

Final Presentation from the CSUF Applied Math Project To GE Healthcare

HYPR Team: Nasser Abbasi Kacie Jacklin Siavash Jalal Atousa Sarcon Doug Stang Mohamad Torabi Advisors: Bill Gearhart Angel Pineda

September 11, 2008

Department of Mathematics

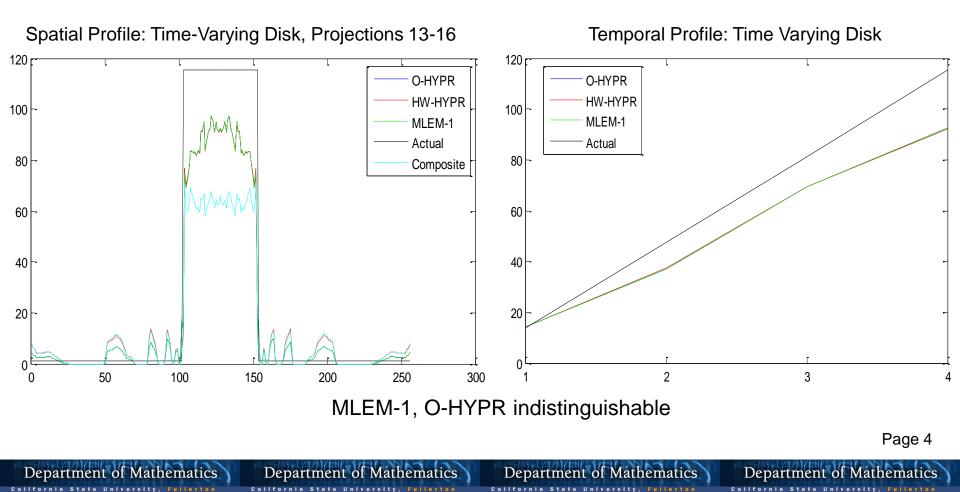
Department of Mathematics

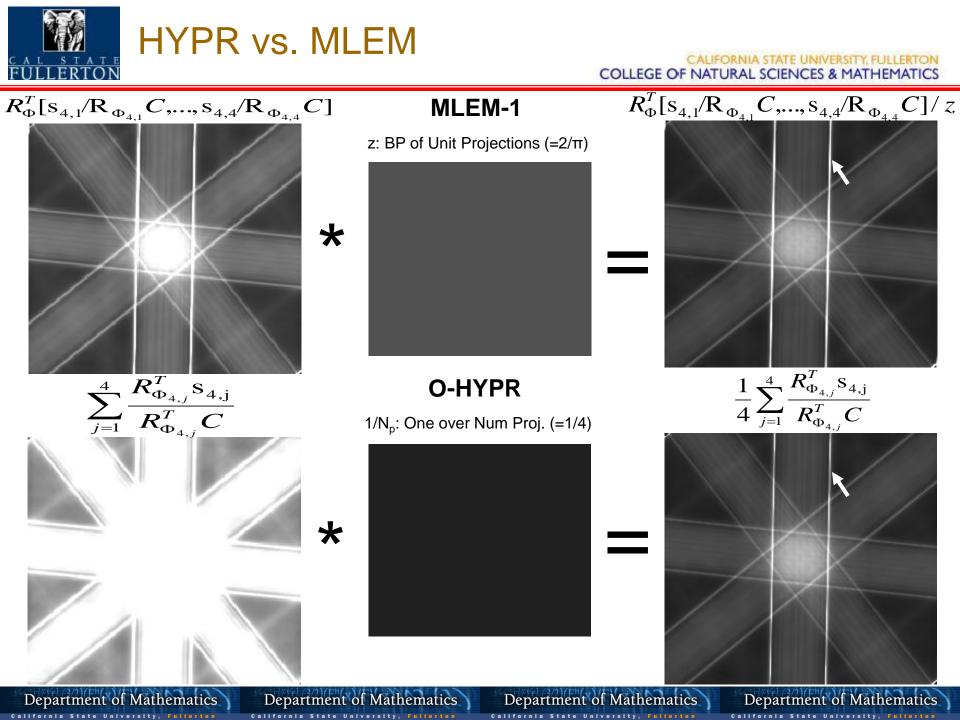
Department of Mathematics

ate University, Fullerton

Department of Mathematics

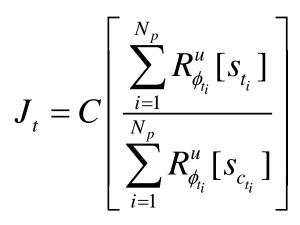
- The implementation of the first step of MLEM with the composite image as the initial image is numerically similar as HYPR. In other words, the original HYPR is a heuristic derivation of MLEM for time-dependent data.
- Initial development of a simulator for HYPR showed that the algorithm did not break catastrophically when an object with time-invariant signal had vertical motion.




- Better understanding of the relationship between HYPR and the first step of MLEM
- Classification of HW-HYPR as the first step of the MART algorithm applied to the normal equations
- Development of I-HW-HYPR
- Further development of the HYPR Simulator: it now implements HYPR, HW-HYPR, HYPR-LR, MLEM, I-HYPR, I-HW-HYPR for user input, several test cases and reproduces figures from papers. When all these methods were tested on the paper-clip phantom with noise, the method with the least error was HW-HYPR.
