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1 Indicial equation has repeated root

1.1 Example 1. homogeneous ode example
Solve

x2y′′(x) + xy′(x) + x2y(x) = 0 (1)

Using power series method by expanding around x = 0. Writing the ode as

y′′(x) + 1
x
y′(x) + y(x) = 0

Shows that x = 0 is a singular point. But limx→0 x
1
x = 1. Hence the singularity is removable. This

means x = 0 is a regular singular point. In this case the Frobenius power series will be used instead of
the standard power series. Let

y(x) =
∞∑

n=0
anx

n+r

Where r is to be determined. It is the root of the indicial equation. Therefore

y′(x) =
∞∑

n=0
(n+ r) anxn+r−1

y′′(x) =
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2

Substituting the above in (1) gives

x2
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2 + x

∞∑
n=0

(n+ r) anxn+r−1 + x2
∞∑

n=0
anx

n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑

n=0
(n+ r) anxn+r +

∞∑
n=0

anx
n+r+2 = 0 (1A)

Here, we need to make all powers on x the same, without making the sums start below zero. This can
be done by adjusting the last term above as follows

∞∑
n=0

anx
n+r+2 =

∞∑
n=2

an−2x
n+r

And now Eq (1A) becomes

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑

n=0
(n+ r) anxn+r +

∞∑
n=2

an−2x
n+r = 0

n = 0 gives the indicial equation

(n+ r) (n+ r − 1) a0xr + (n+ r) a0xr = 0
(r) (r − 1) a0xr + (r) a0xr = 0

((r) (r − 1) a0 + ra0)xr = 0
((r) (r − 1) + r) a0 = 0
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Since a0 6= 0 then

(r) (r − 1) + r = 0
r2 − r + r = 0

r2 = 0

Hence the roots of the indicial equation are r = 0 which is a double root. Hence r1 = r2 = 0. When
this happens, the solution is given by

y(x) = c1y1(x) + c2y2(x)

Where y1(x) is the first solution, which is assumed to be

y1(x) =
∞∑

n=0
anx

n+r (2)

Where we take a0 = 1 as it is arbitrary and where r = r1. This is the standard Frobenius power series,
just like we did to find the indicial equation, the only difference is that now we use r = r1, and hence
it is a known value. Once we find y1(x), then the second solution is

y2(x) = y1(x) ln (x) +
∞∑

n=1
bnx

n+r (3)

Something important to notice. In the sum above, it starts from 1 and not from 0. The main issue is
how to find bn. Since that is the only thing we need to be able to complete the solution as y1(x) is
easily found. It turns out that there is a relation between the bn and the an. The bn can be found
by taking just derivative of an as function of r for each n and then evaluate the result at r = r1. How
this is done will be shown below. First we need to find y1(x). From (2)

y′1(x) =
∞∑

n=0
(n+ r) anxn+r−1

y′′1 (x) =
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2

We need to remember that in the above r is not a symbol any more. It will have the indicial root
value, which is r = r1 = 0 in this case. But we keep r as symbol for now, in order to obtain an(r) as
function of r first and use this to find bn(r). At the very end we then evaluate everything at r = r1 = 0.
Substituting the above in (1) gives (We are following pretty much the same process we did to find the
indicial equation here)

x2
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2 + x

∞∑
n=0

(n+ r) anxn+r−1 + x2
∞∑

n=0
anx

n+r = 0 (4)

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑

n=0
(n+ r) anxn+r +

∞∑
n=0

anx
n+r+2 = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑

n=0
(n+ r) anxn+r +

∞∑
n=2

an−2x
n+r = 0 (5)
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Now we are ready to find an. Now we skip n = 0 since that was used to obtain the indicial equation,
and we know that a0 = 1 is an arbitrary value to choose. We start from n = 1. Eq (5) gives

(n+ r) (n+ r − 1) a1 + (n+ r) a1 = 0
(1 + r) (1 + r − 1) a1 + (1 + r) a1 = 0
((1 + r) (1 + r − 1) + (1 + r)) a1 = 0

(r + 1)2 a1 = 0

But r = r1 = 0. The above becomes a1 = 0. It is a good idea to use a table to keep record of the an
values as function of r, since this will be used later to find bn.

n an(r) an(r = r1)
0 1 1
1 0 0

For n ≥ 2 we obtain the recursion equation

(n+ r) (n+ r − 1) an + (n+ r) an + an−2 = 0

an = − an−2

(n+ r) (n+ r − 1) + (n+ r)

To more clearly indicate that an is function of r, we write the above as

an(r) = − an−2(r)
(n+ r) (n+ r − 1) + (n+ r) (6)

The above is very important, since we will use it to find bn(r) later on. For now, we are just finding
the an. Now we find few more an terms. From (6) for n = 2

a2(r) = − a0(r)
(2 + r) (2 + r − 1) + (2 + r)

But a0(r) = 1. The above becomes

a2(r) = − 1
(2 + r) (2 + r − 1) + (2 + r) = − 1

(r + 2)2

and r = r1 = 0 then the above becomes

a2 = − 1
(2)2

= −1
4

The table now becomes

n an(r) an(r = r1)
0 1 1
1 0 0
2 − 1

(r+2)2 − 1
4

And for n = 3
a3(r) = − a1(r)

(3 + r) (3 + r − 1) + (3 + r)
But a1(r) = 0. Then a3(r) = 0. The table becomes
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n an(r) an(r = r1)
0 1 1
1 0 0
2 − 1

(r+2)2 − 1
4

3 0 0

For n = 4 Eq (6) gives

a4(r) = − a2(r)
(4 + r) (4 + r − 1) + (4 + r)

But a2(r) from the table is − 1
(2+r)(2+r−1)+(2+r) . Hence

a4(r) = −
− 1

(2+r)(2+r−1)+(2+r)

(4 + r) (4 + r − 1) + (4 + r) = 1
(r2 + 6r + 8)2

The above becomes at r = r1 = 0
a4 = 1

(8)2
= 1

64

The Table now becomes

n an(r) an(r = r1)
0 1 1
1 0 0
2 − 1

(r+2)2 − 1
4

3 0 0
4 1

(r2+6r+8)2
1
64

For n = 5 Eq (6) gives

a5(r) = − a3(r)
(n+ r) (n+ r − 1) + (n+ r)

But a3(r) = 0, hence a5(r) = 0. The table becomes

n an(r) an(r = r1)
0 1 1
1 0 0
2 − 1

(r+2)2 − 1
4

3 0 0
4 1

(r2+6r+8)2
1
64

5 0 0

For n = 6 Eq (6) gives

a6(r) = − a4(r)
(6 + r) (6 + r − 1) + (6 + r)

But from the table a4(r) = 1
(r2+6r+8)2 , so the above becomes

a6(r) = −
1

(r2+6r+8)2

(6 + r) (6 + r − 1) + (6 + r) = − 1
(r + 6)2 (r2 + 6r + 8)2
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At r = r1 = 0 the above becomes

a6(r) = − 1
(6)2 (8)2

= − 1
2304

The table becomes
n an(r) an(r = r1)
0 1 1
1 0 0
2 − 1

(r+2)2 − 1
4

3 0 0
4 1

(r2+6r+8)2
1
64

5 0 0
6 − 1

(r+6)2(r2+6r+8)2 − 1
2304

And so on. Hence y1(x) is

y1(x) =
∞∑

n=0
anx

n+r

But r = r1 = 0. Therefore

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + · · · (6A)

= 1− 1
4x

2 + 1
64x

4 − 1
2304x

6 + · · ·

We are done finding y1(x). This was not bad at all. Now comes the hard part. Which is finding y2(x).
From (3) it is given by

y2(x) = y1(x) ln (x) +
∞∑

n=1
bnx

n+r

To find bn, we will use the following
bn(r) =

d

dr
(an(r)) (7)

Notice that n starts from 1. Hence

b1(r) =
d

dr
(a1(r))

∣∣∣∣
r=r1

What the above says, is that we first take derivative of an(r) w.r.t. r and evaluate the result at the
root of the indicial equation. Using the table above, we obtain (recalling that r1 = 0 in this example)

n an(r) an(r = r1) bn(r) = d
dr (an(r)) bn(r = r1)

