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CHAPTER 1

PROJECT PROPOSAL

1.1 Introduction
This is an outline of my final project for EECS 207A.
The project will be to develop an application which will accept as input a degraded image
file, and will perform image restoration in the frequency domain and will generate the
restored image and save it to the disk.

1.2 Theory
Assume that the original, undistorted object is f , Let the Point spread function (PSF) of
the camera be h, and let the degraded resulting image of f produced by the camera be g.

The goal is that, given g, and assuming an h, we can restore g back as close as possible
to f , call this restored image f̃ . To do this, we will use the following model of image
degradation

g = h~ f̃ + η

Where η is the noise and ~ is the convolution operator.
In this project I will not consider noise and will assume it to be zero.
Converting the above equation to the frequency domain, we obtain

G = H F̃

Where G,H, and F are the 2 dimensional Fourier transforms of g, h, and f̃
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Hence the transform of the restored image will be

F̃ = G

H

Where in the above, the division will be done term by term between the two matrices. If a
value of H contain a zero, then this term will not be used.
Now we need to apply the 2D inverse Fourier transform to obtain the spatial restored image
f̃ from F̃ .
The PSF used will be the 2D Gaussian, with a certain standard deviation (Will try 5 or 10
pixels, and experiment with these values to find the best value to get the best restoration)
and with zero mean.
The degraded images will be generated by blurring using either a standard 3× 3 or 5× 5
averaging filter or a Gaussian filter. The restored image will be visually compared to the
original image, and a conclusion as to the effectiveness of this method of restoration will
be given.
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CHAPTER 2

IMPLEMENTATION

Image Restoration by Inverse Filtering in the Frequency Domain Using Gaussian and 
Ideal Low Pass Filters

By Nasser M. Abbasi

Introduction
This report was written during Fall 2004. EECS 207A. UCI.

This is an implementation of a standard algorithm for 2D gray image restoration which is based on 
a mathematical model of image degradation.

Image restoration attempts to recover, as much as possible, the original image from the degraded 
image, using knowledge of the process that caused the degradation itself.

The restoration algorithm used assumes we know the mathematical model of the degradation that 
we are trying to remove. 

Degradation is caused by either blur or by noise. There are algorithms to do restoration in the 
frequency domain and those that do the restoration directly in the spatial domain. 

There are algorithms that concentrate on reversing the effects of noise only, those that concentrate 
on removing the effects of blur, and those that attempt to remove the effect of both noise and blur.

This project is an implementation of an algorithm that works in the frequency domain which 
inverts the effect of blur only.

To help illustrate this, I have made the following diagram which shows the different algorithms 
used for image restorations. This diagram shows that the field of image restoration is large and 
complex and is based on the mathematical modeling of image degradation.
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As can be seen from the diagram above, it is important to know that different blur degradations 
require the use of different PSF (Point Spread Function) mathematical  model. 

For example, motion blur would require different PSF than say a degradation caused by ripple 
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distortion or by a normal blur degradation. Even blur degradation itself has many different types 
(motion, lens, Gaussian, Radial, etc...) and different mathematical function for PSF would be 
needed for each type to obtain an accurate restoration that matches the original image as best as 
possible. For instance, degradation by motion blur, would require a mathematical function for PSF 
which would take an estimate of the linear or radial motion parameters that caused the blur.

Given the above, and to be able to illustrate the direct inversion algorithm, I had to assume a 
certain PSF model. I have selected to use the 2D Gaussian low pass filter and the 2D ideal low pass 
filter. Using these filters, I will start by generating a number of degraded images from an original 
single undegraded image. I will use different standard deviation values for the Gaussian for each 
generation of a degraded image, and different radius values for the ideal low pass filter. 

In this case, the standard deviation used for the Gaussian is nothing but the radius as well. The 
radius is measured as the number of pixels from the center or the spectrum. In all cases, the 2D 
spectrum will be centered in the middle of the image.

After degrading the original image, I will then restore these images using the inverse filtering 
algorithm and compare the result with the original, undistorted image. I will observer how using 
different radius values affect the restoration quality, and will compare visually each restored image 
to the original image and comment on the quality of the restoration.

The standard image of Lena will be used throughout this evaluation. It is a gray level, 512 x 512 
pixels image that I downloaded from the internet. I have used a gray level image to simplify the 
implementation, otherwise I would have to perform 2D fourier transformation and inverse transfor-
mation on each of the 3 channels. For the purpose of illustrating the algorithm, I did not feel this 
would not have adding any more value.

