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CHAPTER 1
Vibration

1.1 Modal analysis for two degrees of freedom
system

Detailed steps to perform modal analysis are given below for a standard undamped
two degrees of freedom system. The main advantage of solving a multidegree system
using modal analysis is that it decouples the equations of motion (assuming they are
coupled) making solving them much simpler.

In addition it shows the fundamental shapes that the system can vibrate in, which
gives more insight into the system. Starting with standard 2 degrees of freedom system

m1 m2

k 1 k 2

x 1

f1t f2t

x 2

Figure 1.1: 2 degrees of freedom system

In the above the generalized coordinates are x1 and x2. Hence the system requires two
equations of motion (EOM’s).
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1.1. Modal analysis for two degrees of . . . Chapter 1. Vibration

1.1.1 Step one. Finding the equations of motion in normal
coordinates space

The two EOM’s are found using any method such as Newton’s method or Lagrangian
method. Using Newton’s method, free body diagram is made of each mass and then
F = ma is written for each mass resulting in the equations of motion. In the following
it is assumed that both masses are moving in the positive direction and that x2 is larger
than x1 when these equations of equilibrium are written

m1
m2

x 1

f1t
f2t

k 1x 1
k2x2  x1 

k2x2  x1 

x 2

F  m2x 2


 k 2x 2  x 1   f2t  m2x 2


F  m1x 1


 k 1x 1  k 2x 2  x 1   f1t  m1x 1


Figure 1.2: general 2 degrees of freedom system

Hence, from the above the equations of motion are

m1x
′′
1 + k1x1 − k2(x2 − x1) = f1(t)

m2x
′′
2 + k2(x2 − x1) = f2(t)

or

m1x
′′
1 + x1(k1 + k2)− k2x2 = f1(t)

m2x
′′
2 + k2x2 − k2x1 = f2(t)

In Matrix formm1 0

0 m2


x′′

1

x′′
2

+

k1 + k2 −k2

−k2 k2


x1

x2

 =

f1(t)

f2(t)


The above two EOM are coupled in stiffness, but not mass coupled. Using short nota-
tions, the above is written as

[M ]{x′′}+ [K]{x} = {f}

6



1.1. Modal analysis for two degrees of . . . Chapter 1. Vibration

Modal analysis now starts with the goal to decouple the EOM and obtain the funda-
mental shape functions that the system can vibrate in. To make these derivations more
general, the mass matrix and the stiffness matrix are written in general notations as
follows

m11 m12

m21 m22


x′′

1

x′′
2

+

k11 k12

k21 k22


x1

x2

 =

f1(t)

f2(t)


The mass matrix [M ] and the stiffness matrix [K] must always come out to be symmetric.
If they are not symmetric, then a mistake was made in obtaining them. As a general
rule, the mass matrix [M ] is PSD (positive definite matrix) and the [K] matrix is
positive semi-definite matrix. The reason the [M ] is PSD is that xT [M ]{x} represents
the kinetic energy of the system, which is typically positive and not zero. But reading
some other references 1 it is possible that [M ] can be positive semi-definite. It depends
on the application being modeled.

1.1.2 Step 2. Solving the eigenvalue problem, finding the
natural frequencies

The first step in modal analysis is to solve the eigenvalue problem det ([K]− ω2[M ]) = 0
in order to determine the natural frequencies of the system. This equations leads to
a polynomial in ω and the roots of this polynomial are the natural frequencies of the
system. Since there are two degrees of freedom, there will be two natural frequencies
ω1, ω2 for the system.

det
(
[K]− ω2[M ]

)
= 0

det


k11 k12

k21 k22

− ω2

m11 m12

m21 m22


 = 0

det

k11 − ω2m11 k12 − ω2m12

k21 − ω2m21 k22 − ω2m22

 = 0

(
k11 − ω2m11

) (
k22 − ω2m22

)
−
(
k12 − ω2m12

) (
k21 − ω2m21

)
= 0

ω4(m11m22 −m12m21) + ω2(−k11m22 + k12m21 + k21m12 − k22m11) + k11k22 − k12k21 = 0
1http://en.wikipedia.org/wiki/Fundamental_equation_of_constrained_motion
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1.1. Modal analysis for two degrees of . . . Chapter 1. Vibration

The above is a polynomial in ω4. Let ω2 = λ it becomes

λ2(m11m22 −m12m21)+λ(−k11m22 + k12m21 + k21m12 − k22m11)+ k11k22 − k12k21 = 0

This quadratic polynomial in λ which is now solved using the quadratic formula. Then
the positive square root of each λ root to obtain ω1 and ω2 which are the roots of the
original eigenvalue problem. Assuming from now that these roots are ω1 and ω2 the next
step is to obtain the non-normalized shape vectors ϕ1,ϕ2 also called the eigenvectors
associated with ω1 and ω2

1.1.3 Step 3. Finding the non-normalized eigenvectors
For each natural frequency ω1 and ω2 the corresponding shape function is found by
solving the following two sets of equations for the vectors ϕ1, ϕ2k11 k12

k21 k22

− ω2
1

m11 m12

m21 m22


ϕ11

ϕ21

 =

0

0


and k11 k12

k21 k22

− ω2
2

m11 m12

m21 m22


ϕ12

ϕ22

 =

0

0


For ω1, let ϕ11 = 1 and solve fork11 k12

k21 k22

− ω2
1

m11 m12

m21 m22


 1

ϕ21

 =

0

0

k11 − ω2
1m11 k12 − ω2

1m12

k21 − ω2
1m21 k22 − ω2

1m22


 1

ϕ21

 =

0

0


Which gives one equation now to solve for ϕ21 (the first row equation is only used)(

k11 − ω2
1m11

)
+ ϕ21

(
k12 − ω2

1m12
)
= 0

Hence
ϕ21 =

−(k11 − ω2
1m11)

(k12 − ω2
1m12)
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1.1. Modal analysis for two degrees of . . . Chapter 1. Vibration

Therefore the first shape vector is

ϕ1 =

ϕ11

ϕ21

 =


1

−
(
k11−ω2

1m11
)(

k12−ω2
1m12

)


Similarly the second shape function is obtained. For ω2, let ϕ12 = 1 and solve fork11 k12

k21 k22

− ω2
2

m11 m12

m21 m22


 1

ϕ22

 =

0

0

k11 − ω2
2m11 k12 − ω2

2m12

k21 − ω2
2m21 k22 − ω2

2m22


 1

ϕ22

 =

0

0


Which gives one equation now to solve for ϕ22 (the first row equation is only used)(

k11 − ω2
2m11

)
+ ϕ22

(
k12 − ω2

2m12
)
= 0

Hence
ϕ22 =

−(k11 − ω2
2m11)

(k12 − ω2
2m12)

Therefore the second shape vector is

ϕ2 =

ϕ12

ϕ22

 =


1

−
(
k11−ω2

2m11
)(

k12−ω2
2m12

)


Now that the two non-normalized shape vectors are found, the next step is to perform
mass normalization

1.1.4 Step 4. Mass normalization of the shape vectors (or the
eigenvectors)

Let
µ1 = ϕT

1 [M ]ϕ1

This results in a scalar value µ1, which is later used to normalize ϕ1. Similarly

µ2 = ϕT
2 [M ]ϕ2

9



1.1. Modal analysis for two degrees of . . . Chapter 1. Vibration

For example, to find µ1

µ1 =

ϕ11

ϕ21


T m11 m12

m21 m22


ϕ11

ϕ21


=
{
ϕ11 ϕ21

}m11 m12

m21 m22


ϕ11

ϕ21


=
{
ϕ11m11 + ϕ21m21 ϕ11m12 + ϕ21m22

}ϕ11

ϕ21


= ϕ11(ϕ11m11 + ϕ21m21) + ϕ21(ϕ11m12 + ϕ21m22)

Similarly, µ2 is found

µ2 =

ϕ12

ϕ22


T m11 m12

m21 m22


ϕ12

ϕ22


=
{
ϕ12 ϕ22

}m11 m12

m21 m22


ϕ12

ϕ22


=
{
ϕ12m11 + ϕ22m21 ϕ12m12 + ϕ22m22

}ϕ12

ϕ22


= ϕ12(ϕ12m11 + ϕ22m21) + ϕ22(ϕ12m12 + ϕ22m22)

Now that µ1, µ2 are obtained, the mass normalized shape vectors are found. They are
called Φ1,Φ2

Φ1 =
ϕ1√
µ1

=

ϕ11

ϕ21


√
µ1

=


ϕ11√
µ1

ϕ21√
µ1



10



1.1. Modal analysis for two degrees of . . . Chapter 1. Vibration

Similarly

Φ2 =
ϕ2√
µ2

=

ϕ12

ϕ22


√
µ2

=


ϕ12√
µ2

ϕ22√
µ2


1.1.5 Step 5, obtain the modal transformation matrix Φ
The modal transformation matrix is the 2× 2 matrix made of of Φ1,Φ2 in each of its
columns

[Φ] = [Φ1Φ2]

=

 ϕ11√
µ1

ϕ12√
µ2

ϕ21√
µ1

ϕ22√
µ2


Now the [Φ] is found, the transformation from the normal coordinates {x} to modal
coordinates, which is called {η} is found

{x} = [Φ] {η}x1(t)

x2(t)

 =

 ϕ11√
µ1

ϕ12√
µ2

ϕ21√
µ1

ϕ22√
µ2


η1(t)

η2(t)


The transformation from modal coordinates back to normal coordinates is

{η} = [Φ]−1 {x}η1(t)

η2(t)

 =

 ϕ11√
µ1

ϕ12√
µ2

ϕ21√
µ1

ϕ22√
µ2


−1x1(t)

x2(t)


However, [Φ]−1 = [Φ]T [M ] therefore

{η} = [Φ]T [M ] {x}η1(t)

η2(t)

 =

 ϕ11√
µ1

ϕ12√
µ2

ϕ21√
µ1

ϕ22√
µ2


T m11 m12

m21 m22


x1(t)

x2(t)


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1.1. Modal analysis for two degrees of . . . Chapter 1. Vibration

The next step is to apply this transformation to the original equations of motion in
order to decouple them

1.1.6 Step 6. Applying modal transformation to decouple the
original equations of motion

The EOM in normal coordinates ism11 m12

m21 m22


x′′

1

x′′
2

+

k11 k12

k21 k22


x1

x2

 =

f1(t)

f2(t)


Applying the above modal transformation {x} = [Φ] {η} on the above results inm11 m12

m21 m22

 [Φ]

η′′1

η′′2

+

k11 k12

k21 k22

 [Φ]

η1

η2

 =

f1(t)

f2(t)


pre-multiplying by [Φ]T results in

[Φ]T

m11 m12

m21 m22

 [Φ]

η′′1

η′′2

+ [Φ]T

k11 k12

k21 k22

 [Φ]

η1

η2

 = [Φ]T

f1(t)

f2(t)



The result of [Φ]T

m11 m12

m21 m22

 [Φ] will always be

1 0

0 1

. This is because mass normal-

ized shape vectors are used. If the shape functions were not mass normalized, then the
diagonal values will not be 1 as shown.

The result of [Φ]T

k11 k12

k21 k22

 [Φ] will be

ω2
1 0

0 ω2
2

.

Let the result of [Φ]T

f1(t)

f2(t)

 be

f̃1(t)

f̃2(t)

 ,Therefore, in modal coordinates the original

EOM becomes 1 0

0 1


η′′1

η′′2

+

ω2
1 0

0 ω2
2


η1

η2

 =

f̃1(t)

f̃2(t)


12



1.1. Modal analysis for two degrees of . . . Chapter 1. Vibration

The EOM are now decouples and each can be solved as follows

η′′1(t) + ω2
1η1(t) = f̃1(t)

η′′2(t) + ω2
2η2(t) = f̃2(t)

To solve these EOM’s, the initial conditions in normal coordinates must be transformed
to modal coordinates using the above transformation rules

{η(0)} = [Φ]T [M ] {x(0)}
{η′(0)} = [Φ]T [M ] {x′(0)}

Or in full form η1(0)

η2(0)

 =

 ϕ11√
µ1

ϕ12√
µ2

ϕ21√
µ1

ϕ22√
µ2


T m11 m12

m21 m22


x1(0)

x2(0)


and η′1(0)

η′2(0)

 =

 ϕ11√
µ1

ϕ12√
µ2

ϕ21√
µ1

ϕ22√
µ2


T m11 m12

m21 m22


x′

1(0)

x′
2(0)


Each of these EOM are solved using any of the standard methods. This will result is
solutions η1(t) and η2(t)

1.1.7 Step 7. Converting modal solution to normal
coordinates solution

The solutions found above are in modal coordinates η1(t) , η2(t). The solution needed
is x1(t) , x2(t). Therefore, the transformation {x} = [Φ] {η} is now applied to convert
the solution to normal coordinatesx1(t)

x2(t)

 =

 ϕ11√
µ1

ϕ12√
µ2

ϕ21√
µ1

ϕ22√
µ2


η1(t)

η2(t)


=


ϕ11√
µ1
η1(t) + ϕ12√

µ2
η2(t)

ϕ21√
µ1
η1(t) + ϕ22√

µ2
η2(t)


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1.1. Modal analysis for two degrees of . . . Chapter 1. Vibration

Hence
x1(t) =

ϕ11√
µ1

η1(t) +
ϕ12√
µ2

η2(t)

and
x2(t) =

ϕ21√
µ1

η1(t) +
ϕ22√
µ2

η2(t)

Notice that the solution in normal coordinates is a linear combination of the modal
solutions. The terms ϕij√

µ
are just scaling factors that represent the contribution of each

modal solution to the final solution. This completes modal analysis

1.1.8 Numerical solution using modal analysis
This is a numerical example that implements the above steps using a numerical values for
[K] and [M ]. Let k1 = 1, k2 = 2,m1 = 1,m2 = 3 and let f1(t) = 0 and f2(t) = sin (5t).
Let initial conditions be x1(0) = 0, x′

1(0) = 1, x2(0) = 1.5, x′
2(0) = 3, hence

x1(0)

x2(0)

 =

0

1


and

x′
1(0)

x′
2(0)

 =

1.5

3


In normal coordinates, the EOM are

m1 0

0 m2


x′′

1

x′′
2

+

k1 + k2 −k2

−k2 k2


x1

x2

 =

f1(t)

f2(t)

1 0

0 3


x′′

1

x′′
2

+

 3 −2

−2 2


x1

x2

 =

 0

sin (5t)


In this example m11 = 1,m12 = 0,m21 = 0,m22 = 3 and k11 = 3, k12 = −2, k21 =
−2, k22 = 2 and f1(t) = 0 and f2(t) = sin (5t)

14



1.1. Modal analysis for two degrees of . . . Chapter 1. Vibration

step 2 is now applied which solves the eigenvalue problem in order to find the two
natural frequencies

det
(
[K]− ω2[M ]

)
= 0

det


 3 −2

−2 2

− ω2

1 0

0 3


 = 0

det

3− ω2 −2

−2 2− 3ω2

 = 0

(
3− ω2) (2− 3ω2)− (−2) (−2) = 0

3ω4 − 11ω2 + 2 = 0

Let ω2 = λ hence
3λ2 − 11λ+ 2 = 0

The solution is λ1 = 3. 475 and λ2 = 0.192, therefore

ω1 =
√
3.475 = 1.864

And
ω2 =

√
0.192 = 0.438

step 3 is now applied which finds the non-normalized eigenvectors. For each natural
frequency ω1 and ω2 the corresponding shape function is found by solving the following
two sets of equations for the eigen vectors ϕ1, ϕ2

 3 −2

−2 2

− ω2
1

1 0

0 3



ϕ11

ϕ21

 =

0

0


For ω1 = 1. 864 

 3 −2

−2 2

− 1.8642

1 0

0 3



ϕ11

ϕ21

 =

0

0

−0.475 −2

−2 −8.424


 1

ϕ21

 =

0

0


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1.1. Modal analysis for two degrees of . . . Chapter 1. Vibration

This gives one equation to solve for ϕ21 (the first row equation is only used)

−0.475− 2ϕ21 = 0

Hence
ϕ21 =

0.475
−2 = −0.237

The first eigen vector is

ϕ1 =

ϕ11

ϕ21

 =

 1

−0.237


Similarly for ω2 = 0.438

 3 −2

−2 2

− 0.4382

1 0

0 3



ϕ12

ϕ22

 =

0

0

2.808 −2

−2 1.425


 1

ϕ22

 =

0

0


This gives one equation to solve for ϕ22 (the first row equation is only used)

2.808− 2ϕ22 = 0

Hence
ϕ22 =

−2.808
−2 = 1.404

The second eigen vector is

ϕ2 =

ϕ12

ϕ22

 =

 1

1.404


Now step 4 is applied, which is mass normalization of the shape vectors (or the eigen-
vectors)

µ1 = ϕT
1 [M ]ϕ1
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Hence

µ1 =

 1

−0.237


T 1 0

0 3


 1

−0.237


= 1. 169

Similarly, µ2 is found
µ2 = ϕT

2 [M ]ϕ2

Hence

µ2 =

 1

1.404


T 1 0

0 3


 1

1.404


= 6.914

Now that µ1, µ2 are found, the mass normalized eigen vectors are found. They are called
Φ1,Φ2

Φ1 =
ϕ1√
µ1

=

ϕ11

ϕ21


√
µ1

=

 1

−0.237


√
1.169

=

 0.925

−0.219


Similarly

Φ2 =
ϕ2√
µ2

=

ϕ12

ϕ22


√
µ2

=

 1

1.404


√
6.914

=

0.380

0.534


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1.1. Modal analysis for two degrees of . . . Chapter 1. Vibration

Therefore, the modal transformation matrix is

[Φ] = [Φ1Φ2]

=

 0.925 0.380

−0.219 0.534


This result can be verified using Matlab’s eig function as follows� �
K=[3 -2;-2 2]; M=[1 0;0 3];
[phi,lam]=eig(K,M)
phi =
-0.3803 -0.9249
-0.5340 0.2196
diag(sqrt(lam))
0.4380
1.8641� �
Matlab result agrees with the result obtained above. The sign difference is not important.

Now step 5 is applied. Matlab generates mass normalized eigenvectors by default.

Now that [Φ] is found, the transformation from the normal coordinates {x} to modal
coordinates, called {η} , is obtained

{x} = [Φ] {η}x1(t)

x2(t)

 =

 0.925 0.380

−0.219 0.534


η1(t)

η2(t)


The transformation from modal coordinates back to normal coordinates is

{η} = [Φ]−1 {x}η1(t)

η2(t)

 =

 0.925 0.380

−0.219 0.534


−1x1(t)

x2(t)


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However, [Φ]−1 = [Φ]T [M ] therefore

{η} = [Φ]T [M ] {x}η1(t)

η2(t)

 =

 0.925 0.380

−0.219 0.534


T 1 0

0 3


x1(t)

x2(t)


=

0.925 −0.657

0.38 1.6


x1(t)

x2(t)


The next step is to apply this transformation to the original equations of motion in
order to decouple them.