- An initial literature search of the time-dependent SPECT did not lead to a case where the composite was the initial condition.
- Initial conditions for MLEM are not considered terribly important since after a few iterations, the reconstructions look similar.

•Original HYPR (and Huang-Wright HYPR) compared to MLEM-1 in simple noise-free simulation...original HYPR same as MLEM as shown below

•Next slide shows how algorithms start out differently but ultimately produce same reconstructions via their respective normalizations (black = 0, white = 2)



Data Acquisition:

$$s_t = R_{\phi_t}[I_t]$$

- *t* : Time
- ϕ_t : Angle of projection at time t
- s_t : Projection at time t
- I_t : True image at time t
- $R_{\phi_{t}}$: Radon iransform for angle ϕ_{t}

Image Reconstruction:

- *C* : Composite image
- N_p : Number of projections per time frame
- S_{t_i} : Projection data at time t_i
- $S_{c_{\nu}}$: Projection of composite image at time t_i
- R_{ϕ}^{u} : Transpose of Radon transform (unfiltered backprojection)
- J_t : Reconstructed image

Department of Mathematics

California State University, Fuller

Department of Mathematics

Department of Mathematics

ate University, Fullert

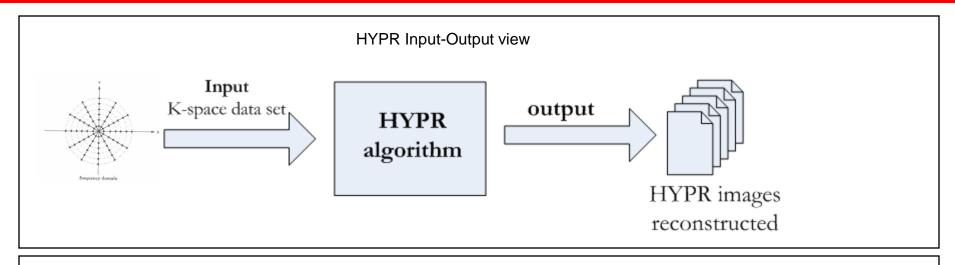
California State University, Fullerto

Normal Equation:

$$R^{u}_{\phi_{t_i}}[s_{t_i}] = R^{u}_{\phi_{t_i}}[R_{\phi_{t_i}}I_{t_i}]$$
$$H^{t}g = H^{t}Hf$$