The restoration algorithm can be implemented completely in the spatial domain if needed. How-
ever, since the algorithm requires performing a convolution operation, and since convolution in the 
spatial domain is equivalent to multiplication in the frequency domain, we will start by transform-
ing the input image to the frequency domain to take advantage of the speed of the FFT (Fast 
Fourier Transforms).

In this implementation, an image is read, degraded using the PSF, and then restored using the 
direct inversion algorithm. Both the degraded and restored images are saved to disk. 

The name of the output image file will be the same as the input image file, but with the word 
_RESTORED and _DEGRADED appended to the file name. The type of the images outputted will be 
in the same graphic format as the input image.

EECS_207A_final_project.nb     3
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This diagram below illustrates the data flow of the program as a black box

A small note on how this report was written
This report was itself written in Mathematica in the same file as the program itself. This made it 
easier to add comments on the program and have these as part of the report itself as the same 
time. This feature is attractive since it  eliminates the need to separate the program from the 
documentation or the report as would be the case in other systems.

Project Details
Mathematical model of image degradation
The algorithm is based on the following mathematical model of image degradation.

Let the degraded image be called g. Let the camera PSF (point spread function) be called h (This is 
the degradation function which depends on the system itself, i.e. the camera). Let noise introduced 
into the degraded image be called η.  Let the original, undegraded image be called f .

The degraded image is now given by

                                                     g(x, y) = h(x, y)⊗ f(x, y) + η(x, y)

Where the operator ⊗ is the convolution operator.

Taking the 2D fourier transform results in 

                                                     G(u, v) =H(u, v) F(u, v) + N(u, v)

In this implementation we assume that noise is zero. This results in the following relation

                                                     G(u, v) =H(u, v) F(u, v)
Hence, 

4     EECS_207A_final_project.nb

Printed by Wolfram Mathematica Student Edition



10

                                                    F(u, v) = G(u,v)
H(u,v)                                                

Now, to obtain the restored image, we perform a 2D inverse fourier transform, let the restored 
image be f

                                            f = Inverse_2D_Fourier_Transform ( F(u,v) )

Notice that f(x, y) (the restored image) will not be exactly the same as  f(x, y) for the following 
reasons

1. We do not know exactly what the camera PSF function is, we will assume here that the PSF is a 
2D Gaussian 
    filter with a certain standard deviation or an ideal low pass filter.
2. We did not model the noise in this implementation. Noise is difficult to model and depends on 
many factors.

The following diagram illustrates this process
 

 

PSF model
This is the most important function to select for the restoration, since this is how we assume the 
degradation has occurred in the first place. The following 2D gaussian filter is assumed for the PSF 
(this is the PSF expressed in the frequency domain)

                                             H(u, v) = ⅇ-
D2(u,v)

2σ2

                                             
 For the low pass filter, we use this definition
 
                                            H(u, v) = 1 IfD(u, v) ≥ D0 else 0    where D0 is the distance from the center of 
the spectrum to the point (u,v)

Algorithm steps
The following are the detailed step by step of the algorithm
1. Ask the user for the image file name

EECS_207A_final_project.nb     5

Printed by Wolfram Mathematica Student Edition



11

2. Read the image to memory to a matrix f(x, y)
3. Generate N numbers of  H(u, v) (PSF) filters (using different Gaussian standard deviations, or 
different radius values with a fixed increments). For example, use 3,5,10,20,40 pixels. This results in 
N PSF matrices H(u,v) call them Hi(u, v), ..., Hn(u, v)
4. Do step 3 for both the Gaussian and the Ideal low pass filters.
5. Multiply the input image f(x,y) by (-1)x+y 
6. Obtain the 2D fourier transform of the original image, call it F(u, v). Due to step 5, this spectrum 
is now centered.
7. For each PSF H(u,v), generate  2D Fourier transform of a degraded image using 
Gi(u, v) =Hi(u, v)*F(u, v)
8. For each Gi(u, v) generate the spatial image gi(x, v) by taking the 2D inverse fourier transform.
9. Take the real part of the image generated in step 8.
10. Multiply the result of step 9 by  (-1)x+y to get a centered image.
11. Save each of the degraded images gi(x, v) to allow more analysis if needed by external pro-
grams such as photoshop.
12. Start the restoration pass. For each Gi(u, v) obtain the restored fourier transform Fi (u, v) = Gi(u,v)

Hi(u,v)  

13. For each  Fi (u, v) apply the 2D IDFT to obtain the restored image fi(x, y)
14. Save these images to disk for analysis.
15. Examine visually each of the images fi(x, y) and comment of the quality of restoration by 
comparing them to the original image f(x,y).

