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A place to keep quick notes about Math that I keep forgetting. This is meant to be a
scratch notes and cheat sheet for me to write math notes before I forget them or move
them somewhere else. Can and will contain errors and/or not complete description in
number of places. Use at your own risk.

1 general notes
� Some rules to remember. This is in the real domain

1.
√
ab =

√
a
√
b only for a ≥ 0, b ≥ 0. In general (ab)

1
n = a

1
n b

1
n for a ≥ 0, b ≥ 0

where n is positive integer.

2. √
y = x implies y = x2 only when x > 0. So be careful when squaring both sides

to get rid of sqrt root on one side. To see this, let √y = 4 then y = 16 because 4
is positive. But if we had √

y = −4 then we can’t say that y = 16 since
√
16 is

4 and not −4. (we always take the positive root). So each time we square both
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sides of equation to get rid of √ on one side, always say this is valid when the
other side is not negative.

3. Generalization of the above: given (ab)
n
m where both n,m integers then (ab)

n
m =

a
n
m b

n
m only when a ≥ 0, b ≥ 0. This applies if n

m
< 1 such as 2

3 or when n
m
> 1

such as 3
2 . Only time we can write (ab)n = anbn for any a, b is when n is an integer

(positive or negative). When the power is ratio of integers, then was can split it
only under the condition that all terms are positive.

4.
√

1
b
= 1√

b
only for b > 0. This can be used for example to simplify

√
1

1−x2

√
1− x2

to 1 under the condition 1−x2 > 0 or −1 < x < 1. Because in this case the input
becomes 1√

1−x2

√
1− x2 = 1.

5. Generalization of the above:
√

a
b
=

√
a√
b
only for a ≥ 0, b > 0

6.
√
x2 = x only for x ≥ 0

7. Generalization of the above: (xn)
1
n = x only when x ≥ 0 (assuming n is integer).

� Given u ≡ u(x, y) then total differential of u is

du = ∂u

∂x
dx+ ∂u

∂y
dy

� Lyapunov function is used to determine stability of an equilibrium point. Taking
this equilibrium point to be zero, and someone gives us a set of differential equationsx

′(t)
y′(t)
z′(t)

 =

f1(x, y, z, t)f2(x, y, z, t)
f2(x, y, z, t)

 and assuming (0, 0, 0) is an equilibrium point. The question

is, how to determine if it stable or not? There are two main ways to do this. One by
linearization of the system around origin. This means we find the Jacobian matrix,
evaluate it at origin, and check the sign of the real parts of the eigenvalues. This is the
common way to do this. Another method, called Lyapunov, is more direct. There is
no linearization needed. But we need to do the following. We need to find a function
V (x, y, z) which is called Lyapunov function for the system which meets the following
conditions

1. V (x.y, z) is continuously differentiable function in R3 and V (x.y, z) ≥ 0 (positive
definite or positive semidefinite) for all x, y, z away from the origin, or everywhere
inside some fixed region around the origin. This function represents the total
energy of the system (For Hamiltonian systems). Hence V (x, y, z) can be zero
away from the origin. But it could never be negative.
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2. V (0, 0, 0) = 0. This says the system has no energy when it is at the equilibrium
point. (rest state).

3. The orbital derivative dV
dt

≤ 0 (i.e. negative definite or negative semi-definite) for
all x, y, z, or inside some fixed region around the origin. The orbital derivative
is same as dV

dt
along any solution trajectory. This condition says that the total

energy is either constant in time (the zero case) or the total energy is decreasing
in time (the negative definite case). Both of which indicate that the origin is a
stable equilibrium point.

If dV
dt

is negative semi-definite then the origin is stable in Lyapunov sense. If dV
dt

is
negative definite then the origin is asymptotically stable equilibrium. Negative semi-
definite means the system, when perturbed away from the origin, a trajectory will
remain around the origin since its energy do not increase nor decrease. So it is stable.
But asymptotically stable equilibrium is a stronger stability. It means when perturbed
from the origin the solution will eventually return back to the origin since the energy
is decreasing. Global stability means dV

dt
≤ 0 everywhere, and not just in some closed

region around the origin. Local stability means dV
dt

≤ 0 in some closed region around
the origin. Global stability is stronger stability than local stability.

Main difficulty with this method is to find V (x.y, z). If the system is Hamiltonian,
then V is the same as total energy. Otherwise, one will guess. Typically a quadratic
function such as V = ax2 + cxy + dy2 is used (for system in x, y) then we try to find
a, c, d which makes it positive definite everywhere away from origin, and also more
importantly makes dV

dt
≤ 0. If so, we say origin is stable. Most of the problems we had

starts by giving us V and then asks to show it is Lyapunov function and what kind of
stability it is.

To determine if V is positive definite or not, the common way is to find the Hessian and
check the sign of the eigenvalues. Another way is to find the Hessian and check the sign
of the minors. For 2× 2 matrix, this means the determinant is positive and the entry
(1, 1) in the matrix is positive. Similar thing to check if dV

dt
≤ 0. We find the Hessian of

dV
dt

and do the same thing. But now we check for negative eigenvalues instead.

� Methods to find Green function are

1. Fredholm theory

2. methods of images

3. separation of variables

4. Laplace transform
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reference Wikipedia I need to make one example and apply each of the above methods
on it.

� In solving an ODE with constant coefficient just use the characteristic equation to
solve the solution.

� In solving an ODE with coefficients that are functions that depends on the indepen-
dent variable, as in y′′(x) + q(x) y′(x) + p(x) y(x) = 0, first classify the point x0 type.
This means to check how p(x) and q(x) behaves at x0. We are talking about the ODE
here, not the solution yet.

There are 3 kinds of points. x0 can be normal, or regular singular point, or irregular
singular point. Normal point x0 means p(x) and q(x) have Taylor series expansion
y(x) =

∑∞
n=0 an(x− x0)n that converges to y(x) at x0.

Regular singular point x0 means that the above test fails, but limx→x0 (x− x0) q(x) has
a convergent Taylor series, and also that limx→x0 (x− x0)2 p(x) now has a convergent
Taylor series at x0. This also means the limit exist.

All this just means we can get rid of the singularity. i.e. x0 is a removable singularity.
If this is the case, then the solution at x0 can be assumed to have a Frobenius series
y(x) =

∑∞
n=0 an(x− x0)n+α where a0 6= 0 and α is the root of the Frobenius indicial

equation. There are three cases to consider. See https://math.usask.ca/~cheviak
ov/courses/m338/text/Frobenius_Case3_ill.pdf for more discussion on this.

The third type of point, is the hard one. Called irregular singular point. We can’t get
rid of it using the above. So we also say the ODE has an essential singularity at x0
(another fancy name for irregular singular point). What this means is that we can’t
approximate the solution at x0 using either Taylor nor Frobenius series.

If the point is an irregular singular point, then use the methods of asymptotic. See
advanced mathematical methods for scientists and engineers chapter 3. For normal point,
use y(x) =

∑∞
n=0 anx

n, for regular singular point use y(x) =
∑∞

n=0 anx
n+r. Remember,

to solve for r first. This should give two values. If you get one root, then use reduction
of order to find second solution.

� Asymptotic series S(z) = c0 + c1
z
+ c2

z2
+ · · · is series expansion of f(z) which gives

good and rapid approximation for large z as long as we know when to truncate S(z)
before it becomes divergent. This is the main difference Asymptotic series expansion
and Taylor series expansion.

S(z) is used to approximate a function for large z while Taylor (or power series) is used
for local approximation or for small distance away from the point of expansion. S(z)
will become divergent, hence it needs to be truncated at some n to use, where n is the
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number of terms in Sn(z). It is optimally truncated when n ≈ |z|2.

S(x) has the following two important properties

1. lim|z|→∞ zn(f(z)− Sn(z)) = 0 for fixed n.

2. limn→∞ zn(f(z)− Sn(z)) = ∞ for fixed z.

We write S(z) ∼ f(z) when S(z) is the asymptotic series expansion of f(z) for large z.
Most common method to find S(z) is by integration by parts. At least this is what we
did in the class I took.

� For Taylor series, leading behavior is a0 no controlling factor? For Frobenius se-
ries, leading behavior term is a0xα and controlling factor is xα. For asymptotic series,
controlling factor is assumed to be eS(x) always. proposed by Carlini (1817)

� Method to find the leading behavior of the solution y(x) near irregular singular point
using asymptotic is called the dominant balance method.

� When solving εy′′ + p(x) y′ + q(x) y = 0 for very small ε then use WKB method, if
there is no boundary layer between the boundary conditions. If the ODE non-linear,
can’t use WKB, has to use boundary layer (B.L.). Example εy′′ + yy′ − y = 0 with
y(0) = 0, y(1) = −2 then use BL.

� good exercise is to solve say εy′′ + (1 + x)y′ + y = 0 with y(0) = y(1) using
both B.L. and WKB and compare the solutions, they should come out the same.
y ∼ 2

1+x
− exp

(
−x
ε
− x2

2ε

)
+O(ε) . with BL had to do the matching between the outer

and the inner solutions. WKB is easier. But can’t use it for non-linear ODE.

� When there is rapid oscillation over the entire domain, WKB is better. Use WKB
to solve Schrodinger equation where ε becomes function of } (Planck’s constant,
6.62606957× 10−34 m2kg/s)

� In second order ODE with non constant coefficient, y′′(x)+p(x) y′(x)+q(x) y(x) = 0,
if we know one solution y1(x), then a method called the reduction of order can be used
to find the second solution y2(x). Write y2(x) = u(x) y1(x), plug this in the ODE, and
solve for u(x). The final solution will be y(x) = c1y1(x) + c2y2(x). Now apply I.C.’s to
find c1, c2.

� To find particular solution to y′′(x) + p(x) y′(x) + q(x) y(x) = f(x), we can use a
method called undetermined coefficients. But a better method is called variation of
parameters, In this method, assume yp(x) = u1(x) y1(x)+u2(x) y2(x) where y1(x) , y2(x)
are the two linearly independent solutions of the homogeneous ODE and u1(x) , u2(x) are
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to be determined. This ends up with u1(x) = −
∫ y2(x)f(x)

W
dx and u2(x) =

∫ y1(x)f(x)
W

dx.
Remember to put the ODE in standard form first, so a = 1, i.e. ay′′(x) + · · · . In here,

W is the Wronskian W =

∣∣∣∣∣y1(x) y2(x)
y′1(x) y′2(x)

∣∣∣∣∣
� Two solutions of y′′(x) + p(x) y′(x) + q(x) y(x) = 0 are linearly independent if
W (x) 6= 0, where W is the Wronskian.

� For second order linear ODE defined over the whole real line, the Wronskian is
either always zero, or not zero. This comes from Abel formula for Wronskian, which
is W (x) = k exp

(
−
∫ B(x)

A(x)dx
)
for ODE of form A(x) y′′ + B(x) y′ + C(x) y = 0. Since

exp
(
−
∫ B(x)

A(x)dx
)
> 0, then it is decided by k. The constant of integration. If k = 0,

then W (x) = 0 everywhere, else it is not zero everywhere.

� For linear PDE, if boundary condition are time dependent, can not use separation
of variables. Try Transform method (Laplace or Fourier) to solve the PDE.

� If unable to invert Laplace analytically, try numerical inversion or asymptotic meth-
ods. Need to find example of this.

� Green function takes the homogeneous solution and the forcing function and con-
structs a particular solution. For PDE’s, we always want a symmetric Green’s function.

� To get a symmetric Green’s function given an ODE, start by converting the ODE
to a Sturm-Liouville form first. This way the Green’s function comes out symmetric.

� For numerical solutions of field problems, there are basically two different problems:
Those with closed boundaries and those with open boundaries but with initial conditions.
Closed boundaries are elliptical problems which can be cast in the form Au = f , and
the other are either hyperbolic or parabolic.

� For numerical solution of elliptical problems, the basic layout is something like this:

Always start with trial solution u(x) such that utrial(x) =
∑i=N

i=0 Ciφi(x) where the Ci

are the unknowns to be determined and the φi are set of linearly independent functions
(polynomials) in x.

How to determine those Ci comes next. Use either residual method (Galerkin) or
variational methods (Ritz). For residual, we make a function based on the error
R = A − utrialf . It all comes down to solving

∫
f(R) = 0 over the domain. This

is a picture
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|
+---------------+-------------------------------------+
| |
residual Variational (sub u_trial in I(u)
| where I(u) is functional to minimize.
|
+----------------+-------------+----------+
| | | |
Absolute error collocation subdomain orthogonality
....
+----------------------+------------+
| | |
method of moments Galerkin least squares

� Geometric probability distribution. Use when you want an answer to the question:
What is the probability you have to do the experiment N times to finally get the output
you are looking for, given that a probability of p showing up from doing one experiment.

For example: What is the probability one has to flip a fair coin N times to get a head?
The answer is P (X = N) = (1− p)k−1p. So for a fair coin, p = 1

2 that a head will show
up from one flip. So the probability we have to flip a coin 10 times to get a head is
P (X = 10) = (1− 0.5)9(0.5) = 0.00097 which is very low as expected.

