Analysis of the eigenvalues and eigenfunctions for $y''(x) + \lambda y(x) = 0$ for all possible homogeneous boundary conditions

[Nasser M. Abbasi](mailto:nma@12000.org)

January 28, 2024 Compiled on January 28, 2024 at 8:05pm

Contents

The eigenvalues and eigenfunctions for $y'' + \lambda y = 0$ over $0 < x < L$ for all possible combinations of homogeneous boundary conditions are derived analytically. For each boundary condition case, a plot of the first few normalized eigenfunctions are given as well as the numerical values of the first few eigenvalues for the special case when $L = \pi$.

1 Summary of result

This section is a summary of the results. It shows for each boundary conditions the eigenvalues found and the corresponding eigenfunctions, and the full solution. A partial list of the numerical values of the eigenvalues for $L = \pi$ is given and a plot of the first few normalized eigenfunctions.

1.1 case 1: boundary conditions $y(0) = 0, y(L) = 0$

Normalized eigenfunctions: For $L = 1$,

$$
\Phi_n(x) = \sqrt{2} \sin\left(\sqrt{\lambda_n} \, x\right)
$$

For $L = \pi$,

$$
\Phi_n(x) = \sqrt{\frac{2}{\pi}} \sin \left(\sqrt{\lambda_n} \, x\right)
$$

List of eigenvalues

$$
\left\{\frac{\pi^2}{L^2}, \frac{4\pi^2}{L^2}, \frac{9\pi^2}{L^2}, \frac{16\pi^2}{L^2}, \cdots\right\}
$$

List of numerical eigenvalues when $L = \pi$

$$
\{1,4,8,16,25,\cdots\}
$$

This is a plot showing how the eigenvalues change in value

Figure 1: plot of eigenvalues change in value

This is a plot showing the corresponding normalized eigenfunctions for the first 4 eigenvalues. We see that the number of zeros for $\Phi_n(x)$ is $n-1$ inside the interval $0 < x < \pi$. (not counting the end points). Hence $\Phi_1(x)$ which correspond to $\lambda_1 = 1$ in this case, will have no zeros inside the interval. While $\Phi_2(x)$ which correspond to $\lambda_2 = 4$ in this case, will have one zero and so on.

Figure 2: plot showing the corresponding normalized eigenfunction

1.2 case 2: boundary conditions $y(0) = 0, y'(L) = 0$

Normalized eigenfunctions: For $L = 1$,

$$
\Phi_n(x) = \sqrt{2} \sin\left(\sqrt{\lambda_n} \, x\right)
$$

For $L = \pi$,

$$
\Phi_n(x) = \sqrt{\frac{2}{\pi}} \sin \left(\sqrt{\lambda_n} \, x\right)
$$

List of eigenvalues

$$
\left\{\frac{\pi^2}{4L^2}, \frac{9\pi^2}{4L^2}, \frac{25\pi^2}{4L^2}, \frac{49\pi^2}{4L^2}, \cdots\right\}
$$

List of numerical eigenvalues when $L = \pi$

$$
\{0.25, 2.25, 6.25, 12.25, 20.25, \cdots\}
$$

Figure 3: plot showing how the eigenvalues change in value

This is a plot showing the corresponding normalized eigenfunctions for the first 4 eigenvalues.

Figure 4: plot showing the corresponding normalized eigenfunctions

eigenvalues		eigenfunctions
$\lambda < 0$ None		None
$\lambda = 0$ None		None
	$\lambda > 0$ roots of tan $(\sqrt{\lambda}L) + \sqrt{\lambda} = 0$ $\Phi_n(x) = c_n \sin(\sqrt{\lambda_n} x)$	

1.3 case 3: boundary conditions $y(0) = 0, y(L) + y'(L) = 0$

Normalized eigenfunctions: For $L = \pi$,

$$
\Phi_1 = (0.729448) \sin \left(\sqrt{0.620} x \right)
$$

$$
\Phi_2 = (0.766385) \sin \left(\sqrt{2.794} x \right)
$$

$$
\vdots
$$

The normalization constant in this case depends on the eigenvalue.

List of numerical eigenvalues when $L = \pi$ (since there is no analytical solution)

 $\{0.620, 2.794, 6.845, 12.865, 20.879, \cdot\cdot\cdot\}$

This is a plot showing how the eigenvalues change in value

Figure 5: plot showing how the eigenvalues change in value

This is a plot showing the corresponding normalized eigenfunctions for the first 4 eigenvalues.

