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1 Introduction
This report shows how to determine the equations of motion for a rigid bar pendulum
(also called a physical pendulum) on a moving cart as shown in the following diagram.
This is done using both Newton’s method and the energy (Lagrangian) method.

It is useful to solve the same problem whenever possible using both methods as this
helps verify the results and also adds more understanding to the physics involved.
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Figure 1: Pendulum on moving cart

There are two degrees of freedom. The x coordinate and the θ coordinate. Hence there
are two equations of motion, one for each coordinate.

2 Newton’s Method
The first step is to make a free body diagram (FBD). One for the cart and one for the
physical pendulum and equate each FBD to the kinematics diagrams in order to write
down the equations of motion.
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2.1 FBD for cart
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Figure 2: Free body diagrams

Equation of motion along the positive x direction is

(1)−kx− cẋ+ F + Px = Mẍ

Equation of motion along positive y is not needed since cart does not move in the
vertical direction. We see that to find the equation of motion for ẍ we just need to
determine Px, since that is the only unknown in (1). Px will be found from the physical
pendulum equation as is shown below.

2.2 FBD for pendulum
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Figure 3: Free body diagrams for pendulum

We see now that the equation of motion along the positive x is

(2)−Px = mẍ+m
L

2 θ̈ cos θ −m
L

2 θ̇
2 sin θ
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This gives the Px term needed. Substituting (2) into (1) gives

−kx− cẋ+ F −
(
mẍ+m

L

2 θ̈ cos θ −m
L

2 θ̇
2 sin θ

)
= Mẍ

−kx− cẋ+ F −m
L

2 θ̈ cos θ +m
L

2 θ̇
2 sin θ = ẍ(M +m)

Hence

(3)ẍ(M +m) + cẋ+ kx+ mL

2
(
θ̈ cos θ − θ̇2 sin θ

)
= F

The above is the equation of motion for ẍ.

To find the equation of motion for θ̈ we apply τ = Icgθ̈, (equivalent to F = ma for
linear motion) where τ is the torque.

When taking moments to find the torque, we should always take moments around the
center of mass of the rotating body, even though the pendulum is hinged at one of its
ends and it is actually rotating about that hinge ofcourse. If we take moments around
the hinge instead of center of mass, then we need to account for the inertia forces due
to motion of cart around center of mass of the rigid pendulum which complicates the
equations. By taking moments around center of mass, these forces do not account, since
their moments is now zero. Using counter clock wise as positive gives
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Figure 4: Moment around C.G. of pendulum
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Notice the minus sign on −Icgθ̈. This is because we choose the pendulum to be rotating
clockwise which is negative. Therefore τ = Icgθ̈ is

Py
L

2 sin θ − Px
L

2 cos θ = −Icgθ̈

Py
L

2 sin θ − Px
L

2 cos θ = − 1
12mL2θ̈ (4)

We already know Px from Eq. (2). We know need to find Py. This is found from resolving
forces in the vertical direction for the pendulum free body diagram. Therefore

−Py −mg = −m
L

2 θ̇
2 cos θ −m

L

2 θ̈ sin θ

py = m
L

2 θ̇
2 cos θ +m

L

2 θ̈ sin θ −mg (5)

Plugging (2) and (5) into (4) to eliminate Px, Py, then Eq. (4) simplifies to(
m
L

2 θ̇
2 cos θ +m

L

2 θ̈ sin θ −mg

)
L

2 sin θ +
(
mẍ+m

L

2 θ̈ cos θ −m
L

2 θ̇
2 sin θ

)
L

2 cos θ = − 1
12mL2θ̈

m
L2

4 θ̇2 cos θ sin θ +m
L2

4 θ̈ sin2 θ −mg
L

2 sin θ +mẍ
L

2 cos θ +m
L2

4 θ̈ cos2 θ −m
L2

4 θ̇2 sin θ cos θ = − 1
12mL2θ̈

−mg
L

2 sin θ +m
L2

4 θ̈ sin2 θ +mẍ
L

2 cos θ +m
L2

4 θ̈ cos2 θ = − 1
12mL2θ̈

−mg
L

2 sin θ +mẍ
L

2 cos θ +m
L2

4 θ̈ = − 1
12mL2θ̈

−g sin θ + ẍ cos θ = −2
3Lθ̈

Therefore

(6)θ̈ = 3
2

(
g sin θ − ẍ cos θ

L

)

The above is the required equation of motion for θ̈. Equations (3,6) are coupled and
have to be solved numerically since they are nonlinear. Another option is to use small
angle approximation to linearize them in order to simplify these two equations and to
solve them analytically.
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3 Lagrange (Energy) method
The first step in using Lagrange method is to make a velocity diagram to each object.
These diagrams are given below
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Figure 5: Lagrange method

