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| 1
CHAPTER

VIBRATION

1.1 Modal analysis for two degrees of freedom
system

Detailed steps to perform modal analysis are given below for a standard undamped
two degrees of freedom system. The main advantage of solving a multidegree system
using modal analysis is that it decouples the equations of motion (assuming they are
coupled) making solving them much simpler.

In addition it shows the fundamental shapes that the system can vibrate in, which
gives more insight into the system. Starting with standard 2 degrees of freedom system

’~———>Xl ’~———>X2

k1 k2
— NN m VNN m,
—> £, (1) — fo(1)

Figure 1.1: 2 degrees of freedom system

In the above the generalized coordinates are x; and z2. Hence the system requires two
equations of motion (EOM’s).
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1.1.1 Step one. Finding the equations of motion in normal
coordinates space

The two EOM’s are found using any method such as Newton’s method or Lagrangian
method. Using Newton’s method, free body diagram is made of each mass and then
F = ma is written for each mass resulting in the equations of motion. In the following
it is assumed that both masses are moving in the positive direction and that z is larger
than z; when these equations of equilibrium are written

——-»X

KiX1 K2(X2 —X1)
I m ——»kao(X2 —X1) - My
—> (1)
STF = mux] D F =mpx)
—kiXg +ko(Xo —X1) + (1) = ml)(lll —ka(X2 =x1) +f2(t) = mz)(/2/

Figure 1.2: general 2 degrees of freedom system

Hence, from the above the equations of motion are

mlxlll + kixy — k2($2 - xl) = fl(t)
mgxg + kg(l'z - -'L'l) = fZ(t)

or

mizy + z1(k1 + k2) — kazo = f1(t)
mQx'Z’ + koxy — kozy = fo(2)

In Matrix form
my 0 i ki +ky —ko| |21 fi(t)

0 mol| |24 —ks ko T2 fa(t)

The above two EOM are coupled in stiffness, but not mass coupled. Using short nota-
tions, the above is written as

(M|{«"} + [K|{z} = {f}
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Modal analysis now starts with the goal to decouple the EOM and obtain the funda-
mental shape functions that the system can vibrate in. To make these derivations more
general, the mass matrix and the stiffness matrix are written in general notations as
follows

mi1 Mig z'l' + kin k2 I fl(t)

mo1 maa| |24 ko1 kgl | 2 fa(t)

The mass matrix [M] and the stiffness matrix [K] must always come out to be symmetric.
If they are not symmetric, then a mistake was made in obtaining them. As a general
rule, the mass matrix [M] is PSD (positive definite matrix) and the [K] matrix is
positive semi-definite matrix. The reason the [M] is PSD is that 27 [M]{z} represents
the kinetic energy of the system, which is typically positive and not zero. But reading
some other references E] it is possible that [M] can be positive semi-definite. It depends
on the application being modeled.

1.1.2 Step 2. Solving the eigenvalue problem, finding the
natural frequencies

The first step in modal analysis is to solve the eigenvalue problem det ([K] — w?[M]) = 0
in order to determine the natural frequencies of the system. This equations leads to
a polynomial in w and the roots of this polynomial are the natural frequencies of the
system. Since there are two degrees of freedom, there will be two natural frequencies
w1,ws for the system.

det ([K] — w2[M]> =0
ki1 ko 9 mi1 M2
det —w =0

ko1 koo Ma1 Moo

2 2
kll — W'mii k12 — W MmMi2
det =0

2 2
ko1 — wmgr  kaa — w mog

(kll - w2m11) (k22 - w2m22) - (k12 - w2m12) (k21 - w2m21) =0

w4(m11m22 — MyaMay) + w2(—k11m22 + k1omoy + kaxmas — kaomiar) + ki1koe — kigkor =0

1|http ://en.wikipedia.org/wiki/Fundamental_equation_of_constrained_mot ion|
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The above is a polynomial in w*. Let w? = X it becomes

/\2(m11m22 — miama1) + A(—k11mag + k1amar + kaimag — kaamay) + kirkes — kiokar = 0

This quadratic polynomial in A which is now solved using the quadratic formula. Then
the positive square root of each A root to obtain w; and w, which are the roots of the
original eigenvalue problem. Assuming from now that these roots are w; and wy the next
step is to obtain the non-normalized shape vectors ¢4, ¢, also called the eigenvectors
associated with w; and wy

1.1.3 Step 3. Finding the non-normalized eigenvectors

For each natural frequency w; and ws the corresponding shape function is found by
solving the following two sets of equations for the vectors 1, ¢

r 7 r T 4 3\ 4 A

ki1 ko o |11 M| | en 0

— wl —

ka1 koo Mmo1 Maz| | Y21 0
L . L . \ J \ /

and B T B T ( A )

ki1 ko 9 mi1 M2 P12 0

— wz —
ko koo mo1 Ma2 ©22 0
L . L . \ J \ /
For wy, let ¢1; = 1 and solve for

n ( \ 4 3\

ki1 ko o [T M2 1 0

ka1 koo mo1 M| | Y21 0
. \ J \ J
7 4 3\ ()

2 2

kll — wimiyy k12 — wiMmia 1 0

ko — w? koo — w? 0
21 — W1Ma1 Koz — W1Ma2 \ P21 ) LY

Which gives one equation now to solve for ¢, (the first row equation is only used)

(kll - w%mll) + 21 <k12 — w%mlz) =0

Hence 9
—(ku - wlmll)

pa = (k12 - w%mlz)
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Therefore the first shape vector is

P11 1

1= - —(k11—w?maq1)
¥21 (k12—w?mi2)

Similarly the second shape function is obtained. For ws, let ;2 = 1 and solve for

7 4 ) ()
ki1 ko 9 mi1 M2 1 0
ko1 koo M1 Mg ©22 0
. \ J \ J
= ( 4
2 2
kll — Wy, k12 — WyM2 1 0
ko — w2 koo — w2 0
21 — W21 22 — W22 \9022) Y

Which gives one equation now to solve for ¢os (the first row equation is only used)
(kn - wSmn) + P22 (k12 - wgmu) =0

Hence 9
—(kn - wgmn)

(k12 - W%mu)

P2 =

Therefore the second shape vector is

©12 1

¥2 = N —(k11—w2mai1)
P22 (k12—w2Zmi12)

Now that the two non-normalized shape vectors are found, the next step is to perform
mass normalization

1.1.4 Step 4. Mass normalization of the shape vectors (or the
eigenvectors)

Let
p = @71 [M] @,

This results in a scalar value u;, which is later used to normalize ;. Similarly

w2 = @3 [M] ¢,
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For example, to find u,

©Y11 mi1 M2 ©Y11

Y21 mo1 Ma2 Y21

mi1 Mi2 P11
= Yp11 P2

o1 Ma2 Y21

©Y11
= {ﬂpumu + @o1ma1  P11Ma12 + <,021m22}
Y21

= p11(11m11 + P21m21) + Ya1(P11M12 + P21M22)