0 1 1 N/A since b starts from n = 1 N/A
1 0 0 0 0

2 − 1
(r+2)2 − 1

4
d
dr

(
− 1

(r+2)2

)
= 2

(r+2)3
2

(2)3 = 1
4

3 0 0 0 0

4 1
(r2+6r+8)2

1
64

d
dr

(
1

(r2+6r+8)2

)
= −2 2r+6

(r2+6r+8)3 −2 6
(8)3 = − 3

128

5 0 0 0 0

6 − 1
(r+6)2(r2+6r+8)2 − 1

2304
d
dr

(
− 1

(r+6)2(r2+6r+8)2

)
= 2 3r2+24r+44

(r3+12r2+44r+48)3 2 44
(48)3 = 11

13 824
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We have found all bn terms. Hence

y2(x) = y1(x) ln (x) +
∞∑

n=1
bnx

n+r

And since r = r1 = 0 then

y2(x) = y1(x) ln (x) +
(
b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6 + · · ·
)

But from the above table, we see that b1 = 0, b2 = 1
4 , b3 = 0, b4 = − 3

128 , b5 = 0, b6 = 11
13 824 . The above

becomes
y2(x) = y1(x) ln (x) +

(
1
4x

2 − 3
128x

4 + 11
13 824x

6 +O
(
x8))

And we know what y1(x) is from Eq (6A). Hence

y2(x) =
(
1− 1

4x
2 + 1

64x
4 − 1

2304x
6 +O

(
x8)) ln (x) +

(
1
4x

2 − 3
128x

4 + 11
13 824x

6 +O
(
x8))

Therefore the general solution is

y(x) = c1y1(x) + c2y2(x)

= c1

(
1− 1

4x
2 + 1

64x
4 − 1

2304x
6 +O

(
x8))

+ c2

((
1− 1

4x
2 + 1

64x
4 − 1

2304x
6 +O

(
x8)) ln (x) +

(
1
4x

2 − 3
128x

4 + 11
13 824x

6 +O
(
x8)))

This completes the solution. This method is easier that reduction of order, which would involve having
to compute integrals (I should make another example showing that method also). The only difficulty in
this method, is to make sure when finding the bn is to have access to the an with r being unevaluated
form in order to take derivatives correctly. This was done above by keeping a table of these quantities
updated.

1.2 Example 2. inhomogeneous ode example
Solve

x2y′′(x) + xy′(x) + x2y(x) = sin (x) (1)

Let the solution be y = yh + yp where yh is the solution to the homogeneous ode which we found
above. And yp is a particular solution. Let

yp = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + · · ·

Then

y′p = c1 + 2c2x+ 3c3x2 + 4c4x3 + · · ·
y′′p = 2c2 + 6c3x+ 12c4x2 + · · ·

Substituting the above in (1) gives

x2(2c2 + 6c3x+ 12c4x2 + · · ·
)
+x

(
c1 + 2c2x+ 3c3x2 + 4c4x3 + · · ·

)
+x2(c0 + c1x+ c2x

2 + c3x
3 + c4x

4 + · · ·
)
= sin (x)
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Now we replace sin (x) by its Taylor series expansion around x = 0, The above becomes

x2(2c2 + 6c3x+ 12c4x2 + · · ·
)
+x

(
c1 + 2c2x+ 3c3x2 + 4c4x3 + · · ·

)
+x2(c0 + c1x+ c2x

2 + c3x
3 + c4x

4 + · · ·
)
= x−

1
6
x3+

1
120

x5−
1

5040
x7+· · ·

Expanding terms gives

(
2c2x2 + 6c3x3 + 12c4x4 + · · ·

)
+
(
c1x+ 2c2x2 + 3c3x3 + 4c4x4 + · · ·

)
+
(
c0x

2 + c1x
3 + c2x

4 + c3x
5 + c4x

6 + · · ·
)
= x−

1
6
x3+

1
120

x5−
1

5040
x7+· · ·

Or

x0(c0)+x(c1)+x2(4c2 + c0)+x3(9c3 + c1)+x4(16c4 + c2)+x5(25c5 + c3) · · · = (0)x0+x−1
6x

3+ 1
120x

5−· · ·

Where c0 was added explicitly since the RHS starts at x1. Now comparing terms gives

c0 = 0
c1 = 1

4c2 + c0 = 0

9c3 + c1 = −1
6

16c4 + c2 = 0

25c5 + c3 = 1
120

The solution is
[
c0 = 0, c1 = 1, c2 = 0, c3 = − 7

54 , c4 = 0, c5 = 149
27 000

]
. Substituting the solution in yp

gives

yp = c0 + c1x+ c2x
2 + c3x

3 + c4x
4 + c5x

5 + · · ·

= 0 + x+ 0− 7
54x

3 + 0 + 149
27000x

5 + · · ·

= x− 7
54x

3 + 149
27000x

5 + · · ·

= x

(
1− 7

54x
2 + 149

27000x
4 + · · ·

)
If we want more terms in yp, we just increase the terms in the polynomial trial yp we started with.
The final solution is

y = yh + yp

Using yh from the above section gives

y = c1

(
1− 1

4x
2 + 1

64x
4 − 1

2304x
6 +O

(
x8))

+ c2

((
1− 1

4x
2 + 1

64x
4 − 1

2304x
6 +O

(
x8)) ln (x) +

(
1
4x

2 − 3
128x

4 + 11
13824x

6 +O
(
x8)))

+ x

(
1− 7

54x
2 + 149

27000x
4 + · · ·+O

(
x8))
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1.3 Example 3. homogeneous ode example
Solve

(ex − 1) y′′(x) + exy′(x) + y(x) = 0 (1)

Using power series method by expanding around x = 0. Writing the ode as

y′′(x) + ex

(ex − 1)y
′(x) + 1

(ex − 1)y(x) = 0

Shows that x = 0 is a singular point. But limx→0 x
ex

(ex−1) = 1 and limx→0 x
2 1
(ex−1) = 0 Hence the

singularity is removable. This means x = 0 is a regular singular point. In this case the Frobenius power
series will be used instead of the standard power series. Let

y(x) =
∞∑

n=0
anx

n+r

Where r is to be determined. It is the root of the indicial equation. Therefore

y′(x) =
∞∑

n=0
(n+ r) anxn+r−1

y′′(x) =
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2

Substituting the above in (1) gives

(ex − 1)
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2 + ex

∞∑
n=0

(n+ r) anxn+r−1 +
∞∑

n=0
anx

n+r = 0

Expanding ex in Taylor series around x gives ex = 1+x+ 1
2x

2+ 1
6x

3+ 1
24x

4+ · · · . The above becomes

(
x+ 1

2x
2 + 1

6x
3 + 1

24x
4 + · · ·

) ∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2

+
(
1 + x+ 1

2x
2 + 1

6x
3 + 1

24x
4 + · · ·

) ∞∑
n=0

(n+ r) anxn+r−1 +
∞∑

n=0
anx

n+r = 0 (1)

Expanding gives (and keeping only terns up to x4 gives

x
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2+1

2x
2

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−2+1
6x

3
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2

+ 1
24x

4
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2+

∞∑
n=0

(n+ r) anxn+r−1+x
∞∑

n=0
(n+ r) anxn+r−1+1

2x
2

∞∑
n=0

(n+ r) anxn+r−1

+ 1
6x

3
∞∑

n=0
(n+ r) anxn+r−1 + 1

24x
4

∞∑
n=0

(n+ r) anxn+r−1 +
∞∑

n=0
anx

n+r = 0
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Moving the x inside the sum, the above becomes

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1+
∞∑

n=0

1
2(n+ r) (n+ r − 1) anxn+r+

∞∑
n=0

1
6(n+ r) (n+ r − 1) anxn+r+1

+
∞∑

n=0

1
24(n+ r) (n+ r − 1) anxn+r+2+

∞∑
n=0

(n+ r) anxn+r−1+
∞∑

n=0
(n+ r) anxn+r+

∞∑
n=0

1
2(n+ r) anxn+r+1

+
∞∑

n=0

1
6(n+ r) anxn+r+2 +

∞∑
n=0

1
24(n+ r) anxn+r+3 +

∞∑
n=0

anx
n+r = 0

Here, we need to make all powers on x the same, without making the sums start below zero. This can
be done by adjusting the last term above as follows