MART: Multiplicative Arithmetic Reconstruction Technique (Gordon, et. al. 1970)

$$J_{t} = C \begin{bmatrix} \sum_{i=1}^{N_{p}} R_{\phi_{t_{i}}}^{u} [s_{t_{i}}] \\ \sum_{i=1}^{N_{p}} R_{\phi_{t_{i}}}^{u} [R_{\phi_{t_{i}}}C] \end{bmatrix}$$
$$f^{1} = f^{o} \begin{bmatrix} \frac{H^{t}g}{H^{t}Hf^{o}} \end{bmatrix}$$

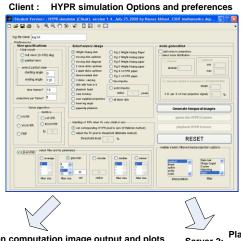

MART is a fixed point iteration that at convergence solves the normal equation using a multiplicative update. The solution to the normal equations is the least-squares solution. It is possible that this is why HW-HYPR has better noise characteristics than HYPR.

Department of Mathematics

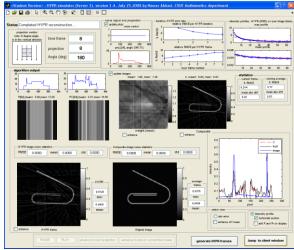
Department of Mathematics

CALIFORNIA STATE UNIVERSITY, FULLERTON COLLEGE OF NATURAL SCIENCES & MATHEMATICS

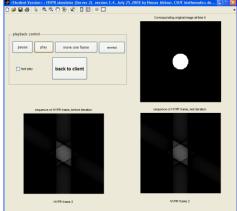
The HYPR algorithm uses a composite image and a weighting image during reconstruction in order to generate images with reduced artifacts and with improved temporal characteristics


Page 8

Department of Mathematics California State University, Fullerton



HYPR Simulator Review


CALIFORNIA STATE UNIVERSITY, FULLERTON COLLEGE OF NATURAL SCIENCES & MATHEMATICS

Server 1: HYPR simulation computation image output and plots

HYPR log file Server 2: Playback of reconstructed HYPR images and Iterative HYPR

- Over 8,000 lines of Matlab code.
- Implement HYPR, W-HYPR, FBP, I-HYPR, IW-HYPR, and HYPR-LR.
- Implements a noise process as a separate work flow.
- Three types of noise can be added: Normal, Poisson and Uniform
- Detailed log file contains all the results and statistics generated.
- HYPR-LR implemented with five different low pass filters.
- Allows the user to load their own set of projection data.
- More than 20 prepackaged test image cases included.
- Allows the user to play back the final reconstructed HYPR images...and many more features...

Page 9

Comparing the Algorithms

COLLEGE OF NATURAL SCIENCES & MATHEMATICS

Algorithm	Advantages	Disadvantages
O-HYPR	Suitable to use with images with high sparsity and limited object movements.	 Crosstalk when objects are close to each others. Difficulty with images that exhibit significant spatial and temporal dynamics.
W-HYPR	• Better noise response than O-HYPR, higher SNR.	Similar to O-HYPR.
LR-HYPR	 Can be applied to images acquired with arbitrary k-space trajectories. Reconstruction time is shorter than with for iterative methods or O-HYPR. 	 Crosstalk still exists. Use of sliding window can reduce this problem. Using inappropriate low pass filter type and parameters can result in worst reconstruction.
I-HYPR	Improves temporal characteristics and accuracy.	Noise amplified making reconstruction worst.
IW-HYPR	Suppresses noise amplification more than I-HYPR.	Noise is still amplified (but at lower levels).

