Examples solving second order linear ode using power series

method for the case of a regular singular point
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1 Indicial equation has repeated root

1.1 Example 1. homogeneous ode example

Solve
2%y (z) + 2y () + z%y(z) = 0 (1)

Using power series method by expanding around z = 0. Writing the ode as
1
y'(2) + ' (@) +y(z) =0

Shows that z = 0 is a singular point. But lim,_,¢ x% = 1. Hence the singularity is removable. This
means z = 0 is a regular singular point. In this case the Frobenius power series will be used instead of
the standard power series. Let

oo
y(x) — Z anxn-l-r
n=0

Where r is to be determined. It is the root of the indicial equation. Therefore

Y(@) =Y (1) a7

n=0
y'(z) = Z (n+r)(n+r—1)a,z" 2
n=0
Substituting the above in (1) gives
z? Z (n+r)(n+r—1)az""" 2 +z Z (n+7)az" ™! 4 22 Z apz"" =0
n=0 n=0 n=0
(e 9] (e 9) oo
Z (m+7)(n+7r—1)az"t" + Z (n+71)anz™ + Z anz" T2 =0 (1A)
n=0 n=0 n=0

Here, we need to make all powers on x the same, without making the sums start below zero. This can
be done by adjusting the last term above as follows

e o) [ee)
Z anxn+r+2 — Z an_zxn—i-r
n=0 n=2
And now Eq (1A) becomes
o0 oo (e 9]
Z (n+r)(n+r—1)a " + Z (n+7)a,z"" + Z An—2z"t" =0
n=0 n=0 n=2

n = 0 gives the indicial equation

m+r)y(n+r—1)aoz" + (n+7r)agx” =0
(r)(r—1)apz” + (r)agz” =0
((r)(r—=1)ap+rap)z" =0
(r)(r=1)4+r)ag=0



Since ag # 0 then

(r)(r=1)4+r=0
r—r+r=0

r2=0

Hence the roots of the indicial equation are r = 0 which is a double root. Hence r1 = r = 0. When
this happens, the solution is given by

y(x) = ayi(z) + coy2()

Where y; (z) is the first solution, which is assumed to be

yi(@) =) ana™" 2)
n=0

Where we take ag = 1 as it is arbitrary and where r = r;. This is the standard Frobenius power series,
just like we did to find the indicial equation, the only difference is that now we use r = r1, and hence
it is a known value. Once we find y; (), then the second solution is

y2(2) = y1(2) In (2) + ) buz"™*" 3)

Something important to notice. In the sum above, it starts from 1 and not from 0. The main issue is
how to find b,. Since that is the only thing we need to be able to complete the solution as y;(z) is
easily found. It turns out that there is a relation between the b, and the a,,. The b, can be found
by taking just derivative of a,, as function of r for each n and then evaluate the result at r = r;. How
this is done will be shown below. First we need to find y; (z). From (2)

yi(@) =D (n+r)amz"
yi(z) = Z (n+r)(n+r—1)a,z" 2

We need to remember that in the above r is not a symbol any more. It will have the indicial root
value, which is 7 = 7, = 0 in this case. But we keep r as symbol for now, in order to obtain a,(r) as
function of r first and use this to find b, (r). At the very end we then evaluate everything at r = r; = 0.
Substituting the above in (1) gives (We are following pretty much the same process we did to find the
indicial equation here)

[eo] (e o] o
z? Z (n+r)(n+r—1)a, 2" 2 +z Z (n+7)az™ 1 4 22 Z a,z™tT =0 (4)
n=0 n=0 n=0

oo o0 oo
Z (n+r)(n+r—1)a,z"" + Z (n+7)az™" + Z Azt 2 =0

n=0 n=0 n=0
Z n+7r)(n+r—1)az"" + Z (n+71)anz™™ + Z An_oz™t" =0 (5)
n=0 n=0 n=2



Now we are ready to find a,,. Now we skip n = 0 since that was used to obtain the indicial equation,
and we know that ap = 1 is an arbitrary value to choose. We start from n = 1. Eq (5) gives

m+r)y(n+r—1ari+m+r)a; =0
1+rAQ+r—1a1+(Q+71)a; =0
(Q+r)Q+r—-1)+(1+4+r)a1=0

(r+1)%a; =0

But r = r; = 0. The above becomes a; = 0. It is a good idea to use a table to keep record of the a,,
values as function of r, since this will be used later to find b,,.

n | an(r) | ap(r =r1)
0|1 1
1

For n > 2 we obtain the recursion equation

m+r)(n+r—1)an+(n+r)ap+an_2=0
An—2

(n+r)(n+r—1)+(n+r)

ap = —

To more clearly indicate that a, is function of r, we write the above as

an—2(T)
(n+r)(n+r—1)+(n+r) (©6)

an(r) =—

The above is very important, since we will use it to find b, (r) later on. For now, we are just finding
the a,,. Now we find few more a,, terms. From (6) for n = 2

asx(r) =— ao(r)
2 2+ C+r—1)+(2+7)
But ag(r) = 1. The above becomes
aalr) = 1 1
T TR+ 2+ (r42)?
and 7 = 1 = 0 then the above becomes
a 11
e 4
The table now becomes
n | an(r) an(r =r1)
0|1 1
1 0
1 1
2|~ | T3
And forn =3
as(r) = — alr)
B+r)B+r—1)+(3+r)

But a;(r) = 0. Then as(r) = 0. The table becomes
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For n = 4 Eq (6) gives
az(r)
44r)y(d+r—-1)+4+r)

as(r) = —(

Hence

But as(r) from the table is — (2+r)(2+T1_1)+(2+T) .

1
T ) —D)F(2+r) _ 1
44+r)(d+r—-1)+A4+7)  (r2+6r+8)

aq(r) = —(

The above becomes at r =71 =0

The Table now becomes

(=

__1
(r+2)2
0

o

=W N =IO 3

1
4

=2}

1
(r2+67+8)2

For n =5 Eq (6) gives
as(r)
n+r)(n+r—1)+(n+r)

But as(r) = 0, hence a5(r) = 0. The table becomes

as(r) = 1

an(r) an(r=r1)
1 1
0 0

__1
(r+2)2
0 0

1 1
(r246r+8)2 64

0

G =W N RO S

For n = 6 Eq (6) gives
ay(r)
6+r)(6+r—1)+(6+7)

ag(r) = —(

But from the table a4 y7> SO the above becomes

_ 1
(r) = Gverrar

1
(r2+67+8)2 1

aﬁ(r)=_(6+r)(6+r—1)+(6+r)  (r+6)°(r2+6r+38)°



At r = r{ = 0 the above becomes

a (7‘) _ 1 _ 1
6 6)% (8)° 2304
The table becomes
n | an(r) an(r=rm1)
0|1 1
1 0
2 | -1 -1
(r+2) 4
310 0
1 1
4 (r2+67r+8)2 64
510 0
6 | -—— L | __1
(r+6)%(r2+6r+8)> 2304
And so on. Hence y;(z) is
o0
yl(x) — Z anxn-i-r
n=0
But r = r; = 0. Therefore
y1(x) = ap + a1z + apx? + azxd + asz* + a5z’ + agz® + - - - (6A)
1 1
=1—--22+ —2* 20 4.

