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Solve state space

xt  fxt, t

xk  x0   fxk1,d

Nonlinear system
Use Picard iterations

Linear

LTI (linear time invariant)
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xt  eAtt0xt0  
t0

t

eAtBud

solution

V1AV  

A  VV1

eAt  V

e1t 0 0

0  0

0 0 ent
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To find eAt

Laplace inverse method

eAt  1sI  A1

Expansion of 
natural 
frequencies
(use if repeated 
eigenvalues)

Matrix of 
eigenvectors 
of A
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LTV (linear time Varying)

x t  Atxt  Btut

yt  Ctxt  Dtut

solution

xt  t, t0xt0  
t0

t

t,Bud

To find t,

A(t) commutes with itself?

t  e


t0

t
Ad

t,  t1

t,  e



t
Ad

 good, use short cut)

hard, need to solve odes

X0 

1

0



0

,X1 

0

1
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0
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Use set of n initial conditions

For each X i solve

x   Atxt  Btut
Let solution be i

Make   1 2  n

t,  t1
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A has distinct 
eigenvalues

No

AtA  AAt

A(t) commutes with its integral?
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t
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Bud

Figure 1: Flow chart to solve state space x′ = Ax
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controllability

LTV

A,B continuously differentiable

n  1 times?

No

have to solve state space

equation in order to

determine t,

Wt0, t1  
t0

t1

t0,BBTTt0,d

yes

Use M short-cut. No need to

solve state space

system is controllable at t0 iff  finite

t1  t0 s.t. Wt0, t1 is not singular over

t0, t1

system is controllable at t0 iff 
finite t1  t0 s.t. M  n where

M  M0t1,M1t1,,Mn1t1

M0t1  Bt1
Mk1t1  At1Mkt1  d

dt
Mkt1 k  0n  2

LTI

t0, tBt  eAt0tB

Now eAt is the state transfer matrix in

place of t0, tNotice that the t in eAt is

multiplied by the matrix A. Since A itself is

constant! The above does not mean At
as in A is function of t.
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If LTI is controllable, then it is controllable for any t.

LTI is controllable if any one of the following is true

1. Wt  
0

t

eABBTeATd is not singular for t  0

2. Let f  eAtB. Since analytic, set up F  f, f , f ,.
Use Cayley Hamilton to reduce the above to
F  f, f , fn1  then this simplifes to controllability matrix

  B,AB,A2B,,An1B. Then the criteria becomes

  n for controllable.

3. If all rows of eAtB are linearly independent on 0,

4. if all rows of sI  A1B are linearly independent on

0,

Figure 2: Controllability flow chart
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ATP  PA  Q

“standard” Any negative definite 
matrix, say -Indenty 

Matrix

Solve 
for P

Mathematica

AP  PAT  Q

Transpose Both sides

APT  PAT T  QT

PTAT  APT  c

Let PT  x

xAT  Ax  c

Solve for x using x  LyapunovSolve[A, c]

Solve 
for x

Same result

Since x is symmetrix, then its transpose will not affect

its eigenvalues. Let P  xT. Check that P is positive

definite for stable A

P is symmteric. Check if P is positive

definite. If so, then A is stable.

Figure 3: Lyupnov flow chart
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Lyapunov stability. All what this says, is that if we start with any initial conditions
x0(t0) at time t0 near the origin, then if solution x(t) is always bounded from above
for any future time t, then we say that the origin is stable equilibrium point.

To make this more mathematically precise, we say that for any ||x0|| ≤ δ(t0, ) we
can find ε(δ) such that ||x(t)|| ≤ ε for any t ≥ t0.

In this both δ and ε are some positive quantities. And ε depends on choice of δ

x0

origin

||x0|| ≤ δ

At time t0

x(t)

origin

||x(t)|| ≤ ε

system at any time t > t0

This ε depnds on choice of δ

(Lyapunov stable)

Figure 4: Lyupnov stability definition
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d

dt
 t  Ãt t

if Ãt  At then

x t  Atxt  Btut

yt  Ctxt  Dtut

Primal

x t  Ãtxt  B tut

yt  C txt  D tut

Duel

Transpose both sides

compare

Hence

combine

 t0,   t0  
1t0,  t01

 
1

 T

 t0,  1t0
TT

 1t0
T

 t0,  T, t0

Hence

Summary

 t0,  T, t0

 1t0
T

 1t0
TT

d
dt

 t  At t

Ãt  At

 t  1tT

 Tt1

 t
1

 Tt

Nasser M. Abbasi
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d

dt
1t  1tAt

d
dt

1tT  1tAtT

 ATt1tT
d

dt
 t  At t

 t  1tT  Tt1

Duality in linear time varying systems

Figure 5: Duality in Linear time varying
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Graphical methods for linear control systems analysis (SISO)

root locus
(time domain)

Bode plot
(frequency domain)

Nyquist plot
(frequency domain)

Nichols plot
(frequency domain)

Performace specifications

frequency based specifications time domain specification

specification note
Gain margin measure absolute stability.
Phase margin measure relative stability,

tendency to oscillate during
damped response

delay time Td speed of response as func-
tion of frequency ω, defined
as Td(ω) = − dγ

dω
where γ is

phase of open loop transfer
function

Figure 6: Graphical methods for linear control system analysis


