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1 Proportional controller
Let us consider a closed loop control system with proportional controller kp and with
plant transfer function given by standard second order mass-spring-damper system
G(s) = 1

ms2+cs+k
where m is the mass and c is the damping coefficient and k is the

stiffness coefficient of the spring. In block diagram, the system is

Gs  1

ms2cskkp

ysyrs es Fs
+-

Figure 1: system in block diagram

The error is e(s) = yr(s) − y(s) where yr(s) is the reference input that we want the
output y(s) to track. We are now interested in finding how adding the controller and
closing the loop changes the dynamics of the plant by viewing the changes in the
differential equation of the new system. Without the controller and the closed loop, the
system was
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Gs  1

ms2csk

ys
Fs

Figure 2: system with no controller and closed loop

In time domain this is represented by the differential equation my′′ + cy′ + ky = f(t)
where F (s) is the Laplace transform of f(t). We now ask, how does this differential
equation changes by adding the controller kp and closing the loop? From the first
diagram, F (s) = e(s) kp or F (s) = (yr(s)− y(s)) kp, hence the plant now appears as

Gs  1

ms2csk

ysyrs  yskp

Figure 3: Plant

Hence
y(s)

(
ms2 + cs+ k + kp

)
= yr(s) kp

And in time domain, the differential equation now becomes

my′′ + cy′ + (k + kp) y = L−1(yr(s) kp)

Considering the case where the reference signal is a unit step (with amplitude that has
units of distance or length), then L(yr(s)) = 1

s
and the above reduces to

my′′ + cy′ + (k + kp) y = kp (1)

We see now that the effect of adding a proportional controller kp is to increase the
stiffness of the plant by an amount kp and also forcing the plant with constant force kp
(actuating force). Increasing the effective stiffness also means the natural frequency ω

of the plant will increase, since ω =
√

keffective
m

and the mass remained the same. A note
on the units: The controller kp has units of Newton per unit length in this case (stiffness
coefficient units) and the force kp will have units of Newton only (since we multiplied
it by the unit step reference single which had units of length). Even though the term
kp appears as stiffness on the left side and as force in the right side, it represents only
the magnitude, and the units will depend on the context.
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It is easy to verify the above. We can connect the system, view the output y(t) of the
closed loop for a unit step input yr(t), and compare it the solution of the differential
equation as given by (1). The differential equation is solved using zero initial conditions.
We see below that the same result shows up.� �
m = 1; c = 1; k = 20; kp = 400;

plant = TransferFunctionModel[1/(m s^2 + c s + k), s];
controller = TransferFunctionModel[kp, s];
sys = SystemsModelSeriesConnect[plant, controller];
sys = SystemsModelFeedbackConnect[sys];
o = OutputResponse[sys, UnitStep[t], {t, 0, 6}];
p1 = Plot[o, {t, 0, 6}, Frame -> True, PlotRange -> All,

FrameLabel -> {{"y(t)", None}, {"t (sec)",
"response of closed loop system"}}, BaseStyle -> 14, ImageSize -> 350,
Epilog -> {Red, Line[{{0, 1}, {10, 1}}]}];

sol = First@DSolve[{m y''[t] + c y'[t] + (k + kp) y[t] == kp,y[0] == 0, y'[0] == 0}, y, t];

p2 = Plot[Evaluate[y[t] /. sol], {t, 0, 6}, Frame -> True,
PlotRange -> All, FrameLabel -> {{"y(t)", None},
{"t (sec)", "solution of closed loop differential equation"}},
BaseStyle -> 14, ImageSize -> 350];

Grid[{{p1, p2}}]� �
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Figure 4: Showing result

The differential equation given by (1) has an analytical solution when the force is
constant kp and assuming the damping ratio is ξ < 1 (under-damped), where ξ = c

cr
=
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c
2
√
km

. The analytical solution is given by

y(t) = e−ξωt

((
− kp
k + kp

)
cosωdt−

kp
k + kp

ξ
ω

ωd
sinωdt

)
+ kp

k + kp

Where ωd is the damped natural frequency ωd = ω
√
1− ξ2 and ω is the undamped

natural frequency ω =
√

k+kp
m

. We see now that as limt→∞ y(t) = kp
k+kp

and hence
the steady state solution will never reach unity (which is the reference signal in this
example) but will get closer to it as kp is made larger and larger. This is the reason
why response to a unit step using a proportional controller will always have a steady
state error given by 1− kp

k+kp
where kp is the controller gain and k is the plant original

stiffness coefficient. The term kp
k+kp

is called the static deflection. The final steady state
can also be found in Laplace domain using final value theorem as follows.