From the velocity diagram above we see that the kinetic energy of the system is

(7)T = 1
2Mẋ2 + 1

2mv2 + 1
2Icgθ̇

2

Where 1
2Mẋ2 is K.E. of the cart due to its linear motion, and 1

2mv2 is K.E. of physical
pendulum due to its translation linear motion of its center of mass, and 1

2Icgθ̇
2 is K.E.

of physical pendulum due to its rotational motion. Now the velocity v of the center of
mass of the physical pendulum is determined

v2 = v2x + v2y

v2x =
(
ẋ+ L

2 θ̇ cos θ
)2

v2y =
(
L

2 θ̇ sin θ
)2
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Therefore the K.E. from (7) becomes

T =

cart K.E.︷ ︸︸ ︷
1
2Mẋ2 +

translation K.E. of physical pendulum︷ ︸︸ ︷
1
2m
((

ẋ+L

2 θ̇ cos θ
)2

+
(
L

2 θ̇ sin θ

)2
)

+

rotation K.E.︷ ︸︸ ︷
1
2

(
1
12mL2

)
θ̇2

= 1
2Mẋ2 + 1

2m
(
ẋ2 + L2

4 θ̇2 cos2 θ + ẋLθ̇ cos θ + L2

4 θ̇2 sin2 θ

)
+ 1

24mL2θ̇2

= 1
2 ẋ

2(M +m) + 1
2m
(
L2

4 θ̇2 + ẋLθ̇ cos θ
)
+ 1

24mL2θ̇2

= 1
2 ẋ

2(M +m) +m
L2

8 θ̇2 + 1
2mẋLθ̇ cos θ + 1

24mL2θ̇2

= 1
2 ẋ

2(M +m) + 1
2mẋLθ̇ cos θ + 1

6mL2θ̇2

Taking zero potential energy V as the horizontal level where the pendulum is attached
to the cart, then P.E. comes from only spring extension and the change of vertical
position of center of mass of pendulum. Hence P.E. is

V = mg
L

2 cos θ + 1
2kx

2

The Lagrangian Γ becomes

Γ = T − V

=

T︷ ︸︸ ︷
1
2 ẋ

2(M+m)+1
2mẋLθ̇ cos θ+1

6mL2θ̇2 −

V︷ ︸︸ ︷(
mg

L

2 cos θ+1
2kx

2
)

There are two degrees of freedom: x and θ. The generalized force in x direction is
Qx = F − cẋ and the generalized force for θ is Qθ = 0. Equation of motions are now
found. For x

d

dt

∂Γ
∂ẋ

− ∂Γ
∂x

= Qx

d

dt

(
ẋ(M +m) + 1

2mLθ̇ cos θ
)
+ kx = F (t)− cẋ

ẍ(M +m) + 1
2mLθ̈ cos θ − 1

2mLθ̇2 sin θ + kx = F (t)− cẋ

ẍ(M +m) + cẋ+ kx+ 1
2mLθ̈ cos θ − 1

2mLθ̇2 sin θ = F (t)

Therefore
ẍ(M +m) + cẋ+ kx+ mL

2
(
θ̈ cos θ − θ̇2 sin θ

)
= F (t)
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Which is the same result as Newton method found above in Eq. (3). Equation of motion
for θ is

d

dt

∂Γ
∂θ̇

− ∂Γ
∂θ

= 0

But

∂Γ
∂θ̇

= 1
2mẋL cos θ + 1

3mL2θ̇

∂Γ
∂θ

= −1
2mẋLθ̇ sin θ +mg

L

2 sin θ

Hence d
dt

∂Γ
∂θ̇

− ∂Γ
∂θ

= 0 becomes

d

dt

(
1
2mẋL cos θ + 1

3mL2θ̇

)
−
(
−1
2mẋLθ̇ sin θ +mg

L

2 sin θ
)

= 0

d

dt

(
1
2mẋL cos θ + 1

3mL2θ̇

)
+ 1

2mẋLθ̇ cos θ −mg
L

2 sin θ = 0

1
2mLẍ cos θ − 1

2mLẋθ̇ sin θ + 1
3 θ̈mL2 + 1

2mẋLθ̇ cos θ −mg
L

2 sin θ = 0
1
2mLẍ sin θ + 1

3 θ̈mL2 −mg
L

2 sin θ = 0

ẍ sin θ + 2
3 θ̈L− g sin θ = 0

Therefore
θ̈ = 3

2

(
g sin θ − ẍ sin θ

L

)
Which is the same equation of motion in Eq. (6) above given by Newton’s method.
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