Similarly, po is found

T
©Y12 mi1 M2 ©Y12
M2 =
P22 Moy Mog ©22
my; Mi2 ©12
= (P12 P22

Mo1 Moz ©22

©Y12
= {<P12m11 + @ooma1  P12Mig + Q022m22}
©22

= @12(p12ma1 + P22mar) + az(Pramaz + Parmag)
Now that uq, us are obtained, the mass normalized shape vectors are found. They are

called ®,, P,
®11

P, — ¥ _ P21 _
1= = =
VA 1 VA1

10
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Similarly
P12

P12
Pa _ P22 iz

P, = = =
Viz 2 en

V2

1.1.5 Step 5, obtain the modal transformation matrix ®

The modal transformation matrix is the 2 X 2 matrix made of of ®;, ®, in each of its

columns
[®] = [®19D]
P11 P12
| vm Ve
P21 P22
Vil B2

Now the [®] is found, the transformation from the normal coordinates {z} to modal

coordinates, which is called {n} is found

{z} = [®]{n}

(1) _ v | | m@)
z2(t) % 7=l (@)

The transformation from modal coordinates back to normal coordinates is

{n} =2 {z}

m(t) _ 5_% 5_;% (1)
0 = & (%)

However, [®]" = [®]” [M] therefore
{n} =[2]" [M]{z}

m(t) B % 3_% mir maz| | z1(2)
m2(t) % :%—22 ma1 Mo | | T2(t)

11
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The next step is to apply this transformation to the original equations of motion in
order to decouple them

1.1.6 Step 6. Applying modal transformation to decouple the
original equations of motion

The EOM in normal coordinates is

mi1 Mig 1',1, n kll k12 I fl(t)

Mo1 Moo -’17,2, k21 k22 T2 fQ(t)

Applying the above modal transformation {z} = [®] {n} on the above results in

miy Mo ny ki1 kg M f1(?)
(@] + (@] =
Mo1 Moo 7 ko1 koo Up f2(t)
pre-multiplying by [®]” results in
mi1 Mg ,'7/1/ kll k12 m fl (t)
@] ] +[@]" [®] = [9]"
mMo1 Moo ’I]é/ k21 k22 2 f2 (t)
T |1 12 . 0 ..
The result of [®] [®] will always be . This is because mass normal-
ma1 M2 01

ized shape vectors are used. If the shape functions were not mass normalized, then the
diagonal values will not be 1 as shown.

2
ki1 ko w7

The result of [®]" [®] will be
k21 kgg 0 w%

\

f(t) ()

Let the result of [®]” be , Therefore, in modal coordinates the original

po | A0

EOM becomes

vol Ju| |t of Jm|_ 5w

0 1| |ny 0 wi| [m fa(t)

12
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The EOM are now decouples and each can be solved as follows

0y (t) + wim(t) = fi(t)
n5(t) + wana(t) = fa(t)

To solve these EOM’s, the initial conditions in normal coordinates must be transformed
to modal coordinates using the above transformation rules

{n(0)} = [@]" [M]{=(0)}
{n/(0)} = [@]" [M] {z'(0)}

Or in full form

_ - T - -
m(0) _ 5;1711 5_,% mi Mz | | 21(0)
n2(0) ﬁ—% % ma1 Moz | | z2(0)
and
_ - T _ -
mO) | |V vis| |mu maa| |21(0)
n5(0) 2L 221 Img ma| | 75(0)

Each of these EOM are solved using any of the standard methods. This will result is
solutions 7 (¢) and 72(t)

1.1.7 Step 7. Converting modal solution to normal
coordinates solution
The solutions found above are in modal coordinates 7;(t) ,72(¢). The solution needed

is x1(t) ,z2(t). Therefore, the transformation {z} = [®]{n} is now applied to convert
the solution to normal coordinates

(1) _ % 5_;% m(t)
(1) N R AR

(
(1) + £25(1)

| sm(®) + ()

13
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Hence o o
z1(t) = () + 2yt
1(t) meU VEWO
and
Za(t) = T2 () + ()

Notice that the solution in normal coordinates is a linear combination of the modal
solutions. The terms ‘p—z are just scaling factors that represent the contribution of each
modal solution to the final solution. This completes modal analysis

1.1.8 Numerical solution using modal analysis

This is a numerical example that implements the above steps using a numerical values for
[K] and [M] Let kl = 1,]{?2 = 2,m1 = 1,m2 =3 and let fl(t) =0 and fz(t) = sin (5t)
Let initial conditions be z1(0) = 0,27 (0) = 1,22(0) = 1.5, 2,(0) = 3, hence

and
z7(0) B 1.5
x5(0) 3

[ T ( 3 (

my 0| |2 . ki+ky —ka| |2 fi(?)
0 mo x’z’ —kz kg T ) fg (t)
B _ \
\ T ¢ A (
1 0| | 3 2| | = 0
+ =
" _ :
0 3 3 | 2 2 IRE) | sin (5¢)
In this example mi; = 1,m12 = O,m21 = 0, Moy = 3 and kll = 3, klz = —2,k21 =

—2,key =2 and fi1(t) =0 and f5(t) = sin (5¢)

14
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step 2 is now applied which solves the eigenvalue problem in order to find the two

natural frequencies

det ([K] — w?*[M]) =0

3 =2 10
det — w? =0
-2 2 0 3
3—w? -2
det =0
-2 2—-3w?

(3—w?) (2—38w*) = (=2)(-2) =0
3w —11w* +2=0
Let w? = X hence
3N —11A+2=0
The solution is A; = 3.475 and Ay = 0.192, therefore

w; = V3.475 = 1.864

And
wy = v/0.192 = 0.438

step 3 is now applied which finds the non-normalized eigenvectors. For each natural
frequency w; and wsy the corresponding shape function is found by solving the following
two sets of equations for the eigen vectors @1, 2

3 -2 9 10 ®11 0
— wl —
-2 2 0 3 P21 0
For w; = 1.864
( \ R
3 - @) 0
— 1.8642 T
-2 2 0 3 P21 0
\ J \ /
. 4 W ()
—0.475 -2 1 0
= ’
—2  —8.424 g021J 0
4 \ \

15
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This gives one equation to solve for s (the first row equation is only used)

—0.475 — 2(,021 =0

Hence

4
Y21 = w = —0.237
-2
The first eigen vector is
11 1
Y1 = =
©®a1 —0.237
Similarly for wy = 0.438
( 1 ()
3 =2 0 %) 0
—0.4382 4 L
\ 7
7 ( A (
2.808 -2 1 0
-2 1.425 P22 0
4 X\ J \

This gives one equation to solve for sy (the first row equation is only used)

2.808 — 2(,022 =0

Hence
—2.808
P22 = =1.404
-2
The second eigen vector is
P12 1
P = =
P22 1.404

Now step 4 is applied, which is mass normalization of the shape vectors (or the eigen-
vectors)

p = @] [M] @,

16
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Hence
T
1 10 1
u1 =
—0.237 0 3| | —-0.237
=1.169
Similarly, po is found
p2 = @3 [M] oy
Hence
T
1 10 1
M2 =

1.404 0 3| [1.404
=6.914

Now that p;, us are found, the mass normalized eigen vectors are found. They are called
(pl, ¢2

Similarly
{9012 1
@2: P _ ©22 _ 1.404
Viz 2 6.914
0.380
0.534

17
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Therefore, the modal transformation matrix is

[®] = [®1D,]
0.925 0.380
—0.219 0.534

This result can be verified using Matlab’s eig function as follows

K=[3 -2;-2 2]; M=[1 0;0 3];
[phi,lam]=eig(K,M)

phi =

-0.3803 -0.9249

-0.5340 0.2196
diag(sqrt(lam))

0.4380

1.8641

Matlab result agrees with the result obtained above. The sign difference is not important.
Now step 5 is applied. Matlab generates mass normalized eigenvectors by default.

