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1 What is a first integral of a differential equation and how to find it?

Lets start with first order ode. This generalizes to any order. Let say our ode is
dy
dx

= f(x, y)

The first integral of the above ode is any function Φ(x, y) such that its rate of change
along x is zero. i.e. d

dxΦ(x, y) = 0. This means

d
dx

Φ(x, y) = ∂Φ
∂x

+ ∂Φ
∂y

dy
dx

= Φx +Φy
dy
dx

But dy
dx = f(x, y), hence the above is

d
dx

Φ(x, y) = Φx +Φyf(x, y)

If the above comes out to be zero, then Φ(x, y) is called the first integral of the ode
dy
dx = f(x, y). In the above, we should make sure to replace any y in the RHS with the
solution itself of the ode.

Notice that the first integral itself is not constant. But its rate of change as the independent
variable changes is what is constant. We should not mix these two things.

But how to find the first integral function Φ(x, y)? This is easy. We have to solve the ode
itself. Then move all terms to one side, and this is what Φ(x, y) is. Let us look at few
examples to make this clear.

It is also possible to find first integral Φ(x, y) without solving the ode. We just need to
find any Φ(x, y) such that when we differentiate it w.r.t. x which gives Φx + Φyf(x, y)
becomes zero. In here f(x, y) must be the RHS of the ode. So if we by inspection or other
means can find such Φ(x, y) then no need to solve the ode to find it. For some easy ode’s,
method of inspection might be possible. There are more advanced methods to finding first
integrals. But here, for simplicity, we assume we have the solution to the ode available.

If we want to first first integral without having the solution to the first order ode, and if
the ode is already exact ode, then the same method used in solving exact ode can be used
to find the first integral. i.e. if the ode has form

M(x, y)dx+N(x, y)dy = 0 (1)

Where this is exact (i.e. ∂M
∂y = ∂N

∂x ) then we assume first integral exist and given by
Φ(x, y) = c1. Hence

d
dx

Φ(x, y) = Φx +Φy
dy
dx

= 0 (2)

Comparing (1,2) we see that

Φx =M

Φy =N

From these two equations we can now find Φ(x, y) using same methods we use when
solving exact first order ode. So this is an example where we can find Φ(x, y) without
knowing the solution to the ode. The above works if the ode is exact.

If the ode is not exact, then we try to find an integrating factor which makes the ode
exact first.

The point of this note is to show that first integral is a function Φ(x, y) which happens to
be constant along solution curves.

The first integral Φ(x, y) of an ode is not unique. We just need to find one. Even though
the ode itself can have unique solution, there can be many different first integrals Φ(x, y) .
Only condition is that d

dxΦ(x, y) = 0.
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1.1 Example y′ = −x
y

The solution can be found to be
y2 = c1 − x2

Hence the first integral is (moving everything to one side)

Φ(x, y) = y2 + x2 − c1

To show this the first integral, we have to show that d
dxΦ(x, y) = 0. This is given by

d
dx

Φ(x, y) = Φx +Φyf(x, y)

Looking at our ode we see that f(x, y) = −x
y . The above becomes

d
dx

Φ(x, y) = Φx −Φy

(
x
y

)
But Φx = 2x and Φy = 2y, then the above becomes

d
dx

Φ(x, y) = 2x− 2y
(
x
y

)
= 0

Since d
dxΦ(x, y) = 0 then Φ(x, y) = y2 + x2 − c1 is first integral.

1.2 Example y′ = xy

This is linear ode, the solution is
y = c1e

x2
2

Hence the first integral is (moving everything to one side)

Φ(x, y) = y − c1e
x2
2

To show this the first integral, we have to show that d
dxΦ(x, y) = 0. This is given by

d
dx

Φ(x, y) = Φx +Φyf(x, y)

Looking at our ode we see that f(x, y) = xy. The above becomes

d
dx

Φ(x, y) = Φx +Φy(xy)

But Φx = −c1xe
x2
2 and Φy = 1, then the above becomes

d
dx

Φ(x, y) = −c1xe
x2
2 + (xy)

But y is the solution y = c1e
x2
2 , hence the above becomes

d
dx

Φ(x, y) = −c1xe
x2
2 + xc1e

x2
2

= 0

Since d
dxΦ(x, y) = 0 then Φ(x, y) = y − c1e

x2
2 is first integral.
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1.3 Example y′ = 2x2y2

The solution can be found to be
−1
y
= 2

3x
3 + c1

Hence the first integral is (moving everything to one side)

Φ(x, y) = 1
y
+ 2

3x
3 + c1

To show this is indeed the first integral, we have to show that d
dxΦ(x, y) = 0. This is given

by
d
dx

Φ(x, y) = Φx +Φyf(x, y)

Looking at our ode we see that f(x, y) = 2x2y2. The above becomes

d
dx

Φ(x, y) = Φx +Φy

(
2x2y2

)
But Φx = 2x2 and Φy = −1

y2
, then the above becomes

d
dx

Φ(x, y) = 2x2 − 1
y2
(
2x2y2

)
= 0

Since d
dxΦ(x, y) = 0 then

Φ(x, y) = 1
y
+ 2

3x
3 + c1

Is first integral of the ode y′ = 2x2y2

1.4 Example y′ = x−1
y

The solution is
y2

2 = −x+ 1
2x

2 + c1

Hence the first integral is
Φ(x, y) = y2

2 + x− 1
2x

2 − c1

To show this is the first integral, we have to show that d
dxΦ(x, y) = 0

d
dx

Φ(x, y) = Φx +Φyf(x, y)

Looking at our ode we see that f(x, y) = x−1
y , then the above becomes

d
dx

Φ(x, y) = Φx +Φy

(
x− 1
y

)
But Φx = 1− x and Φy = y, then the above becomes

d
dx

Φ(x, y) = 1− x+ y
(
x− 1
y

)
= 0

Since d
dxΦ(x, y) = 0 then

Φ(x, y) = y2

2 + x− 1
2x

2 − c1

Is first integral of the ode y′ = x−1
y .
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1.5 Example y′ = y sinx

The solution is
y = c1e− cosx

Hence the first integral is
Φ(x, y) = y − c1e− cosx

To show this is the first integral, we have to show that d
dxΦ(x, y) = 0

d
dx

Φ(x, y) = Φx +Φyf(x, y)

Looking at our ode we see that f(x, y) = y sinx, then the above becomes

d
dx

Φ(x, y) = Φx +Φy(y sinx)

But Φx = −c1 sin (x) e− cosx and Φy = 1, then the above becomes

d
dx

Φ(x, y) = −c1 sin (x) e− cosx + (y sinx)

Notice that in this example, we have y in the RHS above that did not cancel as the case
was with the first two examples. In this case, we have to replace this y by the solution
y = c1e− cosx and the above now becomes

d
dx

Φ(x, y) = −c1 sin (x) e− cosx + c1e− cosx sinx

= 0

Since d
dxΦ(x, y) = 0 then

Φ(x, y) = y − c1e− cosx

Is first integral of the ode y′ = y sinx.

2 Special ode’s and their solutions

These are ode’s whose solution is in terms of special functions. Will update as I find
more. Most of the special functions come up from working out the solution in series of
second order ode which has regular singular point at expansion point. These are the more
interesting odes which will generate these special functions.

2.1 Airy y′′+ axy = 0

solution is
y(x) = c1AiryAi

(
−a

1
3x
)
+ c2AiryBi

(
−a

1
3x
)

2.2 Chebyshev
(
1− x2

)
y′′ − xy′+ n2y = 0

For (
1− x2

)
y′′ − xy′ + n2y = 0

Singular points at x = 1,−1 and ∞. Solution valid for |x| < 1. Maple gives solution

y(x) = c1
1(

x+
√
x2 − 1

)n + c2
(
x+

√
x2 − 1

)n

For (
1− x2

)
y′′ − axy′ + n2y = 0

6



Maple gives solution

y(x) = c1
(
x2 − 1

) 1
2−

a
4 LegendreP

(√
a2 +4n2 − 2a+1

2 − 1
2 ,−1+

a
2 , x

)

+ c2
(
x2 − 1

) 1
2−

a
4 LegendreQ

(√
a2 +4n2 − 2a+1

2 − 1
2 ,−1+

a
2 , x

)

If n positive integer, then solution in series gives polynomial solution of degree n. Called
Chebyshev polynomials.

2.3 Hermite y′′ − 2xy′+2ny = 0

Converges for all x. If n is positive integer, one series terminates. Series solution in terms
of Hermite polynomials.

Maple gives solution

y(x) = c1xKummerM
(1
2 − n

2 ,
3
2 , x

2
)
+ c2xKummerU

(1
2 − n

2 ,
3
2 , x

2
)

2.4 Legendre
(
1− x2

)
y′′ − 2xy′+ n(n+1)y = 0

Series solution in terms of Legendre functions. When n is positive integer, one series
terminates (i.e. becomes polynomial).

Maple gives solution

y(x) = c1LegendreP(n,x) + c2LegendreQ(n,x)

If the ode is given in form

sin (θ)P ′′(θ) + cos (θ)P ′(θ) + n sin (θ)P (θ) = 0

Then using x = cos θ transforms it to the earlier more familar form. Maple gives this as
solution

P (θ) = c1LegendreP
(√4n+1

2 − 1
2 , cos θ

)
+ c2LegendreQ

(√4n+1
2 − 1

2 , cos θ
)

2.5 Bessel x2y′′+ xy′+
(
x2 − n2

)
y = 0

x = 0 is regular singular point. Solution in terms of Bessel functions

y(x) = c1BesselJ (n,x) + c2BesselY (n,x)

2.6 Reduced Riccati y′ = axn+ by2

For the special case of n = −2 the solution is

y(x) = λ
x

− x2bλ
bx

2bλ+1x
2bλ + c1

Where in the above λ is a root of bλ2 + λ+ a = 0.

For n 6= −2

w = √
x


c1BesselJ

(
1
2k ,

1
k

√
abxk

)
+ c2BesselY

(
1
2k ,

1
k

√
abxk

)
ab > 0

c1BesselI
(

1
2k ,

1
k

√
−abxk

)
+ c2BesselK

(
1
2k ,

1
k

√
−abxk

)
ab < 0

y = −1
b
w′

w

k = 1+ n
2
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2.7 Gauss Hypergeometric ode x(1− x)y′′+ (c− (a+ b+1)x)y′ − aby = 0

Solution is for |x| < 1 is in terms of hypergeom function. Has 3 regular singular points,
x = 0, x = 1, x = ∞.

Maple gives this solution

y(x) = c1 hypergeom([a, b] , [c] , x) + c2x1−c hypergeom([1 + a− c,1+ b− c] , [2− c] , x)

And Mathematica gives

y(x) = c1HypergeometricF1 (a, b, c, x)+(−1)1−c x1−cc2HypergeometricF1 (1 + a− c,1+ b− c,2− c, x)

3 Change of variables and chain rule in differential equation

These are examples doing change of variable for an ode.

3.1 Example 1 Change of the independent variable using z = g(x)

Given the ode
d2y
dx2

+ dy
dx

+ y = sin (x)

And we are asked to do change of variables from x to z where z = g(x). In this, we can
also write

x = g−1(z)

Where g−1(z) is the inverse function. Using chain rule gives

dy
dx

= dy
dz
dz
dx

And for second derivative
d2y
dx2

= d
dx

(
dy
dx

)
= d
dx

(
dy
dz
dz
dx

)
And now we use the product rule, which is d

dx(ab) = a′b+ ab′ on the above, which gives

d2y
dx2

=
(
d
dx
dy
dz

)(
dz
dx

)
+
(
dy
dz

)(
d
dx

dz
dx

)
(1)

Let us do each of the terms on the right above one by one. The second term on the RHS
above is easy. It is (

dy
dz

)(
d
dx

dz
dx

)
=
(
dy
dz

)(
d2z
dx2

)
(2)

It is the first term in (1) which needs more care. The problem is how to handle d
dx

dy
dz?

Since the denominators are different. The trick is to write d
dx

dy
dz as d

dz
dz
dx

(
dy
dz

)
which does

not change anything, but now we can change the order and write this as dz
dx

d
dz

(
dy
dz

)
which

now makes the denominator the same and now it is free sailing:

d
dx
dy
dz

= d
dz
dz
dx

(
dy
dz

)
= dz
dx

d
dz

(
dy
dz

)
= dz
dx

(
d2y
dz2

)
Therefore, the first term in (1) becomes(

d
dx
dy
dz

)(
dz
dx

)
= dz
dx

(
d2y
dz2

)(
dz
dx

)
=
(
dz
dx

)2(d2y
dz2

)
(3)

8



Using (2,3) then we have

d2y
dx2

=
(
dz
dx

)2(d2y
dz2

)
+
(
dy
dz

)(
d2z
dx2

)
Hence the original ode now becomes

d2y
dx2

+ dy
dx

+ y = sin (x)
y′′(x)︷ ︸︸ ︷(

dz
dx

)2(d2y
dz2

)
+
(
dy
dz

)(
d2z
dx2

)
+

y′(x)︷ ︸︸ ︷
dy
dz
dz
dx

+ y(z) = sin
(
g−1(z)

)
We could have written the RHS above as just sin (x) instead of sin (g−1(z)) but since the
independent variable is now z, this seemed better to do it this way. But both are correct.
Now, since z = g(x) the above can also be written as

(
dg
dx

)2(d2y
dz2

)
+
(
dy
dz

)(
d2g
dx2

)
+ dy
dz
dg
dx

+ y(z) = sin
(
g−1(z)

)
(g′(x))2 y′′(x) + y′(z)g′′(x) + y′(z)g′(x) + y(z) = sin (x)

OK, since the above was so much fun, lets do third derivative d3y
dx3

d3y
dx3

= d
dx

(
d2y
dx2

)
= d
dx

((
dz
dx

)2(d2y
dz2

)
+
(
dy
dz

)(
d2z
dx2

))

= d
dx

[(
dz
dx

)2(d2y
dz2

)]
+ d
dx

[(
dy
dz

)(
d2z
dx2

)]
(4)

Each term above is now found. Looking at first term in (4)

d
dx

[(
dz
dx

)2(d2y
dz2

)]

Using the product rule, which is d
dx(ab) = a′b+ ab′ on the above gives

d
dx

[(
dz
dx

)2(d2y
dz2

)]
= d
dx

[(
dz
dx

)2] d2y
dz2

+
(
dz
dx

)2 d
dx

[
d2y
dz2

]

But d
dx

[(
dz
dx

)2] = 2 dz
dx

d2z
dx and for d

dx

(
d2y
dz2

)
we have to use the same trick as before by writing

d
dx

(
d2y
dz2

)
= d

dz
dz
dx

(
d2y
dz2

)
= dz

dx
d
dz

(
d2y
dz2

)
and now we have d

dx

(
d2y
dz2

)
= dz

dx
d3y
dz3

. Hence the first term
in (4) is now done.

d
dx

[(
dz
dx

)2(d2y
dz2

)]
= 2dz

dx
d2z
dx2

d2y
dz2

+
(
dz
dx

)2 dz
dx
d3y
dz3

= 2dz
dx

d2z
dx2

d2y
dz2

+
(
dz
dx

)3 d3y
dz3

(5)

Now we look at the second term in (4) which is d
dx

[(
dy
dz

)(
d2z
dx2

)]
and apply the product rule,

this gives

d
dx

[(
dy
dz

)(
d2z
dx2

)]
= d
dx

[
dy
dz

](
d2z
dx2

)
+ dy
dz

d
dx

[
d2z
dx2

]
= d
dz
dz
dx

[
dy
dz

](
d2z
dx2

)
+ dy
dz
d3z
dx3

= dz
dx

d
dz

[
dy
dz

](
d2z
dx2

)
+ dy
dz
d3z
dx3

= dz
dx
d2y
dz2

(
d2z
dx2

)
+ dy
dz
d3z
dx3

(6)
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That is it. We are done. (5,6) are the two terms in (4). Therefore

d3y
dx3

= 2dz
dx

d2z
dx2

d2y
dz2

+
(
dz
dx

)3 d3y
dz3

+ dz
dx
d2y
dz2

(
d2z
dx2

)
+ dy
dz
d3z
dx3

= 3dz
dx

d2z
dx2

d2y
dz2

+
(
dz
dx

)3 d3y
dz3

+ dy
dz
d3z
dx3

Now, since z = g(x) the above can also be written as

y′′′(x) = 3g′(x)g′′(x)y′′(z) + (g′(x))3 y′′′(z) + y′(z)g′′′(x)

This table show summary of transformation for each derivative y(n)(x) when using change
of variables z = g(x)

y′(x) y′(z)g′(x)
y′′(x) (g′(x))2 y′′(z) + y′(z)g′′(x)
y′′′(x) 3g′(x)g′′(x)y′′(z) + (g′(x))3 y′′′(z) + y′(z)g′′′(x)
y′′′′(x) 3(g′′(x))2 y′′(z) + 4g′(x)y′′(z)g′′′(x) + 6(g′(x))2 g′′(x)y′′′(z) + y′(z)g′′′′(x) + (g′(x))4 y′′′′(z)

Strictly speaking, it would be better to use different variable than y when changing the
independent variable. i.e. instead of writing y(z) in all the above, we should write u(z) in
its place. So the above table will look like

y′(x) u′(z)g′(x)
y′′(x) (g′(x))2 u′′(z) + u′(z)g′′(x)
y′′′(x) 3g′(x)g′′(x)u′′(z) + (g′(x))3 u′′′(z) + u′(z)g′′′(x)
y′′′′(x) 3(g′′(x))2 u′′(z) + 4g′(x)u′′(z)g′′′(x) + 6(g′(x))2 g′′(x)u′′′(z) + y′(z)g′′′′(x) + (g′(x))4 u′′′′(z)

So any place where y(z) shows in the transformed expression, it should be written with
new letter for the dependent variable u(z). But this is not always enforced.