Figure 6: plot showing the corresponding normalized eigenfunctions

1.4 case 4: boundary conditions $y'(0) = 0, y(L) = 0$

Normalized eigenfunctions for ${\cal L}=1$

$$
\tilde{\Phi}_n = \sqrt{2} \cos \left(\sqrt{\lambda_n} x \right) \qquad n = 1, 3, 5, \cdots
$$

When $L = \pi$

$$
\tilde{\Phi}_n = \sqrt{\frac{2}{\pi}} \cos \left(\sqrt{\lambda_n} x \right) \qquad n = 1, 3, 5, \cdots
$$

List of eigenvalues

$$
\left\{\frac{\pi^2}{4L^2}, \frac{9\pi^2}{4L^2}, \frac{25\pi^2}{4L^2}, \frac{49\pi^2}{4L^2}, \cdots\right\}
$$

List of numerical eigenvalues when $L=\pi$

{0*.*25*,* 2*.*25*,* 6*.*25*,* 12*.*25*,* 20*.*25*,* · · ·}

This is a plot showing how the eigenvalues change in value

Figure 7: plot showing how the eigenvalues change in value

This is a plot showing the corresponding normalized eigenfunctions for the first 4 eigenvalues.

Figure 8: plot showing the corresponding normalized eigenfunctions

1.5 case 5: boundary conditions $y'(0) = 0, y'(L) = 0$

Normalized eigenfunction when $L = 1$

$$
\tilde{\Phi}_n = \sqrt{2} \cos \left(\sqrt{\lambda_n} x \right) \qquad n = 1, 2, 3, \cdots
$$

When $L = \pi$

$$
\tilde{\Phi}_n = \sqrt{\frac{2}{\pi}} \cos \left(\sqrt{\lambda_n} x \right) \qquad n = 1, 2, 3, \cdots
$$

For $\tilde{\Phi}_0$, When $L=1$

 $\tilde{\Phi}_0=1$

When $L=\pi$

$$
\tilde{\Phi}_0=\sqrt{\frac{1}{\pi}}
$$

List of eigenvalues

$$
\left\{0, \frac{\pi^2}{L^2}, \frac{4\pi^2}{L^2}, \frac{9\pi^2}{L^2}, \frac{16\pi^2}{L^2}, \cdots\right\}
$$

List of numerical eigenvalues when $L=\pi$

$$
\{0,1,4,9,16,\cdots\}
$$

This is a plot showing how the eigenvalues change in value

Figure 9: plot showing how the eigenvalues change in value

This is a plot showing the corresponding normalized eigenfunctions for the first 4 eigenvalues.

Figure 10: plot showing the corresponding normalized eigenfunctions

1.6 case 6: boundary conditions $y'(0) = 0, y(L) + y'(L) = 0$

Normalized eigenfunctions for $L = \pi$ are

$$
\Phi_1 = (0.705925) \cos \left(\sqrt{0.147033}x\right)
$$

$$
\Phi_2 = (0.751226) \cos \left(\sqrt{1.48528}x\right)
$$

$$
\vdots
$$

List of numerical eigenvalues when $L = \pi$ (There is no analytical solution for the roots)

 ${0.147033, 1.48528, 4.576, 9.606, 16.622, \cdots}$

Figure 11: plot showing how the eigenvalues change in value

This is a plot showing the corresponding normalized eigenfunctions for the first 4 eigenvalues.

Figure 12: plot showing the corresponding normalized eigenfunctions

1.7 case 7: boundary conditions $y(0)+y'(0) = 0, y(L) = 0$

eigenvalues		eigenfunctions
		$\left \begin{array}{c c} \lambda < 0 \end{array}\right $ Root of $\tanh(\sqrt{-\lambda}L) = \sqrt{-\lambda}$ (one root) $\left\ \begin{array}{c c} \Phi(x) = \sinh(\sqrt{-\lambda}x) - \sqrt{-\lambda}\cosh(\sqrt{-\lambda}x) \end{array}\right $
$\lambda = 0$ None		None
	$\lambda > 0$ Roots of tan $(\sqrt{\lambda}L) = \sqrt{\lambda}$	$\mathbb{E}\left[\Phi_n(x)=\sin\left(\sqrt{\lambda}x\right)-\sqrt{\lambda}\cos\left(\sqrt{\lambda}x\right)\right]$

List of numerical eigenvalues when $L = \pi$ (There is no analytical solution for the roots)

$$
\{-0.992, 1.664, 5.631, 11.623, \cdots\}
$$

This is a plot showing how the eigenvalues change in value

Figure 13: plot showing how the eigenvalues change in value

This is a plot showing the corresponding eigenfunctions for the first 4 eigenvalues.