� To generate random variable drawn from some distribution different from uniform
distribution, by only using uniform distribution U(0, 1) do this: Lets say we want to
generate random number from exponential distribution with mean µ.

This distribution has pdf(X) = 1
µ
e

−x
µ , the first step is to find the cdf of exponential

distribution, which is known to be F (x) = P (X <= x) = 1− e
−x
µ .

Now find the inverse of this, which is F−1(x) = −µ ln(1− x). Then generate a random
number from the uniform distribution U(0, 1). Let this value be called z.

Now plug this value into F−1(z), this gives a random number from exponential distri-
bution, which will be −µ ln(1− z) (take the natural log of both side of F (x)).

This method can be used to generate random variables from any other distribution by
knowing on U(0, 1). But it requires knowing the CDF and the inverse of the CDF for
the other distribution. This is called the inverse CDF method. Another method is
called the rejection method

� Given u, a r.v. from uniform distribution over [0,1], then to obtain v, a r.v. from
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uniform distribution over [A,B], then the relation is v = A+ (B − A)u.

� When solving using F.E.M. is best to do everything using isoparametric element
(natural coordinates), then find the Jacobian of transformation between the natural
and physical coordinates to evaluate the integrals needed. For the force function, using
Gaussian quadrature method.

� A solution to differential equation is a function that can be expressed as a convergent
series. (Cauchy. Briot and Bouquet, Picard)

� To solve a first order ODE using integrating factor.

x′(t) + p(t)x(t) = f(t)

then as long as it is linear and p(t), f(t) are integrable functions in t, then follow these
steps

1. multiply the ODE by function I(t), this is called the integrating factor.

I(t)x′(t) + I(t)p(t)x(t) = I(t)f(t)

2. We solve for I(t) such that the left side satisfies

d

dt
(I(t)x(t)) = I(t)x′(t) + I(t)p(t)x(t)

3. Solving the above for I(t) gives

I ′(t)x(t) + I(t)x′(t) = I(t)x′(t) + I(t)p(t)x(t)
I ′(t)x(t) = I(t)p(t)x(t)

I ′(t) = I(t)p(t)
dI

I
= p(t)dt

Integrating both sides gives

ln(I) =
∫
p(t)dt

I(t) = e
∫
p(t)dt

4. Now equation (1) can be written as

d

dt
(I(t)x(t)) = I(t)f(t)
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We now integrate the above to give

I(t)x(t) =
∫
I(t)f(t) dt+ C

x(t) =
∫
I(t)f(t) dt+ C

I(t)

Where I(t) is given by (2). Hence

x(t) =
∫
e
∫
p(t)dtf(t) dt+ C

e
∫
p(t)dt

� A polynomial is called ill-conditioned if we make small change to one of its
coefficients and this causes large change to one of its roots.

� To find rank of matrix A by hand, find the row echelon form, then count how many
zero rows there are. subtract that from number of rows, i.e. n.

� To find the basis of the column space of A, find the row echelon form and pick the
columns with the pivots, there are the basis (the linearly independent columns of A).

� For symmetric matrix A, its second norm is its spectral radius ρ(A) which is the
largest eigenvalue of A (in absolute terms).

� The eigenvalues of the inverse of matrix A is the inverse of the eigenvalues of A.

� If matrix A of order n×n, and it has n distinct eigenvalues, then it can be diagonalized
A = V ΛV −1, where

Λ =


eλ1 0 0

0 . . . 0
0 0 eλn


and V is matrix that has the n eigenvectors as its columns.

� limk→∞
∫ x2
x1
fk(x) dx =

∫ x2
x1

limk→∞ fk(x) dx only if fk(x) converges uniformly over
[x1, x2].

� A3 = I, has infinite number of A solutions. Think of A3 as 3 rotations, each of 1200,
going back to where we started. Each rotation around a straight line. Hence infinite
number of solutions.

� How to integrate I =
∫ √

x3−1
x

dx.

Let u = x3 + 1, then du = 3x2dx and the above becomes

I =
∫ √

u

3x3 du = 1
3

∫ √
u

u− 1 du

10



Now let u = tan2 v or
√
u = tan v, hence 1

2
1√
u
du = sec2 v dv and the above becomes

I = 1
3

∫ √
u

tan2 v − 1
(
2
√
u sec2 v

)
dv

= 2
3

∫
u

tan2 v − 1 sec2 v dv

= 2
3

∫ tan2 v

tan2 v − 1 sec2 v dv

But tan2 v − 1 = sec2 v hence

I = 2
3

∫
tan2 v dv

= 2
3(tan v − v)

Substituting back
I = 2

3
(√

u− arctan
(√

u
))

Substituting back
I = 2

3

(√
x3 + 1− arctan

(√
x3 + 1

))
� (added Nov. 4, 2015) Made small diagram to help me remember long division terms
used.
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dividend

divisor

x3−2x2−4
x−3

=⇒ P (x)
d(x)

= Q(x) + R(x)
d(x)

Quotient
remainder

= d(x)Q(x) +R(x) = (x− 3)(x2 + x+ 3) + 5

P (x)d(x)

Q(x)

R(x)
long division

Euclidean division

P (x)

d(x)

Q(x)

R(x)

d(x) Q(x) R(x)

Euclidean division
x3 − 2x2 − 4

x− 3

x2 + x+ 3

5

p1.ipe

� If a linear ODE is equidimensional, as in anxny(n)+ an−1x
n−1y(n01)+ . . . for example

x2y′′ − 2y = 0 then use ansatz y = xr this will give equation in r only. Solve for r and
obtain y1 = xr1 , y2 = xr2 and the solution will be

y = c1y1 + c2y2

For example, for the above ode, the solution is c1x2 + c2
x
. This ansatz works only if

ODE is equidimensional. So can’t use it on xy′′ + y = 0 for example.

If r is multiple root, use xr, xr log(x), xr(log(x))2 . . . as solutions.

� for xi, where i =
√
−1, write it as x = elog x hence xi = ei log x = cos(log x) +

i sin(log x)

� Some integral tricks:
∫ √

a2 − x2dx use x = a sin θ. For
∫ √

a2 + x2dx use x = a tan θ
and for

∫ √
x2 − a2dx use x = a sec θ.
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� y′′ + xny = 0 is called Emden-Fowler form.

� For second order ODE, boundary value problem, with eigenvalue (Sturm-Liouville),
remember that having two boundary conditions is not enough to fully solve it.

One boundary condition is used to find the first constant of integration, and the second
boundary condition is used to find the eigenvalues.

We still need another input to find the second constant of integration. This is normally
done by giving the initial value. This problem happens as part of initial value, boundary
value problem. The point is, with boundary value and eigenvalue also present, we need
3 inputs to fully solve it. Two boundary conditions is not enough.

� If given ODE y′′(x) + p(x) y′(x) + q(x) y(x) = 0 and we are asked to classify if it is
singular at x = ∞, then let x = 1

t
and check what happens at t = 0. The d2

dx2 operator
becomes

(
2t3 d

dt
+ t4 d2

dt2

)
and d

dx
operator becomes −t2 d

dt
. And write the ode now where

t is the independent variable, and follow standard operating procedures. i.e. look at
limt→0 xp(t) and limt→0 x

2q(t) and see if these are finite or not. To see how the operator
are mapped, always start with x = 1

t
then write d

dx
= d

dt
dt
dx

and write d2

dx2 =
(

d
dx

) (
d
dx

)
.

For example, d
dx

= −t2 d
dt

and

d2

dx2
=
(
−t2 d

dt

)(
−t2 d

dt

)
= −t2

(
−2t d

dt
− t2

d2

dt2

)
=
(
2t3 d

dt
+ t4

d2

dt2

)
Then the new ODE becomes(

2t3 d
dt

+ t4
d2

dt2

)
y(t) + p(t)

(
−t2 d

dt
y(t)

)
+ q(t) y(t) = 0

t4
d2

dt2
y +

(
−t2p(t) + 2t3

) d
dt
y + q(t) y = 0

d2

dt2
y + (−p(t) + 2t)

t2
d

dt
y + q(t)

t4
y = 0

The above is how the ODE will always become after the transformation. Remember to
change p(x) to p(t) using x = 1

t
and same for q(x). Now the new p is (−p(t)+2t)

t2
and the

new q is q(t)
t4
. Then do limt→0 t

(
p(t)+2t3

)
t4

and limt→0 t
2 q(t)

t4
as before.

� If the ODE a(x) y′′ + b(x) y′ + c(x) y = 0, and say 0 ≤ x ≤ 1, and there is essential
singularity at either end, then use boundary layer or WKB. But Boundary layer method
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works on non-linear ODE’s (and also on linear ODE) and only if the boundary layer is
at end of the domain, i.e. at x = 0 or x = 1.

WKB method on the other hand, works only on linear ODE, but the singularity can be
any where (i.e. inside the domain). As rule of thumb, if the ODE is linear, use WKB.
If the ODE is non-linear, we must use boundary layer.

Another difference, is that with boundary layer, we need to do matching phase at the
interface between the boundary layer and the outer layer in order to find the constants
of integrations. This can be tricky and is the hardest part of solving using boundary
layer.

Using WKB, no matching phase is needed. We apply the boundary conditions to the
whole solution obtained. See my HWs for NE 548 for problems solved from Bender and
Orszag text book.

� In numerical, to find if a scheme will converge, check that it is stable and also check
that if it is consistent.

It could also be conditionally stable, or unconditionally stable, or unstable.

To check it is consistent, this is the same as finding the LTE (local truncation error)
and checking that as the time step and the space step both go to zero, the LTE goes
to zero. What is the LTE? You take the scheme and plug in the actual solution in it.
An example is better to explain this part. Lets solve ut = uxx. Using forward in time
and centered difference in space, the numerical scheme (explicit) is

Un+1
j = Un

j + k

h2
(
Un
j−1 − 2Un

j + Un
j+1
)

The LTE is the difference between these two (error)

LTE = Un+1
j −

(
Un
j + k

h2
(
Un
j−1 − 2Un

j + Un
j+1
))

Now plug-in u(tn, xj) in place of Un
j and u(tn + k, xj) in place of Un+1

j and plug-in
u(tn, x+ h) in place of Un

j+1 and plug-in u(tn, x− h) in place of Un
j−1 in the above. It

becomes

LTE = u(t+ k, xj)−
(
u(tn, xj) +

k

h2
(u(t, x− h)− 2u(tn, xj) + u(t, x+ h))

)
(1)

Where in the above k is the time step (also written as ∆t) and h is the space step size.
Now comes the main trick. Expanding the term u(tn + k, xj) in Taylor,

u(tn + k, xj) = u(tn, xj) + k
∂u

∂t

∣∣∣∣
tn
+ k2

2
∂2u

∂t2

∣∣∣∣
tn
+O

(
k3
)

(2)
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And expanding

u(tn, xj + h) = u(tn, xj) + h
∂u

∂x

∣∣∣∣
xj

+ h2

2
∂2u

∂x2

∣∣∣∣
xj

+O
(
h3
)

(3)

And expanding

u(tn, xj − h) = u(tn, xj)− h
∂u

∂x

∣∣∣∣
xj

+ h2

2
∂2u

∂x2

∣∣∣∣
xj

−O
(
h3
)

(4)

Now plug-in (2,3,4) back into (1). Simplifying, many things drop out, and we should
obtain that

LTE = O(k) +O
(
h2
)

Which says that LTE → 0 as h→ 0, k → 0. Hence it is consistent.

To check it is stable, use Von Neumann method for stability. This check if the solution
at next time step does not become larger than the solution at the current time step.
There can be condition for this. Such as it is stable if k ≤ h2

2 . This says that using this
scheme, it will be stable as long as time step is smaller than h2

2 . This makes the time
step much smaller than space step.

� For ax2 + bx+ c = 0, with roots α, β then the relation between roots and coefficients
is

α + β = − b

a

αβ = c

a

� Leibniz rules for integration

d

dx

∫ b(x)

a(x)
f(t) dt = f(b(x)) b′(x)− f(a(x)) a′(x)

d

dx

∫ b(x)

a(x)
f(t, x) dt = f(b(x)) b′(x)− f(a(x)) a′(x) +

∫ b(x)

a(x)

∂

∂x
f(t, x) dt

�
∫ b

a
f(x) dx =

∫ b

a
f(a+ b− x) dx

� Differentiable function implies continuous. But continuous does not imply differen-
tiable. Example is |x| function.

� Mean curvature being zero is a characteristic of minimal surfaces.

� How to find phase difference between 2 signals x1(t), x2(t)? One way is to find the
DFT of both signals (in Mathematica this is Fourier, in Matlab fft()), then find where
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the bin where peak frequency is located (in either output), then find the phase difference
between the 2 bins at that location. Value of DFT at that bin is complex number. Use
Arg in Mathematica to find its phase. The difference gives the phase difference between
the original signals in time domain. See https://mathematica.stackexchange.com/
questions/11046/how-to-find-the-phase-difference-of-two-sampled-sine-w
aves for an example.

