GICRO LOGIC, POB 174

HACKENSACK, NJ 07602

INTRODUCTION

This card is a concise comprehensive reference
for C language programmers and those learning C.
It saves you time and lets you avoid cumbersome
manuals.

The C programming language is becoming the
standard language for developing both system and

C LANGUAGE

PROGRAMMER'S INSTANT REFERENCE CARD

OPERATORS

DESCRIPTION

OPER EXAMPLE ASSOC

) Function call sqrt (x)

[Array element ref vals(10] L-R
-> Ptr to struc memb emp_ptr->name

- Struc member ref employee.name

typedef

typedef is used to assign a new name to a data
type. To use
v-rinhle of that particular data type.

Where

In front of
everything, place the keyword typedef.
example:

new data type name instead.

For

it, make believe you're declaring a

you'd normally write the variable name, write the

“\\

MICRO

CHART®

FUNCTIONS

Functions follow this format:

.
O
=
T application programs. There are several reasons Unary minus -a
for its popularity. C is flexible with few Increment ++ptr typedef struct /* define type COMPLEX */
restrictions on the programmer. C compilers Decrement ~--count unary
produce fast and short machine code. And Logical negation ! done oper- R-L float real;
finally, C is the primary language used in the = Ones complement =077 ators float imaginary;
E UNIX (trademark of AT&T Bell Laboratories) * Ptr indirection *ptr | COMPLEX; Functions can be declared extern
operating system (over 90% of the UNIX system is & Address of &x (default) or static. Static fns
§. L] itself written in C). Because it is a popular sizeof Size in bytes sizeof (struct s) COMPLEX c1, c2, sum; /* declare vars */ can be called only from the file in
§ E "high level" language, it allows software to be (type) Type conversion (float) total / n which they are defined. ret_type
? - used on many machines without being rewritten. ;; th:dri? :zys'fortlhe fn .Yd Cl:
S * Multiplication @ ey e vo e fn rtns no value o
§§‘g This card is organized so that you can keep your / Divxn‘;on A L-R CONSTANTS omitted if it rtns an int.
3 train of thought while programming in C (without % Modulus i%j
stopping to f?ip thru a manual.) The result is TYPE SYNTAX EXAMPLES Example:
g? v fewer interruptions, more error-free code, and + Addition vals + i L-R /* fn to find the length
higher productivity. - Subtraction X - char single quotes 'a' '\n' of a character string */
‘;;“' = char string double quotes "hello" ""
= . | The following notations are used: []--enclosed << Left shift byte << 4 L-R doubl (note 1) int strlen (s)
item is optional; fn--function; rtn--return; > Right shift 493 12 enumeration (note 2) red true char *s;
P --pointed; ptr--pointer; TRUE--non-zero value; float (note 3) 7.2 2.e-15 -1E9
o FALSE--zero value. < Less than i < 100 hex integer 0X,0x Dfo Oxff 0xA000 int length = 0;
9 e Less than or eq to i <= j L-R int
o > Greater than 30200 long int Ty 251 luﬂL (Note 4) while (*s++
5 BASIC DATA TYPES = Greater or eq to grade >= 90 octal int 0 (zero) 0777 0100 40101\?“‘!
b return (length);
2 Equal to result == 0 L-R 1. all float constants are treated as double
TYPE DESCRIPTION Not equal to e 1= EOF 2. 1dentifler previously declared for an
O - d type; value treated as int To declare the type of value
char Single character & Bitwise AND word & 077 L-R 3. decimal point and/or scientific notation returned by a function you're
double Extended precision floating pt 4. or any int too large for normal int calling, use a declaration of the
float Floating point A Bitwise XOR wordl A word2 L-R form: ~ ret_type name ();
{nt Integer =
ong int Extended precision integer | Bitwise OR word | bits L~
short int Reduced precision integer VARlABLE USAGE STRUCTURES
unsigned char Non-negative character && Logical AND j>0& j <10 L-R
unsigned int Non-negative integer CAN BE INIT
void No type; used for fn 1 Logical OR i> 801l x_flag L-R DECLARED REFERENCED WITH NOTES A ctructuro sname of specified
declarations and 'ignoring' a is declared with a
E value returned from a fn s Conditional expr (a > b) ? a : b R-L outside fn :?iuhare in const 1 statement of the form:
e expr
2 § E = *z /= %= inside fn/b inside fn/b only
CONVERSION OF DATA TYPES [| i = iz <o count o= 2
§ Assignment opers R-L outside fn anywhere cannot 2
in file be
.g-u Before performing an arithmetic operation, 5 Comma operator 4210, =0 L-R inside fn/b inside fn/b init
L k- operands are made consistent with each other by
8 converting with this procedure: inside fn/b inside fn/b any expr 3
§ .gl NOTES: L-R means left-to-right, R-L right-to- Each member_declaration is a type
£ 1. All float operands are converted to double. left. Operators are listed in decreasing inside fn/b inside fn/b any expr 3,4 followed by one or more member
'ﬂn..i.. All char or short operands are converted to int. order of precedence. Ops in the same box have . names. An n-bit wide field mname
] 2 | 2. If either operand is double, the other is the same precedence. Associativity determines outside fn anywhere in const 5 is declared with a sta
E 3 converted to double. The result is double. order of evaluation for ops with the same file or other expr form ... type mname:n; .
5 3. If either operand is long int, the other is precedence (eg: a = b = cj is evaluated right- files w/ext only is omitted, n unnamed bits are
= converted to long int. The result is long int. to-left as: a = (b = ¢); declaration reserved; if n is also zero, the
é 4. If either operand is unsigned, the other is inside fn/b (see auto) (see auto) 6 next field is aligned on a word