47 647 2304
We are done finding y; (z). This was not bad at all. Now comes the hard part. Which is finding ya(z).
From (3) it is given by

y2(z) = y1(z) In (z) + Z b,z

To find b, we will use the following

bn(r) = 5(0%(7')) (7)
Notice that n starts from 1. Hence

bir) = ()|

What the above says, is that we first take derivative of a,(r) w.r.t. r and evaluate the result at the
root of the indicial equation. Using the table above, we obtain (recalling that r; = 0 in this example)

n | an(r) an(r =11) | bu(r) = Z(an(r)) bu(r =r1)
0|1 1 N/A since b starts from n =1 N/A
110 0 0 0
9 | 1 __ _1 d (_#> - _2 2 _1
2’ 1 ar\ "7 ) = o @° ~ 1
310 0 0 0
4 1 1 4 1 — _9__2rt6 9.6 _ _ 3
(2 6r+8)2 64 dr \ (r2+6r+8)2 ) — ~ “(r2+6r+8)° (8 — 128
5|0 0 0 0
6 | - 1 | _ 1 d (_ 1 ) —9___3r’t24ri4d g 44 _ 1
(r+6)2(r24+67+8)2 2304 dr (r+6)2(r24+6r+8)2 ) — “ (r3+12r24+44r+48)3 (48)° — 13824




We have found all b,, terms. Hence
(o]
y2(z) = y1(z) In (z) + Z b,z 1"
n=1
And since r = r; = 0 then

y2(z) = y1(z) In (z) + (blx + boxz? + by + baz? + bsz® + bga® + - - )

But from the above table, we see that by = 0,b; = %, b3 =0,by = _ﬁ?’s’ bs =0,bg = ﬁ. The above
becomes

_ 1o 3 4 11 8
va(@) = y1(z)In (@) + (495 128% * 13824 TO0)
And we know what y;(z) is from Eq (6A). Hence
1 1 1 1 3 11
I T T B S 8) ) | Lo 9 a4, 1 6 8
Yo () < 1° T 5%~ 30® +0(z )) n(z) + <4x 198% + 13822° +0(z )>

Therefore the general solution is

y(z) = c1y1(x) + coya(z)

1 1 1
_ 1_72 4 - 6 8
—cl< 4:1: +64a: 230433 +O(a:)

1, 14 1 s 8 1, 3 4 11 4 8
+Cz(<1 1% T T mu® TOE) )@+ (37 - g7+ ggg® +O)

This completes the solution. This method is easier that reduction of order, which would involve having
to compute integrals (I should make another example showing that method also). The only difficulty in
this method, is to make sure when finding the b,, is to have access to the a,, with r being unevaluated
form in order to take derivatives correctly. This was done above by keeping a table of these quantities
updated.

1.2 Example 2. inhomogeneous ode example

Solve
z?y" (z) + 2y’ (z) + 2%y (z) = sin (z) (1)

Let the solution be y = y;, + y, where y; is the solution to the homogeneous ode which we found
above. And y, is a particular solution. Let

Yp :co+clw+czm2+03x3+04x4+~-~
Then

y;, =c1 + 2¢ox + 3c3x? + deqx® + - -
Y, = 2c2 + 6czz + 12c42® + -

Substituting the above in (1) gives

2 (22 + 6csz + 1242 + - - ) +a (1 + 2c2z + 3c3z” + 4caz® + -+ ) +2% (co + 1z + 22 + c32® + caz + -+ +) =sin(z)



Now we replace sin (z) by its Taylor series expansion around z = 0, The above becomes

1 1
z2 (252 + 6czx + 1204z2 + - )-I-z(cl + 2cox + 303z2 + 4C4933 + - )+:c2 (co +cix+ cza:Z + cga:3 + 04m4 + - ) = z—éz3+m z°—

Expanding terms gives

1
(202.’1}2 + 603x3 + 1204:1:4 + .- )—i—(clx + 202x2 + 303363 + 4C4x4 + - )+(cox2 + clx3 + 02x4 + 03905 + 04:1:6 + - ) = x—f +—

120
Or
1 1
2%(co)+x(c1)+2%(4e + co)+23(9cs + 1) +x*(16¢4 + c2)+2°(25¢5 + ¢3) -+ = (0) +x— x +E()x5_' -
Where ¢y was added explicitly since the RHS starts at x'. Now comparing terms gives
Co = 0
C1 = 1
4co +cg =0
9c3+¢c1 = —=
16c4 +co =0
25
Cs + c3 = 120
The solution is [co =0,c1 =1,c0 =0,c3 = —é, cys =0,c5 = 2;‘500} Substituting the solution in y,

gives

2 3 4 5
Yp = Co + 1 + c2x” + c3x” + cqx” + Cc5” + - -

_ 7 4 149 5
=04+2+0 51" +0+27000 +
—x—l 3, 149 149 54

- 54 27000

- 7 24 149 o
~54% T 27000°
If we want more terms in y,, we just increase the terms in the polynomial trial y, we started with.

The final solution is
Y=Yn+Yp

Using yp, from the above section gives

1 1 L
y—cl<1—4x +@ —m +0(z )>

Lol 1o 1. 3., 1 :
+cz<(1 i +64x 5301% +O0(x )>ln(x)+<4x 128° +13824 6 +0(z%)
7o 149, .

5040

1

—
" 5040

x4

7.



1.3 Example 3. homogeneous ode example

Solve
(e —1)y"(z) + ey (z) +y(z) =0 1)
Using power series method by expanding around z = 0. Writing the ode as

/! em I:E 1
V@) + GV @+

y(z) =0

Shows that £ = 0 is a singular point. But lim,_,q x% =1 and lim,_,q xzﬁ = 0 Hence the

singularity is removable. This means z = 0 is a regular singular point. In this case the Frobenius power
series will be used instead of the standard power series. Let

y(a:) — Z anxn-i-r
n=0

Where r is to be determined. It is the root of the indicial equation. Therefore

V(@) =) (n+r)apz™

y'(2) =3 (n+71) (n+r—1)az"

n=0
Substituting the above in (1) gives
x n+r—2 x n+r—1 n+r __
- - mn m n -
(e I)Z(n+7‘)(n+r 1) anx +e Z(n—i—r)ax -I-Zax 0
n=0 n=0 n=0
Expanding e” in Taylor series around z gives e* = 14+x + %xz + éx‘q’ + ix‘l 4+ ---. The above becomes

1 2 1 3 1 4 > n+r—2
<x+2m +6x +54% +--->Z(n+r)(n+r—1)anx

n=0

1 2 1 3 1 4 > n+r—1 > n+r __
+<1+:c+2.93 + et +--->Z(n+r)anx +Zanw =0 (1)

n=0 n=0

Expanding gives (and keeping only terns up to z* gives

(e 9) o0 (o9)
1 1
x Z (n+7r)(n+r—1) anx"+r_2+§x2 Z (n+r)(n+r—1) an.'z:”+r_2+6x3 Z (n+r)(n+r—1)a,z"" 2
n=0 n=0 n=0
1 4 - n+r—2 - n+r—1 - n+r—1 1 2 - n+r—1
+ﬂx Z(n+r)(n+r—1)anx +Z(n+r)anx +xZ(n+r)anx +§x Z(n+r)anx
n=0 n=0 n=0 n=0
1 3 = n+r—1 1 4 = n+r—1 = n+r __
—+—6x ;(N—FT)GMC —+—24x g(n—f—r)anx +7;)ana: =0