Accuracy of Algorithms Using the GE Phantom Clip

Results of two tests cases, one with noise (zero mean, 5% S.D. of maximum projections) and one without noise. Both used 8 time frames and 8 projections per time frame. For Iterative HYPR, 10 iterations were used. HYPR-LR used the circular low pass filter with size 20 pixels.

test	O-HYPR	W-HYPR	HYPR-LR	I-HYPR 1^{st} 10^{th}	$\begin{array}{c} \text{IW-HYPR} \\ 1^{st} 10^{th} \end{array}$
No noise	6.83	6.77	6.7	6.83 5.41	6.77 5.55
With noise	10.76	9.55	13.7	10.76 14.22	9.55 11.436

Wright-Huang based HYPR algorithms have the best overall results.

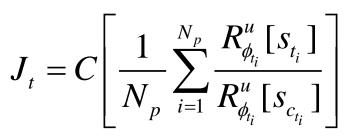
CALIFORNIA STATE UNIVERSITY, FULLERTON COLLEGE OF NATURAL SCIENCES & MATHEMATICS

Page 11

Department of Mathematics

Department of Mathematics

Department of Mathematics



Data Acquisition:

$$S_t = R_{\phi_t}[I_t]$$

- *t* : Time
- ϕ_t : Angle of projection at time t
- s_t : Projection at time t
- I_t : True image at time t
- $R_{\phi_{t}}$: Radon iransform for angle ϕ_{t}

Image Reconstruction:

- *C* : Composite image
- N_p : Number of projections per time frame
- S_{t_i} : Projection data at time t_i
- S_{c_i} : Projection of composite image at time t_i
- R_{ϕ}^{μ} : Transpose of Radon transform (unfiltered backprojection)
- J_t : Reconstructed image

Department of Mathematics

Department of Mathematics

State University, Fullerton

Department of Mathematics

tate University, Fullerto

- Let $g = Hf + \varepsilon$
- H: Matrix Projection Operator
- f: Discrete Object
- g: Projection
- ε : Poisson Noise
- MLEM maximizes the likelihood that g came from f.

MLEM Algorithm:
$$f_n^{(k+1)} = \left(\frac{f_n^{(k)}}{s_n}\right) \sum_m \left(\frac{g_m}{\left(Hf^{(k)}\right)_m}H_{mn}\right) \text{ where } s_n = \sum_m H_{mn}$$

Using Matrix Notation Unfiltered Backprojection is H^{T} :

$$\Rightarrow \qquad f_n^{(k+1)} = f_n^{(k)} \frac{1}{s_n} \left(H^T \left[\frac{g}{H f^{(k)}} \right] \right)$$

*Notation adopted from <u>Foundations of Image</u> <u>Science,</u> by Barrett and Myers

Page 13

Department of Mathematics

Department of Mathematics

n

MLEM-1 Algorithm

$$g = Hf + \varepsilon$$

$$f_n^{(1)} = f_n^{(0)} \frac{1}{z_n} \left[H^{\mathrm{T}} \left[\frac{g}{(Hf^{(0)})} \right] \right]_n$$

HYPR $S_t = R_{\phi_t} \left[I_t \right]$

$$J_n = \frac{1}{N_p} C_n \cdot R_{\phi}^u \left(\frac{s}{R_{\phi}(C)} \right)_n$$

 R_{ϕ} – Radon Transform R^{u}_{ϕ} – Unfiltered backprojection N_p – *Projections per time frame* s – Original projection *C* – *Composite image*

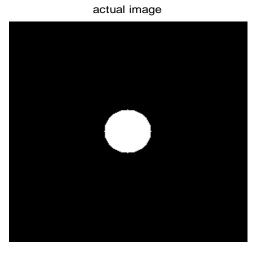
For this method to match the original HYPR in the first iteration we need that

 $\frac{R_{\phi}^{u}(s)}{R_{\phi}^{u}(s_{c})} = R_{\phi}^{u}\left(\frac{s}{s_{c}}\right)$ The ratio of unfiltered backprojections is the unfiltered backprojection of the ratio.

