
How to make a package in Mathematica
Nasser M. Abbasi

July 16, 2010 Compiled on June 4, 2024 at 12:24am

Contents
1 Simple package 1

2 More advanced package 4

This note describes making a simple package in Mathematica. The first section shows
how to make a simple package. The second section shows how to make a package with
subpackages in them and where to save the files so that they are easily loaded.

1 Simple package
An example package that contains one function is made showing how to save it and
load it into Mathematica and to update it again by adding a second function to it.

Each time a new function is added to the package, the package has to be reloaded in
order to use the new function.

This note is not meant by any means to be comprehensive, but only to give someone
who is new at Mathematica the minimal set of commands to make a basic package.

More details about packages are found in Mathematica help pages.

1. Open a new text file called foo.m (using any text editor) and write in it the
following� �
BeginPackage["foo`"]
Unprotect @@ Names["foo`*"];
ClearAll @@ Names["foo`*"];

f::usage = "f[x]"
Begin["`Private`"]

1

mailto:nma@12000.org

f[x_] := Module[{}, x^2];

End[];
Protect @@ Names["foo`*"];
EndPackage[];� �
In the above foo[x] is a public function which can be accessed from outside.

2. Now save the file foo.m. Assuming it is saved to C:/mydata/foo.m

3. To use the function f[x] defined in the package, open Mathematica notebook
and load the package as follows (this is one easy way to load the package, there
are other ways).� �
Get["c:/mydata/foo.m"]� �
Now the package is loaded and you can call the function defined inside the package
as follows� �
f[2]� �
The function can also be called by explicitly pre-appending the package name to
the function (which I prefer, as it makes it clear where this function came from)
as follows� �
foo`f[2]� �

4. To add a second function, say g[x] to the package, open foo.m again using text
editor, and change it to look as follows:� �
BeginPackage["foo`"]
Unprotect @@ Names["foo`*"];
ClearAll @@ Names["foo`*"];

f::usage = "f[x]"
g::usage = "g[x]"
Begin["`Private`"]

2

f[x_] := Module[{}, x^2];
g[x_] := Module[{}, x^4];

End[];
Protect @@ Names["foo`*"];
EndPackage[];� �
Now save the file foo.m.

5. To use the new function added to the package, the package needs to be reloaded
again� �
Get["c:/mydata/foo.m"]� �

6. To see which functions in your package type� �
?foo`*� �
That is all. To add more functions, repeat the above steps.

7. The above functions f(x), g(x) are public functions. This is because each of them
had a usage statement. We can add private functions that are used internally in
the package, which the user can not call or see as follow. Any function that has
no usage statement is a private function.� �
BeginPackage["foo`"]
Unprotect @@ Names["foo`*"];
ClearAll @@ Names["foo`*"];

f::usage = "f[x]"
g::usage = "g[x]"
Begin["`Private`"]

(*these are public functions *)
f[x_] := Module[{}, h[x]];
g[x_] := Module[{}, x^4];

(*this is private function because it has no usage statement*)
h[x_]:= Module[{},x^2];

3

End[];
Protect @@ Names["foo`*"];
EndPackage[];� �

I’d like to thank Bill Rowe and Istvan Zachar on the Math newsgroup for helpful
suggestions while working on this note.

2 More advanced package
This package was developed on windows and all the files will be stored in� �
FileNameJoin[{$UserBaseDirectory, "Applications"}]� �
which on windows is located at

C:\Users\Owner\AppData\Roaming\Mathematica\Applications

the Owner is replaced by your user name. This is done so that the package will be
loaded by just doing� �
<<nma`� �
Where nma is our application name that we will make below. This way the applica-
tion is loaded automatically from anywhere since Mathematica will search that folder
automatically.

The application name is the same as the top level package name which lives in the file
nma.m.

The application name is the name of the folder where we will put the files in under
Applications folder.

The package name is nma. So I created a folder called

C:\Users\Owner\AppData\Roaming\Mathematica\Applications\nma

And put all the m files there. The structure of the folder nma\ is the following

...Applications\nma\
nma.m
dsolver.m
firstOrderODE.m

4

secondOrderODE.m
kernel\

init.m

Logically the application nma is structured as follows. There is one top level pack-
age called nma which is always the same name as the application name (i.e. the
name of the folder under Application). This package contains 3 packages, these are
dsolver,firstOrderODE,secondOrderODE. Each one is in its own file as shown above.

The init.m purpose is to load the whole application when one does� �
<<nma`� �
Inside init.m we will put the code to read all the files.� �
(*file init.m*)
getFile[file_]:=Internal`InheritedBlock[{$ContextPath},Get[file]]
getFile["nma`firstOrderODE`"];
getFile["nma`secondOrderODE`"];
getFile["nma`dsolver`"];
getFile["nma`nma`"];� �
The top level package nma.m is� �
BeginPackage["nma`"] (*do not add ,{"nma`dsolver`"} *)

Unprotect @@ Names["nma`*"];
ClearAll @@ Names["nma`*"];

dsolve::usage = "dsolve[ode,y[x],x] or dsolve[{ode,ic},y[x],x]"

Begin["`Private`"]
dsolve[ode_,y_[x_],x_] := Module[{},

nma`dsolver`dsolve[ode,y[x],x] (*need to have nma` there *)
];

End[];
Protect @@ Names["nma`*"];
EndPackage[]� �

5

Notice it has one entry point, function called dsolve[ode_,y_[x_],x_] which calls
one of its internal packages. Here is dsolver.m� �
BeginPackage["nma`dsolver`"] (*subpackage of nma *)

Unprotect @@ Names["nma`dsolver`*"];
ClearAll @@ Names["nma`dsolver`*"];

dsolve::usage = "dsolve[ode,y[x],x]";

Begin["`Private`"]
dsolve[ode_,y_[x_],x_] := Module[{},

parseODE[ode,y[x],x]
];

parseODE[ode_,y_[x_],x_] := Module[{},
nma`firstOrderODE`step[ode,y[x],x];
nma`secondOrderODE`step[ode,y[x],x]

];

End[];
Protect @@ Names["nma`dsolver`*"];
EndPackage[]� �
The above calls functions in the last two packages. Here they are firstOrderODE.m� �
BeginPackage["nma`firstOrderODE`"] (*subpackage of nma *)

Unprotect @@ Names["nma`firstOrderODE`*"];
ClearAll @@ Names["nma`firstOrderODE`*"];

step::usage = "step[ode,y[x],x]";

Begin["`Private`"]

step[ode_,y_[x_],x_] := Module[{},
Print["in nma`firstOrderODE`step[]"]

];

End[];
Protect @@ Names["nma`firstOrderODE`*"];

6

EndPackage[]� �
And finally secondOrderODE.m� �
BeginPackage["nma`secondOrderODE`"] (*subpackage of nma *)

Unprotect @@ Names["nma`secondOrderODE`*"];
ClearAll @@ Names["nma`secondOrderODE`*"];

step::usage = "step[ode,y[x],x]";

Begin["`Private`"]

step[ode_,y_[x_],x_] := Module[{},
Print["in nma`secondOrderODE`step[]"]

];

End[];
Protect @@ Names["nma`secondOrderODE`*"];
EndPackage[]� �
This completes the template package nma. Now we can add more functions and more
packages if needed. Any time we make changes we just need to do� �
<<nma`� �
To reload it. The above command can be done from any notebook without having to
set any path, and Mathematica will find the application automatically.

7

	Simple package
	More advanced package