Moving the z inside the sum, the above becomes

[M]8

0 nO nO

3
Il

(n+r)(n+r—1)a,z"t" 1—}—2 (n+r)(n+r—1)a, ac""'r—f—z (n+r)(n+r—1)az"

o0
1
+Zﬂ n+r)y(n+r—1)a, mn+r+2+2(n+7«)a T 1+Z n+r anxn+r+z (n+7)an L
n=0

n=0 n=0 n= 0
+> 6(” +r)ana™ 4y 21+ 7) ang™ "+ " gzt =0
n=0 n=0 n=0

Here, we need to make all powers on x the same, without making the sums start below zero. This can
be done by adjusting the last term above as follows

o0

Z(n—i—r)(n—kr—l)anm"“ 1—}—2 (n+r—1)(n+r—2)a,_12""" 1+Z (n+r—2)(n+7r—3)anp_oz"t !

n=0 n—l n—2
o

n=3 n=0 n=1 n=2
+> é(" +r—3)ansz" "+ ﬂ(n +r—4)an_ a2+ ap 2™ =0 (2)
n=3 n=4 n=1

The case n = 0 gives the indicial equation

m+r)(n+r—1)4+(Mn+7r)=0
(M(r-1)+()=0
r2=0

Hence the roots of the indicial equation are » = 0 which is a double root. Hence r; = ro = 0. When
this happens, the solution is given by

y(x) = ayi(z) + coy2()

Where y;(z) is the first solution, which is assumed to be

yi(2) =) anz™* 3)

Where we take ag = 1 as it is arbitrary and where r = r;. This is the standard Frobenius power series,
just like we did to find the indicial equation, the only difference is that now we use r = r1, and hence
it is a known value. Once we find y; (), then the second solution is

y2(2) = y1(2) In (2) + ) bna™*" 3)

Something important to notice. In the sum above, it starts from 1 and not from 0. The main issue is
how to find b,,. Since that is the only thing we need to be able to complete the solution as y(x) is
easily found. It turns out that there is a relation between the b,, and the a,,. The b, can be found
by taking just derivative of a,, as function of r for each n and then evaluate the result at r = r;. How
this is done will be shown below. First we need to find y; (). We take Eq(3) and substitute it in the

10

1 G o 1
+Z 24(n+r—3) (n+7r—4) a3z 1+Z n+r)a "+T—1+Z (n—i—r—l)an_lx""‘r—l—i—z 5(

n+r—2)a,_oz"



original ODE. This will result in Eq (2) which we found above so no need to repeat that. We just need
to remember that now we now what r is. It has a numerical value unlike the above phase where we
still did not know its value.

Now we are ready to find a,,. We skip n = 0 since that was used to obtain the indicial equation, and
we know that ag = 1 is an arbitrary value to choose. We start from n = 1.

For n =1 only, using Eq (2) gives

1
(n+r)(n+r—1)a,1+i(n—i-r—1)(n+r—2)a0+(n+r)a1+(n+r—1)a0+a0=0

1
(1+r)(1+r—1)a1—l—i(l—i—r—1)(1+r—2)a0+(1+r)a1+(1+r—1)a0+a0=0

1

(1+r)Q+r—-1D)+1Q+7))a1+ <2(1+r—1)(1+r—2)+(1+r—1)+1> ap=0

But ag = 1. The above becomes

1
((1+T)(1+r—1)+(1+r))a1:—(2(1+r—1)(1+r—2)+(1+r—1)+1>

-G+ r-)A+r-2)+Q4+r-1)+1)  (rP+r+2)
"= A+ A+r—1)+(1+1) T 221 4r 42

Which at r = 0 gives
a; = -1

It is a good idea to use a table to keep record of the a,, values as function of r, since this will be used
later to find b,,.

an(r) an(r=r1)
0|1 1
(r2+r+2
1 - 27‘2+4r+)2 -1

For n = 2 only, using Eq (2) gives
1 1 1
(n+r)(n+'r—1)a2+§(n+r—1)(n+r—2)a1+é(n+r—2)(n+'r—3)ao+(n+r)a2+(n+r—1)a1+§(n+r—

1 1 1
(2+r)(2+r—1)a2+§(2+r—1)(2+r—2)a1+6(2+r—2)(2+r—3)a0+(2+r)a2+(2+r—1)a1+§(2+r—

1 1 1
((2+7‘)(2+r—1)+(2+r))a2+(2(2+r—1)(2+7‘—2)+(2+r—1)+1)a1+<6(2+r—2)(2+r—3)+2(2+
2 1, 3 ]
(r+2) a2+<2r +21"—|-2>(111+6
But ap =1 and a; = —é:jiiz:j;. The above becomes
1 3 (rP4+r+2) 1
2)? P24 Srg2) (2 — ) 4 2 2) =
r+2) “2+<2’" tart )( 2r2+4r+2>+6r(r+ )=0
4 4 493 4+ 1702 + 267 + 24
(r+2)2a2=r +4r° + 17r —|—2 T+
2(r+1)
. ot 4r® +17r% + 26r 4 24
? 12(r +1)% (r + 2)°

11



At r = 0 the above becomes

0 — 24 1
2T 12027 2
The table becomes
an(r) an(r =m1)
0|1 1
r24r42

1 - §r2 +4T+)2 -1

9 ri4ar3 4170242670424 | 1

12(r+1)2(r+2)2 2

For n = 3 only, using Eq (2) gives

(n+7’)(n+r—1)a3+%(n+7’—1)(n+1‘—2)a2+%(n+r—2)(n—|—r—3)a1

1 1 1
+ﬂ(n+r —3)(n+r—4)ap+(n+r)as+(n+r—1a+-(n+r—2)a;+=(n+r—3)ap+az =0

2 6
Or 1 1
(3+r)(2+r)a3+5(2-%—1")(1+r)a2+(3+r)a3+(2+r)a2+§(l+r)a1+a2=0
Or
1 1
(B+7r)(2+7)+(B+7))asz+ <2(2+r)(1+r)+(2+7")+1> a2+§(1+r)a1=0
1 1
(r+3)%as + <2T2+27‘+4> a2+§(1—|—r)a1:0
But a; = (r*+7+2) Qo = TEAT 172426424 e ahove becomes

T2+ 412092 T T 12(r 1) % (r+2)?