Applying step 6 results in1 0

0 1


η′′1

η′′2

+

ω2
1 0

0 ω2
2


η1

η2

 = [Φ]T

 0

sin (5t)

1 0

0 1


η′′1

η′′2

+

1.8642 0

0 0.4382


η1

η2

 =

 0.925 0.380

−0.219 0.534


T  0

sin (5t)

1 0

0 1


η′′1

η′′2

+

3. 47 0

0 0.192


η1

η2

 =

−0.219 sin (5t)

0.534 sin (5t)


The EOM are now decoupled and each EOM can be solved easily as follows

η′′1(t) + 3.47η1(t) = −0.219 sin (5t)
η′′2(t) + 0.192η2(t) = 0.534 sin (5t)

To solve these EOM’s, the initial conditions in normal coordinates must be transformed
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1.1. Modal analysis for two degrees of . . . Chapter 1. Vibration

to modal coordinates using the above transformation rulesη1(0)

η2(0)

 =

0.925 −0.657

0.38 1.6


x1(0)

x2(0)

η1(0)

η2(0)

 =

0.925 −0.657

0.38 1.6


0

1


=

−0.657

1.6


and η′1(0)

η′2(0)

 =

0.925 −0.657

0.38 1.6


x′

1(0)

x′
2(0)


=

0.925 −0.657

0.38 1.6


1.5

3


=

−0.584

5.37


Each of these EOM are solved using any of the standard methods. This results in
solutions η1(t) and η2(t) . Hence the following EOM’s are solved

η′′1(t) + 3.47η1(t) = −0.219 sin (5t)
η1(0) = −0.657
η′1(0) = −0.584

and also

η′′2(t) + 0.192η2(t) = 0.534 sin (5t)
η2(0) = 1.6
η′2(0) = 5.37
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The solutions η1(t) , η2(t) are found using basic methods shown in other parts of these
notes. The last step is to transform back to normal coordinates by applying step 7x1(t)

x2(t)

 =

 0.925 0.380

−0.219 0.534


η1(t)

η2(t)


=

 0.925 η1 + 0.38η2

0.534 η2 − 0.219 η1


Hence

x1(t) = 0.925η1(t) + 0.38η2(t)

and
x2(t) = 0.534η1(t)− 0.219η2(t)

The above shows that the solution x1(t) and x2(t) has contributions from both nodal
solutions.
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1.2. Fourier series representation of a . . . Chapter 1. Vibration

1.2 Fourier series representation of a periodic
function

Given a periodic function f(t) with period T then its Fourier series approximation f̃(t)
using N terms is

f̃(t) = 1
2F0 +Re

(
N∑

n=1

Fne
in 2π

T
t

)

= 1
2F0 +

1
2

N∑
n=1

Fne
in 2π

T
t + F ∗

ne
−in 2π

T
t

= 1
2

N∑
n=−N

Fne
in 2π

T
t

Where

Fn = 2
T

T∫
0

f(t) e−in 2π
T

tdt

F0 =
2
T

T∫
0

f(t) dt

Another way to write the above is to use the classical representation using cos and sin.
The same coefficients (i.e. the same series) will result.

f̃(t) = a0 +
N∑

n=1

an cosn
2π
T
t+

N∑
n=1

bn sinn
2π
T
t

a0 =
1
T

T∫
0

f(t) dt

an = 1
T/2

T∫
0

f(t) cos
(
n
2π
T
t

)
dt

bn = 1
T/2

T∫
0

f(t) sin
(
n
2π
T
t

)
dt

Just watch out in the above, that we divide by the full period when finding a0 and
divide by half the period for all the other coefficients. In the end, when we find f̃(t) we
can convert that to complex form. The complex form seems easier to use.
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1.3 Generating Transfer functions for different
vibration systems

m

k
c

y

z

u  y  z

Figure 1.3: vibration model

1.3.1 Force transmissibility
Let steady state

xss = Re
{
F̂

k
D(r, ζ) ei$t

}
Then

ftr(t) = fspring + fdamper

= kx+ cẋ

= Re
{
k
F̂

k
D(r, ζ) ei$t

}
+Re

{
ci$

F̂

k
D(r, ζ) ei$t

}

= Re
{(

F̂ + ci$
F̂

k

)
D(r, ζ) ei$t

}

Hence

|ftr(t)|max =
∣∣∣F̂ ∣∣∣ |D|

√
1 + c2

$2

k2 =
∣∣∣F̂ ∣∣∣ |D|

√
1 + (2ζr)2

So TR or force transmissibility is

TR = |ftr(t)|max∣∣∣F̂ ∣∣∣ = |D|
√
1 + (2ζr)2

If r >
√
2 then we want small ζ to reduce force transmitted to base. For r <

√
2, it is

the other way round.
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1.3.2 vibration isolation
We need transfer function between y and z. Equation of motion

my′′ = −c(y′ − z′)− k(y − z)
my′′ + cy′ + ky = cz′ + kz

Let z = Re {Zeiωt} , z′ = Re {iωZeiωt} and let y = Re {Y eiωt} , y′ = Re {iωY eiωt} , y′′ =
Re {−ω2Y eiωt}, hence the above becomes

mRe
{
−ω2Y eiωt

}
+ cRe

{
iωY eiωt

}
+ kRe

{
Y eiωt

}
= cRe

{
iωZeiωt

}
+ kRe

{
Zeiωt

}
Y = ciω + k

−ω2m+ ciω + k
Z

= i2ζωnmω + k

−ω2m+ i2ζωnmω + k
Z

= i2ζωnω + ω2
n

−ω2 + i2ζωnω + ω2
n

Z

= i2ζr + 1
(1− r2) + i2ζrZ

Hence |D(r, ζ)| =
√

1+(2ζr)2√
(1−r2)2+(2ζr)2

and arg (D) = tan−1 (2ζr) − tan−1 ( 2ζr
1−r2

)
where r =

ω
ωn
.

Hence for good vibration isolation we need |Y |max
|Z| to be small. i.e. |D|

√
1 + (2ζr)2 to

be small. This is the same TR as for force isolation above.

For small |D|, we need small ζ and small k (the small k is to make r >
√
2) see plot
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In[1]:= parms = {z → 0.01};

tf =
Sqrt[1 + (2 z r)2]

Sqrt(1 - r2)2 + (2 z r)2
;

Plot[tf /. parms, {r, 0.01, 3}, GridLines → Automatic]

0.5 1.0 1.5 2.0 2.5 3.0

1

2

3

4

Figure 1.4: force transibility

In Matlab, the above can be plotted using� �
close all;
zeta = linspace(0.1, 0.7, 10);
r = linspace(0, 3, 10);
D0 = @(r,z) (sqrt(1+(2*z*r).^2)./sqrt((1-r.^2).^2+(2*z*r).^2));
figure;
hold on;
for i = 1:length(zeta)
plot(r,D0(r,zeta(i)));
end
grid on;� �
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1.3.3 Accelerometer
We need transfer function between u and za where now za is the amplitude of the
ground acceleration. This device is used to measure base acceleration by relating it
linearly to relative displacement of m to base.

Equation of motion. We use relative distance now.

m(u′′ + z′′) + cu′ + ku = 0
mu′′ + cu′ + ku = −mz′′

Let z′′ = Re {Zae
iωt} . Notice we here jumped right away to the z′′ itself and wrote

it as Re {Zae
iωt} and we did not go through the steps as above starting from base

motion. This is because we want the transfer function between relative motion u and
acceleration of base.

Now, u = Re {Ueiωt} , u′ = Re {iωUeiωt} , u′′ = Re {−ω2Ueiωt}, hence the above be-
comes

mRe
{
−ω2Ueiωt

}
+ cRe

{
iωUeiωt

}
+ kRe

{
Ueiωt

}
= −mRe

{
Zae

iωt
}

U = −m

−ω2m+ iωc+ k
Za

= −1
−ω2 + iω2ζωn + ω2

n

Za

= −1
(ω2

n − ω2) + iω2ζωn
Za

Hence |D(r, ζ)| = −1√
(ω2

n−ω2)2+(2ωζωn)2
and arg (D) = −1800 − tan−1

(
2ωζωn

ω2
n−ω2

)
When system is very stiff, which means ωn very large compared to ω , then D(r, ζ) ≈
−1
ω2
n
Za, hence by measuring u we estimate Za the amplitude of the ground acceleration

since ω2
n is known. For accuracy, need ωn > 5ω at least.

1.3.4 Seismometer
Now we need to measure the base motion (not base acceleration like above). But we
still use the relative displacement. Now the transfer function is between u and z where
now z is the base motion amplitude.

Equation of motion. We use relative distance now.

m(u′′ + z′′) + cu′ + ku = 0
mu′′ + cu′ + ku = −mz′′
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1.3. Generating Transfer functions for . . . Chapter 1. Vibration

Let z = Re {Zeiωt} , z′ = Re {iωZeiωt} ,z′′ = Re {−ω2Zeiωt} ,and let u = Re {Ueiωt} , u′ =
Re {iωUeiωt} , u′′ = Re {−ω2Ueiωt}, hence the above becomes

Now, u = Re {Ueiωt} , u′ = Re {iωUeiωt} , u′′ = Re {−ω2Ueiωt}, hence the above be-
comes

mRe
{
−ω2Ueiωt

}
+ cRe

{
iωUeiωt

}
+ kRe

{
Ueiωt

}
= −mRe

{
−ω2Zeiωt

}
U = mω2

−ω2m+ iωc+ k
Z

= ω2

−ω2 + iω2ζωn + ω2
n

Z

= r2

(1− r2) + i2ζrZ

Hence |D(r, ζ)| = r2√
(1−r2)+i2ζr and arg (D) = − tan−1 ( 2ζr

1−r2

)
Now if r is very large, which happens when ωn � ω, then 1

(1−r2)+i2ζr ⇒ 1
−r2

since r2

is the dominant factor. Therefore U = r2

(1−r2)+i2ζrZa now becomes U ' −Za therefore
measuring the relative displacement U gives linear estimate of the ground motion.
However, this device requires that ωn be much smaller than ω, which means that m
has to be massive. So this device is heavy compared to accelerometer.

1.3.5 Summary of vibration transfer functions
For good isolation of mass from ground motion, rule of thumb: Make damping low, and
stiffness low (soft spring).

Isolate base from force. transmitted by machine

Equation used ftr(t) = fspring + fdamper

Transfer function |ftr(t)|max∣∣∣F̂ ∣∣∣ = |D|
√

1 + (2ζr)2

Isolate machine from motion of base

Equation used. Use absolute mass position

my′′ + cy′ + ky = cz′ + kz

Transfer function
|Y |max
|Z|

= |D|
√
1 + (2ζr)2
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Accelerometer: Measure base acc. using relative displacement

Equation used. Use relative mass position

mu′′ + cu′ + ku = −mz′′

Transfer function

U = −1
(ω2

n − ω2) + iω2ζωn
Za ⇒ |D(r, ζ)|

= −1√
(ω2

n − ω2)2 + (2ωζωn)2

Seismometer: Measure base motion using relative displacement

Equation used. Use relative mass position

mu′′ + cu′ + ku = −mz′′

Transfer function

U = r2

(1− r2) + i2ζrZ → |D(r, ζ)|

= r2√
(1− r2) + i2ζr
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1.4. Solution of Vibration equation of . . . Chapter 1. Vibration

1.4 Solution of Vibration equation of motion for
different loading

1.4.1 common definitions
These definitions are used throughout the derivations below.

ξ = c

cr
= c

2
√
km

= c

2ωnm

ust =
F

k
static deflection

ωn =
√

k

m

ωD = ωn

√
1− ξ2note: not defined for ξ > 1 since becomes complex

r = $

ωn

Td =
2π
ωd

damped period of oscillation

τ =
{
−1
λ1

,
−1
λ2

}
time constants where λi are roots of characteristic equation

β = 1√
(1− r2)2 + (2rξ)2

magnification factor

βmax when r =
√

1− 2ξ2

βmax =
1

2ξ
√
1− ξ2

yn
yn+1

= e
ζωn2π
ωD

small damping⇒ e
ζ2π√
1−ζ2 ⇒ eζ2π

ln
(

yn
yn+1

)
= ζ2π

1
M

ln
(

yn
yn+M

)
= ζ2π
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1.4. Solution of Vibration equation of . . . Chapter 1. Vibration

1.4.2 Harmonic loading mu′′ + cu′ + ku = F sin$t

1.4.2.1 Undamped Harmonic loading

M

K

u

ReFe it

Figure 1.5: single degree no damping forced

mu′′ + ku = F sin$t

Since there is no damping in the system, then there is no steady state solution. In other
words, the particular solution is not the same as the steady state solution in this case.
We need to find the particular solution using method on undetermined coefficients.

Let u = uh + up. By guessing that up = c1 sin$t then we find the solution to be

u = A cosωnt+B sinωnt+
F

k

1
1− r2

sin$t

Applying initial conditions is always done on the full solution. Applying initial conditions
gives

u(0) = A

u′(t) = −Aω sinωnt+Bω cosωnt+$
F

k

1
1− r2

cos$t

u′(0) = Bωn +$
F

k

1
1− r2

B = u′(0)
ωn

− F

k

r

1− r2

Where r = $
ωn

The complete solution is

u(t) = u(0) cosωnt+
(
u′(0)
ωn

− F

k

r

1− r2

)
sinωnt+

F

k

1
1− r2

sin$t (1)
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1.4. Solution of Vibration equation of . . . Chapter 1. Vibration

Example: Given force f(t) = 3 sin (5t) then$ = 5 rad/sec, and F̂ = 3. Letm = 1, k = 1,
then ωn = 1 rad/sec. Hence r = 5, Let initial conditions be zero, then

u =
(
−3 5

1− 52

)
sin t+ 3 1

1− 52 sin 5t

= 0.625 sin t− 0.125 sin 5.0t

1.4.2.1.1 Resonance forced vibration When $ ≈ ω we obtain resonance since
r → 1 in the solution given in Eq (1) above and as written the solution can not be
used for analysis. To obtain a solution for resonance some calculus is needed. Eq (1) is
written as

u(t) = u(0) cosωt+
(
u′(0)
ω

− F

k

ω$

ω2 −$2

)
sinωt+ F

k

ω2

ω2 −$2 sin$t (1A)

When $ ≈ ω but less than ω, letting

ω −$ = 2∆ (2)

where ∆ is very small positive quantity. And since $ ≈ ω let

ω +$ ≈ 2$ (3)

Multiplying Eq (2) and (3) gives

ω2 −$2 = 4∆$ (4)

Eq (1A) can now be written in terms of Eqs (2,3) as

u(t) = u(0) cosωt+
(
u′(0)
ω

− F

k

ω$

4∆$

)
sinωt+ F

k

ω2

4∆$
sin$t

= u(0) cosωt+
(
v0
ω

− F

k

ω

4∆

)
sinωt+ F

k

ω2

4∆$
sin$t

Since $ ≈ ω the above becomes

u(t) = u(0) cosωt+
(
u′(0)
ω

− F

k

ω

4∆

)
sinωt+ F

k

ω

4∆ sin$t

= u(0) cosωt+ u′(0)
ω

sinωt+ F

k

ω

4∆(sin$t− sinωt)

Using sin$t− sinωt = 2 sin
(
$−ω
2 t
)
cos
(
$+ω
2 t
)
the above becomes

u(t) = u(0) cosωt+ u′(0)
ω

sinωt+ F

k

ω

2∆

(
sin
(
$ − ω

2 t

)
cos
(
$ + ω

2 t

))
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From Eqs (2,3) the above can be written as

u(t) = u(0) cosωt+ u′(0)
ω

sinωt+ F

k

ω

2∆(sin (−∆t) cos ($t))

Since lim∆→0
sin(∆t)

∆ = t the above becomes

u(t) = u(0) cosωt+ u′(0)
ω

sinωt− F

k

ωt

2 cos (ωt)

This is the solution to use for resonance.

1.4.2.2 Underdamped harmonic loading c < cr, ξ < 1

M

K

u

C

Fsint

Figure 1.6: single degree damping forced

mu′′ + cu′ + ku = F sin$t

u′′ + 2ξωu′ + ω2u = F

m
sin$t

The solution is
u(t) = uh + up

where
uh(t) = e−ξωt(A cosωdt+B sinωdt)

and
up(t) =

F√
(k −m$)2 + (c$)2

sin ($t− θ)

where
tan θ = c$

k −m$2 = 2ξr
1− r2

Very important note here in the calculations of tan θ above, one should be careful on
the sign of the denominator. When the forcing frequency $ > ω the denominator will
become negative (the case of $ = ω is resonance and is handled separately). Therefore,
one should use arctan that takes care of which quadrant the angle is. For example, in
Mathematica use
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1.4. Solution of Vibration equation of . . . Chapter 1. Vibration

ArcTan[1 - r^2, 2 Zeta r]]

and in Matlab use

atan2(2 Zeta r,1 - r^2)

Otherwise, wrong solution will result when $ > ω The full solution is

u(t) = e−ξωt(A cosωdt+B sinωdt) +
F

k

1√
(1− r2)2 + (2ξr)2

sin ($t− θ) (1)

Applying initial conditions gives

A = u(0) + F

k

1√
(1− r2)2 + (2ξr)2

sin θ

B = u′(0)
ωd

+ u(0) ξω
ωd

+ F

k

1

ωd

√
(1− r2)2 + (2ξr)2

(ξω sin θ −$ cos θ)

Another form of these equations is given as follows

up =
p0
k

1
(1− r2)2 + (2ζr)2

((
1− r2

)
sin$t− 2ζr cos$t

)
Hence the full solution is

u(t) = e−ξωnt(A cosωdt+B sinωdt)+
F

k

1
(1− r2)2 + (2ζr)2

((
1− r2

)
sin$t− 2ζr cos$t

)
(1.1)

Applying initial conditions now gives

A = u(0) + 2Frξ

k

1
(1− r2)2 + (2ξr)2

B = u′(0)
ωd

+ u(0) ξωn

ωd
− F (1− r2)

kωd

$

(1− r2)2 + (2ζr)2
+ 2Frζ

kωd

ωn

(1− r2)2 + (2ζr)2

The above 2 sets of equations are equivalent. One uses the phase angle explicitly and
the second ones do not. Also, the above assume the force is F sin$t and not F cos$t.
If the force is F cos$t then in Eq 1.1 above, the term reverse places as in

u(t) = e−ξωnt(A cosωdt+B sinωdt)+
F

k

1
(1− r2)2 + (2ζr)2

((
1− r2

)
cos$t− 2ζr sin$t

)
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Applying initial conditions now gives

A = u(0) + F

k

(1− r2)
(1− r2)2 + (2ξr)2

B = u′(0)
ωd

+ u(0) ξωn

ωd
+ 2Frζ

kωd

$

(1− r2)2 + (2ζr)2
− F (1− r2)

kωd

ωn

(1− r2)2 + (2ζr)2

When a system is damped, the problem with the divide by zero when r = 1 does not
occur here as was the case with undamped system, since when when $ ≈ ω or r = 1,
the solution in Eq (1) becomes

u(t) = e−ξωt

((
u(0) + F

k

1
2ξ sin θ

)
cosωdt+

(
u′(0)
ωd

+ u(0) ξω
ωd

+ F

k

1
2ωdξ

(ξω sin θ −$ cos θ)
)
sinωdt

)
+ F

k

1
2 sin ($t− θ)

and the problem with the denominator going to zero does not show up here. The
amplitude when steady state response is maximum can be found as follows. The
amplitude of steady state motion is F

k
1√

(1−r2)2+(2ξr)2
. This is maximum when the

magnification factor β = 1√
(1−r2)2+(2ξr)2

is maximum or when
√
(1− r2)2 + (2ξr)2 or√(

1−
(
$
ω

)2)2 + (2ξ$
ω

)2 is minimum. Taking derivative w.r.t. $ and equating the
result to zero and solving for $ gives

$ = ω
√

1− 2ξ2

We are looking for positive $, hence when $ = ω
√
1− 2ξ2 the under-damped response

is maximum.