converted to unsigned. The result is unsigned.
5. If this step is reached, both operands must be
of type int. The result will be int.

STATEMENT SUMMARY

DESCRIPTION

Terminates execution of for,
while, do, or switch

Skips statements that follow
in a do, for, or while; then
continues executing the loop

100%

PLASTIC

Executes statement until
expr is FALSE; statement is
executed at least once

Evaluates expression el oncej
then repeatedly evaluates e2,
atatement, and e3 (in that
order) until e2 is FALSE

eg: for (i=l; i<=10; ++i)e.sj
note that statement might not
be executed if e2 is FALSE

on first evaluation

Branches to statement
preceded by label:, which
must be in same function as
the goto

If expr is TRUE, then
executes statement;
otherwise skips it

You can also send a check,

If expr is TRUE, then
executes statementl;
otherwise executes
statement?2

No effect; satisifies
statement requirement in
do, for, and while

ve plastic MICRO CHARTS are easily purchased

leading dealers.

oddress on front and title(s) you want on back, to
Micro Logic, POB 174, Dept 11, Hackensack, NJ 07602.

Returns from function back
to caller; no value returned

your

Returns from function back
to caller with value of expr

iexpr is evaluated and then
compared against integer
constant exprs constl,
const2, ...; if a match is
found, then the statements
that follow the case (up to
the break) will be executed;
if no match is found, then
the statements in the
default case (if supplied)
will be executed; iexpr
must be an integer-valued
expression

INSTANT #om
ACCESS

wExecutes statement as long
as expr is TRUE; statement
might not be executed if
expr is FALSE the first time
it's evaluated

NOTES:

© 1985

expr is any expression; statement is any
expression terminated by a semicolon, one of the
statements listed above, or one or more
statements enclosed by braces l...).

ESC CHARS

Backspace
Form feed
Newline
Carriage return
Horizontal tab
Vertical tab
Backslash
Double quote
Single quote

EXPRESSIONS

An expression is a
variable name, func-
tion name, array
name, constant,
function call, array
element reference,
or structure member
reference. Applying
an operator (this
can be an assignment
operator) to one or
more of these

(where appropriate)
is also an expres-
sion, Expressions
may be parenthesized.

ne
continuation
Octal character
value

An expression is a
"constant expression" if each term is a
constant.