� Watch out when squaring both sides of equation. For example, given y =
√
x.

squaring both sides gives y2 = x. But this is only true for y ≥ 0. Why? Let us take the
square root of this in order to get back to the original equation. This gives

√
y2 =

√
x.

And here is the problem,
√
y2 = y only for y ≥ 0. Why? Let us assume y = −1. Then

√
y2 =

√
(−1)2 =

√
1 = 1 which is not −1. So when taking the square of both sides of

the equation, remember this condition.

� do not replace
√
x2 by x, but by |x|, since x =

√
x2 only for non negative x.

� Given an equation, and we want to solve for x. We can square both sides in order to
get rid of sqrt if needed on one side. But be careful. Even though after squaring both
sides, the new equation is still true, the solutions of the new equation can introduce
extraneous solution that does not satisfy the original equation. Here is an example I
saw on the internet which illustrate this. Given

√
x = x− 6. And we want to solve for

x. Squaring both sides gives x = (x− 6)2. This has solutions x = 9, x = 4. But only
x = 9 is valid solution for the original equation before squaring. The solution x = 4
is extraneous. So need to check all solutions found after squaring against the original
equation, and remove those extraneous one. In summary, if a2 = b2 then this does not
mean that a = b. But if a = b then it means that a2 = b2. For example (−5)2 = 52. But
−5 6= 5.

� How to find Laplace transform of product of two functions?

There is no formula for the Laplace transform of product f(t) g(t). (But if this was
convolution, it is different story). But you could always try the definition and see if you
can integrate it. Since L(f(t)) =

∫∞
0 e−stf(t) dt then L(f(t) g(t)) =

∫∞
0 e−stf(t) g(t) dt.

Hence for f(t) = eat, g(t) = t this becomes

L
(
teat
)
=
∫ ∞

0
e−stteatdt

=
∫ ∞

0
te−t(s−a)dt
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Let s− a ≡ z then

L
(
teat
)
=
∫ ∞

0
te−tzdt

= Lz(t)

= 1
z2

= 1
(s− a)2

Similarly for f(t) = eat, g(t) = t2

L
(
t2eat

)
=
∫ ∞

0
e−stt2eatdt

=
∫ ∞

0
t2e−t(s−a)dt

Let s− a ≡ z then

L
(
teat
)
=
∫ ∞

0
t2e−tzdt

= Lz

(
t2
)

= 2
z3

= 2
(s− a)3

Similarly for f(t) = eat, g(t) = t3

L
(
t2eat

)
=
∫ ∞

0
e−stt3eatdt

=
∫ ∞

0
t3e−t(s−a)dt

Let s− a ≡ z then

L
(
teat
)
=
∫ ∞

0
t3e−tzdt

= Lz

(
t3
)

= 6
z4

= 6
(s− a)4

And so on. Hence we see that for f(t) = eat, g(t) = tn

L
(
tneat

)
= n!

(s− a)n+1
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2 Converting first order ODE which is
homogeneous to separable ODE

(Added July, 2017).

If the ODEM(x, y)+N(x, y) dy
dx

= 0 has bothM and N homogenous functions of same
power, then this ODE can be converted to separable. Here is an example. We want to
solve (

x3 + 8x2y
)
+
(
4xy2 − y3

)
y′ = 0 (1)

The above is homogenous in M,N , since the total powers of each term in them is 3. 3︷︸︸︷
x3 + 8

3︷︸︸︷
x2y

+

4
3︷︸︸︷
xy2 −

3︷︸︸︷
y3

 y′ = 0

So we look at each term in N and M and add all the powers on each x, y in them. All
powers should add to same value, which is 3 in this case. Of course N,M should be
polynomials for this to work. So one should check that they are polynomials in x, y

before starting this process. Once we check M,N are homogeneous, then we let

y = xv

Therefore now

M = x3 + 8x2(xv)
= x3 + 8x3v (2)

And

N = 4x(xv)2 − (xv)3

= 4x3v2 − x3v3 (3)

And
y′ = v + xv′ (4)

Substituting (3,4,5) into (1) gives(
x3 + 8x3v

)
+
(
4x3v2 − x3v3

)
(v + xv′) = 0(

x3 + 8x3v
)
+
(
4x3v3 − x3v4

)
+
(
4x4v2 − x4v3

)
v′ = 0

Dividing by x3 6= 0 it simplifies to

(1 + 8v) +
(
4v3 − v4

)
+ x
(
4v2 − v3

)
v′ = 0

18



Which can be written as

x
(
4v2 − v3

)
v′ = −

(
(1 + 8v) +

(
4v3 − v4

))
v′ = −((1 + 8v) + (4v3 − v4))

(4v2 − v3)

(
1
x

)
We see that it is now separable. We now solve this for v(x) by direct integration of
both sides And then using y = xv find y(x).

3 Direct solving of some simple PDE’s
Some simple PDE’s can be solved by direct integration, here are few examples.

Example 1

∂z(x, y)
∂x

= 0

Integrating w.r.t. x., and remembering that now constant of integration will be function
of y, hence

z(x, y) = f(y)

Example 2
∂2z(x, y)
∂x2

= x

Integrating once w.r.t. x gives

∂z(x, y)
∂x

= x2

2 + f(y)

Integrating again gives
z(x, y) = x3

6 + xf(y) + g(y)

Example 3
∂2z(x, y)
∂y2

= y

Integrating once w.r.t. y gives

∂z(x, y)
∂y

= y2

2 + f(x)

Integrating again gives
z(x, y) = y3

6 + yf(x) + g(x)
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Example 4
∂2z(x, y)
∂x∂y

= 0

Integrating once w.r.t x gives
∂z(x, y)
∂y

= f(y)

Integrating again w.r.t. y gives

z(x, y) =
∫
f(y) dy + g(x)

Example 5

Solve ut + ux = 0 with u(x, 1) = x
1+x2 . Let u ≡ u(x(t) , t), therefore

du

dt
= ∂u

∂t
+ ∂u

∂x

dx

dt

Comparing the above with the given PDE, we see that if dx
dt

= 1 then du
dt

= 0 or u(x(t) , t)
is constant. At t = 1 we are given that

u = x(1)
1 + x (1)2

(1)

To find x(1), from dx
dt

= 1 we obtain that x(t) = t + c. At t = 1, c = x(1) − 1. Hence
x(t) = t+ x(1)− 1 or

x(1) = x(t) + 1− t

Hence solution from (1) becomes

u = x− t+ 1
1 + (x− t+ 1)2

Example 6

Solve ut + ux + u2 = 0.

Let u ≡ u(x(t) , t), therefore
du

dt
= ∂u

∂t
+ ∂u

∂x

dx

dt

Comparing the above with the given PDE, we see that if dx
dt

= 1 then du
dt

= −u2 or
−1
u

= −t+ c. Hence
u = 1

t+ c
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At t = 0, c = 1
u(x(0),0) . Let u(x(0) , 0) = f(x(0)). Therefore

u = 1
t+ 1

f(x(0))

Now we need to find x(0). From dx
dt

= 1, then x = t+ c or c = x(0), hence x(0) = x− t

and the above becomes

u(x, t) = 1
t+ 1

f(x−t)
= f(x− t)
tf (x− t) + 1

4 Fourier series flow chart
(added Oct. 20, 2016)
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Is f(x) piecewise smooth function (can have finite number of
jump discontinuities) over −L . . . L (see Dirichlet conditions)?

No Fourier series. f(x) not bounded.Fourier series exist

Is f(−L) = f(L)?

YES NO

L−L

L−L

periodic extension has jump discontinuity.
Use ≈ and not =. Hence
f(x) ≈ a0+

∑∞
n=1

an cos(n π
L
x)+bn sin(n π

L
x).

Also, the terms an, bn will have 1
n

periodic extension do not have jump
discontinuity. Use =. Hence
f(x) = a0 +

∑∞
n=1

an cos(n π
L
x) + bn sin(n π

L
x).

Terms an, bn will have 1
n2

Can also perform term by term
differentiation. Result of term-by-term
differentiation is the F.S. of f ′(x). Note
that f ′(x) might not be continuous (can
have jumps).

term by term differentiation is not justified

Integration term-by-term of F.S. of f(x) can
always be done and the resulting series will
always converge to direct integration∫ L
−L f(x) dx. However, The resulting series

is not be a F.S. Needs adjustment.

Integration term-by-term of F.S. can always
be done. And the resuling series will always

converge to direct integration
∫ L
−L f(x) dx.

The resulting series will be the F.S.

Nasser M. Abbasi (fs.ipe). Oct 2016

does f(x) have jump discontinuity?

YESNO

For cos and sin Fourier series, we need the following conditions to be able to use
f(x) = . . . instead of f(x) ≈ . . .
For cos series, the conditions are less strict than for sin series. For cos all what is
needed is that f(x) defined over 0 · · ·L not have jump discontinuity. Since the
even extension will automatically make f(−L) = f(L). For sin series, not only we
need f(x) not have jump discontinuity over 0 · · ·L, but also we need
f(−L) = f(L) = 0 and we also need f(0) = 0. If any of the above conditions fail,
then we must use f(x) ≈ . . .

YES NO

4.1 Theorem on when we can do term by term differentiation
If f(x) on −L ≤ x ≤ L is continuous (notice, NOT piecewise continuous), this means
f(x) has no jumps in it, and that f ′(x) exists on −L < x < L and f ′(x) is either
continuous or piecewise continuous (notice, that f ′(x) can be piecewise continuous
(P.W.C.), i.e. have finite number of jump discontinuities), and also and this is very
important, that f(−L) = f(L) then we can do term by term differentiation of the
Fourier series of f(x) and use = instead of ∼. Not only that, but the term by term
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differentiation of the Fourier series of f(x) will give the Fourier series of f ′(x) itself.

So that main restriction here is that f(x) on −L ≤ x ≤ L is continuous (no jump
discontinuities) and that f(−L) = f(L). So look at f(x) first and see if it is continuous
or not (remember, the whole f(x) has to be continuous, not piecewise, so no jump
discontinuities). If this condition is met, look at see if f(−L) = f(L).

For example f(x) = x on −1 ≤ x ≤ 1 is continuous, but f(−1) 6= f(1) so the F.S. of
f(x) can’t be term be term differentiated (well, it can, but the result will not be the
Fourier series of f ′(x)). So we should not do term by term differentiation in this case.

But the Fourier series for f(x) = x2 can be term by term differentiated. This has
its f ′(x) being continuous, since it meets all the conditions. Also Fourier series for
f(x) = |x| can be term by term differentiated. This has its f ′(x) being P.W.C. due to
a jump at x = 0 but that is OK, as f ′(x) is allowed to be P.W.C., but it is f(x) which
is not allowed to be P.W.C.

There is a useful corollary that comes from the above. If f(x) meets all the conditions
above, then its Fourier series is absolutely convergent and also uniformly convergent.
The M-test can be used to verify that the Fourier series is uniformly convergent.

4.2 Relation between coefficients of Fourier series of f(x)
Fourier series of f ′(x)

If term by term differentiation allowed, then let

f(x) = a0
2 +

∞∑
n=1

an cos
(
n
π

L
x
)
+ bn sin

(
n
π

L
x
)

f ′(x) = α0

2 +
∞∑
n=1

αn cos
(
n
π

L
x
)
+ βn sin

(
n
π

L
x
)

Then

αn = nbn

βn = −nan

And Bessel’s inequality instead of a20
2 +
∑∞

n=1 (a2n + b2n) <∞ now becomes
∑∞

n=1 n
2(a2n + b2n) <

∞. So it is stronger.
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4.3 Theorem on convergence of Fourier series
If f(x) is piecewise continuous on −L < x < L and if it is periodic with period 2L and
if on any point x on the entire domain −∞ < x < ∞ both the left sided derivative
and the right sided derivative exist (but these do not have to be the same !) then we
say that the Fourier series of f(x) converges and it converges to the average of f(x) at
each point including points that have jump discontinuities.

5 Laplacian in different coordinates
(added Jan. 10, 2019)

2D polar coordinates

∇2u = urr +
1
rur +

1
r2uθθ

θ
r

x

y

3D Cylinderical coordinates

∇2u(ρ, θ, z) = uρρ +
1
ρuρ +

1
ρ2uφφ + uzz

ρ

z

x

y

z

3DSpherical coordinates (ISO/Physics convention)

∇2u(r, θ, φ) = urr +
2
rur +

1
r2

(
cos θ
sin θ uθ + uθθ

)
+ 1

r2 sin2 θ
uφφ r

θ

x

y

z

φ

Nasser M. Abbasi
1/10/2019
1.ipe

Azimuthal angle

Polar angle

φ

P (ρ, φ, z)

P (r, φ, θ)

Figure 1: Laplacian in differrent coordinates

6 Linear combination of two solution is solution to
ODE

If y1, y2 are two solutions to ay′′ + by′ + cy = 0 then to show that c1y1 + c2y2 is also
solution:

ay′′1 + by′1 + cy1 = 0
ay′′2 + by′2 + cy2 = 0
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Multiply the first ODE by c1 and second ODE by c2

a(c1y1)′′ + b(c1y1)′ + c(c1y1) = 0
a(c2y2)′′ + b(c2y2)′ + c(c2y2) = 0

Add the above two equations, using linearity of differentials

a(c1y1 + c2y2)′′ + b(c1y1 + c2y2)′ + c(c1y1 + c2y2) = 0

Therefore c1y1 + c2y2 satisfies the original ODE. Hence solution.