3.2 Example 2 Change of the independent variable using t = ln (x) Euler ode

Given the ode
x2
d2y
dx2

+2xdy
dx

+ y = 0

And asked to do change of variable t = ln (x)

dy
dx

= dy
dt
dt
dx

= dy
dt

1
x

And

10



d2y
dx2

= d
dx

(
dy
dx

)
= d
dx

(
dy
dt

1
x

)
= d
dx

[
dy
dt

] 1
x
+ dy
dt

d
dx

(1
x

)
= d
dt
dt
dx

[
dy
dt

] 1
x

− dy
dt

1
x2

= dt
dx
d2y
dt2

1
x

− dy
dt

1
x2

= 1
x
d2y
dt2

1
x

− dy
dt

1
x2

= 1
x2
d2y
dt2

− dy
dt

1
x2

Hence the original ode becomes

x2
( 1
x2
d2y
dt2

− dy
dt

1
x2

)
+2x

(
dy
dt

1
x

)
+ y = 0

d2y
dt2

− dy
dt

+2dy
dt

+ y = 0
d2y
dt2

+ dy
dt

+ y = 0

3.3 Example 3 Change of the dependent variable using y = xr Euler ode

Given the ode
x2
d2y
dx2

+2xdy
dx

+ y = 0

And asked to do change of variable y = xr

dy
dx

= rxr−1

And

d2y
dx2

= d
dx

(
rxr−1

)
= r(r − 1)xr−2

Hence the original ode becomes

x2
(
r(r − 1)xr−2

)
+2x

(
rxr−1

)
+ xr = 0

r(r − 1)xr +2rxr + xr = 0
r(r − 1) + 2r+1 = 0

Solving for r gives the roots. Hence solutions are y1 = xr1 and y2 = xr2 . Final solution is
therefore

y = c1y1 + c2y2

= c1xr1 + c2xr2

This method of solving the Euler ode is much simpler than using t = ln (x) change of
variables but for some reason most text books use the later one.
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4 Changing the role of independent and dependent variable in an ode

(added Dec 14, 2024).

Given an ode y′(x) = f(x, y), we want to change it so that instead of y(x) being the
dependent variable, to make the ode so that x(y) is the dependent variable. For example,
given the ode

d2y
dx2

= dy
dx
ey(x)

The new ode becomes
d2x
dy2

= −
(
dx
dy

)2
ey

Which is easier to solve for x(y). Once solved, we flip back and find y from the solution.
Sometimes this trick can make solving hard ode very easy. It also can make solving easy
ode very hard. Only way to find out, is to try it. So if we have an ode that we are having
hard time solving, we can try this trick.

For first order ode, the method is easy. We just isolate dy
dx and then flip the left hand side

and flip the right hand side, and change all y(x) to just y and change all the x to x(y).

More formally, this can also be done using change of variables, like this. The first step is
to do change of variables.

x = v(t)
y = t

If we carry the above change of variables, the new ode will be in terms of v(t) , v′(t) and
so on.

Now we replace all the v(n)(t) with x(n)(y) where n here is the order of derivative. And
replace any t by y (not y(x) but just y). And replace any v(t) by x. The new ode will be
the flipped ode.

When we do the above change of variables using chain rule, these will result in the following

dy
dx

→ 1
dv
dt

= dt
dv

d2y
dx2

→ −
d2v
dt2(
dv
dt

)3

d3y
dx3

→

2
(

d2v
dt2

)2

(
dv
dt

)2 −
d3v
dt3(
dv
dt

)3

dv
dt

And so on. Once the above is done, the rest is easy. We just replace any dv
dt by dx

dy and
any t by y and any v by x. We will not do change roles for ode higher than two in these
examples.

4.1 Example 1

Change the role for the ode
dy
dx

= x

This has solution
y(x) = 1

2x
2 + c1 (1)

Since this is first order, we can do it the easy way without change of variable. Flip the left
side and flip the right side and do the renaming

dx
dy

= 1
x

12



If we want to do it via change of variables, the method is: Let

x = v(t)
y = t

Then
dy
dx

= dy
dt
dt
dv
dv
dx

But dy
dt = 1 and the above becomes

dy
dx

= dt
dv
dv
dx

And dv
dx = 1 and the above becomes

dy
dx

= dt
dv

Hence ode becomes

dt
dv

= v(t)
dv
dt

= 1
v

Now we replace v′(t) by x′(y) and v by x The above becomes (which is the flipped ode)

dx
dy

= 1
x

Solving for x(y) gives

x1 =
√
2y+ c1

x2 = −
√
2y+ c1

Lets take the first solution and solve for y, this gives

x2 = 2y+ c1

y = 1
2x

2 − 1
2c1

= 1
2x

2 + c1 (2)

Which is the same as (1). Of course, in this example there is no point of changing the
roles, but this was just an example.

4.2 Example 2

Change the role for the ode
dy
dx

= ey

This has solution
y(x) = ln

(
−1

x+ c1

)
(1)

Since this is first order, we will do it the easy way. Flip the left side and flip the right side
and do the renaming. This gives

dx
dy

= e−y

Solving this gives
x = −e−y + c1

13



Solving for y gives

−x+ c1 = e−y

ln (−x+ c1) = −y

y = − ln (−x+ c1)

= ln
( 1
−x+ c1

)
= ln

(
−1
x− c1

)
= ln

(
−1

x+ c2

)
Which is same as (1).

4.3 Example 3

Change the role for the ode
y ln y+ (x− ln y) dy

dx
= 0 (1)

Solving the above gives

y1 = ex−
√

x2−2c1 (2)

y1 = ex+
√

x2−2c1

Since this is first order, we will do it the easy way. First isolate dy
dx then flip the left side

and the right side and rename. Solving for dy
dx from (1) gives

dy
dx

= −y ln y
x− ln y

Flipping

dx
dy

= ln (y)− x
y ln y

= 1
y
− x
y ln y

dx
dy

+ x
y ln y = 1

y
(3)

In this example, we see that changing roles really paid off as Eq. (3) is linear ode in x(y)
but (1) is very hard to solve for y(x) and needs Lie symmetry to solve it. Solving (3) gives

x = ln y
2 + c1

ln y

Solving the above for y gives same solutions as (2).

4.4 Example 4

Change the role for the ode
d2y
dx2

= dy
dx
ey(x) (1)

This has solution
y(x) = c1c2 + c1x+ ln

(
−c1

ec1c2exc1 − 1
)

(2)

Since this is not first order, we can not do the easy method as with first order and we
have to do change of variables since with second derivative it is more complicate. Let

x = v(t)
y = t

14



Using the rules gives above, we know that

dy
dx

= 1
dv
dt

(3)

d2y
dx2

= −
d2v
dt2(
dv
dt

)3
Substituting (3) into (1) (and changing at y(x) by t and any x by v(t)) gives

−
d2v
dt2(
dv
dt

)3 = 1
dv
dt

et

−d
2v
dt2

=

(
dv
dt

)3
dv
dt

et

−d
2v
dt2

=
(
dv
dt

)2
et

We now replace each dv
dt by dx

dy and each t by y. The above becomes

d2x
dy2

= −
(
dx
dy

)2
ey

And the above is the final flipped ode. The solution is

x = − 1
c1

ln (ey) + 1
c1

ln (ey − c1) + c2

To obtain y as function of x, we just isolate y from the above.

c1x = − ln (ey) + ln (ey − c1) + c1c2

c1x− c1c2 = ln
(
ey − c1
ey

)
e(c1x−c1c2) = ey − c1

ey

e(c1x−c1c2) = 1− c1e−y

1− e(c1x−c1c2) = c1e−y

1− e(c1x−c1c2)

c1
= e−y

−y = ln
(
1− e(c1x−c1c2)

c1

)

y = ln
(

c1
1− e(c1x−c1c2)

)
Which is the solution to the original ode obtain by first flipping the ode.

4.5 Example 5

Change the role for the ode
1+ xy

(
1+ xy2

) dy
dx

= 0 (1)

As this stands, it is hard to solve as it needed Lie symmetry. The solution is

y1 =
1
x

√
−x

(
2xLambertW

(
−1
2c1e

−2x−1
2x

)
+2x+1

)

y2 = −1
x

√
−x

(
2xLambertW

(
−1
2c1e

−2x−1
2x

)
+2x+1

)
By flipping roles, the ode becomes Bernoulli, which is much easier. Since this is first order,
we will use the easy method. First we isolate dy

dx from (1) then flip both sides and rename.
Solving for dy

dx in (1) gives
dy
dx

= −1
xy (1 + xy2)
15



Flipping and renaming y(x) to y and x to x(y) gives

dx
dy

= −xy − x2y3

This is in the form
x′ = Px+Qxn

Where n = 2 here. Hence Bernoulli, which is easily solved. The solution is

x = 1
−2+ c1e

y2
2 − y2

The last step is to solve for y as function of x.

x
(
−2+ c1e

y2
2 − y2

)
= 1

−2x+ c1xe
y2
2 − xy2 = 1

c1e
y2
2 − y2 = 1+ 2x

x

Solving for y from the above gives same answer as above. This is an example where flipping
roles paid off well. But only way to know is to try it and see.

4.6 Example 6

Change the role for the ode (
1− 4xy2

) dy
dx

= y3 (1)

As this stands, this is homogeneous class G. The solution is

y1 = − 1
2x

√
x
(
1+

√
16c1x+1

)
y2 =

1
2x

√
x
(
1+

√
16c1x+1

)
y3 = − 1

2x

√
−x

(
−1+

√
16c1x+1

)
y4 =

1
2x

√
−x

(
−1+

√
16c1x+1

)
By flipping roles, the ode becomes linear, which is much easier to solve. Since this is first
order, we will use the easy method. First we isolate dy

dx from (1) then flip both sides and
rename. Solving for dy

dx in (1) gives

dy
dx

= y3

1− 4xy2

Flipping and renaming y(x) to y and x to x(y) gives

dx
dy

= 1− 4xy2
y3

= 1
y3

− 4x
y

Or
dx
dy

+ 4
y
x = 1

y3

Which is linear ode in x(y). Solving gives

x = 1
y4

(
y2

2 + c1

)
The last step is to solve for y which will give same solution as above.
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4.7 Example 7

Change the role for the ode
dy
dx

= x
y2x2 + y5

(1)

As this stands, this can be solved using Lie symmetry or as an exact ode but with an
integrating factor that needs to be found first, The solution is

y1 =
1
2
(
−8x2 − 12LambertW

(4
3c1e

− 2
3x

2−1
)
− 12

) 1
3

And 2 more (too long to type). By flipping roles the new ode becomes

dx
dy

= y2x2 + y5

x

= xy2 + y5x−1

This has form
x′ = P (y)x+Q(y)xn

Which is Bernoulli ode. Which is simpler to solve solve. Solving gives

x = −1
2
√
−6− 4y3 + c14e

2
3y

3

x = 1
2
√
−6− 4y3 + c14e

2
3y

3

Finally, we solve for y from the above. This will give same solutions as above.

5 general notes

� Some rules to remember. This is in the real domain

1.
√
ab = √

a
√
b only for a ≥ 0, b ≥ 0. In general (ab)

1
n = a

1
n b

1
n for a ≥ 0, b ≥ 0 where n is

positive integer.

2. √
y = x implies y = x2 only when x > 0. So be careful when squaring both sides to

get rid of sqrt root on one side. To see this, let √
y = 4 then y = 16 because 4 is

positive. But if we had √
y = −4 then we can’t say that y = 16 since

√
16 is 4 and

not −4. (we always take the positive root). So each time we square both sides of
equation to get rid of √ on one side, always say this is valid when the other side is
not negative.

3. Generalization of the above: given (ab)
n
m where both n,m integers then (ab)

n
m =

a
n
m b

n
m only when a ≥ 0, b ≥ 0. This applies if n

m < 1 such as 2
3 or when n

m > 1 such as
3
2 . Only time we can write (ab)n = anbn for any a, b is when n is an integer (positive
or negative). When the power is ratio of integers, then was can split it only under
the condition that all terms are positive.

4.
√

1
b = 1√

b
only for b > 0. This can be used for example to simplify

√
1

1−x2

√
1− x2

to 1 under the condition 1 − x2 > 0 or −1 < x < 1. Because in this case the input
becomes 1√

1−x2

√
1− x2 = 1.

5. Generalization of the above:√a
b =

√
a√
b
only for a ≥ 0, b > 0

6.
√
x2 = x only for x ≥ 0

7. Generalization of the above: (xn)
1
n = x only when x ≥ 0 (assuming n is integer).

� Given u ≡ u(x, y) then total differential of u is

du = ∂u
∂x
dx+ ∂u

∂y
dy
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� Lyapunov function is used to determine stability of an equilibrium point. Taking this

equilibrium point to be zero, and someone gives us a set of differential equations


x′(t)
y′(t)
z′(t)

 =


f1(x, y, z, t)
f2(x, y, z, t)
f2(x, y, z, t)

 and assuming (0,0,0) is an equilibrium point. The question is, how to

determine if it stable or not? There are two main ways to do this. One by linearization of
the system around origin. This means we find the Jacobian matrix, evaluate it at origin,
and check the sign of the real parts of the eigenvalues. This is the common way to do
this. Another method, called Lyapunov, is more direct. There is no linearization needed.
But we need to do the following. We need to find a function V (x, y, z) which is called
Lyapunov function for the system which meets the following conditions

1. V (x.y, z) is continuously differentiable function in R3 and V (x.y, z) ≥ 0 (positive
definite or positive semidefinite) for all x, y, z away from the origin, or everywhere
inside some fixed region around the origin. This function represents the total energy
of the system (For Hamiltonian systems). Hence V (x, y, z) can be zero away from
the origin. But it could never be negative.

2. V (0,0,0) = 0. This says the system has no energy when it is at the equilibrium
point. (rest state).

3. The orbital derivative dV
dt ≤ 0 (i.e. negative definite or negative semi-definite) for all

x, y, z, or inside some fixed region around the origin. The orbital derivative is same
as dV

dt along any solution trajectory. This condition says that the total energy is
either constant in time (the zero case) or the total energy is decreasing in time (the
negative definite case). Both of which indicate that the origin is a stable equilibrium
point.

If dV
dt is negative semi-definite then the origin is stable in Lyapunov sense. If dV

dt is negative
definite then the origin is asymptotically stable equilibrium. Negative semi-definite means
the system, when perturbed away from the origin, a trajectory will remain around the
origin since its energy do not increase nor decrease. So it is stable. But asymptotically
stable equilibrium is a stronger stability. It means when perturbed from the origin the
solution will eventually return back to the origin since the energy is decreasing. Global
stability means dV

dt ≤ 0 everywhere, and not just in some closed region around the origin.
Local stability means dV

dt ≤ 0 in some closed region around the origin. Global stability is
stronger stability than local stability.

Main difficulty with this method is to find V (x.y, z). If the system is Hamiltonian, then
V is the same as total energy. Otherwise, one will guess. Typically a quadratic function
such as V = ax2 + cxy+ dy2 is used (for system in x, y) then we try to find a, c, d which
makes it positive definite everywhere away from origin, and also more importantly makes
dV
dt ≤ 0. If so, we say origin is stable. Most of the problems we had starts by giving us V
and then asks to show it is Lyapunov function and what kind of stability it is.