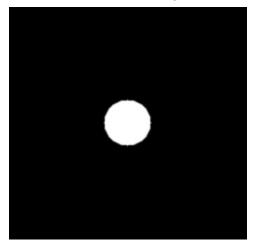
Department of Mathematics California State University, Fullerton

Department of Mathematics tate University, Fullerto

- Multiplicative update on each iteration, so if the initial estimate is zero, subsequent estimates remain zero. This property reduces streaking artifacts by using the composite image as the initial guess.
- Enforces non-negativity constraint. If initial estimate is positive and H has non-negative entries, future updates remain non-negative.
- MLEM while popular in the research community, adoption in clinical nuclear medicine was slow because of unpredictable nature of artifacts. This may be something to discuss with clinical collaborators.
- Noise properties for time resolved MRA very different than in nuclear medicine where the major source of noise is the Poisson noise in the projections.

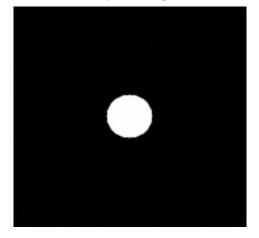


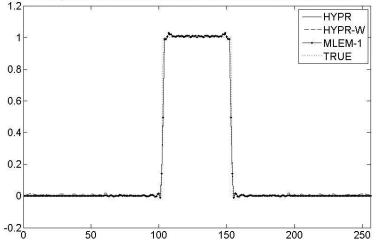
- In the following slide we compare Original HYPR to 1-step MLEM algorithm
- Time-invariant disk used
- 128 projection angles used (bit-reversed ordering)
- Window size: 8 projections
- Also implemented HYPR-W (Huang and Wright)
- For a stationary disk, all methods give a similar result.



California State University, Fullerton

CALIFORNIA STATE UNIVERSITY, FULLERTON COLLEGE OF NATURAL SCIENCES & MATHEMATICS


HYPR Reconstruction for Projections 1-8


Department of Mathematics

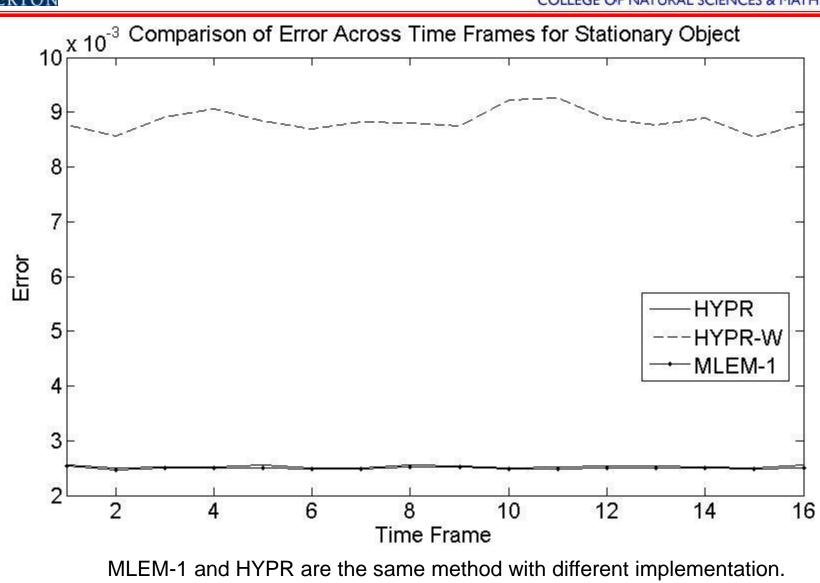
California State University, Fullerton

composite image

Comparison of Reconstructions for Time Invariant Disk Without Noise

For a stationary disk, with no noise, all methods are similar.