1.4.2.3 critically damping harmonic loading ξ = c
cr

= 1

The solution is
u(t) = uh + up

Where uh = (A+Bt) e−ωt and up = F
k

1√
(1−r2)2+(2r)2

sin ($t− θ) where tan θ = 2r
1−r2

(mak-

ing sure to use correct arctan definition). Hence

u(t) = (A+Bt) e−ωt + F

k

1√
(1− r2)2 + (2r)2

sin ($t− θ)
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where A,B are found from initial conditions

A = u(0) + F

k

1√
(1− r2)2 + (2r)2

sin θ

B = u′(0) + u(0)ω + F

k

1√
(1− r2)2 + (2r)2

(ω sin θ −$ cos θ)

1.4.2.4 overdamped harmonic loading ξ = c
cr

> 1

The solution is
u(t) = uh + up

where
uh(t) = Aep1t +Bep2t

and
up(t) =

F

k

1√
(1− r2)2 + (2ξr)2

sin ($t− θ)

hence
u = Aep1t +Bep2t + F

k

1√
(1− r2)2 + (2ξr)2

sin ($t− θ)

where tan θ = 2ξr
1−r2

and

p1 = − c

2m +
√( c

2m

)2
− k

m
= −ωξ + ωn

√
ξ2 − 1

p2 = − c

2m −
√( c

2m

)2
− k

m
= −ωξ − ωn

√
ξ2 − 1

Hence the solution is

u(t) = Ae

(
−ξ+

√
ξ2−1

)
ωt +Be

(
−ξ−

√
ξ2−1

)
ωt + F

k
β sin ($t− θ)

A =
u′(0) + u(0)ωξ + u(0)ω

√
ξ2 − 1 + F

k
β
((
ξ +

√
ξ2 − 1

)
ω sin θ −$ cos θ

)
2ω

√
ξ2 − 1

B = −
u′(0) + u(0)ωξ − u(0)ω

√
ξ2 − 1 + F

k
β
((
ξ −

√
ξ2 − 1

)
ω sin θ −$ cos θ

)
2ω

√
ξ2 − 1

35



1.4. Solution of Vibration equation of . . . Chapter 1. Vibration

1.4.2.5 Solution using frequency approach to harmonic loading

my′′ + cy′ + ky = Re
(
F̂ ei$t

)
x = Re

{
X̂ei$t

}
X̂ = F̂

k
D(r, ζ)

D(r, ζ) = 1
(1− r2) + 2iζr

x = Re
{
F̂

k
|D(r, ζ)| ei($t−θ)

}
θ = tan−1 2ζr

1− r2

Let load be harmonic and represented in general as Re
(
F̂ ei$t

)
where F̂ is the complex

amplitude of the force.

Hence system is represented by

my′′ + cy′ + ky = Re
(
F̂ ei$t

)
y′′ + 2ζωny

′ + ω2
ny = Re

(
F̂

m
ei$t

)

Let y = Re
(
Ŷ ei$t

)
Hence y′ = Re

(
i$Ŷ ei$t

)
, y′′ = Re

(
−$2Ŷ ei$t

)
, therefore the

differential equation becomes

Re
(
−$2Ŷ ei$t

)
+ 2ζωnRe

(
i$Ŷ ei$t

)
+ ω2

nRe
(
Ŷ ei$t

)
= Re

(
F̂

m
ei$t

)
(
−$2 + 2ζωni$ + ω2

n

)
Ŷ = F̂

m

Ŷ =
F̂
m

(−$2 + 2ζωni$ + ω2
n)

Dividing numerator and denominator ω2
n gives

Ŷ = F̂

k

1
(1− r2) + i2ζr
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Where r = $
ωn
, hence the response is

y = Re
(
F̂

k

1
(1− r2) + i2ζre

i$t

)

Therefore, the phase of the response is

arg (y) = arg
(
F̂
)
− tan−1

(
2ζr

(1− r2)

)
+$t

Hence at t = 0 the phase of the response will be

arg (y) = arg
(
F̂
)
− tan−1

(
2ζr

(1− r2)

)

So when F̂ is real, the phase of the response is simply − tan−1
(

2ζr
(1−r2)

)
Undamped case
When ζ = 0 the above becomes

y = Re
(
F̂

k

1
(1− r2)e

i$t

)

=

∣∣∣F̂ ∣∣∣
k

1
(1− r2) cos

(
$t+ arg

(
F̂
))

For real force this becomes

y = F

k

1
(1− r2) cos ($t)

The magnitude
∣∣∣Ŷ ∣∣∣ = F

k
1

(1−r2) and phase zero.

damped cases
ζ > 0

y = Re
(
F̂

k

1
(1− r2) + i2ζre

i$t

)

∣∣∣Ŷ ∣∣∣ =
∣∣∣F̂ ∣∣∣
k

1√
(1− r2)2 + (2ζr)2

arg
(
Ŷ
)
= φ = arg

(
F̂
)
− tan−1

(
2ζr

1− r2

)
+$t
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Hence for real force and at t = 0 the phase of displacement is

− tan−1
(

2ζr
1− r2

)
lag behind the load.

When r < 1 then φ goes from 0 to −900 Therefore phase of displacement is 0 to −900
behind force. The minus sign at the front was added since the complex number is in
the denominator. Hence the response will always be lagging in phase relative for load.

For r > 1

Now 1− r2 is negative, hence the phase will be from −90◦ to −180◦

When r = 1

y = Re
(
F̂

k

1
i2ζ e

i$t

)

∣∣∣Ŷ ∣∣∣ =
∣∣∣F̂ ∣∣∣
k

1
2ζ

arg
(
Ŷ
)
= −90◦

Now phase is −90◦

2r

1  r2

Phase of response complex 
amplitude for underdamped 
and when r<1
Phase will be from 0 to -90 
degrees

2r

1  r2

Phase of response complex 
amplitude for 
underdamped and when 
r>1
Phase will be from -90 to -
180 degrees

Phase of response complex 
amplitude for 
underdamped and when 
r=1
Phase will -90 degrees

Figure 1.7: steady state

Examples. System has ζ = 0.1 and m = 1, k = 1 subjected for force 3 cos (0.5t) find the
steady state solution.
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Answer y(t) = Re
(
Ŷ ei$t

)
, ωn =

√
k
m

= 1 rad/sec, hence r = 0.5 under the response is

y(t) = Re
(∣∣∣Ŷ ∣∣∣ ei$t

)
=
∣∣∣Ŷ ∣∣∣ cos ($t)

= F

k

1√
(1− r2)2 + (2ζr)2

cos
(
.5t− tan−1

(
2(0.1) 0.5
1− 0.52

))

= 3 1√
(1− 0.52)2 + (2 (0.1) 0.5)2

cos (.5t− 7.59◦)

= 3.9649 cos (.5t− 7.59◦)

In[4]:= Plot[{3 Cos[0.5 t], 3.9649 Cos[.5 t - 7.59 Degree]}, {t, 0, 20}, PlotStyle → {Dashed, Red},

PlotLegends → {"load", "response"}]

5 10 15 20

-4

-2

2

4

load

response

Figure 1.8: steady state plot

The equation of motion can also be written as u′′ + 2ζωu′ + ω2u = F
m
sin$t.

The following table gives the solutions for initial conditions are u(0) and u′(0) under
all damping conditions. The roots shown are the roots of the quadratic characteristic
equation λ2 + 2ζωλ + ω2λ = 0. Special handling is needed to obtain the solution of
the differential equation for the case of ζ = 0 and $ = ω as described in the detailed
section below.
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1.4.2.6 Summary table

ζ = 0

roots

 −iω

+iω

u(t)


$ = ω → u(0) cos$t+ u′(0)

$
sin$t− F

K
$t
2 cos ($t)

$ 6= ω → u(0) cosωt+
(

u′(0)
ω

− F
K

r
1−r2

)
sinωt+ F

K
1

1−r2
sin$t

ζ < 1

roots

 −ξω + iωn

√
1− ξ2

−ξω − iωn

√
1− ξ2

u(t) = e−ξωt(A cosωdt+B sinωdt) + F
K

1√
(1−r2)2+(2ξr)2

sin ($t− θ)

A = u0 + F
K

1√
(1−r2)2+(2ξr)2

sin θ

B = v0
ωd

+ u0ξω
ωd

+ F
K

1
ωd

√
(1−r2)2+(2ξr)2

(ξω sin θ −$ cos θ)

ζ = 1

roots

 −ω

−ω

u(t) = (A+Bt) e−ωt + F
K

1√
(1−r2)2+(2r)2

sin ($t− θ)

A = u0 + F
K

1√
(1−r2)2+(2r)2

sin θ

B = v0 + u0ω + F/k√
(1−r2)2+(2r)2

(ω sin θ −$ cos θ)

ζ > 1

roots

 −ωnξ + ωn

√
ξ2 − 1

−ωnξ − ωn

√
ξ2 − 1

u(t) = Ae

(
−ξ+

√
ξ2−1

)
ωnt +Be

(
−ξ−

√
ξ2−1

)
ωnt + F

K
β sin ($t− θ)

A =
v0+u0ωξ+u0ω

√
ξ2−1+ F

K
β
((

ξ+
√

ξ2−1
)
ω sin θ−$ cos θ

)
2ω

√
ξ2−1

B = −
v0+u0ωξ−u0ω

√
ξ2−1+ F

K
β
((

ξ−
√

ξ2−1
)
ω sin θ−$ cos θ

)
2ω

√
ξ2−1
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1.4.3 constant loading mu′′ + cu′ + ku = F

1.4.3.1 Undamped Constant loading case ζ = 0

mu′′ + ku = F

u′′ + ω2u = F

u(t) = uh + up

Where uh = A cosωt+B sinωt and up = F
k
, the solution is

u(t) = A cosωt+B sinωt+ F

k

Applying initial conditions gives

A = u(0)− F

k

B = u′(0)
ω

And complete solution is

u(t) = F

k
+
(
u(0)− F

k

)
cosωt+ u′(0)

ω
sinωt

1.4.3.2 underdamped constant loading ζ < 1

The general solution is

u(t) = e−ξωt(A cosωdt+B sinωdt) +
F

k

From initial conditions

A = u(0)− F

k

B =
u′(0) + u(0) ξω − F

k
ξω

ωd

Hence the solution is

u(t) = e−ξωt

((
u(0)− F

k

)
cosωdt+

(
u′(0) + u(0) ξω − F

k
ξω

ωd

)
sinωdt

)
+ F

k
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1.4.3.3 Critical damping constant loading ζ = 1

The general solution is
u(t) = (A+Bt)e−ωt + F

k

Where from initial conditions

A = u(0)− F

k

B = u′(0) + u(0)ω − F

k
ω

1.4.3.4 Over-damped constant loading ζ > 0

The solution is
u(t) = Aep1t +Bep2t + F

k

Where now

B =
F
k
p1 − u0p1 + u′(0)

(p2 − p1)

A = u(0)− F

k
−B

Hence the solution is
u(t) = Aep1t +Bep2t + F

k

Where

p1 = − c

2m +
√( c

2m

)2
− k

m
= −ωξ + ωn

√
ξ2 − 1

p2 = − c

2m −
√( c

2m

)2
− k

m
= −ωξ − ωn

√
ξ2 − 1
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1.4.3.5 Summary table for constant loading solutions

ζ = 0
roots

 −iω

+iω

u(t) =
(
u0 − F

k

)
cosωt+ v0

ω
sinωt+ F

k

ζ < 1
roots

 −ξω + iωn

√
1− ξ2

−ξω − iωn

√
1− ξ2

u(t) = e−ξωt
((

u0 − F
k

)
cosωdt+

(
v0+u0ξω−F

k
ξω

ωd

)
sinωdt

)
+ F

k

ζ = 1
roots

 −ω

−ω

u(t) =
((
u0 − F

k

)
+
(
v0 + u0ω − F

k
ω
)
t
)
e−ωt + F

k

ζ > 1

roots

 −ωnξ + ωn

√
ξ2 − 1

−ωnξ − ωn

√
ξ2 − 1

B =
F
k
p1−u0p1+v0
(p2−p1)

A = u0 − F
k
−B

p1 = − c
2m +

√(
c

2m

)2 − k
m

= −ωnξ + ωn

√
ξ2 − 1

p2 = − c
2m −

√(
c

2m

)2 − k
m

= −ωnξ − ωn

√
ξ2 − 1

u(t) = Aep1t +Bep2t + F
k
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1.4. Solution of Vibration equation of . . . Chapter 1. Vibration

1.4.4 No loading (free vibration) mu′′ + cu′ + ku = 0

1.4.4.1 Undamped free vibration

M

K

u

Figure 1.9: single degree mass no damping

mu′′ + ku = 0

u′′ + ω2u = 0

The solution is
u(t) = u(0) cosωt+ u′(0)

ω
sinωt

1.4.4.2 under-damped free vibration c < cr, ξ < 1

M

K

u

C

Figure 1.10: single degree mass damping

mu′′ + cu′ + ku = 0

u′′ + 2ξωu′ + ω2u = 0

The solution is
u = e−ξωt(A cosωdt+B sinωdt)
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1.4. Solution of Vibration equation of . . . Chapter 1. Vibration

Applying initial conditions gives A = u(0) and B = u′(0)+u(0)ξω
ωd

. Therefore the solution
becomes

u(t) = e−ξωt

(
u(0) cosωdt+

u′(0) + u(0) ξω
ωd

sinωdt

)

1.4.4.3 critically damped free vibration ξ = c
cr

= 1

The solution is

u(t) = (A+Bt) e−
( cr
2m

)
t

= (A+Bt) e−ωt

where A,B are found from initial conditions A = u(0),B = u′(0) + u(0)ω, hence

u(t) = (u(0) + (u′(0) + u(0)ω) t) e−ωt

1.4.4.4 over-damped free vibration ξ = c
cr

> 1

The solution is
u(t) = Aeλ1t +Beλ2t

where A,B are found from initial conditions.

A = u′(0)− u(0)λ2

2ω
√
ξ2 − 1

B = −u′(0) + u(0)λ1

2ω
√
ξ2 − 1

where λ1 and λ2 are the roots of the characteristic equation

λ1 = − c

2m +
√( c

2m

)2
− k

m
= −ξω + ω

√
ξ2 − 1

λ2 = − c

2m −
√( c

2m

)2
− k

m
= −ξω − ω

√
ξ2 − 1
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1.4.4.5 Summary table for free vibration solutions

ζ = 0

u′′ + ω2u = 0

roots

 −iω

+iω

u(t) = u(0) cosωt+ u′(0)
ω

sinωt

u(t) = A cos (ωt− φ)

A =
√

u2(0) +
(

u′(0)
ω

)2
φ = tan−1

(
u′(0)/ω
u(0)

)

ζ < 1
roots

 −ξω + iω
√
1− ξ2

−ξω − iω
√
1− ξ2

u(t) = e−ξωt
(
u(0) cosωdt+ u′(0)+u(0)ξω

ωd
sinωdt

)

ζ = 1
roots

 −ω

−ω

u(t) = (u(0)(1 + ωt) + u′(0)t) e−ωt

ζ > 1

roots

 λ1 = −ωξ + ω
√
ξ2 − 1

λ2 = −ωξ − ω
√
ξ2 − 1

u(t) = Aeλ1ωt +Beλ2ωt

A = u′(0)−u(0)λ2
2ω

√
ξ2−1

B = −u′(0)+u(0)λ1
2ω

√
ξ2−1
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1.4.4.6 Roots of characteristic equation

The roots of the characteristic equation for u′′+2ξωu′+ω2u = 0 are given in this table

roots time constant τ

ξ < 1
{
−ξω + jωn

√
1− ξ2,−ξω − iωn

√
1− ξ2

} 1
ξω

ξ = 1 {−ω,−ω} 1
ω

ξ > 1
{
−ωnξ + ωn

√
ξ2 − 1,−ωnξ − ωn

√
ξ2 − 1

} 1
ωnξ−ωn

√
ξ2−1

, 1
ωnξ+ωn

√
ξ2−1

(which to use? the bigger?)

