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1 Introduction
This report is a summary of the HIghly constrained Back PRojection (HYPR) team
work performed so far relating to the HYPR research project. We will describe the
work done and results found.

The goals set for the HYPR project included formulating the HYPR algorithm and
some of its variations (such as Wright-Huang HYPR (WH-HYPR), I-HYPR and HYPR-
LR) in a mathematical framework which would allow the study and analyze of these
algorithms in relation to other well known non-linear methods such as maximum
a-posteriori (MAP) estimation and Maximum Likelihood Expectation Maximization
(MLEM). These algorithms, like HYPR, use prior information on the object being
reconstructed and they are extensively used in nuclear medicine where the data is
intrinsically under sampled.

The initial period of this project, which this report reflects on, was spent becoming
familiar with the HYPR algorithm and its connection to MLEM. Towards this goal,
the HYPR algorithm was formulated mathematically and schematic diagrams created
which helped in its implementation. MATLAB simulation software was developed
to enable more understanding of the algorithm and its behavior by running it on a
number of test cases. Initial comparison between the original HYPR and the WH-HYPR
made on a number of different test configuration which are described in detail in the
simulation section below. The MLEM algorithm was implemented and compared the
HYPR algorithm.

In addition, A mathematical connection between HYPR and Expectation Maximization
(EM) is described and formulated.
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2 Mathematical formulation of the HYPR
algorithms

2.1 Original HYPR

2.1.1 Mathematical formulation

Please see the appendix for a complete description of the notation used in this section
and throrught the rest of the report.

The mathematics of this algorithm will be presented by using the radon transform R

notation and not the matrix projection matrix H notation.

The projection st is obtained by applying radon transform R on the image It at some
angle φt

st = Rφt [It]

When the original object image does not change with time one can drop the subscript
t from It and just write st = Rφt [I]

Next, the composite image C is found from the filtered back projection applied to all
the st as follows

C =
N∑
i=1

Rf
φti

[sti ]

Notice that the sum above is taken over N and not over Np. Next, a projection sc is
taken from C at angle φ as follows

sct = Rφt [C]

Then the unfiltered back projection 2-D image Pt is generated

Pt = Ru
φt
[st]

And the unfiltered back projection 2-D image Pct is generated

Pct = Ru
φt
[sct ]

Then the ratio of Pt

Pct
is summed and averaged over the time frame and the result

multiplied by C to generate a HYPR frame J for the time frame.Hence for the kth time
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frame we obtain

Jk = C

(
1
Np

Np∑
i=1

Pti

Pcti

)

= 1
Np

C

Np∑
i=1

Ru
φti

[sti ]
Ru

φti

[
scti
]

= 1
Np

(
N∑
i=1

Rf
φti

[sti ]
)

Np∑
j=1

Ru
φtj

[
stj
]

Ru
φtj

[
sctj

]
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2.1.2 Schematic diagram
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2.2 Wright-Huang variation of HYPR

2.2.1 Mathematical formulation

This mathematics of this algorithm will be presented by using the radon transform R

notation and not the matrix projection matrix H notation.

The projection st is obtained by applying radon transform R on the image It at some
angle φt

st = Rφt [It]

The composite image C is found from the filtered back projection applied to all the st

C =
N∑
i=1

Rf
φti

[sti ]

Notice that the sum above is taken over N and not over Np. Next a projection sc is
taken from C at angle φ as follows

sct = Rφt [C]

Then the unfiltered back projection 2-D image Pt is generated

Pt = Ru
φt
[st]

And the unfiltered back projection 2-D image Pct is generated

Pct = Ru
φt
[sct ]

Now the set of Pt and Pct over one time frame are summed the their ratio multiplied
by C to obtain the kth HYPR frame

Jk = C

Np∑
i=1

Pti

Np∑
i=1

Pcti

= C

Npr∑
i=1

Ru
φt
[st]

Npr∑
i=1

Ru
φt
[sct ]
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2.2.2 Schematic diagram
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3 HYPR connection to Expectation Maximization
The following is a discussion of the Mathematics that connects the MLEM algorithm
to HYPR.

According to O’Halloran’s paper[1] the for Maximum-Likelihood Expectation-Maximization
(MLEM) algorithm is mathematically equivalent to HYPR. The MLEM algorithm can
be used in image reconstruction for medical purposes. Positron Emission Tomography
(PET) and Single-Photon Emission Computed Tomography (SPECT) are two types of
image reconstruction processes where the MLEM algorithm is used. The purpose here
is to show that the MLEM algorithm will work for HYPR reconstructions.