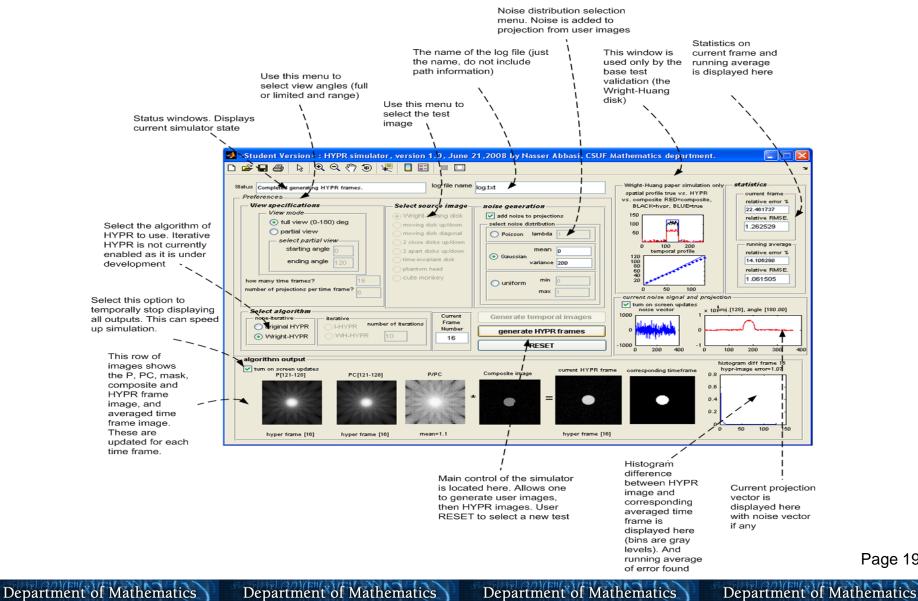
Department of Mathematics


California State University, Fullerton

Page 17

Department of Mathematics

California State University, Fullerton



Page 18

Department of Mathematics

MATLAB Computational Workbench

CALIFORNIA STATE UNIVERSITY, FULLERTON COLLEGE OF NATURAL SCIENCES & MATHEMATICS

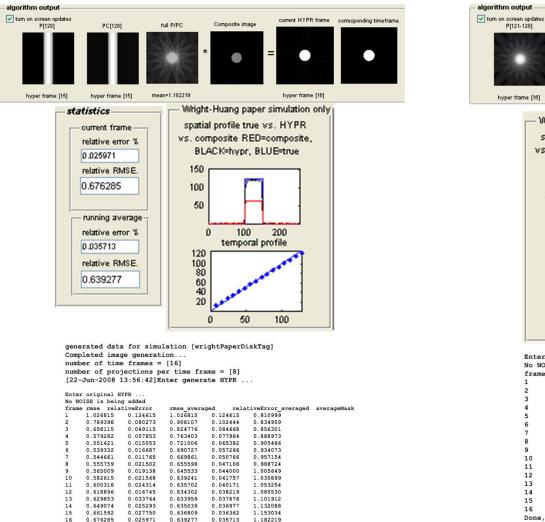
California State University, Fullerton

California State University, Fullerton

California State University, Fullerton

Callfornia State University, Fullerton

Time Dependent Intensity with Stationary Boundary

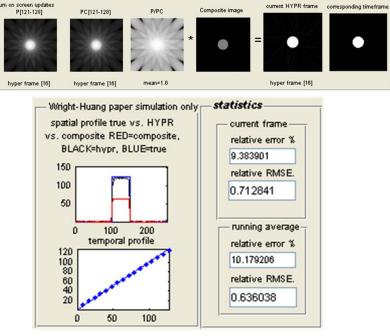

CALIFORNIA STATE UNIVERSITY, FULLERTON COLLEGE OF NATURAL SCIENCES & MATHEMATICS

MeanRelErr MeanMask

38.035191 0.396131

0 483218

32 300142



Done, totalHistError =1.33 ...

