples 
in 11.61 Moreover we tested 70 equations for which the infini te 
power series solutions are given in 18! Among them about 
30 equations were found to have Liouvil1ian solutions. 
For example, a power series solution of the equation 

Y"+~Y'-~Y=O x x 
presented in 18! is y '" I. (n+3)(n+4)xl\/n! 

D"O 

Using the program developed we found a closed-form solution: 
y _(x 2+8x + 12)e&. All testeCl examples take from 3 to 
10 sec. of ES-1061 running time and less than 200K memory. 
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)f{apKoB A.ro. E J J -87-455 
PeaJUi3aU;l-IH lIa H3blKe FORMAC aJlrOpliTMa KOBa'lIi'la 
AJlH pellleHHH 06blKHOBeHHbIX AIi$PepeHl.\liaJlbHblX ypaBHeHIiH 

PaCCMOTpeHa peaJlli3all,liH Ha H3blKe aHarIIiTIi'leCKIiX Bbl'lHCJle
IIUH FORt-lAC aJlrOpliTMa KOBal.lH1.la AJlH HaXOJKAeHUH JlIiYBIiJlJleB
CKUX pellleHHH AHclJcPepellll,liilJlbHblX ypaBHetlHH BIiAa y " + a(x)y , + 
+ t(X) Y ~ 0, rAe a. b - pall,liOHaJlbHble cPyHKlI,HH x. ITpliBeAeHo 
cPOPMaJlbHoe onHcaHlie aJlrOpliTMa, n03BOJlillOll\ee JlerKO peaJlH
'30BaTb ero B JlI060H nOAxOAHlI\e~'i CHCTeMe KOMnblOTepHoH 
aJlre6pbl. 

P a60Ta IlbIllOJlIIL'lIa Il JJa6opaTopHH Bbl1.lHCJUlTeJlblloi'i TeXIIHKH 
H allTO~laTlI3all,lIl1 OWIH. 

Coo6lUeHHe 06"be)UlHeHHoro HHcTHTYTa HAepHblx HCCneJlOBaHHH. lly6Ha 1987 

Zharkov A.Yu. 
An Implementation of Kovacic's Algorithm 
for Solving Ordinary Differential Equations 

in FORMAC 

E 11-87-455 

An implementation of Kovacic's algorithm for finding 
Liouvillian solutions of the differential equations 
y". a(x)y'. t(x)y ~ 0 with ratiOl'al coefficients a(x) 
and b(x) in the Computer Algebra System FORt-lAC is des('ri
bed. The algorithm description is presented in such a way 
that one can easily implement it in a suitable Computer 
Algebra System. 

The investigation has been performed at the l.aboratory 
of Computing Tec~niques and Automation, JTNR. 

Communication or the Joint Institute ror Nuclear R .. aean:h. Dubn. 1987 
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1.25 Algorithm implementation in FriCAS
See https://github.com/fricas/fricas/blob/master/src/algebra/kovacic.spad

https://github.com/fricas/fricas/blob/master/src/algebra/kovacic.spad
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1.26 Maxima implementation of Kovacic algorithm
By Nijso Beishuizen.
See https://sourceforge.net/p/maxima/mailman/message/32164642/

https://sourceforge.net/p/maxima/mailman/message/32164642/
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