Implementation issues
The main issue to handle in the implementation of the algorithm is the step when we divide  
F(u, v) = G(u,v)

H(u,v)  . This is because H can be zero if we use a large standard deviation for the Gaussian. 

This problem was resolved by explicitly checking for a zero value in the denominator. When this is 
detected, we set the corresponding value in F(u,v) to 0. This has the effect of setting those high 
frequencies to zero. Since it is noise that usually occupies the high frequency parts of the image 
spectrum , this should not cause signification problems in the restoration.

Output, Tables and Results
Conclusions
For small radius values, using the Gaussian low pass filter resulted in an acceptable restoration. 
The ideal low pass filter however produced no restoration that can be detected.
This can be explained by the fact that an ideal low pass filter is not a causal filter and do not occur 
naturally.

We notice that for a small radius, more image power will be lost in the degradation process, since 
image power is mostly concentrated in small circles around the center of the 2D spectrum. As the 
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radius is increased, the effect of the restoration decreased until at about radius 100 pixels, there 
was no restoration that can be noticed.

This project shows that the choice of restoration PSF is critical. It is not possible to use a generic 
PSF function to restore different degraded images with without having some knowledge of the 
cause of the degradation to be able to model a PSF which will best restore the image.

If one is able to estimate the PSF, and can ignore the noise, then this algorithm becomes attractive 
due to its speed when performed in the frequency domain by utilizing the Fast Fourier Transform 
and due to its simplicity.

Future work and possible extensions to this project
The following are possible options that this work can be expanded on.
1. Investigate other PSF models such as the Butterworth filter.
2. Investigate how to do restoration with the presence of noise by the use of such filters as mini-
mum mean square error (Wiener) or the constrained least square filtering method. These methods 
are more mathematically complicated, but are considered to produce better restoration results.
3. Investigate the restoration of motion blur.

Sample run and output
Here, I show a complete typical run output of this program. This output will use both the Gaussian 
and Ideal low pass filters.

Start by initialization of the workspace and loading the needed packages

Remove["Global`*"];

<< nma.m

<< ImageProcessing`

<< Graphics`Graphics3D`

<< Geometry`Rotations`

define the PSF function

(* this is actually distance square *)

d[u_, v_, nRow_, nCol_] := RoundN u -
nRow

2

2

+ v -
nCol

2

2



(*This is the Gaussian low pass filter *)

g2D[u_, v_, σ_] := ⅇ
-
distanceMatrix[[u,v]]

2 σ2

EECS_207A_final_project.nb     7
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(*THis is an ideal low pass filter *)

gIdealLowPass[D0_, u_, v_, nRow_, nCol_] := Module[{response},

If[Round[N[Sqrt[d[u, v, nRow, nCol]]]] ≤ D0, response = 1, response = 0];

response

]

Display PSF using standard deviation of 6 and 40 pixels just for illustration purposes. We will use 
σ=6 here.
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Block{$DisplayFunction = Identity, nPoints = 20},

p1 = ListPlot3DTableN[g2D[u, v, 1]],

u, RoundnRow  2 - nPoints, RoundnRow  2 + nPoints,

v, RoundnCol  2 - nPoints, RoundnCol  2 + nPoints,

PlotLabel -> "std=1", PlotRange → All;

p2 = ListPlot3DTableN[g2D[u, v, 2]],

u, RoundnRow  2 - nPoints, RoundnRow  2 + nPoints,

v, RoundnCol  2 - nPoints, RoundnCol  2 + nPoints,

PlotLabel -> "std=2", PlotRange → All;

p3 = ListPlot3DTableN[g2D[u, v, 5]],

u, RoundnRow  2 - nPoints, RoundnRow  2 + nPoints,

v, RoundnCol  2 - nPoints, RoundnCol  2 + nPoints,

PlotLabel -> "std=5", PlotRange → All;

p4 = ListPlot3DTableN[g2D[u, v, 15]],

u, RoundnRow  2 - nPoints, RoundnRow  2 + nPoints,

v, RoundnCol  2 - nPoints, RoundnCol  2 + nPoints,

PlotLabel -> "std=15", PlotRange → All;



Show[GraphicsArray[{{p1, p2}, {p3, p4}}]]
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Now,  set the working directory to be the same working directory as this note book to allow easy 
input of 
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file names for the degraded images.

nma`cd

Directory[]

Now ask the user for the image file name, and read it to memory

(*fileName=Input["Please enter the degraded image file name"];*)

sample a 2D continuos gaussian to obtain a discrete version of Gaussian 2D,to use as a filtering 
window to convolve the image with

fileName = "triangle.jpg";

fileName = "lena_gray_blur_gaussian_6";

fileName = "test";

fileName = "lena_gray";

format = "JPG";

img = ImageRead[fileName <> "." <> format];