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1+
∞∑

n=1

1
2(n+ r − 1) (n+ r − 2) an−1x

n+r−1+
∞∑

n=2

1
6(n+ r − 2) (n+ r − 3) an−2x

n+r−1

+
∞∑

n=3

1
24(n+ r − 3) (n+ r − 4) an−3x

n+r−1+
∞∑

n=0
(n+ r) anxn+r−1+

∞∑
n=1

(n+ r − 1) an−1x
n+r−1+

∞∑
n=2

1
2(n+ r − 2) an−2x

n+r−1

+
∞∑

n=3

1
6(n+ r − 3) an−3x

n+r−1 +
∞∑

n=4

1
24(n+ r − 4) an−4x

n+r−1 +
∞∑

n=1
an−1x

n+r−1 = 0 (2)

The case n = 0 gives the indicial equation

(n+ r) (n+ r − 1) + (n+ r) = 0
(r) (r − 1) + (r) = 0

r2 = 0

Hence the roots of the indicial equation are r = 0 which is a double root. Hence r1 = r2 = 0. When
this happens, the solution is given by

y(x) = c1y1(x) + c2y2(x)

Where y1(x) is the first solution, which is assumed to be

y1(x) =
∞∑

n=0
anx

n+r (3)

Where we take a0 = 1 as it is arbitrary and where r = r1. This is the standard Frobenius power series,
just like we did to find the indicial equation, the only difference is that now we use r = r1, and hence
it is a known value. Once we find y1(x), then the second solution is

y2(x) = y1(x) ln (x) +
∞∑

n=1
bnx

n+r (3)

Something important to notice. In the sum above, it starts from 1 and not from 0. The main issue is
how to find bn. Since that is the only thing we need to be able to complete the solution as y1(x) is
easily found. It turns out that there is a relation between the bn and the an. The bn can be found
by taking just derivative of an as function of r for each n and then evaluate the result at r = r1. How
this is done will be shown below. First we need to find y1(x). We take Eq(3) and substitute it in the
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original ODE. This will result in Eq (2) which we found above so no need to repeat that. We just need
to remember that now we now what r is. It has a numerical value unlike the above phase where we
still did not know its value.

Now we are ready to find an. We skip n = 0 since that was used to obtain the indicial equation, and
we know that a0 = 1 is an arbitrary value to choose. We start from n = 1.

For n = 1 only, using Eq (2) gives

(n+ r) (n+ r − 1) a1 +
1
2(n+ r − 1) (n+ r − 2) a0 + (n+ r) a1 + (n+ r − 1) a0 + a0 = 0

(1 + r) (1 + r − 1) a1 +
1
2(1 + r − 1) (1 + r − 2) a0 + (1 + r) a1 + (1 + r − 1) a0 + a0 = 0

((1 + r) (1 + r − 1) + (1 + r)) a1 +
(
1
2(1 + r − 1) (1 + r − 2) + (1 + r − 1) + 1

)
a0 = 0

But a0 = 1. The above becomes

((1 + r) (1 + r − 1) + (1 + r)) a1 = −
(
1
2(1 + r − 1) (1 + r − 2) + (1 + r − 1) + 1

)
a1 =

−
( 1
2 (1 + r − 1) (1 + r − 2) + (1 + r − 1) + 1

)
((1 + r) (1 + r − 1) + (1 + r)) = −

(
r2 + r + 2

)
2r2 + 4r + 2

Which at r = 0 gives
a1 = −1

It is a good idea to use a table to keep record of the an values as function of r, since this will be used
later to find bn.

n an(r) an(r = r1)
0 1 1

1 −
(
r2+r+2

)
2r2+4r+2 −1

For n = 2 only, using Eq (2) gives

(n+ r) (n+ r − 1) a2 +
1
2(n+ r − 1) (n+ r − 2) a1 +

1
6(n+ r − 2) (n+ r − 3) a0 + (n+ r) a2 + (n+ r − 1) a1 +

1
2(n+ r − 2) a0 + a1 = 0

(2 + r) (2 + r − 1) a2 +
1
2(2 + r − 1) (2 + r − 2) a1 +

1
6(2 + r − 2) (2 + r − 3) a0 + (2 + r) a2 + (2 + r − 1) a1 +

1
2(2 + r − 2) a0 + a1 = 0

((2 + r) (2 + r − 1) + (2 + r)) a2 +
(
1
2(2 + r − 1) (2 + r − 2) + (2 + r − 1) + 1

)
a1 +

(
1
6(2 + r − 2) (2 + r − 3) + 1

2(2 + r − 2)
)
a0 = 0

(r + 2)2 a2 +
(
1
2r

2 + 3
2r + 2

)
a1 +

1
6r(r + 2) a0 = 0

But a0 = 1 and a1 = −
(
r2+r+2

)
2r2+4r+2 . The above becomes

(r + 2)2 a2 +
(
1
2r

2 + 3
2r + 2

)(
−
(
r2 + r + 2

)
2r2 + 4r + 2

)
+ 1

6r(r + 2) = 0

(r + 2)2 a2 = r4 + 4r3 + 17r2 + 26r + 24
2 (r + 1)2

a2 = r4 + 4r3 + 17r2 + 26r + 24
12 (r + 1)2 (r + 2)2
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At r = 0 the above becomes
a2 = 24

12 (2)2
= 1

2
The table becomes

n an(r) an(r = r1)
0 1 1

1 −
(
r2+r+2

)
2r2+4r+2 −1

2 r4+4r3+17r2+26r+24
12(r+1)2(r+2)2

1
2

For n = 3 only, using Eq (2) gives

(n+ r) (n+ r − 1) a3 +
1
2(n+ r − 1) (n+ r − 2) a2 +

1
6(n+ r − 2) (n+ r − 3) a1

+ 1
24(n+ r − 3) (n+ r − 4) a0+(n+ r) a3+(n+ r − 1) a2+

1
2(n+ r − 2) a1+

1
6(n+ r − 3) a0+a2 = 0

Or
(3 + r) (2 + r) a3 +

1
2(2 + r) (1 + r) a2 + (3 + r) a3 + (2 + r) a2 +

1
2(1 + r) a1 + a2 = 0

Or

((3 + r) (2 + r) + (3 + r)) a3 +
(
1
2(2 + r) (1 + r) + (2 + r) + 1

)
a2 +

1
2(1 + r) a1 = 0

(r + 3)2 a3 +
(
1
2r

2 + 5
2r + 4

)
a2 +

1
2(1 + r) a1 = 0

But a1 = −
(
r2+r+2

)
2r2+4r+2 , a2 = r4+4r3+17r2+26r+24

12(r+1)2(r+2)2 . The above becomes

(r + 3)2 a3 = −
(
1
2r

2 + 5
2r + 4

)
a2 −

1
2(1 + r) a1

= −
(
1
2r

2 + 5
2r + 4

)(
r4 + 4r3 + 17r2 + 26r + 24

12 (r + 1)2 (r + 2)2

)
− 1

2(1 + r)
(
−
(
r2 + r + 2

)
2r2 + 4r + 2

)

= −
(
r6 + 3r5 + 9r4 + 53r3 + 158r2 + 208r + 144

)
24 (r2 + 3r + 2)2

a3 = −
(
r6 + 3r5 + 9r4 + 53r3 + 158r2 + 208r + 144

)
24 (r2 + 3r + 2)2 (r + 3)2

For r = 0 the above reduces to
a3 = − 144

24 (2)2 (3)2
= −1

6
The table becomes

n an(r) an(r = r1)
0 1 1

1 −
(
r2+r+2

)
2r2+4r+2 −1

2 r4+4r3+17r2+26r+24
12(r+1)2(r+2)2

1
2

3 −
(
r6+3r5+9r4+53r3+158r2+208r+144

)
24(r2+3r+2)2(r+3)2 − 1

6

12



And so on. Recursion starts at n ≥ 5 but we have enough terms, so we stop here. y1(x) is

y1(x) =
∞∑

n=0
anx

n+r

But r = r1 = 0. Therefore

y1(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + · · · (6A)