1 1
(r+3)2a3:—(r2+5r—|—4) az— =(1+r)ay

2 2 2
1 5 44 4r3 4+ 1702 4+ 26r + 24 1 24 r42
:—(r2+r+4) A e e e e RS W —(7"277”)
2 2 12(r+1)"(r+2) 2 2r2 +4r +2

(r® + 3r% + 9r* + 53r® + 15872 4 208r + 144)
24 (r2 + 3r +2)°
(r% +3r% + 9r* + 53r® + 15872 4 208r + 144)
24 (r2 + 3r +2)° (r + 3)°

For r = 0 the above reduces to

ag = —

144 1

a3 = - -
24(2)*(3)° 6
The table becomes
n | an(r) an(r=r1)
011 1
(r?+r+2)
1 T 2r244r+y2 -1
9 ri4+ard4+17r2426r+24 1
12(r+1)2(r+2)2 2
3 (r®+3r°+9r*+53r3+158r2+208r+144) 1
- 24(r2+3r+2)2(r+3)2 6

12



And so on. Recursion starts at n > 5 but we have enough terms, so we stop here. y; (z) is

0o
yl(iE) — Z CLnCL'TH_T
n=0

But r = r; = 0. Therefore
y1(x) = ap + a1z + a22? + azz® + asx* + as2® + agz® + - - (6A)

1 1
=1—a:+§a:3—6m3+---

We are done finding y; (z). This was not bad at all. Now comes the hard part. Which is finding ya(z).

From (3) it is given by
ya2(z) = y1(z) In (z) + Z byz™t
To find b,,, we will use the following

ba(r) = - (an(r)) (7)

Notice that n starts from 1. Hence

bir) = < (@(r)

T=7r1

What the above says, is that we first take derivative of a,(r) w.r.t. r and evaluate the result at the
root of the indicial equation. Using the table above, we obtain (recalling that r; = 0 in this example)

n | an(r) an(r=r1) | ba(r) = f(an(r))
0|1 1 N/A since b starts from n =1
1 B (r2+7‘+2) 1 d(_ (r2+r+2) _ (r—3)

22 ar+2 dr 2r2+4r+2 | T 2(r+1)°3
9 | ritar®417r2426r+24 1 d (ritardy1rr426r+24) _  (—r*+7r®+27r°453r446)

12(r+1)2(r+2)2 2 d 12(r+1)2(r+2)2 - 6(r2+3r+2)3
3| _ (r®+3r°4+9r*+53r°+158r°4-208r+144) | 1 d (_ (r°4+3r°+9r*+53r°4158r°+208r+144) \ _ (—9r"—44r°+24r°4662r"+
24(r2+43r+2)2(r+3)2 6 dr 24(r2437+2)2(r+3)2 - 24(r3+61

We have found all b,, terms. Hence

y2(z) = y1(z) In (z) + Z byz™t

And since r = r; = 0 then

Y2(z) = y1(z) In (z) + (b1z + box® + b3z® + baz* + b52® + bez® + -+ )

But from the above table, we see that b; = %, by = 2 4, by = %, The above becomes
_ 3 23 5 10 4 4
y2(z) = y1(z) In (z) + <2x 51" + 37 +0(z )>

And we know what y;(z) is from Eq (6A). Hence

wm):<1_x+;ﬁt_é3+o())hﬂ@+<§x—§i2+;g3+0())
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Therefore the general solution is
y(z) = ayi(z) + c2y2 ()
1, 1 . 1, 1 . 3 23, 10 .
:cl(l -+ 59:3 - éxS—I—O(m )) —i—cz((l—m—l— ng - 6m3+0(:r )) In(z) + (2x— ﬂﬁ—i— 2—7:B3+O(m )))

This completes the solution.

2 Indicial equation roots differ by an integer

2.1 Example 1. homogeneous ode example where log term is needed

Solve
2?y" (z) — zy(z) = 0 (1)

Using power series method by expanding around z = 0. Writing the ode as
" 1
y'(z) — —y(z) =0
x
Shows that = = 0 is a singular point. But lim,_,q wzé = 0. Hence the singularity is removable. This

means x = 0 is a regular singular point. In this case the Frobenius power series will be used instead of
the standard power series. Let

oo
y(x) — Z anxn-l-r
n=0

Where r is to be determined. It is the root of the indicial equation. Therefore
y'(z) = i (n+7)az™t !
y'(z) = i (n+r)(n+r—1)a,z" 2
Substituting the above in (1) gives

? Z (n+r)(n+r—1)az"" 2~z Z anz"" =0
n=0 n=0

Z m+7)(n+7r—1)a,z"" — Z apz" T =0 (1A)
n=0 n=0

Here, we need to make all powers on x the same, without making the sums start below zero. This can
be done by adjusting the last term above as follows

oo [ee)
j{:anxn+r+1::§£:an_1xn+r
n=0 n=1
And now Eq (1A) becomes
oo o0
Z (n+r)(n+r—1)az"™" — Z An_12"T" =0 (1B)
n=0 n=1

14



n = 0 gives the indicial equation

(n+r)(n+r—1)az" =0

(r)(r—=1)apz" =0
Since ag # 0 then the above becomes
(r)(r—1)z" =0
Since this is true for all z, then
(r)(r—-1)=0

Hence the roots of the indicial equation are r; = 1,79 = 0. Or r; = ro + N where N = 1. We always
take r1 to be the larger of the roots.

When this happens, the solution is given by
y(z) = c1ya(z) + c2y2()

Where y;(z) is the first solution, which is assumed to be

yi(e) =) ana™" (2)
n=0

Where we take ag = 1 as it is arbitrary and where r = r; = 1. This is the standard Frobenius power
series, just like we did to find the indicial equation, the only difference is that now we use r = r1, and
hence it is a known value. Once we find y; (), then the second solution is

12(8) = Cr (@ (@) + 3 bua™ )
n=0
We will show below how to find C and b,,. First, let us find y;(z). From Eq(2)
B@) = (1t )
n=0
@) =S () (= 1) gz
n=0

We need to remember that in the above r is not a symbol any more. It will have the indicial root
value, which is 7 =7, = 1 in this case. But we keep r as symbol for now, in order to obtain a,(r) as
function of r first and use this to find b, (r). At the very end we then evaluate everything at r = r; = 1.
Substituting the above in (1) gives Eq (1B) above (We are following pretty much the same process we
did to find the indicial equation here)

Z (n+7r)(n+r—1)a,z"*t" — Z Ap_12"TT =0 (1B)
n=0 n=1

Now we are ready to find a,,. Now we skip n = 0 since that was used to obtain the indicial equation,
and we know that ag = 1 is an arbitrary value to choose. We start from n = 1. For n > 1 we obtain
the recursion equation

(n+r)(n+r—1a,—ap,—1=0
Gn—1

(m+r)(n+r—1)

ap =

15



To more clearly indicate that a,, is function of r, we write the above as

an—1(7)
n+r)(n+r—1) “)

an(r) = (

The above is very important, since we will use it to find b, (r) later on. For now, we are just finding
the a,,. Now we find few more a,, terms. From (4) for n =1

_ ao(r) _ 1 4 =1
LI+ () @Q+r)(r)

and r = 1 = 1 then the above becomes

ax(r)

alzi

It is a good idea to use a table to keep record of the a,, values as function of r, since this will be used
later to find b,,.