Department of Mathematics

California State University, Fullerton

Running the Wright-Huang test case using the original HYPR algorithm

Inter	Wright-Huan	g HYPR	
IO NO	ISE is being	added	
rame	rmse	relErr	MeanRmse
L	0.982878	38.035191	0.982878
2	0.734453	26.583094	0.858665
3	0.604836	19.085338	0.774055
1	0.532656	14.054107	0.713705

~	0.754455	20.303034	0.000000	52.505142	0.405210
3	0.604836	19.085338	0.774055	27.901208	0.557789
4	0.532656	14.054107	0.713705	24.439433	0.639344
5	0.520571	9.217883	0.675079	21.395123	0.715395
6	0.519005	5.920670	0.649066	18.816047	0.798848
7	0.535644	3.097390	0.632863	16.570525	0.877456
8	0.556542	0.955617	0.623323	14.618661	0.958114
9	0.574512	1.083784	0.617900	13.114786	1.035286
10	0.599367	2.818749	0.616046	12.085182	1.114582
11	0.621385	4.294862	0.616532	11.376971	1.193476
12	0.645831	5.560250	0.618973	10.892245	1.277558
13	0.658385	6.633323	0.622005	10.564635	1.353904
14	0.682260	7.683917	0.626309	10.358870	1.434595
15	0.695441	8.459228	0.630918	10.232227	1.508504
16	0.712841	9.383901	0.636038	10.179206	1.596524
Done,	totalHistE	rror =1.35 .	• •		

Test 1b results

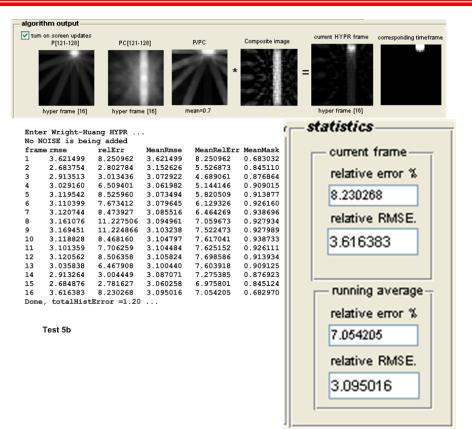
Department of Mathematics

Department of Mathematics

Page 20

Time Dependent Boundary with Constant Intensity

generated data for simulation [movingDiskUpDownTag] Completed image generation... number of time frames = [16] number of projections per time frame = [8] [22-Jun-2008 16:03:26]Enter generate HYPR ...


Enter original HYPR ... No NOISE is being added

	ron ro born	ig added			
frame	rmse	relErr	MeanRmse	MeanRelErr	MeanMask
1	2.930777	0.112860	2.930777	0.112860	0.776031
2	2.283642	0.032046	2.607209	0.072453	0.870046
3	2.468333	0.049740	2.560917	0.064882	0.837949
4	2.615779	0.060302	2.574633	0.063737	0.833535
5	2.693877	0.087963	2.598481	0.068582	0.829808
6	2.653286	0.004072	2.607615	0.057831	0.846449
7	2.686605	0.044205	2.618900	0.055884	0.846036
8	2.745714	0.132117	2.634751	0.065413	0.833106
9	2.756394	0.134185	2.648267	0.073055	0.833394
10	2.683672	0.051199	2.651808	0.070869	0.846576
11	2.643038	0.005699	2.651011	0.064944	0.846128
12	2.694688	0.089126	2.654650	0.066960	0.831088
13	2.621380	0.046047	2.652091	0.065351	0.833980
14	2.467277	0.046980	2.638890	0.064039	0.838185
15	2.287501	0.025182	2.615464	0.061448	0.869622
16	2.926942	0.116627	2.634932	0.064897	0.776585
Done,	totalHist	Error =1.16			

Test 5a

hyper frame [16]
statistics
current frame relative error % 0.116627
relative RMSE. 2.926942
- running average
relative error %
0.064897
0.064897 relative RMSE.

CALIFORNIA STATE UNIVERSITY, FULLERTON COLLEGE OF NATURAL SCIENCES & MATHEMATICS

Page 21

Department of Mathematics

Department of Mathematics