To determine if V is positive definite or not, the common way is to find the Hessian and
check the sign of the eigenvalues. Another way is to find the Hessian and check the sign
of the minors. For 2×2 matrix, this means the determinant is positive and the entry (1,1)
in the matrix is positive. Similar thing to check if dV

dt ≤ 0. We find the Hessian of dV
dt and

do the same thing. But now we check for negative eigenvalues instead.

� Methods to find Green function are

1. Fredholm theory

2. methods of images
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3. separation of variables

4. Laplace transform

reference Wikipedia I need to make one example and apply each of the above methods on
it.

� In solving an ODE with constant coefficient just use the characteristic equation to solve
the solution.

� In solving an ODE with coefficients that are functions that depends on the independent
variable, as in y′′(x)+q(x)y′(x)+p(x)y(x) = 0, first classify the point x0 type. This means
to check how p(x) and q(x) behaves at x0. We are talking about the ODE here, not the
solution yet.

There are 3 kinds of points. x0 can be normal, or regular singular point, or irregular
singular point. Normal point x0 means p(x) and q(x) have Taylor series expansion y(x) =∑∞

n=0 an(x− x0)n that converges to y(x) at x0.
Regular singular point x0 means that the above test fails, but limx→x0 (x− x0) q(x) has a
convergent Taylor series, and also that limx→x0 (x− x0)2 p(x) now has a convergent Taylor
series at x0. This also means the limit exist.

All this just means we can get rid of the singularity. i.e. x0 is a removable singularity.
If this is the case, then the solution at x0 can be assumed to have a Frobenius series
y(x) = ∑∞

n=0 an(x− x0)n+α where a0 6= 0 and α is the root of the Frobenius indicial
equation. There are three cases to consider. See https://math.usask.ca/~cheviakov/c
ourses/m338/text/Frobenius_Case3_ill.pdf for more discussion on this.

The third type of point, is the hard one. Called irregular singular point. We can’t get rid
of it using the above. So we also say the ODE has an essential singularity at x0 (another
fancy name for irregular singular point). What this means is that we can’t approximate
the solution at x0 using either Taylor nor Frobenius series.

If the point is an irregular singular point, then use the methods of asymptotic. See
advanced mathematical methods for scientists and engineers chapter 3. For normal point,
use y(x) =∑∞

n=0 anx
n, for regular singular point use y(x) =∑∞

n=0 anx
n+r. Remember, to

solve for r first. This should give two values. If you get one root, then use reduction of
order to find second solution.

� Asymptotic series S(z) = c0 + c1
z + c2

z2
+ · · · is series expansion of f(z) which gives good

and rapid approximation for large z as long as we know when to truncate S(z) before it
becomes divergent. This is the main difference Asymptotic series expansion and Taylor
series expansion.

S(z) is used to approximate a function for large z while Taylor (or power series) is used
for local approximation or for small distance away from the point of expansion. S(z) will
become divergent, hence it needs to be truncated at some n to use, where n is the number
of terms in Sn(z). It is optimally truncated when n ≈ |z|2.

S(x) has the following two important properties

1. lim|z|→∞ zn(f(z)− Sn(z)) = 0 for fixed n.

2. limn→∞ zn(f(z)− Sn(z)) = ∞ for fixed z.

We write S(z) ∼ f(z) when S(z) is the asymptotic series expansion of f(z) for large z.
Most common method to find S(z) is by integration by parts. At least this is what we did
in the class I took.

� For Taylor series, leading behavior is a0 no controlling factor? For Frobenius series,
leading behavior term is a0xα and controlling factor is xα. For asymptotic series, controlling
factor is assumed to be eS(x) always. proposed by Carlini (1817)
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� Method to find the leading behavior of the solution y(x) near irregular singular point
using asymptotic is called the dominant balance method.

� When solving εy′′+ p(x)y′+ q(x)y = 0 for very small ε then use WKB method, if there
is no boundary layer between the boundary conditions. If the ODE non-linear, can’t use
WKB, has to use boundary layer (B.L.). Example εy′′+yy′−y = 0 with y(0) = 0, y(1) = −2
then use BL.

� good exercise is to solve say εy′′+(1+x)y′+y = 0 with y(0) = y(1) using both B.L. and
WKB and compare the solutions, they should come out the same. y ∼ 2

1+x−exp
(
−x
ε − x2

2ε

)
+

O(ε) . with BL had to do the matching between the outer and the inner solutions. WKB
is easier. But can’t use it for non-linear ODE.

� When there is rapid oscillation over the entire domain, WKB is better. Use WKB to solve
Schrodinger equation where ε becomes function of } (Planck’s constant, 6.62606957×10−34

m2kg/s)

� In second order ODE with non constant coefficient, y′′(x) + p(x)y′(x) + q(x)y(x) = 0,
if we know one solution y1(x), then a method called the reduction of order can be used to
find the second solution y2(x). Write y2(x) = u(x)y1(x), plug this in the ODE, and solve
for u(x). The final solution will be y(x) = c1y1(x)+ c2y2(x). Now apply I.C.’s to find c1, c2.

� To find particular solution to y′′(x)+p(x)y′(x)+q(x)y(x) = f(x), we can use a method
called undetermined coefficients. But a better method is called variation of parameters,
In this method, assume yp(x) = u1(x)y1(x) + u2(x)y2(x) where y1(x) , y2(x) are the two
linearly independent solutions of the homogeneous ODE and u1(x) , u2(x) are to be deter-
mined. This ends up with u1(x) = −

∫ y2(x)f(x)
W dx and u2(x) =

∫ y1(x)f(x)
W dx. Remember to

put the ODE in standard form first, so a = 1, i.e. ay′′(x)+ · · · . In here,W is the Wronskian

W =
∣∣∣∣∣∣y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣∣∣
� Two solutions of y′′(x)+ p(x)y′(x)+ q(x)y(x) = 0 are linearly independent if W (x) 6= 0,
where W is the Wronskian.

� For second order linear ODE defined over the whole real line, the Wronskian is either
always zero, or not zero. This comes from Abel formula for Wronskian, which is W (x) =
k exp

(
−
∫ B(x)

A(x)dx
)
for ODE of form A(x)y′′+B(x)y′+C(x)y = 0. Since exp

(
−
∫ B(x)

A(x)dx
)
>

0, then it is decided by k. The constant of integration. If k = 0, thenW (x) = 0 everywhere,
else it is not zero everywhere.

� For linear PDE, if boundary condition are time dependent, can not use separation of
variables. Try Transform method (Laplace or Fourier) to solve the PDE.

� If unable to invert Laplace analytically, try numerical inversion or asymptotic methods.
Need to find example of this.

� Green function takes the homogeneous solution and the forcing function and constructs
a particular solution. For PDE’s, we always want a symmetric Green’s function.

� To get a symmetric Green’s function given an ODE, start by converting the ODE to a
Sturm-Liouville form first. This way the Green’s function comes out symmetric.

� For numerical solutions of field problems, there are basically two different problems:
Those with closed boundaries and those with open boundaries but with initial conditions.
Closed boundaries are elliptical problems which can be cast in the form Au = f , and the
other are either hyperbolic or parabolic.

� For numerical solution of elliptical problems, the basic layout is something like this:

Always start with trial solution u(x) such that utrial(x) = ∑i=N
i=0 Ciφi(x) where the Ci

are the unknowns to be determined and the φi are set of linearly independent functions
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(polynomials) in x.

How to determine those Ci comes next. Use either residual method (Galerkin) or varia-
tional methods (Ritz). For residual, we make a function based on the error R = A−utrialf .
It all comes down to solving ∫ f(R) = 0 over the domain. This is a picture

|
+---------------+-------------------------------------+
| |
residual Variational (sub u_trial in I(u)
| where I(u) is functional to minimize.
|
+----------------+-------------+----------+
| | | |
Absolute error collocation subdomain orthogonality
....
+----------------------+------------+
| | |
method of moments Galerkin least squares

� Geometric probability distribution. Use when you want an answer to the question: What
is the probability you have to do the experiment N times to finally get the output you
are looking for, given that a probability of p showing up from doing one experiment.

For example: What is the probability one has to flip a fair coin N times to get a head?
The answer is P (X = N) = (1 − p)k−1p. So for a fair coin, p = 1

2 that a head will show
up from one flip. So the probability we have to flip a coin 10 times to get a head is
P (X = 10) = (1− 0.5)9(0.5) = 0.00097 which is very low as expected.

� To generate random variable drawn from some distribution different from uniform
distribution, by only using uniform distribution U(0,1) do this: Lets say we want to
generate random number from exponential distribution with mean µ.

This distribution has pdf(X) = 1
µe

−x
µ , the first step is to find the cdf of exponential

distribution, which is known to be F (x) = P (X <= x) = 1− e
−x
µ .

Now find the inverse of this, which is F−1(x) = −µ ln(1 − x). Then generate a random
number from the uniform distribution U(0,1). Let this value be called z.

Now plug this value into F−1(z), this gives a random number from exponential distribution,
which will be −µ ln(1− z) (take the natural log of both side of F (x)).

This method can be used to generate random variables from any other distribution by
knowing on U(0,1). But it requires knowing the CDF and the inverse of the CDF for the
other distribution. This is called the inverse CDF method. Another method is called
the rejection method

� Given u, a r.v. from uniform distribution over [0,1], then to obtain v, a r.v. from uniform
distribution over [A,B], then the relation is v = A+ (B −A)u.

� When solving using F.E.M. is best to do everything using isoparametric element (natural
coordinates), then find the Jacobian of transformation between the natural and physi-
cal coordinates to evaluate the integrals needed. For the force function, using Gaussian
quadrature method.

� A solution to differential equation is a function that can be expressed as a convergent
series. (Cauchy. Briot and Bouquet, Picard)

� To solve a first order ODE using integrating factor.

x′(t) + p(t)x(t) = f(t)
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then as long as it is linear and p(t), f(t) are integrable functions in t, then follow these
steps

1. multiply the ODE by function I(t), this is called the integrating factor.

I(t)x′(t) + I(t)p(t)x(t) = I(t)f(t)

2. We solve for I(t) such that the left side satisfies

d
dt
(I(t)x(t)) = I(t)x′(t) + I(t)p(t)x(t)

3. Solving the above for I(t) gives

I ′(t)x(t) + I(t)x′(t) = I(t)x′(t) + I(t)p(t)x(t)
I ′(t)x(t) = I(t)p(t)x(t)

I ′(t) = I(t)p(t)
dI
I

= p(t)dt

Integrating both sides gives

ln(I) =
∫
p(t)dt

I(t) = e
∫
p(t)dt

4. Now equation (1) can be written as

d
dt
(I(t)x(t)) = I(t)f(t)

We now integrate the above to give

I(t)x(t) =
∫
I(t)f(t)dt+C

x(t) =
∫
I(t)f(t)dt+C

I(t)

Where I(t) is given by (2). Hence

x(t) =
∫
e
∫
p(t)dtf(t)dt+C

e
∫
p(t)dt

� A polynomial is called ill-conditioned if we make small change to one of its
coefficients and this causes large change to one of its roots.

� To find rank of matrix A by hand, find the row echelon form, then count how many
zero rows there are. subtract that from number of rows, i.e. n.

� To find the basis of the column space of A, find the row echelon form and pick the
columns with the pivots, there are the basis (the linearly independent columns of A).

� For symmetric matrix A, its second norm is its spectral radius ρ(A) which is the largest
eigenvalue of A (in absolute terms).

� The eigenvalues of the inverse of matrix A is the inverse of the eigenvalues of A.

� If matrix A of order n×n, and it has n distinct eigenvalues, then it can be diagonalized
A = V ΛV −1, where

Λ =


eλ1 0 0

0 . . . 0
0 0 eλn


and V is matrix that has the n eigenvectors as its columns.
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� limk→∞
∫ x2
x1
fk(x)dx = ∫ x2

x1
limk→∞ fk(x)dx only if fk(x) converges uniformly over [x1, x2].

� A3 = I, has infinite number of A solutions. Think of A3 as 3 rotations, each of 1200, going
back to where we started. Each rotation around a straight line. Hence infinite number of
solutions.

� How to integrate I = ∫ √
x3−1
x dx.

Let u = x3 +1, then du = 3x2dx and the above becomes

I =
∫ √

u
3x3 du = 1

3
∫ √

u
u− 1 du

Now let u = tan2 v or √
u = tan v, hence 1

2
1√
u
du = sec2 v dv and the above becomes

I = 1
3
∫ √

u
tan2 v − 1

(
2√u sec2 v

)
dv

= 2
3
∫

u
tan2 v − 1

sec2 v dv

= 2
3
∫ tan2 v

tan2 v − 1
sec2 v dv

But tan2 v − 1 = sec2 v hence

I = 2
3
∫
tan2 v dv

= 2
3(tan v − v)

Substituting back
I = 2

3(
√
u− arctan (

√
u))

Substituting back
I = 2

3
(√

x3 +1− arctan
(√

x3 +1
))

� (added Nov. 4, 2015) Made small diagram to help me remember long division terms
used.

dividend

divisor

x3−2x2−4
x−3

=⇒ P (x)
d(x)

= Q(x) + R(x)
d(x)

Quotient
remainder

= d(x)Q(x) +R(x) = (x− 3)(x2 + x+ 3) + 5

P (x)d(x)

Q(x)

R(x)
long division

Euclidean division

P (x)

d(x)

Q(x)

R(x)

d(x) Q(x) R(x)

Euclidean division
x3 − 2x2 − 4

x− 3

x2 + x+ 3

5

p1.ipe

23



� If a linear ODE is equidimensional, as in anxny(n) + an−1xn−1y(n01) + . . . for example
x2y′′ − 2y = 0 then use ansatz y = xr this will give equation in r only. Solve for r and
obtain y1 = xr1 , y2 = xr2 and the solution will be

y = c1y1 + c2y2

For example, for the above ode, the solution is c1x2 + c2
x . This ansatz works only if ODE

is equidimensional. So can’t use it on xy′′ + y = 0 for example.

If r is multiple root, use xr, xr log(x), xr(log(x))2 . . . as solutions.

� for xi, where i =
√
−1, write it as x = elog x hence xi = ei log x = cos(logx) + i sin(logx)

� Some integral tricks: ∫ √
a2 − x2dx use x = a sin θ. For ∫ √

a2 + x2dx use x = a tan θ and
for ∫ √

x2 − a2dx use x = a sec θ.

� y′′ + xny = 0 is called Emden-Fowler form.

� For second order ODE, boundary value problem, with eigenvalue (Sturm-Liouville),
remember that having two boundary conditions is not enough to fully solve it.

One boundary condition is used to find the first constant of integration, and the second
boundary condition is used to find the eigenvalues.

We still need another input to find the second constant of integration. This is normally
done by giving the initial value. This problem happens as part of initial value, boundary
value problem. The point is, with boundary value and eigenvalue also present, we need 3
inputs to fully solve it. Two boundary conditions is not enough.

� If given ODE y′′(x)+p(x)y′(x)+q(x)y(x) = 0 and we are asked to classify if it is singular
at x = ∞, then let x = 1

t and check what happens at t = 0. The d2

dx2 operator becomes(
2t3 d

dt + t4 d2

dt2

)
and d

dx operator becomes −t2 d
dt . And write the ode now where t is the

independent variable, and follow standard operating procedures. i.e. look at limt→0 xp(t)
and limt→0 x2q(t) and see if these are finite or not. To see how the operator are mapped,
always start with x = 1

t then write d
dx = d

dt
dt
dx and write d2

dx2 =
(

d
dx

)(
d
dx

)
. For example,

d
dx = −t2 d

dt and

d2

dx2
=
(
−t2 d

dt

)(
−t2 d

dt

)
= −t2

(
−2t d

dt
− t2 d

2

dt2

)
=
(
2t3 d

dt
+ t4

d2

dt2

)
Then the new ODE becomes(

2t3 d
dt

+ t4
d2

dt2

)
y(t) + p(t)

(
−t2 d

dt
y(t)

)
+ q(t)y(t) = 0

t4
d2

dt2
y+

(
−t2p(t) + 2t3

) d
dt
y+ q(t)y = 0

d2

dt2
y+ (−p(t) + 2t)

t2
d
dt
y+ q(t)

t4
y = 0

The above is how the ODE will always become after the transformation. Remember to
change p(x) to p(t) using x = 1

t and same for q(x). Now the new p is (−p(t)+2t)
t2

and the
new q is q(t)

t4
. Then do limt→0 t

(
p(t)+2t3

)
t4

and limt→0 t2
q(t)
t4

as before.

