Analytical solution to diffusion-convection PDE in 1D
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This is a diffusion-convection PDE.

OF(t,z)  0°F(t,z) A OF(t,z)
ot =k 022 T 0z
t>0
0<z<L

Where £ is the diffusion constant and v is the convection speed. Boundary conditions are

F(t,0) =
Ft,L)=1
Initial conditions are
0 0<z<L
F(0,z2) = -
0:={7 °52%

The first step is to convert the PDE to pure diffusion PDE using the transformation

F(t, z) = A(t, 2) u(t, 2)

Substituting this back in (1) gives

A+ Auy = k(A u+ 2Au, + Au,,) + v(Au + Au,)

Dividing by A and simplifying
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U = ku,, + k
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To make (2) pure diffusion PDE, we want

Azz - % + vAz

k 5 u=0 3)
(2kAZA+vA) w = 0 (4)

From (4) (2kA, + vA)u, =0 or 2kA, + vA =0 or %4 + 2 A = 0 which has the solution

A(t, z) = C(t) e %* (5)

From (3) we want k(Azz — % + ’UAZ) = (. Substituting the result just obtained for A(t, z)
in (3) gives

U2 _v, dC(t)l_Lz U2 v
v? 1, v?

1€ = £ C) = 2 C(t) =0
2

1 v _

C'(t) + 3C(t) =0

Hence 9
C(t) = Creirt

For some constant C;. The constant C; ends up canceling out at the very end. Hence we
set it to 1 now instead of carrying along in all the derivation in order to simplify notations.

_ 2
Therefore C(t) = e 2 *. Substituting this into (5) gives the transformation function
’U2 vz
A(t, 2z) = e_<47t+ﬁ)

Using this in (2) gives the pure diffusion PDE to solve

U = kt,, (6)

Converting the original boundary conditions from F' to u gives

F(t,0)=0
A(t,0) u(t,0) =

e_v%tu(t, 0)=0
u(t,0) =



And
F(t,L)=1
A(t,L)u(t,L) =
e_(vi’“w%)u(t, L)=
u(t, L) = e(%+%)

And for the initial conditions

0 0<z<L
F(0,z2) = -
e R
0 0<z<L
A = -
0.u0.9={ ) 577
_ vz 0 0<z<lL
e 2ku(0,Z)—{ 1 =L
(0,2) = 0 0<z<L
e = ek z=1L
Therefore the new PDE to solve is
ur = ku,,
With time varying boundary conditions
u(t,0) =0

2

u(t,L) = e(%’:jL%)

And initial conditions

0 0<z<lL
u(0,2) = ik 1

To solve this using separation of variables, the boundary conditions has to be homogenous.
Therefore we use standard method to handle this as follows. Let

u(t, z) = é(t, 2) + ug(t, 2) (7)



Where ug(t, z) is the steady state solution which needs to only satisfy the boundary condi-
tions and ¢(t, z) satisfies the PDE but with homogenous boundary conditions. Therefore

u(t, L) — u(t,0)
)

ug(t,z) = u(t,0) + z(
And (7) becomes

Substituting the above in (6) gives

2 2, WL 2
09 L 2V (wt+sk) 00
ot L4k 072

0 _ 0%

ot - w +Q(ta Z) (8)

This is diffusion PDE with homogenous B.C. with source term

d
Qt, z) = —%uE(t, 2)
Now we find ¢(¢, z). Since this solution needs to satisfy homogenous boundary conditions,
we know the solution to pure diffusion on bounded domain with source present is by given
by the following eigenfunction expansion

o(t, z) = Z by, (t) sin (x/)\nz) (8A)
n=1
Where eigenvalues are A\, = (%)2 for n =1,2,--- and sin (\/ )\nz) are the eigenfunction.

Substituting the above in (8) in order to obtain an ODE to solve for b,(t) gives

o0

i b (t)sin (VAnz) = kY =ba(t) Ansin (VAnz) +Q(,2) )

n=1



Expanding Q(t, z) in terms of eigenfunctions

= i gn(t) sin <\/)\_nz>

Applying orthogonality

/OL Q(t, z) sin (\/)\_nz> dz = qu(t) g
But

/GQ(t, z) sin <\/)\_nz> dz = /L —%%e(% 35) sin (\/_z) dz

0 0

2 U2t vL L
= —v—e<ﬁ+ﬁ> / z sin <\/)\nz> dz
0

V2 <¢ﬁ+%>(—1f*1L2
4kL nmw

Hence from (9A) we find

Using the above in (9) gives

Z b, (t) sin <\/_z> k —by(t) Ap sin <\/)\_nz> + i qn(t) sin <\/)\_nz)

b (t) + kAnbn (t) = %U

To solve the above ODE, the integrating factor is p = e, therefore

t
ba(t) €t = / 4a(7) €7dr + C,
0
t
ba(t) = e At / gn(7) €T + Cre M
0

t
:/ qn(T) ek)\n(T—t)dT + Cne—kz)\nt
0

(94)