1.4.5 impulse F0δ(t) loading

1.4.5.1 impulse input

1.4.5.1.1 Undamped system with impulse

mü+ ku = F0δ(t)

with initial conditions u(0) = 0 and u′(0) = 0.Assuming the impulse acts for a very
short time period from 0 to t1 seconds, where t1 is small amount. Integrating the above
differential equation gives∫ t1

0
müdt+

∫ t1

0
kudt =

∫ t1

0
F0δ(t)

Since t1 is very small, it can be assumed that u changes is negligible, hence the above
reduces to ∫ t1

0
müdt =

∫ t1

0
F0δ(t)∫ t1

0
m

(
du̇

dt

)
dt =

∫ t1

0
F0δ(t)∫ u̇(t1)

u̇(0)
du̇ = F0

m

∫ t1

0
δ(t)

u̇(t1)− u̇(0) = F0

m

∫ t1

0
δ(t)

u̇(t1) =
F0

m

∫ t1

0
δ(t)

since we assumed u′(0) = 0 and since
∫ t1
0 δ(t) = 1 then the above reduces to

u̇(t1) =
F0

m
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1.4. Solution of Vibration equation of . . . Chapter 1. Vibration

Therefore, the effect of the impulse is the same as if the system was a free system
but with initial velocity given by F0

m
and zero initial position. Hence the system is now

solved as follows
mü+ ku = 0

With u(0) = 0 and u′(0) = F0
m
. The solution is

uimpulse(t) =
F0

mω
sinωt

If the initial conditions were not zero, then the solution for these are added to the
above. From earlier, it was found that the solution is u(t) = u(0) cosωt + u′(0)

ω
sinωt,

therefore, the full solution is

u(t) =

due to IC only︷ ︸︸ ︷
u(0) cosωt+ u′(0)

ω
sinωt+

due to impulse︷ ︸︸ ︷
F0

mω
sinωt

1.4.5.1.2 under-damped with impulse c < cr, ξ < 1

mü+ cu̇+ ku = δ(t)

ü+ 2ξωu̇+ ω2u = δ(t)
with initial conditions u(0) = 0 and u′(0) = 0.Integrating gives∫ t1

0
müdt+

∫ t1

0
cu̇dt+

∫ t1

0
kudt =

∫ t1

0
F0δ(t)

Since t1 is very small, it can be assumed that u changes is negligible as well as the change
in velocity, hence the above reduces to the same result as in the case of undamped.
Therefore, the system is solved as free system, but with initial velocity u′(0) = F0/m

and zero initial position.
Initial conditions are u(0) = 0 and u′(0) = 0 then the solution is

uimpulse = e−ξωt(A cosωdt+B sinωdt)

applying initial conditions gives A = 0 and B =
(

F0
m

)
ωd

, hence

uimpulse(t) = e−ξωt

(
F0

mωd
sinωdt

)
If the initial conditions were not zero, then the solution for these are added to the above.
From earlier, it was found that the solution is u(t) = e−ξωt

(
u(0) cosωdt+ u′(0)+u(0)ξω

ωd
sinωdt

)
,

therefore, the full solution is

u(t) =

due to IC only︷ ︸︸ ︷
e−ξωt

(
u(0) cosωdt+

u′(0) + u(0)ξω
ωd

sinωdt

)
+

due to impulse︷ ︸︸ ︷
e−ξωt

(
F0

mωd
sinωdt

)

48



1.4. Solution of Vibration equation of . . . Chapter 1. Vibration

1.4.5.1.3 critically damped with impulse input ξ = c
cr

= 1 with initial condi-
tions u(0) = 0 and u′(0) = 0 then the solution is

u(t) = (A+Bt) e−
( cr
2m

)
t

= (A+Bt) e−ωt

where A,B are found from initial conditions A = u(0) = 0 and B = u′(0)+u(0)ω = F0
m
,

hence the solution is
uimpulse(t) =

F0t

m
e−ωt

If the initial conditions were not zero, then the solution for these are added to the
above. From earlier, it was found that the solution is u(t) = (u0(1 + ωt) + u′(0) t) e−ωt,
therefore, the full solution is

u(t) =
due to IC only︷ ︸︸ ︷

(u(0) (1 + ωt) + u′(0) t) e−ωt +

due to impulse︷ ︸︸ ︷
F0t

m
e−ωt

1.4.5.1.4 over-damped with impulse input ξ = c
cr

> 1 With initial conditions
are u(0) = 0 and u′(0) = 0 the solution is

uimpulse(t) = Aeλ1ωt +Beλ2ωt

where A,B are found from initial conditions and

λ1 = −ωξ + ω
√
ξ2 − 1

λ2 = −ωξ − ω
√
ξ2 − 1

A = u′(0)− u(0)λ2

2ω
√
ξ2 − 1

B = −u′(0) + u(0)λ1

2ω
√
ξ2 − 1

Hence the solution is

uimpulse(t) = Ae

(
−ξ+

√
ξ2−1

)
ωt +Be

(
−ξ−

√
ξ2−1

)
ωt

where

A =
F0
m

2ω
√
ξ2 − 1

B =
−F0

m

2ω
√
ξ2 − 1
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Hence

uimpulse(t) =
F0
m

2ω
√
ξ2 − 1

e

(
−ξ+

√
ξ2−1

)
ωt −

F0
m

2ω
√
ξ2 − 1

e

(
−ξ−

√
ξ2−1

)
ωt

If the initial conditions were not zero, then the solution for these are added to the
above. From earlier, it was found that the solution is u(t) = Aep1t + Bep2t, therefore,
the full solution is

u(t) = Aeλ1ωt +Beλ2ωt +
F0
m

2ω
√
ξ2 − 1

eλ1ωt −
F0
m

2ω
√
ξ2 − 1

eλ2ωt

A = u′(0)− u(0)λ2

2ω
√
ξ2 − 1

B = −u′(0) + u(0)λ1

2ω
√
ξ2 − 1

1.4.5.1.5 Summary table
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ζ = 0

u′′ + ω2u = 0

roots

 −iω

+iω

u(t) =

transient︷ ︸︸ ︷
u(0) cosωt+ u′(0)

ω
sinωt+

steady state︷ ︸︸ ︷
F0

mω
sinωt

ζ < 1

roots

 −ξω + iω
√
1− ξ2

−ξω − iω
√
1− ξ2

u(t) =

transient︷ ︸︸ ︷
e−ξωt

(
u(0) cosωdt+

u′(0) + u(0)ξω
ωd

sinωdt

)
+

steady state︷ ︸︸ ︷
e−ξωt

(
F0

mωd
sinωdt

)

ζ = 1
roots

 −ω

−ω

u(t) = (u(0) (1 + ωt) + u′(0) t) e−ωt + F0t
m
e−ωt

ζ > 1

roots

 λ1 = −ωξ + ω
√
ξ2 − 1

λ2 = −ωξ − ω
√
ξ2 − 1

u(t) = Aeλ1ωt +Beλ2ωt +
F0
m

2ω
√

ξ2−1
eλ1ωt −

F0
m

2ω
√

ξ2−1
eλ2ωt

A = u′(0)−u(0)λ2
2ω

√
ξ2−1

B = −u′(0)+u(0)λ1
2ω

√
ξ2−1

The impulse response can be implemented in Mathematica as� �
parms = {m -> 10, c -> 1.2, k -> 4.3, a -> 1};
tf = TransferFunctionModel[a/(m s^2 + c s + k) /. parms, s]
sol = OutputResponse[tf, DiracDelta[t], t];
Plot[sol, {t, 0, 60}, PlotRange -> All, Frame -> True,
FrameLabel -> {{z[t], None}, {Row[{t, " (sec)"}], eq}},
GridLines -> Automatic]� �
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0 10 20 30 40 50 60

-0.10

-0.05

0.00

0.05

0.10

t (sec)

z
(t
)

eq

Figure 1.11: impulse Response Diagram

1.4.5.2 Impulse sin function

Now assume the input is as follows

t1 4

0.2

0.4

0.6

0.8

1.0

Figure 1.12: input function

given by F (t) = F0 sin ($t) where $ = 2π
2t1 = π

t1

1.4.5.2.1 undamped system with sin impulse

mü+ ku =

 F0 sin ($t) 0 ≤ t ≤ t1

0 t > t1

with u(0) = u0 and u̇(0) = v0. For 0 ≤ t ≤ t1 the solution is

u(t) = u0 cosωt+
(
v0
ω

− ust
r

1− r2

)
sinωt+ ust

1
1− r2

sin
(
π

t1
t

)
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where r = $
ω
= π/t1

ω
= T

2t1 where T is the natural period of the system. ust = F0
k
, hence

the above becomes

u(t) = u0 cosωt+

v0
ω

− F0

k

(
π/t1
ω

)
1−

(
π/t1
ω

)2
 sinωt+ F0

k

1

1−
(

π/t1
ω

)2 sin(π t

t1

)
(1)

When u0 = 0 and v0 = 0 then

u(t) = −F0

k

(
π/t1
ω

)
1−

(
π/t1
ω

)2 sinωt+ F0

k

1

1−
(

π/t1
ω

)2 sin(π t

t1

)

u(t) = F0

k

1

1−
(

π/t1
ω

)2(sin(π t

t1

)
− π/t1

ω
sinωt

)

The above Eq (1) gives solution during the time 0 ≤ t ≤ t1

Now after t = t1 the force will disappear, the differential equation becomes

mü+ ku = 0 t > t1

but with the initial conditions evaluate at t = t1. From (1)

u(t1) = u0 cosωt1 +
(
v0
ω

− ust
r

1− r2

)
sinωt1 + ust

1
1− r2

sin$t1

= u0 cosωt1 +
(
v0
ω

− ust
r

1− r2

)
ust

r

1− r2
sinωt1 (2)

since sin$t1 = 0. taking derivative of Eq (1)

u̇(t) = −ωu0 sinωt+ ω

(
v0
ω

− ust
r

1− r2

)
cosωt+$

1
1− r2

cos$t

and at t = t1 the above becomes

u̇(t1) = −ωu0 sinωt1 + ω

(
v0
ω

− ust
r

1− r2

)
cosωt1 +$

1
1− r2

cos$t1

= −ωu0 sinωt1 + ω

(
v0
ω

− ust
r

1− r2

)
cosωt1 −$

1
1− r2

(3)

since cos$t1 = −1. Now (2) and (3) are used as initial conditions to solve mü+ku = 0 .
The solution for t > t1 is

u(t) = u(t1) cosωt+
u̇(t1)
ω

sinωt
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Resonance with undamped sin impulse When $ ≈ ω and t ≤ t1 we obtain
resonance since r → 1 in the solution shown up and as written the solution can’t be
used for analysis in this case. To obtain a solution for resonance some calculus is needed.
Eq (1) is written as

u(t) = u0 cosωt+
(
v0
ω

− ust

$
ω

1−
(
$
ω

)2
)
sinωt+ ust

1
1−

(
$
ω

)2 sin$t

= u0 cosωt+
(
v0
ω

− ust
ω$

ω2 −$2

)
sinωt+ ust

ω2

ω2 −$2 sin$t (1A)

Now looking at case when $ ≈ ω but less than ω, hence let

ω −$ = 2∆ (2)

where ∆ is very small positive quantity. and we also have

ω +$ ≈ 2$ (3)

Multiplying Eq (2) and (3) with each others gives

ω2 −$2 = 4∆$ (4)

Going back to Eq (1A) and rewriting it as

u(t) = u0 cosωt+
(v0
ω

− ust
ω$

4∆$

)
sinωt+ ust

ω2

4∆$
sin$t

= u0 cosωt+
(v0
ω

− ust
ω

4∆

)
sinωt+ ust

ω2

4∆$
sin$t

Since $ ≈ ω the above becomes

u(t) = u0 cosωt+
(v0
ω

− ust
ω

4∆

)
sinωt+ ust

ω

4∆ sin$t

= u0 cosωt+
v0
ω

sinωt+ ust
ω

4∆(sin$t− sinωt)

now using sin$t− sinωt = 2 sin
(
$−ω
2 t
)
cos
(
$+ω
2 t
)
the above becomes

u(t) = u0 cosωt+
v0
ω

sinωt+ ust
ω

2∆

(
sin
(
$ − ω

2 t

)
cos
(
$ + ω

2 t

))
From Eq(2) $ − ω = −2∆ and ω +$ ≈ 2$ hence the above becomes

u(t) = u0 cosωt+
v0
ω

sinωt+ ust
ω

2∆(sin (−∆t) cos ($t))
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or since $ ≈ ω

u(t) = u0 cosωt+
v0
ω

sinωt− ust
ω

2∆(sin (∆t) cos (ωt))

Now lim∆→0
sin(∆t)

∆ = t hence the above becomes

u(t) = u0 cosωt+
v0
ω

sinωt− ust
ωt

2 cos (ωt)

This can also be written as

u(t) = u0 cos$t+ v0
$

sin$t− ust
$t

2 cos ($t) (1)

= u0 cos
(
π

t1
t

)
+ v0

$
sin
(
π

t1
t

)
− ust

(
π

2t1
t

)
cos
(
π

t1
t

)
since $ ≈ ω in this case. This is the solution to use for resonance and for t ≤ t1

Hence for t > t1, the above equations is used to determine initial conditions at t = t1

u(t1) = u0 cos$t1 +
v0
$

sin$t1 − ust
$t1
2 cos ($t1)

but cos$t1 = cos π
t1
t1 = −1 and sin$t1 = 0 and $t1

2 = π
2 , hence the above becomes

u(t1) = −u0 + ust
π

2

Taking derivative of Eq (1) gives

u̇(t) = −$u0 sin$t+ v0 cos$t+ ust
$2t

2 sin ($t)− ust
$

2 cos ($t)

and at t = t1

u̇(t1) = −$u0 sin$t1 + v0 cos$t1 + ust
$2t1
2 sin ($t1)− ust

$

2 cos ($t1)

= −v0 + ust
$

2

Now the solution for t > t1 is

u(t) = u(t1) cosωt+
u̇(t1)
ω

sinωt

=
(
−u(0) + ust

π

2

)
cosωt+

−u′(0) + ust
π
2t1

ω
sinωt
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1.4.5.2.2 under-damped with sin impulse c < cr, ξ < 1

mü+ cu̇+ ku =

 F0 sin ($) 0 ≤ t ≤ t1

0 t > t1

or

ü+ 2ξωu̇+ ω2u =

 F0 sin ($) 0 ≤ t ≤ t1

0 t > t1

mü+ cu̇+ ku = F sin$t

ü+ 2ξωu̇+ ω2u = F

m
sin$t

For t ≤ t1Initial conditions are u(0) = u0 and u̇(0) = v0 and ust = F
k
then the solution

from above is

u(t) = e−ξωt(A cosωdt+B sinωdt) +
ust√

(1− r2)2 + (2ξr)2
sin ($t− θ) (1)

Applying initial conditions gives

A = u0 +
ust√

(1− r2)2 + (2ξr)2
sin θ

B = v0
ωd

+ u0ξω

ωd
+ ust

ωd

√
(1− r2)2 + (2ξr)2

(ξω sin θ −$ cos θ)

For t > t1. From (1)

u(t1) = e−ξωt1(A cosωdt1 +B sinωdt1) +
ust√

(1− r2)2 + (2ξr)2
sin ($t1 − θ) (2)

Taking derivative of (1) gives

u̇(t) = −ξωe−ξωt(A cosωdt+B sinωdt) + e−ξωt(−Aωd sinωdt+ ωdB cosωdt)

+$
ust√

(1− r2)2 + (2ξr)2
cos ($t− θ)
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at t = t1

u̇(t1) = −ξωe−ξωt1(A cosωdt1 +B sinωdt1) + e−ξωt1(−Aωd sinωdt1 + ωdB cosωdt1)

+$
ust√

(1− r2)2 + (2ξr)2
cos ($t1 − θ) (3)

Now for t > t1 the equation becomes

mü+ cu̇+ ku = 0

which has the solution
u = e−ξωt(A cosωdt+B sinωdt)

where A = u(t1) and B = u̇(t1)+u(t1)ξω
ωd

1.4.5.2.3 critically damped with sin impulse ξ = c
cr

= 1 For t ≤ t1Initial
conditions are u(0) = u0 and u̇(0) = v0 then the solution is from above

u(t) = (A+Bt) e−ωt + ust√
(1− r2)2 + (2r)2

sin ($t− θ) (1)

Where tan θ = c$
k−m$2 = 2ξr

1−r2
. A,B are found from initial conditions

A = u0 +
ust√

(1− r2)2 + (2r)2
sin θ

B = v0 + u0ω + ust√
(1− r2)2 + (2r)2

(ω sin θ −$ cos θ)

For t > t1 the solution is

u(t) = (u(t1) + (u̇(t1) + u(t1)ω) t) e−ωt (2)

To find u(t1) , from Eq(1)

u(t1) = (A+Bt) e−ωt1 + ust√
(1− r2)2 + (2r)2

sin ($t1 − θ)

taking derivative of (1) gives

u̇(t) = −ω(A+Bt) e−ωt +Be−ωt +$
ust√

(1− r2)2 + (2r)2
sin ($t− θ) (3)

57



1.4. Solution of Vibration equation of . . . Chapter 1. Vibration

at t = t1

u̇(t1) = −ω(A+Bt1) e−ωt1 +Be−ωt1 +$
ust√

(1− r2)2 + (2r)2
sin ($t1 − θ) (4)

Hence Eq (2) can now be evaluated using Eq(3,4)

1.4.5.2.4 over-damped with sin impulse ξ = c
cr

> 1 For t ≤ t1Initial conditions
are u(0) = u0 and u̇(0) = v0 then the solution is

u = Aep1t +Bep2t + ust√
(1− r2)2 + (2ξr)2

sin ($t− θ)

where tan θ = 2ξr
1−r2

(make sure you use correct quadrant, see not above on arctan) and

p1 = − c

2m +
√( c

2m

)2
− k

m

= −ωξ + ω
√
ξ2 − 1

and

p2 = − c

2m −
√( c

2m

)2
− k

m

= −ωξ − ω
√

ξ2 − 1

leading to the solution where tan θ = 2ξr
1−r2

and

p1 = − c

2m +
√( c

2m

)2
− k

m
= −ωξ + ωn

√
ξ2 − 1

p2 = − c

2m −
√( c

2m

)2
− k

m
= −ωξ − ωn

√
ξ2 − 1

is

u(t) = Ae

(
−ξ+

√
ξ2−1

)
ωt +Be

(
−ξ−

√
ξ2−1

)
ωt + F

k
β sin ($t− θ)

A =
u′(0) + u(0)ωξ + u(0)ω

√
ξ2 − 1 + F

k
β
((
ξ +

√
ξ2 − 1

)
ω sin θ −$ cos θ

)
2ω

√
ξ2 − 1

B = −
u′(0) + u(0)ωξ − u(0)ω

√
ξ2 − 1 + F

k
β
((
ξ −

√
ξ2 − 1

)
ω sin θ −$ cos θ

)
2ω

√
ξ2 − 1

β = 1√
(1− r2)2 + (2ξr)2
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For t > t1. From Eq(1) and at t = t1

u(t1) = Ae

(
−ξ+

√
ξ2−1

)
ωt1 +Be

(
−ξ−

√
ξ2−1

)
ωt1 +D sin ($t1 − θ) (2)