� If the ODE a(x)y′′ + b(x)y′ + c(x)y = 0, and say 0 ≤ x ≤ 1, and there is essential
singularity at either end, then use boundary layer or WKB. But Boundary layer method
works on non-linear ODE’s (and also on linear ODE) and only if the boundary layer is at
end of the domain, i.e. at x = 0 or x = 1.

WKB method on the other hand, works only on linear ODE, but the singularity can be
any where (i.e. inside the domain). As rule of thumb, if the ODE is linear, use WKB. If
the ODE is non-linear, we must use boundary layer.
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Another difference, is that with boundary layer, we need to do matching phase at the
interface between the boundary layer and the outer layer in order to find the constants of
integrations. This can be tricky and is the hardest part of solving using boundary layer.

Using WKB, no matching phase is needed. We apply the boundary conditions to the whole
solution obtained. See my HWs for NE 548 for problems solved from Bender and Orszag
text book.

� In numerical, to find if a scheme will converge, check that it is stable and also check
that if it is consistent.

It could also be conditionally stable, or unconditionally stable, or unstable.

To check it is consistent, this is the same as finding the LTE (local truncation error) and
checking that as the time step and the space step both go to zero, the LTE goes to zero.
What is the LTE? You take the scheme and plug in the actual solution in it. An example
is better to explain this part. Lets solve ut = uxx. Using forward in time and centered
difference in space, the numerical scheme (explicit) is

Un+1
j = Un

j + k
h2

(
Un
j−1 − 2Un

j +Un
j+1

)
The LTE is the difference between these two (error)

LTE = Un+1
j −

(
Un
j + k

h2

(
Un
j−1 − 2Un

j +Un
j+1

))
Now plug-in u(tn, xj) in place of Un

j and u(tn + k,xj) in place of Un+1
j and plug-in

u(tn, x+ h) in place of Un
j+1 and plug-in u(tn, x− h) in place of Un

j−1 in the above. It
becomes

LTE = u(t+ k,xj)−
(
u(tn, xj) +

k
h2

(u(t, x− h)− 2u(tn, xj) + u(t, x+ h))
)

(1)

Where in the above k is the time step (also written as ∆t) and h is the space step size.
Now comes the main trick. Expanding the term u(tn + k,xj) in Taylor,

u(tn + k,xj) = u(tn, xj) + k
∂u
∂t

∣∣∣∣
tn
+ k2

2
∂2u
∂t2

∣∣∣∣
tn
+O

(
k3
)

(2)

And expanding

u(tn, xj + h) = u(tn, xj) + h
∂u
∂x

∣∣∣∣
xj

+ h2

2
∂2u
∂x2

∣∣∣∣
xj

+O
(
h3
)

(3)

And expanding

u(tn, xj − h) = u(tn, xj)− h
∂u
∂x

∣∣∣∣
xj

+ h2

2
∂2u
∂x2

∣∣∣∣
xj

−O
(
h3
)

(4)

Now plug-in (2,3,4) back into (1). Simplifying, many things drop out, and we should
obtain that

LTE = O(k) +O
(
h2
)

Which says that LTE → 0 as h→ 0, k → 0. Hence it is consistent.

To check it is stable, use Von Neumann method for stability. This check if the solution at
next time step does not become larger than the solution at the current time step. There
can be condition for this. Such as it is stable if k ≤ h2

2 . This says that using this scheme,
it will be stable as long as time step is smaller than h2

2 . This makes the time step much
smaller than space step.

� For ax2 + bx+ c = 0, with roots α,β then the relation between roots and coefficients is

α+ β = − b
a

αβ = c
a
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� Leibniz rules for integration

d
dx

∫ b(x)

a(x)
f(t)dt = f(b(x)) b′(x)− f(a(x))a′(x)

d
dx

∫ b(x)

a(x)
f(t, x)dt = f(b(x)) b′(x)− f(a(x))a′(x) +

∫ b(x)

a(x)

∂
∂x
f(t, x)dt

�
∫ b
a f(x)dx = ∫ b

a f(a+ b− x)dx

� Differentiable function implies continuous. But continuous does not imply differentiable.
Example is |x| function.

� Mean curvature being zero is a characteristic of minimal surfaces.

� How to find phase difference between 2 signals x1(t), x2(t)? One way is to find the
DFT of both signals (in Mathematica this is Fourier, in Matlab fft()), then find where
the bin where peak frequency is located (in either output), then find the phase difference
between the 2 bins at that location. Value of DFT at that bin is complex number. Use
Arg in Mathematica to find its phase. The difference gives the phase difference between
the original signals in time domain. See https://mathematica.stackexchange.com/qu
estions/11046/how-to-find-the-phase-difference-of-two-sampled-sine-waves
for an example.

� Watch out when squaring both sides of equation. For example, given y = √
x. squaring

both sides gives y2 = x. But this is only true for y ≥ 0. Why? Let us take the square root
of this in order to get back to the original equation. This gives

√
y2 = √

x. And here is
the problem,

√
y2 = y only for y ≥ 0. Why? Let us assume y = −1. Then

√
y2 =

√
(−1)2 =√

1 = 1 which is not −1. So when taking the square of both sides of the equation, remember
this condition.

� do not replace
√
x2 by x, but by |x|, since x =

√
x2 only for non negative x.

� Given an equation, and we want to solve for x. We can square both sides in order to get
rid of sqrt if needed on one side. But be careful. Even though after squaring both sides,
the new equation is still true, the solutions of the new equation can introduce extraneous
solution that does not satisfy the original equation. Here is an example I saw on the
internet which illustrate this. Given √

x = x−6. And we want to solve for x. Squaring both
sides gives x = (x− 6)2. This has solutions x = 9, x = 4. But only x = 9 is valid solution
for the original equation before squaring. The solution x = 4 is extraneous. So need to
check all solutions found after squaring against the original equation, and remove those
extraneous one. In summary, if a2 = b2 then this does not mean that a = b. But if a = b

then it means that a2 = b2. For example (−5)2 = 52. But −5 6= 5.

� How to find Laplace transform of product of two functions?

There is no formula for the Laplace transform of product f(t)g(t). (But if this was
convolution, it is different story). But you could always try the definition and see if
you can integrate it. Since L(f(t)) =

∫∞
0 e−stf(t)dt then L(f(t)g(t)) =

∫∞
0 e−stf(t)g(t)dt.

Hence for f(t) = eat, g(t) = t this becomes

L(teat) =
∫ ∞

0
e−stteatdt

=
∫ ∞

0
te−t(s−a)dt
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Let s− a ≡ z then

L(teat) =
∫ ∞

0
te−tzdt

= Lz(t)

= 1
z2

= 1
(s− a)2

Similarly for f(t) = eat, g(t) = t2

L
(
t2eat

)
=
∫ ∞

0
e−stt2eatdt

=
∫ ∞

0
t2e−t(s−a)dt

Let s− a ≡ z then

L(teat) =
∫ ∞

0
t2e−tzdt

= Lz

(
t2
)

= 2
z3

= 2
(s− a)3

Similarly for f(t) = eat, g(t) = t3

L
(
t2eat

)
=
∫ ∞

0
e−stt3eatdt

=
∫ ∞

0
t3e−t(s−a)dt

Let s− a ≡ z then

L(teat) =
∫ ∞

0
t3e−tzdt

= Lz

(
t3
)

= 6
z4

= 6
(s− a)4

And so on. Hence we see that for f(t) = eat, g(t) = tn

L(tneat) = n!
(s− a)n+1

6 Converting first order ODE which is homogeneous to separable ODE

(Added July, 2017).

If the ODE M(x, y) +N(x, y) dy
dx = 0 has both M and N homogenous functions of same

power, then this ODE can be converted to separable. Here is an example. We want to
solve (

x3 +8x2y
)
+
(
4xy2 − y3

)
y′ = 0 (1)

The above is homogenous in M,N , since the total powers of each term in them is 3. 3︷︸︸︷
x3 +8

3︷︸︸︷
x2y

+

4 3︷︸︸︷
xy2 −

3︷︸︸︷
y3

y′ = 0

So we look at each term in N and M and add all the powers on each x, y in them. All
powers should add to same value, which is 3 in this case. Of course N,M should be
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polynomials for this to work. So one should check that they are polynomials in x, y before
starting this process. Once we check M,N are homogeneous, then we let

y = xv

Therefore now

M = x3 +8x2(xv)
= x3 +8x3v (2)

And

N = 4x(xv)2 − (xv)3

= 4x3v2 − x3v3 (3)

And
y′ = v+ xv′ (4)

Substituting (3,4,5) into (1) gives(
x3 +8x3v

)
+
(
4x3v2 − x3v3

)
(v+ xv′) = 0(

x3 +8x3v
)
+
(
4x3v3 − x3v4

)
+
(
4x4v2 − x4v3

)
v′ = 0

Dividing by x3 6= 0 it simplifies to

(1 + 8v) +
(
4v3 − v4

)
+ x

(
4v2 − v3

)
v′ = 0

Which can be written as

x
(
4v2 − v3

)
v′ = −

(
(1 + 8v) +

(
4v3 − v4

))
v′ = −((1 + 8v) + (4v3 − v4))

(4v2 − v3)

(1
x

)
We see that it is now separable. We now solve this for v(x) by direct integration of both
sides And then using y = xv find y(x).

7 Direct solving of some simple PDE’s

Some simple PDE’s can be solved by direct integration, here are few examples.

Example 1

∂z(x, y)
∂x

= 0

Integrating w.r.t. x., and remembering that now constant of integration will be function
of y, hence

z(x, y) = f(y)

Example 2
∂2z(x, y)
∂x2

= x

Integrating once w.r.t. x gives

∂z(x, y)
∂x

= x2

2 + f(y)

Integrating again gives
z(x, y) = x3

6 + xf(y) + g(y)

Example 3
∂2z(x, y)
∂y2

= y
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Integrating once w.r.t. y gives

∂z(x, y)
∂y

= y2

2 + f(x)

Integrating again gives
z(x, y) = y3

6 + yf(x) + g(x)

Example 4
∂2z(x, y)
∂x∂y

= 0

Integrating once w.r.t x gives
∂z(x, y)
∂y

= f(y)

Integrating again w.r.t. y gives

z(x, y) =
∫
f(y)dy+ g(x)

Example 5

Solve ut + ux = 0 with u(x,1) = x
1+x2 . Let u ≡ u(x(t) , t), therefore

du
dt

= ∂u
∂t

+ ∂u
∂x

dx
dt

Comparing the above with the given PDE, we see that if dx
dt = 1 then du

dt = 0 or u(x(t) , t)
is constant. At t = 1 we are given that

u = x(1)
1 + x (1)2

(1)

To find x(1), from dx
dt = 1 we obtain that x(t) = t + c. At t = 1, c = x(1) − 1. Hence

x(t) = t+ x(1)− 1 or
x(1) = x(t) + 1− t

Hence solution from (1) becomes

u = x− t+1
1+ (x− t+1)2

Example 6

Solve ut + ux + u2 = 0.

Let u ≡ u(x(t) , t), therefore
du
dt

= ∂u
∂t

+ ∂u
∂x

dx
dt

Comparing the above with the given PDE, we see that if dx
dt = 1 then du

dt = −u2 or
−1
u = −t+ c. Hence

u = 1
t+ c

At t = 0, c = 1
u(x(0),0) . Let u(x(0) ,0) = f(x(0)). Therefore

u = 1
t+ 1

f(x(0))

Now we need to find x(0). From dx
dt = 1, then x = t+ c or c = x(0), hence x(0) = x− t and

the above becomes
u(x, t) = 1

t+ 1
f(x−t)

= f(x− t)
tf (x− t) + 1
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8 Fourier series flow chart

(added Oct. 20, 2016)
Is f(x) piecewise smooth function (can have finite number of
jump discontinuities) over −L . . . L (see Dirichlet conditions)?

No Fourier series. f(x) not bounded.Fourier series exist

Is f(−L) = f(L)?

YES NO

L−L

L−L

periodic extension has jump discontinuity.
Use ≈ and not =. Hence
f(x) ≈ a0+

∑∞
n=1

an cos(n π
L
x)+bn sin(n π

L
x).

Also, the terms an, bn will have 1
n

periodic extension do not have jump
discontinuity. Use =. Hence
f(x) = a0 +

∑∞
n=1

an cos(n π
L
x) + bn sin(n π

L
x).

Terms an, bn will have 1
n2

Can also perform term by term
differentiation. Result of term-by-term
differentiation is the F.S. of f ′(x). Note
that f ′(x) might not be continuous (can
have jumps).

term by term differentiation is not justified

Integration term-by-term of F.S. of f(x) can
always be done and the resulting series will
always converge to direct integration∫ L
−L f(x) dx. However, The resulting series

is not be a F.S. Needs adjustment.

Integration term-by-term of F.S. can always
be done. And the resuling series will always

converge to direct integration
∫ L
−L f(x) dx.

The resulting series will be the F.S.

Nasser M. Abbasi (fs.ipe). Oct 2016

does f(x) have jump discontinuity?

YESNO

For cos and sin Fourier series, we need the following conditions to be able to use
f(x) = . . . instead of f(x) ≈ . . .
For cos series, the conditions are less strict than for sin series. For cos all what is
needed is that f(x) defined over 0 · · ·L not have jump discontinuity. Since the
even extension will automatically make f(−L) = f(L). For sin series, not only we
need f(x) not have jump discontinuity over 0 · · ·L, but also we need
f(−L) = f(L) = 0 and we also need f(0) = 0. If any of the above conditions fail,
then we must use f(x) ≈ . . .

YES NO

8.1 Theorem on when we can do term by term differentiation

If f(x) on −L ≤ x ≤ L is continuous (notice, NOT piecewise continuous), this means f(x)
has no jumps in it, and that f ′(x) exists on −L < x < L and f ′(x) is either continuous
or piecewise continuous (notice, that f ′(x) can be piecewise continuous (P.W.C.), i.e.
have finite number of jump discontinuities), and also and this is very important, that
f(−L) = f(L) then we can do term by term differentiation of the Fourier series of f(x)
and use = instead of ∼. Not only that, but the term by term differentiation of the Fourier
series of f(x) will give the Fourier series of f ′(x) itself.

So that main restriction here is that f(x) on −L ≤ x ≤ L is continuous (no jump discon-
tinuities) and that f(−L) = f(L). So look at f(x) first and see if it is continuous or not
(remember, the whole f(x) has to be continuous, not piecewise, so no jump discontinuities).
If this condition is met, look at see if f(−L) = f(L).

For example f(x) = x on −1 ≤ x ≤ 1 is continuous, but f(−1) 6= f(1) so the F.S. of f(x)
can’t be term be term differentiated (well, it can, but the result will not be the Fourier
series of f ′(x)). So we should not do term by term differentiation in this case.

But the Fourier series for f(x) = x2 can be term by term differentiated. This has its f ′(x)
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being continuous, since it meets all the conditions. Also Fourier series for f(x) = |x| can
be term by term differentiated. This has its f ′(x) being P.W.C. due to a jump at x = 0
but that is OK, as f ′(x) is allowed to be P.W.C., but it is f(x) which is not allowed to
be P.W.C.

There is a useful corollary that comes from the above. If f(x) meets all the conditions
above, then its Fourier series is absolutely convergent and also uniformly convergent. The
M-test can be used to verify that the Fourier series is uniformly convergent.

8.2 Relation between coefficients of Fourier series of f(x) Fourier series of
f ′(x)

If term by term differentiation allowed, then let

f(x) = a0
2 +

∞∑
n=1

an cos
(
n
π
L
x
)
+ bn sin

(
n
π
L
x
)

f ′(x) = α0
2 +

∞∑
n=1

αn cos
(
n
π
L
x
)
+ βn sin

(
n
π
L
x
)

Then

αn = nbn

βn = −nan

And Bessel’s inequality instead of a20
2 +

∑∞
n=1 (a2n + b2n) <∞ now becomes∑∞

n=1 n
2(a2n + b2n) <

∞. So it is stronger.

8.3 Theorem on convergence of Fourier series

If f(x) is piecewise continuous on −L < x < L and if it is periodic with period 2L and
if on any point x on the entire domain −∞ < x < ∞ both the left sided derivative and
the right sided derivative exist (but these do not have to be the same !) then we say that
the Fourier series of f(x) converges and it converges to the average of f(x) at each point
including points that have jump discontinuities.