n | an(r) an(r=r71)
01 1
1 1
1 (14+7r)(r) 2
And for n = 2 from Eq(4)
__ a)
) =Gy a+n
But a(r) = (1+IT(T) Then
1
o 1

)= G r(r+ 1) (r +2)

When r = r; = 1 the above becomes
1 1
012 = 3 = —

@@ 12

The table becomes

an(r) an(r=r1)
0|1

1
(1+r)(r)

1
2 r(r+1)2(r+2)

5‘,_. D= | =

For n = 3 Eq (4) gives

_ ()
)= GBI @t
Using the value of az(r) from the the above becomes

1
r(r+1)2(r+2) _ 1

3+7r)(2+7) r(r+1)2(r+2)7(r+3)

When r = r; = 1 the above becomes

asg(r) = (

The Table now becomes

16



n | an(r) an(r=r1)
0|1 1
1 1
L @ P
1
2 r(r+1)2(r+2) 12
3 L .
r(r+1)2(r+2)2(r+3) 144
And so on. Hence y; (z) is
o0
y1(x) — Z anxn-i-r
n=0
But r = r; = 1. Therefore
o0
vi(@) =) anz™t! (5)
n=0
o0
=z Z anpxz”
n=0

:x(a0+a1x+a2x2+a313+--~)

—o(14 oo+ —a?+ —a
= 27 T 12" T 1aa”

We are done finding y; (z). This was not bad at all. Now comes the hard part. Which is finding ya(z).
From (3) it is given by

y2(e) = Cyi(e) In (2) + Y _ bpz™*" 3)
n=0

The first thing to do is to determine if C' is zero or not. This is done by finding lim,_,,, an(r). If
this limit exist, then C' = 0, else we need to keep the log term. From the above above we see that

an(r) =a1(r) = W Recall that N = 1 since this was the difference between the two roots and
ro = 0 (the smaller root). Therefore

lim = lim !
rora (L+7)(r) r=0(147)(r)

Which does not exist. Therefore we need to keep the log term. In this case, we replace Eq. (3) back in
the original ODE.

1 ¢ n+r—
v5(z) = Cy In (2) + Cyn — + Z:O(nﬂ") bzt

1 1 IR
7 _ " / / n+r—2
y3(2) = CyiIn(2) + Cyi— + Cvi ~ = Cyn— + 3 _ (n+7) (n+7— 1) bz

n=0

1 1 - n+r—2
= Cy/In(z) + 2Cy{; - Cylp + Z (m+r)(n+r—1)byzx

n=0

17



Substituting the above in z?y” (z) — zy(z) = 0 gives

a? (Cyi'ln($)+2Cyi - Cy 12 +Z n+r)(n+r—1)byz™t"" 2) —:/U(Cyl 1n(x)+zbnxn+r> -0

n=0 n=0

Cz? ”ln(x)+2:v20ylf—0y1 +x22 n+r)(n+r—1)bz"" 2 — CzyyIn(x —benx

n=0
Ca’y{ In (z) + 2zCy; — Cy1 + Z (n+r)(n+7r—1)byz"™" — Cxyy In(z) — Z bzt tl =0
n=0
Cln (z) (z%y] — zy1) + 22Cy; — Cyr + Z n+r)(n+r—1)bz"" Zb "l =0

n=0

But 22y} — zy; = 0 since y; is solution to the ode. The above simplifies to

o0

CQ2zy, —yp)+ Y (n+r)(n+r—1)b Zb vt =0 (6)

n=0

The above is what we will use to determine C' and all the b,,. Remembering that r = ro = 0 in the
above, since this is for the second solution associated with the second root which we found above to
be zero. But we found y;(z) = > ., anz™ ! then

n=0

Eq (6) now becomes

o (2:1: Z (n+1) an:v"> -C (Z anac”+1> + Z (n+r)(n+r—1)bz""" — Z bzt =0
n=0

n=0 n=0

2C§:(n+1)a"x CZ“ zn+1+2("+7')n+r—1 bx™t Zb vl =0
n=0

n=0 n=0

But r = r5 = 0. The above becomes

2C Z (n+1)a,z"™t - C Z anz™tt + Z n(n — 1) byz™ — Z bzt =
n=0 n=0 n=0

n=0

Adjusting the index of terms above, so so all x powers are the same gives

ZCZnan 1z" —C’Zan 1T —|—Z (n—1)bpz" an 1z" (7)

n = 0 is skipped, since by is arbitrary and can be taken as say
bp=1

At n =1, Eq(7) gives
20(10 — C(lo — b() =0

But ap = 1,b9 = 1 hence the above becomes

18



For by = by we are free to select any value since it is arbitrary. The standard way is to choose
b1=0
Now we find the rest of the b, terms. From Eq(7), for n = 2, it gives
2C(2a1) —Cay +2by — b1 =0

But C =1,b; =0and a; = % from table. Hence the above becomes
1 1
2(2= | — =420, =0
< 2> 2 + 209
2 1 +2b, =0
2 T

3
bzz—z

,And for n = 3 from Eq. (7), it gives
2C(3az) — Cas + (3) (2) b3 — by =0

But C =1,bs = —%,ag = 1—12 The above becomes

2<3<112)> —1—12+(3)(2)b3+%=0
7

bgz—%

And so on. Hence the second solution is, for r =0,C =1

y2(z) = Cy1(x) In (z) + Z b,z

n=0

=y (z)In(z) + Z bpz™
n=0
=y (z)In(z) + (bo + bz + boz? + byx® + - )

=y1(z)In(z) + (1+(0)x—ix2—3769:3+---)

1o 15 1 4 32 T 3
= - — — )l 14 S22 - =
<x+2w +12x +144:v+ >na:+( +4w 36.7:+

7.3

_ 1 1,5, 1 3 4 3 5 4
—x(1+2x+12x +144x +0(z )>1n:c+(1+4x T + O(z*)

Some observations: by is always taken as zero. Where N is the difference between the roots. In this
case it is by = 0. Now that we found y;,y2 then the general solution is

y = Ciy1 + Cay2

_ 1 1 5 1 3 4 1 1 5 1 3 4 32 T 3 4
—Clm(1+§x+ﬁx +mm —|—O(:1: ))—i—C’g(x(l—l—im—l—ﬁx +mx +O(x )>lnx+<1+1x 3695 —I—O(:z: )))

This completes the solution.
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2.2 Example 2. homogeneous ode example where log term is needed

Solve
x%y” + Yy = 0

Since z = 0 is regular singular point, then Frobenius power series must be used. Let the solution be
represented as Frobenius power series of the form

Then

Substituting the above back into the ode gives

i(s~(m noL P— gt -
x<2(2+r>(2+r 1)anx+ )—{-(;anx"') 0

0o o0
n n oy 1 oy
S (F+7) (F+r-1) e E 43 anatt =0 (14)

n=0 n=0

n = 0 gives the indicial equation

(r) (r— 1) apz™ % + apz” =0
(V=124 +2") g =0
(P (r—1)z""2 +2" =0

((r) (r—1)z3 +1) 2" =0

(r)(r—l)\}i-l-l:O

Not possible to obtain indicial equation in r only. How to handle this? Maple can’t solve this using
series solution either.