= 1− x+ 1
2x

3 − 1
6x

3 + · · ·

We are done finding y1(x). This was not bad at all. Now comes the hard part. Which is finding y2(x).
From (3) it is given by

y2(x) = y1(x) ln (x) +
∞∑

n=1
bnx

n+r

To find bn, we will use the following
bn(r) =

d

dr
(an(r)) (7)

Notice that n starts from 1. Hence

b1(r) =
d

dr
(a1(r))

∣∣∣∣
r=r1

What the above says, is that we first take derivative of an(r) w.r.t. r and evaluate the result at the
root of the indicial equation. Using the table above, we obtain (recalling that r1 = 0 in this example)

n an(r) an(r = r1) bn(r) = d
dr (an(r)) bn(r = r1)

0 1 1 N/A since b starts from n = 1 N/A

1 −
(
r2+r+2

)
2r2+4r+2 −1 d

dr

(
−

(
r2+r+2

)
2r2+4r+2

)
= − (r−3)

2(r+1)3
3
2

2 r4+4r3+17r2+26r+24
12(r+1)2(r+2)2

1
2

d
dr

(
r4+4r3+17r2+26r+24

12(r+1)2(r+2)2

)
= −

(
−r4+7r3+27r2+53r+46

)
6(r2+3r+2)3 − (46)

6(2)3 = − 23
24

3 −
(
r6+3r5+9r4+53r3+158r2+208r+144

)
24(r2+3r+2)2(r+3)2 − 1

6
d
dr

(
−

(
r6+3r5+9r4+53r3+158r2+208r+144

)
24(r2+3r+2)2(r+3)2

)
=

(
−9r7−44r6+24r5+662r4+2137r3+3654r2+3848r+1920

)
24(r3+6r2+11r+6)3

10
27

We have found all bn terms. Hence

y2(x) = y1(x) ln (x) +
∞∑

n=1
bnx

n+r

And since r = r1 = 0 then

y2(x) = y1(x) ln (x) +
(
b1x+ b2x

2 + b3x
3 + b4x

4 + b5x
5 + b6x

6 + · · ·
)

But from the above table, we see that b1 = 3
2 , b2 = − 23

24 , b3 = 3
8 , The above becomes

y2(x) = y1(x) ln (x) +
(
3
2x− 23

24x
2 + 10

27x
3 +O

(
x4))

And we know what y1(x) is from Eq (6A). Hence

y2(x) =
(
1− x+ 1

2x
3 − 1

6x
3 +O

(
x4)) ln (x) +

(
3
2x− 23

24x
2 + 10

27x
3 +O

(
x4))

13



Therefore the general solution is

y(x) = c1y1(x) + c2y2(x)

= c1

(
1− x+ 1

2x
3 − 1

6x
3 +O

(
x4))+ c2

((
1− x+ 1

2x
3 − 1

6x
3 +O

(
x4)) ln (x) +

(
3
2x− 23

24x
2 + 10

27x
3 +O

(
x4)))

This completes the solution.

2 Indicial equation roots differ by an integer

2.1 Example 1. homogeneous ode example where log term is needed
Solve

x2y′′(x)− xy(x) = 0 (1)

Using power series method by expanding around x = 0. Writing the ode as

y′′(x)− 1
x
y(x) = 0

Shows that x = 0 is a singular point. But limx→0 x
2 1
x = 0. Hence the singularity is removable. This

means x = 0 is a regular singular point. In this case the Frobenius power series will be used instead of
the standard power series. Let

y(x) =
∞∑

n=0
anx

n+r

Where r is to be determined. It is the root of the indicial equation. Therefore

y′(x) =
∞∑

n=0
(n+ r) anxn+r−1

y′′(x) =
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2

Substituting the above in (1) gives

x2
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2 − x

∞∑
n=0

anx
n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r −
∞∑

n=0
anx

n+r+1 = 0 (1A)

Here, we need to make all powers on x the same, without making the sums start below zero. This can
be done by adjusting the last term above as follows

∞∑
n=0

anx
n+r+1 =

∞∑
n=1

an−1x
n+r

And now Eq (1A) becomes

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r −
∞∑

n=1
an−1x

n+r = 0 (1B)
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n = 0 gives the indicial equation

(n+ r) (n+ r − 1) anxr = 0
(r) (r − 1) a0xr = 0

Since a0 6= 0 then the above becomes
(r) (r − 1)xr = 0

Since this is true for all x, then
(r) (r − 1) = 0

Hence the roots of the indicial equation are r1 = 1, r2 = 0. Or r1 = r2 +N where N = 1. We always
take r1 to be the larger of the roots.

When this happens, the solution is given by

y(x) = c1y1(x) + c2y2(x)

Where y1(x) is the first solution, which is assumed to be

y1(x) =
∞∑

n=0
anx

n+r (2)

Where we take a0 = 1 as it is arbitrary and where r = r1 = 1. This is the standard Frobenius power
series, just like we did to find the indicial equation, the only difference is that now we use r = r1, and
hence it is a known value. Once we find y1(x), then the second solution is

y2(x) = Cy1(x) ln (x) +
∞∑

n=0
bnx

n+r (3)

We will show below how to find C and bn. First, let us find y1(x). From Eq(2)

y′1(x) =
∞∑

n=0
(n+ r) anxn+r−1

y′′1 (x) =
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2

We need to remember that in the above r is not a symbol any more. It will have the indicial root
value, which is r = r1 = 1 in this case. But we keep r as symbol for now, in order to obtain an(r) as
function of r first and use this to find bn(r). At the very end we then evaluate everything at r = r1 = 1.
Substituting the above in (1) gives Eq (1B) above (We are following pretty much the same process we
did to find the indicial equation here)

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r −
∞∑

n=1
an−1x

n+r = 0 (1B)

Now we are ready to find an. Now we skip n = 0 since that was used to obtain the indicial equation,
and we know that a0 = 1 is an arbitrary value to choose. We start from n = 1. For n ≥ 1 we obtain
the recursion equation

(n+ r) (n+ r − 1) an − an−1 = 0

an = an−1

(n+ r) (n+ r − 1)

15



To more clearly indicate that an is function of r, we write the above as

an(r) =
an−1(r)

(n+ r) (n+ r − 1) (4)

The above is very important, since we will use it to find bn(r) later on. For now, we are just finding
the an. Now we find few more an terms. From (4) for n = 1

a1(r) =
a0(r)

(1 + r) (r) = 1
(1 + r) (r) a0 = 1

and r = r1 = 1 then the above becomes
a1 = 1

2
It is a good idea to use a table to keep record of the an values as function of r, since this will be used
later to find bn.

n an(r) an(r = r1)
0 1 1
1 1

(1+r)(r)
1
2

And for n = 2 from Eq(4)

a2(r) =
a1(r)

(2 + r) (1 + r)
But a1(r) = 1

(1+r)(r) . Then

a2(r) =
1

(1+r)(r)

(2 + r) (1 + r) = 1
r (r + 1)2 (r + 2)

When r = r1 = 1 the above becomes

a2 = 1
(2)2 (3)

= 1
12

The table becomes
n an(r) an(r = r1)
0 1 1
1 1

(1+r)(r)
1
2

2 1
r(r+1)2(r+2)

1
12

For n = 3 Eq (4) gives

a3(r) =
a2(r)

(3 + r) (2 + r)
Using the value of a2(r) from the the above becomes

a3(r) =
1

r(r+1)2(r+2)

(3 + r) (2 + r) = 1
r (r + 1)2 (r + 2)2 (r + 3)

When r = r1 = 1 the above becomes

a3 = 1
(2)2 (3)2 (4)

= 1
144

The Table now becomes
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n an(r) an(r = r1)
0 1 1
1 1

(1+r)(r)
1
2

2 1
r(r+1)2(r+2)

1
12

3 1
r(r+1)2(r+2)2(r+3)

1
144

And so on. Hence y1(x) is

y1(x) =
∞∑

n=0
anx

n+r

But r = r1 = 1. Therefore

y1(x) =
∞∑

n=0
anx

n+1 (5)