Figure 14: plot showing the corresponding eigenfunctions

1.8 case 8: boundary conditions $y(0)+y'(0) = 0, y'(L) = 0$

List of numerical eigenvalues when $L = \pi$ (There is no analytical solution for the roots)

{−1*.*007*,* 0*.*480*,* 3*.*392*,* 8*.*376*,* 24*,* 368*,* · · ·}

This is a plot showing how the eigenvalues change in value

Figure 15: plot showing how the eigenvalues change in value

This is a plot showing the corresponding eigenfunctions for the first 4 eigenvalues.

Figure 16: plot showing the corresponding eigenfunctions

1.9 case 9: boundary conditions $y(0)+y'(0) = 0, y(L)+y'(L) = 0$

eigenvalues		eigenfunctions
$\lambda < 0$ -1		$\mathcal{F}_{-1}(x) = \sinh(x) - \cosh(x)$
	$\lambda = 0$ None	None
	$\lambda > 0 \mid \lambda_n = \left(\frac{n\pi}{L}\right)^2$	$n = 1, 2, 3, \dots \parallel \Phi_n(x) = \sin (\sqrt{\lambda_n} x) - \sqrt{\lambda_n} \cos (\sqrt{\lambda_n} x) \parallel$

List of eigenvalues

$$
\left\{-1, \frac{\pi^2}{L^2}, \frac{4\pi^2}{L^2}, \frac{9\pi^2}{L^2}, \frac{16\pi^2}{L^2}, \cdots\right\}
$$

List of numerical eigenvalues when $L=\pi$

$$
\{-1,1,4,9,16,\cdots\}
$$

This is a plot showing how the eigenvalues change in value

Figure 17: plot showing how the eigenvalues change in value

This is a plot showing the corresponding eigenfunctions for the first 4 eigenvalues.

Figure 18: plot showing the corresponding eigenfunctions

2 Derivations

2.1 case 1: boundary conditions $y(0) = 0, y(L) = 0$

Let the solution be $y = Ae^{rx}$. This leads to the characteristic equation

$$
r^2 + \lambda = 0
$$

$$
r = \pm \sqrt{-\lambda}
$$

Let $\lambda < 0$

In this case $-\lambda$ is positive and hence $\sqrt{-\lambda}$ is also positive. Let $\sqrt{-\lambda} = \mu$ where $\mu > 0$. Hence the roots are $\pm \mu$. This gives the solution

$$
y = c_1 \cosh(\mu x) + c_2 \sinh(\mu x)
$$

First B.C. $y(0) = 0$ gives

 $0 = c_1$

The solution becomes

$$
y(x) = c_2 \sinh(\mu x)
$$

The second B.C. $y(L) = 0$ results in

$$
0=c_{2}\sinh\left(\mu L\right)
$$

But $\sinh(\mu L) \neq 0$ since $\mu L \neq 0$, hence $c_2 = 0$, Leading to trivial solution. Therefore λ < 0 is not eigenvalue.

Let $\lambda = 0$, The solution is

$$
y(x) = c_1 + c_2 x
$$

First B.C. $y(0) = 0$ gives

 $0 = c_1$

The solution becomes

$$
y(x)=c_2x
$$

Applying the second B.C. $y(L) = 0$ gives

$$
0=c_2L
$$

Therefore $c_2 = 0$, leading to trivial solution. Therefore $\lambda = 0$ is not eigenvalue. Let $\lambda > 0$, The solution is

$$
y(x) = c_1 \cos \left(\sqrt{\lambda x}\right) + c_2 \sin \left(\sqrt{\lambda x}\right)
$$

