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Summary of Midterm Report 

• The implementation of the first step of MLEM with the 

composite image as the initial image is numerically 

similar as HYPR.  In other words, the original HYPR 

is a heuristic derivation of MLEM for time-dependent 

data. 

• Initial development of a simulator for HYPR showed 

that the algorithm did not break catastrophically when 

an object with time-invariant signal had vertical 

motion. 
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Results Since Midterm Report 

• Better understanding of the relationship between HYPR and the 

first step of MLEM 

• Classification of HW-HYPR as the first step of the MART algorithm 

applied to the normal equations  

• Development of I-HW-HYPR 

• Further development of the HYPR Simulator:  it now implements 

HYPR, HW-HYPR, HYPR-LR, MLEM, I-HYPR, I-HW-HYPR for 

user input, several test cases and reproduces figures from papers.  

When all these methods were tested on the paper-clip phantom 

with noise, the method with the least error was HW-HYPR. 

• An initial literature search of the time-dependent SPECT did not 

lead to a case where the composite was the initial condition. 

• Initial conditions for MLEM are not considered terribly important 

since after a few iterations, the reconstructions look similar.    
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MLEM-1, O-HYPR indistinguishable 

HYPR vs. MLEM 

•Original HYPR (and Huang-Wright HYPR) compared to MLEM-1 in simple noise-free 

simulation…original HYPR same as MLEM as shown below 

•Next slide shows how algorithms start out differently but ultimately produce same 

reconstructions via their respective normalizations (black = 0, white = 2) 

Spatial Profile: Time-Varying Disk, Projections 13-16 Temporal Profile: Time Varying Disk 
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HW-HYPR Algorithm: 
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HW-HYPR as MART 

MART: Multiplicative Arithmetic 

Reconstruction Technique 

(Gordon, et. al. 1970) 

Normal Equation: 
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MART is a fixed point iteration that at convergence solves the normal equation 

using a multiplicative update.  The  solution to  the normal equations is the least-

squares solution.  It is possible that this is why HW-HYPR has better noise 

characteristics than HYPR. 
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HYPR Project Presentation 

HYPR Input-Output view 
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•  Over 8,000 lines of Matlab code. 

•  Implement HYPR, W-HYPR, 

FBP,  I-HYPR, IW-HYPR, and 

HYPR-LR.  

• Implements a noise process as a 

separate work flow.  

• Three types of noise can be 

added:  Normal, Poisson and 

Uniform 

• Detailed log file contains all the 

results and statistics generated. 

• HYPR-LR implemented with five 

different low pass filters.  

• Allows the user to load their own 

set of projection data.  

• More than 20 prepackaged test 

image  cases included.  

• Allows the user to play back the 

final reconstructed HYPR 

images…and  many more 

features… 

HYPR Simulator Review 

Client : HYPR simulation Options and preferences

Server 1: HYPR simulation computation image output and plots

Log.txt 

Server 2:
Playback of reconstructed HYPR 

images and Iterative HYPR

HYPR 

log file
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Comparing the Algorithms 

Accuracy of Algorithms Using the GE Phantom Clip 

Results of two tests cases, one with noise (zero mean, 5% S.D. of maximum projections) and one 

without noise. Both used 8 time frames and 8 projections per time frame. For Iterative HYPR, 10 

iterations were used. HYPR-LR used the circular low pass filter with size 20 pixels. 

Wright-Huang based HYPR algorithms have the best overall results. 

Algorithm Advantages Disadvantages 

O-HYPR Suitable to use with images with high sparsity and 
limited object movements. 

 Crosstalk when objects are close to each 
others. 

 Difficulty with images that exhibit significant 
spatial and temporal dynamics. 

W-HYPR  Better noise response than O-HYPR, higher 
SNR. 

Similar to O-HYPR. 

LR-HYPR  Can be applied to images acquired with arbitrary 
k-space trajectories. 

 Reconstruction time is shorter than with for 
iterative methods or O-HYPR. 

 Crosstalk still exists. Use of sliding window 
can reduce this problem. 

 Using inappropriate low pass filter type and 
parameters can result in worst reconstruction. 

I-HYPR Improves temporal characteristics and accuracy. Noise amplified making reconstruction worst. 

IW-HYPR Suppresses noise amplification more than I-HYPR. Noise is still amplified (but at lower levels). 
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Slides from Midterm Report 
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HYPR Algorithm: 
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MLEM Algorithm: 
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*Notation adopted from Foundations of Image 

Science, by Barrett and Myers 
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Comparison of MLEM & HYPR 

        MLEM-1 Algorithm               HYPR 
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The ratio of unfiltered backprojections is the unfiltered 

backprojection of the ratio. 

For this method to match the original HYPR in the first iteration we need that 
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Relevant Properties of HYPR/MLEM 

•  Multiplicative update on each iteration, so if the initial estimate is 

zero, subsequent estimates remain zero.  This property reduces 

streaking artifacts by using the composite image as the initial guess. 

 

•  Enforces non-negativity constraint.  If initial estimate is positive and 

H has non-negative entries, future updates remain non-negative. 
 

•   MLEM while popular in the research community, adoption in clinical 

nuclear medicine was slow because of unpredictable nature of 

artifacts.  This may be something to discuss with clinical 

collaborators. 

 

•  Noise properties for time resolved MRA very different than in 

nuclear medicine where the major source of noise is the Poisson 

noise in the projections. 
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• In the following slide we compare Original HYPR to 1-step 
MLEM algorithm 

•  Time-invariant disk used 

• 128 projection angles used (bit-reversed ordering) 

• Window size: 8 projections 

• Also implemented HYPR-W (Huang and Wright) 

• For a stationary disk, all methods give a similar result. 

Computational Comparison of HYPR, HYPR-W & MLEM-1 
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composite imageactual image

HYPR Reconstruction for Projections 1-8

For a stationary disk, with no noise, all methods are similar. 
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MLEM-1 and HYPR are the same method with different implementation. 
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MATLAB Computational Workbench 
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Time Dependent Intensity with Stationary Boundary 
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Time Dependent Boundary with Constant Intensity 