= x
∞∑

n=0
anx

n

= x
(
a0 + a1x+ a2x

2 + a3x
3 + · · ·

)
= x

(
1 + 1

2x+ 1
12x

2 + 1
144x

3 + · · ·
)

We are done finding y1(x). This was not bad at all. Now comes the hard part. Which is finding y2(x).
From (3) it is given by

y2(x) = Cy1(x) ln (x) +
∞∑

n=0
bnx

n+r (3)

The first thing to do is to determine if C is zero or not. This is done by finding limr→r2 aN (r). If
this limit exist, then C = 0, else we need to keep the log term. From the above above we see that
aN (r) = a1(r) = 1

(1+r)(r) . Recall that N = 1 since this was the difference between the two roots and
r2 = 0 (the smaller root). Therefore

lim
r→r2

1
(1 + r) (r) = lim

r→0

1
(1 + r) (r)

Which does not exist. Therefore we need to keep the log term. In this case, we replace Eq. (3) back in
the original ODE.

y′2(x) = Cy′1 ln (x) + Cy1
1
x
+

∞∑
n=0

(n+ r) bnxn+r−1

y′′2 (x) = Cy′′1 ln (x) + Cy′1
1
x
+ Cy′1

1
x
− Cy1

1
x2 +

∞∑
n=0

(n+ r) (n+ r − 1) bnxn+r−2

= Cy′′1 ln (x) + 2Cy′1
1
x
− Cy1

1
x2 +

∞∑
n=0

(n+ r) (n+ r − 1) bnxn+r−2

17



Substituting the above in x2y′′(x)− xy(x) = 0 gives

x2

(
Cy′′1 ln (x) + 2Cy′1

1
x
− Cy1

1
x2 +

∞∑
n=0

(n+ r) (n+ r − 1) bnxn+r−2

)
− x

(
Cy1 ln (x) +

∞∑
n=0

bnx
n+r

)
= 0

Cx2y′′1 ln (x) + 2x2Cy′1
1
x
− Cy1 + x2

∞∑
n=0

(n+ r) (n+ r − 1) bnxn+r−2 − Cxy1 ln (x)− x
∞∑

n=0
bnx

n+r = 0

Cx2y′′1 ln (x) + 2xCy′1 − Cy1 +
∞∑

n=0
(n+ r) (n+ r − 1) bnxn+r − Cxy1 ln (x)−

∞∑
n=0

bnx
n+r+1 = 0

C ln (x)
(
x2y′′1 − xy1

)
+ 2xCy′1 − Cy1 +

∞∑
n=0

(n+ r) (n+ r − 1) bnxn+r −
∞∑

n=0
bnx

n+r+1 = 0

But x2y′′1 − xy1 = 0 since y1 is solution to the ode. The above simplifies to

C(2xy′1 − y1) +
∞∑

n=0
(n+ r) (n+ r − 1) bnxn+r −

∞∑
n=0

bnx
n+r+1 = 0 (6)

The above is what we will use to determine C and all the bn. Remembering that r = r2 = 0 in the
above, since this is for the second solution associated with the second root which we found above to
be zero. But we found y1(x) =

∑∞
n=0 anx

n+1 then

y′1 =
∞∑

n=0
(n+ 1) anxn

Eq (6) now becomes

C

(
2x

∞∑
n=0

(n+ 1) anxn

)
− C

( ∞∑
n=0

anx
n+1

)
+

∞∑
n=0

(n+ r) (n+ r − 1) bnxn+r −
∞∑

n=0
bnx

n+r+1 = 0

2C
∞∑

n=0
(n+ 1) anxn+1 − C

∞∑
n=0

anx
n+1 +

∞∑
n=0

(n+ r) (n+ r − 1) bnxn+r −
∞∑

n=0
bnx

n+r+1 = 0

But r = r2 = 0. The above becomes

2C
∞∑

n=0
(n+ 1) anxn+1 − C

∞∑
n=0

anx
n+1 +

∞∑
n=0

n(n− 1) bnxn −
∞∑

n=0
bnx

n+1 = 0

Adjusting the index of terms above, so so all x powers are the same gives

2C
∞∑

n=1
nan−1x

n − C
∞∑

n=1
an−1x

n +
∞∑

n=0
n(n− 1) bnxn −

∞∑
n=1

bn−1x
n = 0 (7)

n = 0 is skipped, since b0 is arbitrary and can be taken as say

b0 = 1

At n = 1, Eq(7) gives
2Ca0 − Ca0 − b0 = 0

But a0 = 1, b0 = 1 hence the above becomes

C = 1
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For bN = b1 we are free to select any value since it is arbitrary. The standard way is to choose

b1 = 0

Now we find the rest of the bn terms. From Eq(7), for n = 2, it gives

2C(2a1)− Ca1 + 2b2 − b1 = 0

But C = 1, b1 = 0 and a1 = 1
2 from table. Hence the above becomes

2
(
212

)
− 1

2 + 2b2 = 0

2− 1
2 + 2b2 = 0

b2 = −3
4

,And for n = 3 from Eq. (7), it gives

2C(3a2)− Ca2 + (3) (2) b3 − b2 = 0

But C = 1, b2 = − 3
4 , a2 = 1

12 . The above becomes

2
(
3
(

1
12

))
− 1

12 + (3) (2) b3 +
3
4 = 0

b3 = − 7
36

And so on. Hence the second solution is, for r = 0, C = 1

y2(x) = Cy1(x) ln (x) +
∞∑

n=0
bnx

n+r

= y1(x) ln (x) +
∞∑

n=0
bnx

n

= y1(x) ln (x) +
(
b0 + b1x+ b2x

2 + b3x
3 + · · ·

)
= y1(x) ln (x) +

(
1 + (0)x− 3

4x
2 − 7

36x
3 + · · ·

)
=
(
x+ 1

2x
2 + 1

12x
3 + 1

144x
4 + · · ·

)
ln x+

(
1 + 3

4x
2 − 7

36x
3 + · · ·

)
= x

(
1 + 1

2x+ 1
12x

2 + 1
144x

3 +O
(
x4)) ln x+

(
1 + 3

4x
2 − 7

36x
3 +O

(
x4))

Some observations: bN is always taken as zero. Where N is the difference between the roots. In this
case it is b1 = 0. Now that we found y1, y2 then the general solution is

y = C1y1 + C2y2

= C1x

(
1 + 1

2x+ 1
12x

2 + 1
144x

3 +O
(
x4))+ C2

(
x

(
1 + 1

2x+ 1
12x

2 + 1
144x

3 +O
(
x4)) ln x+

(
1 + 3

4x
2 − 7

36x
3 +O

(
x4)))

This completes the solution.
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2.2 Example 2. homogeneous ode example where log term is needed
Solve

x
3
2 y′′ + y = 0

Since x = 0 is regular singular point, then Frobenius power series must be used. Let the solution be
represented as Frobenius power series of the form

y =
∞∑

n=0
anx

n
2 +r

Then

y′ =
∞∑

n=0

(n
2 + r

)
anx

n
2 +r−1

y′′ =
∞∑

n=0

(n
2 + r

)(n
2 + r − 1

)
anx

n
2 +r−2

Substituting the above back into the ode gives

x
3
2

( ∞∑
n=0

(n
2 + r

)(n
2 + r − 1

)
anx

n
2 +r−2

)
+
( ∞∑

n=0
anx

n
2 +r

)
= 0

∞∑
n=0

(n
2 + r

)(n
2 + r − 1

)
anx

n
2 +r− 1

2 +
∞∑

n=0
anx

n
2 +r = 0 (1A)

n = 0 gives the indicial equation

(r) (r − 1) a0xr− 1
2 + a0x

r = 0(
(r) (r − 1)xr− 1

2 + xr
)
a0 = 0

(r) (r − 1)xr− 1
2 + xr = 0(

(r) (r − 1)x− 1
2 + 1

)
xr = 0

(r) (r − 1) 1√
x
+ 1 = 0

Not possible to obtain indicial equation in r only. How to handle this? Maple can’t solve this using
series solution either.