PREPROCESSOR STATEMENTS

DESCRIPTION

text will be substituted for
id wherever it later appears
in the program; if construct
id(al, a2, is used, args

al, a2, ... will be replaced
where they appear in text by
cniisuponding args of macro

ca

If constant expression expr is
TRUE, statements up to #endif
will be processed, otherwise
they will not be.

If constant expression expr is
TRUE, statements up to felse
will be processed, otherwise
those between the felse and
#endif will be processed

If id is defined (with fdefine
or on the command line) state-
ments up to fendif will be
processed; otherwise they will
not be; (optional #else)

If id has not been defined,
statements up to fendif will
be processed; (optional felse
construct)

Inserts contents of file in
program; double quotes mean
look first in same directory
as source prog, then in
standard places; brackets mean
only standard places

Identifies subsequent lines
of the prog as coming from

file, beginning at line nj

file is optional

Remove definition of id

Notes: Preprocessor statements can be continued
over multiple lines provided each line to be
continued ends with a backslash character (\).
Statements can also be nested.

Examples:

#define BUFSIZE
#define max(a,b)
#include <stdio.h>

512
(((a) > (b)) ? (a) & (b))

Notes: (fn/b means function or statement block)
1. init at start of prog execution; deflt is zero
2. var must be defined in only 1 place w/o extern
cannot init arrays & structures; var is init
each time fn is called; no default value

reg assignment not guaranteed; restrict. types
can be assigned to registers.

var can be decl. in only one place;
initialized at start of prog execution;
default is zero

defaults to auto

ARRAYS

A single-dimensional array aname of n elements of
a specified type and with specified initial
values (optional) is declared with:

If complete list of initial values is specified,
n can be omitted. Onll static or global arrays
can be initialized. ar arrays can be init by a
string of chars in double quotes. Valid
subscripts of the array range from 0 through n-1.
Multi dimensional arrays are declared with:

Values listed in the initialization list are
assigned in 'dimension order' (i.e. as if last
dimension were increasing first). Nested pairs
of braces can be used to change this order if

4.
5.

6.

desired. Here are some examples:
/* array of char */
static char hisname[] = { "John Smith" |
/* array of char trn */
static char *days

1"Sun", "Mon" , nTu,n "HBdn'nThun’n;ri"'ns.tn|l

/* 3 x 2 array of ints */
int matux (31021 =1 | m, A7,
5,0 1,
| 11 20 4

/* array of struct complex */
struct complex sensor_data[100];

POINTERS

A variable name can be declared to be a pointer
to a specified type by a statement of the
form: type *name;

Examples:

/* numptr points to floating number */

float *numptr;

/* pointer to struct complex */
struct complex *cp;
/* if the real part of the complex
struct pointed to hy cp is 0.0 ... */
if (cp->real == 0.0)
/* ptr to char; set equal to address of
buf(25] (i.e. pointing to buf[25]) #*/

char *sptr = &buf[25];

/* store 'c' into loc ptd to by sptr */
#*gptr = 'c';

/* set sptr pointing to next loc in buf */

++8ptr;

*

ptr to fn returning int */
int (’fptr))3

y. variable_list (optional)
declares variables of that
structure type. If aname is
supplied, variables can also later
be declared using the format:

Example:

/* define complex struct */
struct complex
I

float rea i
float imaginary;
3

static struct complex cl =
1 5.0, 0.0 13
struct complex c2, csumj

c2 = cl; /* assign cl to c2 */
csum.real cl.real + c2.real;

UNIONS

A union uname of members occupying
the same area of memory is declared
with a statement of the form:

Each member_declaration is a type
followed by one or more member
names; variable_list (optional)
declares variables of the
particular union type. If uname is
supplied, then variables can
later be declared using the fo

Note: unions cannot be initialized.