The MLEM algorithm is a process that approximates the solution to

g = Hθ (1)

In connection to HYPR, we can view H as a forward projection matrix, θ as the original
image being projected and g the projection produced. The goal is to relate the above
matrix based formulation to the radon transform based formulation seen above in the
HYPR mathematical section, which is

st = Rφt [It] (2)

We formulate the first iteration of the MLEM algorithm based on equation (1) and see
how it can be translated into the HYPR process of image reconstruction. The first step
of MLEM is

θ̂(1)n = θ̂(0)n ∗ 1
zn

M∑
m=0

Hmn
gm(

Hθ̂(0)
)
m

(3)

This can be rewritten in matrix form

θ̂(1)n = θ̂(0)n

1
zn

HT

 g(
Hθ̂(0)

)


n

If we replace 1
zn

by 1
[HT [1]]n

in (4), we obtain

θ̂(1)n = θ̂(0)n

1
[HT [1]]n


unfiltered back projection︷ ︸︸ ︷

HT

 g(
Hθ̂(0)

)



n

(4)
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The marked portion of the above equation can be viewed as the vector that is produced
from unfiltered back projection on the image produced by the ratio

g

Hθ̂(0)

Here the division is done element by element to produce the vector whose elements are
the ratios of the respective elements of g and Hθ̂(0).

In HYPR the equation we want to tie to equation (3) above is as follows

Jt =
1
Np

C ·Ru
φt

[
st

Rφt (C)

]
(5)

Where the · represents an element by element multiplication, and the terms in (5) as
defined in the section of the HYPR mathematical derivation shown earlier. Hence for
(5) and (4) to be equivalent, We must have

θ̂(0)n =
[
HT [1]

]
n

Np
C

Which represents the initial guess for the user image. Therefore, by using for θ̂(0)as
an initial guess for the MLEM algorithm the above weighted term of the composite
image C, the MLEM algorithm will produce θ̂(1) which is a better approximation to
the original image from that of the composite C. And this is what the HYPR algorithm
does. It uses the composite image C to produce the HYPR image J to approximate the
original user image I. Hence a one step of MLEM is equivalent to running HYPR for
one time. Therefore, iterative HYPR algorithms can be seen as a multi step application
of MLEM.

4 Software simulation and results

4.1 HYPR simulation
A software simulation written in MATLAB was designed and developed to enable more
extensive HYPR testing of different test configurations. The software is GUI based and
all test results are saved in a tab-delimited plain text file to allow one further statistical
analysis of the data generated by other software. The appendix contains a screen shot
of the current version of the simulator (version 1.0).
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4.1.1 Description of HYPR simulation and test results

This is a description of the different tests performed. Both the original HYPR and the
Wright-Huang HYPR (WH-HYPR) were run and results compared. In the following
discussion, we use Np to mean number of projections in one time frame, and Nw to
mean the number of time frames. Hence the total number of projections is NpNw

The table below describes each test. In this table, a test with the letter ’a’ represents
the test being run using the original HYPR and a test with the letter ’b’ represents
the test being run using WH-HYPR. Each test was run under both the original HYPR
and WH-HYPR.

The first set of tests are designed to detect the effect of Poisson noise on the accuracy
of the HYPR algorithm as compared to the WH-HYPR. This was done for different
geometry of objects while keeping the number of projections per time frame and the
Poisson noise parameter λ fixed.

The second set of tests are designed to detect the effect of Gaussian noise on the
accuracy of the HYPR algorithm as compared to the WH-HYPR. This was done for
different geometry of objects while keeping the number of projections per time frame
and the Gaussian distribution parameters (mean and variance) fixed. The set of tests
used here is smaller than the first set due time limitation.

The third set of tests are designed to detect the effect of increasing the number of
projections on the accuracy of the HYPR and WH-HYPR. This was done under one
fixed configuration and with the absence of noise.

The main measure of accuracy used was relative RMSE. This was calculated as follows:
For each HYPR frame image generated, the set of user images which make up the time
frame from which the HYPR frame was generated are averaged to obtain an average
time frame image. Then the RMSE was obtained between these 2 images as follows:
Assuming these are N total pixels in each image, the error between each corresponding
pixels is found as Hi − Ii where Hi is a pixel in the HYPR frame image and Ii is the
corresponding pixel in the averaged time frame image. This error is then squared. This
was done for each pixel. The average of these square values is found, and the square
root of the result is found. Hence

RMSE =

√√√√ 1
N

N∑
i

√
(Hi − Ii)2

This quantity is normalized by dividing it by the mean intensity of the averaged time
frame image found earlier. This gives a normalized RMSE value for each time frame
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generated. When there are more than one time frame generated then the average all
these RMSE values are used to obtain one representative value of the RMSE for the
test, and that is the value showed in the tables below for the purpose of comparing
different tests.

