statistics cheat sheet

[Nasser M. Abbasi](mailto:nma@12000.org)

Sumemr 2008 Compiled on January 28, 2024 at 9:24pm

Contents

1 my first cheat sheet

By Nasser M. Abbasi

Chapter one, Probability Definitions:

1) 2 events are disjoint if they have no outcomes in common. Written as A∩B=Ø

2) 2 events are independent if occurrence of one does not give any indication of the occurrence of the other, in addition, we write P(A∩B)=P(A) P(B)

Permutation and Combination: In Permutation the order we list things is important. Hence A,B would be different than B,A. Hence result of Permutations are *larger* than combination.

Figure 1.² statistics

2 second cheat sheet

problem: phone calls received at rate $\lambda = 2$ per hr. If person wants to take 10 min shower, what is probability a phone will ring during that time?

answer: first change to $\omega = \lambda \frac{10}{60} = 2 \frac{10}{60} = .3333$, now we want $P(X \ge 1) = 1 - P(X \le 1)$ $1) = 1 - P(0)$

but $P(k) = \frac{\lambda^k}{k!}$ $\frac{\lambda^k}{k!}e^{-\lambda}$, but remember, we are using *ω*, so $P(k) = \frac{\omega^k}{k!}$ $\frac{\omega^k}{k!}e^{-\omega}$ so $P(0)$ = $\frac{.3333^0}{0!}e^{-.3333} = 0.777$

so $P(X \ge 1) = 1 - .777 = 0.283$, so 28% change the phone will ring.

How long can shower be if they wish probability of receiving no phone calls to be at most 0.5?

 $P(0) = 0.5 = \frac{\omega_0}{0!} e^{-\omega} \to 0.5 = e^{-\omega}$ hence $\ln 0.5 = -\omega \to \omega = 0.693$, so $\lambda \frac{x}{60} = 0.693 \to$ $x = 20.7$ minutes

To find quantile, say $\frac{1}{4}$, first find an expression for $F(x)$ as function of *x*, then solve for *x* in $F(x) = .25$

For median, solve for x in $F(x) = .5$

properties of CDF: 1. Show $F(x) \ge 0$ for all *x*. Do this by showing $F'(x) \ge 0$, and show limit $F(x) \to 1$ as $x \to \infty$ and limit $F(x) \to 0$ as $x \to -\infty$. And $P(k_1 \leq T < k_2) = F(k_2) - F(k_1)$

properties of pdf:

- 1. piecewise continuous
- 2. $\text{pdf}(x) > 0$
- 3. $\int_{-\infty}^{\infty} p df(x) = 1$

 $\textbf{remember } \frac{d}{dx} \tan^{-1} x = \frac{1}{1+x}$ $\frac{1}{1+x^2}$

The geometric distribution is the only discrete memoryless random distribution. It is a discrete analog of the exponential distribution. continuous

Some relations

$$
\sum_{k=1}^{n} k = \frac{1}{2}n(n+1)
$$

Geometric sum

$$
\sum_{k=0}^{n} r^k = \frac{1 - r^{n+1}}{1 - r}
$$

if $-1 < r < 1$, then

$$
\sum_{k=0}^\infty\!r^k=\frac{1}{1-r}
$$

if the sum is from 1 then

$$
\sum_{k=1}^{n} r^{k} = \frac{r(1 - r^{n+1})}{1 - r}
$$

if −1 *< r <* 1, then

$$
\sum_{k=1}^{\infty} r^k = \frac{r}{1-r}
$$

$$
\Gamma(x) = \int_0^{\infty} u^{x-1} e^{-u} du
$$

$$
\Gamma(n) = (n-1)!
$$

$$
\frac{d}{dx} \ln(x) = \frac{1}{x}
$$

$$
\int \ln(y) dy = -y + y \ln(y)
$$

$$
\int \frac{1}{y} dy = \ln(y)
$$

And

$$
\binom{n}{n_1 \quad n_2 \quad n_3} = \frac{n!}{n_1! \; n_2! \; n_3!}
$$

If given joint density $f_{XY}(x, y)$ and asked to find conditional $P(X|Y) = \frac{f_{XY}(x, y)}{f_{Y}(y)}$ $\frac{\partial f_Y(x,y)}{\partial f_Y(y)}$ so need to find marginals. Marginal is found from $f_Y(y) = \int_x f_{XY}(x, y) dx$, and $f_X(x) =$ $\int_{y} f_{XY}(x, y) dy$

To convert from x, y to polar, example: given $f(x, y) = c\sqrt{1 - (x^2 + y^2)}$ find *c*, where $x^2 + y^2 \leq 1$, then write

$$
c \int_{\theta=-\pi}^{\theta=\pi} \int_{r=0}^{r=1} \sqrt{1-r^2} r dr d\theta
$$

Use identity above.

law of total probablity: if we know $Y|X$ and X and want to know distribution of Y , $\text{then } f(Y) = \int_{-\infty}^{\infty} f_{Y|X}(y|x) f_X(x) dx$

 $y < 0$ $f_Y(y) = \int_{x-y}^{x-y} f(x, y) dx$ and leave it at that. do not Add them.

Figure 2: multi

$$
Z = \frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \to N(0, 1)
$$

$$
T = \frac{\bar{X}_n - \mu}{S_n/\sqrt{n}} \to T(n)
$$

where S_n is std of the sample.

Note Var(sample) has chi square (n) distribution. CI for T:

$$
\Pr\left(-A < \frac{\bar{X}_n - \mu}{S_n/\sqrt{n}} < A\right) = 1 - \alpha
$$
\n
$$
\Pr\left(\bar{X}_n - A\frac{S_n}{\sqrt{n}} < \mu < \bar{X}_n + A\frac{S_n}{\sqrt{n}}\right) = 1 - \alpha
$$