Using the above in (7) gives

2t oL ad t
u(t, z) = %6(‘“9+2k> + Z (/ gn (1) €m0 4 C’ne_“‘”t) sin (\/)\n2> (10)
n=1 0

C,, is now found from initial conditions. At ¢ = 0 the above becomes

R’

u(0, z —% 3 ZC’ sm<\/_z>
Applying orthogonality
/OL (u(O z) — Ze%) sin <\/_z dz—/ ZC sin \/_z> sin (\/_z>
/OL u(0, 2) sin <\/)\_nz> dz — /0 Ze% sin <\/)\_nz> dz = C"E

But fo (0, 2) sin (v/Anz) dz = 0 since u(0, z) is zero everywhere except at the end point.

And I L
Z oL (=1)" ez
- —e2k sin (/A2 | dz = —F—=—
[, et (VA as = S
Therefore

n vL
(ED7e= _ Cﬂé
Vs 2
2 (—1)" e
C, = I Vo (10A)
And the solution (10) becomes
z v2t | oL ad t
u(t, z) = Ze(‘ﬂer%) + Z (/ gn (1) €m0 4 C’ne_k)‘”t) sin (\/)\nz> (11)
n=1 0

But

’U2T vL
n T tor
/ t @n(7) €7 = / e vze(/—4k 2k>6’“A"(T"’)dT
0 0 2Lk‘ >\n

vL tv2
2(—1)" v2e FAntt g (e’“*n”m — 1)

nm (4k2)\, + v?)




Hence (11) becomes

2 < [(2(-1)" v2e~FAnt+ g (e’”‘"”‘% — 1) g\ oL
_f(%4%) 2(1 €2k _knt | o
u(t, z) = 7€ + nz:; ( o (AR, + 0%) + 7 ™ e sin (x/)\nz>
(12)
vt | ve
We now convert back to F'(t,z). Since F(t,z) = A(t, z) u(t, z) and A(t, 2) = e_< #+%)

then the final solution is

F(t,z) = e_<ﬁ+%)u(t, z)

The following is animation of the solution for 30 seconds, side-by-side with numerical
solution.

The following is the code used

ClearAll[t, =z, LO, k, lam, n, v, f]

LO = 10;
v =1/2;
k = 1/2;

ode = D[f[t, z], t] == kxD[f[t, z], {z, 2}] + vxD[f[t, z], z];
ic = £[0, z] == Piecewise[{{1, z == L0}, {0, True}}];

bc = {£[t, 0] == 0, f[t, LO] == 1};

sol = NDSolve[{ode, bc, ic}, f, {t, 0, 100}, {z, 0, 10}];
(*analytical*)

lam[n_] := (n"2%Pi~2)/L0"2;

max = 100;

ult_, z_] := Module[{},

Sum[((2*(-1) “nxv~2+Exp [(LO*v) / (2%¥k) - kxlam[n]*t]*
(Exp[(t*v~2)/(4%k) + kxlam[n]l*t] - 1))/(n*
Pi*(4xk™2xlam[n] + v~2)) +
(2/L0)*(((-1) "n*Exp [(LO*v) /(2*k)]) /Sqrt [lam[n]]) *
Exp[(-1lam[n])*k*t])*

Sin[Sqrt[lam[n]]*z], {n, 1, max}] + (z/LO)*
Exp[(v™2%t)/(4%k) + (v*L0)/(2xk)]];

fAnalyticallt_, z_] := Module[{}, Exp[-((v™2*t)/(4*k) + (v*z)/(2*k))]*ult, z]l];

Manipulate [Grid [{{Row[{"t=", t}], SpanFromLeft},
{Plot [Evaluate[f[t, z] /. sol], {z, O, 10},
PlotRange -> {{0, 10}, {-0.2, 1}},
ImageSize -> 300, PlotLabel -> "NDSolve solution"],
Plot[Evaluate[fAnalyticall[t, z]], {z, 0, 10},
PlotRange —> {{0, 10}, {-0.2, 1}},




‘ ImageSize —-> 300, PlotLabel -> "Analytical solution",
| PlotStyle —> Red]}}],

{{t, 0, "t"}, 0, 30, 0.01},
' TrackedSymbols :> {t}]
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