Other statistics are calculated to determine the algorithms accuracy. The relative error
between the HYPR image and the averaged time frame is found using the standard
formula for relative error. This measure however did not appear to be a good indicator
for determining the accuracy of the HYPR image. Another statistical measure used
is the histogram difference, which is found as follows. The histogram for each HYPR
image frame and the corresponding histogram for the averaged time frame image are
calculated and the difference between these histograms found. This measure appear
to give a good indication of the performance of each test and correlated well with the
RMSE measure used. These results are all written to the log file for further analysis,
but are not currently taken into account in the following tests due to time limitation.
Only the RMSE measure is currently used to determine the accuracy of the algorithm.
The following sections describe each set of tests in more details.
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4.1.2 The first set of tests

Test Test description

1a

HYPR[4] algorithm validation. Using the same parameters as the Wright-Huang
paper[2] and validate output as it was described and shown in the paper.
This is a fixed disk in the center of the image whose density changes linearly with time.
Np = 8, Nw = 16

1b As above, but use the WH-HYPR algorithm.

2(a,b) Repeat test 1 but with the addition of Poisson noise with λ = 500 to the
projection s generated from the user images

3(a,b)
A non-time varying two small white disks close to each others in black background.
Np = 8, Nw = 16

4(a,b) As above, but with Poisson noise with λ = 500 added to projection s.
5(a,b) Small disk that moves in vertical motion off the center of image. Np = 8, Nw = 16
6(a,b) As above, but with Poisson noise with λ = 500 added to projection s.
7(a,b) 2 small disks close to each others that move in vertical motion. Np = 8, Nw = 16
8(a,b) As above, but with Poisson noise with λ = 500 added to projection s.
9(a,b) 2 small disks further apart from each others that move in vertical motion.
10(a,b) As above, but with Poisson noise with λ = 500 added to projection s.
11(a,b) one small disk that move across the image in the diagonal direction. Np = 8, Nw = 16
12(a,b) As above, but with Poisson noise with λ = 500 added to projection s.

The appendix shows the output obtained from the above set of tests. We now present
a summary of the results
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Test
(a) Original
HYPR
RMSE

(b) Wright
HYPR
RMSE

Selected
algorithm

1 0.639 0.636 WH-HYPR
2 (noise) 1.7298 1.2079 WH-HYPR
3 1.0329 1.0411 Original HYPR
4 (noise) 1.9879 1.4917 WH-HYPR
5 2.6349 3.095 Original HYPR
6 (noise) 4.9216 4.3288 WH-HYPR
7 2.1157 2.3496 Original HYPR
8 (noise) 2.99 2.7793 WH-HYPR
9 2.151 2.3524 Original HYPR
10 (noise) 2.9983 2.818 WH-HYPR
11 2.558 3.083 Original HYPR
12 (noise) 4.881 4.3884 WH-HYPR

Observation from running the first set of tests The original HYPR algorithm
performed better in each test when noise is absent from projection. This occurs in
either time varying or non-time varying configuration. On the other hand, WH-HYPR
performed better in each case when noise was present. This occurs in either time varying
or non-time varying configuration.

4.1.3 The second set of tests

These tests are a repeat of the first set of tests, but with noise generated from normal
distribution. Due to time limitation only test 2,6 and 10 described above are repeated
since these 3 tests are good representative of the overall tests. The letter N is added to
the test name to indicate the use of Normal distribution.
Test Test description

2N (a,b) Repeat test 1 but with the addition of Normal noise with µ = 0 and σ2 = 500
to the projection s generated from the user images

6N(a,b) Repeat test 5, but with the addition of Normal noise with µ = 0 and σ2 = 500
10N(a,b) Repeat test 9, but with the addition of Normal noise with µ = 0 and σ2 = 500

The appendix shows the output obtained from the above set of tests. Summary of the
results is shown below. To clarify the nature of tests below a short description is given
again below.
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1. Test 2N is a small fixed disk, changes intensity linearly with time.Np = 8, Nw = 16

2. Test 6N is one disk which moves vertically, off center. Np = 8, Nw = 16

3. Test 10N is two disks separated from each others that move vertically across the
image. Np = 8, Nw = 16

Test
(a) Original
HYPR
RMSE

(b) Wright
HYPR
RMSE

Abs difference Selected
algorithm

2N 1.7583 1.7179 0.0404 WH-HYPR
6N 4.0069 3.9797 0.0272 WH-HYPR
10N 2.7754 2.7737 0.0017 WH-HYPR

Observations from running the second set of tests WH-HYPR performed
better in all 3 cases. This correlated well with results found from the first set of tests
where it was observed that WH-HYPR performed better each time Poisson noise was
added. In the above 3 tests, normal noise was added and it is observed that WH-HYPR
performed better.