F (s) 1
ms2 + cs+ k

= y(s)

(yr(s)− y(s)) kp
ms2 + cs+ k

= y(s)

y(s)
(
ms2 + cs+ k

)
= yr(s) kp − y(s) kp

y(s)
(
ms2 + cs+ k + kp

)
= yr(s) kp

y(s) = kp
ms2 + cs+ k + kp

yr(s)

Assuming yr(s) is unit step, then

y(s) =
kp
s

ms2 + cs+ k + kp

And using final value theorem

y(∞) = lim
s→0

sy(s)

= lim
s→0

kp
ms2 + cs+ k + kp

= kp
k + kp

Which is the static deflection from the analytical solution of the differential equation
found above.
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2 PID controller
Let us now look at the dynamics of the plant when the controller is a PID given by
kp + kDs+ ki

1
s
. The block diagram of the system is

ysyrs es Fs
+-

Gskp  kDs  ki
1
s

Figure 5: Block diagram with PID

The error is e(s) = yr(s) − y(s) where yr(s) is the reference input that we want the
output y(s) to track. As was done for the case of the proportional controller, the plant
now appears as

ys
Gs

yrs  yskp  kDs  ki
1
s 

Figure 6: Plant diagram

Hence

y(s)
(
ms2 + cs+ k

)
= (yr(s)− y(s))

(
kp + kDs+ ki

1
s

)
y(s)

(
ms2 + cs+ k + kp + kDs+ ki

1
s

)
= yr(s)

(
kp + kDs+ ki

1
s

)
And in time domain, the differential equation now becomes

my′′ + (c+ kD) y′ + (k + kp) y + ki

t∫
0

y(τ) dτ = kpyr + kDy
′
r + ki

t∫
0

yr(τ) dτ

For the special case when the reference signal is a unit step

my′′ + (c+ kD) y′ + (k + kp) y + ki

t∫
0

y(τ) dτ = kp + ki

t∫
0

yr(τ) dτ

my′′ + (c+ kD) y′ + (k + kp) y = kp + ki

t∫
0

(yr(τ)− y(τ)) dτ
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The term
t∫
0
(yr(τ)− y(τ)) dτ is the integral of the error e(t). When yr(t) is unit step

the above becomes

my′′ + (c+ kD) y′ + (k + kp) y = kp + ki

t∫
0

(1− y(τ)) dτ

= kp + kit− ki

t∫
0

y(τ) dτ

Therefore, using a PID controller has the effect of making the system more damped,
since the effective damping coefficient has now become c+kD compared to just c before,
and making the system more stiff by adding kp to the stiffness coefficient. The actuating
force has two components (for the special case of unit step reference), which is constant

force of kp and a force which is proportional to the error: ki
t∫
0
(1− y(τ)) dτ .

PID controller allows the steady state to become zero. This can be seen by using final
value theorem in Laplace domain as follows. The transfer function can be found in
Laplace domain using final value theorem as follows.

F (s) 1
ms2 + cs+ k

= y(s)

(yr(s)− y(s))
(
kp + kDs+ ki

1
s

)
ms2 + cs+ k

= y(s)

y(s)
(
ms2 + cs+ k

)
= (yr(s)− y(s))

(
kp + kDs+ ki

1
s

)
y(s)

(
ms2 + cs+ k + kp + kDs+ ki

1
s

)
= yr(s)

(
kp + kDs+ ki

1
s

)
y(s) =

(
kp + kDs+ ki

1
s

)(
ms2 + cs+ k + kp + kDs+ ki

1
s

)yr(s)
Assuming yr(s) is unit step, then

y(s) =
(
kp + kDs+ ki

1
s

)(
ms2 + cs+ k + kp + kDs+ ki

1
s

) 1
s
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And using final value theorem

y(∞) = lim
s→0

sy(s)

= lim
s→0

(
kp + kDs+ ki

1
s

)(
ms2 + cs+ k + kp + kDs+ ki

1
s

)
= lim

s→0

skp + kDs
2 + ki

(ms3 + cs2 + ks+ kps+ kDs2 + ki)

= ki
ki

= 1

Hence y(∞) is a unit step. So using PID controller it was possible to achieve the same
value as the desired tracking signal. Hence the steady state error is zero.
Plot of the step response of the above is given below. ki was made large to force the
steady state error to go to zero in about 6 seconds.� �
m = 1; c = 1; k = 20; kp = 400; kd = 1; ki = 200;

plant = TransferFunctionModel[1/(m s^2 + c s + k), s];
controller = TransferFunctionModel[kp + kd s + ki 1/s, s];
sys = SystemsModelSeriesConnect[plant, controller];
sys = SystemsModelFeedbackConnect[sys];
o = OutputResponse[sys, UnitStep[t], {t, 0, 6}];
p1 = Plot[o, {t, 0, 6}, Frame -> True, PlotRange -> All,

FrameLabel -> {{"y(t)", None}, {"t (sec)",
"response of closed loop system, PID controller"}},
BaseStyle -> 14, ImageSize -> 400,
Epilog -> {Red, Line[{{0, 1}, {10, 1}}]}
]� �
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Figure 7: Result from above
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