Now that [®] is found, the transformation from the normal coordinates {z} to modal
coordinates, called {n}, is obtained

{z} = [@]{n}
1 (t) 0.925 0.380| | m(t)

(1) —0.219 0.534| | n2(t)

The transformation from modal coordinates back to normal coordinates is

{n} = (@] {«}
m () 0.925 0.380 z1(t)

7o () —0.219 0.534 z5(t)

18
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However, [®] " = [®]” [M] therefore

{n}
m(t)

n2(t)

[@]" [M] {z}

0.925 0.380

—0.219 0.534

0.925 —-0.657

0.38 1.6

10

0 3

1 (t)

l‘l(t)

) (t)

T2(t) )

The next step is to apply this transformation to the original equations of motion in

order to decouple them.

Applying step 6 results in

1

0

0

1

1

0

0

1

1

0

01

(

\

/i
T

1!
Ub!

1
Ui

1!
Ub)

1!
m

/A
Ub!

W% 0 m

0 wg 772)
N

1.8642 0 T
0 0.4382 172)
- 4 3

3.47 0 m
0 0.192 7]2}

. (

=[]

sin (5%)
- T
0.925 0.380 0
—0.219 0.534 sin (5%)

4

—0.219 sin (5t)

0.534 sin (5t)

The EOM are now decoupled and each EOM can be solved easily as follows

ni(t) + 3.47m (t) = —0.219 sin (5¢t)
7y (t) + 0.1927,(t) = 0.534 sin (5¢)

To solve these EOM’s, the initial conditions in normal coordinates must be transformed

19
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to modal coordinates using the above transformation rules

and

p

\
(

\

\

11(0)
12(0)
11(0)
12(0)

/
)

J

;

\

;

0.925 —0.657
038 16
0.925 —0.657
038 16
—0.657
1.6
0.925 —0.657
038 16
0.925 —0.657
038 16
—0.584
5.37

\

(

z1(0)

Each of these EOM are solved using any of the standard methods. This results in

solutions 7, (t) and n,(¢) . Hence the following EOM’s are solved

and also

0y (t) + 3.47n1(t) = —0.219 sin (5¢t)

m(0) = —0.657
7,(0) = —0.584

M5 (t) + 0.192n,(t) = 0.534 sin (5¢t)

15(0) = 5.37

20
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The solutions 7;(t) , 72(t) are found using basic methods shown in other parts of these
notes. The last step is to transform back to normal coordinates by applying step 7

1 (t) 0.925 0.380| |m ()
o (t) —0.219 0.534| | na(2)

(

0.9257; + 0.387;
=

05347, —0.219m,

Hence

and

The above shows that the solution z;(t) and z4(t) has contributions from both nodal
solutions.

21
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1.2 Fourier series representation of a periodic
function

Given a periodic function f(t) with period T then its Fourier series approximation f(t)
using N terms is

N
f@) = %Fo +Re (ZFnem?t>

n=1

1 1
in2Zt * _—in2Et
——2F0+—2 E F.e"T +Fn6 T

n=1
N
]. .27
— F ezn?t
3 2 Fn
n=—N

Where
T
F=2 / Ft)e " Fidt
noT
0
T
Fo=2 / £(t) dt
OT T
0

Another way to write the above is to use the classical representation using cos and sin.
The same coefficients (i.e. the same series) will result.

< N 2w N 2
f(t) =ao+ ;an cos nTt + ;bn sin n?t

T
a, = TL/Q/f(t) cos (nz%t) dt
0

T
b, = TL/Q/f(t) sin (n%rt) dt
0

Just watch out in the above, that we divide by the full period when finding ay and
divide by half the period for all the other coefficients. In the end, when we find f(t) we
can convert that to complex form. The complex form seems easier to use.

22
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1.3 Generating Transfer functions for different

vibration systems

C Ly k A

Figure 1.3: vibration model

1.3.1 Force transmissibility

Let steady state

ZTss = Re {%D(T, ¢) eim}

Then
.ft’l‘ (t) = fspring + fdampe'r
=kx +ct
F . F _
= Re {k%D(r, ¢) e“”t} + Re {cinD(r, ¢) e“”t}
. P .
=Re} [ F+ ciw— D(r,¢) e
Hence

Ol =[] 10111+ @55 = | B[ ID] /1 + (2677

So TR or force transmissibility is
-(t
-t 1(3—|‘“ax = 1D] /1 + (2¢r’
7|

If 7 > /2 then we want small ¢ to reduce force transmitted to base. For r < V2, it is

the other way round.

23
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1.3.2 vibration isolation

We need transfer function between y and z. Equation of motion

my’' = —c(y —2') —k(y — 2)
my" +cy +ky=c2 +kz

Let 2 = Re{Ze™'}, 2’ = Re {iwZe™'} and let y = Re {Ye™'} |y = Re {iwYe“'},y" =
Re{—w?Ye™'}, hence the above becomes

mRe {—w?Ye™'} + cRe {iwYe™'} + kRe {Ye“'} = cRe {iwZe™'} + kRe {Ze™'}
ciw+k
C —w?m +ciw + k
B 12Cw,mw + k
T —wm + i2Cwymw + k
i2Cwnw + w?
—w? + i2¢wyw + w2
20T + 1
(1 —172) +142¢r

r 2
Hence |D(r,{)| = Toersaar H:—;:Q“())Q and arg (D) = tan™* (2¢r) — tan™! (%) where r =
1—r2)“+(2¢r
Hence for good vibration isolation we need Wllelax to be small. i.e. |D| /14 (2¢r) to

be small. This is the same TR as for force isolation above.

For small |D|, we need small ¢ and small k (the small k is to make r > 1/2) see plot

24



1.3. Generating Transfer functions for. .. Chapter 1. Vibration

In[1]:= parms = {z » 0.01};
Sqrt[l+ (2 zr)?] )
Sqrt[(1-r2)2+ (2 zr)2]’

tf =

Plot[tf /. parms, {r, 0.01, 3}, GridLines -» Automatic]

L l L L L L l L L L L l L L L L l L L L L l L L L L 1

05 1.0 15 20 25 30

Figure 1.4: force transibility

In Matlab, the above can be plotted using

close all;

zeta = linspace(0.1, 0.7, 10);

T = linspace(0, 3, 10);

DO = @(r,z) (sqrt(1+(2*z*r).~2)./sqrt((1-r."2).72+(2%z*r)."2));
figure;

hold on;

for i = 1:length(zeta)
plot(r,DO(r,zeta(i)));
end

grid on;

25
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1.3.3 Accelerometer

We need transfer function between u and z, where now z, is the amplitude of the
ground acceleration. This device is used to measure base acceleration by relating it
linearly to relative displacement of m to base.