2.3 Example 3. homogeneous ode example where log term is not needed
Solve

x2y′′ + 3xy′ + 4x4y = 0 (1)

Using power series method by expanding around x = 0. Writing the ode as

y′′(x) + 3
x
y′ + 4x2y = 0
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Shows that x = 0 is a singular point. But limx→0 x
3
x = 3. Hence the singularity is removable. This

means x = 0 is a regular singular point. In this case the Frobenius power series will be used instead of
the standard power series. Let

y(x) =
∞∑

n=0
anx

n+r

Where r is to be determined. It is the root of the indicial equation. Therefore

y′(x) =
∞∑

n=0
(n+ r) anxn+r−1

y′′(x) =
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2

Substituting the above in (1) gives

x2
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2 + 3x

∞∑
n=0

(n+ r) anxn+r−1 + 4x4
∞∑

n=0
anx

n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑

n=0
3(n+ r) anxn+r +

∞∑
n=0

4anxn+r+4 = 0 (1A)

Here, we need to make all powers on x the same, without making the sums start below zero. This can
be done by adjusting the last term above as follows

∞∑
n=0

4anxn+r+4 =
∞∑

n=4
4an−4x

n+r

And now Eq (1A) becomes
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r +

∞∑
n=0

3(n+ r) anxn+r +
∞∑

n=4
4an−4x

n+r = 0 (1B)

n = 0 gives the indicial equation

(n+ r) (n+ r − 1) an + 3(n+ r) an = 0
(r) (r − 1) a0 + 3ra0 = 0
((r) (r − 1) + 3r) a0 = 0

Since a0 6= 0 then the above becomes

(r) (r − 1) + 3r = 0

Hence the roots of the indicial equation are r1 = 0, r2 = −2. Or r1 = r2 +N where N = 2. We always
take r1 to be the larger of the roots.

When this happens, the solution is given by

y(x) = c1y1(x) + c2y2(x)

Where y1(x) is the first solution, which is assumed to be

y1(x) =
∞∑

n=0
anx

n+r (2)
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Where we take a0 = 1 as it is arbitrary and where r = r1 = 0. This is the standard Frobenius power
series, just like we did to find the indicial equation, the only difference is that now we use r = r1, and
hence it is a known value. Once we find y1(x), then the second solution is

y2(x) = Cy1(x) ln (x) +
∞∑

n=0
bnx

n+r (3)

We will show below how to find C and bn. First, let us find y1(x). From Eq(2)

y′1(x) =
∞∑

n=0
(n+ r) anxn+r−1

y′′1 (x) =
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2

We need to remember that in the above r is not a symbol any more. It will have the indicial root
value, which is r = r1 = 0 in this case. But we keep r as symbol for now, in order to obtain an(r) as
function of r first and use this to find bn(r). At the very end we then evaluate everything at r = r1 = 0.
Substituting the above in (1) gives Eq (1B) above (We are following pretty much the same process we
did to find the indicial equation here)

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑

n=0
3(n+ r) anxn+r +

∞∑
n=4

4an−4x
n+r = 0 (1B)

Now we are ready to find an. Now we skip n = 0 since that was used to obtain the indicial equation,
and we know that a0 = 1 is an arbitrary value to choose.

For n = 1, Eq (1B) gives

(1 + r) (1 + r − 1) a1 + 3(1 + r) a1 = 0
((1 + r) (1 + r − 1) + 3(1 + r)) a1 = 0(

r2 + 4r + 3
)
a1 = 0

But r = r1 = 0. The above becomes
3a1 = 0

Hence a1 = 0.

It is a good idea to use a table to keep record of the an values as function of r, since this will be used
later to find bn.

n an(r) an(r = r1)
0 1 1
1 0 0

For n = 2, Eq (1B) gives

(2 + r) (2 + r − 1) a2 + 3(2 + r) a2 = 0
((2 + r) (2 + r − 1) + 3(2 + r)) a2 = 0

But r = r1 = 0. The above becomes

((2) (1) + 3(2)) a2 = 0
8a2 = 0

Hence a2 = 0. The table becomes
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n an(r) an(r = 0)
0 1 1
1 0 0
2 0 0

For n = 3, Eq (1B) gives
(3 + r) (3 + r − 1) a3 + 3(3 + r) a3 = 0

But r = 0. The above becomes

(3) (2) a3 + 3(3) a3 = 0
15a3 = 0

Hence a3 = 0 and the table becomes

n an(r) an(r = 0)
0 1 1
1 0 0
2 0 0
3 0 0

For n ≥ 4 we obtain the recursion equation

(n+ r) (n+ r − 1) an + 3(n+ r) an + 4an−4 = 0
((n+ r) (n+ r − 1) + 3(n+ r)) an + 4an−4 = 0

an(r) = − 4an−4(r)
(n+ r) (n+ r − 1) + 3 (n+ r) (4)

The above is very important, since we will use it to find bn(r) later on. For now, we are just finding
the an. Now we find few more an terms. From (4) for n = 4

a4(r) = − 4a0(r)
(4 + r) (4 + r − 1) + 3 (4 + r)

and r = r1 = 0 and a0 = 1, then the above becomes

a4 = − 4
(4) (3) + 3 (4) = −1

6

The table becomes

n an(r) an(r = 0)
0 1 1
1 0 0
2 0 0
3 0 0
4 − 4

(4+r)(4+r−1)+3(4+r) − 1
6

And for n = 5 from Eq(4)

a5(r) = − 4a1(r)
(n+ r) (n+ r − 1) + 3 (n+ r)

= 0
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Since a1 = 0. Similarly a6 = 0, a7 = 0. For n = 8

a8(r) = − 4a4(r)
(8 + r) (8 + r − 1) + 3 (8 + r)

But a4(r) = − 4
(4+r)(4+r−1)+3(4+r) . The above becomes

a8(r) =
4 4
(4+r)(4+r−1)+3(4+r)

(8 + r) (8 + r − 1) + 3 (8 + r) = 16
r4 + 28r3 + 284r2 + 1232r + 1920

When r = r1 = 0 the above becomes
a8(r) =

1
120

And so on. The table becomes

n an(r) an(r = 0)
0 1 1
1 0 0
2 0 0
3 0 0
4 − 4

(4+r)(4+r−1)+3(4+r) − 1
6

5 0 0
6 0 0
7 0 0
8 16

r4+28r3+284r2+1232r+1920
1

120

Hence y1(x) is

y1(x) =
∞∑

n=0
anx

n+r

But r = r1 = 0. Therefore

y1(x) =
∞∑

n=0
anx

n (5)

= a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7 + a8x
8 + · · ·

Using values found for an in the above table, then (5) becomes

y1(x) = 1 + a4x
4 + a8x

8 + · · ·

= 1− 1
6x

4 + 1
120x

8 +O
(
x9)

We are done finding y1(x). This was not bad at all. Now comes the hard part. Which is finding y2(x).
From (3) it is given by

y2(x) = Cy1(x) ln (x) +
∞∑

n=0
bnx

n+r (3)

The first thing to do is to determine if C is zero or not. This is done by finding limr→r2 aN (r). If
this limit exist, then C = 0, else we need to keep the log term. From the above above we see that
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aN (r) = a2(r) = 0. Recall that N = 2 since this was the difference between the two roots and r2 = −2
(the smaller root). Therefore

lim
r→r2

0 = lim
r→0

0 = 0

Hence the limit exist. Therefore we do not need the log term. This means we can let C = 0. This is
the easy case. Hence (3) becomes

y2(x) =
∞∑

n=0
bnx

n+r (3A)

= x−2
∞∑

n=0
bnx

n

Since r = r2 = −2. Let b0 = 1. We have to remember now that bN = b2 = 0. This is the same we did
when the log term was needed in the above example, since bN is arbitrary, and used to generate y1(x).
Common practice is to use bN = 0. The rest of the bn are found in similar way, from recursive relation
as was done above. Substituting (3A) into x2y′′ + 3xy′ + 4x4y = 0 gives Eq. (1B) again, but with an
replaced by bn

∞∑
n=0

(n+ r) (n+ r − 1) bnxn+r +
∞∑

n=0
3(n+ r) bnxn+r +

∞∑
n=4

4bn−4x
n+r = 0 (1B)