7 To find the Wronskian ODE
Since

W (x) =

∣∣∣∣∣y1 y2

y′1 y′2

∣∣∣∣∣ = y1y
′
2 − y2y

′
1

Where y1, y2 are two solutions to ay′′ + by′ + cy = 0. Write

ay′′1 + py′1 + cy1 = 0
ay′′2 + py′2 + cy2 = 0

Multiply the first ODE above by y2 and the second by y1

ay2y
′′
1 + py2y

′
1 + cy2y1 = 0

ay1y
′′
2 + py1y

′
2 + cy1y2 = 0

Subtract the second from the first

a(y2y′′1 − y1y
′′
2) + p(y2y′1 − y1y

′
2) = 0 (1)

But
p(y2y′1 − y1y

′
2) = −pW (2)

And
dW

dx
= d

dx
(y1y′2 − y2y

′
1)

= y′1y
′
2 + y1y

′′
2 − y′2y

′
1 − y2y

′′
1

= y1y
′′
2 − y2y

′′
1 (3)

Substituting (2,3) into (1) gives the Wronskian differential equation

−a
(
dW

dx

)
− pW = 0

aW ′ + pW = 0
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Whose solution is

W (x) = Ce−
∫ p

a
dx

Where C is constant of integration.

Remember: W (x0) = 0 does not mean the two functions are linearly dependent. The
functions can still be Linearly independent on other interval, It just means x0 can’t
be in the domain of the solution for two functions to be solutions. However, if the two
functions are linearly dependent, then this implies W = 0 everywhere. So to check if
two functions are L.D., need to show that W = 0 everywhere.

8 Green functions notes
� Green function is what is called impulse response in control. But it is more general,
and can be used for solving PDE also.

Given a differential equation with some forcing function on the right side. To solve this,
we replace the forcing function with an impulse. The solution of the DE now is called
the impulse response, which is the Green’s function of the differential equation.

Now to find the solution to the original problem with the original forcing function, we
just convolve the Green function with the original forcing function. Here is an example.
Suppose we want to solve L[y(t)] = f(t) with zero initial conditions. Then we solve
L[g(t)] = δ(t). The solution is g(t). Now y(t) = g(t) ~ f(t). This is for initial value
problem. For example. y′(t) + kx = eat, with y(0) = 0. Then we solve g′(t) + kg = δ(t).

The solution is g(t) =
{
e−kt t > 0
0 t < 0

, this is for causal system. Hence y(t) = g(t)~f(t).

The nice thing here, is that once we find g(t), we can solve y′(t) + kx = f(t) for any
f(t) by just convolving the Green function (impulse response) with the new f(t).

� We can think of Green function as an inverse operator. Given L[y(t)] = f(t), we
want to find solution y(t) =

∫∞
−∞G(t; τ) f(τ) dτ . So in a sense, G(t; τ) is like L−1[y(t)].

� Need to add notes for Green function for Sturm-Liouville boundary value ODE. Need
to be clear on what boundary conditions to use. What is B.C. is not homogeneous?

� Green function properties:

1. G(t; τ) is continuous at t = τ . This is where the impulse is located.

2. The derivative G′(t) just before t = τ is not the same as G′(t) just after t = τ .
i.e. G′(t; t− ε)−G′(t; t+ ε) 6= 0. This means there is discontinuity in derivative.
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3. G(t; τ) should satisfy same boundary conditions as original PDE or ODE (this is
for Sturm-Liouville or boundary value problems).

4. L[G(t; τ)] = 0 for t 6= τ

5. G(x; τ) is symmetric. i.e. G(x; τ) = G(τ ;x).

� When solving for G(t; τ), in context of 1D, hence two boundary conditions, one at
each end, and second order ODE (Sturm-Liouville), we now get two solutions, one for
t < τ and one for t > τ .

So we have 4 constants of integrations to find (this is for second order ODE) not just
two constants as normally one would get , since now we have 2 different solutions. Two
of these constants from the two boundary conditions, and two more come from property

of Green function as mentioned above. G(t; τ) =
{
A1y1 + A2y2 0 < t < τ

A3y1 + A4y2 τ < t < L

9 Laplace transform notes
� Remember that uc(t) f(t− c) ⇐⇒ e−csF (s) and uc(t) f(t) ⇐⇒ e−csL{f(t+ c)}. For
example, if we are given u2(t) t, then L(u2(t) t) = e−2sL{t+ 2} = e−2s( 1

s2
+ 2

s

)
=

e−2s(1+2s
s2

)
. Do not do uc(t) f(t) ⇐⇒ e−csL{f(t)} ! That will be a big error. We use

this allot when asked to write a piecewise function using Heaviside functions.

10 Series, power series, Laurent series notes
� if we have a function f(x) represented as series (say power series or Fourier series),
then we say the series converges to f(x) uniformly in region D, if given ε > 0, we can
number N which depends only on ε, such that |f(x)− SN(x)| < ε.

Where here SN(x) is the partial sum of the series using N terms. The difference between
uniform convergence and non-uniform convergence, is that with uniform the number
N only depends on ε and not on which x we are trying to approximate f(x) at. In
uniform convergence, the number N depends on both ε and x. So this means at some
locations in D we need much larger N than in other locations to convergence to f(x)
with same accuracy. Uniform convergence is better. It depends on the basis functions
used to approximate f(x) in the series.

If the function f(x) is discontinuous at some point, then it is not possible to find
uniform convergence there. As we get closer and closer to the discontinuity, more and
more terms are needed to obtained same approximation away from the discontinuity,
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hence not uniform convergence. For example, Fourier series approximation of a step
function can not be uniformly convergent due to the discontinuity in the step function.

� Geometric series:
N∑

n=0

rn = 1 + r + r2 + r3 + · · ·+ rN = 1− rN+1

1− r

N∑
n=1

rn = −1 +
N∑

n=0

rn = −1 + 1− rN+1

1− r
= r

1− rN

1− r

∞∑
n=0

rn = 1 + r + r2 + r3 + · · · = 1
1− r

|r| < 1

∞∑
n=0

(−1)n rn = 1− r + r2 − r3 + · · · = 1
1 + r

|r| < 1

� Binomial series:

General binomial is

(x+ y)n = xn + nxn−1y + n(n− 1)
2! xn−2y2 + n(n− 1) (n− 2)

3! xn−3y3 + · · ·

From the above we can generate all other special cases. For example,

(1 + x)n = 1 + nx+ n(n− 1)x2
2! + n(n− 1) (n− 2)x3

3! + · · ·

This work for positive and negative n, rational or not. The sum converges when only
for |x| < 1. From this, we can derive the above sums also for the geometric series. For
example, for n = −1 the above becomes

1
(1 + x) = 1− x+ x2 − x3 + · · · |x| < 1

1
(1− x) = 1 + x+ x2 + x3 + · · · |x| < 1

For |x| > 1, we can still find series expansion in negative powers of x as follows

(1 + x)n =
(
x

(
1 + 1

x

))n

= xn
(
1 + 1

x

)n

And now since
∣∣ 1
x

∣∣ < 1, we can use binomial expansion to expand the term
(
1 + 1

x

)n in
the above and obtain a convergent series, since now

∣∣ 1
x

∣∣ < 1 . This will give the following
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expansion

(1 + x)n = xn
(
1 + 1

x

)n

= xn

(
1 + n

(
1
x

)
+ n(n− 1)

2!

(
1
x

)2

+ n(n− 1) (n− 2)
3!

(
1
x

)3

+ · · ·

)

So everything is the same, we just change x with 1
x
and remember to multiply the whole

expansion with xn. For example, for n = −1

1
(1 + x) = 1

x
(
1 + 1

x

) = 1
x

(
1− 1

x
+
(
1
x

)2

−
(
1
x

)3

+ · · ·

)
|x| > 1

1
(1− x) = 1

x
(
1− 1

x

) = 1
x

(
1 + 1

x
+
(
1
x

)2

+
(
1
x

)3

+ · · ·

)
|x| > 1

These tricks are very useful when working with Laurent series.

� Arithmetic series:
N∑

n=1

n = 1
2N(N + 1)

N∑
n=1

an = N

(
a1 + aN

2

)
i.e. the sum is N times the arithmetic mean.

� Taylor series: Expanded around x = a is

f(x) = f(a) + (x− a) f ′(a) + (x− a)2 f ′′(a)
2! + (x− a)3 f (3)(a)

3! + · · ·+Rn

Where Rn is remainder Rn = (x−a)n+1

(n+1)! f
(n+1)(x0) where x0 is some point between x and

a.

� Maclaurin series: Is just Taylor expanded around zero. i.e. a = 0

f(x) = f(0) + xf ′(0) + x2f ′′(0)
2! + x3f (3)(0)

3! + · · ·

� This diagram shows the different convergence of series and the relation between
them

29



set of all convergent series

Absolutely
convergent

Uniform
convergent

A

B

C

D

Nasser M. Abbasi (p2.ipe, Sept 2018)

The above shows that an absolutely convergent series (B) is also convergent. Also a
uniformly convergent series (D) is also convergent. But the series B is absolutely con-
vergent and not uniform convergent. While D is uniform convergent and not absolutely
convergent.

The series C is both absolutely and uniformly convergent. And finally the series A
is convergent, but not absolutely (called conditionally convergent). Examples of B
(converges absolutely but not uniformly) is

∞∑
n=0

x2
1

(1 + x2)n = x2
(
1 + 1

1 + x2
+ 1

(1 + x2)2
+ 1

(1 + x2)3
+ · · ·

)
= x2 + x2

1 + x2
+ x2

(1 + x2)2
+ x2

(1 + x2)3
+ · · ·

And example of D (converges uniformly but not absolutely) is
∞∑
n=1

(−1)n+1 1
x2 + n

= 1
x2 + 1 − 1

x2 + 2 + 1
x3 + 3 − 1

x4 + 4 + · · ·

Example of A (converges but not absolutely) is the alternating harmonic series
∞∑
n=1

(−1)n+1 1
n
= 1− 1

2 + 1
3 − 1

4 + · · ·
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The above converges to ln (2) but absolutely it now becomes the harmonic series and
it diverges

∞∑
n=1

1
n
= 1 + 1

2 + 1
3 + 1

4 + · · ·

For uniform convergence, we really need to have an x in the series and not just numbers,
since the idea behind uniform convergence is if the series convergence to within an error
tolerance ε using the same number of terms independent of the point x in the region.

� The sequence
∑∞

n=1
1
na converges for a > 1 and diverges for a ≤ 1. So a = 1 is the

flip value. For example
1 + 1

2 + 1
3 + 1

4 + · · ·

Diverges, since a = 1, also 1 + 1√
2 + 1√

3 + 1√
4 + · · · diverges, since a = 1

2 ≤ 1. But
1 + 1

4 +
1
9 +

1
16 + · · · converges, where a = 2 here and the sum is π2

6 .

� Using partial sums. Let
∑∞

n=0 an be some sequence. The partial sum is SN =
∑N

n=0 an.
Then

∞∑
n=0

an = lim
N→∞

Sn

If limN→∞ Sn exist and finite, then we can say that
∑∞

n=0 an converges. So here we use
set up a sequence who terms are partial sum, and them look at what happens in the
limit to such a term as N → θ. Need to find an example where this method is easier to
use to test for convergence than the other method below.

� Given a series, we are allowed to rearrange order of terms only when the series is
absolutely convergent. Therefore for the alternating series 1− 1

2 +
1
3 −

1
4 + · · · , do not

rearrange terms since this is not absolutely convergent. This means the series sum is
independent of the order in which terms are added only when the series is absolutely
convergent.

� In an infinite series of complex numbers, the series converges, if the real part of the
series and also the complex part of the series, each converges on their own.

� Power series: f(z) =
∑∞

n=0 an(z − z0)n. This series is centered at z0. Or expanded
around z0. This has radius of convergence R is the series converges for |z − z0| < R

and diverges for |z − z0| > R.

� Tests for convergence.

1. Always start with preliminary test. If limn→∞ an does not go to zero, then no
need to do anything else. The series

∑∞
n=0 an does not converge. It diverges. But

if limn→∞ an = 0, it still can diverge. So this is a necessary but not sufficient
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condition for convergence. An example is
∑ 1

n
. Here an → 0 in the limit, but we

know that this series does not converge.

2. For Uniform convergence, there is a test called the weierstrass M test, which can
be used to check if the series is uniformly convergent. But if this test fails, this
does not necessarily mean the series is not uniform convergent. It still can be
uniform convergent. (need an example).