Equation of motion. We use relative distance now.

mu" +2")+cu' +ku=0

mu” + cu' + ku = —mz2”

Let 2" = Re{Z,e™'}. Notice we here jumped right away to the 2” itself and wrote
it as Re{Z,e™'} and we did not go through the steps as above starting from base
motion. This is because we want the transfer function between relative motion u and
acceleration of base.

Now, u = Re{Ue™'},u’ = Re {iwUe**} u”" = Re{—w?Ue™'}, hence the above be-
comes

mRe {—w?Ue™'} + cRe {iwUe™'} + kRe {Ue™"*} = —mRe { Z,e""}
-m

Z,
—w?m +iwc+k*
-1
—w? + iw2w, + w2
-1
(w2 — w?) + w2lw,

Hence [D(r, O] = =k and arg (D) = —180° — tan” (2 )

When system is very stiff, which means w,, very large compared to w , then D(r,() ~
;—z}Za, hence by measuring u we estimate Z, the amplitude of the ground acceleration
since w? is known. For accuracy, need w, > 5w at least.

1.3.4 Seismometer

Now we need to measure the base motion (not base acceleration like above). But we
still use the relative displacement. Now the transfer function is between u and z where
now z is the base motion amplitude.

Equation of motion. We use relative distance now.

mu" +2")+cu +ku=0

mu” + cu' + ku = —mz2”
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1.3. Generating Transfer functions for. .. Chapter 1. Vibration

Let z = Re {Ze™'}, 2/ = Re {iwZe™'} 2" = Re{—w?Ze™'} ;and let u = Re {Ue™'} ,u/ =
Re {iwUe™'} ,u" = Re {—w?Ue™'}, hence the above becomes

Now, u = Re{Ue™'},uv’ = Re{iwUe**} ,u”" = Re{—w?Ue™'}, hence the above be-
comes

mRe {—w?Ue™'} + cRe {iwUe™*} + kRe {Ue™'} = —mRe {—w’Ze™*}

mw?

—w?m +wwe+k

UJ2

—w? + iw2(w, + w2

,,,.2

1-r2)+ i2C7’Z

Hence |D(r, ()| = and arg (D) = —tan™! (&%)

1—r2

,,.2
V(1—r2)+i2(r
Now if r is very large, which happens when w, < w, then m = —; since r?
is the dominant factor. Therefore U = WZG now becomes U ~ —Z, therefore
measuring the relative displacement U gives linear estimate of the ground motion.

However, this device requires that w, be much smaller than w, which means that m
has to be massive. So this device is heavy compared to accelerometer.

1.3.5 Summary of vibration transfer functions

For good isolation of mass from ground motion, rule of thumb: Make damping low, and
stiffness low (soft spring).

Isolate base from force. transmitted by machine

Equation used fi(t) = fipring + faamper

Transfer function % = |D| /1 + (2¢r)°

Isolate machine from motion of base

Equation used. Use absolute mass position

my" +cy +ky=cd +kz

Transfer function

] ;
s = D] \/1+ (1)
Z
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1.3. Generating Transfer functions for. .. Chapter 1. Vibration

Accelerometer: Measure base acc. using relative displacement

Equation used. Use relative mass position

mu” + cu’ + ku = —mz2”
Transfer function
U = Zo = 1D(r,Q)|
= a r,
(W2 — w?) + iw2Cws,
—1

V(@2 = 02)? + (2ww,)?

Seismometer: Measure base motion using relative displacement

Equation used. Use relative mass position

mu” + cu' + ku = —mz2”
Transfer function
r2
U= Z — |D
(1 _ ,,,.2) + 7/2{,',‘ | (T’ C)'
2
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4 Solution of Vibration equation of motion for
different loading

1.4.1 common definitions

These definitions are used throughout the derivations below.

5_ C . C . C
e WEm 2w.m

F
Ugp = n static deflection

Wp =14/ —
m

wp = wypy/1 — &?note: not defined for £ > 1 since becomes complex

w
r=—
Wn

2
Ty = il damped period of oscillation
Wd

-1 =1 ) .. .
T = )\—, E time constants where \; are roots of characteristic equation
1
1 . .
= magnification factor

VL= (2re)?
Bmax When r = /1 — 2£2

B = 1
max 2£ 1_e2 52
¢2m
UYn _ e% small gmping 6\/@ = e(27r
Yn+1

29



1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4.2 Harmonic loading mu” + cu’ + ku = F sinwt

1.4.2.1 Undamped Harmonic loading

Wl m = Re(Felet)

O O

Figure 1.5: single degree no damping forced

mu” + ku = Fsin wt

Since there is no damping in the system, then there is no steady state solution. In other
words, the particular solution is not the same as the steady state solution in this case.

We need to find the particular solution using method on undetermined coefficients.

Let u = up + u,. By guessing that u, = c; sinwt then we find the solution to be

F 1
u = Acosw,t + Bsinw,t + ———— sinwt
k1l—nr2

Applying initial conditions is always done on the full solution. Applying initial conditions

gives
u(0)=A
v/ (t) = —Awsin wyt + Bw coswpt + w— ! cos wt
B " " kE1l—r2
F 1
'(0) = Bu, + =
u'(0) w. +wk .2
() F r
B= _
W, k1l—nr2
Where r = 2=
The complete solution is
'(0 F
u(t) = u(0) cos wyt + (uafn) 1 _Trz) sin wy,t + w12 sin wt

30
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Example: Given force f(t) = 3sin (5t) then w = 5rad/sec, and F' = 3. Let m = 1,k = 1,
then w, = 1 rad/sec. Hence r = 5, Let initial conditions be zero, then

5 ) 1 .
U= (—31_52) s1nt—|—31_52 sin 5t

= 0.625 sint — 0.125 sin 5.0¢

1.4.2.1.1 Resonance forced vibration When @w =~ w we obtain resonance since
r — 1 in the solution given in Eq (1) above and as written the solution can not be
used for analysis. To obtain a solution for resonance some calculus is needed. Eq (1) is
written as

2

F
) sin wt + Eﬁ sinwt  (1A)

w(0) F ww
w k w? — w?

u(t) = u(0) coswt + (
When w =~ w but less than w, letting
w—w=2A (2)
where A is very small positive quantity. And since w ~ w let
w+w 2w (3)
Multiplying Eq (2) and (3) gives
w? — w® = 4Aw 4)

Eq (1A) can now be written in terms of Egs (2,3) as

u(t) = u(0) coswt + (@_Eﬂ) t+£ w2

w k 4Aw k 4Aw sinwit

= u(0) coswt + w_Fw 8 t—i—E W’ sin wt
=u w T TIA inw 1D inw

Since w ~ w the above becomes

w k 4A
)

F w
sinwt + —-—— sinwt

u(t) = u(0) coswt + ( k 4A

/( sin wt + ——(sm t — sin wt)
w
w k 4A

Using sin @t — sinwt = 2sin (¥5t) cos (ZF2t) the above becomes

¥'(0)

s1nwt+Fw sin w—wt Cos w—}-wt
w k 2A 2 2
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

From Egs (2,3) the above can be written as

uw'(0)

sin wt + Fw (sin (—At) cos (wt))

u(t) = u(0) coswt + TN

w = t the above becomes

u'(0) . Fwt
- sin wt — © g Cos (wt)

Since lima_,q

u(t) = u(0) coswt +

This is the solution to use for resonance.