Taking derivative of Eq (1)

u̇(t) = ωAe

(
−ξ+

√
ξ2−1

)
ωt + ωBe

(
−ξ−

√
ξ2−1

)
ωt +$D cos ($t− θ)

At t = t1

u̇(t1) = ωAe

(
−ξ+

√
ξ2−1

)
ωt1 + ωBe

(
−ξ−

√
ξ2−1

)
ωt1 +$D cos ($t1 − θ) (3)

Equation of motion now is
ü+ 2ξωu̇+ ω2u = 0

which has solution for over-damped given by

u(t) = Ae

(
−ξ+

√
ξ2−1

)
ωnt +Be

(
−ξ−

√
ξ2−1

)
ωnt

where

A = −
u̇(t1) + u(t1)ωn

(
ξ −

√
ξ2 − 1

)
2ωn

√
ξ2 − 1

B =
u̇(t1) + u(t1) ξωn

(
ξ +

√
ξ2 − 1

)
2ωn

√
ξ2 − 1

Input is given by F (t) = F0 sin ($t) where $ = 2π
2t1 = π

t1� �
t1 = 2;
Plot[(UnitStep[t] - UnitStep[t - 2]) Sin[Pi/t1 t], {t, 0, 10},
PlotRange -> All, Ticks -> {{0, {2, "t1"}, 4}, Automatic}]� �
1.4.5.2.5 Summary table
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ζ = 0

roots

 −iω

+iω

u(t)



$ = ω →


u(0) cosωt+ u′(0)

ω
sinωt− F0

k
ωt
2 cos (ωt) 0 ≤ t ≤ t1(

−u(0) + F0
k

π
2

)
cosωt+

−u′(0)+F0
k

π
2t1

ω
sinωt t > t1

$ 6= ω →


u(0) cosωt+

(
u′(0)
$

−
(F0/k)

(
π/t1
ω

)
1−

(
π/t1
ω

)2

)
sinωt+ F0/k

1−
(

π/t1
ω

)2 sin
(

πt
t1

)
0 ≤ t ≤ t1

u(t1) cosωt+ u′(t1)
ω

sinωt t > t1

ζ < 1

roots

 −ξω + iωn

√
1− ξ2

−ξω − iωn

√
1− ξ2

time constant τ = 1
ζωn

u(t) =


e−ξωt(A cosωdt+B sinωdt) + F0

k
1√

(1−r2)2+(2ξr)2
sin
(
π t

t1
− θ
)

0 ≤ t ≤ t1

e−ξωt
(
u(t1) cosωdt+ u′(t1)+u(t1)ξω

ωd
sinωdt

)
t > t1

A = u(0) + F0
k

1√
(1−r2)2+(2ξr)2

sin θ

B = u′(0)
ωd

+ u(0)ξω
ωd

+ F0
k

1
ωd

√
(1−r2)2+(2ξr)2

(ξω sin θ −$ cos θ)

ζ = 1

roots

 −ω

−ω

u(t) =


(A+Bt) e−ωt + F0

k
1√

(1−r2)2+(2r)2
sin
(
π t

t1
− θ
)

0 ≤ t ≤ t1

u(t) = (u(t1) + (u′(t1) + u(t1)ω) t) e−ωt t > t1

A = u(0) + F0
k

1√
(1−r2)2+(2r)2

sin θ

B = u′(0) + u(0)ω + F0
k

1√
(1−r2)2+(2r)2

(
ω sin θ − π

t1
cos θ

)
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ζ > 1

roots

 −ωnξ + ωn

√
ξ2 − 1

−ωnξ − ωn

√
ξ2 − 1

u(t) =


Ae

(
−ξ+

√
ξ2−1

)
ωt +Be

(
−ξ−

√
ξ2−1

)
ωt + F

k
β sin

(
π t

t1
− θ
)

0 ≤ t ≤ t1

u(t) = A1e

(
−ξ+

√
ξ2−1

)
ωnt +B1e

(
−ξ−

√
ξ2−1

)
ωnt t > t1

A =
u′(0)+u(0)ωξ+u(0)ω

√
ξ2−1+F

k
β
((

ξ+
√

ξ2−1
)
ω sin θ− π

t1
cos θ

)
2ω

√
ξ2−1

B = −
u′(0)+u(0)ωξ−u(0)ω

√
ξ2−1+F

k
β
((

ξ−
√

ξ2−1
)
ω sin θ− π

t1
cos θ

)
2ω

√
ξ2−1

β = 1√
(1−r2)2+(2ξr)2

A1 = −
u̇(t1)+u(t1)ωn

(
ξ−

√
ξ2−1

)
2ωn

√
ξ2−1

B1 =
u̇(t1)+u(t1)ξωn

(
ξ+

√
ξ2−1

)
2ωn

√
ξ2−1

1.4.6 Tree view look at the different cases
This tree illustrates the different cases that needs to be considered for the solution of
single degree of freedom system with harmonic loading.

There are 12 cases to consider. Resonance needs to be handled as special case when
damping is absent due to the singularity in the standard solution when the forcing
frequency is the same as the natural frequency. When damping is present, there is no
resonance, however, there is what is called practical response which occur when the
forcing frequency is almost the same as the natural frequency.
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Solution to single degree of freedom system, second order, linear, time invariant

dampedundamped

free

forced

mü  ku  0

mü  ku  Fsint

r  1 r  1

free forced

mü  cu  ku  0
mü  cu  ku  Fsint

  1   1   1

r  1 r  1

  1

  1

  1   1

  1

  1

r  


  c
ccr

By Nasser M. Abbasi
December 11, 2012

Single_degree_system_tree.vsd

r  1 resonance

  1 underdamped, roots a  ib with a real and negative

  1 critical damping roots a,a
  1 overdamped roots both real and negative a,b

x

x

xx

xx

Figure 1.13: single degree system tree

The following is another diagram made sometime ago which contains more useful
information and is kept here for reference.
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y t  c
m y t  k

m yt  0

y t  2ny t  n
2yt  0

One degree freedom 
linear system unforced 
response

Some 
defintions

Defined only 
for under 
damped 

case(else zero)

s1,2  n  n 2  1

Solution roots

  1   1   1

3 cases

Underdamped
2 roots, 
complex 
conjugate

Critical damped
(one real root, 
double 
multiplicity)

Over damped, 
2 real roots, 
distinct

yt  entAcosdt  Bsindt

A  y0, B  y0An

d

yt  A  Btent

A  y0, B  y 0  An

Nasser M. Abbasi
May 25, 2011

One_DOF_system.vsd

Td  2
d

  1
n

Damped period of oscillation

Time constant

yt  Ae
 21 nt  Be

 21 nt

A  
y0y0n  21

2n 21

B 
y0y0n  21

2n 21

n  k
m rad/sec

 damping ratio
  c

cr
 c

2 km
 c

2nm

d  n 1  2

Figure 1.14: one DOF system
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1.4.7 Cycles for the peak to decay by half its original value
This table shows many cycles it takes for the peak to decay by half its original value
as a function of the damping ζ. For example, we see that when ζ = 2.7% then it takes
4 cycles for the peak (i.e. displacement) to reduce to half its value.� �
data = Table[{i, (1/i Log[2]/(2*Pi)*100)}, {i, 1, 20}];
TableForm[N@data,
TableHeadings -> {None, {Column[{"number of cycles",
"needed for peak", "to decay by half"}], "\[Zeta] (%)"}}]� �

Figure 1.15: peak table
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1.4.8 references
1. Vibration analysis by Robert K. Vierck

2. Structural dynamics theory and computation, 5th edition by Mario Paz, William
Leigh

3. Dynamic of structures, Ray W. Clough and Joseph Penzien

4. Theory of vibration,volume 1, by A.A.Shabana

5. Notes on Diffy Qs, Differential equations for engineers, by Jiri Lebl, online PDF
book, chapter 2.6, oct 1,2012 http://www.jirka.org/diffyqs/
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CHAPTER 2
Dynamics equations, kinematics, velocity
and acceleration diagrams

2.1 Derivation of rotation formula
This formula is very important. Will show its derivation now in details. It is how to
express vectors in rotating frames.

Consider this diagram
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x

y



X

Y
o

Absolute (or inertial frame of reference)

Moving frame of 
reference, attached 
to body of interest

P

rp

r

ro

Figure 2.1: rotating frames

In the above, the small axis x, y is a frame attached to some body which rotate around
this axis with angular velocity ω (measured by the inertial frame of course). All laws
derived below are based on the following one rule

d

dt
r

∣∣∣∣
absolute

= d

dt
r

∣∣∣∣
relative

+ ω × r (1)

Lets us see how to apply this rule. Let us express the position vector of the particle rp.
We can see by normal vector additions that the position vector of particle is

rp = ro + r (2)

Notice that nothing special is needed here, since we have not yet looked at rate of
change with time. The complexity (i.e. using rule (1)) appears only when we want to
look at velocities and accelerations. This is when we need to use the above rule (1). Let
us now find the velocity of the particle. From above

ṙp = ṙo + ṙ
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Every time we take derivatives, we stop and look. For any vector that originates from
the moving frame, we must apply rule (1) to it. That is all. In the above, only r needs
rule (1) applied to it, since that is the only vector measure from the moving frame.
Replacing ṙp by Vp and ṙo by Vo, meaning the velocity of P and o, Hence the above
becomes

Vp = Vo + ṙ

and now we apply rule (1) to expand ṙ

Vp = Vo + (Vrel + ω × r) (3)

where Vrel is just d
dt
r
∣∣
relative

The above is the final expression for the velocity of the particle Vp using its velocity as
measured by the moving frame in order to complete the expression.
So the above says that the absolute velocity of the particle is equal to the absolute
velocity of the base of the moving frame + something else and this something else was
(Vrel + ω × r)
Now we will find the absolute acceleration of P . Taking time derivatives of (3) gives

V̇p = V̇o +
(
V̇rel + ω̇ × r + ω × ṙ

)
(4)

As we said above, each time we take time derivatives, we stop and look for vectors
which are based on the moving frame, and apply rule (1) to them. In the above, V̇rel

and ṙ qualify. Apply rule (1) to V̇rel gives

V̇rel = arel + ω × Vrel (5)

where arel just means the acceleration relative to moving frame. And applying rule (1)
to ṙ gives

ṙ = Vrel + ω × r (6)

Replacing (5) and (6) into (4) gives

ap = ao + (arel + ω × Vrel + ω̇ × r + ω × (Vrel + ω × r))
= ao + arel + (ω × Vrel) + (ω̇ × r) + (ω × Vrel) + (ω × (ω × r))
= ao + arel + 2(ω × Vrel) + (ω̇ × r) + (ω × (ω × r)) (7)

Eq (7) says that the absolute acceleration ap of P is the sum of the acceleration of the
base ao of the moving frame plus the relative acceleration arel of the particle to the
moving frame plus 2(ω × Vrel) + (ω̇ × r) + (ω × (ω × r))
Hence, using Eq(3) and Eq(7) gives us the expressions we wanted for velocity and
acceleration.
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2.2 Miscellaneous hints

1. When finding the generalized force for the user with the Lagrangian method (the
hardest step), using the virtual work method, if the force (or virtual work by
the force) ADDS energy to the system, then make the sign of the force positive
otherwise the sign is negative.

2. For damping force, the sign is always negative.

3. External forces such as linear forces applied, torque applied, in general, are
positive.

4. Friction force is negative (in general) as friction takes energy from the system
like damping.
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2.3 Formulas

Vp  Vo    r  Vrel

rr

o

p

ap  a0    r      r  2  Vrel  arel



Velocity of p 
relative to o

IF rigid body is rotating AND translation at the same time THEN
   Take moments around its cg only
ELSE
   can also take moments about any other points on it (but 
change I)
END IF

x
y



X

Y

d
dt

RX,Y  d
dt

Rx,y    RX,Y

R

RX

RY

Rx

Ry

BODY FIXED 
COORDINATES
This gives the relation 
between the rate of 
change with respect to 
time of a vector expressed 
in a frame of reference 
which is body fixed (y,x) 
here, to the rate of change 
with respect to time of the 
same vector expressed 
using an inertial frame 
coordinates XY.
The omega here is the 
angular velocity of the 
rigid body rotation, or the 
body fixed coordinates, 
with respect to the inertial 
frame.


R r



The small disk rotates

at angular speed of 
The condition of no slip can

be seen to be

R  r  r

R  r

r

For the sign of generalized force: 
If work done by force takes away 
energy from system, then the 
sign is negative, else positive. So 
Friction will always have negative 
sign, so will damping force.

d
dt

cosxt   sinxtx t
d
dt

df

dxt
 d

dxt
df

dxt
d
dt

xt

d
dt

cosxt  d

dxt cosxt d
dt

xt

sin2x  1cos2x

2

cos2x  1cos2x

2

sin2x  2sinx cosx

cos2x  cos2x  sin2x

 1  2sin2x

Figure 2.2: Formulas 1

71



2.3. Formulas Chapter 2. Dynamics equations, . . .

F  ma   I

linear momentum p  mv angular momentum H  Icg

F  d

dt
p   d

dt
H

particle kinetic energy T  1

2
mv2 rigid body T  1

2
Mvcg

2  1

2
Icg 2

my   2ny   n
2y  fy, t

y   cy   k
m y  fy, t

n  k
m ,c  2n

m

1

1
 1  

1

1  1  

For small 
epsilon

conservation of angular momentum d
dt
H constant

x   n
2x  0

If n  0 then sinusodial solution, ok

if n  0 then solution blows up, exponential

Figure 2.3: Formulas 2
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2.4 Velocity and acceleration diagrams

2.4.1 Spring pendulum

Length of pendulum fixed Length of pendulum changes with time

Length of pendulum changes with time and base of pendulum moves

x

y

x

y

x

ÿ

x

ÿ

r

Velocity diagram

Velocity diagram

Velocity diagram

acceleration 
diagram

acceleration 
diagram

acceleration 
diagram

L



L
L2 Lt


L

L

L L2

L

L

2L


L

L2
L

2L

Nasser M. Abbasi
Oct 10, 2013 (drawing2.vsd)

Figure 2.4: Spring pendulum
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2.4.2 pendulum with blob moving in slot


r

y

System. Pendulum with 
blob which moves in slot 

perpendicular to axis



Velocity diagram

y

ry



acceleration diagram

r

r 2

2y

y 2

ÿ
y

Figure 2.5: pendulum with blob
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2.4.3 spring pendulum with block moving in slot



r

y

System. Pendulum with blob which 
moves in slot perpendicular to axis. In 

addition, length of the axis of pendulum 
itself changes in time. y and r are 

measured from static equilibrium of 
springs

Velocity diagram

y

ry



acceleration diagram

r

r 2

2y

y 2

ÿ
y

r



2r

r

Figure 2.6: spring pendulum with block moving in slot
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2.4.4 double pendulum






















Velocity diagramDouble 
pendulum










acceleration diagram





L1

L2

m1
m1

m1

m2

m2

m2

L1

L1

L2

L2

L1

•

L2

•
L1

•

L1

••

L1

••

L2

••

L1

• 2

L1

• 2

L2

• 2

Figure 2.7: double pendulum
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2.5 Velocity and acceleration of rigid body 2D

U

V

xy


Rigid body, 
rotating at 

angular 
speed 



Linear 
Velocity 
diagram

xy

Linear 
acceleration 

diagram

U 
V

V 
U

Notice the 
sign 

difference

Nasser M. Abbasi
Drawing_rigid_body_rotati
on_1.vsd
May 23, 2011

a 
ax

ay


U  V

V  U

X

Y

Figure 2.8: Velocity and acceleration of rigid body 2D

Finding linear acceleration of center of mass of a rigid body under pure rotation using
fixed body coordinates.

In the above U is the speed of the center of mass in the direction of the x axis, where
this axis is fixed on the body itself. Similarly, V is the speed of the center of mass in
the direction of the y axis, where the y axis is attached to the body itself.

Just remember that all these speeds (i.e. U ,V ) and accelerations (ax, ay) are still being
measured by an observer in the inertial frame. It is only that the directions of the
velocity components of the center of mass is along an axis fixed on the body. Only the
direction. But actual speed measurements are still done by a stationary observer. Since
clearly if the observer was sitting on the body itself, then they will measure the speeds
to be zero in that case.
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2.6 Velocity and acceleration of rigid body 3D

2.6.1 Using Vehicle dynamics notations

x

z

U

V

W

p q

r

Fx

Fy

Fz

Linear force

Linear velocity

angular velocity

torque

N

M

L

Forces, Torques, linear 
velocities and angular velocities 
for a general 3D rigid body

y

I 

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Iyz Izz

 

p

q

r

F 

Fx

Fy

Fz



L

M

N

v 

U

V

W

 d
dt

H  d
dt
I

Angular momentum

linear momentum

F  d
dt

p  d
dt

mvm d
dt

v  m

a

U  qW  rV

V  rU  pW

W  pV  qU

Derivation of this is much more complicated than with 
the case of linear motion (F=ma), since m is scalar 

there, but for rotation, I is matrix. See next page for the 
derivation

Nasser M. Abbasi
3d_1.vsd
May 26, 2011

Figure 2.9: Vehicle dynamics notations
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2.6.2 3D Not Using vehicle dynamics notations

x

z

Fx

Fy

Fz

Linear force

Linear velocity

angular velocity

torque

Forces, Torques, linear 
velocities and angular 
velocities for a general 3D 
rigid body

y

I 

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Iyz Izz

F 

Fx

Fy

Fz

linear momentum

Nasser M. Abbasi
3d_1.vsd
May 26, 2011

 

x

y

z

v 

vx

vy

vz



x

y

z

x

y

z

vx

vy

vz

x

y

z

F  d
dt

p  d
dt

mvm d
dt

v  m

a

ax  yvz  zvy

ay  zvx  xvz

az  xvy  yvz

The derivation of the above is given next, but it uses the standard formula given by 

d
dt

A  d
dt

A
resolved

   A

This is in the 
inertial frame of 

reference
This is the same A, but its components 

are with respect to the body fixed 
coordinates system,

Cross product

Figure 2.10: 3D Not Using vehicle dynamics notations
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2.6.2.1 Derivation for F = ma in 3D

F = d

dt
p

= d

dt
(mv)

= m
d

dt
v

= m



ax

ay

az

+


ωx

ωy

ωz

⊗


vx

vy

vz




= m



ax

ay

az

+ det

∣∣∣∣∣∣∣∣∣∣
i j k

ωx ωy ωz

vx vy vz

∣∣∣∣∣∣∣∣∣∣



= m



ax

ay

az

+


ωyvz − ωzvy

−(ωxvz − ωzvx)

ωxvy − ωyvx




= m


ax + ωyvz − ωzvy

ay − ωxvz + ωzvx

az + ωxvy − ωyvx


2.6.2.2 Derivation for τ = Iω in 3D

Let A = Iω then using the rule

τ =
(

d

dt
A

)
=
(

d

dt
A

)
resolved

+ ω × A
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Then τ = Iω can be found for the general case

τ = d

dt



A︷ ︸︸ ︷
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Iyz Izz



ωx

ωy

ωz




+


ωx

ωy

ωz

×

A︷ ︸︸ ︷
Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Iyz Izz



ωx

ωy

ωz



=


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Iyz Izz



αx

αy

αz

+


ωx

ωy

ωz

×


Ixxωx + Ixyωy + Ixzωz

Iyxωx + Iyyωy + Iyzωz

Izxωx + Iyzωy + Izzωz



=


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Iyz Izz



αx

αy

αz

+ det

∣∣∣∣∣∣∣∣∣∣
i j k

ωx ωy ωz

(Ixxωx + Ixyωy + Ixzωz) (Iyxωx + Iyyωy + Iyzωz) (Izxωx + Iyzωy + Izzωz)

∣∣∣∣∣∣∣∣∣∣
=


Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Iyz Izz



αx

αy

αz

+


ωy(Izxωx + Iyzωy + Izzωz)− ωz(Iyxωx + Iyyωy + Iyzωz)

ωx(Izxωx + Iyzωy + Izzωz)− ωz(Ixxωx + Ixyωy + Ixzωz)

ωx(Iyxωx + Iyyωy + Iyzωz)− ωy(Ixxωx + Ixyωy + Ixzωz)


2.6.2.3 Derivation for τ = Iω in 3D using principle axes

The above derivation simplifies now since we will be using principle axes. In this case,
all cross products of moments of inertia vanish.