2.3 Example 3. homogeneous ode example where log term is not needed

Solve
22y" + 3zy +4zty =0 (1)

Using power series method by expanding around z = 0. Writing the ode as

3
v (x) + Ey' + 42y =0
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Shows that z = 0 is a singular point. But lim,_,¢ w% = 3. Hence the singularity is removable. This
means z = 0 is a regular singular point. In this case the Frobenius power series will be used instead of
the standard power series. Let

o
y(x) — Z anxn-l-r
n=0

Where r is to be determined. It is the root of the indicial equation. Therefore

[M]8

y/(x) — (n + ,r) anxn-i-r—l
n=0
[ee)
y'(z) = Z (n+r)(n+r—1)a,z" "2
n=0
Substituting the above in (1) gives
z? Z (n+r)(n+r—1a 2" 2 +3z Z (n+7)az" ™t 4 42* Z anz" " =0
n=0 n=0 n=0
o0 [e9) oo
Z (n+r)(n+r—1)az"" + Z 3(n+r1)anz™" + Z 4a,z" =0 (1A)
n=0 n=0 n=0

Here, we need to make all powers on x the same, without making the sums start below zero. This can
be done by adjusting the last term above as follows

o0 o0
Z da,z"TTT = Z 4a,_ 4"t
n=0

n=4

And now Eq (1A) becomes

Z (n+7r)(n+7r—1)az"™ + Z 3(n+7)anz™ + Z 40, 42"t =0 (1B)
n=0

n=0 n=4

n = 0 gives the indicial equation

m+r)(n+r—1a,+3(n+7r)a, =0
(r)(r—1)ap+3rag =0
((r)(r—1)+3r)ap =0

Since ag # 0 then the above becomes
(r)(r—1)+3r=0

Hence the roots of the indicial equation are r; = 0,7 = —2. Or 71 = 79 + N where N = 2. We always
take r1 to be the larger of the roots.

When this happens, the solution is given by

y(x) = ayi(z) + coy2()

Where y; (z) is the first solution, which is assumed to be

yi(e) =) ana™" (2)
n=0
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Where we take ag = 1 as it is arbitrary and where r = r; = 0. This is the standard Frobenius power
series, just like we did to find the indicial equation, the only difference is that now we use r = r1, and
hence it is a known value. Once we find y; (), then the second solution is

y2(z) = Cy1(z) In (z) + Z bzt (3)
We will show below how to find C and b,,. First, let us find y;(z). From Eq(2)

o) = X 0 r)ana™

Z n+r)(n+r—1)a,z" "2

We need to remember that in the above r is not a symbol any more. It will have the indicial root
value, which is 7 = 7, = 0 in this case. But we keep r as symbol for now, in order to obtain a,(r) as
function of r first and use this to find b, (r). At the very end we then evaluate everything at r = r; = 0.
Substituting the above in (1) gives Eq (1B) above (We are following pretty much the same process we
did to find the indicial equation here)

Y (ntr)(n+r—1ang™ +> 3(n+r)ana™+ Y dan_gz"t =0 (1B)
n=0 n=0 n=4

Now we are ready to find a,,. Now we skip n = 0 since that was used to obtain the indicial equation,
and we know that ag = 1 is an arbitrary value to choose.

For n =1, Eq (1B) gives

1+r)1+r—1)a1+3(1+7r)a; =0
(Q+r)Q+r—-1)+31+7r))a1=0
(r*+4r+3)a; =0
But » = r; = 0. The above becomes
3a; =0
Hence a; = 0.

It is a good idea to use a table to keep record of the a, values as function of 7, since this will be used
later to find b,.

an(r) | an(r =r71)
1 1

For n = 2, Eq (1B) gives
24+r)2+r—1)a2+3(2+71)az=0
(2+r)2+r—-1)+32+7))az=0

But r = r; = 0. The above becomes

((2) (1) +3(2)) a2 =0
8a2 =0

Hence a; = 0. The table becomes
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S

2(r) | an(r =0)

N =[O 3
oo
oo

For n = 3, Eq (1B) gives
B+r)83+r—1)az+3(83+r)az=0

But 7 = 0. The above becomes

3)(2)az+3(3)ag =0

150,3 =0
Hence a3 = 0 and the table becomes
n | an(r) | an(r=0)
011 1
110 0
210 0
310 0

For n > 4 we obtain the recursion equation

(n+7')('n+7'—l)an+3(n+7')an+4an—4=0
(n+r)(n+r—1)+3n+7))an+4a,-4=0

4an_4(r)
n+r)(n+r—1)+3(n+r)

an(r) = =7 (4)

The above is very important, since we will use it to find b,(r) later on. For now, we are just finding
the a,,. Now we find few more a,, terms. From (4) for n =4

as(r) = — 4ap(r)
4 A+r)d+r—1)+3(A+1)

and r =r; =0 and ag = 1, then the above becomes

4 1

UTTHE) +3@) 6
The table becomes
n | an(r) an(r =0)
0|1 1
110 0
210 0
310 0
4| - 4 —1
(4+r)(4+r—1)+3(4+r) 6
And for n =5 from Eq(4)
_ 4ay(r)
as(r) = m+r)y(n+r—-1)4+3(n+r)

=0
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Since a; = 0. Similarly ag = 0,a7; = 0. For n =8

4ay(r)
as(r) = —
8+r)8+r—1)+3(8+Tr)
But a4(r) = — (4+T)(4+Tf1)+3(4+T). The above becomes
4
as(r) = A EF—n3EE) _ 16
s B8+r)(8+7r—1)+3(8+r) r*+28r3 +284r2 + 1232r + 1920
When r = 1 = 0 the above becomes .
ag(’l") = ﬁo
And so on. The table becomes
n | an(r) an(r =0)
0|1 1
1|0 0
210 0
310 0
4 | — 4 _1
(4+r)(4+r—1)+3(4+7r) 6
510 0
6|0 0
710 0
8 16 1
T4 28r31284r2+1232r+1920 | 120
Hence y;(z) is
yl(w) — Z anmn—i-r
n=0
But r = r; = 0. Therefore
oo
n@=> a.a" (5)
n=0

= ag + a17 + a22® + a32® + a4x* + a5z + a6z’ + a7z’ +agz® + - -
Using values found for a,, in the above table, then (5) becomes
y1(z) = 1+ agx* +agx® + - -
=1- %x4 + Eloxg +0(z°)

We are done finding y; (z). This was not bad at all. Now comes the hard part. Which is finding ya(z).
From (3) it is given by

ya(z) = Cyn () In (z) + > bpz™" 3)

The first thing to do is to determine if C is zero or not. This is done by finding lim,_,,, anx(r). If
this limit exist, then C' = 0, else we need to keep the log term. From the above above we see that
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an(r) = az(r) = 0. Recall that N = 2 since this was the difference between the two roots and ro = —2
(the smaller root). Therefore
lim 0 = hm 0=0

T2 r—0

Hence the limit exist. Therefore we do not need the log term. This means we can let C = 0. This is
the easy case. Hence (3) becomes

