using event driven model with Mathematica
Manipulate|| programming

|Nasser M. Abbasil

Ju].y 2, 2015 Compiled on October 13, 2023 at 8:50pm

Contents

1

Introduction
Using state machine for Manipulate expression
Conclusion

References

Introduction

@ @ &E H

Mathematica’s Manipulate[] function, introduced in version 6 is a powerful and easy to
use function making it easy to develop a user interface (UI) application.

Manipulate basic logic flow is simple: It evaluates its expression and displays the result of
this evaluation. It does this each and every time any one of the control variables changes

value.

mailto:nma@12000.org

When the variable
changes, the expression is
revaluated automatically

D

window

@

Manipulate[expression, variable]

Result of new expression is
displayed in the Manipulate

Figure 1: Manipulate logic

The Manipulate expression can be as complicated as we

variable and updates the display automatically.

make it. It is in general a function
of the control variables. Therefore each time any control variable changes value by the use
of a slider or other Ul components, the effect of this change is immediately reflected in
the display of Manipulate. Manipulate evaluates the expression using the new value of the

The following diagram helps illustrate the above logic flow

And the result
will be
displayed here

©)

Basic flow of Manipulate
events

ach time
you move
any one of
the sliders

@ Then Manipulate will
evaluate this
expression

Figure 2: Expanded Manipulate logic

Because the evaluation of the expression occurs when any one of the control variable changes,

this might not be a very efficient use of resources.

Instead, we would like to know which specific variable changed in order to customise which
part of the expression to evaluate. In the following section, we show a model to use to
detect which control variable changed and to only perform an action based on that specific
change.

2 Using state machine for Manipulate expression

By running the Manipulate expression logic as a state machine which detects the specific
variable which changed and updates an expression based on that event only we can make
better use of resources.

The event will be the change of a specific control variable. The state of the machine is
stored in a Manipulate control of type None

The state of the machine consists of the event name and any other state information needed.

This setup is similar to how Ul programming is done in traditional setting where a specific
event triggers a callback associated with the event.

To simulate event driven UI, an inner dynamic is added, with a Refresh option, inside the
Manipulate expression with its own TrackedSymbols option.

Each control variable will have its own Dynamic with a TrackedSymbols for its own variable.
Inside this Dynamic, the event control variable is set to indicate which control variable has
just triggered.

Since an inner Dynamic can have its own TrackedSymbols, we have effectively moved the
task of detecting the change of the control variables from Manipulate down to the inner
Dynamics.

The event control variable of type None will be used by the state machine to check which
event has just occurred and then perform an action based on the event.

After the action is completed, the event is reset to special reset value.

The above logic repeats again each time a control variable changes value. Refresh is needed
to be used inside the inner Dynamic[] and within the Row[] construct as will be shown
below.

The above method is illustrated with examples, starting with a very simple annotated
example, showing how to program a Manipulate which displays the name of the variable
which was last changed using a slider.

In these examples, a string is used to indicate the event that occurred, but this can be
changed, and other type of values can be used.

Notice: we only check
when event is
something other than
the reset event

In[16]= Mamipulate [/ @

After disptach, Row [{ » _H-"“\\ e
the event is y)—"'/Wh n event variabl
put back to @ Byl refmiy [chafigss erhfs Byrfmﬁ.-’c
_ If [Not é’u t "], A x
original value 'k\ [[L et \-\ detects the change, and
X .
e : dispatches to process the
H""“H\ result =dispatch [event]; JI| Evéuni' i
~event = "reset "
} / ©)
And the result @;--f- = 1: /
] - “result ,
of the dispatch - /!
is displayed g [eml,l}; 2
] r //
Vd
When you i
change ‘a’ this ~ ™pynemic [Refresh [evént = "a event "; ", TrackedSynbols - {a}1],
Dynamic sets Dynamic [Refresh [event = "b event "; "V, TrackedSymbols = {b}]]
the event to (1,
‘a_event’

{{a, 0, "a"}, 0, 100, 1},
{{b, 0, "b"}, 0, 30, 1},

{{event , "peset "}, ConitrolType - None},

TrackedSymbols - {None },

Initialization 3
(
7 dispatch [event String] := Module [{},
/ Text @Row [{"event : ", Style [event, Bold], ". Time is ", Date|[]1}]

1
J)
1
This is the dispatch function. It is similar to the callback function in other programming

environments. In here, we can switch on the event, and process differently depending on
which event it was.

The result returned by the dispatch function will be displayed in the Manipulate window

Figure 3: Manipulate code

When moving the ’a’ slider in the above example, the following message will be displayed
on the Manipulate window

: |
—

event: a_event. Time is {2011, 6, 30, 23, 1, 572750674}

Figure 4: Manipulate output

A similar display results for b’ when its value changes.