3. To test for absolute convergence, use the ratio test. If L = limn→∞

∣∣∣an+1
an

∣∣∣ < 1 then
absolutely convergent. If L = 1 then inconclusive. Try the integral test. If L > 1
then not absolutely convergent. There is also the root test. L = limn→∞

n
√

|an| =
limn→∞ |an|

1
n .

4. The integral test, use when ratio test is inconclusive. L = limn→∞
∫ n

f(x) dx
where a(n) becomes f(x). Remember to use this only of the terms of the sequence
are monotonically decreasing and are all positive. For example,

∑∞
n=1 ln

(
1 + 1

n

)
,

then use L = limN→∞
∫ N ln

(
1 + 1

x

)
dx = ((1 + x) ln (1 + x)− x ln (x)− 1)N . No-

tice, we only use the upper limit in the integral. This becomes (after simplifica-
tions) limN→∞

N
N+1 = 1. Hence the limit L is finite, then the series converges.

5. Radius of convergence is called R = 1
L
where L is from (3) above.

6. Comparison test. Compare the series with one we happen to already know it
converges. Let

∑
bn be a series which we know is convergent (for example

∑ 1
n2 ),

and we want to find if
∑
an converges. If all terms of both series are positive and

if an ≤ bn for each n, then we conclude that
∑
an converges also.

� For Laurent series, lets say singularity is at z = 0 and z = 1. To expand about z = 0,
get f(z) to look like 1

1−z
and use geometric series for |z| < 1. To expand about z = 1,

there are two choices, to the inside and to the outside. For the outside, i.e. |z| > 1, get
f(z) to have 1

1− 1
z

form, since this now valid for |z| > 1.

� Can only use power series
∑
an(z − z0)n to expand f(z) around z0 only if f(z) is

analytic at z0. If f(z) is not analytic at z0 need to use Laurent series. Think of Laurent
series as an extension of power series to handle singularities.
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10.1 Some tricks to find sums

10.1.1 Example 1

Find
∑∞

n=1
einx

n

solution Let f(x) =
∑∞

n=1
einx

n
, taking derivative gives

f ′(x) = i
∞∑
n=1

einx

= i
∞∑
n=1

(
eix
)n

= i

(
∞∑
n=0

(
eix
)n − 1

)
= i

1− eix
− i

Hence

f(x) =
∫ (

i

1− eix
− i

)
dx

= i

∫
dx

1− eix
− ix+ C

= i
(
x+ i ln

(
1− eix

))
− ix+ C

= ix− ln
(
1− eix

)
− ix+ C

= − ln
(
1− eix

)
+ C

We can set C = 0 to obtain
∞∑
n=1

einx

n
= − ln

(
1− eix

)
More tricks to add...

10.2 Methods to find Laurent series
Let us find the Laurent series for f(z) = 5z−2

z(z−1) . There is a singularity of order 1 at
z = 0 and z = 1.
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10.2.1 Method one

Expansion around z = 0. Let

g(z) = zf(z)

= 5z − 2
(z − 1)

This makes g(z) analytic around z, since g(z) do not have a pole at z = 0, then it is
analytic around z = 0 and therefore it has a power series expansion around z = 0 given
by

g(z) =
∞∑
n=0

anz
n (1)

Where
an = 1

n! g
(n)(z)

∣∣
z=0

But
g(0) = 2

And

g′(z) = 5(z − 1)− (5z − 2)
(z − 1)2

= −3
(z − 1)2

g′(0) = −3

And

g′′(z) = −3(−2)
(z − 1)3

= 6
(z − 1)3

g′′(0) = −6

And

g′′′(z) = 6(−3)
(z − 1)4

= −18
(z − 1)4

g′′(0) = −18

And so on. Therefore, from (1)

g(z) = g(0) + g′(0) z + 1
2!g

′′(0) z2 + 1
3!g

′′′(0) z3 + · · ·

= 2− 3z − 6
2z

2 − 18
3! z

3 − · · ·

= 2− 3z − 3z2 − 3z3 − · · ·
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Therefore

f(z) = g(z)
z

= 2
z
− 3− 3z − 3z2 − · · ·

The residue is 2. The above expansion is valid around z = 0 up and not including the
next singularity, which is at z = 1. Now we find the expansion of f(z) around z = 1.
Let

g(z) = (z − 1) f(z)

= 5z − 2
z

This makes g(z) analytic around z = 1, since g(z) do not have a pole at z = 1. Therefore
it has a power series expansion about z = 1 given by

g(z) =
∞∑
n=0

an(z − 1)n (1)

Where
an = 1

n! g
(n)(z)

∣∣
z=1

But
g(1) = 3

And

g′(z) = 5z − (5z − 2)
z2

= 2
z2

g′(1) = 2

And

g′′(z) = 2(−2)
z3

= −4
z3

g′′(1) = −4

And

g′′′(z) = −4(−3)
z4

= 12
z4

g′′(1) = 12
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And so on. Therefore, from (1)

g(z) = g(1) + g′(1) (z − 1) + 1
2!g

′′(1) (z − 1)2 + 1
3!g

′′′(1) (z − 1)3 + · · ·

= 3 + 2(z − 1)− 4
2(z − 1)2 + 12

3! (z − 1)3 − · · ·

= 3 + 2(z − 1)− 2(z − 1)2 + 2(z − 1)3 − · · ·

Therefore

f(z) = g(z)
z − 1

= 3
z − 1 + 2− 2(z − 1) + 2(z − 1)2 − 2(z − 1)3 + · · ·

The residue is 3. The above expansion is valid around z = 1 up and not including the
next singularity, which is at z = 0 inside a circle of radius 1.

z = 0 z = 1

f(z) = 2
z
− 3− 3z − 3z2 − . . .

Expansion of f(z) = 5z−2
z(z−1)

around z = 0

z = 0 z = 1

f(z) = 3
z−1

+ 2− 2(z − 1) + 2(z − 1)2 − 2(z − 1)2 + . . .

Expansion of f(z) = 5z−2
z(z−1)

around z = 1

z = 2

Putting the above two regions together, then we see there is a series expansion of f(z)
that is shared between the two regions, in the shaded region below.

z = 0 z = 1

f(z) = 2
z
− 3− 3z − 3z2 − . . .

Showing expansion of
f(z) = 5z−2

z(z−1)
around z = 0 and

around z = 1 in one diagram

f(z) = 3
z−1

+ 2− 2(z − 1) + 2(z − 1)2 − 2(z − 1)2 + . . .
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Let check same series in the shared region give same values. Using the series expansion
about f(0) to find f(z) at point z = 1

2 , gives −2 when using 10 terms in the series.
Using series expansion around z = 1 to find f

(1
2

)
using 10 terms also gives −2. So both

series are valid produce same result.

10.2.2 Method Two

This method is simpler than the above, but it results in different regions. It is based
on converting the expression in order to use geometric series expansion on it.

f(z) = 5z − 2
z (z − 1)

Since there is a pole at z = 0 and at z = 1, then we first find expansion for 0 < |z| < 1.
To do this, we write the above as

f(z) = 5z − 2
z

(
1

z − 1

)
= 2− 5z

z

(
1

1− z

)
And now expand 1

1−z
using geometric series, which is valid for |z| < 1. This gives

f(z) = 2− 5z
z

(
1 + z + z2 + z3 + · · ·

)
= 2
z

(
1 + z + z2 + z3 + · · ·

)
− 5
(
1 + z + z2 + z3 + · · ·

)
=
(
2
z
+ 2 + 2z + 2z2 + · · ·

)
−
(
5 + 5z + 5z2 + 5z3 + · · ·

)
= 2
z
− 3− 3z − 3z2 − 3z3 − · · ·

The above is valid for 0 < |z| < 1 which agrees with result of method 1.

Now, to find expansion for |z| > 1, we need a term that looks like
(

1
1− 1

z

)
. Since now it

can be expanded for
∣∣1
z

∣∣ < 1 or |z| > 1 which is what we want. Therefore, writing f(z)
as

f(z) = 5z − 2
z (z − 1) = 5z − 2

z2
(
1− 1

z

) = 5z − 2
z2

(
1

1− 1
z

)
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But for
∣∣1
z

∣∣ < 1 the above becomes

f(z) = 5z − 2
z2

(
1 + 1

z
+ 1
z2

+ 1
z3

+ · · ·
)

= 5
z

(
1 + 1

z
+ 1
z2

+ 1
z3

+ · · ·
)
− 2
z2

(
1 + 1

z
+ 1
z2

+ 1
z3

+ · · ·
)

=
(
5
z
+ 5
z2

+ 5
z3

+ 5
z4

+ · · ·
)
−
(

2
z2

+ 2
z3

+ 2
z4

+ 2
z5

+ · · ·
)

= 5
z
+ 3
z3

+ 3
z4

+ 3
z5

+ · · ·

With residue 5. The above is valid for |z| > 1. The following diagram illustrates the
result obtained from method 2.

z = 0 z = 1

f(z) = 2
z
− 3− 3z − 3z2 − . . .

Showing expansion of
f(z) = 5z−2

z(z−1)
in two regions. For

0 < |z| < 1 and for |z| > 1

Valid for 0 < |z| < 1
Valid for |z| > 1

f(z) = 5
z
+ 3

z2
+ 3

z3
+ 3

z4
+ . . .

38



10.2.3 Method Three

For expansion about z = 0, this uses same method as above, giving same series valid
for |z| < 1 . This method is a little different for those points other than zero. The idea
is to replace z by z − z0 where z0 is the point we want to expand about and do this
replacement in f(z) itself. So for z = 1 using this example, we let ξ = z − 1 hence
z = ξ + 1. Then f(z) becomes

f(z) = 5z − 2
z (z − 1)

= 5(ξ + 1)− 2
(ξ + 1) (ξ)

= 5(ξ + 1)− 2
ξ

(
1

ξ + 1

)
= 5ξ + 3

ξ

(
1

1 + ξ

)
Now we expand 1

1+ξ
for |ξ| < 1 and the above becomes

f(z) = 5ξ + 3
ξ

(
1− ξ + ξ2 − ξ3 + ξ4 − · · ·

)
= 5ξ + 3

ξ

(
1− ξ + ξ2 − ξ3 + ξ4 − · · ·

)
=
(
5ξ + 3
ξ

− (5ξ + 3) + (5ξ + 3) ξ − (5ξ + 3) ξ2 + · · ·
)

=
(
5 + 3

ξ
− 5ξ − 3 + 5ξ2 + 3ξ − 5ξ3 − 3ξ2 + · · ·

)
=
(
2 + 3

ξ
− 2ξ + 2ξ2 − 2ξ3 + · · ·

)
We now replace ξ = z − 1 and the above becomes

f(z) =
(

3
(z − 1) + 2− 2(z − 1) + 2(z − 1)2 − 2(z − 1)3 + 2(z − 1)4 − · · ·

)
The above is valid for |ξ| < 1 or |z − 1 | < 1 or −1 < (z − 1) < 1 or 0 < z < 2. This
gives same series and for same region as in method one. But this is little faster as it
uses Binomial series short cut to find the expansion instead of calculating derivatives
as in method one.
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10.2.4 Conclusion

Method one and method three give same series and for same regions. Method three uses
binomial expansion as short cut and requires one to convert f(z) to form to allow using
Binomial expansion. Method one does not use binomial expansion but requires doing
many derivatives to evaluate the terms of the power series. It is more direct method.

Method two also uses binomial expansion, but gives different regions that method one
and three.

If one is good in differentiation, method one seems the most direct. Otherwise, the
choice is between method two or three as they both use Binomial expansion. Method
two seems a little more direct than method three. It also depends what the problem is
asking form. If the problem asks to expand around z0 vs. if it is asking to find expansion
in |z| > 1 for example, then this decides which method to use.

11 Gamma function notes
� Gamma function is defined by

Γ(x) =
∫ ∞

0
tx−1e−tdt x > 0

The above is called the Euler representation. Or if we want it defined in complex domain,
the above becomes

Γ(z) =
∫ ∞

0
tz−1e−tdt Re (z) > 0

Since the above is defined only for right half plane, there is way to extend this to left
half plane, using what is called analytical continuation. More on this below. First,
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some relations involving Γ(x)

Γ(z) = (z − 1) Γ(z − 1) Re (z) > 1
Γ(1) = 1
Γ(2) = 1
Γ(3) = 2
Γ(4) = 3!
Γ(n) = (n− 1)!

Γ(n+ 1) = n!

