Highly Constrained Image Reconstruction (HYPR)

Nasser M. Abbasi

California State University, Fullerton. Summer 2008 Compiled on January 30, 2024 at 6:20am

Contents

1	Notations and definitions	1
2	HYPR mathematical formulation 2.1 Original HYPR 2.2 Wright HYPR	3 3 4
3	Derivation of Wright HYPR from normal equation	5
4	References	6

1 Notations and definitions

- 1. MLEM Maximum-Likelihood Expectation-Maximization
- 2. PET Positron Emission Tomography
- 3. SPECT Single-Photon Emission Computed Tomography
- 4. *I* A 2-D image. This represent the original user image at which the HYPR algorithm is applied to.
- 5. I_t When the original image content changes during the process, we add a subscript to indicate the image I at time instance t.
- 6. R radon transform.
- 7. R_{ϕ} radon transform used at a projection angle ϕ .
- 8. ϕ_t When the projection angle ϕ is not constant but changes with time during the MRI acquisition process, we add a subscript to indicate the angle at time instance t.

- 9. R_{ϕ_t} radon transform used at an angle ϕ_t .
- 10. $s = R_{\phi}[I]$. radon transform applied to an image I at angle ϕ . This results in a projection vector s.
- 11. H Forward projection matrix. The Matrix equivalent to the radon transform R.
- 12. θ Estimate of an image I.
- 13. $H\theta$ Multiply the forward projection matrix H with an image estimate θ .
- 14. $g = H\theta$ Multiply the forward projection matrix H with an image estimate θ to obtain a projection vector g.
- 15. $R^{u}_{\phi}[s]$ The inverse radon transform applied in unfiltered mode to a projection s which was taken at angle ϕ . This results in a 2D image.
- 16. $R_{\phi}^{f}[s]$ The inverse radon transform applied in filtered mode to a projection s which was taken at angle ϕ . This results in a 2D image.
- 17. $H^T g$ The transpose of the forward projection matrix H multiplied by the projection vector g. This is the matrix equivalent of applying the inverse radon transform in an unfiltered mode to a projection s (see item 12 above).
- 18. H^+g The pseudo inverse of the forward projection matrix H being multiplied by the projection vector g. This is the matrix equivalent of applying the inverse radon transform in filtered mode to a projection s (see item 13 above).
- 19. C Composite image generated by summing all the filtered back projections from projections s_t of the original images I_t . Hence $C = \sum_{i=1}^{N} R_{\phi_{t_i}}^f[s_{t_i}]$
- 20. P_t The unfiltered backprojection 2D image as a result of applying $R_{\phi_t}^u[s_t]$ where s_t is projection from user image I_t taken at angle ϕ_t .
- 21. P_{c_t} The unfiltered backprojection 2D image as a result of applying $R^u_{\phi_t}[s_t]$ where s_t is projection from the composite image C taken at angle ϕ_t .
- 22. N_p Number of projections used to generate one HYPR frame image. This is the same as the number of projections per one time frame.
- 23. N The total number of projections used. This is the number of time frames multiplied by N_p
- 24. J_k The k^{th} HYPR frame image. A 2-D image generate at the end of the HYPR algorithm. There will be as many HYPR frame images J_k as there are time frames.

25. Image fidelity: " (inferred by the ability to discriminate between two images)" reference: The relationship between image fidelity and image quality by Silverstein, D.A.; Farrell, J.E

Sci-Tech Encyclopedia: Fidelity

"The degree to which the output of a system accurately reproduces the essential characteristics of its input signal. Thus, high fidelity in a sound system means that the reproduced sound is virtually indistinguishable from that picked up by the microphones in the recording or broadcasting studio. Similarly, a television system has a high fidelity when the picture seen on the screen of a receiver corresponds in essential respects to that picked up by the television camera. Fidelity is achieved by designing each part of a system to have minimum distortion, so that the waveform of the signal is unchanged as it travels through the system. "

- 26. "image quality (inferred by the preference for one image over another)". Same reference as above
- 27. TE (Echo Time) "represents the time in milliseconds between the application of the 90° pulse and the peak of the echo signal in Spin Echo and Inversion Recovery pulse sequences." reference: http://www.fonar.com/glossary.htm
- 28. TR (Repetition Time) "the amount of time that exists between successive pulse sequences applied to the same slice." reference: http://www.fonar.com/glossary.htm

2 HYPR mathematical formulation

2.1 Original HYPR

This mathematics of this algorithm will be presented by using the radon transform R notation and not the matrix projection matrix H notation.

The projection s_t is obtained by applying radon transform R on the image I_t at some angle ϕ_t

$$s_t = R_{\phi_t}[I_t]$$

When the original object image does not change with time then we can drop the subscript t from I_t and just write $s_t = R_{\phi_t}[I]$

The composite image C is found from the filtered back projection applied to all the s_t

$$C = \sum_{i=1}^{N} R^{f}_{\phi_{t_i}}[s_{t_i}]$$

Notice that the sum above is taken over N and not over N. Next a projection s_c is taken from C at angle ϕ as follows

$$s_{c_t} = R_{\phi_t}[C]$$

The the unfiltered back projection 2-D image P_t is generated

$$P_t = R^u_{\phi_t}[s_t]$$

And the unfiltered back projection 2-D image P_{c_t} is found

$$P_{c_t} = R^u_{\phi_t}[s_{c_t}]$$

Then the ratio of $\frac{P_t}{P_{c_t}}$ is summed and averaged over the time frame and multiplied by C to generate a HYPR frame J for the time frame.Hence for the k^{th} time frame we obtain

$$\begin{split} J_k &= C \left(\frac{1}{N_p} \sum_{i=1}^{N_p} \frac{P_{t_i}}{P_{ct_i}} \right) \\ &= \frac{1}{N_p} \left(\sum_{i=1}^{N} R_{\phi_{t_i}}^f[s_{t_i}] \right) \ \sum_{j=1}^{N_p} \frac{R_{\phi_{t_j}}^u[s_{t_j}]}{R_{\phi_{t_j}}^u[s_{c_{t_j}}]} \end{split}$$

2.2 Wright HYPR

This mathematics of this algorithm will be presented by using the radon transform R notation and not the matrix projection matrix H notation. The conversion between the notation can be easily made by referring to the notation page at the end of this report.