To illustrate the benefit of this approach, we will now use it to show how to numerically solve
an ODE. We will have one control variable for the initial condition, where each time the
initial condition variable is changed, NDSolve have to be called to obtain a new numerical
solution. In addition, we will have a second variable to indicate which color to use to plot
the solution with.

Clearly, there is no need to call NDSolve when the color variable is changed as the initial
condition did not change.

Using event driven Ul programming we are now able to do this. The following digram shows
the solution to the above. Notice that the solution is saved in a Manipulate control variable
as well as the event name.

7= Manipulate [updatePlot is called to
make new plot whenever
R‘”; It oy —— the color or new solution
ynamie st is generated
If[Not [event = "reset "], /
{ 54
result =updatePlot [sclution , color] 1‘/
event = "reset "

}
1;:
result , TrackedSymbols - {ewvent }]],
When initial
conditions /’bynalm.c [Refresh [event = "initial condition ";
changes, a new solution =solvelDE [initialCondition];
nn, TrackedSymbols - {initialCondition }]].,

solution is | When the colgr

geﬂerﬂted and| Dynamic [Refresh [event = "color "; "", TrackedSymbols - {color }]]‘__h variable chan ges,

saved in the . . no need to mgke

state variable . | new solution, jonly
{{initialCondition , 0, "y[0O]="}, 0, 100, 1}, the eventis
Contrel [{ {color , Blue , "select color "}, {Red » "Red ", Blue —+ "Blue "}, changed

ControlType - PopupMenu }],

[({ewent, mreset "), ControlType -»Nome), \&— These variables

I {{solution , 0}, ControlType - Neme}, represent the state

\ {{result , 0}, ControlType - None}, 1//
THISIHEGO: S sl et
generate a TrackedSymbols - {None },
solution, and

. Initialization =+

return it (
back where \gsolveom [initialCondition] := Module [{t, ¥},
is saved for y /. First @ psolve [{y'[t] =t Cos[t]~2, y[0] = initialCondition}, v, {t, 0, 40}]1}
later use

tePlot [solution , color] := Module [{t},
This function — Plot [Evaluate [solution[t]], {t, 0, 40}, PlotRange — {{0, 40}, {0, 100}},
just plots the ImageSize - 300, PlotStyle — color]
solution]

Figure 5: Manipulate code

Now the above solution is compared to the solution without using event driven model as is
normally done.

This Manipulate expression is evaluated
~~ each time any one of the control
[variables changes

In28k= Manipulate [‘
T e e e i e) i’ —_————
r'f Module [{v, t, solution }, = ‘\\
| \
| solution = |
|| v /. First @WDSolve [{v'[t] =tCos[t]*2, ¥[0] = initialCondition }, v, {t, O, 40}]: ;
| !
’/"\ Plot [Evaluate [solution [t]], {t, O, 40}, PlotRange - {{0, 40}, {0, 100}}, /’r
,.r":/ \\ ImageSize - 300, PlotStyle - color]_ I o
i TEERRL R - RS s
IIII ___________ LY
\ "y[0]="}, 0, 100, 1}, \
%)
e | \
o [b } !
= Control color , Blue , "select color "}, {Red -+ "Red", Blue —» "Blue "},
When any one Q{ ControlType - PopupMenu }] /‘;
these changes, "~ - -
Je -
the whole e T =i
expression is
evaluated

o= {}
select color |Red

Figure 6: Manipulate code

We notice that the solution above is much simpler, however it is not efficient on resources.
The whole expression is evaluated whenever any one of the variables changes value. In other
words, NDSolve is called each time the color variable has changed, which is not required.

3 Conclusion

Mathematica Manipulate can be used to build UI very quickly. Using event driven model
can improve the efficiency of using Manipulate by giving the user more control of what
action to do based on which variable changes.

Using event driven Ul is much more efficient on resources, but it requires more logic to be
added to the Manipulate expression.

Using event driven UI programming makes using Manipulate more similar to the event/call-
back model used by other UI systems where the event is viewed as the change of a specific
control variable, and the callback function is the inner Dynamic which detects the change
in that specific variable.

4 References

1. Mathematica documentation on Manipulate and Dynamics

2. Useful discussions with John Fultz (Wolfram research) on the subject. [[nternet newst

0 D D O]

http://www.mathkb.com/Uwe/Forum.aspx/mathematica/17130/Re-How-to-find-which-variable-caused-the-trigger-in-Manipulate
http://www.mathkb.com/Uwe/Forum.aspx/mathematica/17130/Re-How-to-find-which-variable-caused-the-trigger-in-Manipulate

	Introduction
	Using state machine for Manipulate expression
	Conclusion
	References