1.4.2.2 Underdamped harmonic loading c < ¢,,£ < 1

K
AN :
r v —Fsinaot
|
O O

Figure 1.6: single degree damping forced

mu” + cu’ + ku = Fsinwt
F
u” + 26w’ 4+ w?u = — sin wt
m

The solution is

u(t) = up +u,
where
up(t) = e (A coswgt + Bsinwgt)
d
an . |
up(t) = sin (et — 0)
\/(k' —mw)? + (cw)’
where o
cw T

tanf =

k—mw? 1—12

Very important note here in the calculations of tan # above, one should be careful on
the sign of the denominator. When the forcing frequency @w > w the denominator will
become negative (the case of w = w is resonance and is handled separately). Therefore,
one should use arctan that takes care of which quadrant the angle is. For example, in
Mathematica use
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

ArcTan[1l - r~2, 2 Zeta r]l]

and in Matlab use

atan2(2 Zeta r,1 - r°2)

Otherwise, wrong solution will result when @ > w The full solution is

u(t) = e™%*(A coswgyt + Bsinwgt) —|— — L sin (wt — 6) (1)

b= 4 (2er)?

Applying initial conditions gives
1

— sin 0
=) (2r)?
B= v (0) + u(0) &w + F ! (wsin O — wcos §)
Wd Wa k wd\/(l —12)% + (26r)?

Another form of these equations is given as follows

up = 2 !
TR (=) ()

((1 —r?) sinwt — 2{r cos wt)

Hence the full solution is

F 1
u(t) = e (A coswyt + B sin wgt)+—

((1 —r?) sinwt — 2{r cos wt)

(1.1)

Applying initial conditions now gives

2Fr¢ 1
O T ey
B u/'(0) N uw(0)éw, FQ1-r? w N 2Fr Wn,
W Wd kwg  (1—12)° 4+ (2¢r)  kwa (1—172)°+ (2¢r)

The above 2 sets of equations are equivalent. One uses the phase angle explicitly and
the second ones do not. Also, the above assume the force is F'sin wt and not F' cos wt.
If the force is F coswt then in Eq[1.1] above, the term reverse places as in

1

J— 2 _ .
A=y + (agry (17 con et = Arsincat)

F
u(t) = e *“r*( A coswyt + Bsin wﬁ)‘*‘z
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Applying initial conditions now gives

B F (1—17?%)
A= U(O) + k (1 _ T2)2 + (25’]")2
B u'(0) N u(0) Ewn, N 2Fr¢ w _F(Q-r?) Wn,
Cwa Wd kwa (1—12)% 4+ (2r)? kwa  (1—12)% + (2¢r)?

When a system is damped, the problem with the divide by zero when r = 1 does not
occur here as was the case with undamped system, since when when @w =~ w or r = 1,
the solution in Eq (1) becomes

_ F1 . w(0) w(0)éw F 1 , ,
— Ewt - - - _
u(t) =e ((u(O) + 2% s1n0) cos wgt + ( o + o + o R (wsin @ — wcos ) | sinwgt
F1 .
+ % 5 5in (wt — 0)

and the problem with the denominator going to zero does not show up here. The

amplitude when steady state response is maximum can be found as follows. The

amplitude of steady state motion is £ ———1——. This is maximum when the

ko J(a=r2)2 4+ (2¢r)?

magnification factor 8 = ﬁ is maximum or when \/ (1 —1r2)%+ (2¢r)? or
1—r2)°+(2¢r

2
\/ (1 — (2)2> + (2&%)2 is minimum. Taking derivative w.r.t. @ and equating the

w

result to zero and solving for w gives

w=wy1—282

We are looking for positive w, hence when @ = w+/1 — 2£? the under-damped response
is maximum.
1.4.2.3 critically damping harmonic loading { = > =1

The solution is
u(t) = up + up

Where u, = (A + Bt) e™" and u, = £ —————sin (wt — §) where tan 6 =
Va2 een?

ing sure to use correct arctan definition). Hence

13:2 (mak-

u(t) = (A+ Bt)et + L L sin (ot — 0)

B =) (r)?
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

where A, B are found from initial conditions

A=u(0)+ = sin 0

B:u'(0)+u(0)w+5 (wsiné — wcos )

1.4.2.4 overdamped harmonic loading { = £ > 1

Cr

The solution is

u(t) = up + up
where
up(t) = AeP'* + BeP?!
and 7 )
up(t) = A - - sin (wt — 0)
V(1= 72)% + (2¢r)
hence
u = Ae™" + BeP** + % = sin (cot — 6)
V(=12 & (26r)?
where tan 8 = %7, and

1—r2

c c\? k
P =g+ (gn) — o = VT
c c\? k
=g\ (g) = e VE -

Hence the solution is

u(t) = Ae(-erVET)ut + Be(-e-vE)ur + %ﬁ sin (wt — 0)
w'(0) + u(0) wé + u(0) wy/E — 1+ £B((€ + /€2 — 1) wsinf — wcosb)

A= 20V/E — 1
B _u(0) + u(0) w§ — u(0) wv/E* — 1+ ZB((6 — V&€ —1) wsinf — wcosb)
2w\/E2 -1
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1.4. Solution of Vibration equation of...

Chapter 1. Vibration

1.4.2.5 Solution using frequency approach to harmonic loading
my” + cy' + ky = Re (ﬁem>

x = Re {Xeim}

X =

??‘l"-t])

D(r, Q)
D(’l", C) =

(1—1r2) 4 2iCr

z = Re {%lD(r, o] e“wt“’)}

2(r
6 = tan™*
an 1_ 7"2

Let load be harmonic and represented in general as Re <13’eim> where F' is the complex
amplitude of the force.

Hence system is represented by

my” + cy' + ky = Re (ﬁ’eim>

2y
y" +2Cwny' +wiy = Re (—em)
m

Let y = Re (Ye™) Hence ¢ = Re (iwf’eiw”) ,y" = Re (—wzf"eim), therefore the
differential equation becomes

Re (—w2?eim> + 2¢w, Re (iw?eim> + w? Re <}A’em) = Re ( A

F
- ezwt)
m

. E
Y

m

(—w? 4+ 2¢wpiw + w?)
Dividing numerator and denominator w? gives

(—@? + 2(wniw +w?) ¥

3=
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Where r = Z, hence the response is
n

Therefore, the phase of the response is
. 2
arg (y) = arg (F) —tan™" ((1_#:2)) + wt
Hence at t = 0 the phase of the response will be

arg (y) = arg (F) —tan”™ ((12f:2)>

So when F' is real, the phase of the response is simply — tan~! (%)

Undamped case

When ¢ = 0 the above becomes

For real force this becomes
F 1
Yy = E m COS (wt)
The magnitude ’Y‘ = %ﬁ and phase zero.

damped cases

(>0

F 1 1ot
y=Re (?(1 — )+ a2r" )

F
ko

1
V= + )’
arg (f") = ¢ = arg <ﬁ> — tan™* ( 27 ) + wt

1—17r2

v
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Hence for real force and at ¢t = 0 the phase of displacement is
2(r
~1
—tan < 1_ r2>
lag behind the load.