First B.C. $y(0) = 0$ gives

 $0 = c_1$

The solution becomes

$$
y(x) = c_2 \sin\left(\sqrt{\lambda}x\right)
$$

Second B.C. $y(L) = 0$ gives

$$
0 = c_2 \sin\left(\sqrt{\lambda}L\right)
$$

Non-trivial solution implies $\sin(\sqrt{\lambda}L) = 0$ or $\sqrt{\lambda}L = n\pi$ for $n = 1, 2, 3, \cdots$. Therefore

$$
\sqrt{\lambda_n} = \frac{n\pi}{L} \qquad n = 1, 2, 3, \cdots
$$

$$
\lambda_n = \left(\frac{n\pi}{L}\right)^2 \qquad n = 1, 2, 3, \cdots
$$

The corresponding eigenfunctions are

$$
\Phi_n = c_n \sin\left(\sqrt{\lambda_n}x\right) \qquad n = 1, 2, 3, \cdots
$$

The normalized $\tilde{\Phi}_n$ eigenfunctions are now found. In this problem the weight function is $r(x) = 1$, therefore solving for c_n from

$$
\int_0^L r(x) \Phi_n^2 dx = 1
$$

$$
\int_0^L c_n^2 \sin^2(\sqrt{\lambda_n} x) dx = 1
$$

$$
c_n^2 \int_0^L \left(\frac{1}{2} - \frac{1}{2} \cos(2\sqrt{\lambda_n} x)\right) dx = 1
$$

$$
\int_0^L \frac{1}{2} dx - \int_0^L \frac{1}{2} \cos(2\sqrt{\lambda_n} x) dx = \frac{1}{c_n^2}
$$

$$
\frac{1}{2}L - \frac{1}{2} \left(\frac{\sin(2\sqrt{\lambda_n} x)}{2\sqrt{\lambda_n}}\right)_0^L = \frac{1}{c_n^2}
$$

$$
\frac{1}{2}L - \frac{1}{4\sqrt{\lambda_n}} \sin(2\sqrt{\lambda_n} L) = \frac{1}{c_n^2}
$$

$$
2\sqrt{\lambda_n} L - \sin(2\sqrt{\lambda_n} L) = \frac{4\sqrt{\lambda_n}}
$$

Hence

$$
c_n = \sqrt{\frac{4\sqrt{\lambda_n}}{2\sqrt{\lambda_n}L - \sin\left(2\sqrt{\lambda_n}L\right)}}
$$

For example, when $L = 1$ the normalization constant becomes (since now $\sqrt{\lambda_n} = \frac{n\pi}{L} =$ *nπ*)

$$
c_n = \sqrt{\frac{4n\pi}{2n\pi - \sin(2n\pi)}}
$$

$$
= \sqrt{\frac{4n\pi}{2n\pi}}
$$

$$
c_n = \sqrt{2}
$$

For $L = \pi$, the normalization constant becomes (since now $\sqrt{\lambda_n} = \frac{n\pi}{\pi} = n$)

$$
c_n = \sqrt{\frac{4n}{2n\pi - \sin(2n\pi)}}
$$

$$
= \sqrt{\frac{4n}{2n\pi}}
$$

$$
c_n = \sqrt{\frac{2}{\pi}}
$$

The normalization c_n value depends on the length. When $L = 1$

$$
\tilde{\Phi}_n = \sqrt{2} \sin \left(\sqrt{\lambda_n} x \right) \qquad n = 1, 2, 3, \cdots
$$

When $L = \pi$

$$
\tilde{\Phi}_n = \sqrt{\frac{2}{\pi}} \sin \left(\sqrt{\lambda_n} x \right) \qquad n=1,2,3,\cdots
$$

2.2 case 2: boundary conditions $y(0) = 0, y'(L) = 0$

Let the solution be $y = Ae^{rx}$. This leads to the characteristic equation

$$
r^2 + \lambda = 0
$$

$$
r = \pm \sqrt{-\lambda}
$$

Let $\lambda < 0$

In this case $-\lambda$ is positive and hence $\sqrt{-\lambda}$ is also positive. Let $\sqrt{-\lambda} = \mu$ where $\mu > 0$. Hence the roots are $\pm \mu$. This gives the solution

$$
y = c_1 \cosh(\mu x) + c_2 \sinh(\mu x)
$$

First B.C. gives

 $0 = c_1$

Hence solution becomes

$$
y(x) = c_2 \sinh(\mu x)
$$

Second B.C. gives

$$
y'(x) = \mu c_2 \cosh(\mu x)
$$

$$
0 = \mu c_2 \cosh(\mu L)
$$

But cosh (μL) can not be zero, hence only other choice is $c_2 = 0$, leading to trivial solution. Therefore $\lambda < 0$ is not eigenvalue.