I =


Ixx 0 0

0 Iyy 0

0 0 Izz


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Hence

τ = d

dt



A︷ ︸︸ ︷
Ixx 0 0

0 Iyy 0

0 0 Izz



ωx

ωy

ωz




+


ωx

ωy

ωz

×

A︷ ︸︸ ︷
Ixx 0 0

0 Iyy 0

0 0 Izz



ωx

ωy

ωz



=


Ixx 0 0

0 Iyy 0

0 0 Izz



αx

αy

αz

+


ωx

ωy

ωz

×


Ixxωx

Iyyωy

Izzωz



=


Ixxαx

Iyyαy

Izzαz

+ det

∣∣∣∣∣∣∣∣∣∣
i j k

ωx ωy ωz

Ixxωx Iyyωy Izzωz

∣∣∣∣∣∣∣∣∣∣
=


Ixxαx

Iyyαy

Izzαz

+


ωy(Izzωz)− ωz(Iyyωy)

−ωx(Izzωz) + ωz(Ixxωx)

ωx(Iyyωy)− ωy(Ixxωx)



=


Ixxαx

Iyyαy

Izzαz

+


ωyωz(Izz − Iyy)

ωxωz(Ixx − Izz)

ωxωy(Iyy − Ixx)


So, we can see how much simpler it became when using principle axes. Compare the
above to

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Iyz Izz



αx

αy

αz

+


ωy(Izxωx + Iyzωy + Izzωz)− ωz(Iyxωx + Iyyωy + Iyzωz)

ωx(Izxωx + Iyzωy + Izzωz)− ωz(Ixxωx + Ixyωy + Ixzωz)

ωx(Iyxωx + Iyyωy + Iyzωz)− ωy(Ixxωx + Ixyωy + Ixzωz)


So, always use principle axes for the body fixed coordinates system!
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2.6.3 Acceleration terms due to rotation and acceleration

X

Y

Z

x

y

z

~vr

velocity of particle,
of mass m, relative
to local body frame

~r

~R

O
inertial frame

local body
frame.
Rotating and
translating
relative to
inertial frame p

o

~ω

angular
velocity of local
frame around
inertial frame

Figure 2.11: Acceleration terms due to rotation 1.

X

Y

Z

x

y

z

~ω

angular
velocity of local
frame around
inertial frame

~vr

~r

~R

O

p

o

2~ω × ~vr
coriolis acceleration
due to particle having
velocity in local frame

~ω × (~ω × (~R+ ~r))

~R
+
~r

~̈R

~̇ω × ~r

due to angular acceleration of local frame

centripetal force

due to linear acceleration of local frame

velocity of particle
in local frame

showing The four acceleration terms

Figure 2.12: Acceleration terms due to rotation 2.

85



2.7. Wheel spinning precession Chapter 2. Dynamics equations, . . .

2.7 Wheel spinning precession

x

y

z

y

Mg

L
x

y

z

H Angular momentum

  MgL

Hy  Iyyy

Torque vector 
representation

Wheel spinning around y-axis, 
hanging from ceiling 
Weight create a torque which 
changes the angular 
momentum 

x

y

z

H
Angular momentum 

after 



Iyyy

t


Angular momentum 
change due to the 

torque applied
After torque applied for t

t

t

H aftert

H  t  H
t
 

Nasser M. 
Abbasi
Precesses.vsd
6/1/2011

H  Iyyy  t

x

y

z

y

This is what wheel will 
look like after del T 
time due to 
precesses, notice that 
SPIN angular 
momentum changes 
in the direction of the 
torque

But H
t

 Iyyyp, hence  Iyyyp hence p  
Iyyy

 MgL

Iyyy

Therefore, precession velocity p is
MgL

Iyyy

p

p

Tp  2
p

Time it takes 
for the wheel 
to precesses 
one full cycle

Important: This 
analysis is valid 
only for LARGE 

y

Figure 2.13: Wheel spinning precession

2.8 References
1. Structural Dynamics 5th edition. Mario Paz, William Leigh
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2.9 Misc. items
The Jacobian matrix for a system of differential equations, such as

x′(t) = f(x, y, z)
y′(t) = g(x, y, z)
z′(t) = h(x, y, z)

is given by

J =


df
dx

df
dy

df
dz

dg
dx

dg
dy

dg
dz

dh
dx

dh
dy

dh
dz


For example, for the given the following 3 set of coupled differential equations in n3

x′(t) = −y(t)− z(t)
y′(t) = x(t) + ay(t)
z′(t) = b+ z(t) (x(t)− c)

then the Jacobian matrix is

J =


0 −1 −1

1 a 0

z(t) 0 x(t)− c


Now to find stability of this system, we evaluate this matrix at t = t0 where x(t0) , y(t0) , z(t0)
is a point in this space (may be stable point or initial conditions, etc...) and then J

become all numerical now. Then we can evaluate the eigenvalues of the resulting matrix
and look to see if all eigenvalues are negative. If so, this tells us that the point is a
stable point. I.e. the system is stable.

If X is N(0, 1) distributed then mu+ sigma ∗X is N(mu, sigma2) distributed.
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CHAPTER 3
Astrodynamics

3.1 Ellipse main parameters

rp

P

a

b

M

m

apogee perigee

r

c

By Nasser M. Abbasi
012714 ellipse_diagram.vsdx


E

Q

Figure 3.1: Ellipse
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3.2 Table of common equations
The following table contains the common relations to use for elliptic motion. Equation
of ellipse is x2

a2
+ y2

b2
= 1

term to find relation

conversion between E and θ

tan
(
θ

2

)
=
√

1 + e

1− e
tan

(
E

2

)
cosE = e+ cos θ

1 + e cos θ

cos θ = e− cosE
e cosE − 1

position of satellite at time
t Solve for E, then find θ. τ
here is time at perigee and
n is mean satellite speed.

E − e sinE = n(t− τ)

eccentricity e e = c
a
= ra−rp

ra+rp
=
√

1 + 2Eh2

µ2

Major axes a

a = rp(1 + e)
1− e2

= ra(1− e)
1− e2

= − µ

2E
=

√
b2 + c2

= p

1− e2

Minor axes b b = a
√
1− e2

rp
rp =

a(1− e2)
1 + e

= a(1− e)
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ra

ra =
a(1− e2)
1− e

= a(1 + e)

= h2

µ

1
1− e

rp
ra

= 1−e
1+e

p p = a(1− e2) = h2

µ
= rp(1 + e) = ra(1− e)

specific angular momentum
h

h = rpvp = rava = ~r × ~v = √
pµ

h = √
µr (circular orbit)

Total Energy E E = v2

2 − µ
r
= − µ

2a

velocity v

v =

√
µ

(
2
r
− 1

a

)
(vis-viva)

vescape =
√

2µ
r

(escape velocity for parabola)

vradial =
√

µ

p
e sin θ

vnormal =
√

µ

p
(1 + e cos θ)

vperigee (closest)

vp =

√
µ

a

(
1 + e

1− e

)
=
√

µ

p
(1 + e)

=

√
µ

(
2
rp

− 1
a

)

vapogee (furthest)

va =

√
µ

a

(
1− e

1 + e

)
=
√

µ

p
(1− e)

=

√
µ

(
2
ra

− 1
a

)
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magnitude of ~r
r = a(1− e2)

1 + e cos θ = h2

µ

1
1 + e cos θ

r cos θ = a(cosE − e)
r = a(1− e cosE) (eq 4.2-14 Bate book)

period T T = 2
h
πab = 2π

√
a3

µ

mean satellite speed n n = 2π
T

=
√

µ
a3

eccentric anomaly E tan θ
2 =

√
1+e
1−e

tan E
2

area sweep rate dA
dt

= h
2

equation of motion ~̈r + µ
r3
~r = 0

spherical coordinates rela-
tion

cos(i) = sin(Az) cos(φ) where i is the inclina-
tion and Az is the azimuth and φ is latitude 1

Notice in the above, that the period T of satellite depends only on a (for same µ)

In the above, µ = GM where M is the mass of the body at the focus of the ellipse and
G is the gravitational constant. h is the specific mass angular momentum (moment of
linear momentum) of the satellite. Hence the units of h2

µ
is length.

To draw the locus of the satellite (the small body moving around the ellipse, all what
we need is the eccentricity e and a, the major axes length. Then by changing the angle
θ the path of the satellite is drawn. I have a demo on this here

See http://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html for
earth facts

This table below is from my class EMA 550 handouts (astrodynamics, spring 2014)
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Figure 3.2: Astrodynamics constants
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3.3 Flight path angle for ellipse γ

P

a

M

m

apogee perigee

r

c



v

er



Flight path angle (positive 
to the inside as shown)

Flight velocity 
vector, tangent to 
the ellipse at 
current position

en

vr  v rer 

p esin er

vn  v nen 

p 1  ecos en

v  |v|  |vr |
2  |vn |

2

  2
r  1

a

The time to fly this path is 
given by the above 
expression.

v

b rp  a1  e
ra  a1  e

P

a

M

m

apogee perigee

r


v

er



en

vn  v nen 

p 1  ecos en

v

b rp  a1  e
ra  a1  e

M

m

apogee perigee



Nasser M. Abbasi
022314
ellipse_diagram_2.vsdx

r 
a 1e2

1ecos 

r  a1  ecosE

E

x0,y0

xx0
2

a2
 yy0

2

b2
 1

Equation of ellipse

cos 
a2 1e2

r2ar
tan  esin

1ecos 

T  2 a3



Period of ellipse. Time to 
travel around one time

a  rarp

2
e  rarp

rarp

n  2
T
 

a3

Mean probe 
speed (rad/sec)

tan 
2
 1e

1e
tan E

2

Convert from true anomaly 
to eccentric anomaly

Km/sec

vc 

rc

Speed on circle of radius rc in km/sec 
(use for LEO and GEO when 
approximated to circular orbit) cos  ecos E

ecos E1

b  a 1  e2

a  b2  c2

Semi-major axes

c  ae

a  2
r  v2


1

nt  E  e sinE

n  

a3

Mean 
speed

Figure 3.3: Flight path angle
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v = |~v| =
√

|~vr|2 + |~vn|2

=

√
µ

(
2
r
− 1

a

)

To find γ, if r is given then use

cos γ =
√

ap

r (2a− r) =

√
a2 (1− e2)
r (2a− r)

If θ is given, then use

tan γ = e sin θ
1 + e cos θ
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3.4 Parabolic trajectory
This diagram shows the parabolic trajectory



rp

r

satellite

rp

e r

e 

flight 
path 
angle

The time to fly this distance is
given by solving for t   from

2


p3
t    tan 

2
  1

3
tan 

2


3

r  p

1cos   2rp

1cos 

vp
vp  2

rp

parabolic_1.vsdx
Nasser M. Abbasi
2/5/14 p  2rp

r 
h2



1cos 

  
2

V  2
r

Figure 3.4: parabolic trajectory
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3.5 Hyperbolic trajectory
This diagram shows the hyperbolic trajectory

b

a

c  ae

hyper.vsdx
Nasser M. Abbasi
030714

rp

c2  a2  b2

e  c
a

r



x2

a2
 y2

b2
 1

y   b
a x y  b

a x

r 
a e21

1ecos 

2p

V

The time to fly this path is 
found by solving for t in 

r  aecoshF  1

tan 
2
  e1

e1
tanh F

2


Flight path angle

r 
h2



1ecos 

V
2  Vp

2  Vesc
2

V
2 


a

Vesc
2 

2
rp

Vp

Use this to 
determine Vp 
needed to 
escape to a 
hyperbolic orbit.

coshF  ecos 
1ecos 

V   2
r  1

a 

rp  ae  1

if we know r1, r2 on the
orbit, and know the travel
time between these 2 points
then a,e,F can be found by
numerically solving these

r1  ae  1

r2  aecoshF  1

t  a3

 e sinhF  F

t  a3

 e sinhF  F

cos 
a2 e21

r2ar

Figure 3.5: hyperbolic trajectory

This diagram below from Orbital mechanics for Engineering students, second edition,
by Howard D. Curtis, page 109
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Figure 3.6: diagram below from Orbital mechanics textbook

98



3.6. showing that energy is constant Chapter 3. Astrodynamics

3.6 showing that energy is constant

Showing that energy E = v2

2 − µ
r
is constant.

Most of such relations starts from the same place. The equation of motion of satellite
under the assumption that its mass is much smaller than the mass of the large body
(say earth) it is rotating around. Hence we can use ν = GM and the equation of motion
reduces to

~̈r + µ

r3
~r = 0

In the above equation, the vector ~r is the relative vector from the center of the earth
to the center of the satellite. The reason the center of earth is used as the origin of
the inertial frame of reference is due to the assumption that M � m where M is the
mass of earth (or the body at the focal of the ellipse) and m is the mass of the satellite.
Hence the median center of mass between the earth and the satellite is taken to be the
center of earth. This is an approximation, but a very good approximation.

The first step is to dot product the above equation with ~̇r giving

~̇r · ~̈r + ~̇r · µ
r3
~r = 0 (1)

And there is the main trick. We look ahead and see that ~̇r · ~̈r = ṙr̈ but ṙr̈ = d
dt

(
ṙ2

2

)
and we also see that ~̇r · µ

r3
~r = µ ṙ

r2
but µ ṙ

r2
= d

dt

(−µ
r

)
Hence equation 1 above can be

written as
d

dt

(
v2

2 − r

µ

)
= 0

Hence
E = v2

2 − r

µ

Where E is a constant, which is the total energy of the satellite.
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3.7 Earth satellite Transfer orbits

3.7.1 Hohmann transfer
This diagram shows the Hohmann transfer

r1

r2

V1
V2

V1

V3V4
V2

a  r1  r2

2

V1 

r1

V2   2
r1

 1
a

V1  V2  V1

V3   2
r2

 1
a

V4 

r2

V2  V4  V3

V  |V1 |  |V2 |

T   a3



Hohmann Transfer

Total Velocity 
change needed

Time to transfer 
from one orbit to 
the other

hohmann.vsdx
Nasser M. Abbasi
022014

1

Figure 3.7: Hohmann transfer

100



3.7. Earth satellite Transfer orbits Chapter 3. Astrodynamics

3.7.2 Bi-Elliptic transfer orbit

r1

r2

V1
V2

V1

V3V4
V2

Bi-Elliptic Transfer

Total Velocity 
change needed

Time to transfer 
from one orbit to 
the other

rb

a1 
r1rb

2
a2 

r2rb

2

V5
V6

V3

a1 
r1  rb

2

a2 
r2  rb

2

V1 

r1

V2   2
r1

 1
a1

V1  V2  V1

V3   2
rb

 1
a1

V4   2
rb

 1
a2

V2  V4  V3

V5   2
r2

 1
a2

V6 

r2

V3  V6  V5

V  |V1 |  |V2 |  |V3 |

T  
a1

3

  
a2

3



1

2

bi_ellptic.vsdx
Nasser M. Abbasi
022314

Figure 3.8: Bi-Elliptic transfer orbit
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3.7.3 semi-tangential elliptical transfer

r1

r2

V1
V2

V1

Semi-tangential transfer

Total Velocity 
change needed

Time to 
transfer from 
one orbit to 
the other

rb



V3

V4

V2

a  r1  rb

2

V1 

r1

V2   2
r1

 1
a

V1  V2  V1

V3   2
r2

 1
a

V4 

r2

e  rb  r1

rb  r1

cos 
a21  e2
r22a  r2

V2  V4
2  V3

2  2V4V3 cos

V  |V1 |  |V2 |

r2  a1  ecosE

n 

a3

t  1
n E  e sinE

semi_tangential.vsdx
Nasser M. Abbasi
022314

Figure 3.9: semi-tangential elliptical transfer

3.8 Rocket engines, Hohmann transfer, plane
change at equator

two cases: Hohmann transfer, 2 burns, or semi-tangential. All burns at equator.
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1

Vc1

Vc1

Vp

V p


V

ro
ck

et
1

Vrocket1
2  Vc1

2  Vp
2  2Vc1Vp cos1

Solve for 1

Vrocket2
2  Vc2

2  Va
2  2Vc2Va cos2

solve for 2


V

ro
ck

et
2

Vc2

Va

VaVc2

r1

r2 Hohmann 
transfera  r1  r2

2

Vc1



r1

Vc2



r2

Vp   2
rp

 1
a

Va   2
ra

 1
a

Vrocket1
 gIsp ln

mi1

mf1

Vrocket2
 gIsp ln

mi2

mf2

i final  i initial  1  2

If all burns at equator, then only the

inclination angle i will change. Given

i final, solve to find i initial required.