9 Laplacian in different coordinates

(added Jan. 10, 2019)

2D polar coordinates

∇2u = urr +
1
rur +

1
r2uθθ

θ
r

x

y

3D Cylinderical coordinates

∇2u(ρ, θ, z) = uρρ +
1
ρuρ +

1
ρ2uφφ + uzz

ρ

z

x

y

z

3DSpherical coordinates (ISO/Physics convention)

∇2u(r, θ, φ) = urr +
2
rur +

1
r2

(
cos θ
sin θ uθ + uθθ

)
+ 1

r2 sin2 θ
uφφ r

θ

x

y

z

φ

Nasser M. Abbasi
1/10/2019
1.ipe

Azimuthal angle

Polar angle

φ

P (ρ, φ, z)

P (r, φ, θ)

Figure 1: Laplacian in differrent coordinates
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10 Linear combination of two solution is solution to ODE

If y1, y2 are two solutions to ay′′+by′+cy = 0 then to show that c1y1+c2y2 is also solution:

ay′′1 + by′1 + cy1 = 0
ay′′2 + by′2 + cy2 = 0

Multiply the first ODE by c1 and second ODE by c2

a(c1y1)′′ + b(c1y1)′ + c(c1y1) = 0
a(c2y2)′′ + b(c2y2)′ + c(c2y2) = 0

Add the above two equations, using linearity of differentials

a(c1y1 + c2y2)′′ + b(c1y1 + c2y2)′ + c(c1y1 + c2y2) = 0

Therefore c1y1 + c2y2 satisfies the original ODE. Hence solution.

11 To find the Wronskian ODE

Since

W (x) =
∣∣∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣∣∣ = y1y′2 − y2y′1

Where y1, y2 are two solutions to ay′′ + by′ + cy = 0. Write

ay′′1 + py′1 + cy1 = 0
ay′′2 + py′2 + cy2 = 0

Multiply the first ODE above by y2 and the second by y1

ay2y′′1 + py2y′1 + cy2y1 = 0
ay1y′′2 + py1y′2 + cy1y2 = 0

Subtract the second from the first

a(y2y′′1 − y1y′′2) + p(y2y′1 − y1y′2) = 0 (1)

But
p(y2y′1 − y1y′2) = −pW (2)

And
dW
dx

= d
dx

(y1y′2 − y2y′1)

= y′1y
′
2 + y1y′′2 − y′2y′1 − y2y′′1

= y1y′′2 − y2y′′1 (3)

Substituting (2,3) into (1) gives the Wronskian differential equation

−a
(
dW
dx

)
− pW = 0

aW ′ + pW = 0

Whose solution is

W (x) = Ce−
∫ p

a
dx

Where C is constant of integration.

Remember: W (x0) = 0 does not mean the two functions are linearly dependent. The
functions can still be Linearly independent on other interval, It just means x0 can’t be in
the domain of the solution for two functions to be solutions. However, if the two functions
are linearly dependent, then this implies W = 0 everywhere. So to check if two functions
are L.D., need to show that W = 0 everywhere.

32



12 Green functions notes

� Green function is what is called impulse response in control. But it is more general, and
can be used for solving PDE also.

Given a differential equation with some forcing function on the right side. To solve this,
we replace the forcing function with an impulse. The solution of the DE now is called the
impulse response, which is the Green’s function of the differential equation.

Now to find the solution to the original problem with the original forcing function, we
just convolve the Green function with the original forcing function. Here is an example.
Suppose we want to solve L[y(t)] = f(t) with zero initial conditions. Then we solve
L[g(t)] = δ(t). The solution is g(t). Now y(t) = g(t)~f(t). This is for initial value problem.
For example. y′(t)+ kx = eat, with y(0) = 0. Then we solve g′(t)+ kg = δ(t). The solution

is g(t) =
{
e−kt t > 0
0 t < 0

, this is for causal system. Hence y(t) = g(t)~ f(t). The nice thing

here, is that once we find g(t), we can solve y′(t)+kx = f(t) for any f(t) by just convolving
the Green function (impulse response) with the new f(t).

� We can think of Green function as an inverse operator. Given L[y(t)] = f(t), we want
to find solution y(t) =

∫∞
−∞G(t; τ)f(τ)dτ . So in a sense, G(t; τ) is like L−1[y(t)].

� Need to add notes for Green function for Sturm-Liouville boundary value ODE. Need
to be clear on what boundary conditions to use. What is B.C. is not homogeneous?

� Green function properties:

1. G(t; τ) is continuous at t = τ . This is where the impulse is located.

2. The derivative G′(t) just before t = τ is not the same as G′(t) just after t = τ . i.e.
G′(t; t− ε)−G′(t; t+ ε) 6= 0. This means there is discontinuity in derivative.

3. G(t; τ) should satisfy same boundary conditions as original PDE or ODE (this is for
Sturm-Liouville or boundary value problems).

4. L[G(t; τ)] = 0 for t 6= τ

5. G(x; τ) is symmetric. i.e. G(x; τ) =G(τ ;x).

� When solving for G(t; τ), in context of 1D, hence two boundary conditions, one at each
end, and second order ODE (Sturm-Liouville), we now get two solutions, one for t < τ

and one for t > τ .

So we have 4 constants of integrations to find (this is for second order ODE) not just two
constants as normally one would get , since now we have 2 different solutions. Two of
these constants from the two boundary conditions, and two more come from property of

Green function as mentioned above. G(t; τ) =
{
A1y1 +A2y2 0 < t < τ

A3y1 +A4y2 τ < t < L
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13 Laplace transform notes

� Remember that uc(t)f(t− c) ⇐⇒ e−csF (s) and uc(t)f(t) ⇐⇒ e−csL
{
f(t+ c)

}. For exam-
ple, if we are given u2(t) t, then L(u2(t) t) = e−2sL{t+2} = e−2s

(
1
s2
+ 2

s

)
= e−2s

(
1+2s
s2

)
. Do

not do uc(t)f(t) ⇐⇒ e−csL
{
f(t)

} ! That will be a big error. We use this allot when asked
to write a piecewise function using Heaviside functions.

14 Series, power series, Laurent series notes

� if we have a function f(x) represented as series (say power series or Fourier series), then
we say the series converges to f(x) uniformly in region D, if given ε > 0, we can number
N which depends only on ε, such that

∣∣f(x)− SN(x)
∣∣ < ε.

Where here SN(x) is the partial sum of the series using N terms. The difference between
uniform convergence and non-uniform convergence, is that with uniform the number N
only depends on ε and not on which x we are trying to approximate f(x) at. In uniform
convergence, the number N depends on both ε and x. So this means at some locations in D
we need much larger N than in other locations to convergence to f(x) with same accuracy.
Uniform convergence is better. It depends on the basis functions used to approximate f(x)
in the series.

If the function f(x) is discontinuous at some point, then it is not possible to find uniform
convergence there. As we get closer and closer to the discontinuity, more and more terms are
needed to obtained same approximation away from the discontinuity, hence not uniform
convergence. For example, Fourier series approximation of a step function can not be
uniformly convergent due to the discontinuity in the step function.

� Geometric series:
N∑

n=0
rn = 1+ r+ r2 + r3 + · · ·+ rN = 1− rN+1

1− r
N∑

n=1
rn = −1+

N∑
n=0

rn = −1+ 1− rN+1

1− r
= r

1− rN

1− r
∞∑
n=0

rn = 1+ r+ r2 + r3 + · · · = 1
1− r

|r| < 1

∞∑
n=0

(−1)n rn = 1− r+ r2 − r3 + · · · = 1
1+ r

|r| < 1

� Binomial series:

General binomial is

(x+ y)n = xn + nxn−1y+ n(n− 1)
2! xn−2y2 + n(n− 1) (n− 2)

3! xn−3y3 + · · ·

From the above we can generate all other special cases. For example,

(1 + x)n = 1+ nx+ n(n− 1)x2
2! + n(n− 1) (n− 2)x3

3! + · · ·

This work for positive and negative n, rational or not. The sum converges when only
for |x| < 1. From this, we can derive the above sums also for the geometric series. For
example, for n = −1 the above becomes

1
(1 + x) = 1− x+ x2 − x3 + · · · |x| < 1

1
(1− x) = 1+ x+ x2 + x3 + · · · |x| < 1
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For |x| > 1, we can still find series expansion in negative powers of x as follows

(1 + x)n =
(
x
(
1+ 1

x

))n

= xn
(
1+ 1

x

)n

And now since
∣∣ 1
x

∣∣ < 1, we can use binomial expansion to expand the term (1 + 1
x)

n in
the above and obtain a convergent series, since now

∣∣ 1
x

∣∣ < 1 . This will give the following
expansion

(1 + x)n = xn
(
1+ 1

x

)n

= xn
(
1+ n

(1
x

)
+ n(n− 1)

2!

(1
x

)2
+ n(n− 1) (n− 2)

3!

(1
x

)3
+ · · ·

)
So everything is the same, we just change x with 1

x and remember to multiply the whole
expansion with xn. For example, for n = −1

1
(1 + x) =

1
x (1 + 1

x)
= 1
x

(
1− 1

x
+
(1
x

)2
−
(1
x

)3
+ · · ·

)
|x| > 1

1
(1− x) =

1
x (1− 1

x)
= 1
x

(
1+ 1

x
+
(1
x

)2
+
(1
x

)3
+ · · ·

)
|x| > 1

These tricks are very useful when working with Laurent series.

� Arithmetic series:
N∑

n=1
n = 1

2N(N +1)

N∑
n=1

an =N
(
a1 + aN

2
)

i.e. the sum is N times the arithmetic mean.

� Taylor series: Expanded around x = a is

f(x) = f(a) + (x− a)f ′(a) + (x− a)2 f ′′(a)
2! + (x− a)3 f (3)(a)

3! + · · ·+Rn

Where Rn is remainder Rn = (x−a)n+1

(n+1)! f
(n+1)(x0) where x0 is some point between x and a.

� Maclaurin series: Is just Taylor expanded around zero. i.e. a = 0

f(x) = f(0) + xf ′(0) + x2f ′′(0)
2! + x3f (3)(0)

3! + · · ·

� This diagram shows the different convergence of series and the relation between them

set of all convergent series

Absolutely
convergent

Uniform
convergent

A

B

C

D

Nasser M. Abbasi (p2.ipe, Sept 2018)
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The above shows that an absolutely convergent series (B) is also convergent. Also a
uniformly convergent series (D) is also convergent. But the series B is absolutely convergent
and not uniform convergent. While D is uniform convergent and not absolutely convergent.

The series C is both absolutely and uniformly convergent. And finally the series A is
convergent, but not absolutely (called conditionally convergent). Examples of B (converges
absolutely but not uniformly) is

∞∑
n=0

x2
1

(1 + x2)n = x2
(
1+ 1

1+ x2
+ 1

(1+ x2)2
+ 1

(1+ x2)3
+ · · ·

)

= x2 + x2

1+ x2
+ x2

(1 + x2)2
+ x2

(1 + x2)3
+ · · ·

And example of D (converges uniformly but not absolutely) is
∞∑
n=1

(−1)n+1 1
x2 + n

= 1
x2 +1 − 1

x2 +2 + 1
x3 +3 − 1

x4 +4 + · · ·

Example of A (converges but not absolutely) is the alternating harmonic series
∞∑
n=1

(−1)n+1 1
n
= 1− 1

2 + 1
3 − 1

4 + · · ·

The above converges to ln (2) but absolutely it now becomes the harmonic series and it
diverges

∞∑
n=1

1
n
= 1+ 1

2 + 1
3 + 1

4 + · · ·

For uniform convergence, we really need to have an x in the series and not just numbers,
since the idea behind uniform convergence is if the series convergence to within an error
tolerance ε using the same number of terms independent of the point x in the region.

� The sequence ∑∞
n=1

1
na converges for a > 1 and diverges for a ≤ 1. So a = 1 is the flip

value. For example
1+ 1

2 + 1
3 + 1

4 + · · ·

Diverges, since a = 1, also 1 + 1√
2 +

1√
3 +

1√
4 + · · · diverges, since a = 1

2 ≤ 1. But 1 + 1
4 +

1
9 + 1

16 + · · · converges, where a = 2 here and the sum is π2
6 .

� Using partial sums. Let ∑∞
n=0 an be some sequence. The partial sum is SN =∑N

n=0 an.
Then ∞∑

n=0
an = lim

N→∞
Sn

If limN→∞Sn exist and finite, then we can say that ∑∞
n=0 an converges. So here we use set

up a sequence who terms are partial sum, and them look at what happens in the limit to
such a term as N → θ. Need to find an example where this method is easier to use to test
for convergence than the other method below.

� Given a series, we are allowed to rearrange order of terms only when the series is
absolutely convergent. Therefore for the alternating series 1 − 1

2 + 1
3 − 1

4 + · · · , do not
rearrange terms since this is not absolutely convergent. This means the series sum is
independent of the order in which terms are added only when the series is absolutely
convergent.

� In an infinite series of complex numbers, the series converges, if the real part of the
series and also the complex part of the series, each converges on their own.

� Power series: f(z) =∑∞
n=0 an(z − z0)n. This series is centered at z0. Or expanded around

z0. This has radius of convergence R is the series converges for |z − z0| < R and diverges
for |z − z0| > R.

� Tests for convergence.
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1. Always start with preliminary test. If limn→∞ an does not go to zero, then no
need to do anything else. The series ∑∞

n=0 an does not converge. It diverges. But if
limn→∞ an = 0, it still can diverge. So this is a necessary but not sufficient condition
for convergence. An example is ∑ 1

n . Here an → 0 in the limit, but we know that this
series does not converge.

2. For Uniform convergence, there is a test called the weierstrass M test, which can be
used to check if the series is uniformly convergent. But if this test fails, this does
not necessarily mean the series is not uniform convergent. It still can be uniform
convergent. (need an example).

3. To test for absolute convergence, use the ratio test. If L = limn→∞
∣∣∣an+1

an

∣∣∣ < 1 then
absolutely convergent. If L = 1 then inconclusive. Try the integral test. If L > 1
then not absolutely convergent. There is also the root test. L = limn→∞ n

√
|an| =

limn→∞ |an|
1
n .

4. The integral test, use when ratio test is inconclusive. L = limn→∞
∫ n f(x)dx where

a(n) becomes f(x). Remember to use this only of the terms of the sequence
are monotonically decreasing and are all positive. For example, ∑∞

n=1 ln (1 + 1
n),

then use L = limN→∞
∫N ln (1 + 1

x)dx = ((1+ x) ln (1 + x)− x ln (x)− 1)N . Notice,
we only use the upper limit in the integral. This becomes (after simplifications)
limN→∞

N
N+1 = 1. Hence the limit L is finite, then the series converges.

5. Radius of convergence is called R = 1
L where L is from (3) above.

6. Comparison test. Compare the series with one we happen to already know it con-
verges. Let ∑ bn be a series which we know is convergent (for example ∑ 1

n2 ), and we
want to find if ∑an converges. If all terms of both series are positive and if an ≤ bn
for each n, then we conclude that ∑an converges also.

� For Laurent series, lets say singularity is at z = 0 and z = 1. To expand about z = 0, get
f(z) to look like 1

1−z and use geometric series for |z| < 1. To expand about z = 1, there
are two choices, to the inside and to the outside. For the outside, i.e. |z| > 1, get f(z) to
have 1

1− 1
z

form, since this now valid for |z| > 1.

� Can only use power series ∑an(z − z0)n to expand f(z) around z0 only if f(z) is analytic
at z0. If f(z) is not analytic at z0 need to use Laurent series. Think of Laurent series as
an extension of power series to handle singularities.

14.1 Some tricks to find sums

14.1.1 Example 1

Find ∑∞
n=1

einx

n

solution Let f(x) =∑∞
n=1

einx

n , taking derivative gives

f ′(x) = i
∞∑
n=1

einx

= i
∞∑
n=1

(
eix
)n

= i

( ∞∑
n=0

(
eix
)n

− 1
)

= i
1− eix

− i
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Hence

f(x) =
∫ (

i
1− eix

− i
)
dx

= i
∫

dx
1− eix

− ix+C

= i
(
x+ i ln

(
1− eix

))
− ix+C

= ix− ln
(
1− eix

)
− ix+C

= − ln
(
1− eix

)
+C

We can set C = 0 to obtain ∞∑
n=1

einx

n
= − ln

(
1− eix

)
More tricks to add...

14.2 Methods to find Laurent series

Let us find the Laurent series for f(z) = 5z−2
z(z−1) . There is a singularity of order 1 at z = 0

and z = 1.