ENUM DATA TYPES

An enumerated data type ename with
values enuml, enum2, ... is declar-
ed with a statement of the form:

The optional variable_list declares
variables of the particular enum
type. Each enumerated value is an
identifier optionally followed by
an equals sign and a constant
expression. Sequential values
starting at 0 are assigned to these
values by the compiler unless the
enumnzvalue construct is used. If
ename is supplied, then variables
can also be declared later using
the format

Examples:
/* define boolean */
enum boolean |true, falsel;
/* declare var & assign value */
enum boolean done false;
/* test value */
if (done == true)

MICRO LOGIC, POB 174

HACKENSACK, NJ 07602

printf

printf is used to write data to stdout
(normally, your terminal). To write data
to a file, use fprintf; to 'write' data
into a character array, use sprintf. The
general format of a printf call is:

printf (format, argl, arg2,...)

where format is a character string
describing how argl, arg2, ... are to be
printed. The general format of an item in
the format string is:

%[flags]lsize]l.prec](1]type

flags:
- left justify value (default is
right justify)

precede value with a + or - sign
precede pos value with a blank
precede octal value with 0, hex
value with Ox (or 0X for type
X); force display of decimal
point for float value, and leave
trailing zeroes for type g and G

%
blank
?

size: is a number specifying the minimum
size of the field; * instead of number
means next arg to printf specifies the size

prec: is the minimum number of digits to
display for ints; number of decimal places
for e and f; max number of significant
digits for g; max number of chars for s; *
instead of number means next arg to printf
specifies the precision

1: indicates a long int is being dxsplay-
ed; must be followed by d, o, u, x or

type: specifies the type of value to be
displayed per the following single
character codes:

an int
an unsigned int
an int in octal format

int in hex for
;lﬂlt (to 6 dec

pln y defau
same as e except display E before
exponent instead of e
a float in f or e format, whichever
takes less space w/o losing precision

® e m emxxoca

a float in f or E

takes less space

¢ a char

8 a null-terminated char string (null
not required if precision is given)

% an actual percent sign

format, whichever

NOTES: characters in the format string not
preceded by % are literally printed;
floating pt formats display both floats and
doubles; integer formats can display chars,
short ints or ints (or long ints if type is
preceded by 1). Example:

2 lﬂz i2 = 203
printf ("%d + %d is ilx\n"
i1, iz, i1 + i2);

10 + 20 is Oxle

UNIX cc COMMAND

Produces:

Format: cc [options] files
OPTION DESCRIPTION
-c Don't link the program; forces

creation of a .o file

-D id=text Define id with associated text
(exactly as if #define id text
appeared in prng); if just -D id
is specified, id is defined as 1

-E Run preprocessor only

-f Compile for machine u/u floating
point hardware
Generate more info for sdb use

-l dir Search dir for include files

=1x Link prog with lib x; -1m for math

-0 file Write executable object into file;

a.out is default

-0 Optimize the code
-p Compile for analysis with prof cmd
=S Save assembler output in .s file

Note: Some of the above are actually
preprocessor (cpp) and linker (1d) options.
The standard C library libe is
automatically linked with a program.

Examples: cc test.c Compiles test.c and
places executable object into a.out.

cc -o test main.c proc.c Compiles main.c
‘and proc.c and places executable object
into test.

cc -0 stats.c -1m Compiles stats.c,
‘optimizes it, and links it with the math
library (-lm must be placed after stats.c).
cc -DDEBUG xl.c x2.0 Compiles xl.c, with
‘defTned name DEBUG, and links it with x2.0

THE lint COMMAND

lint can help you find bugs in your program
due to nonportable use of the language,
inconsistent use of variables,
uninitialized variables, passing wrong
argument types to functions, and so on.
Format: lint [options] files

OPT USE TO PREVENT FLAGGING OF

-a long values assigned to not-long vars

-b break statements that can't be reached

~-h suspected bugs, waste, or style

-u functions and external vars used but
not defined, or defined and not used

=v unused function arguments

-x vars declared extern and never used

------ Other options --

-1x check prog against lint library
11ib-1x.1n; (-1m uses lint math lib)

-n don't use standard or portable lint lib

-p check portabability to other C dialects

-D see cc command

-1 see cc command

scanf

scanf is used to read data from standard input.
To read data from a particular file, use fscanf.
To 'read' data from a character array, use

sscanf.

