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1 Introduction
This note illustrates using simple examples, how to evaluate the deformation gradient tensor
F̃ and derive its polar decomposition into a stretch and rotation tensors.
Diagrams are used to help illustrate geometrically the effect of applying the stretch and the
rotation tensors on a differential vector with the purpose of giving better insight into these
operations. For simplicity, only 2D shapes are used.
Starting by selecting some arbitrary differential vector dR in the undeformed shape. The
shape is then assumed to undergo a fixed form of deformation such that F̃ is constant over
the whole body (as opposed to being a field tensor where F̃ would be a function of the
position). Then the tensor F̃ is computed and shown using diagrams how the differential
vector dR in the undeformed shape is mapped to the vector dr in the deformed shape by
successive application of the stretch tensor Ũ followed by a parallel translation operation,
and followed by the application of the rotation tensor R̃.
The point that dR is located at is labeled P in the undeformed shape, and its image will be
labeled P ′ in the deformed shape. The coordinates in the undeformed shape will be upper
case X1, X2 and in the deformed shape will be lower case x1, x2.
One observation found is that if the deformation is such that perpendicular lines in the
undeformed shape remain perpendicular to each others in the deformed shape, then this
implies that the rotation tensor R̃ will come out to be the identity tensor. The first 2
examples below illustrate this case. In the third example the rotation tensor R̃ is not the
identity tensor because lines do not remain perpendicular to each others after deformation.
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2 Examples

2.1 Square shape becomes longer with width fixed
The following diagram is the undeformed configuration.
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A

B

C
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(0,2)

(0,3)

(1,1)

(1,2)

(1,3)

(2,2)

(2,1)

(2,3)

e1

e2

Undeformed configuration

X-coordinates system

(3,1)

(3,2)

(3,3)

Figure 1: undeformed configuration

In this shape, the vector dR extends from the point (1, 1) to the point (2, 2). In this example,
we assume a deformation whereby the shape is pulled upwards by some distance, causing
the shape to become longer in the vertical direction and we assume the shape remain the
same width.
This is the simplest form of deformation. Let us assume for simplicity that the shape
becomes 3 times as long as before.
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Figure 2: shape becomes 3 times as long

We observe the following. The lines A,B,C have moved to new locations in the deformed
configuration. For instance, the line A started at (0, 1) and ended at (3, 1) in the undeformed
shape coordinates. While the same line now labeled lower case a, starts from (0, 3) and
ends at (3, 3) in the deformed shape using the undeformed coordinates system.
The first step in finding F̃ is to determine the mapping between the X coordinates in
the undeformed shape, and the x coordinates in the deformed shape. In this example this
mapping is constant over any region of the shape. We see immediately that since the width
of the shape did not change, then

x1 = X1

and since the new shape is 3 times as long as before then

x2 = 3X2
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And now we can calculate F̃. Since

F̃ =

 ∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2


then given that ∂x1

∂X1
= 1, ∂x1

∂X2
= 0, ∂x2

∂X1
= 0, ∂x2

∂X2
= 3 we obtain the numerical value for F̃

F̃ =
[
1 0
0 3

]
We note here that F̃ is the same for any region of the deformed shape. This is because the
deformation is uniform.
Now we can find dr.

dr = F̃ · dR
Since from the undeformed shape we see that

dR = e1 + e2

Then

dr =
[
1 0
0 3

] [
1
1

]
=

[
1
3

]
Hence

dr = e1 + 3e2
Looking at the deformed shape we see that this agrees with the expected shape of the
deformed dr vector.
Now once F̃ is found, we can determine the stretch tensor Ũ and the rotation tensor R̃.
We will do this algebraically first, then verify the result geometrically. Since by definition

F̃ = R̃ · Ũ

Once F̃ is known, we can find Ũ using the relation

Ũ2=F̃T · F̃

=
[
1 0
0 3

] [
1 0
0 3

]
=

[
1 0
0 9

]
Now we take the square root of the matrix Ũ2 to find Ũ1

Ũ =
[
1 0
0 3

]
1To obtain the square root of a matrix, say matrix C, follow these steps.
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and now that Ũ is known, we can find R̃

R̃=F̃ · Ũ−1

=
[
1 0
0 3

][1 0
0 1

3

]
=

[
1 0
0 1

]
To verify this result algebraically, we write

dr = F̃ · dR
= R̃ · Ũ · dR

= R̃·
[
1 0
0 3

] [
1
1

]
= R̃·

[
1
3

]
=

[
1 0
0 1

] [
1
3

]
=

[
1
3

]
dr = e1 + 3e2

Which agrees with earlier result.
To verify the result geometrically, we first apply the stretch tensor Ũ to dR, this results
in a new differential vector which we call dr∗, then we slide dr∗ without changing its slope
(i.e. parallel translation) such that the vector dr∗ starts at the point P ′ in the deformed
configuration, where the point P ′ is the image of the point P in the undeformed shape, and
then we apply the rotation tensor R̃ to dr∗ to obtain dr.
Hence

dr∗ = Ũ · dR =
[
1 0
0 3

] [
1
1

]
=

[
1
3

]
= e1 + 3e2

Now we apply the rotation of R̃ =
[
1 0
0 1

]
to dr∗, and since the rotation is a unit tensor,

then this operation will produce no effect.
1. Determine the eigenvalues λ of the matrix.
2. For each eigenvalue λn determine the correspending eigenvector Vn

3. Construct the Matrix N whose columns are the eigenvectors Vn. i.e. the first column will be the
vector V1 etc...

4. Construct matrix M with diagonal elements that contains the
√
λn. i.e. M(1, 1) =

√
λ1, M(2, 2) =√

λ2, and so forth. (This is the Jordan form for real distinct eigenvalues)
5. Now

√
C = NTMN

In Matlab, the command expm() can be used to calculate sqrt of a matrix.
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Figure 3: rotation is a unit tensor