14.2.1 Method one

Expansion around z = 0. Let

g(z) = zf(z)

= 5z − 2
(z − 1)

This makes g(z) analytic around z, since g(z) do not have a pole at z = 0, then it is
analytic around z = 0 and therefore it has a power series expansion around z = 0 given by

g(z) =
∞∑
n=0

anzn (1)

Where
an = 1

n! g
(n)(z)

∣∣∣
z=0

But
g(0) = 2

And

g′(z) = 5(z − 1)− (5z − 2)
(z − 1)2

= −3
(z − 1)2

g′(0) = −3

And

g′′(z) = −3(−2)
(z − 1)3

= 6
(z − 1)3

g′′(0) = −6

And

g′′′(z) = 6(−3)
(z − 1)4

= −18
(z − 1)4

g′′(0) = −18

And so on. Therefore, from (1)

g(z) = g(0) + g′(0) z + 1
2!g

′′(0) z2 + 1
3!g

′′′(0) z3 + · · ·

= 2− 3z − 6
2z

2 − 18
3! z

3 − · · ·

= 2− 3z − 3z2 − 3z3 − · · ·
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Therefore

f(z) = g(z)
z

= 2
z
− 3− 3z − 3z2 − · · ·

The residue is 2. The above expansion is valid around z = 0 up and not including the
next singularity, which is at z = 1. Now we find the expansion of f(z) around z = 1. Let

g(z) = (z − 1)f(z)

= 5z − 2
z

This makes g(z) analytic around z = 1, since g(z) do not have a pole at z = 1. Therefore
it has a power series expansion about z = 1 given by

g(z) =
∞∑
n=0

an(z − 1)n (1)

Where
an = 1

n! g
(n)(z)

∣∣∣
z=1

But
g(1) = 3

And

g′(z) = 5z − (5z − 2)
z2

= 2
z2

g′(1) = 2

And

g′′(z) = 2(−2)
z3

= −4
z3

g′′(1) = −4

And

g′′′(z) = −4(−3)
z4

= 12
z4

g′′(1) = 12

And so on. Therefore, from (1)

g(z) = g(1) + g′(1) (z − 1) + 1
2!g

′′(1) (z − 1)2 + 1
3!g

′′′(1) (z − 1)3 + · · ·

= 3+ 2(z − 1)− 4
2(z − 1)2 + 12

3! (z − 1)3 − · · ·

= 3+ 2(z − 1)− 2(z − 1)2 +2(z − 1)3 − · · ·

Therefore

f(z) = g(z)
z − 1

= 3
z − 1 + 2− 2(z − 1) + 2(z − 1)2 − 2(z − 1)3 + · · ·

The residue is 3. The above expansion is valid around z = 1 up and not including the next
singularity, which is at z = 0 inside a circle of radius 1.

z = 0 z = 1

f(z) = 2
z
− 3− 3z − 3z2 − . . .

Expansion of f(z) = 5z−2
z(z−1)

around z = 0

z = 0 z = 1

f(z) = 3
z−1

+ 2− 2(z − 1) + 2(z − 1)2 − 2(z − 1)2 + . . .

Expansion of f(z) = 5z−2
z(z−1)

around z = 1

z = 2
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Putting the above two regions together, then we see there is a series expansion of f(z)
that is shared between the two regions, in the shaded region below.

z = 0 z = 1

f(z) = 2
z
− 3− 3z − 3z2 − . . .

Showing expansion of
f(z) = 5z−2

z(z−1)
around z = 0 and

around z = 1 in one diagram

f(z) = 3
z−1

+ 2− 2(z − 1) + 2(z − 1)2 − 2(z − 1)2 + . . .

Let check same series in the shared region give same values. Using the series expansion
about f(0) to find f(z) at point z = 1

2 , gives −2 when using 10 terms in the series. Using
series expansion around z = 1 to find f(12) using 10 terms also gives −2. So both series
are valid produce same result.

14.2.2 Method Two

This method is simpler than the above, but it results in different regions. It is based on
converting the expression in order to use geometric series expansion on it.

f(z) = 5z − 2
z (z − 1)

Since there is a pole at z = 0 and at z = 1, then we first find expansion for 0 < |z| < 1. To
do this, we write the above as

f(z) = 5z − 2
z

( 1
z − 1

)
= 2− 5z

z

( 1
1− z

)
And now expand 1

1−z using geometric series, which is valid for |z| < 1. This gives

f(z) = 2− 5z
z

(
1+ z + z2 + z3 + · · ·

)
= 2
z

(
1+ z + z2 + z3 + · · ·

)
− 5

(
1+ z + z2 + z3 + · · ·

)
=
(2
z
+2+ 2z +2z2 + · · ·

)
−
(
5+ 5z +5z2 +5z3 + · · ·

)
= 2
z
− 3− 3z − 3z2 − 3z3 − · · ·

The above is valid for 0 < |z| < 1 which agrees with result of method 1.

Now, to find expansion for |z| > 1, we need a term that looks like
(

1
1− 1

z

)
. Since now it

can be expanded for
∣∣1
z

∣∣ < 1 or |z| > 1 which is what we want. Therefore, writing f(z) as

f(z) = 5z − 2
z (z − 1) =

5z − 2
z2 (1− 1

z )
= 5z − 2

z2

(
1

1− 1
z

)

But for
∣∣1
z

∣∣ < 1 the above becomes

f(z) = 5z − 2
z2

(
1+ 1

z
+ 1
z2

+ 1
z3

+ · · ·
)

= 5
z

(
1+ 1

z
+ 1
z2

+ 1
z3

+ · · ·
)
− 2
z2

(
1+ 1

z
+ 1
z2

+ 1
z3

+ · · ·
)

=
(5
z
+ 5
z2

+ 5
z3

+ 5
z4

+ · · ·
)
−
( 2
z2

+ 2
z3

+ 2
z4

+ 2
z5

+ · · ·
)

= 5
z
+ 3
z3

+ 3
z4

+ 3
z5

+ · · ·
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With residue 5. The above is valid for |z| > 1. The following diagram illustrates the result
obtained from method 2.

z = 0 z = 1

f(z) = 2
z
− 3− 3z − 3z2 − . . .

Showing expansion of
f(z) = 5z−2

z(z−1)
in two regions. For

0 < |z| < 1 and for |z| > 1

Valid for 0 < |z| < 1
Valid for |z| > 1

f(z) = 5
z
+ 3

z2
+ 3

z3
+ 3

z4
+ . . .

14.2.3 Method Three

For expansion about z = 0, this uses same method as above, giving same series valid for
|z| < 1 . This method is a little different for those points other than zero. The idea is to
replace z by z−z0 where z0 is the point we want to expand about and do this replacement
in f(z) itself. So for z = 1 using this example, we let ξ = z − 1 hence z = ξ +1. Then f(z)
becomes

f(z) = 5z − 2
z (z − 1)

= 5(ξ +1)− 2
(ξ +1) (ξ)

= 5(ξ +1)− 2
ξ

( 1
ξ +1

)
= 5ξ +3

ξ

( 1
1+ ξ

)
Now we expand 1

1+ξ for
∣∣ξ∣∣ < 1 and the above becomes

f(z) = 5ξ +3
ξ

(
1− ξ + ξ2 − ξ3 + ξ4 − · · ·

)
= 5ξ +3

ξ

(
1− ξ + ξ2 − ξ3 + ξ4 − · · ·

)
=
(5ξ +3

ξ
− (5ξ +3)+ (5ξ +3) ξ − (5ξ +3) ξ2 + · · ·

)
=
(
5+ 3

ξ
− 5ξ − 3+ 5ξ2 +3ξ − 5ξ3 − 3ξ2 + · · ·

)
=
(
2+ 3

ξ
− 2ξ +2ξ2 − 2ξ3 + · · ·

)
We now replace ξ = z − 1 and the above becomes

f(z) =
(

3
(z − 1) + 2− 2(z − 1) + 2(z − 1)2 − 2(z − 1)3 +2(z − 1)4 − · · ·

)

The above is valid for
∣∣ξ∣∣ < 1 or |z − 1 | < 1 or −1 < (z − 1) < 1 or 0 < z < 2. This

gives same series and for same region as in method one. But this is little faster as it uses
Binomial series short cut to find the expansion instead of calculating derivatives as in
method one.
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14.2.4 Conclusion

Method one and method three give same series and for same regions. Method three uses
binomial expansion as short cut and requires one to convert f(z) to form to allow using
Binomial expansion. Method one does not use binomial expansion but requires doing many
derivatives to evaluate the terms of the power series. It is more direct method.

Method two also uses binomial expansion, but gives different regions that method one
and three.

If one is good in differentiation, method one seems the most direct. Otherwise, the choice
is between method two or three as they both use Binomial expansion. Method two seems
a little more direct than method three. It also depends what the problem is asking form.
If the problem asks to expand around z0 vs. if it is asking to find expansion in |z| > 1 for
example, then this decides which method to use.

15 Gamma function notes

� Gamma function is defined by

Γ(x) =
∫ ∞

0
tx−1e−tdt x > 0

The above is called the Euler representation. Or if we want it defined in complex domain,
the above becomes

Γ(z) =
∫ ∞

0
tz−1e−tdt Re(z) > 0

Since the above is defined only for right half plane, there is way to extend this to left
half plane, using what is called analytical continuation. More on this below. First, some
relations involving Γ(x)

Γ(z) = (z − 1)Γ(z − 1) Re (z) > 1
Γ(1) = 1
Γ(2) = 1
Γ(3) = 2
Γ(4) = 3!
Γ(n) = (n− 1)!

Γ(n+1) = n!

Γ
(1
2
)
= √

π

Γ(z +1) = zΓ(z) recursive formula
Γ(z̄) = Γ(z)

Γ
(
n+ 1

2
)
= 1 · 3 · 5· · · (2n− 1)

2n
√
π

� To extend Γ(z) to the left half plane, i.e. for negative values. Let us define, using the
above recursive formula

Γ̄(z) = Γ(z +1)
z

Re(z) > −1

For example
Γ̄
(
−1
2
)
= Γ(12)

−1
2

= −2Γ
(1
2
)
= −2√π

And for Re(z) > −2

Γ̄
(
−3
2
)
= Γ̄(−3

2 +1)
−3

2
=
(

1
−3

2

)
Γ̄
(
−1
2
)
=
(

1
−3

2

)(
1
−1

2

)
Γ
(1
2
)
=
(

1
−3

2

)(
1
−1

2

)
√
π = 4

3
√
π
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And so on. Notice that for x < 0 the functions Γ(x) are not defined for all negative integers
x = −1,−2, · · · it is also not defined for x = 0

� The above method of extending (or analytical continuation) of the Gamma function to
negative values is due to Euler. Another method to extend Gamma is due to Weierstrass.
It starts by rewriting from the definition as follows, where a > 0

Γ(z) =
∫ ∞

0
tz−1e−tdt

=
∫ a

0
tz−1e−tdt+

∫ ∞

a
tz−1e−tdt (1)

Expanding the integrand in the first integral using Taylor series gives∫ a

0
tz−1e−tdt =

∫ a

0
tz−1

(
1+ (−t) + (−t)2

2! + (−t)3
3! + · · ·

)
dt

=
∫ a

0
tz−1

(
1+ (−t) + (−t)2

2! + (−t)3
3! + · · ·

)
dt

=
∫ a

0
tz−1

∞∑
n=0

(−1)n tn
n! dt

=
∫ a

0

∞∑
n=0

(−1)n tn+z−1

n! dt

=
∞∑
n=0

∫ a

0

(−1)n tn+z−1

n! dt

=
∞∑
n=0

(−1)n
n!

∫ a

0
tn+z−1dt

=
∞∑
n=0

(−1)n
n!

[
tn+z

n+ z

]a
0

=
∞∑
n=0

(−1)n
n! (n+ z)a

n+z

This takes care of the first integral in (1). Now, since the lower limits of the second integral
in (1) is not zero, then there is no problem integrating it directly. Remember that in the
Euler definition, it had zero in the lower limit, that is why we said there Re(z) > 1. Now
can can choose any value for a. Weierstrass choose a = 1. Hence (1) becomes

Γ(z) =
∫ a

0
tz−1e−tdt+

∫ ∞

a
tz−1e−tdt

=
∞∑
n=0

(−1)n
n! (n+ z) +

∫ ∞

1
tz−1e−tdt (2)

Notice the term an+z now is just 1 since a = 1. The second integral above can now be
integrated directly. Let us now verify that Euler continuation Γ̄(z) for say z = −1

2 gives the
same result as Weierstrass formula. From above, we found that Γ̄(z) = −2√π. Equation
(2) for z = −1

2 becomes

Γ̄
(
−1
2
)
=

∞∑
n=0

(−1)n
n! (n− 1

2)
+
∫ ∞

1
t−

3
2 e−tdt (3)

Using the computer
∞∑
n=0

(−1)n
n! (n− 1

2)
= −2√π+2√π(1− erf (1))− 21

e

And direct integration ∫ ∞

1
t−

3
2 e−tdt = −2√π+2√π erf (1) + 2

e

Hence (3) becomes

Γ̄
(
−1
2
)
=
(
−2√π+2√π(1− erf (1))− 21

e

)
+
(
−2√π+2√π erf (1) + 2

e

)
= −2√π
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Which is the same as using Euler method. Let us check for z = −2
3 . We found above that

Γ̄(−3
2) = 4

3
√
π using Euler method of analytical continuation. Now we will check using

Weierstrass method. Equation (2) for z = −3
2 becomes

Γ̄
(
−3
2
)
=

∞∑
n=0

(−1)n
n! (n− 3

2)
+
∫ ∞

1
t−

5
2 e−tdt

Using the computer
∞∑
n=0

(−1)n
n! (n− 3

2)
= 4√π

3 −
4√π(1− erf (1))

3 + 2
3e

And ∫ ∞

1
t−

5
2 e−tdt = −

4√π erf (1)
3 + 4√π

3 − 2
3e

Hence

Γ̄
(
−3
2
)
=
(
4√π
3 −

4√π(1− erf (1))
3 + 2

3e

)
+
(
−
4√π erf (1)

3 + 4√π
3 − 2

3e

)

= 4
3
√
π

Which is the same as using the Euler method. Clearly the Euler method for analytical
continuation of the Gamma function is simpler to compute.

� Euler reflection formula

Γ(x)Γ(1− x) =
∫ ∞

0

tx−1

1+ t
dt 0 < x < 1

= π
sin (πx)

Where contour integration was used to derive the above. See Mary Boas text book, page
607, second edition, example 5 for full derivation.

� Γ(z) has singularities at z = 0,−1,−2, · · · and Γ(1− z) has singularities at z = 1,2,3, · · ·
so in the above reflection formula, the zeros of sin (πx) cancel the singularities of Γ(x)
when it is written as

Γ(1− x) = π
Γ(x) sin (πx)

� 1
Γ(z) is entire.

� There are other representations for Γ(x). One that uses products by Euler also is

Γ(z) = 1
z
Π∞

n=1
(1 + 1

n)
z

1+ z
n

= lim
n→∞

n! (n+1)z
z (z − 1) · · · (z + n)

And another due to Weierstrass is

Γ(z) = e−γz

z
Π∞

n=1
e

z
n

1+ z
n

= e−γz lim
n→∞

n! exp (z(1 + 1
2 + · · ·+ 1

n))
z (z +1) (z +2) · · · (z + n)
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16 Riemann zeta function notes

� Given by ζ(s) =∑∞
n=1

1
ns for Re(s) > 1. Euler studied this and It was extended to the

whole complex plane by Riemann. So the Riemann zeta function refer to the one with the
extension to the whole complex plane. Euler only looked at it on the real line. It has pole
at s = 1. Has trivial zeros at s = −2,−4,−6, · · · and all its non trivial zeros are inside the
critical strip 0 < s < 1 and they all lie on the critical line s = 1

2 . ζ(s) is also defined by
integral formula

ζ(s) = 1
Γ(s)

∫ ∞

0

1
et − 1

ts

t
dt Re(s) > 1

� The connection between ζ(s) prime numbers is given by the Euler product formula

ζ(s) = Πp
1

1− p−s

=
( 1
1− 2−s

)( 1
1− 3−s

)( 1
1− 5−s

)( 1
1− 7−s

)
· · ·

=
(

1
1− 1

2s

)(
1

1− 1
3s

)(
1

1− 1
5s

)(
1

1− 1
7s

)
· · ·

=
( 2s
2s − 1

)( 3s
3s − 1

)( 5s
5s − 1

)( 7s
7s − 1

)
· · ·

� ζ(s) functional equation is

ζ(s) = 2sπs−1 sin
(πs
2
)
Γ(1− s) ζ(1− s)

17 Complex functions notes

� Complex identities

|z|2 = zz̄

(z̄) = z

(z1 + z2) = z̄1 + z̄2

|z̄| = |z|

|z1z2| = |z1| |z2|

Re(z) = z + z̄
2

Im(z) = z + z̄
2i

arg (z1z2) = arg (z1) + arg (z2)

� A complex function f(z) is analytic in a region D if it is defined and differentiable at
all points in D. One way to check for analyticity is to use the Cauchy Riemann (CR)
equations (this is a necessary condition but not sufficient). If f(z) satisfies CR everywhere
in that region then it is analytic. Let f(z) = u(x, y) + iv(x, y), then these two equations
in Cartesian coordinates are

∂u
∂x

= ∂v
∂y

−∂u
∂y

= ∂v
∂x

Sometimes it is easier to use the polar form of these. Let f(z) = r cos θ+ i sin θ, then the
equations become

∂u
∂r

= 1
r
∂v
∂θ

−1
r
∂u
∂θ

= ∂v
∂r
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To remember them, think of the r as the x and θ as the y.