The projection s_t is obtained by applying radon transform R on the image I_t at some angle ϕ_t

$$s_t = R_{\phi_t}[I_t]$$

When the original object image does not change with time then we can drop the subscript t from I_t and just write $s_t = R_{\phi_t}[I]$

The composite image C is found from the filtered back projection applied to all the s_t

$$C = \sum_{i=1}^{N} R^f_{\phi_{t_i}}[s_{t_i}]$$

Notice that the sum above is taken over N and not over N. Next a projection s_c is taken from C at angle ϕ as follows

$$s_{c_t} = R_{\phi_t}[C]$$

The the unfiltered back projection 2-D image P_t is generated

$$P_t = R^u_{\phi_t}[s_t]$$

And the unfiltered back projection 2-D image P_{c_t} is found

$$P_{c_t} = R^u_{\phi_t}[s_{c_t}]$$

Now the set of P_t and P_{c_t} over one time frame are summed the their ratio multiplied by C to obtain the k^{th} HYPR frame

$$J_k = C \; rac{\displaystyle \sum_{i=1}^{N_p} P_{t_i}}{\displaystyle \sum_{i=1}^{N_p} P_{c_{t_i}}} \ = C \; rac{\displaystyle \sum_{i=1}^{N_{pr}} P_{c_{t_i}}}{\displaystyle \sum_{i=1}^{N_{pr}} R^u_{\phi_t}[s_t]} \ = C \; rac{\displaystyle \sum_{i=1}^{N_{pr}} R^u_{\phi_t}[s_{c_i}]}{\displaystyle \sum_{i=1}^{N_{pr}} R^u_{\phi_t}[s_{c_i}]}$$

3 Derivation of Wright HYPR from normal equation

We start with the same starting equation used to derive the HYPR formulation as in the above section.

$$s_t = H_{\phi_t}[I_t] + \mathbf{n}$$

Where **n** is noise vector from Gaussian distribution with zero mean. H_{ϕ_t} is forward projection operator at an angle ϕ at time t, and I_t is the original image at time t, and s_t is the one dimensional projection vector that results from the above operation.

Now apply the H^T operator to the above equation, we obtain

$$H^{T}[s_{t}] = H^{T}[H_{\phi_{t}}[I_{t}] + \mathbf{n}]$$

Since H^T is linear, the above becomes

$$H^{T}[s_{t}] = H^{T}[H_{\phi_{t}}[I_{t}]] + H^{T}[\mathbf{n}]$$

Pre multiply the above with I_t

$$I_t H^T[s_t] = I_t H^T[H_{\phi_t}[I_t]] + I_t H^T[\mathbf{n}]$$

Divide both side by $H^T[H_{\phi_t}[I_t]]$

$$\frac{I_t H^T[s_t]}{H^T \left[H_{\phi_t}\left[I_t\right]\right]} = \frac{I_t H^T \left[H_{\phi_t}[I_t]\right]}{H^T \left[H_{\phi_t}\left[I_t\right]\right]} + \frac{I_t H^T[\mathbf{n}]}{H^T \left[H_{\phi_t}\left[I_t\right]\right]}$$

Under the condition that noise vector can be ignored the above becomes (after canceling out the $H^T[H_{\phi_t}[I_t]]$ terms)

$$\frac{I_t H^T [s_t]}{H^T [H_{\phi_t} [I_t]]} = I_t$$

Or

$$I_t = I_t \left(\frac{H^T[s_t]}{H^T \left[H_{\phi_t} \left[I_t \right] \right]} \right)$$

If we select the composite C as representing the initial estimate of the true image I_t , the above becomes, after replacing I_t in the R.H.S. of the above equation by C

$$I_t = C\left(\frac{H^T[s_t]}{H^T[H_{\phi_t}[C]]}\right) \tag{1}$$

But $H^{T}[s_{t}]$ is the unfiltered backprojection of the projection s_{t} , hence this term represents the term P_{t} shown in the last section, which is the unfiltered backprojection 2D image, and $H^{T}[H_{\phi_{t}}[C]]$ is the unfiltered backprojection of the projection $H_{\phi_{t}}[C]$, which is the term $P_{c_{t}}$ in the last section. Hence we see that (1) is the same equation as

$$I_t = C \frac{P_t}{P_{c_t}} \tag{2}$$

Once I_t is computed from (1), we can repeat (1) again, using this computed I_t as the new estimate of the true image in the RHS of (1), and repeat the process again.

4 References

- 1. Dr Pineda, CSUF Mathematics dept. California, USA.
- Highly Constrained Back projection for Time-Resolved MRI by C. A. Mistretta, O. Wieben, J. Velikina, W. Block, J. Perry, Y. Wu, K. Johnson, and Y. Wu
- 3. Iterative projection reconstruction of time-resolved images using HYPR by O'Halloran et.all
- 4. Time-Resolved MR Angiography With Limited Projections by Yuexi Huang1, and Graham A. Wright
- 5. GE medical PPT dated 6/6/2008
- 6. Book principles of computerized Tomographic imaging by Kak and Staney