For n = 0 , we skip and let b0 = 1. For n = 1 the above gives b1 = 0. And b2 = 0 since it is the special
term bN . And for n = 3, we get b3 = 0. The table for bn is now

n bn(r) bn(r = −2)
0 1 1
1 0 0
2 0 0
3 0 0

For n ≥ 4, the recursion relation is

(n+ r) (n+ r − 1) bn + 3(n+ r) bn + 4bn−4 = 0

bn(r) = − 4bn−4(r)
(n+ r) (n+ r − 1) + 3 (n+ r)

For n = 4

b4(r) = − 4b0(r)
(4 + r) (4 + r − 1) + 3 (4 + r)

= − 4
(4 + r) (4 + r − 1) + 3 (4 + r) b0 = 1

but r = −2. The above becomes

b4 = − 4
(4− 2) (4− 2− 1) + 3 (4− 2) = −1

2

The table becomes
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n bn(r) bn(r = −2)
0 1 1
1 0 0
2∗ 0 0
3 0 0
4 − 4

(4+r)(4+r−1)+3(4+r) − 1
2

We will find that b5 = b6 = b7 = 0. And for n = 8

b8(r) = − 4b4(r)
(8 + r) (7 + r) + 3 (8 + r)

But b4(r) = − 4
(4+r)(4+r−1)+3(4+r) . Hence

b8(r) =
4 4
(4+r)(4+r−1)+3(4+r)

(8 + r) (7 + r) + 3 (8 + r) = 16
r4 + 28r3 + 284r2 + 1232r + 1920

But r = −2.
b8(r) =

16
(−2)4 + 28 (−2)3 + 284 (−2)2 + 1232 (−2) + 1920

= 1
24

The table becomes

n bn(r) bn(r = −2)
0 1 1
1 0 0
2∗ 0 0
3 0 0
4 − 4

(4+r)(4+r−1)+3(4+r) − 1
2

5 0 0
6 0 0
7 0 0
8 16

r4+28r3+284r2+1232r+1920
1
24

And so on. Hence the second solution is

y2(x) =
∞∑

n=0
bnx

n+r

=
∞∑

n=0
bnx

n−2

= x−2
∞∑

n=0
bnx

n

= x−2(b0 + b1x+ b2x
2 + b3x

3 + b4x
4 + b5x

5 + b6x
6 + b7x

7 + b8x
8 + · · ·

)
= x−2

(
1− 1

2x
4 + 1

24b8x
8 +O

(
x9))
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Therefore the general solution is

y = C1y1 + C2y2

= C1

(
1− 1

6x
4 + 1

120x
8 +O

(
x9))+ C2

(
x−2

(
1− 1

2x
4 + 1

24b8x
8 +O

(
x9)))

The following are important items to remember. Always let bN = 0 where N is the difference between
the roots. When the log term is not needed (as in this problem), y2 is found in very similar way to
y1 where b0 = 1 and the recursion formula is used to find all bn. But when the log term is needed (as
in the above problem), it is a little more complicated and need to find C and b1 values by comparing
coefficients as was done).

This completes the solution.

3 Indicial equation roots are complex conjugate

3.1 Example 1. homogeneous ode example

x2y′′ + x2y′ + y = 0 (1)

With expansion around x = 0. This is a regular singular ODE. Let

y(x) =
∞∑

n=0
anx

n+r

Where r is to be determined. It is the root of the indicial equation. Therefore

y′(x) =
∞∑

n=0
(n+ r) anxn+r−1

y′′(x) =
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2

Substituting the above in (1) gives

x2
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2 + x2

∞∑
n=0

(n+ r) anxn+r−1 +
∞∑

n=0
anx

n+r = 0

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑

n=0
(n+ r) anxn+r+1 +

∞∑
n=0

anx
n+r = 0 (1A)

Here, we need to make all powers on x the same, without making the sums start below zero. This can
be done by adjusting the middle term above as follows

∞∑
n=0

(n+ r) anxn+r+1 =
∞∑

n=1
(n+ r − 1) an−1x

n+r

And now Eq (1A) becomes

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r +
∞∑

n=1
(n+ r − 1) an−1x

n+r +
∞∑

n=0
anx

n+r = 0 (2A)

27



n = 0 gives the indicial equation

(n+ r) (n+ r − 1) a0xr + a0x
r = 0

(r) (r − 1) a0xr + (r) a0xr = 0
((r) (r − 1) a0 + a0)xr = 0

((r) (r − 1) + 1) a0 = 0

Since a0 6= 0 then

(r) (r − 1) + 1 = 0
r2 − r + 1 = 0

The roots are

r1 = 1
2 + 1

2 i
√
3

r2 = 1
2 − 1

2 i
√
3

The roots will always be complex conjugate of each others (since second order ode) and the real part
will always be equal. Let the roots be

r1,2 = α± iβ

When this happens, the solution is given similar to the case when the roots differ by non integer,
except now the solution and the coefficients will be complex. Let the solution be

y(x) = c1y1(x) + c2y2(x)

Now y1(x) is solved for. The solution is

y1(x) = xr1

∞∑
n=0

anx
n

Starting with Eq (2A) which was derived above gives

∞∑
n=0

(n+ r1) (n+ r1 − 1) anxn+r1 +
∞∑

n=1
(n+ r1 − 1) an−1x

n+r1 +
∞∑

n=0
anx

n+r1 = 0

The case of n = 0 is skipped since this was used to find the roots and a0 = 1 is assumed.

n ≥ 1 gives the recursion equation

(n+ r1) (n+ r1 − 1) an + (n+ r1 − 1) an−1 + an = 0
(n+ r1) (n+ r1 − 1) an + an = −(n+ r1 − 1) an−1

an = −(n+ r1 − 1) an−1

(n+ r1) (n+ r1 − 1) + 1 (3)

For n = 1 Eq. (3) gives
a1 = −r1an−1

(1 + r1) (r1) + 1
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But r1 = α± iβ = 1
2 + 1

2 i
√
3. and a0 = 1. Hence the above becomes

a1 =
−
( 1
2 + 1

2 i
√
3
)(

1 + 1
2 + 1

2 i
√
3
) ( 1

2 + 1
2 i
√
3
)
+ 1

= −1
2

For n = 2 Eq. (3) gives

a2 = −(1 + r1) a1
(2 + r1) (1 + r1) + 1 =

−(1 + r1)
(−1

2
)

(2 + r1) (1 + r1) + 1 =
−
(
1 + 1

2 + 1
2 i
√
3
) (−1

2
)(

2 + 1
2 + 1

2 i
√
3
) (

1 + 1
2 + 1

2 i
√
3
)
+ 1

= 9
56−

1
56 i

√
3

For n = 3 Eq. (3) gives

a3 = −(3 + r1 − 1) a2
(3 + r1) (2 + r1) + 1 =

−(3 + r1 − 1)
( 9
56 − 1

56 i
√
3
)

(3 + r1) (2 + r1) + 1 =
−
(
2 + 1

2 + 1
2 i
√
3
) ( 9

56 − 1
56 i

√
3
)(

3 + 1
2 + 1

2 i
√
3
) (

2 + 1
2 + 1

2 i
√
3
)
+ 1

= 1
112 i

√
3− 13

336

And so on. Hence the first solution is

y1(x) = xr1

∞∑
n=0

anx
n = x

1
2+

1
2 i

√
3(a0 + a1x+ a2x

2 + a3x
3 + · · ·

)
(4)

but

x
1
2+

1
2 i

√
3 = x

1
2x

1
2 i

√
3 = x

1
2 e

ln
(
x

1
2 i

√
3
)
= x

1
2 e

i ln
(
x

√
3

2

)
= x

1
2

(
cos
(
ln x

√
3

2

)
+ i sin

(
ln x

√
3

2

))
Substituting the above in (4) and using values found for an gives

y1(x) = x
1
2

(
cos
(
ln x

√
3

2

)
+ i sin

(
ln x

√
3

2

))(
1− 1

2x+
(

9
56 − 1

56 i
√
3
)
x2 +

(
− 13
336 + 1

112 i
√
3
)
x3 + · · ·

)
(5)