Let us apply these on √
z to see how it works. Since z = reiθ+2nπ then f(z) = √

rei
θ
2+nπ.This

is multi-valued function. One value for n = 0 and another for n = 1. The first step is to
make it single valued. Choosing n = 0 gives the principal value. Then f(z) = √

rei
θ
2 . Now

we find the branch points. z = 0 is a branch point. We can pick −π < θ < π and pick the
negative real axis as the branch cut (the other branch point being −∞). This is one choice.

We could have picked 0 < θ < 2π and had the positive x axis as the branch cut, where
now the second branch point is +∞ but in both cases, origin is still part of the branch
cut. Let us stick with −π < θ < π.

Given all of this, now√
z = √

rei
θ
2 = √

r
(
cos

(
θ
2

)
+ i sin

(
θ
2

))
, hence u = √

r cos
(
θ
2

)
and

v = √
r sin

(
θ
2

)
. Therefore ∂u

∂r = 1
2

1√
r
cos

(
θ
2

)
, and ∂v

∂θ = 1
2
√
r cos

(
θ
2

)
and ∂u

∂θ = −1
2
√
r sin

(
θ
2

)
and ∂v

∂r = 1
2

1√
r
sin

(
θ
2

)
. Applying Cauchy-Riemann above gives

1
2

1√
r
cos

(
θ
2
)
= 1
r
1
2
√
r cos

(
θ
2
)

1
2

1√
r
cos

(
θ
2
)
= 1

2
1√
r
cos

(
θ
2
)

Satisfied. and for the second equation

−1
r

(
−1
2
√
r sin

(
θ
2
))

= 1
2

1√
r
sin

(
θ
2
)

1
2

1√
r
sin

(
θ
2
)
= 1

2
1√
r
sin

(
θ
2
)

so √
z is analytic in the region −π < θ < π, and not including branch points and branch

cut.

� We can’t just say f(z) is Analytic and stop. Have to say f(z) is analytic in a region
or at a point. When we say f(z) analytic at a point, we mean analytic in small region
around the point.

If f(z) is defined only at an isolated point z0 and not defined anywhere around it, then the
function can not be analytic at z0 since it is not differentiable at z0. Also f(z) is analytic
at a point z0 if the power series for f(z) expanded around z0 converges to f(z) evaluated
at z0. An analytic complex function mean it is infinitely many times differentiable in the
region, which means the limit exist lim∆z→0

f(z+∆z)−f(z)
∆z and does not depend on direction.

� Before applying the Cauchy Riemann equations, make sure the complex function is first
made to be single valued.

� Remember that Cauchy Riemann equations as necessary but not sufficient condition
for function to be analytic. The extra condition needed is that all the partial derivatives
are continuous. Need to find example where CR is satisfied but not the continuity on the
partial derivatives. Most of the HW problems just needs the CR but good to keep an eye
on this other condition.

� Cauchy-Goursat: If f(z) is analytic on and inside closed contour C then
∮
C

f(z)dz = 0.

But remember that if
∮
C

f(z)dz = 0 then this does not necessarily imply f(z) is analytic

on and inside C. So this is an IF and not an IFF relation. For example
∮
C

1
z2
dz = 0 around

unit circle centered at origin, but clearly 1
z2

is not analytic everywhere inside C, since it
has a singularity at z = 0.

proof of Cauchy-Goursat: The proof uses two main ideas. It uses the Cauchy-Riemann
equations and also uses Green theorem. Green’s Theorem says∫

C
Pdx+Qdy =

∫
D

(
∂Q
∂x

− ∂P
∂y

)
dA (1)
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So Green’s Theorem transforms integration on the boundary C of region D by integration
over the area inside the boundary C. Let f(z) = u + iv. And since z = x + iy then
dz = dx+ idy. Therefore∮

C

f(z)dz =
∮
C

(u+ iv) (dx+ idy)

=
∮
C

udx+ uidy+ ivdx− vdy

=
∮
C

(udx− vdy) + i
∮
C

vdx+ udy (2)

We now apply (1) to each of the two integrals in (3). Hence the first integral in (2)
becomes ∮

C

(udx− vdy) =
∫
D

(
−∂v
∂x

− ∂u
∂y

)
dA

But from CR, we know that −∂u
∂y = ∂v

∂x , hence the above is zero. And the second integral
in (2) becomes ∮

C

vdx+ udy =
∫
D

(
∂u
∂x

− ∂v
∂y

)
dA

But from CR, we know that ∂u
∂x = ∂v

∂y , hence the above is zero. Therefore the whole integral
in (2) is zero. Therefore

∮
C

f(z)dz = 0. QED.

� Cauchy residue: If f(z) is analytic on and inside closed contour C except at some isolated
points z1, z2, · · · , zN then

∮
C

f(z)dz = 2πi∑N
j=1Res (f(z))z=zj

. The term Res (f(z))z=zj
is

the residue of f(z) at point zj. Use Laurent expansion of f(z) to find residues. See above
on methods how to find Laurent series.

� Maximum modulus principle: If f(z) is analytic in some region D and is not constant
inside D, then its maximum value must be on the boundary. Also its minimum on the
boundary, as long as f(z) 6= 0 anywhere inside D. In the other hand, if f(z) happened
to have a maximum at some point z0 somewhere inside D, then this implies that f(z) is
constant everywhere and will have the value f(z0) everywhere. What all this really mean,
is that if f(z) is analytic and not constant in D, then its maximum is on the boundary
and not inside.

There is a complicated proof of this. See my notes for Physics 501. Hopefully this will not
come up in the exam since I did not study the proof.

� These definitions from book of Joseph Bak

1. f is analytic at z if f is differentiable in a neighborhood of z. Similarly f is analytic
on set S if f is differentiable at all points in some open set containing S.

2. f(z) is analytic on open set U is f(z) if differentiable at each point of U and f ′(z)
is continuous on U .

� Some important formulas.

1. If f(z) is analytic on and inside C then∮
C

f(z)dz = 0
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2. If f(z) is analytic on and inside C then and z0 is a point in C then

2πif(z0) =
∮
C

f(z)
z − z0

dz

2πif ′(z0) =
∮
C

f(z)
(z − z0)2

dz

2πi
2! f

′′(z0) =
∮
C

f(z)
(z − z0)3

dz

...
2πi
n! f

(n)(z0) =
∮
C

f(z)
(z − z0)n+1dz

3. From the above, we find, where here f(z) = 1∮
C

1
(z − z0)n+1dz =

{
2πi n = 0
0 n = 1,2, · · ·

17.1 Find bn coefficients in the Laurent series expansion

On Finding coefficient of the principle part of the Laurent series expansion around z0. Let

f(z) =
∞∑
n=0

cn(z − z0)n +
N∑

n=1

bn
(z − z0)n

(1)

=
∞∑
n=0

cn(z − z0)n +
b1

(z − z0)
+ b2

(z − z0)2
+ b3

(z − z0)3
+ · · ·+ bN

(z − z0)N

The goal is to determine all the coefficients b1, b2, · · · , bN in Laurent series expansion. This
assumes the largest order of the pole is finite. To find b1, we multiply both side of the
above by (z − z0)N which gives

(z − z0)N f(z) =
∞∑
n=0

cn(z − z0)n+N + b1(z − z0)N−1+ b2(z − z0)N−2+ b3(z − z0)N−3+ · · ·+ bN

(2)
Differentiating both sides N − 1 times w.r.t. z gives

dN−1

dz(N−1)

(
(z − z0)N f(z)

)
=

∞∑
n=0

dN−1

dz(N−1)

(
cn(z − z0)n+N

)
+ b1(N − 1)!

Evaluating at x = x0 the above gives

b1 =
limz→z0

dN−1

dz(N−1)

(
(z − z0)N f(z)

)
(N − 1)!

To find b2 we differentiate both sides of (2) N − 2 times which gives

dN−2

dz(N−2)

(
(z − z0)N f(z)

)
=

∞∑
n=0

dN−2

dz(N−2)

(
cn(z − z0)n+N

)
+ b1(N − 1)! (x− x0) + b2(N − 2)!

Hence

b2 =
limz→z0

dN−2

dz(N−2)

(
(z − z0)N f(z)

)
(N − 2)!

We keep doing the above to find b3, b4, · · · , bN . Therefore the general formula is

bn =
limz→z0

dN−n

dz(N−n)

(
(z − z0)N f(z)

)
(N − n)! (3A)

And for the special case of the last term bN the above simplifies to

bk =
limz→z0 (z − z0)N f(z)

(N − k)! (3B)

Where in (3) n is the coefficient bn needed to be evaluated and N is the pole order and z0
is the expansion point. The special value b1 is called the residue of f(z) at z0.
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18 Hints to solve some problems

18.1 Complex analysis and power and Laurent series

1. Laurent series of f(z) around point z0 is
∑∞

n=−∞ an(z − z0)n and an = 1
2πi

∮
f(z)

(z−z0)n+1dz.
Integration is around path enclosing z0 in counter clockwise.

2. Power series of f(z) around z0 is ∑∞
0 an(z − z0)n where an = 1

n! f
(n)(z)

∣∣∣
z=z0

3. Problem asks to use Cauchy integral formula
∮
C

f(z)
z−z0

dz = 2πif(z0) to evaluate another

integral
∮
C

g(z)dz. Both over same C. The idea is to rewrite g(z) as f(z)
z−z0

by factoring

out the poles of g(z) that are outside C leaving one inside C. Then we can write
∮
C

g(z)dz =
∮
C

f(z)
z − z0

dz

= 2πif(z0)

For example, to solve
∮
C

1
(z+1)(z+2)dz around C unit circle. Rewriting this as

∮
C

1
z+2

(z−(−1))dz

where now f(z) = 1
z+2 and now we can use Cauchy integral formula. So all what

we have to do is just evaluate 1
z+2 at z = −1, which gives

∮
C

1
(z+1)(z+2)dz = 2πi. This

works if g(z) can be factored into f(z)
z−z0

where f(z) is analytic on and inside C. This
would not work if g(z) has more than one pole inside C.

4. Problem asks to find
∮
C

f(z)dz where C is some closed contour. For this, if f(z) had

number of isolated singularities inside C, then just use∮
C

f(z)dz = 2πi
∑

residues of f(z) at each singularity inside C

5. Problem asks to find ∫C f(z)dz where C is some open path, i.e. not closed (if it is
closed, try Cauchy), such as a straight line or a half circle arc. For these problem,
use parameterization. This converts the integral to line integration. If C is straight
line, use standard t parameterization, which is found by using

x(t) = (1− t)x0 + tx1

y(t) = (1− t)y0 + ty1

where (x0, y0) in the line initial point and (x1, y1) is the line end point. This works
for straight lines. Now use the above and rewrite z = x+ iy as z(t) = x(t) + iy(t)
and then plug-in in this z(t) in f(z) to obtain f(t), then the integral becomes∫

C
f(z)dz =

∫ t=1

t=0
f(t) z′(t)dt

And now evaluate this integral using normal integration rules. If the path is a circular
arc, then no need to use t, just use θ. Rewrite x = reiθ and use θ instead of t and
follow same steps as above.

6. Problem gives u(x, y) and asks to find v(x, y) in order for f(x, y) = u(x, y)+ iv(x, y)
to be analytic in some region. To solve these, use Cauchy Riemann equations. Need
to use both equations. One equation will introduce a constant of integration (a
function) and the second equation is used to solve for it. This gives v(x, y). See
problem 2, HW 2, Physics 501 as example.
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7. Problem asks to evaluate
∮
C

f(z)
(z−z0)ndz where n is some number. This is the order of

the pole, and f(z) is analytic on and inside C. Then use the Cauchy integral formula
for higher pole order.

∮
C

f(z)
(z−z0)ndz = 2πi Residue (z0). The only difference here is that

this is pole of order n. So to find residue, use

Residue (z0) = lim
z→z0

dn−1

dzn
(z − z0)n
(n− 1)!

f(z)
(z − z0)n

= lim
z→z0

dn−1

dzn
f(z)

(n− 1)!

8. Problem gives f(z) and asks to find branch points and branch cuts. One way is to
first find where f(z) = 0 and for each zero, make a small circle around it, starting
from θ = 0 to θ = 2π. If the function at θ = 0 has different value from θ = 2π,
then this is a branch point. Do this for other zeros. Then connect the branch points.
This will give the branch cut. It is not always clear how to connect the branch point
though, might need to try different ways. For example f(z) =

√
z2 +1 has two zeros

at z = ±i. Both turn out to be branch points. The branch cut is the line between
−i to +i on the imaginary axis.

9. Problem gives a series ∑∞
n=0 anz

n and asks to find radius of convergence R. Two
ways, find L = limn→∞

|an+1|
|an| and then R = 1

L . Another way is to find L using
L = limn→∞ |an|

1
n .

10. Problem gives integral ∫ 2π0 f(θ)dθ and asks to evaluate using residues. We start by
converting everything to z using z = eiθ using |z| = 1. No need to use z = reiθ. The
idea is to convert it to

∮
f(z)dz which then we can use

∮
f(z)dz = 2πi∑ residues

inside. Replace f(θ) to become f(z), this could require using Euler relation such as
cosnθ = zn+z−n

2 and similar for sin θ. Now all what is needed is to find residues of
any poles inside the unit circle. Do not worry about poles outside the unit circle. To
find residues use short cut tricks. No need to find Laurent series.
For an example, to evaluate ∫ 2π0

1
5+4 cos θdθ, then 1

5+4 cos θ becomes 1
(2z+1)(z+2) and there

is only one pole inside unit circle, at z = −1
2 .

11. Problem gives integral ∫∞0 f(θ)dθ and asks to evaluate using residues. The contour
here goes from −R to +R and then a semi circle in upper half plane. This works
for even f(θ) since we can write ∫∞0 f(θ)dθ = 1

2
∫∞
−∞ f(θ)dθ. If there is a pole inside

the upper half plane, then the integral over the semi circle is 2πi times the sum of
residues. If there is a pole on the real line, then make a small semi circle around
pole, say at z = a and then the integral for the small semi circle is −πi times the
residue at a. The minus sign here is due to moving clock wise on the small circle.

12. Problem gives a series ∑∞
n=0 anz

n and asks if it is uniformly convergent. For general
series, use the M-test. But for this kind of series, just find radius of convergence
as above using ratio test, and if it is absolutely convergent, then say it converges
uniformly for |z| ≤ r < R. It is important to write it this way, and not just |z| < R.

13. Problems gives ∑∞
n=0 an and asks to find the sum. Sometimes this trick works for

some series. For example the alternating series ∑∞
n=1 (−1)n+1 1

n = 1− 1
2 + 1

3 − 1
4 + · · · ,

then write it as x − x2
2 + x3

3 − x4
4 + · · · which is the same when x = 1, and now

notice that this is the Taylor series for ln (1 + x) which means when x = 1 then
1− 1

2 + 1
3 − 1

4 + · · · = ln (2).