= Z bz " (3A)
n=0
o0
=gz 2 Z b,x™
n=0
Since r = r9 = —2. Let by = 1. We have to remember now that by = b, = 0. This is the same we did

when the log term was needed in the above example, since by is arbitrary, and used to generate y; (z).
Common practice is to use by = 0. The rest of the b,, are found in similar way, from recursive relation
as was done above. Substituting (3A) into x2y” + 3zy’ + 4zy = 0 gives Eq. (1B) again, but with a,,
replaced by b,

o0

Z n+r (n+r—1)bnx”+T+Z3 n+r)bnx"+T+Z4bn 42"t =0 (1B)

n=0 n=0 n=4

For n = 0, we skip and let by = 1. For n = 1 the above gives b; = 0. And by = 0 since it is the special
term by. And for n = 3, we get bs = 0. The table for b,, is now

n | bu(r) | bp(r=-2)
01 1
110 0
210 0
310 0

For n > 4, the recursion relation is

(n+r)(n+r—1)bp+3(n+7)bp +4bp_g =0

4bn_4(7‘)
bp(r) = —
(r) (n+tr)(n+r—1)+3m+r)
Forn =4
4b0(r)
b = -
4(7) A+r(d+r—1)+3d+7)
=— 4 bo=1
T @+n@+r—1)+3@+r
but » = —2. The above becomes
by = — 4 1

(A4-2)(d—2-1)+3(4—2) 2

The table becomes
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4
T @rr)E+r—1)+3(d+r)

We will find that bs = bg = by = 0. And for n = 8

(1) =~&3n (7%:)?()7"3r 3@+7)
But by(r) = — (4+7‘)(4+TE1)+3(4+1')‘ Hence
by (r) = 4 (4-}-7‘)(4-}-7’31)-{-3(4-‘{-7‘) _ 16
B4+7r)(T+7)+3(8+7r) r*+28r3 4 284r2 + 1232r + 1920
But r = -2.

16 1
bs(r) = 1 3 2 =51
(—2)* +28(—2)> + 284 (—2)% + 1232(—2) + 1920 24

The table becomes

n | by(r) b (r = —2)

0 |1 1

1 10 0

2* 10 0

3 |0 0

4 | — 4 -1

(4+r)(4+r—1)+3(4+r) 2

5 10 0

6 |0 0

7 10 0

8 4 3 12 =
T4 28r31284r211232r+1920 | 24

And so on. Hence the second solution is

o)
yg(ib) — Z bnxn-i-r
n=0
)
~ Y b

n=0

(e 9)
=z 2 Z bpx™
n=0
=g 2 (bo + b1z + box? + bzz® 4 bax* + bsx® + bex® + brx” 4 bga® + - )

_ 1 1
= 2(1 — 5154 + ﬂb8$8 + O($9)>
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Therefore the general solution is

y = Ciy1 + Coyz

_ 1, 1 9 —ofy 14 1. g 9
_Cl(l 6% +120x +0(z ))—1—02(1' 1 57 +24b8x +0(2%)

The following are important items to remember. Always let by = 0 where N is the difference between
the roots. When the log term is not needed (as in this problem), y» is found in very similar way to
y1 where by = 1 and the recursion formula is used to find all b,. But when the log term is needed (as

in the above problem), it is a little more complicated and need to find C and b; values by comparing
coefficients as was done).

This completes the solution.

3 Indicial equation roots are complex conjugate

3.1 Example 1. homogeneous ode example
a:zy”+x2y’+y=0 (1)

With expansion around z = 0. This is a regular singular ODE. Let

)
y(a:) — Z anxn-i-r
n=0

Where r is to be determined. It is the root of the indicial equation. Therefore

y(@) =) (n+r)a,z™t

n=0
[ee)
y'(x) = Z (n+r)(n+r—1)a,z" "2
n=0
Substituting the above in (1) gives
oo (e 9] (e 9]
z? Z (n+r)(n+r—1)a,z"" 2 4 g2 Z (n+7)az™ "+ Z anz"" =0
n=0 n=0 n=0
(o9) oo (e 9]
Z (n+r)(n+r—1)a " + Z (n+7)az" ! 4 Z anz™tT =0 (1A)
n=0 n=0 n=0

Here, we need to make all powers on x the same, without making the sums start below zero. This can
be done by adjusting the middle term above as follows

[ee] oo
5 o)t = 3 b~ D
n=0 n=1

And now Eq (1A) becomes

Z (m+7)(n+7r—1)az"t" + Z (n+7r—1)ap_12"" + Z anz™t" =0 (24)

n=0 n=1 n=0
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n = 0 gives the indicial equation

(n+r)(n+7r—1)apx” +apz" =0
(r) (r —1)aoz" + (r) apz”™ =0
((r)(r—=1)ap+ag)z" =0
(M (r-1)+1)a=0
Since ag # 0 then

(N(r-1)+1=0

P’ —r+1=0
The roots are
1 1.
r = §+5/L\/§
1 1.
o = 5 bt 5@\/5

The roots will always be complex conjugate of each others (since second order ode) and the real part
will always be equal. Let the roots be

1,2 = Oé:l:’l,,B

When this happens, the solution is given similar to the case when the roots differ by non integer,
except now the solution and the coefficients will be complex. Let the solution be

y(z) = ayi(z) + coy2()

Now y;(z) is solved for. The solution is
oo
yi(@) =2™ ) anz"
n=0

Starting with Eq (2A) which was derived above gives

(o 9) (e 9) oo
Y tntr)(ntri—1ang™™ + > (ntr—1)an_1z" + > anz"t =0

n=0 n=1 n=0
The case of n = 0 is skipped since this was used to find the roots and ag = 1 is assumed.

n > 1 gives the recursion equation

(m+r)(n+rm—Dap+m+ri—1)ap_1+a,=0
(m+r)(n+ri—1)an+a,=—(n+r—1) a1
—(n+ri—1)ap—1
m+r)(n+rm—-1)+1

an =

For n =1 Eq. (3) gives
—T10n-1

7= 14+r)(r)+1
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Butri=azxif= % + %z\/g and ag = 1. Hence the above becomes

o —(5 +3iv3) _-1
LtV G vE +L 2

For n = 2 Eq. (3) gives

e 0am)(3) _ —0deE(E) 9 1.
2+r)Q+r)+1  24+r)Q+r)+1 (2+%+%i\/§)(1+%+%i\/§)+ 56 56

For n = 3 Eq. (3) gives

Qg =

g —BFn—Da _ —B+n-D(G—5iv3) 2ty +aiv3) (Gosivd) 1 g 18
B+r)@+r)+1 B+r)@+r)+1 (B+3+3iV3) 2+3+3iv3)+1 1127~ 336
And so on. Hence the first solution is
o0
y1(z) = 2™ Z anz" = ac%"’%i‘/g(ag + a1z + asx? + asgz® + - ) 4)
n=0
but
1, . 3
o182 gt 23 Lot () Lot (cos (102 ) 4 in (1naF))

Substituting the above in (4) and using values found for a,, gives

yi(z) = o} (cos (lna:g) +isin (1nx§)) <1 — 5z (56 - 56“/') <_31336 " 112“[) 28 (J;))