When r < 1 then ¢ goes from 0 to —90° Therefore phase of displacement is 0 to —90°
behind force. The minus sign at the front was added since the complex number is in
the denominator. Hence the response will always be lagging in phase relative for load.

Forr > 1
Now 1 — 72 is negative, hence the phase will be from —90° to —180°

When r =1

Now phase is —90°

Phase of response complex

Phase of response complex
amplitude for underdamped
and when r<1

Phase will be from 0 to -90

degrees
1-r2

amplitude for
underdamped and when
r>1

Phase will be from -90 to -
180 degrees

2r

—

1—r?

Phase of response complex
amplitude for
underdamped and when
r=1

Phase will -90 degrees

Figure 1.7: steady state

Examples. System has ( = 0.1 and m = 1,k = 1 subjected for force 3 cos (0.5¢) find the
steady state solution.
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Answer y(t) = Re <}A’e"m>, Wp, = \/g = 1 rad/sec, hence r = 0.5 under the response is

y(t) = Re (’}Af em>

Y| cos (wt)

F 1 . /2(0.1)05

=< \/(1 = ,,.2)2 " (2CT)2 cos (.515 — tan <—1 052 ))
1

=3
V(1 - 0.52) + (2(0.1) 0.5)°
— 3.9649 cos (.5t — 7.59°)

cos (.5t — 7.59°)

In4)= Plot[{3Cos[0.5t], 3.9649Cos[.5t - 7.59Degree]}, {t, 0, 20}, PlotStyle » {Dashed, Red},
PlotLegends - {"load", "response"}]

response

Figure 1.8: steady state plot

The equation of motion can also be written as u” + 2¢wv’ 4+ w?u = £ sin wt.

The following table gives the solutions for initial conditions are (0) and «'(0) under
all damping conditions. The roots shown are the roots of the quadratic characteristic
equation A2 + 2¢w\ 4+ w?X = 0. Special handling is needed to obtain the solution of
the differential equation for the case of ( = 0 and w = w as described in the detailed
section below.
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4.2.6 Summary table

—iw
roots
+iw
¢=0
w = w — u(0) coswt + * (0) sinwt — £2 cos (wt)
u(t) ,
w # w — u(0) coswt + <uD(J0) - %1fr2> sinwt + £ 125 sinwt
—€w + w1 — &2
roots
—€w — iwpV/1 — &2
t) = e &t(A t+ Bsinwgt) + £—L —sin (wt — 0
(<1 ult) = e (A coswat + Bsinwat) + ¢ (1-72)?+(2¢r)> sin (@ )
A= VN —
Uo + % EET=s sin
B = Jl—kﬁﬁ—l— L wsinf — wcos b
K o/ (1=r2)? +(26r)? (€ )
—w
roots
—w
_ —wt F 1 : _
c=1 u(t) = (A+ Bt)e ™" + % oo sin (cot — 0)
A=u+E£—L—sind
\/(1 r2)24(2r)?
B = v+ upw + ——L% _(wsind — wcosh)
Va-rirn?
_wnf —I-an 52 -1
roots
—wp€ — wpVE2 —1
¢(>1| ut)= Ae<_§+v et + Be(_g_ Ve Junt + £ Bsin (wt — 6)
A— vo—i—uowé—}-uow\/ﬁ?—l—i—%B(<§+\/§2—1)wsin9—wcos9)
- 2w+/€2—1
B— _v0+uow§—uow\/§2—1+§ﬂ((5—\/52—1>wsin0—wcose)
- 2w+/€2-1
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4.3 constant loading mu” + cu’' + ku = F

1.4.3.1 Undamped Constant loading case ( =0

mu’ +ku=F
v +wPu=F
u(t) = up + up

£, the solution is

Where uj, = Acoswt + Bsinwt and u, =
, F
u(t) = Acoswt + Bsinwt + n

Applying initial conditions gives

A=u(0)- 7
_w(0)

And complete solution is

_F F @ (0) .
u(t) = =t (u(O) — E) coswt + Y sin wt

1.4.3.2 underdamped constant loading ¢ < 1

The general solution is

F
u(t) = e (A coswgt + Bsinwgt) + —

k
From initial conditions
F
A=u(0) — —
u(0) -
B u'(0) + u(0) fw — %fw
Wd

Hence the solution is

u(t) = e~ <(u(0) — %) cos wgt + (UI(O) +u0)éw - %&U) sinwdt> + %

Wd
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4.3.3 Ciritical damping constant loading ( =1

The general solution is
F
u(t) = (A+ Bt)e " + =

Where from initial conditions

A=u0)- 7
B =4/(0) + u(0)w — %w

1.4.3.4 Over-damped constant loading ¢ > 0

The solution is

F
u(t) = AeP** + BeP' + =

Where now

%Pl — ugp1 + u'(0)

B=

(p2 —p1)
A=u(0)- 7 ~B

Hence the solution is

F
u(t) = Ae” + BeP?* + -

Where
= _w£+wn\/§2_1
S S =

=5 (50)
= 2m 2m

k
m
k
m

=5~V (5)
2= 2m 2m
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1.4. Solution of Vibration equation of...

Chapter 1. Vibration

1.4.3.5 Summary table for constant loading solutions

—w
roots
¢=0 +iw
u(t) = (Uo - F) coswt + 2 sin wt + %
—€w + iwpy/1 - &2
roots
¢<1 —€w — iwpy/1 — &2
_Feu\ L
u(t) = e‘ﬁwt((uo — B coswgt + (W) Slnwdt> G E
—w
roots
u(t) = ((uo — £) + (vo +upw — Lw)t) et + L
—wp€ +wp/E2 -1
roots
_wné- - an§2 —1
_ £ p1—uop1+vo
B= "
¢>1| A= g — % _B
c c \2
p1=—%+ (%) —%:-wn€+wn,/€2_1
c c \2
p2:_%_ (%) _%:_wng_wn\/é?—]_
u(t) = APt + Bep 4 I
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4.4 No loading (free vibration) mu” + cu’ + ku =0

1.4.4.1 Undamped free vibration

(@) O

Figure 1.9: single degree mass no damping

mu” +ku=0
v +wPu=0
The solution is

w'(0)

u(t) = u(0) coswt + ——= sinwt
w

1.4.4.2 under-damped free vibration c < ¢, <1

K
144428
r M
L @) @)

Figure 1.10: single degree mass damping

mu’ +cu +ku=0

v 4 26wu’ + wlu =0

The solution is
u = e (A coswgt + Bsinw,t)
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Applying initial conditions gives A = u(0) and B = v(O+u® Therefore the solution

Wd

w'(0) + u(0) Ew «in wdt)
Wy

becomes

u(t) = e~ <u(0) cos wyt +

1.4.4.3 critically damped free vibration { = = =1
The solution is
u(t) = (A+ Bt) e ()t
= (A+ Bt)e™*

where A, B are found from initial conditions A = u(0),B = v/(0) + u(0) w, hence

u(t) = (u(0) + (v'(0) + u(0) w) t) e™*

1.4.4.4 over-damped free vibration { = = > 1

The solution is
u(t) = AeMt 4+ Betet

where A, B are found from initial conditions.