4.1.4 Third set of tests

As was mentioned earlier, the goal of these tests is to measure the relative accuracy of
the algorithms on the same configuration but with increasing number of projections
per time frame. It is expected that the accuracy of each algorithm will improve, and
we wish to obtain the measure of this improvement as a function of the number of
projections per time frame.

For this purpose, the following test configuration was used: small white disk mov-
ing vertically and off center, no noise added. One time frame was used and the fol-
lowing number of projections {8, 16, 32, 64, 128, 256, 512, 1024}. These tests as named
8r, 16r, 32r, 128r, 256r, 512r and 1024r respectively. The table below show the result of
the tests.
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Test (a) Original HYPR
RMSE

(b) WH-HYPR
RMSE

Abs difference Selected
algorithm

8r 1.6879 2.0836 0.3957 Original HYPR
16r 1.3772 1.59 0.2128 Original HYPR
32r 1.0994 1.18845 0.0891 Original HYPR
64r 0.774 0.8315 0.0575 Original HYPR
128r 0.5095 0.5355 0.0260 Original HYPR
256r 0.3722 0.3765 0.0043 Original HYPR
512r 0.2847 0.2825 0.0022 WH HYPR
1024r 0.2469 0.2459 0.0010 WH HYPR

Observations from running the third set of tests As the number of projections
per time frame increased, the accuracy of WH-HYPR improved. At high number of
projections (over 512 per time frame) WH-HYPR bypassed original HYPR and became
more accurate. It is not clear at this time if such high number of projections per time
frame will conflict with other MRI requirements (sampling rate limitation or other
issues), but the above shows that, even with the absence of noise, the WH-HYPR can
become more accurate than the Original HYPR but at a cost of having large number
of projections per time frame.

4.1.5 Conclusions drawn from HYPR test results

Original HYPR performed better than WH-HYPR when the number of projections is
relatively low (below 256 per time frame) and when there was no noise present (noise
added to projections taken from the original images). This occurred in all configurations
(both objects moving in time or fixed).

WH-HYPR performed better when noise is present (both Poisson and Normal noise)
and for all number of projections and for all configurations.

In addition, WH-HYPR performed better when there was no noise added, but when
the number of projections per time frame was increased.

These results seem to be a direct consequences of the fact that WH-HYPR sums the
backprojection images over a time frame period before taking the ratio of these sums
in order to obtain the mask image, while in the original HYPR the ratio for each
backprojection images is first found and the ratios added and averaged. More analysis
will be needed to better understand this difference and to explain mathematically this
observed difference between HYPR and WH-HYPR.

Since real MRI data is characterized by low SNR, this leads one to conclude that
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WH-HYPR should be the preferred choice between these 2 algorithms.

4.2 Expectation Maximization simulation

4.2.1 Description of simulation

The original HYPR algorithm was compared to 1 step of the MLEM algorithm. A
time-invariant white disk with radius 25 pixels centered in a 256 by 256 black image.
128 different projection angles were used (ordered using bit-reversed ordering), and the
size of the window was set to 8 projections.

4.2.2 Results of simulation

The figures below are the actual images produced. The composite image, the HYPR
reconstruction for the first HYPR frame, and the corresponding MLEM image. The
HYPR and the MLEM images are indistinguishable, although the mean absolute error
is slightly higher for HYPR than for MLEM. More detailed comparisons of MLEM and
HYPR are planned.
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5 Future work
1. Continue research into iterative HYPR and its connection to Expectation Maxi-

mization. Both analytically and through simulation.

2. Work more on understanding the artifacts (modeling errors) and in the extreme,
the pathological cases in which the HYPR algorithms will fail (worst-case sce-
nario).

3. Characterizing the noise amplification and resolution of the HYPR algorithm
through. Simulate HYPR algorithm with projection subjected to different noise
distributions and determine which variations of the algorithm are most accurate
and under which conditions.

4. Investigate and implement a new Iterative HYPR variation proposed during work
on this project which uses the Wright-Huang as its iterative step and compare
to the current standard I-HYPR which uses the original HYPR and compare
performance.