The general format of a scanf call is:

scanf (format, argl, arg2, ...)

where format is a character string describing the

data

where the read-in data are to be stored.

to be read and argl, arg2, ... point to
The

format of an item in the format string is:

%[*1[sizel[1n]type

specifies that the field is to be skipped
and not assigned (i.e., no corresponding
ptr is supplied in the arg list)

size a number giving the max size of the field

1h is '1' if value read is to be stored in a
long int or double, or 'h' to store in
short int

type indicates the type of value being read:

CORRE SPONDING

USE TO READ A ARG IS PTR 10

d decimal integer int

u unsigned decimal integer unsigned int

o octal integer int

X hexadecimal integer int

e,f,g floating point number float

string of chars terminated
by a white-space character

array of char

c single character char
(...] string of chars terminated array of char
by any char not enclosed
between the [and]; if
first char in brackets is A,
then following chars are
string terminators instead
% percent sign not assigned
Notes: Any chars in format string not preceded by
% will literally match chars on input (e.g. scanf

("value=%d",

&ival); will match chars "value=" on

input, followed by an integer which will be read

and stored in ival.

A blank space in format

string matches zero or more blank spaces on
input.

Example:

scanf ("%s %f %1d", text, &fval,

&lval); will read a string of chars, storing it

into

character array ptd to by text; a floating

value, storing it into fval; and a long int,
storing it into lval.

COMMONLY USED FUNCTIONS

FUNCTION

CLUDE

N
FILE DESCRIPTION /ERROR RETURN/

int abs (n)
double acos (d) m

char

(*tm)
double asin (d) m
double atan (d) m

absolute value of n
arccosine of d

convert tm struct to string
and rtn ptr to it

arcsine of d /0/

arctangent of d

*asctime t

double atan2 m arctangent of d1/d2
(d1,d2)
double atof (s) ascii to float conv /HUGE,0/
char *calloc allocate space for ul
(ul,u2) elements each u2 bytes large,
and set to 0 /NULL/
double ceil (d) m smallest integer not < d
void clearerr s reset error (incl. EOF)
(f) on file
long clock () CPU time (microsec) since

double cos (d)

char

void exit (i)

first call to clock

cosine of d (d in radians)
convert time ptd to by 1 to
string and rtn ptr to it
terminate execution,
returning exit status i

m
*ctime (*1) t

double exp (d) m e to the d-th power /HUGE/

double fabs (d) m absolute value of d

int feclose (f) s close file /EOF/

int feof (f) 8 TRUE if end-of-file on f

int ferror (f) s TRUE if 1/0 error on f

int fflush (f) s force data write to f /EOF/

int fgete (f) s read next char from f /EOF/

int fgets s read n-1 chars from f unless
(s,n,f) newline or end of file

int fileno (f) s
double floor (d) m
double fmod m

reached; newline is stored

in 8 if read /NULL/

integer file descriptor for f
largest integer not > d

dl modula d2

(d1,d2)
FILE *fopen s open file named sl, mode 82;
(sl,s82 "y rite, "r"=read,
natzappend, ("wa", "rat, "ast
are update modes) /NULL/
int fprintf 8 write args to f according to

. format s /< 0/

int fputc (c,f) s write c to f /EOF/

int fputs (s,f) s write s to f /EOF/

int fread s read n2 data items from f

(s,nl,n2,f) into s; nl is number bytes

of each item /0/

void free (s) free block of space ptd to by
s /NULL/

FILE *freopen 8

close f and open sl with

(sl,82,f mode 82 (see fopen) /NULL/
int fscanf s read args from f using format
fs85000) 8; return is as for scanf
int fseek 8 position file ptr; if n=0, 1