2.2 Square shape becomes both longer and wider
In this example we start with the same original shape as above, but we increase both the
length and the width of the shape and not just its length. Let the length be 3 times as long
as the original length, and the width be 1.5 times as wide as the original width.
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Figure 4: Square shape becomes both longer and wider

As before, the first step in finding F̃ is to determine the mapping between the X coordinates
in the undeformed shape, and the x coordinates in the deformed shape. In this example,
this mapping is constant over any region of the shape. We see that

x1 = 1.5X1

and since the new shape is 3 times as long as before then

x2 = 3X2

And now we can calculate F̃. Since

F̃ =

 ∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2





8

then given that ∂x1
∂X1

= 1.5, ∂x1
∂X2

= 0, ∂x2
∂X1

= 0, ∂x2
∂X2

= 3 we obtain numerical value for F̃

F̃ =
[
1.5 0
0 3

]
Now let us find dr.

dr = F̃ · dR

From the undeformed shape we see that

dR = e1 + e2

Hence

dr =
[
1.5 0
0 3

] [
1
1

]
=

[
1.5
3

]
hence,

dr = 1.5e1 + 3e2
Looking at the deformed shape we see that this is indeed the case.
Now once F̃ is found, we can determine the stretch tensor Ũ and the rotation tensor R̃.
We will do this algebraically first, then verify the result geometrically.

F̃ = R̃ · Ũ

Once F̃ is known, we can find Ũ

Ũ2=F̃T · F̃

=
[
1.5 0
0 3

] [
1.5 0
0 3

]
=

[
2.25 0
0 9

]
Hence

Ũ =
[
1.5 0
0 3

]
and now that Ũ is known, we can find R̃

R̃=F̃ · Ũ−1

=
[
1.5 0
0 3

]2
3 0
0 1

3

 =
[
1 0
0 1

]

To verify the result geometrically, we first apply the stretch Ũ to dR, this results in a
new differential vector which we call dr∗, then we slide dr∗ without changing its slope
(i.e. parallel translation) such that the vector dr∗ starts at the point P ′ in the deformed
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configuration, where the point P ′ is the image of the point P, and then we apply the rotation
R̃ to dr∗ to obtain dr. Hence

dr∗ = Ũ · dR =
[
1 0
0 3

] [
1
1

]
=

[
1
3

]
= e1 + 3e2

Now we apply the rotation of R̃ =
[
1 0
0 1

]
to dr∗, and since the rotation is a unit tensor,

then no rotation will occur.
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Figure 5: after applying the rotation

2.3 square shape becomes wider and pulled at an angle.
In this example, the same undeformed shape shown in earlier examples will be deformed to
cause the rotation tensor to be something other than the identity tensor. We assume the
following deformation



10

dR
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Figure 6: deformation assumed

The above deformation is constructed such that
x1 = 2X1

x2 = X1 +X2

Now we can calculate F̃. Since

F̃ =

 ∂x1
∂X1

∂x1
∂X2

∂x2
∂X1

∂x2
∂X2


then given that ∂x1

∂X1
= 2, ∂x1

∂X2
= 0, ∂x2

∂X1
= 1, ∂x2

∂X2
= 1 we obtain numerical value for F̃

F̃ =
[
2 0
1 1

]
Now we can find dr.

dr = F̃ · dR
From the undeformed shape we see that

dR = e1 + e2
Hence

dr =
[
2 0
1 1

] [
1
1

]
=

[
2
2

]
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Therefore
dr = 2e1 + 2e2

Looking at the deformed shape we see that this is indeed the case. Now once F̃ is found,
we can determine the stretch tensor Ũ and the rotation tensor R̃.
We will do this algebraically first, then verify the result geometrically.

F̃ = R̃ · Ũ

Once F̃ is known, we can find Ũ

Ũ2=F̃T · F̃

=
[
2 1
0 1

] [
2 0
1 1

]
=

[
5 1
1 1

]
Hence

Ũ =
[
2.2136 0.3162
0.3162 0.9487

]
and now that Ũ is known, we can find R̃

R̃=F̃ · Ũ−1

R̃ =
[
2 0
1 1

] [
0.4743 −0.1581
−0.1581 1.1068

]
R̃ =

[
0.9487 −0.3162
0.3162 0.9487

]
To verify the result geometrically, we first apply the stretch tensor Ũ to dR, this results
in a new differential vector which we call dr∗, then we slide dr∗ without changing its slope
(i.e. parallel translation) such that the vector dr∗ starts at the point P ′ in the deformed
configuration, where the point P ′ is the image of the point P, and then we apply the rotation
tensor R̃ to dr∗ to obtain dr.
Hence

dr∗ = Ũ · dR =
[
2.2136 0.3162
0.3162 0.9487

] [
1
1

]
=

[
2.5298
1.2649

]
= 2.5298 e1 + 1.2649 e2

Now we apply the rotation to R̃ to dr∗ to obtain dr

dr = R̃ · dr∗

=
[
0.9487 −0.3162
0.3162 0.9487

] [
2.5298
1.2649

]
=

[
2
2

]
= 2e1 + 2e2
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which agrees with the result obtained above.
The following diagram illustrates geometrically the action of R̃ and Ũ.
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dr*

R 
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dr

dr  R  dr


dr
  Ũ  dR

Figure 7: final result


	Introduction
	Examples
	Square shape becomes longer with width fixed
	Square shape becomes both longer and wider
	square shape becomes wider and pulled at an angle.