Γ
(
1
2

)
=

√
π

Γ(z + 1) = zΓ(z) recursive formula
Γ(z̄) = Γ (z)

Γ
(
n+ 1

2

)
= 1 · 3 · 5· · · (2n− 1)

2n
√
π

� To extend Γ(z) to the left half plane, i.e. for negative values. Let us define, using the
above recursive formula

Γ̄(z) = Γ(z + 1)
z

Re (z) > −1

For example

Γ̄
(
−1
2

)
=

Γ
(1
2

)
−1

2
= −2Γ

(
1
2

)
= −2

√
π

And for Re (z) > −2

Γ̄
(
−3
2

)
=

Γ̄
(
−3

2 + 1
)

−3
2

=
(

1
−3

2

)
Γ̄
(
−1
2

)
=
(

1
−3

2

)(
1
−1

2

)
Γ
(
1
2

)
=
(

1
−3

2

)(
1
−1

2

)√
π = 4

3
√
π

And so on. Notice that for x < 0 the functions Γ(x) are not defined for all negative
integers x = −1,−2, · · · it is also not defined for x = 0

� The above method of extending (or analytical continuation) of the Gamma function to
negative values is due to Euler. Another method to extend Gamma is due to Weierstrass.
It starts by rewriting from the definition as follows, where a > 0

Γ(z) =
∫ ∞

0
tz−1e−tdt

=
∫ a

0
tz−1e−tdt+

∫ ∞

a

tz−1e−tdt (1)
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Expanding the integrand in the first integral using Taylor series gives∫ a

0
tz−1e−tdt =

∫ a

0
tz−1

(
1 + (−t) + (−t)2

2! + (−t)3

3! + · · ·

)
dt

=
∫ a

0
tz−1

(
1 + (−t) + (−t)2

2! + (−t)3

3! + · · ·

)
dt

=
∫ a

0
tz−1

∞∑
n=0

(−1)n tn
n! dt

=
∫ a

0

∞∑
n=0

(−1)n tn+z−1

n! dt

=
∞∑
n=0

∫ a

0

(−1)n tn+z−1

n! dt

=
∞∑
n=0

(−1)n

n!

∫ a

0
tn+z−1dt

=
∞∑
n=0

(−1)n

n!

[
tn+z

n+ z

]a
0

=
∞∑
n=0

(−1)n

n! (n+ z)a
n+z

This takes care of the first integral in (1). Now, since the lower limits of the second
integral in (1) is not zero, then there is no problem integrating it directly. Remember
that in the Euler definition, it had zero in the lower limit, that is why we said there
Re (z) > 1. Now can can choose any value for a. Weierstrass choose a = 1. Hence (1)
becomes

Γ(z) =
∫ a

0
tz−1e−tdt+

∫ ∞

a

tz−1e−tdt

=
∞∑
n=0

(−1)n

n! (n+ z) +
∫ ∞

1
tz−1e−tdt (2)

Notice the term an+z now is just 1 since a = 1. The second integral above can now
be integrated directly. Let us now verify that Euler continuation Γ̄(z) for say z = −1

2
gives the same result as Weierstrass formula. From above, we found that Γ̄(z) = −2

√
π.

Equation (2) for z = −1
2 becomes

Γ̄
(
−1
2

)
=

∞∑
n=0

(−1)n

n!
(
n− 1

2

) + ∫ ∞

1
t−

3
2 e−tdt (3)
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Using the computer
∞∑
n=0

(−1)n

n!
(
n− 1

2

) = −2
√
π + 2

√
π(1− erf (1))− 21

e

And direct integration ∫ ∞

1
t−

3
2 e−tdt = −2

√
π + 2

√
π erf (1) + 2

e

Hence (3) becomes

Γ̄
(
−1
2

)
=
(
−2

√
π + 2

√
π(1− erf (1))− 21

e

)
+
(
−2

√
π + 2

√
π erf (1) + 2

e

)
= −2

√
π

Which is the same as using Euler method. Let us check for z = −2
3 . We found above

that Γ̄
(
−3

2

)
= 4

3
√
π using Euler method of analytical continuation. Now we will check

using Weierstrass method. Equation (2) for z = −3
2 becomes

Γ̄
(
−3
2

)
=

∞∑
n=0

(−1)n

n!
(
n− 3

2

) + ∫ ∞

1
t−

5
2 e−tdt

Using the computer
∞∑
n=0

(−1)n

n!
(
n− 3

2

) = 4
√
π

3 − 4
√
π(1− erf (1))

3 + 2
3e

And ∫ ∞

1
t−

5
2 e−tdt = −4

√
π erf (1)
3 + 4

√
π

3 − 2
3e

Hence

Γ̄
(
−3
2

)
=
(
4
√
π

3 − 4
√
π(1− erf (1))

3 + 2
3e

)
+
(
−4

√
π erf (1)
3 + 4

√
π

3 − 2
3e

)
= 4

3
√
π

Which is the same as using the Euler method. Clearly the Euler method for analytical
continuation of the Gamma function is simpler to compute.

� Euler reflection formula

Γ(x) Γ(1− x) =
∫ ∞

0

tx−1

1 + t
dt 0 < x < 1

= π

sin (πx)
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Where contour integration was used to derive the above. See Mary Boas text book,
page 607, second edition, example 5 for full derivation.

� Γ(z) has singularities at z = 0,−1,−2, · · · and Γ(1− z) has singularities at z =
1, 2, 3, · · · so in the above reflection formula, the zeros of sin (πx) cancel the singularities
of Γ(x) when it is written as

Γ(1− x) = π

Γ (x) sin (πx)

� 1
Γ(z) is entire.

� There are other representations for Γ(x). One that uses products by Euler also is

Γ(z) = 1
z
Π∞

n=1

(
1 + 1

n

)z
1 + z

n

= lim
n→∞

n! (n+ 1)z

z (z − 1) · · · (z + n)

And another due to Weierstrass is

Γ(z) = e−γz

z
Π∞

n=1
e

z
n

1 + z
n

= e−γz lim
n→∞

n! exp
(
z
(
1 + 1

2 + · · ·+ 1
n

))
z (z + 1) (z + 2) · · · (z + n)

12 Riemann zeta function notes

� Given by ζ(s) =
∑∞

n=1
1
ns for Re (s) > 1. Euler studied this and It was extended to

the whole complex plane by Riemann. So the Riemann zeta function refer to the one
with the extension to the whole complex plane. Euler only looked at it on the real line.
It has pole at s = 1. Has trivial zeros at s = −2,−4,−6, · · · and all its non trivial
zeros are inside the critical strip 0 < s < 1 and they all lie on the critical line s = 1

2 .
ζ(s) is also defined by integral formula

ζ(s) = 1
Γ (s)

∫ ∞

0

1
et − 1

ts

t
dt Re (s) > 1

� The connection between ζ(s) prime numbers is given by the Euler product formula
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ζ(s) = Πp
1

1− p−s

=
(

1
1− 2−s

)(
1

1− 3−s

)(
1

1− 5−s

)(
1

1− 7−s

)
· · ·

=
(

1
1− 1

2s

)(
1

1− 1
3s

)(
1

1− 1
5s

)(
1

1− 1
7s

)
· · ·

=
(

2s
2s − 1

)(
3s

3s − 1

)(
5s

5s − 1

)(
7s

7s − 1

)
· · ·

� ζ(s) functional equation is

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s) ζ(1− s)

13 Complex functions notes
� Complex identities

|z|2 = zz̄

(z̄) = z

(z1 + z2) = z̄1 + z̄2

|z̄| = |z|
|z1z2| = |z1| |z2|

Re (z) = z + z̄

2
Im (z) = z + z̄

2i
arg (z1z2) = arg (z1) + arg (z2)

� A complex function f(z) is analytic in a region D if it is defined and differentiable
at all points in D. One way to check for analyticity is to use the Cauchy Riemann
(CR) equations (this is a necessary condition but not sufficient). If f(z) satisfies CR
everywhere in that region then it is analytic. Let f(z) = u(x, y) + iv(x, y), then these
two equations in Cartesian coordinates are

∂u

∂x
= ∂v

∂y

−∂u
∂y

= ∂v

∂x
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Sometimes it is easier to use the polar form of these. Let f(z) = r cos θ + i sin θ, then
the equations become

∂u

∂r
= 1
r

∂v

∂θ

−1
r

∂u

∂θ
= ∂v

∂r

To remember them, think of the r as the x and θ as the y.

Let us apply these on
√
z to see how it works. Since z = reiθ+2nπ then f(z) =√

rei
θ
2+nπ.This is multi-valued function. One value for n = 0 and another for n = 1.

The first step is to make it single valued. Choosing n = 0 gives the principal value.
Then f(z) =

√
rei

θ
2 . Now we find the branch points. z = 0 is a branch point. We can

pick −π < θ < π and pick the negative real axis as the branch cut (the other branch
point being −∞). This is one choice.

We could have picked 0 < θ < 2π and had the positive x axis as the branch cut, where
now the second branch point is +∞ but in both cases, origin is still part of the branch
cut. Let us stick with −π < θ < π.

Given all of this, now
√
z =

√
rei

θ
2 =

√
r
(
cos
(
θ
2

)
+ i sin

(
θ
2

))
, hence u =

√
r cos

(
θ
2

)
and v =

√
r sin

(
θ
2

)
. Therefore ∂u

∂r
= 1

2
1√
r
cos
(
θ
2

)
, and ∂v

∂θ
= 1

2
√
r cos

(
θ
2

)
and ∂u

∂θ
=

−1
2
√
r sin

(
θ
2

)
and ∂v

∂r
= 1

2
1√
r
sin
(
θ
2

)
. Applying Cauchy-Riemann above gives

1
2

1√
r
cos
(
θ

2

)
= 1
r

1
2
√
r cos

(
θ

2

)
1
2

1√
r
cos
(
θ

2

)
= 1

2
1√
r
cos
(
θ

2

)
Satisfied. and for the second equation

−1
r

(
−1
2
√
r sin

(
θ

2

))
= 1

2
1√
r
sin
(
θ

2

)
1
2

1√
r
sin
(
θ

2

)
= 1

2
1√
r
sin
(
θ

2

)
so

√
z is analytic in the region −π < θ < π, and not including branch points and

branch cut.

� We can’t just say f(z) is Analytic and stop. Have to say f(z) is analytic in a region
or at a point. When we say f(z) analytic at a point, we mean analytic in small region
around the point.

If f(z) is defined only at an isolated point z0 and not defined anywhere around it, then
the function can not be analytic at z0 since it is not differentiable at z0. Also f(z) is

46



analytic at a point z0 if the power series for f(z) expanded around z0 converges to
f(z) evaluated at z0. An analytic complex function mean it is infinitely many times
differentiable in the region, which means the limit exist lim∆z→0

f(z+∆z)−f(z)
∆z

and does
not depend on direction.

� Before applying the Cauchy Riemann equations, make sure the complex function is
first made to be single valued.

� Remember that Cauchy Riemann equations as necessary but not sufficient condition
for function to be analytic. The extra condition needed is that all the partial derivatives
are continuous. Need to find example where CR is satisfied but not the continuity on
the partial derivatives. Most of the HW problems just needs the CR but good to keep
an eye on this other condition.

� Cauchy-Goursat: If f(z) is analytic on and inside closed contour C then
∮
C

f(z) dz = 0.

But remember that if
∮
C

f(z) dz = 0 then this does not necessarily imply f(z) is analytic

on and inside C. So this is an IF and not an IFF relation. For example
∮
C

1
z2
dz = 0

around unit circle centered at origin, but clearly 1
z2

is not analytic everywhere inside
C, since it has a singularity at z = 0.

proof of Cauchy-Goursat: The proof uses two main ideas. It uses the Cauchy-Riemann
equations and also uses Green theorem. Green’s Theorem says∫

C

Pdx+Qdy =
∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA (1)

So Green’s Theorem transforms integration on the boundary C of region D by integra-
tion over the area inside the boundary C. Let f(z) = u + iv. And since z = x + iy

then dz = dx+ idy. Therefore∮
C

f(z) dz =
∮
C

(u+ iv) (dx+ idy)

=
∮
C

udx+ uidy + ivdx− vdy

=
∮
C

(udx− vdy) + i

∮
C

vdx+ udy (2)

We now apply (1) to each of the two integrals in (3). Hence the first integral in (2)
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becomes ∮
C

(udx− vdy) =
∫
D

(
−∂v
∂x

− ∂u

∂y

)
dA

But from CR, we know that −∂u
∂y

= ∂v
∂x
, hence the above is zero. And the second integral

in (2) becomes ∮
C

vdx+ udy =
∫
D

(
∂u

∂x
− ∂v

∂y

)
dA

But from CR, we know that ∂u
∂x

= ∂v
∂y
, hence the above is zero. Therefore the whole

integral in (2) is zero. Therefore
∮
C

f(z) dz = 0. QED.

� Cauchy residue: If f(z) is analytic on and inside closed contour C except at some
isolated points z1, z2, · · · , zN then

∮
C

f(z) dz = 2πi
∑N

j=1Res (f(z))z=zj
. The term

Res (f(z))z=zj
is the residue of f(z) at point zj. Use Laurent expansion of f(z) to

find residues. See above on methods how to find Laurent series.

� Maximum modulus principle: If f(z) is analytic in some region D and is not constant
inside D, then its maximum value must be on the boundary. Also its minimum on the
boundary, as long as f(z) 6= 0 anywhere inside D. In the other hand, if f(z) happened
to have a maximum at some point z0 somewhere inside D, then this implies that f(z)
is constant everywhere and will have the value f(z0) everywhere. What all this really
mean, is that if f(z) is analytic and not constant in D, then its maximum is on the
boundary and not inside.