Let $\lambda = 0$, The solution is

$$
y(x) = c_1 + c_2 x
$$

First B.C. gives

 $0 = c_1$

Hence solution becomes

$$
y(x)=c_2x
$$

Second B.C. gives

$$
y'(x) = c_2
$$

$$
0 = c_2
$$

Leading to trivial solution. Therefore $\lambda = 0$ is not eigenvalue. Let $\lambda > 0$, the solution is

$$
y(x) = c_1 \cos \left(\sqrt{\lambda x}\right) + c_2 \sin \left(\sqrt{\lambda x}\right)
$$

First B.C. gives

$$
0 = c_1
$$

Hence solution becomes

$$
y(x) = c_2 \sin\left(\sqrt{\lambda}x\right)
$$

Second B.C. gives

$$
y'(x) = \sqrt{\lambda}c_2 \cos\left(\sqrt{\lambda}x\right)
$$

$$
0 = \sqrt{\lambda}c_2 \cos\left(\sqrt{\lambda}L\right)
$$

Non-trivial solution implies $\cos\left(\sqrt{\lambda}L\right) = 0$ or $\sqrt{\lambda}L = \frac{n\pi}{2}$ $\frac{n\pi}{2}$ for $n = 1, 3, 5, \cdots$. Therefore

$$
\sqrt{\lambda_n}L = \frac{n\pi}{2}
$$

$$
\sqrt{\lambda_n} = \frac{n\pi}{2L} \qquad n = 1, 3, 5, \cdots
$$

The eigenvalues are

$$
\lambda_n = \left(\frac{n\pi}{2L}\right)^2 \qquad n = 1, 3, 5, \cdots
$$

The corresponding eigenfunctions are

$$
\Phi_n = c_n \sin\left(\sqrt{\lambda_n}x\right) \qquad n = 1, 3, 5, \cdots
$$

The normalized $\tilde{\Phi}_n$ eigenfunctions are now found. Since the weight function is $r(x) = 1$, therefore solving for c_n from

$$
\int_0^L r(x) \Phi_n^2 dx = 1
$$

$$
\int_0^L c_n^2 \sin^2\left(\sqrt{\lambda_n}x\right) dx = 1
$$

As was done earlier, the above results in

$$
c_n = \sqrt{\frac{4\sqrt{\lambda_n}}{2\sqrt{\lambda_n}L - \sin\left(2\sqrt{\lambda_n}L\right)}}
$$
 $n = 1, 3, 5, \cdots$

For $L = 1$ the normalization constant becomes (since now $\sqrt{\lambda_n} = \frac{n\pi}{2L} = \frac{n\pi}{2}$ $\frac{\iota\pi}{2})$

$$
c_n = \sqrt{\frac{4\frac{n\pi}{2}}{2\frac{n\pi}{2} - \sin\left(2\frac{n\pi}{2}\right)}}
$$

$$
= \sqrt{\frac{2n\pi}{n\pi}}
$$

$$
c_n = \sqrt{2}
$$

For $L = \pi$, the normalization constant becomes (since now $\sqrt{\lambda_n} = \frac{n\pi}{2\pi} = \frac{n\pi}{2}$ $\frac{n}{2})$

$$
c_n = \sqrt{\frac{4\frac{n}{2}}{2\frac{n}{2}\pi - \sin\left(2\frac{n}{2}\pi\right)}}
$$

$$
= \sqrt{\frac{2n}{n\pi}}
$$

$$
c_n = \sqrt{\frac{2}{\pi}}
$$

Therefore, for $L = 1$

$$
\tilde{\Phi}_n = \sqrt{2} \sin \left(\sqrt{\lambda_n} x \right) \qquad n = 1, 3, 5, \cdots
$$

For $L = \pi$

$$
\tilde{\Phi}_n = \sqrt{\frac{2}{\pi}} \sin\left(\sqrt{\lambda_n} x\right) \qquad n=1,3,5,\cdots
$$