Show[Graphics[img]];

nColor = ImageDepth[img];

{nRow, nCol} = ImageDimensions[img];

Print["number of colors is " <> ToString[nColor] ];

Print["image size in pixels is " <>

ToString[nRow] <> " rows x " <> ToString[nCol] <> " cols"];

Print["Other image information " <> ToString[img[[2]]] <>

" " <> ToString[img[[3]] ]];

Print["Displaying the bottom right corner 5x5 image area..."];

f = Chop[N[ img[[1]] ]];

Dimensions[f]

fsaved = f;

Print[MatrixForm[Take[f, {1, 5}, {1, 5}]]];

hist = ImageHistogram[img, {0, 255}];

ShowImageHistogram[hist, PointStyle → None];

distanceMatrix = Table[d[u, v, nRow, nCol], {u, 1, nRow}, {v, 1, nCol}];

10     EECS_207A_final_project.nb
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number of colors is 1

image size in pixels is 512 rows x 512 cols

Other image information PixelInterleave -> None ColorFunction -> GrayLevel

Displaying the bottom right corner 5x5 image area...

{512, 512}

EECS_207A_final_project.nb     11
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31. 32. 42. 35. 41.
30. 31. 40. 35. 42.
32. 31. 37. 34. 40.
35. 34. 37. 34. 38.
37. 37. 39. 36. 38.

50 100150200250
0.002
0.004
0.006
0.008
0.01

(* G E N E R A T E P S F *)

(*radius={5,10,15,40,80,140}; *)

radius = { 1, 2, 3, 4, 5, 10, 20, 40, 80};

(*radius= 180,200,RoundnRow2; *)

(*,30,80,230,RoundnRow2;*)

Hgaussian =

Table[g2D[u, v, radius[[i]]], {u, 1, nRow}, {v, 1, nCol}, {i, 1, Length[radius]}];

Hgaussian = Chop[N[Hgaussian]];

Hideal = Table[gIdealLowPass[radius[[i]], u, v, nRow, nCol],

{u, 1, nRow}, {v, 1, nCol}, {i, 1, Length[radius]}];

Print["Restoration using Gaussian Low Pass Filter"];

degradeAndRestore[radius, f, Hgaussian, fileName, format];

Restoration using Gaussian Low Pass Filter

original, r 1 degraded1 restored

original, r2 degraded2 restored

12     EECS_207A_final_project.nb
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original, r3 degraded3 restored

original, r4 degraded4 restored

original, r 5 degraded5 restored

original, r 10 degraded10 restored

original, r20 degraded20 restored

original, r40 degraded40 restored

EECS_207A_final_project.nb     13
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original, r80 degraded80 restored

Print["Restoration using ideal Low Pass Filter"];

degradeAndRestore[radius, f, Hideal, fileName, format];

(*restoreOnly[radius,f,H,fileName,format];*)

Restoration using ideal Low Pass Filter

original, r 1 degraded1 restored

original, r2 degraded2restored

original, r3 degraded3restored

original, r4 degraded4restored

original, r5 degraded5restored

14     EECS_207A_final_project.nb
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original, r 10 degraded10restored

original, r20 degraded20restored

original, r40 degraded40restored

original, r80 degraded80restored

degradeAndRestore[radius_, f_, H_, fileName_, format_] := Module[{nH, i},

nH = Length[radius];

For[i = 1, i ≤ nH, i = i + 1,

{

degradeAndRestore2[radius[[i]], fileName, format, H[[All, All, i]], f];

}

]

];

restoreOnly[radius_, g_, H_, fileName_, format_] := Module[{nH, i},

Print["Entering restorOnly"];

nH = Length[radius];

For[i = 1, i ≤ nH, i = i + 1,

{

restoreOnly2[radius[[i]], fileName, format, H[[All, All, i]], g];

}

]

]

restoreOnly2[gr_, fileName_, format_, H_, g_] :=

Module{nRow, nCol, pixs, gName, F, G, gtmp, GG, m, ff, ftmp, h},

Print["Entering restorOnly2 "];

{nRow, nCol} = Dimensions[g];

gtmp = nma`centerImage[g];

G = DFT[gtmp];

h = IDFT[H];

h = Chop[N[Re[h]]];

EECS_207A_final_project.nb     15
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h = nma`centerImage[h];

(* R E S T O R A T I O N *)

GG = G;

(* divide GH *)

Fori = 1, i ≤ nRow, i = i + 1,



Forj = 1, j ≤ nCol, j = j + 1,



IfH[[i, j]] ⩵ 0, GG[[i, j]] = 0,

GG[[i, j]] = GG[[i, j]]  H[[i, j]];