14. Problem gives f(z) and asks to find residue at some z = z0. Of course we can always
expand f(z) around z = 0 using Laurent series and find the coefficient of 1

z . But this
is too much work. Instead, if f(z) has a simple pole of order one, then we use

R(z0) = lim
z→z0

(z − z0)f(z)
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In general, if f(z) = g(z)
h(z) then there are two cases. If h(z0) = 0 or not. If h(z0) 6= 0,

then we can just use the above. For example, if f(z) = z
(2z+1)(5−z) and we want the

residue at z0 = 5, then since it simple pole, then using

R(5) = lim
z→5

(z − 5) z
(2z +1) (5− z)

= lim
z→5

−z
(2z +1)

= − 3
11

But if h(z0) = 0 then we need to apply La’Hopital like this. If f(z) = sin z
1−z4

and we
want to find residue at z = i. Then do as above, but with extra step, like this

R(i) = lim
z→i

(z − i) sin z
1− z4

=
(
lim
z→i

sin z
)(

lim
z→i

(z − i) 1
1− z4

)
= sin i

(
lim
z→i

(z − i)
1− z4

)
Now apply La’Hopital

= sin i
(
lim
z→i

1
−4z3

)
= sin i

−4i3

= 1
4 sinh (1)

Now if the pole is not a simple pole or order one,.say of order m, then we first
multiply f(z) by (z − z0)m then differentiate the result m− 1 times, then divide by
(m− 1)!, and then evaluate the result at z = z0. in other words,

R(z0) = lim
z→z0

1
(m− 1)!

dm−1

dzm−1 ((z − z0)m f(z))

For example, if f(z) = z sin z
(z−π)3 and we want residue at z = π. Since order is m = 3,

then

R(z0) = lim
z→π

1
2!
d2

dz2

(
(z − π)3 z sin z

(z − π)3

)

= lim
z→π

1
2
d2

dz2
(z sin z)

= lim
z→π

1
2(−z sin z +2cos z)

= −1

The above methods will work on most of the HW problems I’ve seen so far but If
all else fails, try Laurent series, that always works.

18.2 Errors and relative errors

1. A problem gives an expression in x, y such as f(x, y) and asks how much a relative
error in both x and y will affect f(x, y) in worst case. For these problems, find df
and then find df

f . For example, if f(x, y) =
√

x
y3

and relative error is in x and y is
2% then what is worst relative error in f(x, y)?. Then since

df = ∂f
∂x
dx+ ∂f

∂y
dy

= 1
2x

− 1
2 b−

3
2dx− 3

2x
1
2y−

5
2dy

Then
df
f

= 1
2
dx
x

− 3
2
dy
y
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But dx
x and dy

y are the relative errors in x and y. So if we plug-in 2 for dx
x and −2 for

dy
y we get 4% is worst relative error in f(x, y). Notice we used −2% relative error for
y and +2% relative error for x since we wanted the worst (largest) relative error. If
we wanted the least relative error in f(x, y), then we will use +2% for y also, which
gives 1− 3 = −2 or 2% relative error in f(x, y).

19 Some CAS notes

� in Mathematica Exp is a symbol. Head[Exp] gives Symbol but in Maple it is not.

In Maple

indets(z^2-exp(x^2-1)+1+Pi+Gamma*foo()-sin(y),’name’);

gives {Γ, π, x, y, z} but in Mathematica

expr=z^2-Exp[x^2-1]+1+Pi+Gamma*foo[]-Sin[y];
Cases[expr,_Symbol,Infinity]

gives {e, x, π, z,Gamma, y}

Notice that e shows up in Mathematica, but not in Maple.

20 d’Alembert’s Solution to wave PDE

(added December 13, 2018)

The PDE is
∂2ψ
∂t2

= c2
∂2ψ
∂x2

(1)
Let

u = x− ct

v = x+ ct

Then
∂ψ
∂t

= ∂ψ
∂u

∂u
∂t

+ ∂ψ
∂v

∂v
∂t

= −c∂ψ
∂u

+ c
∂ψ
∂v

(2)

And
∂ψ
∂x

= ∂ψ
∂u

∂u
∂x

+ ∂ψ
∂v

∂v
∂x

= ∂ψ
∂u

+ ∂ψ
∂v

(3)

Then, from (2)
∂2ψ
∂t2

= −c
(
∂2ψ
∂u2

∂u
∂t

+ ∂2ψ
∂u∂v

∂v
∂t

)
+ c

(
∂2ψ
∂v2

∂v
∂t

+ ∂2ψ
∂v∂u

∂u
∂t

)
= −c

(
−c∂

2ψ
∂u2

+ c
∂2ψ
∂u∂v

)
+ c

(
c
∂2ψ
∂v2

− c ∂
2ψ

∂v∂u

)
= c2

∂2ψ
∂u2

− c2 ∂
2ψ

∂u∂v
+ c2

∂2ψ
∂v2

− c2 ∂
2ψ

∂v∂u

= c2
∂2ψ
∂u2

+ c2
∂2ψ
∂v2

− 2c2 ∂
2ψ

∂v∂u
(4)

And from (3)
∂2ψ
∂x2

=
(
∂2ψ
∂u2

∂u
∂x

+ ∂2ψ
∂u∂v

∂v
∂x

)
+
(
∂2ψ
∂v2

∂v
∂x

+ ∂2ψ
∂v∂u

∂u
∂x

)
=
(
∂2ψ
∂u2

+ ∂2ψ
∂u∂v

)
+
(
∂2ψ
∂v2

+ ∂2ψ
∂v∂u

)
= ∂2ψ
∂u2

+ ∂2ψ
∂v2

+2 ∂
2ψ

∂v∂u
(5)
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Substituting (4,5) into (1) gives

−2c2 ∂
2ψ

∂v∂u
= 2c2 ∂

2ψ
∂v∂u

−4c2 ∂
2ψ

∂v∂u
= 0

Since c 6= 0 then
∂2ψ
∂v∂u

= 0

Integrating w.r.t v gives
∂ψ
∂u

= f(u)

Integrating w.r.t u
ψ(x, t) = F (u) +G(v)

Therefore
ψ(x, t) = F (x− ct) +G(x+ ct) (6)

The functions F (x, t) ,G(x, t) are arbitrary functions found from initial and boundary
conditions if given. Let initial conditions be

ψ(x,0) = f0(x)
∂
∂t
ψ(x,0) = g0(x)

Where the first condition above is the shape of the string at time t = 0 and the second
condition is the initial velocity.

Applying first condition to (6) gives

f0(x) = F (x) +G(x) (7)

Applying the second condition gives

g0(x) =
[
∂
∂t
F (x− ct)

]
t=0

+
[
∂
∂t
G(x+ ct)

]
t=0

=
[
dF (x− ct)
d (x− ct)

∂(x− ct)
∂t

]
t=0

+
[
dG(x+ ct)
d (x+ ct)

∂(x+ ct)
∂t

]
t=0

=
[
−c
dF (x− ct)
d (x− ct)

]
t=0

+
[
c
dG(x+ ct)
d (x+ ct)

]
t=0

= −c
dF (x)
dx

+ c
dG(x)
dx

(8)

Now we have two equations (7,8) and two unknowns F,G to solve for. But the (8) has
derivatives of F,G . So to make it easier to solve, we integrate (8) w.r.t. to obtain∫ x

g0(s)ds = −cF (x) + cG(x) (9)

So we will use (9) instead of (8) with (7) to solve for F,G. From (7)

F (x) = f0(x)−G(x) (10)

Substituting (10) in (9) gives∫ x

g0(s)ds = −c(f0(x)−G(x)) + cG(x)

= −cf0(x) + 2cG(x)

G(x) = (
∫ x g0(s)ds) + cf0(x)

2c
= 1

2c
(∫ x

g0(s)ds+ cf0(x)
)

(11)
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Using the above back in (10) gives F (x) as

F (x) = f0(x)−
1
2c
(∫ x

g0(s)ds+ cf0(x)
)

(12)

Using (11,12) in (6) gives the final solution

ψ(x, t) = F (x− ct) +G(x+ ct)

= f0(x− ct)− 1
2c
(∫ x−ct

g0(s)ds+ cf0(x− ct)
)
+ 1

2c
(∫ x

g0(s)ds+ cf0(x)
)

= f0(x− ct)− 1
2c
∫ x−ct

g0(s)ds−
1
2f0(x− ct) + 1

2c
∫ x+ct

g0(s)ds+
1
2f0(x+ ct)

= 1
2(f0(x− ct) + f0(x− ct)) + 1

2c
∫ x+ct

x−ct
g0(s)ds

The above is the final solution. So if we are given initial position and initial velocity of
the string as function of x, we can find exact solution to the wave PDE.

21 Convergence

� Definition of pointwise convergence: fn(x) converges pointwise to f∗(x) if for each ε > 0
there exist integer N(ε,x) such that

∣∣fn(x)− f∗(x)∣∣ < ε for all n ≥N .

� Definition of uniform convergence: fn(x) converges uniformly to f∗(x) if for each ε > 0
there exist integer N(ε) such that

∣∣fn(x)− f∗(x)∣∣ < ε for all n ≥N .

� Another way to find uniform convergence, first find pointwise convergence of fn(x). Say
it converges to f∗(x). Now show that

∥∥fn − f∗
∥∥ = sup

x∈I
(fn − f∗)

goes to zero as n → ∞. To find sup (fn − f∗) might need to find the maximum of fn − f∗.
i.e. differentiate this, set to zero, find x where it is Max, then evaluate fn(x) − f∗(x) at
this maximum. This gives the sup. Then see if this goes to zero as n→ ∞

� If sequence of functions fn converges uniformly to f∗, then f∗ must be continuous. So
this gives a quick check if uniform convergence exist. First find the pointwise convergence
f∗(x) and check if this is continuous or not. If not, then no need to check for uniform
convergence, it does not exist. But if f∗(x) is continuous function, we still need to check
because it is possible there is no uniform convergence.

22 Note on using when to raise ln to exp solving an ode

Sometimes in the middle of solving an ode, we get ln on both sides. We can raise both
sides to exp as soon as these show up, or wait until the end, after solving the constant of
integration to do that. This shows we get same result in both cases.

22.1 Example 1

y′ = 22yx− x
x+ y

(1)

With initial conditions y(0) = 2. This is homogenous type ode. It solved by substitution
u = y

x which results in the new ode in u given by

u′ = 1
x

(
−u2 +3u− 2

1+ u

)
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This is now separable

du
dx

= 1
x

(
−u2 +3u− 2

1+ u

)
∫ 1+ u

−u2 +3u− 2du = 1
x
dx

Integrating gives
2 ln (1− u)− 3 ln (2− u) = lnx+ c (1A)

Replacing u by y
x which gives

2 ln
(
1− y

x

)
− 3 ln

(
2− y

x

)
= lnx+ c

ln
(
(1− y

x)
2

(2− y
x)

3

)
= lnx+ c

ln
( 1

x2 (x− y)2
1
x3 (2x− y)3

)
= lnx+ c

ln
(
x
(x− y)2

(2x− y)3

)
= lnx+ c

lnx+ ln (x− y)2

(2x− y)3
= lnx+ c (1B)

lnx cancels out giving

ln (x− y)2

(2x− y)3
= c (2)

Now lets try to solve for c from IC y(0) = 2. The above becomes

ln
(
(−2)2

(−2)3

)
= c

c = ln
( 4
−8
)

= ln
(
−1
2
)

So the solution (2) is

ln (x− y)2

(2x− y)3
= ln

(
−1
2
)

And only now after c is found, we raise both sides to exp (to simplify it) which gives the
solution as

(x− y)2

(2x− y)3
= −1

2

Or
(x− y)2

(y − 2x)3
= 1

2 (3)

Lets see what happens if we had raised both sides to exp earlier on, instead of waiting
until after solving for the constant of integration. i.e. from step (1A) above

2 ln (1− u)− 3 ln (2− u) = lnx+ c

ln (1− u)2

(2− u)3
= lnx+ c

(1− u)2

(2− u)3
= elnx+c

(1− u)2

(2− u)3
= Ax
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Where A is new constant. And only now we replace u by y
x which gives

(1− y
x)

2

(2− y
x)

3 = Ax

x
(x− y)2

(2x− y)3
= Ax

(x− y)2

(2x− y)3
= A (4)

Using IC y(0) = 2. The above becomes

(−2)2

(−2)3
= A

A = −1
2

Hence (4) becomes

(x− y)2

(2x− y)3
= −1

2

(x− y)2

(y − 2x)3
= 1

2

Which is the same answer obtained earlier in (3). This shows both methods work. It might
be better to delay the raising to exponential to the very end so it is all done in one place.

22.2 Example 2

y′ = y2 − 2xy − x2

y2 +2xy − x2
(1)

y(1) = −1

This is a homogenous ode, solved by the substitution u = y
x which results in new ode in u

given by
u′ = 1

x
−u3 − u2 − u− 1
u2 +2u− 1

This is separable
u2 +2u− 1

−u3 − u2 − u− 1du = 1
x
dx

Integrating gives
ln (u+1)− ln

(
u2 +1

)
= ln (x) + c1 (1)

There are two choices now. Raise both sides to exp to simplify the u solution or wait until
the end. Option 1:

Replacing u by y
x in (1) gives

ln
(y
x
+1

)
− ln

((y
x

)2
+1

)
= ln (x) + c1

ln
(

y
x +1

( yx)
2 +1

)
= ln (x) + c1

ln
(

1
x(y+ x)

1
x2 (y2 + x2)

)
= ln (x) + c1

ln
(
x

(y+ x)
(y2 + x2)

)
= ln (x) + c1

lnx+ ln
(
y+ x
y2 + x2

)
= ln (x) + c1

ln
(
y+ x
y2 + x2

)
= c1 (2)
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Now lets try to solve for c1 from IC y(1) = −1. The above becomes

ln
(0
2
)
= c1

c = −∞

Hence (2) becomes

ln
(
y+ x
y2 + x2

)
= −∞

Now raising both sides to exp gives

y+ x
y2 + x2

= e−∞

y+ x
y2 + x2

= 0

y+ x = 0
y = −x

Lets try to see what happens if we raise to exp after solving for u immeadilty which is the
second option. From (1)

ln
(
u+1
u2 +1

)
= ln (x) + c1

Raising both to exp gives
u+1
u2 +1 = Ax

Where A new constant. Now we replace u by y
x

y
x +1

( yx)
2 +1

= Ax (2)

x
y+ x
y2 + x2

= Ax

y+ x
y2 + x2

= A

Solving for A from IC y(1) = −1 from the above gives

0
2 = A

A = 0

Hence the solution (2) becomes
y
x +1

( yx)
2 +1

= 0

or

y
x
+1 = 0

y = −x

So both method worked. The early one and the later on one. Both give same result.
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22.3 Example 3

(x+2y)y′ = 1 (1)
y(0) = −1

This is tricky as how it is solved needs special handling of the initial conditions. Let us
solve by subtituting z = x+2y. Then z′ = 1+ 2y′. The ode now becomes

z
(z′ − 1)

2 = 1

z′ − 1 = 2
z

z′ = 2
z
+1

This is separable
dz

1+ 2
z

= dx

Integrating ∫
dz

1+ 2
z

=
∫
dx

z − 2 ln (2 + z) = x+ c (1)

We could raise both sides to exp now or wait until after converting back to y. Lets look
what happens in both cases. Raising to exp now gives

ez−2 ln(2+z) = Aex

ez

(2 + z)2
= Aex

But z = x+2y and the above becomes

ex+2y

(2 + x+2y)2
= Aex

e2y

(2 + x+2y)2
= A (2)

Which is the correct solution. Now IC is used to find A. Using y(0) = −1 the above
becomes

e−2

0 = A

So A = ∞. Hence the solution (2) is

e2y

(2 + x+2y)2
= ∞

When this happens, to simplify the above we say that (2 + x+2y)2 = 0 or 2+ x+2y = 0.
This gives 2y = −2− x. Hence

y = −1− x

23 References

Too many references used, but will try to remember to start recording books used from
now on. Here is current list

1. Applied partial differential equation, by Haberman

2. Advanced Mathematical Methods for Scientists and Engineers, Bender and Orszag,
Springer.
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3. Boundary value problems in physics and engineering, Frank Chorlton, Van Norstrand,
1969

4. Class notes. Math 322. University Wisconsin, Madison. Fall 2016. By Professor
Smith. Math dept.

5. Mathematical methods in the physical sciences. Mary Boas, second edition.

6. Mathematical methods in physics and engineering. Riley, Hobson, Bence. Second
edition.

7. various pages Wikipedia.

8. Mathworld at Wolfram.

9. Fourier series and boundary value problems 8th edition. James Brown, Ruel Churchill.

10. good note on Sturm-Liouville http://ramanujan.math.trinity.edu/rdaileda/
teach/s12/m3357/lectures/lecture_4_10_short.pdf
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