(€150 is offset from beginning;

long ftell (f) s

n=1, from current pos; n=2,
from end of file /non-zero/
current offset from start of
file

int fwrite 8 write n2 data items to f from
(s,nl,n2,f) 8; nl is no. bytes of each
item /NULL/
int getc (f) s read next char from f /EOF/

int getchar () s
char *getenv (s)

int getopt
(argc,argv,s)

char *gets (s) s

read next char from stdin
/EOF/

rtn ptr to value of
environment name s /NULL/
return next option letter in
argc that matches a letter
in s; sets optarg (char *)
pointing to it, and optind
(int) to index in argv of
next arg to be processed;
returns EOF when all args
processed

read chars into s from stdin
until newline or eof reached;
newline not stored in s
/NULL/

int getw (f)

struct tm
*gntime (*1)
int isalpha (c)
int isalnum (c)
int isascii (c)
int iscntrl (c)
int isdigit (c)
int isgraph (c)
int isprint (c)

(c)
(c)

int ispunct

int isspace

struct tm

onnonon

t
*localtime (*1)

double log (d)

double logl0 (d)

void longjmp
(env,n

char *malloc (u)

char *memchr
(s,cyn)

int memcmp
(sl,s2,n)

char *memccp
(sl,82,c,n

char *memcpy
(sl,82,n)

char *memset
8,C,N

int mknod
(s,il,i2)

char *mktemp (s)

int pclose (f)
void perror (s)

FILE *popen
(81,82

double pow
(d1,d2)

int printf

Byene

putc (c,f)

int putchar (c)

puts (s)

int putw (n,f)

rand ()

char *realloc

8,u
void rewind (f)
int scanf
(8yeee)

int setjmp (env)

double sin (d)
unsigned sleep

(u

int sprintf
(81,82,4.4)

double sqrt (d)

void srand (u)

int sscanf
(81,82,.44)

char *strcat
(sl1,82)

char *strchr
8,c)

int stremp
(s1,82)

char *strcpy
sl,82

int strlen (s)

char *strncat
(s1,82,n)

int strnem,
(!l,sZ,ng

int strncp:
(nl,nz,ng

char *strrchr

8,c

int system (s)

double tan (d)

char *tempnam
(sl,82)

long time (*1)

FILE *tmpfile ()

char *tmpnam (s)

int toascii (c)
int tolower (c)
int toupper (c)
int ungetc (c,f)

int unlink (s)

NOTES:

m
J

n

J

m

m

r

c
c
c
8

read next word from f; use
feof & ferror to check for
error
convert time ptd to by 1 to
is alphabetic

is alphanumeric

is less than 0200
is 0177 or < 040

is 0-9

is 041-0176

TRUE if c is a printable char
(040-0176)

TRUE if c is neither a
control nor alphanumeric char
TRUE if c is space, tab,
carriage return, newline,
vertical tab or form feed
convert time ptd to by 1 to
local time

natural log of d /0/

log base 10 of d /0/

restore environment from
Jjmp_buf env; causes setjmp

to return n if supplied or

1 if n=0

allocate u bytes of storage
and return ptr to it /NULL/
rtn ptr in s of 1lst incident
of c, looking at n chars at
most, or NULL if not found
rtn <0, =0, > 0 if sl is
lexicographically < s2, = 82
or > s2, comparing up to n
chars

copy s2 to sl until c is
copied or n chars are copied
copy n chars from s2 to sl

-
=
c
m
-
=
onnonnn

set n chars ptd to by s to
value c

create file s, mode il; i2
needed only for certain
values of il /-1/

create temp file; s contains
six trailing X's that mktemp
replaces with file name

close a stream opened by
popen /-1/

write s followed by descrip-
tion of last error to stdout
execute command in sl; 82 is
"r" to read its output; "w"
to write to its input; rtns
ptr to stream /NULL/

dl to the d2-th power
/0,HUGE/

write args to stdout per
format s (see dascr.) /< 0/
write ¢ to f /EOF/

write c to stdout /EOF/

write s to stdout /EOF/

write word n to f /EOF/
random number (see srand)
change the size of block s

to u and rtn ptr to it /NULL/
rewind f

read args from stdin per
format s (see descr.); rtns
number of values read or EOF
save stack environment in
jump_buf env; rtns 0 (see
longjmp)

