
Using sqlite3 in Maple. Saving code in the database
and evaluating

Nasser M. Abbasi

January 28, 2024 Compiled on January 28, 2024 at 4:54am

Contents
1 Introduction 1

2 The process 2
2.1 Create the physical database file on disk 2
2.2 Use Maple to create the database TABLE initially 2
2.3 Read the TABLE and process its content 4

1 Introduction
This describes how to store Maple code fragments in SQL lite3 database, and how to
later retrieve and evaluate it and then store the result back into the database.

Assume there is a a set of problems, say a number of ode’s, that needs to be saved in
the database, then later read and solved. Also the solution to each ode is to be saved
in the database.

The Maple code to solve the ode is stored in field of type TEXT (or it can be VARCHAR).

The same for the solution field. In saving Maple code, any single quote ’ used in the
code must be escaped using ’ ’. The Maple code entered in the database can be free
form, just like it is typed in the worksheet. Each command on a new line and terminated
by ;.

Each statement of the Maple code being stored in the database must end by ; and
not :. The reason is, when the code is later read, the stored string is split on ;. If : is
allowed in the input code, splitting on : causes problem as it interfere with assignments
in the code that uses :=

Hence ; and not : must be used when storing the code in the database.

1

mailto:nma@12000.org

When reading the Maple code using SQL, each \n is first removed from the string and
then the string is split ;. After this, parse and eval is used on each command.

The following shows step by step how to do all the above, starting from creating the
database file, and the schema and running all the needed SQL commands. This was
all done inside a worksheet using Maple 2021.2. The database used in sqlite3, which is
free.

2 The process

2.1 Create the physical database file on disk
Locate a folder where to store the database physical file. Let the database file be called
test.db. In this example, it was created in /mnt/g/public_html/my_notes/solving_ODE/current_version/TESTS� �
>cd /mnt/g/public_html/my_notes/solving_ODE/current_version/TESTS/test_new_db
>which sqlite3
/home/me/anaconda3/bin//sqlite3
sqlite3 test.db� �
The above creates test.db which is now just an empty file.

2.2 Use Maple to create the database TABLE initially
Now open a worksheet, and create the Table. Let say for now the table will have two
fields. One is for the Maple commands, and second field for the solution of the ODE.

The following needs to be done once, or anytime you want to delete the TABLE and
recreate it again.

The Table is given name PROBLEMS.� �
restart;
currentdir("G:/public_html/my_notes/solving_ODE/current_version/TESTS/test_new_db");

#connect to the datbase
db := cat(currentdir(),"\\test.db");

try
conn:=Database[SQLite]:-Open(db):

catch:
error lastexception;

2

end try;

s:=cat("
BEGIN TRANSACTION;
DROP TABLE IF EXISTS PROBLEMS ;
CREATE TABLE PROBLEMS (

key INTEGER PRIMARY KEY AUTOINCREMENT,
command VARCHAR,
result VARCHAR
);");

Database[SQLite]:-Execute(conn,s);
Database[SQLite]:-Execute(conn, "COMMIT;");� �
Now add couple of problems to fill in the TABLE� �
s:=cat("INSERT INTO PROBLEMS (command) VALUES(
'
interface(''warnlevel''=4);
kernelopts(''assertlevel''=2);
ode:=diff(y(x),x)=sin(x);
sol:=dsolve(ode,y(x));
'
);");
Database[SQLite]:-Execute(conn,s);

s:=cat("INSERT INTO PROBLEMS (command) VALUES(
'
interface(''warnlevel''=4);
kernelopts(''assertlevel''=2);
ode:=diff(y(x),x$2)+diff(y(x),x)+y(x)=sin(x);
sol:=dsolve(ode,y(x));
'
);");
Database[SQLite]:-Execute(conn,s);� �
Now close the database� �
Database[SQLite]:-Close(conn):� �
The result of the above, is that now the database has 2 rows in the Table. There are
two columns. The first is the Maple code, and the second is the solution of the ODE

3

which is added next after reading the table and processing each command.

2.3 Read the TABLE and process its content
Now that the database contain the Maple code in it, each problem is read using SQL.
This is done as follows� �
restart;
currentdir("G:/public_html/my_notes/solving_ODE/current_version/TESTS/test_new_db");
db := cat(currentdir(),"\\test.db");

#open the datbase
try

conn:=Database[SQLite]:-Open(db):
catch:

error lastexception;
end try;

number_of_problems:=Database[SQLite]:-Prepare(conn,
"SELECT COUNT(*) from PROBLEMS;");

number_of_problems:=Database[SQLite]:-FetchAll(number_of_problems)[1,1];

number_of_problems := 2

for N from 1 to number_of_problems do
stmt := Database[SQLite]:-Prepare(conn,

cat("SELECT command FROM PROBLEMS where rowid=",N,";"));

stmt := Database[SQLite]:-FetchAll(stmt)[1,1]:
stmt := StringTools:-Remove("\n",stmt): #remove \n from string
stmt := StringTools:-Split(stmt,";"): #must split on ";".
for c in stmt do

eval(parse(c)):
od:
Database[SQLite]:-Execute(conn, "BEGIN TRANSACTION;");
Database[SQLite]:-Execute(conn,

cat("UPDATE problems SET result='",convert(sol,string),"' WHERE rowid =",N,";"));

Database[SQLite]:-Execute(conn, "COMMIT;");
od:

4

Database[SQLite]:-Close(conn):� �
Now the database has the table with both the input and also the Maple output stored
in it.

The following is a screen shot of the Table in the database using the software DB Browser for SQLlit
which is very useful and allows viewing the database and its content using GUI based
interface.

Figure 1: Database view

5

	Introduction
	The process
	Create the physical database file on disk
	Use Maple to create the database TABLE initially
	Read the TABLE and process its content