Since the roots are complex conjugate of each others, then the second solution is

a(e) = &) (cos (1naF) —isin (ne 7)) (1_2“(56 Z\r) (_;;6 112,@“ )

(6)
The final solution is therefore
y(z) = c1ya(z) + c2y2()
4 Second order Regular singular point with RHS not zero
' ty=z (1)

zero is regular singular point. Hence Frobenius series gives

o0
= E anz™t"
n=0

Where r is to be determined. It is the root of the indicial equation. Therefore

V(@)=Y 1+ 1) anamt?

n=0

Z n+r)(n+r—1)a,z"" 2
n=0
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Substituting the above in (1) gives

T Z (n+r)(n+r—1)az"" 24 Z anz"" =1
n=0 n=0
[ee] oo
Z (n+r)(n+r—1az"™ + Z an ™t =z (1A)
n=0 n=0

Adjusting indices to all powers of = are the same gives

oo [e9)
Z (n+r)(n+r—1 a1 + Z ap_ 1"l =2
n=0 n=1

The indicial equation is found from only the terms with the expansion of the dependent variable y.
This means by making the LHS of (3) vanish. We only consider

o0 oo
Z (n+7r)(n+r—1)a,z"" 1+ Z an_1z"TT =0 (10)
n=0 n=1

Forn=0

(n+r)(n+r—1)az""'=0
(r)(r—1)apz" ' =0
(r)(r—1)=0

Hence roots are r; = 1,75 = 0. Hence the two basis solution for y; are

o0 o0
y1 =z E anz" = E anpz™ !
n=0 n=0

o0 o0
yo = Ciy1Inz + 2™ Z bz = CiyrInz + Z bpx”

To find 1, we can find the recursive equation to be for n > 0

Gp—1
ap = —————
n(n+1)
Which results in
2 oz 2t x®
N=r— o +—-—-—+ Hoe

2 " 12 144 ' 2880

Finding y, is a little more involved because we need to determine C. This can be found to be C = —1.
Using this we can find
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— _w+£_£3+i4_x75+ Inz + _§w2+L13_
Y2 = 2 T 12 T 144~ 2880 4 36

Hence

Yn = C1Y1 + C2Y2
=c x_ﬁ+£_i4+ z® + +c —CE+£2—£3+L4— z® + Inz + _§x2+77333_
-4 2 12 144 " 2880 2 2 12 " 144 2880 4 36
(2)

What is left is to find y,. This is found using undetermined coefficients. Since the RHS is z. let
yp = Ao + A1z. Then substituting this into the original ode zy” + y = x gives

Ag+Aiz==x

Hence Ay =0, A; = 1. Therefore y, = z. Hence the final solution is

Y=Y+ Yp
=Yn+x

Where yy, is given in (2).

5 Examples using series solution on first order ode

5.1 Example 1. Regular singular point
zy +y=0 1)

With expansion around x = 0. Since z is regular singular point, then let

oo
n=0

o0

Y=Y (n+r)ena™
n=0
Then (1) becomes
z Z (n+7)cpz™ ™ 4+ Z cnz™ " =0 (2)
n=0 n=0
oo [e9)
Z (n+7)caz™™ + Z cn™ =0 (3)
n=0 n=0
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Forn=0

rcgr” +cox” =0

(r+1)2"=0
Hence r = —1. Therefore (3) becomes
o0 o0
Z (n—1)cpz™ + Z ezt =0
n=0 n=0

ne,z" 1 =0

For n =1 (because n = 0 was used to find r)

And all other ¢, = 0. Hence solution is for n = 0 only, which is

o0
n=0

= coac_1

_%
- T
5.2 Example 2. regular singular point
zy' +ty=1 (1)

With expansion around = 0. Since z is regular singular point, then let

oo
y=> "’
n=0

Y=Y (n+r)ena™
n=0
Then (1) becomes

x Z (n+7)cpx™ ™t 4 Z cnz"t =1 (2)

n=0 n=0

[e9) oo

Z (n+7)cpz™ + Z cnz" =z (3)

n=0 n=0

The indicial equation is found from only the terms with the expansion of the dependent variable y.
This means by making the LHS of (3) vanish. We only consider

Z (n+7)cpz™ + Z ™t =0 (3A)
n=0 n=0

From (3A) and for n = 0 it becomes

rcox” + cox” =0

(r+1)coz" =0
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Hence r = —1. Now that we found r, we go back to (3) and it becomes

o0 oo
Z (n—1)cpz™ ' + Z Cpr" =1
(n=1)4+1Decz" =2
nepz™ =z

To balance the above equation, only n = 2 will actually work, since on the right we have z'. Then for
only n = 2 we obtain

Hence the series solution is

Y= cosc_1 + cox

_& 1
_3154_21j

5.3 Example 3. regular singular point
zy +y=1 1)

With expansion around x = 0. Since z is regular singular point, then using Frobenius series gives

oo
n=0

oo
Y=Y (n+r)ea™t
n=0
Eq (1) becomes
o0 o0
z Z (n47) ™+ Z cpx™tT =1 (2)
n=0 n=0
[ee] (e 9]
Z (n+7)cpz™™ + Z ezt =1 (3)
n=0 n=0

The indicial equation is found from only the terms with the expansion of the dependent variable y.
This means by making the LHS of (3) vanish. We only consider

Z (n+7)cpz™ + Z ™t =0 (34)
n=0 n=0

For n =0 the above becomes

rcox” + cox” =0
(r+1)coz" =0
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Hence r = —1. Therefore (3) becomes

oo [e9)
Z (n—1)cpz™ + Z cpz" =1
n=0 n=0

(=1 +1)cz"t =1

ne,z” =1

To balance the above equation, only n = 1 will actually work, since on the right we have z°. Then for
only n = 1 we obtain
C1 = 1

And all other ¢,, = 0. Therefore the solution is

oo
n=0

= coa:_l +c

_%
xr

5.4 Example 4. regular singular point
zy +y=~k (1)

With expansion around x = 0. Since z is regular singular point, then using Frobenius series gives

oo
y=)_ cna™"
n=0

oo
y = Z (n+71)cpz™ !
n=0
Eq (1) becomes
(e 9) (e 9)
x Z (n+7)cpz™ 1 4+ Z Cnz™tT =k (2)
n=0 n=0
oo oo
Z (n+71)cpz™™ + Z "t =k (3)
n=0 n=0

The indicial equation is found from only the terms with the expansion of the dependent variable y.
This means by making the LHS of (3) vanish. We only consider

o0 oo
Z (n+7)cpz™ + Z Crz" T =0 (3A)
n=0 n=0

For n =0 the above becomes

reox” +cox” =0

(r+1)coz" =0
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Hence r = —1. Therefore (3) becomes

oo o0
Z (n—1)cpz™ + Z "t =k
n=0 n=0

(n=1)+1Dcz" =k

nepz™ =k

To balance the above equation, only n = 1 will actually work, since on the right we have z°. Then for
only n = 1 we obtain
C1 = k

And all other ¢,, = 0. Therefore the solution is

oo
n=0

= coa:_l +c

=D 4k
T
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