
Note on generating Latex code from Lua and Python
Nasser M. Abbasi

July 4, 2015 Compiled on January 30, 2024 at 5:43am

Small example is given that generate Latex code on the fly. One uses Lua in which the
Lua code is embedded inside the main Latex file itself using

\begin{luacode}....\end{luacode}

and the other example uses Python to generate the complete Latex document to a file,
which is then compiled using either pdflatex or lualatex.

When using the Lua method, the file has to be compiled using lualatex.

Python is one of the few dynamics languages that supports multi-line raw strings using
the r""" """ construct. This feature allows any arbitrary content to be used as
is inside this construct. It also allows one to concatenate Python variables with the
string to build the final Latex output. Without this feature, using Python to generate
Latex code would not be practical to do.

The example used (slightly modified) is an arbitrary one which builds small multiplica-
tion table taken from http://tex.stackexchange.com/questions/69164/why-doe
s-luaexec-work-but-the-luacode-environment-doesnt answer by Herbert. There
was no specific reason to pick this example, I just wanted to try to compare using
Lua vs. Python to do this, and I was browsing and just saw this example there and it
seemed like a good one to try to compare Lua with Python on. More examples will be
added.

When the generated Latex code is compiled, it will generate this output:

1× 1 = 1 1× 2 = 2 1× 3 = 3 1× 4 = 4 1× 5 = 5 1× 6 = 6
2× 1 = 2 2× 2 = 4 2× 3 = 6 2× 4 = 8 2× 5 = 10 2× 6 = 12
3× 1 = 3 3× 2 = 6 3× 3 = 9 3× 4 = 12 3× 5 = 15 3× 6 = 18
4× 1 = 4 4× 2 = 8 4× 3 = 12 4× 4 = 16 4× 5 = 20 4× 6 = 24
5× 1 = 5 5× 2 = 10 5× 3 = 15 5× 4 = 20 5× 5 = 25 5× 6 = 30
6× 1 = 6 6× 2 = 12 6× 3 = 18 6× 4 = 24 6× 5 = 30 6× 6 = 36

The two methods are best contrasted and compared using the following diagram. The

1

mailto:nma@12000.org
http://tex.stackexchange.com/questions/69164/why-does-luaexec-work-but-the-luacode-environment-doesnt
http://tex.stackexchange.com/questions/69164/why-does-luaexec-work-but-the-luacode-environment-doesnt

python script is first compiled using Python, then the generated Latex file is compiled
using either lualatex or pdflatex.

lualatex

foo.tex

\documentclass{article}
\usepackage{luacode}

\begin{document}

\begin{luacode}

Lua code here...

\end{luacode}

\end{document}

foo.pdf

python

foo.py

import os
os.chdir("/home/me/data")
my_file = open("py_latex.tex", 'w')

x=r"""
\documentclass{article}
\begin{document}

\end{document}"""

my_file.write(x)
my_file.close()

Latex code here as is

lualatex

py_latex.tex

\documentclass{article}
\begin{document}
…….
\end{document}

pdflatex

py_latex.pdf

Figure 1: comparing both methods

Here is the Lua and the Python code, side by side, for comparison

2

Lua Python

\documentclass{article}
\usepackage{luacode}

\begin{document}

\begin{luacode}
tex.print("\\begin{tabular}{|l|l|l|l|l|l|l|l|l|}\\hline")
num = 6
for i=1,num do

for j=1,num do
product = ’$’..i..’\\times’..j..’=’..i*j..’$’;
tex.print(product)
if(j<num) then

tex.sprint(’&’)
else

tex.sprint(’\\\\’)
end

end
end
tex.print("\\hline\\end{tabular}")
\end{luacode}

\end{document}

import os
os.chdir("/home/me/data")
my_file = open("py_latex.tex", ’w’)

num = 6

x=r"""
\documentclass{article}
\begin{document}

\begin{tabular}{|l|l|l|l|l|l|l|l|l|}\hline
"""
for i in range(1,num+1):

for j in range(1,num+1):
x=x+’$’+str(i)+’ \\times ’+str(j)+’ = ’+str(i*j)+’$’
if j<num :

x=x+’&’
else:

x=x+’\\\\ \n’

x=x+r"""\hline\end{tabular}
\end{document}"""

my_file.write(x)
my_file.close()

The Latex file generated by the Python code above is the following, which is then
compiled using pdflatex

\documentclass{article}
\begin{document}

\begin{tabular}{|l|l|l|l|l|l|l|l|l|}\hline
$1 \times 1 = 1$&$1 \times 2 = 2$&$1 \times 3 = 3$&$1 \times 4 = 4$&$1 \times 5 = 5$&$1 \times 6 = 6$\\
$2 \times 1 = 2$&$2 \times 2 = 4$&$2 \times 3 = 6$&$2 \times 4 = 8$&$2 \times 5 = 10$&$2 \times 6 = 12$\\
$3 \times 1 = 3$&$3 \times 2 = 6$&$3 \times 3 = 9$&$3 \times 4 = 12$&$3 \times 5 = 15$&$3 \times 6 = 18$\\
$4 \times 1 = 4$&$4 \times 2 = 8$&$4 \times 3 = 12$&$4 \times 4 = 16$&$4 \times 5 = 20$&$4 \times 6 = 24$\\
$5 \times 1 = 5$&$5 \times 2 = 10$&$5 \times 3 = 15$&$5 \times 4 = 20$&$5 \times 5 = 25$&$5 \times 6 = 30$\\
$6 \times 1 = 6$&$6 \times 2 = 12$&$6 \times 3 = 18$&$6 \times 4 = 24$&$6 \times 5 = 30$&$6 \times 6 = 36$\\
\hline\end{tabular}
\end{document}

It is clear than both using Lua or Python to generate the table is much easier than using

3

direct Tex coding (programming directly in Tex is very hard for most of us and can only
be done by the real Latex programmers with many long years of Latex programming).

Using a higher level language such as Lua or Python is much simpler as the languages
are easier to program in.

Currently I use Python to generate Latex files. For example, the following page was
generated from one Python script.

There are advantages to both methods. And it is left to the reader to decide which
method might work for them. This note is meant to only illustrate the methods and
document them.

4

http://12000.org/my_notes/mma_demos/index.htm