Using rocket engine equation 

with Hohmann transfer to find 

what initial inclination is 

needed. Case for all burns at 

equator only

2

Vc1

Vc2

r1

r2

Vrocket1

Assume all rocket fuel is used in 
first burn to increase Vp and none 
to change plane and burn done at 
equator. Hence 1  0

V2



V2   2
r2

 1
a 

Vc2
 

r2
cos 

a2 1e2

r22ar2


2

V2

Vc2

Vrocket2

Vrocket2

2  V2 sin2  V2 cos  Vc2
cos2

2  Vc2
sin2

2

solve for 2

i final  i initial  2

Vrocket1

2  Vc1

2  Vp
2  2Vc1

Vp sin1

otherwise

Speed of fuel 
exhaust relative 
to rocket

Rate at which fuel 
burns. Watch out, g* is 
in km/sec^2, while g in 
m/sec^2

Thrust 
provided 
by rocket

Vp

Vp 
V

ro
ck

et
1

1

  2arcsin V
2Vp

Special case, when all burn 
goes to plane change

Vrocket  Ve ln
mi
mf

Vrocket  gIsp ln
mi
mf

T  ma  Vem

m 
mass fuel

time_to_burn

m  T
gIsp

Nasser M. Abbasi
Rocket_1.vsdx

May 4,2014

Figure 3.10: Hohmann transfer cases
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3.8.0.1 Rocket equation with plane change not at equator

i initial

V
ro

ck
et

V1

V2




latitude

Plane change with Rocket equations

Burn at equator. Vrocket all

goes to changing inclination

 Right 
ascension

V1 

rc

V2   2
rc

 1
a

V  gIsp ln
mi
mf

V2  V1
2  V2

2  2V1V2 cos

i final  i initial  

Burn is not at equator. Vrocket all

goes to changing inclination and also

changing 

V1



equator

latitude

V2

Vrocket



i1

i2

u 1

u 2

1

2
1  2

Example: Given i1, i2, at

burn, find V2

solve for V2 using

V2 
b b24ac

2a

Nasser M. Abbasi
050714

Plane_change_1.vsdx

V1 

rc

sinu1

sin900
 sin

sini1
solve for u1

sin1  2
sin

 sinu1

sin1800  i2
solve for 

V  gIsp ln
mi
mf

V2  V1
2  V2

2  2V1V2 cos

Figure 3.11: Rocket equation with plane change not at equator
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3.9 Spherical coordinates

From my class handouts, EMA 550, Univ. Wisconsin, Madison

latitude

sin
u


sin



sin
i 1

Nasser M. Abbasi
May 5, 2014

Spherical.vsdx

Figure 3.12: Spherical coordinates
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3.10 interplanetary transfer orbits

3.10.0.1 interplanetary hohmann transfer orbit, case one

ALT

r1

V
bo

V
sat

V1

Vperigee

V2

Vapogee

R1

R2

b1

V2
r2

Vapogee

b2

zoom

Sun point of view

r2

b2

Planet point of view (planet fixed 
and spacecraft is moving towards it 
showing the asymptotic lines and 
the turning angle theta)

V

AL
T

Vbo

Vsat

V  Vperigee  V1

V  V2  Vapogee

stage_1_inter_planet.vsdx
Nasser M. Abbasi
March 10, 2014

Switch to planet 
point of view

interplanetary Hohmann 
transfer orbit leading to an 
orbit around target planet







Figure 3.13: interplanetary hohmann transfer orbit, case one

106



3.10. interplanetary transfer orbits Chapter 3. Astrodynamics

The following are the steps to accomplish the above. The first stage is getting into
the Hohmann orbit from planet 1, then reaching the sphere of influence of the second
planet. Then we either do a fly-by or do a parking orbit around the second planet.
These steps below show how to reach the second planet and do a parking orbit around
it.
The input is the following.

1. µ1 planet one standard gravitational parameter

2. µ2 planet two standard gravitational parameter

3. µsun standard gravitational parameter for the sun 1.327× 108 km

4. r1 planet one radius

5. r2 planet two radius

6. alt1 original satellite altitude above planet one. For example, for LEO use 300
km

7. alt2 satellite altitude above second planet. (since goal is to send satellite for
circular orbit around second planet)

8. R1 mean distance of center of first planet from the sun. For earth use AU =
1.495978× 108 km

9. R2 mean distance of center of second planet from the sun. For Mars use 1.524
AU

10. SOI1 sphere of influence for first planet. For earth use 9.24× 108 km

11. SOI2 sphere of influence for second planet.
Given the above input, there are the steps to achieve the above maneuver

1. Find the burn out distance of the satellite rbo = r1 + alt1

2. Find satellite speed around planet earth (relative to planet) Vsat =
√

µ1
rbo

3. Find Hohmann ellipse a = R1+R2
2

4. Find speed of satellite at perigee relative to sun Vperigee =
√
µsun

(
2
R1

− 1
a

)
5. Find speed of earth (first planet) relative to sun V1 =

√
µsun

R1

6. Find escape velocity from first planet V∞,out = Vperigee − V1

7. Find burn out speed at first planet by solving the energy equation V 2
bo

2 − µ1
rbo

=
V 2
∞,out

2 − µ1
SOI1

for Vbo
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8. Find ∆V1 needed at planet one ∆V1 = Vbo − Vsat

9. Find e the eccentricity of the escape hyperbola e =
√

1 + V 2
∞V 2

bor
2
bo

µ2
1

10. Find the angle with the path of planet one velocity vector η = arccos
(
−1

e

)
11. Find the dusk-line angle θ = 1800 − η

The above completes the first stage, now the satellite is in the Hohmann transfer orbit.
Assuming it reached the orbit of the second planet ahead of it as shown in the diagram
above. Now we start the second stage to land the satellite on a parking orbit around
the second planet at altitude alt2 above the surface of the second planet. These are the
steps needed.

1. Find the apogee speed of the satellite Vapogree =
√

µsun

(
2
R2

− 1
a

)
2. Find speed of second planet V2 =

√
µsun

R2

3. Find V∞ entering the second planet sphere of influence V∞,in = V2 − Vapogree

4. Find burn in radius where the satellite will be closest to the second planet.
rbo = r1 + alt2

5. Find burn out speed at second planet by solving the energy equation V 2
bo

2 − µ2
rbo

=
V 2
∞,in

2 − µ2
SOI2

for Vbo

6. Find impact parameter b on entry to second planet SOI b = rboVbo

V∞,in

7. Find the required satellite speed around the second planet Vsat =
√

µ2
rbo

8. Find ∆V2 needed at planet two ∆V2 = Vsat − Vbo

9. Find e the eccentricity of the approaching hyperbola on second planet e =√
1 + V 2

∞V 2
bor

2
bo

µ2
2

10. Find the angle with the path of planet two velocity vector η = arccos
(
−1

e

)
11. Find the dusk-line angle for second planet θ = 2η − 1800
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3.10.1 rendezvous orbits

3.10.1.1 Two satellite, walking rendezvous using Hohmann transfer

0

a b

Rendezvous 
location

Snap shot at t=0. Always 
start from this point

a  rarb

2

Hohmann 
transfer 
trajectory

0

This is the phase at zero 
time. The current angle that 
(b) is front of (a)

Angular speed of 
satellite on a circular 
orbit

This is the time (in sec) 
for (a) to travel on the 
Hohmann orbit once it 
starts

Circular 
orbit of first 
satellite

Circular 
orbit of first 
satellite

rad/sec

rp

ra

TOF  N  0

2 T

The period (time to 
travel one full circle) on 
the circular orbit in 
seconds

Nasser M. Abbasi
Rendev_same_orbit_hohmann.vsdx

3/12/14

T  2 r3



  

r3

Figure 3.14: Two satellite, walking rendezvous using Hohmann transfer
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Algorithm 1 Hohmann Walking Rendezvous Orbit, case 1
1: function hohmann_walking_rendezvous(θ0, r, altitude, µ)
2: θ0 := θ0

π
180 . convert from degrees to radian

3: ra := r + altitude
4: T := 2π

√
r3a
µ

. period of circular orbit
5: N := 1
6: done:=false
7: while not(done) do
8: TOF :=

(
N − θ0

2π

)
T

9: a := solve
(
TOF = 2π

√
a3

µ

)
for a

10: rp := 2a− ra
11: if rp < r then
12: N = N + 1
13: else
14: done:=true
15: end if
16: end while
17: Vbefor :=

√
µ
h

18: Vafter :=
√
µ
( 2
h
− 1

a

)
19: ∆V := 2(Vafter − Vbefore)
20: return (TOF,∆V )
21: end function

An example implementation is below� �
hohmannRendezvousSameOrbit[\[Theta]00_, r_, alt_, mu_] :=
Module[{\[Theta]0 = \[Theta]00*Pi/180, n = 1, delT, v1, v2, period, a,
rp, ra, done = False, vBefore, vAfter},
ra = r + alt;
period = 2 Pi Sqrt[ra^3/mu];
While[Not[done],
delT = (n - \[Theta]0 /(2 Pi)) period ;
a = First@Select[a /. NSolve[delT == 2 Pi Sqrt[a^3/mu], a],
Element[#, Reals] &];
rp = 2 a - ra;
If[rp < r,(*we hit the earth, try again*)
n = n + 1,
done = True
]
];
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vBefore = Sqrt[mu/h];
vAfter = Sqrt[mu (2/h - 1/a)];
{delT, 2 (vAfter - vBefore)} (*return value*)
]� �
And calling the above� �
mu = 324859;
alt = 1475.776;
r = 6052;
\[Theta]0 = 3.80562; (*degree*)
hohmannRendezvousSameOrbit[\[Theta]0, r, alt, mu]� �
gives� �
{7123.89, -0.0467913}� �
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3.10.1.2 Two satellite, separate orbits, rendezvous using Hohmann
transfer, coplaner

0

a

b

Rendezvous 
location

Snap shot at t=0. Always 
start from this point

a  rarb

2

b

a

Hohmann 
transfer 
trajectory

H

0 Desired phase. This is the 
angle that (b) has to be 
ahead of (a) before (a) starts 
its Hohmann transfer

This is the phase at zero 
time. The current angle that 
(b) is front of (a)

H   1  rarb

2rb

3

2

Angular speed of (a) in rad/sec

Angular speed of (b) slower 
than (a)

TOF   a3



This is the time (in sec) 
for (a) to travel on the 
Hohmann orbit once it 
starts

earth

Circular 
orbit of first 
satellite

Circular 
orbit of first 
satellite

a  

ra
3

b  

r
b
3

rendev_separate_hohmann.vsdx
Nasser M. Abbasi

3/12/14

Figure 3.15: Two satellite, separate orbits, rendezvous using Hohmann transfer, coplaner
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Algorithm 2 Hohmann rendezvous algorithm, case 1
1: function hohmann_rendezvous_1(θ0, ra, rb, µ)
2: θ0 := θ0

π
180 . convert from degrees to radian

3: a := ra+rb
2 . Hohmann orbit semi-major axes

4: TOF := π
√

a3

µ
. time of flight on Hohmann orbit

5: θH := π

(
1−

(
ra+rb
2rb

)3/2)
. required phase angle before starting
Hohmann transfer

6: ωa :=
√

µ
r3a

. angular speed of lower rad/sec

7: ωb :=
√

µ
r3b

. angular speed of higher satellite rad/sec
8: if θ0 ≤ θH then . adjust initial angle if needed
9: θ0 := θ0 + 2π
10: end if
11: wait_time := θ0−θH

ωa−ωb
. how long to wait before starting Hohmann
transfer

12: wait_time := wait_time + TOF . now ready to go, add Hohmann transfer
time

13: return wait_time
14: end function

An example implementation is below (in Maple)� �
hohmann_rendezvous_1:= proc({
theta::numeric:=0,
r1::numeric:=0,
r2::numeric:=0,
mu::numeric:=3.986*10^5})
local theta0,thetaH,TOF,a,omega1,omega2,wait_time;
theta0 := evalf(theta*Pi/180);
a := (r1+r2)/2;
TOF := Pi*(sqrt(a^3/mu));
omega1 := sqrt(mu/r1^3);
omega2 := sqrt(mu/r2^3);
thetaH := evalf(Pi*(1-((r1+r2)/(2*r2))^(3/2)));
if theta0 <= thetaH then
theta0 := theta0+2*Pi;
fi;
wait_time := TOF+(theta0-thetaH)/(omega1-omega2);
eval(wait_time);
end proc:� �
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And calling the above for two different cases gives (times in hrs)� �
TOF:=hohmann_rendezvous_1(r1=6678,r2=6878,theta=0):
evalf(TOF/(60*60));
35.23480353� �
And� �
TOF:=hohmann_rendezvous_1(r1=6678,r2=6878,theta=280):
evalf(TOF/(60*60));
27.49212919� �
3.10.1.3 Two satellite, separate orbits, rendezvous using bi-elliptic

transfer, coplaner

0

Rendezvous 
location

Snap shot at t=0. Always 
start from this point

Hohmann 
transfer 
trajectory

0

This is the phase at zero 
time. The current angle that 
(b) is front of (a)

Angular speed of (a) in rad/sec

Angular speed of (b) slower 
than (a)

This is the time (in sec) 
for (a) to travel on the 
Hohmann orbit once it 
starts

earth

Circular orbit 
of fast 
satellite

Circular 
orbit of 
slow 
satellite

 
r t

Hohmann 
transfer 
trajectory

TOF  
a1

3

 
a2

3



t2 
202N

2

 r1

r2

Time for satellite (2) 
to reach the 
Rendezvous point)

1

2

1

2

a2  r2rt

2

a1  r1rt

2

solve for ta from t2  TOF

2  

r2
3

1  

r1
3

Rendev_same_orbit_bielliptic.vsdx
Nasser M. Abbasi

3/12/14

Figure 3.16: Two satellite, separate orbits, rendezvous using bi-elliptic transfer, coplaner

In this transfer, the lower (fast satellite) does not have to wait for phase lock as in
the case with Hohmann transfer. The transfer can starts immediately. There is a free
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parameter N that one select depending on fuel cost requiments or any limitiation on
the first transfer orbit semi-major axes distance required. One can start with N = 0
and adjust as needed.

Algorithm 3 Hohmann rendezvous algorithm, case 2
1: function hohmann_rendezvous_2(θ0, r1, r2, N, µ)
2: θ0 := θ0

π
180 . convert from degrees to radian

3: θH := π

(
1−

(
r1+r2
2r2

)3/2)
. Find Hohmann ideal phase angle before
transfer

4: if θ0 = θH andN = 0 then . adjust for special case
5: a := r2+r1

2

6: TOF := π
(√

a3

µ

)
7: else
8: ω2 :=

√
µ
r32

. angular speed of slower satellite in rad/sec

9: t2 := (2π−θ0)+2πN
ω2

. find time of light of the slower satellite
10: a1 := rt+r1

2
11: a2 := rt+r2

2

12: TOF := π

(√
a31
µ
+ a32

µ

)
. time of flight for the fast satellite

13: rt := solve (t2 = TOF ) for rt . Solve numerically for rt
14: end if
15: return TOF
16: end function

An example implementation is below in Maple� �
hohmann_rendezvous_2:= proc({
theta::numeric:=0,
r1::numeric:=0,
r2::numeric:=0,
N::nonnegint:=0,
mu::numeric:=3.986*10^5})
local theta0,thetaH,TOF;
theta0 := theta*Pi/180;
thetaH := Pi*(1-((r1+r2)/(2*r2))^(3/2));
if theta0 = thetaH and N = 0 then
proc()
local a:=(r1+r2)/2;
TOF:= Pi*(sqrt(a^3/mu));
end proc()
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else
proc()
local t2,a1,a2,rt,omega2;
omega2 := sqrt(mu/r2^3);
t2 := ((2*Pi-theta0)+2*Pi*N)/omega2;
a1 := (rt+r1)/2;
a2 := (rt+r2)/2;
TOF := Pi*(sqrt(a1^3/mu)+sqrt(a2^3/mu));
rt := op(select(is, [solve(t2=TOF,rt)], real));
end proc()
fi;
eval(TOF);
end proc:� �
And calling the above for two different cases gives� �
TOF:=hohmann_rendezvous_2(theta=0,r1=6678,r2=6878,N=0):
evalf(TOF/(60*60)); #in hrs
1.576892101
TOF:=hohmann_rendezvous_2(theta=160,r1=6678,r2=6878,N=1):
evalf(TOF/(60*60)); #in hrs
2.452943266� �
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3.10.2 Semi-tangential transfers, elliptical, parabolic and
hyperbolic

rp

r2
0

b 


r2
3
t

b



a3
t  Eb  e sinEb

Time to travel this distance is 
found by solving for t in the above

r2  a1  ecosEb Eb is found by solving

this equation

r2 
a 1e2

1ecos f

f
True anomaly f is found by

solving the above equation

 0
 f 

 b

a 
rp  ra

2

rp  a1  e solve for e

r2  a1  ecosEb  solve for Eb


a3

t  Eb  e sinEb solve for t

r2 
a1  e2
1  ecos f

solve for f

b 

r2

3
t

0  f  b this is lead angle

Finding lead angle, semi-tangential 

rendezvous, ELLIPTICAL orbit

rp
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0

b
f
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solving the above equation

 0
 f 

 b

Finding lead angle, semi-tangential 

rendezvous, Parabolic orbit

 b



r 2

3
t

p  2rp

r2 
p

1  cos f
solve for f

Time to travel this distance is 
found by solving for t in

2


p3
t  tan

f

2
 1

3
tan

f

2

3

ra,rp are given

p  2rp

r2 
p

1  cos f
solve for f

2

p3

t  tan
f

2
 1

3
tan

f

2

3

solve for t

b 

r2

3
t
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Nasser M. Abbasi
5/8/14

Semi_tangential_rend.vsdx

Figure 3.17: Semi-tangential transfers, elliptical, parabolic and hyperbolic
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rp

r2
0

b 


r2
3
t

b

Time to travel this distance is 
found by solving for t in the above

f
True anomaly f is found by

solving the above equation

 0
 f 

 b

Finding lead angle, semi-tangential 

rendezvous, HYPERBOLIC orbit

Vpgiven

Vp   2
rp

 1
a solve for a

rp  ae  1 solve for e

r2  aecoshF  1 solve for F


a3

t  e sinhF  F solve for t

tan
f

2
 e  1

e  1
tanh F

2
solve for f

b 

r2

3
t

0  f  b

tan
f

2
 e1

e1
tanh F

2




a3
t  e sinhF  F

r2  aecoshF  1 F is found by solving this

equation

Nasser M. Abbasi
5/8/14

Semi_tangential_rend_2.vsdx

Figure 3.18: Semi-tangential transfers, elliptical, parabolic and hyperbolic (2)
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3.10.3 Lagrange points

r

L1
L2

L3

L4

L5

Msmall
M large


Center 
of mass

Angular velocity 
of system

L1 : x  r 1  
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1

3
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1

3
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12
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L3 is more stable than L1,L2

Nasser M. Abbasi
May 9, 2014
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Figure 3.19: Lagrange points
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3.10.4 Orbit changing by low contiuous thrust

continuous thrust effects
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Figure 3.20: Orbit changing by low contiuous thrust
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3. Fundamentals of Astrodynamics, Bates, Muller and White. Dover1971

120



CHAPTER 4
Dynamic of flights

Figure 4.1: Dynamic of flights
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4.1 Wing geometry

root chord

length of mean 
aerodynamic chord 
projected on the 
root chord

half wing span

local chord

wing tip chord

Leading edge 
sweep angle

centroid of area of 
one half of wing 
located on mean 
aerodynamic chord

wing1.vsdx
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020914

Figure 4.2: Wing geometry

Cr below is the core chord of the wing.
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apex of 
wing c.g

control-fixed 
static margin

wing_4_generic.vsdx
Nasser M. Abbasi

020914

A.C.
wing

mac

A.C.
tail

positive for 
static 
stability

Figure 4.3: core chord of the wing

This is a diagram to use to generate equations of longitudinal equilibrium.