sine of d (d in radians)
suspend execution for u
seconds

write args to buffer sl per
format s2 /< 0/

asquare root of d /0/

reset random number generator
read args from string sl per
format 82; rtn is as in scanf
concatenate s2 to end of slj
rtns sl

rtn ptr to lst
c in s or NULL
compare sl and
=0, >0 if 8l
ically < 82, =
copy 82 to sl;

occurrence of
if not found
s2; rtns < O,
lexicograph-
82, or > 82
rtns sl

length of s (not incl. null)
concatenate at most n chars
from 82 to end of sl; rtns sl
compare at most n chars of

sl to 82; rtn is as in strcmp
copy at most n chars from s2
to sl

rtn ptr to last occurrence of
c in s or NULL if not found
execute s as if it were typed
at ;erminal, rtns exit status

tangent of d (radians) /HUGE/
create temporary file name in
directory sl, with prefix
chars 82 /NULL/

returns time & date in
seconds; if 1 is non-zero,
time is stored in loc ptd to
by 1; convert time rtnd with
ctime, localtime or gmtime
create temporary file, open
for update, and rtn ptr to
it; file is removed when
prog finishes

generate temporary file name;
place result in s if s non-
null, else rtn ptr to name
convert c to ascii

convert c to lowercase
convert c to uppercase

insert c back into file f

(as if c wasn't read) /EOF/
remove file s /-1/

Functions are arranged alphabetically by name.

Function argument types: c--char, n--int, u--
unsigned int, 1--long int, d--double, F--ptr to
FILE, s--ptr to char

char and short int ere automatically converted to
int when passed as args to functions; float is
automatically converted to double

Include files are abbreviated as follows:

c--ctype.h, j--setjmp.h,
, 8--stdio.h, t--time.h

r--string.h

m--math.h, n--memory.h,

Value between slashes is returned if function
detectes an error; global int errno also gets set
to specific error number.

Function descriptions based on UNIX System V

CMD LINE ARGS ASCIH

Arguments typed in on the
command line when a
program is executed are
passed to the program
through argc and argv.
argc is a count of the
number of arguments, and
is at least 1; argv is an
array of character
pointers that point to
each argument. argv(0]
points to the name of the
program executed. Use
sscanf to convert
arguments stored in argv
to other data types. For
example:

check phone 35.79
starts execution (under

UNIX) of a program called
check; with

arge = 3
argv[0] = "check"
argv[l] = "phone"

argv(2] = "35.79"

To convert number in
argv[2], use sscanf.
Example:

main (argc, argv)
int argc;
char *argv[];
|
float amount;
sscanf (argv[2],
"%f", &amount);

UNIX TOOLS

ToO0L DESCRIPTION

adb debugger

cb formats programs

cflow ext references

ctrace traces execution

cxref X-ref listing

lint checks progs for
possible bugs and
non-portable
language usage

make recreates program
systems based on
specified file
dependencies

prof collects
performance
statistics
for a program

SCCS maintains large
program systems

sdb symbolic debugger

NOTES ON
YOUR COMPILER

CHR OC

=2 ®
- =
2
———
GR—ONOWEWN—O

ff 14

/N X ECCA DO TOZEC RGHIOMMOOTEB OV A = ST LAV WN O\ = + S - RS- ==
=
o
=

I———N< XET<CCABRMODO3II-XC.mTO=0A0TE 4
e:
=

HX

INTENTIONALLY BLANK

30V3ENS 10H NO
30Vid 10N 0d

‘V°S'N Ul pajullg

*Z09£0 N “pPosuaxpoy
qnd puo pajyBrakdo)

“swodem sapainbuy W30 pup “wnpuaxd
‘qnp> ‘anBoppiod ‘jooyds ‘13psQ
‘y£1 80d ‘daoD 21807 oW Aq payst|

"paA3ssal syybna [y -pasyBrakdoo praom

"POJIAUT SjUSLILOD 39N pul

SS3NLIL ¥O ALIIGVINVHO¥IW
40 SILLNVHHEVM a3 1dWI
HO SS3UAX3 ON JHV Iy3IHL

3
>
:
a
€
3
2
2