There is a complicated proof of this. See my notes for Physics 501. Hopefully this will
not come up in the exam since I did not study the proof.

� These definitions from book of Joseph Bak

1. f is analytic at z if f is differentiable in a neighborhood of z. Similarly f is
analytic on set S if f is differentiable at all points in some open set containing S.

2. f(z) is analytic on open set U is f(z) if differentiable at each point of U and f ′(z)
is continuous on U .

� Some important formulas.

1. If f(z) is analytic on and inside C then∮
C

f(z) dz = 0
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2. If f(z) is analytic on and inside C then and z0 is a point in C then

2πif(z0) =
∮
C

f(z)
z − z0

dz

2πif ′(z0) =
∮
C

f(z)
(z − z0)2

dz

2πi
2! f

′′(z0) =
∮
C

f(z)
(z − z0)3

dz

...
2πi
n! f

(n)(z0) =
∮
C

f(z)
(z − z0)n+1dz

3. From the above, we find, where here f(z) = 1∮
C

1
(z − z0)n+1dz =

{
2πi n = 0
0 n = 1, 2, · · ·

13.1 Find bn coefficients in the Laurent series expansion
On Finding coefficient of the principle part of the Laurent series expansion around z0.
Let

f(z) =
∞∑
n=0

cn(z − z0)n +
N∑

n=1

bn
(z − z0)n

(1)

=
∞∑
n=0

cn(z − z0)n +
b1

(z − z0)
+ b2

(z − z0)2
+ b3

(z − z0)3
+ · · ·+ bN

(z − z0)N

The goal is to determine all the coefficients b1, b2, · · · , bN in Laurent series expansion.
This assumes the largest order of the pole is finite. To find b1, we multiply both side of
the above by (z − z0)N which gives

(z − z0)N f(z) =
∞∑
n=0

cn(z − z0)n+N+b1(z − z0)N−1+b2(z − z0)N−2+b3(z − z0)N−3+· · ·+bN

(2)
Differentiating both sides N − 1 times w.r.t. z gives

dN−1

dz(N−1)

(
(z − z0)N f(z)

)
=

∞∑
n=0

dN−1

dz(N−1)

(
cn(z − z0)n+N

)
+ b1(N − 1)!
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Evaluating at x = x0 the above gives

b1 =
limz→z0

dN−1

dz(N−1)

(
(z − z0)N f(z)

)
(N − 1)!

To find b2 we differentiate both sides of (2) N − 2 times which gives

dN−2

dz(N−2)

(
(z − z0)N f(z)

)
=

∞∑
n=0

dN−2

dz(N−2)

(
cn(z − z0)n+N

)
+b1(N − 1)! (x− x0)+b2(N − 2)!

Hence

b2 =
limz→z0

dN−2

dz(N−2)

(
(z − z0)N f(z)

)
(N − 2)!

We keep doing the above to find b3, b4, · · · , bN . Therefore the general formula is

bn =
limz→z0

dN−n

dz(N−n)

(
(z − z0)N f(z)

)
(N − n)! (3A)

And for the special case of the last term bN the above simplifies to

bk =
limz→z0 (z − z0)N f(z)

(N − k)! (3B)

Where in (3) n is the coefficient bn needed to be evaluated and N is the pole order and
z0 is the expansion point. The special value b1 is called the residue of f(z) at z0.

14 Hints to solve some problems

14.1 Complex analysis and power and Laurent series

1. Laurent series of f(z) around point z0 is
∑∞

n=−∞ an(z − z0)n and an = 1
2πi

∮
f(z)

(z−z0)n+1dz.
Integration is around path enclosing z0 in counter clockwise.

2. Power series of f(z) around z0 is
∑∞

0 an(z − z0)n where an = 1
n! f

(n)(z)
∣∣
z=z0

3. Problem asks to use Cauchy integral formula
∮
C

f(z)
z−z0

dz = 2πif(z0) to evaluate

another integral
∮
C

g(z) dz. Both over same C. The idea is to rewrite g(z) as f(z)
z−z0
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by factoring out the poles of g(z) that are outside C leaving one inside C. Then
we can write ∮

C

g(z) dz =
∮
C

f(z)
z − z0

dz

= 2πif(z0)

For example, to solve
∮
C

1
(z+1)(z+2)dz around C unit circle. Rewriting this as∮

C

1
z+2

(z−(−1))dz where now f(z) = 1
z+2 and now we can use Cauchy integral for-

mula. So all what we have to do is just evaluate 1
z+2 at z = −1, which gives∮

C

1
(z+1)(z+2)dz = 2πi. This works if g(z) can be factored into f(z)

z−z0
where f(z) is

analytic on and inside C. This would not work if g(z) has more than one pole
inside C.

4. Problem asks to find
∮
C

f(z) dz where C is some closed contour. For this, if f(z)

had number of isolated singularities inside C, then just use∮
C

f(z) dz = 2πi
∑

residues of f(z) at each singularity inside C

5. Problem asks to find
∫
C
f(z) dz where C is some open path, i.e. not closed (if

it is closed, try Cauchy), such as a straight line or a half circle arc. For these
problem, use parameterization. This converts the integral to line integration. If
C is straight line, use standard t parameterization, which is found by using

x(t) = (1− t)x0 + tx1

y(t) = (1− t) y0 + ty1

where (x0, y0) in the line initial point and (x1, y1) is the line end point. This works
for straight lines. Now use the above and rewrite z = x+ iy as z(t) = x(t) + iy(t)
and then plug-in in this z(t) in f(z) to obtain f(t), then the integral becomes∫

C

f(z) dz =
∫ t=1

t=0
f(t) z′(t) dt

And now evaluate this integral using normal integration rules. If the path is a
circular arc, then no need to use t, just use θ. Rewrite x = reiθ and use θ instead
of t and follow same steps as above.
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6. Problem gives u(x, y) and asks to find v(x, y) in order for f(x, y) = u(x, y) +
iv(x, y) to be analytic in some region. To solve these, use Cauchy Riemann
equations. Need to use both equations. One equation will introduce a constant
of integration (a function) and the second equation is used to solve for it. This
gives v(x, y). See problem 2, HW 2, Physics 501 as example.

7. Problem asks to evaluate
∮
C

f(z)
(z−z0)ndz where n is some number. This is the order

of the pole, and f(z) is analytic on and inside C. Then use the Cauchy integral
formula for higher pole order.

∮
C

f(z)
(z−z0)ndz = 2πi Residue (z0). The only difference

here is that this is pole of order n. So to find residue, use

Residue (z0) = lim
z→z0

dn−1

dzn
(z − z0)n

(n− 1)!
f(z)

(z − z0)n

= lim
z→z0

dn−1

dzn
f(z)

(n− 1)!

8. Problem gives f(z) and asks to find branch points and branch cuts. One way
is to first find where f(z) = 0 and for each zero, make a small circle around
it, starting from θ = 0 to θ = 2π. If the function at θ = 0 has different value
from θ = 2π, then this is a branch point. Do this for other zeros. Then connect
the branch points. This will give the branch cut. It is not always clear how to
connect the branch point though, might need to try different ways. For example
f(z) =

√
z2 + 1 has two zeros at z = ±i. Both turn out to be branch points. The

branch cut is the line between −i to +i on the imaginary axis.

9. Problem gives a series
∑∞

n=0 anz
n and asks to find radius of convergence R. Two

ways, find L = limn→∞
|an+1|
|an| and then R = 1

L
. Another way is to find L using

L = limn→∞ |an|
1
n .

10. Problem gives integral
∫ 2π
0 f(θ) dθ and asks to evaluate using residues. We start

by converting everything to z using z = eiθ using |z| = 1. No need to use z = reiθ.
The idea is to convert it to

∮
f(z) dz which then we can use

∮
f(z) dz = 2πi

∑
residues inside. Replace f(θ) to become f(z), this could require using Euler
relation such as cosnθ = zn+z−n

2 and similar for sin θ. Now all what is needed is to
find residues of any poles inside the unit circle. Do not worry about poles outside
the unit circle. To find residues use short cut tricks. No need to find Laurent
series.
For an example, to evaluate

∫ 2π
0

1
5+4 cos θdθ, then

1
5+4 cos θ becomes 1

(2z+1)(z+2) and
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there is only one pole inside unit circle, at z = −1
2 .

11. Problem gives integral
∫∞
0 f(θ) dθ and asks to evaluate using residues. The contour

here goes from −R to +R and then a semi circle in upper half plane. This works
for even f(θ) since we can write

∫∞
0 f(θ) dθ = 1

2

∫∞
−∞ f(θ) dθ. If there is a pole

inside the upper half plane, then the integral over the semi circle is 2πi times the
sum of residues. If there is a pole on the real line, then make a small semi circle
around pole, say at z = a and then the integral for the small semi circle is −πi
times the residue at a. The minus sign here is due to moving clock wise on the
small circle.

12. Problem gives a series
∑∞

n=0 anz
n and asks if it is uniformly convergent. For

general series, use the M-test. But for this kind of series, just find radius of
convergence as above using ratio test, and if it is absolutely convergent, then say
it converges uniformly for |z| ≤ r < R. It is important to write it this way, and
not just |z| < R.

13. Problems gives
∑∞

n=0 an and asks to find the sum. Sometimes this trick works for
some series. For example the alternating series

∑∞
n=1 (−1)n+1 1

n
= 1− 1

2+
1
3−

1
4+· · · ,

then write it as x− x2

2 + x3

3 − x4

4 + · · · which is the same when x = 1, and now
notice that this is the Taylor series for ln (1 + x) which means when x = 1 then
1− 1

2 +
1
3 −

1
4 + · · · = ln (2).

14. Problem gives f(z) and asks to find residue at some z = z0. Of course we can
always expand f(z) around z = 0 using Laurent series and find the coefficient
of 1

z
. But this is too much work. Instead, if f(z) has a simple pole of order one,

then we use
R(z0) = lim

z→z0
(z − z0) f(z)

In general, if f(z) = g(z)
h(z) then there are two cases. If h(z0) = 0 or not. If h(z0) 6= 0,

then we can just use the above. For example, if f(z) = z
(2z+1)(5−z) and we want

the residue at z0 = 5, then since it simple pole, then using

R(5) = lim
z→5

(z − 5) z

(2z + 1) (5− z)

= lim
z→5

−z
(2z + 1)

= − 3
11

But if h(z0) = 0 then we need to apply La’Hopital like this. If f(z) = sin z
1−z4

and
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we want to find residue at z = i. Then do as above, but with extra step, like this

R(i) = lim
z→i

(z − i) sin z
1− z4

=
(
lim
z→i

sin z
)(

lim
z→i

(z − i) 1
1− z4

)
= sin i

(
lim
z→i

(z − i)
1− z4

)
Now apply La’Hopital

= sin i
(
lim
z→i

1
−4z3

)
= sin i

−4i3

= 1
4 sinh (1)

Now if the pole is not a simple pole or order one,.say of order m, then we first
multiply f(z) by (z − z0)m then differentiate the result m− 1 times, then divide
by (m− 1)!, and then evaluate the result at z = z0. in other words,

R(z0) = lim
z→z0

1
(m− 1)!

dm−1

dzm−1 ((z − z0)m f(z))

For example, if f(z) = z sin z
(z−π)3 and we want residue at z = π. Since order is m = 3,

then

R(z0) = lim
z→π

1
2!
d2

dz2

(
(z − π)3 z sin z

(z − π)3
)

= lim
z→π

1
2
d2

dz2
(z sin z)

= lim
z→π

1
2(−z sin z + 2 cos z)

= −1

The above methods will work on most of the HW problems I’ve seen so far but
If all else fails, try Laurent series, that always works.

14.2 Errors and relative errors
1. A problem gives an expression in x, y such as f(x, y) and asks how much a relative

error in both x and y will affect f(x, y) in worst case. For these problems, find
df and then find df

f
. For example, if f(x, y) =

√
x
y3

and relative error is in x and
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y is 2% then what is worst relative error in f(x, y)?. Then since

df = ∂f

∂x
dx+ ∂f

∂y
dy

= 1
2x

− 1
2 b−

3
2dx− 3

2x
1
2y−

5
2dy

Then
df

f
= 1

2
dx

x
− 3

2
dy

y

But dx
x

and dy
y
are the relative errors in x and y. So if we plug-in 2 for dx

x
and −2

for dy
y
we get 4% is worst relative error in f(x, y). Notice we used −2% relative

error for y and +2% relative error for x since we wanted the worst (largest)
relative error. If we wanted the least relative error in f(x, y), then we will use
+2% for y also, which gives 1− 3 = −2 or 2% relative error in f(x, y).