This distance is called the stick-fixed static margin km = (hn − h) c̄ Must be positive
for static stability
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Figure 4.4: equations of longitudinal equilibrium
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4.2 Summary of main equations
This table contain some definitions and equations that can be useful.

# equation meaning/use

1

CL = ∂CL

∂α
α

= CLαα

= aα

CL is lift coefficient. α is an-
gle of attack. a is slope ∂CL

∂α

which is the same as CLα

2 CLw = CLwα
α wing lift coefficient

3 CD = CDmin + kC2
L drag coefficient

4 Cmw = Cmacw
+ (CLw + CDminαw) (h− hnw) + (CLαw − CDw) z

c̄
pitching moment coefficient
due to wing only about
the C.G. of the airplane as-
suming small αw. This is
simplified more by assum-
ing CDwαw � CLw and
(CLαw − CDw) � 1

5 Cmw = Cmacw
+ CLw(h− hnw) simplified wing Pitching mo-

ment

6

Cmwb
= Cmacwb

+ CLwb
(h− hnw)

= Cmacwb
+ ∂CLwb

∂αwb
αwb(h− hnw)

= Cmacwb
+ awbαwb(h− hnw)

simplified pitching moment
coefficient due to wing and
body about the C.G. of the
airplane. αwb is the angle of
attack

7 CLt = Lt
1
2ρV

2St
CLt is the lift coefficient gen-
erated by tail. St is the tail
area. V is airplane air speed
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8 L = Lwb + Lt total lift of airplane. Lwb is
lift due to body and wing
and Lt is lift due to tail

9 CL = CLwb
+ St

S
CLt coefficient of total lift of air-

plane. CLwb
is coefficient of

lift due to wing and body.
CLt is lift coefficient due to
tail. S is the total wing area.
St is tail area

10 Mt = −ltLt = −ltCLt
1
2ρV

2St pitching moment due to tail
about C.G. of airplane

11 Cmt = Mt
1
2ρV

2Stc̄
= − lt

c̄
St

S
CLt = −VHCLt pitching moment coefficient

due to tail. VH = lt
c̄
St

S
is

called tail volume

12
VH = lt

c̄
St

S

V̄H = l̄t
c̄
St

S

introducing V̄H bar tail vol-
ume which is VH but uses l̄t
instead of lt. Important note.
VH depends on location of
C.G., but V̄H does not. l̄t =
lt + (h− hnwb

) c̄

13 Cmt = −V̄HCLt + CLt
St

S
(h− hnwb

) pitching moment coefficient
due to tail expressed using
V̄H . This is the one to use.

14 Cmp pitching moment coefficient
due to propulsion about air-
plane C.G.

15 Cm = Cmwb
+ Cmt + Cmp total airplane pitching mo-

ment coefficient about air-
plane C.G.
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16

Cm = Cmwb
+ Cmt + Cmp

=
[
Cmacwb

+ CLwb
(h− hnw)

]
+
[
−V̄HCLt + CLt

St

S
(h− hnwb

)
]
+ Cmp

= Cmacwb
+

CL︷ ︸︸ ︷(
CLwb

+ CLt

St

S

)
(h− hnw)− V̄HCLt + Cmp

= Cmacwb
+ CL(h− hnw)− V̄HCLt + Cmp

simplified total Pitching mo-
ment coefficient about air-
plane C.G.

17
∂Cm

∂α
= ∂Cmacwb

∂α
+ ∂CL

∂α
(h− hnw)− V̄H

∂CLt

∂α
+ ∂Cmp

∂α

Cmα = ∂Cmacwb

∂α
+ CLα(h− hnw)− V̄H

∂CLt

∂α
+ ∂Cmp

∂α

derivative of total pitching
moment coefficient Cm w.r.t
airplane angle of attack α

18 hn = hnwb
− 1

∂CL
∂α

(
∂Cmacwb

∂α
− V̄H

∂CLt

∂α
+ ∂Cmp

∂α

)
location of airplane neutral
point of airplane found by
setting Cmα = 0 in the above
equation

19
∂Cm

∂α
= ∂CL

∂α
(h− hn)

Cmα = CLα(h− hn)
rewrite of Cmα in terms of hn.
Derived using the above two
equations.

20 kn = hn − h static margin. Must be Posi-
tive for static stability

4.2.0.1 Writing the equations in linear form

The following equations are derived from the above set of equation using what is called
the linear form. The main point is to bring into the equations the expression for CLt

written in term of αwb. This is done by expressing the tail angle of attack αt in terms of
αwb via the downwash angle and the it angle.

∂CLwb

∂αwb
in the above equations are replaced

by awb and ∂CLt

∂αt
is replaced by at. This replacement says that it is a linear relation

between CL and the corresponding angle of attack. The main of this rewrite is to obtain
an expression for Cm in terms of αwb where αt is expressed in terms of αwb, hence αt

do not show explicitly. The linear form of the equations is what from now on.
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# equation meaning/use

1

CLwb
= ∂CLwb

∂αwb
αwb

= awbαwb

CLt = atαt

Cmp = Cm0p +
∂Cmp

∂α
α

awb is constant, repre-
sents ∂CLwb

∂αwb
and Cm0p

is propulsion pitching
moment coeff. at zero
angle of attack α

2
αt = αwb − it − ε

ε = ε0 +
∂ε

∂α
αwb

main relation that as-
sociates αwb with αt.
αwb is the wing-body
angle of attack, ε is
downwash angle at
tail, and it is tail
angle with horizon-
tal reference (see di-
agram)

3
CLt = atαt

= at

[
αwb

(
1− ∂ε

∂α

)
− it − ε0

] Lift due to tail ex-
pressed using αwb and
ε (notice that αt do
not show explicitly)

4 a = awb

[
1 + at

awb

St

S

(
1− ∂ε

∂α

)]
a defined for use with
overall lift coefficient

5

CL =
awbαwb︷︸︸︷
CLwb

+ St

S
CLt

= awbαwb + St

S
at
[
αwb

(
1− ∂ε

∂α

)
− it − ε0

]
= aα

= (CL)αwb=0 + aαwb

overall airplane lift
using linear relations
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6 α = αwb − at
a

St

S
(it + ε0)

cl_apha.vsdx
Nasser M. Abbasi

021 214

overall angle of attack
α as function of the
wing and body angle
of attack αwb and tail
angles

7
Cm = Cm0 + ∂Cm

∂α
α = Cm0 + Cmαα

Cm = C̄m0 + ∂Cm

∂α
αwb = C̄m0 + Cmααwb

overall airplane pitch
moment. Two ver-
sions one uses αwb

and one uses α

8
Cmα = a(h− hnwb

)− atV̄H

(
1− ∂ε

∂α

)
+ ∂Cmp

∂α

Cmα = awb(h− hnwb
)− atVH

(
1− ∂ε

∂α

)
+ ∂Cmp

∂α

Two versions of ∂Cm

∂α

one for αwb and one
one uses α

9
Cm0 = Cmacwb

+ Cmop
+ atV̄H(ε0 + it)

[
1− at

a
St

S

(
1− ∂ε

∂α

)]
C̄m0 = Cmacwb

+ C̄mop
+ atVH(ε0 + it)

Cm0 is total pitching
moment coef. at zero
lift (does not depend
on C.G. location) but
C̄m0 is total pitch-
ing moment coef. at
αwb = 0 (not at zero
lift). This depends on
location of C.G.

10 C̄m0p = Cm0p + (α− αwb)∂Cmp

∂α
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11
hn = hnwb

+ at
a
V̄H

(
1− ∂ε

∂α

)
− 1

a
∂Cmp

∂α

= hnwb
+ at

awb

[
1+ at

awb

St
S

(
1− ∂ε

∂α

)] V̄H

(
1− ∂ε

∂α

)
− 1

awb

[
1+ at

awb

St
S

(
1− ∂ε

∂α

)] ∂Cmp

∂α

Used to determine hn

4.2.1 definitions
1. Remember that for symmetric airfoil, when the chord is parallel to velocity vector,

then the angle of attack is zero, and also the left coefficient is zero. But this is only
for symmetric airfoil. For the common campbell airfoil shape, when the chord is
parallel to the velocity vector, which means the angle of attack is zero, there will
still be lift (small lift, but it is there). What this means, is that the chord line
has to tilt down more to get zero lift. This extra tilting down makes the angle of
attack negative. If we now draw a line from the right edge of the airfoil parallel to
the velocity vector, this line is called the zero lift line (ZLL) see diagram below.
Just remember, that angle of attack (which is always the angle between the chord
and the velocity vector, the book below calls it the geometrical angle of attack)
is negative for zero lift. This is when the airfoil is not symmetric. For symmetric
airfoil, ZLL and the chord line are the same. This angle is small, −30 or so.
Depending on shape. See Foundations of Aerodynamics, 5th ed, by Chow and
Kuethe, here is the diagram.
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Figure 4.5: diagram from 5th ed, by Chow and Kuethe

2. stall from http://en.wikipedia.org/wiki/Stall_(flight)� �
In fluid dynamics, a stall is a reduction in the lift coefficient
generated by a foil as angle of attack increases.[1] This occurs when
the critical angle of attack of the foil is exceeded. The critical
angle of attack is typically about 15 degrees, but it
may vary significantly depending on the fluid, foil, and Reynolds number.� �

3. Aerodynamics in road vehicle wiki page

4. some demos relating to airplane control http://demonstrations.wolfram.com
/ControllingAirplaneFlight/

http://demonstrations.wolfram.com/ThePhysicsOfFlight/

5. http://www.americanflyers.net/aviationlibrary/pilots_handbook/cha
pter_3.htm
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6. Lectures Helicopter Aerodynamics and Dynamics by Prof. C. Venkatesan, De-
partment of Aerospace Engineering, IIT Kanpur http://www.youtube.com/wa
tch?v=DKWj2WzYXtQ&list=PLAE677E56C97A7C7D

7. http://avstop.com/ac/apgeneral/terminology.html has easy to understand
definitions airplane geometry. "The MAC is the mean average chord of the wing"

8. http://www.tdmsoftware.com/afd/afd.html airfoil design software
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4.3 images and plots collected
These are diagrams and images collected from different places. References is given next
to each image.

Zero left line 
for airplane

Body x-axes 
(chord of 
airplane

Perpendicular to c.g. velocity vector V

Weight of 
airplane. 
Vertically down

Current 
velocity 
vector of 
airplane c.g.

Absolute angle of attack

Angle of attack of thrust

By Nasser M. Abbasi
my_drawing.vsd
1/24/14

Parallel to V 
vector originate 
from A.C. and not 
C.G.

Figure 4.6: Main forces on airplane
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http://en.wikipedia.org/wiki/Flight_dynamics_%28aircraft%29

Figure 4.7: Local stability

Dihedral angle

Reference: http://en.wikipedia.org/wiki/Dihedral_%28aircraft%29

Figure 4.8: diherdal angle
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From Performance, Stability, Dynamics, and Control of Airplanes

By Baudu N. Pamadi

definitions

I do not see viscosity here?

http://en.wikipedia.org/wiki/Drag_coefficient

Figure 4.9: Definitions

This below from http://www.grc.nasa.gov/WWW/k-12/UEET/StudentSite/dynamic
sofflight.html
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http://www.grc.nasa.gov/WWW/k-12/UEET/StudentSite/dynamicsofflight.html

Figure 4.10: Drag coefficient

http://www.grc.nasa.gov/WWW/k-12/airplane/alr.html
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http://www.grc.nasa.gov/WWW/k-12/airplane/alr.html

http://www.grc.nasa.gov/WWW/k-12/airplane/alr.html

Figure 4.11: Roll, Yaw and Pitch

From http://en.wikipedia.org/wiki/Lift_coefficient and http://en.wikiped
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ia.org/wiki/File:Aeroforces.svg

http://en.wikipedia.org/wiki/Lift_coefficient

http://en.wikipedia.org/wiki/File:Aeroforces.svg

http://en.wikipedia.org/wiki/Lift_%28force%29

Figure 4.12: Forces diagram

from http://adg.stanford.edu/aa241/drag/sweepncdc.html
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http://adg.stanford.edu/aa241/drag/sweepncdc.html

Figure 4.13: From sweepncdc website

Images from http://adamone.rchomepage.com/cg_calc.htm and Flight dynamics
principles by Cook, 1997.
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http://adamone.rchomepage.com/cg_calc.htm

Figure 4.14: From Flight dynamics principles by Cook

From http://chrusion.com/BJ7/SuperCalc7.html
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Figure 4.15: From chrusion site

From http://www.willingtons.com/aircraft_center_of_gravity_calcu.html
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Figure 4.16: center of gravity
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From http://www.solar-city.net/2010/06/airplane-control-surfaces.html
nice diagram that shows clearly how the elevator causes the pitching motion (nose
up/down). From same page, it says "The purpose of the flaps is to generate more lift
at slower airspeed, which enables the airplane to fly at a greatly reduced speed with a
lower risk of stalling."

Figure 4.17: airplane control surfaces

Images from flight dynamics principles, by Cook, 1997.
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Page 184, flight dynamics principles, by Cook

Page 41, flight dynamics principles, by Cook

Figure 4.18: from flight dynamics principles, by Cook

Images from Performance, stability, dynamics and control of Airplanes. By Pamadi,
AIAA press. Page 169. and http://www.americanflyers.net/aviationlibrary/p
ilots_handbook/chapter_3.htm
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From: Performance, stability, dynamics and control of 
Airplanes. By Pamadi, AIAA press. Page 169

http://www.americanflyers.net/aviationlibrary/pilots_handbook/chapter_3.htm

Figure 4.19: from Performance, stability, dynamics and control

Image from http://www.americanflyers.net/aviationlibrary/pilots_handbook
/chapter_3.htm
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http://www.americanflyers.net/aviationlibrary/pilots_handbook/chapter_3.htm

Good discussion on angle of attack

Figure 4.20: from pilots handbook

Image from http://www.americanflyers.net/aviationlibrary/pilots_handbook
/chapter_3.htm
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The profile drag of a streamlined object held 
in a fixed position relative to the airflow increases 
approximately as the square of the velocity; 
thus, doubling the airspeed increases the drag four times, 
and tripling the airspeed increases the drag nine times. 

The amount of induced drag varies inversely 
as the square of the airspeed. 

From the foregoing discussion, it can be noted that parasite drag increases 
as the square of the airspeed, and induced drag varies inversely as 
the square of the airspeed.

http://www.americanflyers.net/aviationlibrary/pilots_handbook/chapter_3.htm

lift varies directly with the wing area
a wing with a planform area of 200 square feet lifts twice as 
much at the same angle of attack as a wing with an area of 100 
square feet.

Figure 4.21: from pilots handbook (2)

Image from FAA pilot handbook and http://www.youtube.com/watch?v=8uT55aei
1NI
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From FAA pilot’s handbook

From FAA pilot’s handbook

I do not understand the above

http://www.youtube.com/watch?v=8uT55aei1NI

Figure 4.22: from FAA pilot handbook

Image http://www.youtube.com/watch?v=8uT55aei1NI and http://www.youtube.
com/user/DAMSQAZ?feature=watch
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http://www.youtube.com/watch?v=8uT55aei1NI

A=area of wing
D=density of air
V=wind speed relative to 
wing

http://www.youtube.com/user/DAMSQAZ?feature=watch

Figure 4.23: from youtube
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The angle of attack at which an airfoil does not produce any lift. Its value is generally less than zero unless 
the airfoil is symmetrical.

 zero-lift angle

http://www.answers.com/topic/zero-lift-angle

These are from text :foundation of aerodynamics by Kuethe and Chow
1. the center of pressure is at ¼ chord for all values of lift coeff.
2. center of pressure (c.p.) of a force is defined as the point about which the moment vanishes. 
3. The geometric angle of attack is defined as the angle between the flight path and the chord line of the airfoil . 
When the geometric angle of attack is zero, the lift coeff. Is zero.
4. The point about which the moment coeff. Is independent of the angle of attack is called the aerodynamic 
center of the section. (a.c.)
5. a.c. is at the ¼ chord line point.
6. The value of the angle of attack that makes the lift coeff. Zero is called the angle of zero lift (Z.L.L.)

There are from Foundations 
of aerodynamics, 5th ed. By 

Chow and Kuethe

This from Foundations of aerodynamics, 5th ed. By Chow and Kuethe

Figure 4.24: from youtube (2)
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4.4 Some strange shaped airplanes
Image http://edition.cnn.com/2014/01/16/travel/inside-airbus-beluga/in
dex.html?hpt=ibu_c2

Figure 4.25: airbus beluga 1

Figure 4.26: Concorde
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Image from http://edition.cnn.com/2014/01/16/travel/inside-airbus-belug
a/index.html?hpt=ibu_c2

Figure 4.27: airbus beluga (2)

Image from http://www.nasa.gov/centers/dryden/Features/super_guppy.html

Figure 4.28: NASA SGT super guppy

Image from http://www.aerospaceweb.org/question/aerodynamics/q0130.shtml
"Boeing Pelican ground effect vehicle"

Figure 4.29: pelican 01
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4.5 links
1. https://3dwarehouse.sketchup.com/search.html?redirect=1&tags=airpl

ane
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4.6 references
1. Etkin and Reid, Dynamics of flight, 3rd edition.

2. Cook, Flight Dynamics principles, third edition.

3. Lecture notes, EMA 523 flight dynamics and control, University of Wisconsin,
Madison by Professor Riccardo Bonazza

4. Kuethe and Chow, Foundations of Aerodynamics, 4th edition
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