_u/(0) — u(0) Ao

PN/
—’U/(O) + U(O) Al

2w\/E2 —1
where \; and )\, are the roots of the characteristic equation
M=) b ot w/E T
1™ Tom 2m m wrw
c c\2 k
N ) Lt — w2 —
A2 2m (2m) m fw-wve L

B =
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1.4. Solution of Vibration equation of...

Chapter 1.

Vibration

1.4.4.5 Summary table for free vibration solutions

—tw
roots
+iw
u(t) = u(0) coswt + = ( ) sin wt
= Acos (wt — ¢)
A=)+ (22
[w

¢ = tan~ 1( (()) )

—&w + iwy/1 — &2

roots
(<1 —fw —iwy/1 = €2
u(t) = e~&t (u(O) cos wat + u’@)t}% sin wdt>
—w
roots
¢=1 W
u(t) = (U(O)(l + wt) + u’(())t) e—wt
M= —wE+wy/E2 -1
roots
Ao = —wé —wy/E2 -1
(
C >1 u(t) = AeMwt + Belewt
— w(0)—u(0)Xrs
A= Vet
—u'(0)+u(0M
| B= e
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

1.4.4.6 Roots of characteristic equation

The roots of the characteristic equation for u” + 2éwu’ + w?u = 0 are given in this table

roots

time constant 7

£ <1 | {—fw+junvT =&, —bw —iwn/T-8} | &

w

§=1 {_w’ _w}

€ |=

E>1 | {—wpf +wnvVE& — 1, —wn€ —w,/& — 1} 1 1 (which to use? the bigge

Wn€—wn\/E2—1" wpédwn/E2-1

1.4.5 impulse Fyi(t) loading

1.4.5.1 impulse input

1.4.5.1.1 Undamped system with impulse

mi + ku = Fyé(t)

with initial conditions u(0) = 0 and v'(0) = 0.Assuming the impulse acts for a very
short time period from 0 to ¢; seconds, where ¢; is small amount. Integrating the above

differential equation gives

t1 t1 t1
maidt + / kudt = / Fyo(t)
0 0

Since t; is very small, it can be assumed that u changes is negligible, hence the above

reduces to

/ midt = / Fyé(t)
/0 ( dt) dt = /0 " R(t)
/ﬂ (O(: di= 2 / "5

alty) — a(0 / 5(t
- /0 5(t)

since we assumed «'(0) = 0 and since fot ' 6(t) = 1 then the above reduces to

. F
u(ty) = EO
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Therefore, the effect of the impulse is the same as if the system was a free system
but with initial velocity given by % and zero initial position. Hence the system is now
solved as follows

mi+ ku=0

With %(0) = 0 and «/(0) = £2. The solution is

Fy
Uimpuise (t) = i sin wt

If the initial conditions were not zero, then the solution for these are added to the
above. From earlier, it was found that the solution is u(t) = u(0) coswt + = (0) sin wt,
therefore, the full solution is

due toiC only due to impulse

/(0 F, )

u(t) = u(0) coswt + v (0) sinwt + —~ sin wt
w mw

1.4.5.1.2 wunder-damped with impulse c < ¢, £ <1
mii + ct + ku = 6(t)
i+ 26wt + wu = §(t)
with initial conditions u(0) = 0 and «’(0) = 0.Integrating gives

t1 t1 t1 t1
maudt + / cudt + / kudt = / Fyé(t)
0 0 0

Since t; is very small, it can be assumed that u changes is negligible as well as the change
in velocity, hence the above reduces to the same result as in the case of undamped.
Therefore, the system is solved as free system, but with initial velocity u'(0) = Fy/m
and zero initial position.

Initial conditions are u(0) = 0 and v/(0) = 0 then the solution is

Uimpulse = e_gwt(A coswgt + B sinwgt)
(%)
wq

Fo
Uimpulse(t) = e—{wt —— sinwgt
) = (2 sina

, hence

applying initial conditions gives A =0 and B =

If the initial conditions were not zero, then the solution for these are added to the above.
From earlier, it was found that the solution is u(t) = e~ ( (0) cos wgqt + M sin wdt> ,

therefore, the full solution is

due toiC only due to impulse
/(0) + u(0 \ Fy
u(t) = e~ (u(O) cos wat + — (0) + u(0)ew sin wdt) + e_§“t< sin wdt>
Wq mwygy
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1.4.5.1.3 critically damped with impulse input ¢ = ==1 with initial condi-
tions u(0) = 0 and v'(0) = 0 then the solution is

u(t) = (A+ Bt) e ()t
= (A+ Bt)e™*

where A, B are found from initial conditions A = u(0) = 0 and B = v/(0) + u(0) w = £,
hence the solution is
Fot

Uimpulse (t) = He—wt

If the initial conditions were not zero, then the solution for these are added to the
above. From earlier, it was found that the solution is u(t) = (uo(1 + wt) + v/(0) t) e,
therefore, the full solution is

due to impulse

Fif

due to IC only

u(t) = (u(0) (1 + wt) + u'(0) t) e~ +

—wt

e

1.4.5.1.4 over-damped with impulse input { = > >1 With initial conditions
are u(0) = 0 and v/(0) = 0 the solution is

Arwt Aowt
Uimpuise(t) = Ae™“* + Be™?*

where A, B are found from initial conditions and

A= —wéE+wyE2—1
N

u'(0) — u(0) Az

A= 2V/EE —1

2w\/E2 —1

Hence the solution is

uimpulse(t) = Ae (_5—}_\/&27_1)“”: + Be(—g—\/@j)wt

where
Fy
A=__m
2w\/E2 —1
_F
B

- 2w\/§72n— 1
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1.4. Solution of Vibration equation of... Chapter 1. Vibration

Hence

Fy Fo

_ __ m (-e+vET)wt _ _ wm (—e—vE—1)wt
uzmpulse(t) - e

2wyvE2 —1 2wyvE2 —1
If the initial conditions were not zero, then the solution for these are added to the

above. From earlier, it was found that the solution is u(t) = AeP** + BeP?!, therefore,

the full solution is

e

Fy F
U(t) — Aeklwt +Be>\2wt + m e)\lwt _

2wyvE2 —1 20.)\/?2 -1

Aowt

v’ (0) — u(0) Ag

A= 2VE — 1
B— —’U/(O) + U(O) )\1

2w\/E%2 — 1

1.4.5.1.5 Summary table
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—iw
roots
¢= +iw
u” + w2u =0 trags\ient steady state
/(0 F, K
u(t) = u(0) coswt + w(0) sin wt + —~ sinwt
w mw
—&w + iwy/1 — &2
roots
c<1 —€w — iwy/1 — &2
transient steady state
. '(0) + u(0 . F
u(t) = e~ (u(O) coswgt + w(0) + u(0)ew sin wdt) + et (—O sin wdt>
Wy mwg
—w
roots
¢=1 —Ww
u(t) = (u(0) (1 + wt) + v/(0)t) e " + anﬁe_‘”t
A= —wé+wyE2—1
roots
Ao = —w€ —wyE2 —1
C >1 U(t) — Ae)\lwt + Be)\zwt + %Q e)qwt % e)\zwt
2w+\/€2-1 2w+/€2—-1
A _ u’(O)—u(O))\g
T 2wy/€2-1
B = —u/(0)+u(0) A1
\ T 2w /E2-1