5. Investigate possibility of a better measure to compare the accuracy of a HYPR
image to a time frame image than was used in this report (RMSE), and if one is
found, use the new measure for future testing.

6. Obtained a mathematical description of the HYPR method based on the matrix
formulation and not based on the radon transform. Apply for a simple geometrical
shape which is time varying.

6 Appendix

6.1 nomenclature
1. MLEM Maximum-Likelihood Expectation-Maximization

2. PET Positron Emission Tomography

3. SPECT Single-Photon Emission Computed Tomography

4. I A 2-D image. This represent the original user image at which the HYPR
algorithm is applied to.

5. It When the original image content changes during the process, we add a subscript
to indicate the image I at time instance t.

6. R radon transform.
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7. Rφ radon transform invoked at a projection angle φ.

8. φt When the projection angle φ is not constant but changes with time during
the MRI acquisition process, we add a subscript to indicate the angle at time
instance t.

9. Rφt radon transform invoked at a projection angle φt.

10. s = Rφ[I]. radon transform applied to an image I at angle φ. This results in a
projection vector s.

11. H Forward projection matrix. The Matrix equivalent to the radon transform R.

12. θ Estimate of an image I.

13. Hθ Multiply the forward projection matrix H with an image estimate θ.

14. g = Hθ Multiply the forward projection matrix H with an image estimate θ to
obtain a projection vector g. Notice that for the inner dimensions of the matrix
multiplication operation Hθ to be equal, this requires that the 2D image θ be
linearized. In other words, the 2D image θ be written as a column vector.

15. Ru
φ[s] The inverse radon transform applied in unfiltered mode to a projection s

which was taken at angle φ. This results in a 2D image.

16. Rf
φ[s] The inverse radon transform applied in filtered mode to a projection s

which was taken at angle φ. This results in a 2D image.

17. HTg The transpose of the forward projection matrix H multiplied by the pro-
jection vector g. This is the matrix equivalent of applying the inverse radon
transform in an unfiltered mode to a projection s (see item 12 above).

18. H+g The pseudo inverse of the forward projection matrix H being multiplied
by the projection vector g. This is the matrix equivalent of applying the inverse
radon transform in filtered mode to a projection s (see item 13 above).

19. C Composite image generated by summing all the filtered back projections from

projections st of the original images It. Hence C =
N∑
i=1

Rf
φti

[sti ]

20. Pt The unfiltered backprojection 2D image as a result of applying Ru
φt
[st] where

st is projection from user image It taken at angle φt.

21. Pct The unfiltered backprojection 2D image as a result of applying Ru
φt
[st] where

st is projection from the composite image C taken at angle φt.

22. Np Number of projections used to generate one HYPR frame image. This is the
same as the number of projections per one time frame.
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23. N The total number of projections used. This is the number of time frames
multiplied by Np

24. Jk The kth HYPR frame image. A 2-D image generate at the end of the HYPR
algorithm. There will be as many HYPR frame images Jk as there are time frames.
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6.2 Simulation software screen shots
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6.3 HYPR simulation results

6.3.1 Test 1a
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6.3.2 Test 1b
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6.3.3 Test 2a
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6.3.4 Test 2b
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6.3.5 test 3a
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6.3.6 Test 3b
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6.3.7 Test 4a
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6.3.8 Test 4b
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6.3.9 Test 5a
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6.3.10 Test 5b
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6.3.11 Test 6a
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6.3.12 Test 6b
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6.3.13 Test 7a
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6.3.14 Test 7b
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6.3.15 Test 8a
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6.3.16 Test 8b
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6.3.17 Test 9a
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6.3.18 Test 9b
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6.3.19 Test 10a
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6.3.20 Test 10b
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6.3.21 Test 11a
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6.3.22 Test 11b
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6.3.23 Test 12a
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6.3.24 Test 12b
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6.3.25 Test 2N a
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6.3.26 Test 2N b
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6.3.27 Test 6N a
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6.3.28 Test 6N b
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6.3.29 Test 10N a
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6.3.30 Test 10N b
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6.3.31 Test 8r a
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6.3.32 Test 8r b
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6.3.33 Test 16r a
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6.3.34 Test 16r b
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6.3.35 Test 32r a
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6.3.36 Test 32r b
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6.3.37 Test 64r a
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6.3.38 Test 64r b
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6.3.39 Test 128r a

59



6.3.40 Test 128r b
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6.3.41 Test 256r a

61



6.3.42 Test 256r b
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6.3.43 Test 512r a

63



6.3.44 Test 512r b
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6.3.45 Test 1024r a
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6.3.46 Test 1024r b
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