Since the roots are complex conjugate of each others, then the second solution is

y2(x) = x
1
2

(
cos
(
ln x

√
3

2

)
− i sin

(
ln x

√
3

2

))(
1− 1

2x+
(

9
56 + 1

56 i
√
3
)
x2 +

(
− 13
336 − 1

112 i
√
3
)
x3 + · · ·

)
(6)

The final solution is therefore
y(x) = c1y1(x) + c2y2(x)

4 Second order Regular singular point with RHS not zero

xy′′ + y = x (1)

zero is regular singular point. Hence Frobenius series gives

y(x) =
∞∑

n=0
anx

n+r

Where r is to be determined. It is the root of the indicial equation. Therefore

y′(x) =
∞∑

n=0
(n+ r) anxn+r−1

y′′(x) =
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2
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Substituting the above in (1) gives

x
∞∑

n=0
(n+ r) (n+ r − 1) anxn+r−2 +

∞∑
n=0

anx
n+r = x

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 +
∞∑

n=0
anx

n+r = x (1A)

Adjusting indices to all powers of x are the same gives

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 +
∞∑

n=1
an−1x

n+r−1 = x

The indicial equation is found from only the terms with the expansion of the dependent variable y.
This means by making the LHS of (3) vanish. We only consider

∞∑
n=0

(n+ r) (n+ r − 1) anxn+r−1 +
∞∑

n=1
an−1x

n+r−1 = 0 (1C)

For n = 0

(n+ r) (n+ r − 1) anxn+r−1 = 0
(r) (r − 1) a0xr−1 = 0

(r) (r − 1) = 0

Hence roots are r1 = 1, r2 = 0. Hence the two basis solution for yh are

y1 = xr1

∞∑
n=0

anx
n =

∞∑
n=0

anx
n+1

y2 = C1y1 ln x+ xr2

∞∑
n=0

bnx
n = C1y1 ln x+

∞∑
n=0

bnx
n

To find y1, we can find the recursive equation to be for n > 0

an = − an−1

n (n+ 1)

Which results in

y1 = x− x2

2 + x3

12 − x4

144 + x5

2880 + · · ·

Finding y2 is a little more involved because we need to determine C. This can be found to be C = −1.
Using this we can find
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y2 =
(
−x+ x2

2 − x3

12 + x4

144 − x5

2880 + · · ·
)
ln x+

(
1− 3

4x
2 + 7x3

36 − · · ·
)

Hence

yh = c1y1 + c2y2

= c1

(
x− x2

2 + x3

12 − x4

144 + x5

2880 + · · ·
)
+ c2

((
−x+ x2

2 − x3

12 + x4

144 − x5

2880 + · · ·
)
ln x+

(
1− 3

4x
2 + 7x3

36 − · · ·
))

(2)

What is left is to find yp. This is found using undetermined coefficients. Since the RHS is x. let
yp = A0 +A1x. Then substituting this into the original ode xy′′ + y = x gives

A0 +A1x = x

Hence A0 = 0, A1 = 1. Therefore yp = x. Hence the final solution is

y = yh + yp

= yh + x

Where yh is given in (2).

5 Examples using series solution on first order ode

5.1 Example 1. Regular singular point
xy′ + y = 0 (1)

With expansion around x = 0. Since x is regular singular point, then let

y =
∞∑

n=0
cnx

n+r

y′ =
∞∑

n=0
(n+ r) cnxn+r−1

Then (1) becomes

x
∞∑

n=0
(n+ r) cnxn+r−1 +

∞∑
n=0

cnx
n+r = 0 (2)

∞∑
n=0

(n+ r) cnxn+r +
∞∑

n=0
cnx

n+r = 0 (3)
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For n = 0

rc0x
r + c0x

r = 0
(r + 1)xr = 0

Hence r = −1. Therefore (3) becomes
∞∑

n=0
(n− 1) cnxn−1 +

∞∑
n=0

cnx
n−1 = 0

ncnx
n−1 = 0

For n = 1 (because n = 0 was used to find r)

c1x
0 = 0
c1 = 0

And all other cn = 0. Hence solution is for n = 0 only, which is

y =
∞∑

n=0
cnx

n+r

= c0x
−1

= c0
x

5.2 Example 2. regular singular point
xy′ + y = x (1)

With expansion around x = 0. Since x is regular singular point, then let

y =
∞∑

n=0
cnx

n+r

y′ =
∞∑

n=0
(n+ r) cnxn+r−1

Then (1) becomes

x
∞∑

n=0
(n+ r) cnxn+r−1 +

∞∑
n=0

cnx
n+r = x (2)

∞∑
n=0

(n+ r) cnxn+r +
∞∑

n=0
cnx

n+r = x (3)

The indicial equation is found from only the terms with the expansion of the dependent variable y.
This means by making the LHS of (3) vanish. We only consider

∞∑
n=0

(n+ r) cnxn+r +
∞∑

n=0
cnx

n+r = 0 (3A)

From (3A) and for n = 0 it becomes

rc0x
r + c0x

r = 0
(r + 1) c0xr = 0
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Hence r = −1. Now that we found r, we go back to (3) and it becomes

∞∑
n=0

(n− 1) cnxn−1 +
∞∑

n=0
cnx

n−1 = x

((n− 1) + 1) cnxn−1 = x

ncnx
n−1 = x

To balance the above equation, only n = 2 will actually work, since on the right we have x1. Then for
only n = 2 we obtain

2c2x = x

c2 = 1
2

Hence the series solution is

y = c0x
−1 + c2x

= c0
x

+ 1
2x

5.3 Example 3. regular singular point
xy′ + y = 1 (1)

With expansion around x = 0. Since x is regular singular point, then using Frobenius series gives

y =
∞∑

n=0
cnx

n+r

y′ =
∞∑

n=0
(n+ r) cnxn+r−1

Eq (1) becomes

x
∞∑

n=0
(n+ r) cnxn+r−1 +

∞∑
n=0

cnx
n+r = 1 (2)

∞∑
n=0

(n+ r) cnxn+r +
∞∑

n=0
cnx

n+r = 1 (3)

The indicial equation is found from only the terms with the expansion of the dependent variable y.
This means by making the LHS of (3) vanish. We only consider

∞∑
n=0

(n+ r) cnxn+r +
∞∑

n=0
cnx

n+r = 0 (3A)

For n = 0 the above becomes

rc0x
r + c0x

r = 0
(r + 1) c0xr = 0
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Hence r = −1. Therefore (3) becomes

∞∑
n=0

(n− 1) cnxn−1 +
∞∑

n=0
cnx

n−1 = 1

((n− 1) + 1) cnxn−1 = 1
ncnx

n−1 = 1

To balance the above equation, only n = 1 will actually work, since on the right we have x0. Then for
only n = 1 we obtain

c1 = 1

And all other cn = 0. Therefore the solution is

y =
∞∑

n=0
cnx

n+r

= c0x
−1 + c1

= c0
x

+ 1

5.4 Example 4. regular singular point
xy′ + y = k (1)

With expansion around x = 0. Since x is regular singular point, then using Frobenius series gives

y =
∞∑

n=0
cnx

n+r

y′ =
∞∑

n=0
(n+ r) cnxn+r−1

Eq (1) becomes

x
∞∑

n=0
(n+ r) cnxn+r−1 +

∞∑
n=0

cnx
n+r = k (2)

∞∑
n=0

(n+ r) cnxn+r +
∞∑

n=0
cnx

n+r = k (3)

The indicial equation is found from only the terms with the expansion of the dependent variable y.
This means by making the LHS of (3) vanish. We only consider

∞∑
n=0

(n+ r) cnxn+r +
∞∑

n=0
cnx

n+r = 0 (3A)

For n = 0 the above becomes

rc0x
r + c0x

r = 0
(r + 1) c0xr = 0
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Hence r = −1. Therefore (3) becomes

∞∑
n=0

(n− 1) cnxn−1 +
∞∑

n=0
cnx

n−1 = k

((n− 1) + 1) cnxn−1 = k

ncnx
n−1 = k

To balance the above equation, only n = 1 will actually work, since on the right we have x0. Then for
only n = 1 we obtain

c1 = k

And all other cn = 0. Therefore the solution is

y =
∞∑

n=0
cnx

n+r

= c0x
−1 + c1

= c0
x

+ k
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