The impulse response can be implemented in Mathematica as

parms = {m -> 10, ¢ -> 1.2, k -> 4.3, a —> 1};

tf = TransferFunctionModel[a/(m s”2 + ¢ s + k) /. parms, s]
sol = OutputResponse[tf, DiracDelta[t], t];

Plot[sol, {t, 0, 60}, PlotRange -> All, Frame -> True,
FrameLabel -> {{z[t], None}, {Row[{t, " (sec)"}], eql}},
GridLines -> Automatic]
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t(sec)

Figure 1.11: impulse Response Diagram

1.4.5.2 Impulse sin function

Now assume the input is as follows

t1 4

Figure 1.12: input function

given by F(t) = Fysin (wt) where w = 2277; =z

1.4.5.2.1 wundamped system with sin impulse

FO sin (wt) 0 S t S tl
mit + ku =

0 t>t
with 4(0) = ug and 4(0) = vg. For 0 <t < ¢; the solution is

u(t) = up coswt + L. sinwt + u ! sin [~
0 w 12 12 t
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where r = £ = /% — T where T is the natural period of the system. ug = %, hence
Fy

w 2t
the above becomes
F, (—Wm) 1 !
% _ —O% sinwt + ———————5sin (7r—> (1)
w kl_(m> k1_<m> t

w w

u(t) = up coswt +

When uy = 0 and vg = 0 then

u(t) = &% sin 7r1 _T/h sin wt
oy <m) t w

w
The above Eq (1) gives solution during the time 0 < ¢ < #;
Now after ¢t = t; the force will disappear, the differential equation becomes

mit+ku=0 t>1t

but with the initial conditions evaluate at ¢ = ¢;. From (1)

_ Vo T . 1 .
u(t1) = up coswt; + o uStl——r2 sinwt; + uStl——ﬂ sin wt;

B Vo r ro. 5
= yg coswty + Z—ustl_r2 uStl—r2 sin wt; (2)

since sin wt; = 0. taking derivative of Eq (1)

u(t) = —wug sinwt + w Uy coswt + w L cos wt
B 0 w 11— r2 1—r2
and at t = t; the above becomes
1(t1) sinwty + w | — r coswt; + ! cos wt
u(ty) = —wygpsinwty + w| — — ugg—— wt; + @ w
1 0 1 " ]2 1 1_,2 1
. Vg T 1
= —wugsinwt; +w (; — “stﬁ) coswty — wl — .2 (3)
since coswt; = —1. Now (2) and (3) are used as initial conditions to solve mii+ku = 0.
The solution for ¢ > t; is
i(t
u(t) = u(t1) coswt + ih) sin wt
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Resonance with undamped sin impulse When @w ~ w and ¢t < t; we obtain
resonance since 7 — 1 in the solution shown up and as written the solution can’t be
used for analysis in this case. To obtain a solution for resonance some calculus is needed.
Eq (1) is written as

Vo = . 1 )
u(t) = upcoswt + | — — Ust# sinwt + Ust—— 5 Sin wt
w 1-(2) 1-(Z
2
v w w
= Uug cos wt + (—0 — ustz—w2) sinwt + Ust— sin wt (1A)
w w*—w w2 —w

Now looking at case when @w ~ w but less than w, hence let
w—w=2A (2)
where A is very small positive quantity. and we also have

w+w 2w (3)

Multiplying Eq (2) and (3) with each others gives

w? — @’ = 4Aw 4)

Going back to Eq (1A) and rewriting it as

Vo ww \ . w?
u(t) = up coswt + (; - “Stm> sin wt + Ust g A — SiD wt
2

Vo w . w .
= ugcoswt + (; — UStE> sinwt + uStm sin wt

Since w &~ w the above becomes

u(t) = up coswt + (UO Ut )sinwt-l—u Y sinwt
— o w st4A st4A
coswt + 2 sinwt + Ugy— (sin ot — sin wt)
= U, —_ st O —
0 w 4N

now using sin wt — sinwt = 2sin (Tt) oS (WT"""t) the above becomes

u(t) = u coswt + 2 sinwt + ug — ( sin (| Z—2¢) cos w+wt
- w 27 2 2

From Eq(2) w —w = —2A and w + w =~ 2w hence the above becomes

u(t) = up coswt + %0 sinwt + usti(sin (—At) cos (wt))
w

2A
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or since w &~ w

u(t) = up coswt + % sin wt — ust%(sin (At) cos (wt))

Now lima_,q w =t hence the above becomes

vy . wt
u(t) = up coswt + o sin wt — Ust = €O (wt)

This can also be written as
v wt
u(t) = ug cos wt + — sin wt — Ust 5~ COS (wt) (1)
w
cos 7Tt +v0s' 7rt 7Tt cos 7Tt
=, — —sin | —t | —Ug| — —
0 tl w tl ¢ 2t1 tl

since w = w in this case. This is the solution to use for resonance and for ¢t < ¢;

Hence for t > t1, the above equations is used to determine initial conditions at ¢ = ¢;

t
u(t1) = up cos wty + % sin wt] — ust% cos (wty)
w

but cos wt; = cos %tl = —1 and sinwt; = 0 and WT“ = 7, hence the above becomes
T
U(tl) = —Ug + ust§

Taking derivative of Eq (1) gives

2

u(t) = —wug sin wt + vg cos wt + Ust—5~ S0 (wt) — Ust < €O (wt)
and at t = t;
. . w2t1 . o
U(t1) = —wug sin wty + v cos wity + us; sin (wty) — ust? cos (wty)
w
= —v + Ust o

Now the solution for ¢ > ¢; is

u(t:)

u(t) = u(t1) coswt + sin wt
!/ ™
T —vO+ Hetiy sin wt

2

= (—u(O) + Ugy ) cos wt +
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1.4.5.2.2 wunder-damped with sin impulse c < ¢, £ <1

Fysin(w) 0<t<t
mi + ct + ku =

0 t>1

or

F()Sin(’W) 0 StStl
i 4 26wi + wu =
0 t>t

mi + ctt + ku = Fsinwt

F
il 4 26wt + w?u = — sin wt
m

For ¢ < t;Initial conditions are u(0) = uo and %(0) = vy and us = £ then the solution
from above is

Ust

V(1= 12)° & (26r)?

u(t) = e (A coswyt + Bsinwgt) + sin (wt — 0) (1)

Applying initial conditions gives
Ust

V(1= 12)% & (26r)?

B="4 Uobw + Ust (éwsin @ — wcosh)

Wi (- ) 4 (26r)?

A=wuy+ sin 6

For ¢ > ¢;. From (1)

Ust

V(L= (26r)?

u(ty) = e " (A coswgt; + Bsinwgt;) + sin (wt; —0)  (2)

Taking derivative of (1) gives

u(t) = —Ewe (A coswat + Bsinwgt) + e (—