15 Some CAS notes
� in Mathematica Exp is a symbol. Head[Exp] gives Symbol but in Maple it is not.

In Maple

indets(z^2-exp(x^2-1)+1+Pi+Gamma*foo()-sin(y),’name’);

gives {Γ, π, x, y, z} but in Mathematica

expr=z^2-Exp[x^2-1]+1+Pi+Gamma*foo[]-Sin[y];
Cases[expr,_Symbol,Infinity]

gives {e, x, π, z,Gamma, y}

Notice that e shows up in Mathematica, but not in Maple.

16 d’Alembert’s Solution to wave PDE
(added December 13, 2018)

The PDE is
∂2ψ

∂t2
= c2

∂2ψ

∂x2
(1)

Let

u = x− ct

v = x+ ct
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Then
∂ψ

∂t
= ∂ψ

∂u

∂u

∂t
+ ∂ψ

∂v

∂v

∂t

= −c∂ψ
∂u

+ c
∂ψ

∂v
(2)

And
∂ψ

∂x
= ∂ψ

∂u

∂u

∂x
+ ∂ψ

∂v

∂v

∂x

= ∂ψ

∂u
+ ∂ψ

∂v
(3)

Then, from (2)

∂2ψ

∂t2
= −c

(
∂2ψ

∂u2
∂u

∂t
+ ∂2ψ

∂u∂v

∂v

∂t

)
+ c

(
∂2ψ

∂v2
∂v

∂t
+ ∂2ψ

∂v∂u

∂u

∂t

)
= −c

(
−c∂

2ψ

∂u2
+ c

∂2ψ

∂u∂v

)
+ c

(
c
∂2ψ

∂v2
− c

∂2ψ

∂v∂u

)
= c2

∂2ψ

∂u2
− c2

∂2ψ

∂u∂v
+ c2

∂2ψ

∂v2
− c2

∂2ψ

∂v∂u

= c2
∂2ψ

∂u2
+ c2

∂2ψ

∂v2
− 2c2 ∂

2ψ

∂v∂u
(4)

And from (3)

∂2ψ

∂x2
=
(
∂2ψ

∂u2
∂u

∂x
+ ∂2ψ

∂u∂v

∂v

∂x

)
+
(
∂2ψ

∂v2
∂v

∂x
+ ∂2ψ

∂v∂u

∂u

∂x

)
=
(
∂2ψ

∂u2
+ ∂2ψ

∂u∂v

)
+
(
∂2ψ

∂v2
+ ∂2ψ

∂v∂u

)
= ∂2ψ

∂u2
+ ∂2ψ

∂v2
+ 2 ∂

2ψ

∂v∂u
(5)

Substituting (4,5) into (1) gives

−2c2 ∂
2ψ

∂v∂u
= 2c2 ∂

2ψ

∂v∂u

−4c2 ∂
2ψ

∂v∂u
= 0

Since c 6= 0 then
∂2ψ

∂v∂u
= 0

Integrating w.r.t v gives
∂ψ

∂u
= f(u)
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Integrating w.r.t u
ψ(x, t) = F (u) +G(v)

Therefore
ψ(x, t) = F (x− ct) +G(x+ ct) (6)

The functions F (x, t) , G(x, t) are arbitrary functions found from initial and boundary
conditions if given. Let initial conditions be

ψ(x, 0) = f0(x)
∂

∂t
ψ(x, 0) = g0(x)

Where the first condition above is the shape of the string at time t = 0 and the second
condition is the initial velocity.

Applying first condition to (6) gives

f0(x) = F (x) +G(x) (7)

Applying the second condition gives

g0(x) =
[
∂

∂t
F (x− ct)

]
t=0

+
[
∂

∂t
G(x+ ct)

]
t=0

=
[
dF (x− ct)
d (x− ct)

∂(x− ct)
∂t

]
t=0

+
[
dG(x+ ct)
d (x+ ct)

∂(x+ ct)
∂t

]
t=0

=
[
−cdF (x− ct)

d (x− ct)

]
t=0

+
[
c
dG(x+ ct)
d (x+ ct)

]
t=0

= −cdF (x)
dx

+ c
dG(x)
dx

(8)

Now we have two equations (7,8) and two unknowns F,G to solve for. But the (8) has
derivatives of F,G . So to make it easier to solve, we integrate (8) w.r.t. to obtain∫ x

g0(s) ds = −cF (x) + cG(x) (9)

So we will use (9) instead of (8) with (7) to solve for F,G. From (7)

F (x) = f0(x)−G(x) (10)
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Substituting (10) in (9) gives∫ x

g0(s) ds = −c(f0(x)−G(x)) + cG(x)

= −cf0(x) + 2cG(x)

G(x) =
(∫ x

g0(s) ds
)
+ cf0(x)

2c

= 1
2c

(∫ x

g0(s) ds+ cf0(x)
)

(11)

Using the above back in (10) gives F (x) as

F (x) = f0(x)−
1
2c

(∫ x

g0(s) ds+ cf0(x)
)

(12)

Using (11,12) in (6) gives the final solution

ψ(x, t) = F (x− ct) +G(x+ ct)

= f0(x− ct)− 1
2c

(∫ x−ct

g0(s) ds+ cf0(x− ct)
)
+ 1

2c

(∫ x

g0(s) ds+ cf0(x)
)

= f0(x− ct)− 1
2c

∫ x−ct

g0(s) ds−
1
2f0(x− ct) + 1

2c

∫ x+ct

g0(s) ds+
1
2f0(x+ ct)

= 1
2(f0(x− ct) + f0(x− ct)) + 1

2c

∫ x+ct

x−ct

g0(s) ds

The above is the final solution. So if we are given initial position and initial velocity of
the string as function of x, we can find exact solution to the wave PDE.

17 Convergence
� Definition of pointwise convergence: fn(x) converges pointwise to f∗(x) if for each
ε > 0 there exist integer N(ε, x) such that |fn(x)− f∗(x)| < ε for all n ≥ N .

� Definition of uniform convergence: fn(x) converges uniformly to f∗(x) if for each
ε > 0 there exist integer N(ε) such that |fn(x)− f∗(x)| < ε for all n ≥ N .

� Another way to find uniform convergence, first find pointwise convergence of fn(x).
Say it converges to f∗(x). Now show that

‖fn − f∗‖ = sup
x∈I

(fn − f∗)

goes to zero as n→ ∞. To find sup (fn − f∗) might need to find the maximum of fn−f∗.
i.e. differentiate this, set to zero, find x where it is Max, then evaluate fn(x)− f∗(x) at
this maximum. This gives the sup. Then see if this goes to zero as n→ ∞
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� If sequence of functions fn converges uniformly to f∗, then f∗ must be continuous. So
this gives a quick check if uniform convergence exist. First find the pointwise convergence
f∗(x) and check if this is continuous or not. If not, then no need to check for uniform
convergence, it does not exist. But if f∗(x) is continuous function, we still need to check
because it is possible there is no uniform convergence.

18 Note on using when to raise ln to exp solving
an ode

Sometimes in the middle of solving an ode, we get ln on both sides. We can raise both
sides to exp as soon as these show up, or wait until the end, after solving the constant
of integration to do that. This shows we get same result in both cases.

18.1 Example 1

y′ = 22yx− x

x+ y
(1)

With initial conditions y(0) = 2. This is homogenous type ode. It solved by substitution
u = y

x
which results in the new ode in u given by

u′ = 1
x

(
−u2 + 3u− 2

1 + u

)
This is now separable

du

dx
= 1
x

(
−u2 + 3u− 2

1 + u

)
∫ 1 + u

−u2 + 3u− 2du = 1
x
dx

Integrating gives
2 ln (1− u)− 3 ln (2− u) = ln x+ c (1A)
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Replacing u by y
x
which gives

2 ln
(
1− y

x

)
− 3 ln

(
2− y

x

)
= ln x+ c

ln
((

1− y
x

)2(
2− y

x

)3
)

= ln x+ c

ln
(

1
x2 (x− y)2
1
x3 (2x− y)3

)
= ln x+ c

ln
(
x
(x− y)2

(2x− y)3

)
= ln x+ c

ln x+ ln (x− y)2

(2x− y)3
= ln x+ c (1B)

ln x cancels out giving

ln (x− y)2

(2x− y)3
= c (2)

Now lets try to solve for c from IC y(0) = 2. The above becomes

ln
(
(−2)2

(−2)3

)
= c

c = ln
(

4
−8

)
= ln

(
−1
2

)
So the solution (2) is

ln (x− y)2

(2x− y)3
= ln

(
−1
2

)
And only now after c is found, we raise both sides to exp (to simplify it) which gives
the solution as

(x− y)2

(2x− y)3
= −1

2
Or

(x− y)2

(y − 2x)3
= 1

2 (3)
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Lets see what happens if we had raised both sides to exp earlier on, instead of waiting
until after solving for the constant of integration. i.e. from step (1A) above

2 ln (1− u)− 3 ln (2− u) = ln x+ c

ln (1− u)2

(2− u)3
= ln x+ c

(1− u)2

(2− u)3
= elnx+c

(1− u)2

(2− u)3
= Ax

Where A is new constant. And only now we replace u by y
x
which gives(

1− y
x

)2(
2− y

x

)3 = Ax

x
(x− y)2

(2x− y)3
= Ax

(x− y)2

(2x− y)3
= A (4)

Using IC y(0) = 2. The above becomes

(−2)2

(−2)3
= A

A = −1
2

Hence (4) becomes

(x− y)2

(2x− y)3
= −1

2
(x− y)2

(y − 2x)3
= 1

2

Which is the same answer obtained earlier in (3). This shows both methods work. It
might be better to delay the raising to exponential to the very end so it is all done in
one place.
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18.2 Example 2

y′ = y2 − 2xy − x2

y2 + 2xy − x2
(1)

y(1) = −1

This is a homogenous ode, solved by the substitution u = y
x
which results in new ode

in u given by
u′ = 1

x

−u3 − u2 − u− 1
u2 + 2u− 1

This is separable
u2 + 2u− 1

−u3 − u2 − u− 1du = 1
x
dx

Integrating gives
ln (u+ 1)− ln

(
u2 + 1

)
= ln (x) + c1 (1)

There are two choices now. Raise both sides to exp to simplify the u solution or wait
until the end. Option 1:

Replacing u by y
x
in (1) gives

ln
(y
x
+ 1
)
− ln

((y
x

)2
+ 1
)

= ln (x) + c1

ln
(

y
x
+ 1(

y
x

)2 + 1

)
= ln (x) + c1

ln
( 1

x
(y + x)

1
x2 (y2 + x2)

)
= ln (x) + c1

ln
(
x

(y + x)
(y2 + x2)

)
= ln (x) + c1

ln x+ ln
(
y + x

y2 + x2

)
= ln (x) + c1

ln
(
y + x

y2 + x2

)
= c1 (2)

Now lets try to solve for c1 from IC y(1) = −1. The above becomes

ln
(
0
2

)
= c1

c = −∞

62



Hence (2) becomes

ln
(
y + x

y2 + x2

)
= −∞

Now raising both sides to exp gives

y + x

y2 + x2
= e−∞

y + x

y2 + x2
= 0

y + x = 0
y = −x

Lets try to see what happens if we raise to exp after solving for u immeadilty which is
the second option. From (1)

ln
(
u+ 1
u2 + 1

)
= ln (x) + c1

Raising both to exp gives
u+ 1
u2 + 1 = Ax

Where A new constant. Now we replace u by y
x

y
x
+ 1(

y
x

)2 + 1
= Ax (2)

x
y + x

y2 + x2
= Ax

y + x

y2 + x2
= A

Solving for A from IC y(1) = −1 from the above gives

0
2 = A

A = 0

Hence the solution (2) becomes
y
x
+ 1(

y
x

)2 + 1
= 0
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or
y

x
+ 1 = 0

y = −x

So both method worked. The early one and the later on one. Both give same result.

18.3 Example 3

(x+ 2y) y′ = 1 (1)
y(0) = −1

This is tricky as how it is solved needs special handling of the initial conditions. Let us
solve by subtituting z = x+ 2y. Then z′ = 1 + 2y′. The ode now becomes

z
(z′ − 1)

2 = 1

z′ − 1 = 2
z

z′ = 2
z
+ 1

This is separable
dz

1 + 2
z

= dx

Integrating ∫
dz

1 + 2
z

=
∫
dx

z − 2 ln (2 + z) = x+ c (1)

We could raise both sides to exp now or wait until after converting back to y. Lets look
what happens in both cases. Raising to exp now gives

ez−2 ln(2+z) = Aex

ez

(2 + z)2
= Aex

But z = x+ 2y and the above becomes

ex+2y

(2 + x+ 2y)2
= Aex

e2y

(2 + x+ 2y)2
= A (2)
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Which is the correct solution. Now IC is used to find A. Using y(0) = −1 the above
becomes

e−2

0 = A

So A = ∞. Hence the solution (2) is

e2y

(2 + x+ 2y)2
= ∞

When this happens, to simplify the above we say that (2 + x+ 2y)2 = 0 or 2+x+2y = 0.
This gives 2y = −2− x. Hence

y = −1− x
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