;

ff = InverseDiscreteFourierTransform[GG];

ff = Re[ff];

ff = nma`centerImage[ff];

Show[Graphics[ ToGrayLevel[ff], ImageSize → {nRow, nCol},

PlotLabel → "ff, restored image, Gaussian radius=" <> ToString[gr]]];

pixs = 200;

theImageSize = {pixs, pixs};

(*theImageSize= Automatic;*)

Block[{$DisplayFunction = Identity},

p0 = Show[Graphics[ToGrayLevel[g]], ImageSize → {pixs, pixs},

PlotLabel → "f,Max=" <> ToString[Floor[Max[ff[[1]]]]] <>

" Min=" <> ToString[Floor[Min[f[[1]] ]]]];

p1 = Show[Graphics[ToGrayLevel[h]],

ImageSize → theImageSize, PlotLabel → "h, PSF"];

gName = "g, Gaussian=" <> ToString[gr];

p2 = Show[Graphics[ToGrayLevel[ff]], ImageSize → theImageSize,

PlotLabel → "ff, Max=" <> ToString[Floor[Max[ff[[1]] ]]] <>

" Min=" <> ToString[Floor[Min[ff[[1]] ]]]];

p01 = Show[Graphics[ToGrayLevel[2 Log[1 + Abs[G]]]],

ImageSize → theImageSize, PlotLabel → "2 Log[Abs[F]"];

p02 = Show[Graphics[ToGrayLevel[2 Log[1 + Abs[H]]]],

ImageSize → theImageSize, PlotLabel → "2 Log[Abs[H]"];

p03 = Show[Graphics[ToGrayLevel[2 Log[1 + Abs[GG]]]],

ImageSize → theImageSize, PlotLabel → "2 Log[Abs[GG]"];
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];

Show[GraphicsArray[{p0, p1, p2}], Frame → False];

Show[GraphicsArray[{p01, p02, p03}], Frame → False];

outFileName =

fileName <> "_RESTORED_gaussian_radius_" <> ToString[gr] <> "." <> format;

ImageWrite[outFileName, ff, format]

(*Print["Written restored image to file "<>outFileName];*)

;

degradeAndRestore2[gr_, fileName_, format_, H_, f_] :=

Module{nRow, nCol, pixs, gName, F, G, g, GG, m, ff, ftmp, h},

{nRow, nCol} = Dimensions[f];

(* D E G R A D E *)

ftmp = nma`centerImage[f];

F = DiscreteFourierTransform[ftmp];

G = H * F;

g = InverseDiscreteFourierTransform[G];

g = Re[g];

g = nma`centerImage[g];

h = IDFT[H];

h = Chop[N[Re[h]]];

h = nma`centerImage[h];

(* R E S T O R A T I O N *)

GG = G;

(* divide GH *)

Fori = 1, i ≤ nRow, i = i + 1,



Forj = 1, j ≤ nCol, j = j + 1,



IfH[[i, j]] ⩵ 0, GG[[i, j]] = 0,

GG[[i, j]] = GG[[i, j]]  H[[i, j]];







;

ff = InverseDiscreteFourierTransform[GG];

ff = Re[ff];

EECS_207A_final_project.nb     17
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ff = nma`centerImage[ff];

Block[{$DisplayFunction = Identity},

p0 = Show[Graphics[ToGrayLevel[f]],

PlotLabel → "original, r=" <> ToString[gr]];

p1 = Show[Graphics[ToGrayLevel[g]], PlotLabel → "degraded" <> ToString[gr]];

p2 = Show[Graphics[ToGrayLevel[ff]], PlotLabel → "restored"];

];

Show[GraphicsArray[{p0, p1, p2}], Frame → False];

outFileName =

fileName <> "_RESTORED_gaussian_radius_" <> ToString[gr] <> "." <> format;

(*Print["Creating file ",outFileName];*)

ImageWrite[outFileName, ff, format];

outFileName =

fileName <> "_DEGRADED_gaussian_radius_" <> ToString[gr] <> "." <> format;

(*Print["Creating file ",outFileName];*)

g = nma`centerImage[g];

g = DFT[g];

g = IDFT[g];

g = Re[g];

g = nma`centerImage[g];

ImageWrite[outFileName, ToGrayLevel[g], format];



Appendix
References
1. Digital Image Processing, second edition, by Gonzalez and Woods
2. Algorithms for image processing and computer vision, by J.R.Parker
3. Lecture notes, EECS 207A by Professor Meyer, UCI Electrical Engineering Department.
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