2.3 case 3: boundary conditions $y(0) = 0, y(L) + y'(L) = 0$

Let the solution be $y = Ae^{rx}$. This leads to the characteristic equation

$$
r^2 + \lambda = 0
$$

$$
r = \pm \sqrt{-\lambda}
$$

Let $\lambda < 0$

In this case $-\lambda$ is positive and hence $\sqrt{-\lambda}$ is also positive. Let $\sqrt{-\lambda} = \mu$ where $\mu > 0$. Hence the roots are $\pm \mu$. This gives the solution

$$
y = c_1 \cosh(\mu x) + c_2 \sinh(\mu x)
$$

First B.C. $y(0) = 0$ gives

 $0 = c_1$

Hence solution becomes

$$
y(x) = c_2 \sinh(\mu x)
$$

Second B.C. $y(L) + y'(L) = 0$ gives

$$
0 = c_2(\sinh(\mu L) + \mu \cosh(\mu x))
$$

But $\sinh(\mu L) \neq 0$ since $\mu L \neq 0$ and $\cosh(\mu x)$ can not be zero, hence $c_2 = 0$, Leading to trivial solution. Therefore $\lambda < 0$ is not eigenvalue.

Let $\lambda = 0$, The solution is

$$
y(x) = c_1 + c_2 x
$$

First B.C. $y(0) = 0$ gives

 $0 = c_1$

The solution becomes

$$
y(x)=c_2x
$$

Second B.C. $y(L) + y'(L) = 0$ gives

$$
0 = c_2L + c_2
$$

$$
= c_2(1+L)
$$

Therefore $c_2 = 0$, leading to trivial solution. Therefore $\lambda = 0$ is not eigenvalue. Let $\lambda > 0$, The solution is

$$
y(x) = c_1 \cos \left(\sqrt{\lambda x}\right) + c_2 \sin \left(\sqrt{\lambda x}\right)
$$

First B.C. $y(0) = 0$ gives

 $0 = c_1$

The solution becomes

$$
y(x) = c_2 \sin\left(\sqrt{\lambda}x\right)
$$

Second B.C. $y(L) + y'(L) = 0$ gives

$$
0 = c_2 \left(\sin \left(\sqrt{\lambda} L \right) + \sqrt{\lambda} \cos \left(\sqrt{\lambda} L \right) \right)
$$

For non-trivial solution, we want $\sin\left(\sqrt{\lambda}L\right)+$ $\sqrt{\lambda} \cos \left(\sqrt{\lambda} L \right) = 0 \text{ or } \tan \left(\sqrt{\lambda} L \right) +$ √ $\lambda =$ 0 Therefore the eigenvalues are given by the solution to

$$
\tan\left(\sqrt{\lambda}L\right) + \sqrt{\lambda} = 0
$$

And the corresponding eigenfunction is

$$
\Phi_n = c_n \sin\left(\sqrt{\lambda_n}x\right) \qquad n = 1, 2, 3, \cdots
$$

The normalized $\tilde{\Phi}_n$ eigenfunctions are now found. Since the weight function is $r(x) = 1$, therefore solving for *cⁿ* from

$$
\int_0^L r(x) \Phi_n^2 dx = 1
$$

$$
\int_0^L c_n^2 \sin^2\left(\sqrt{\lambda_n}x\right) dx = 1
$$

As was done earlier, the above results in

$$
c_n = \sqrt{\frac{4\sqrt{\lambda_n}}{2\sqrt{\lambda_n}L - \sin\left(2\sqrt{\lambda_n}L\right)}}
$$
 $n = 1, 2, 3, \cdots$

Since there is no closed form solution to λ_n as it is a root of nonlinear equation there is no closed form solution to λ_n as it is a foot of nonimear equation $\tan (\sqrt{\lambda}L) + \sqrt{\lambda} = 0$, the normalized constant is found numerically. For $L = \pi$, the first few roots are

$$
\lambda_n = \{0.620, 2.794, 6.845, 12.865, 20.879, \cdots\}
$$

In this case, the normalization constants depends on *n* and are not the same as in earlier cases. The following small program was written to find the first 10 normalization constants and to verify that each will make $\int_0^L c_n^2 \sin^2(\sqrt{\lambda_n}x) dx = 1$

The normalized constants are found to be (for $L = \pi$)

 $c_n = \{0.729448, 0.766385, 0.782173, 0.788879, 0.792141, 0.79393, 0.795006, 0.7957, 0.796171, 0.796506\}$

```
In[137]:= L = Pi;
        eig = \text{lam } / \text{.} NSolve [Tan [Sqrt [\text{lam}] L] + Sqrt [\text{lam}] == \text{0.88.0} < \text{lam} < 110, \text{lam}];
         c[lam_] := Sqrt 4 Sqrt[lam]
2 Sqrt[lam] Pi - Sin[2 Sqrt[lam] Pi]
;
        normalizedC = c[# ] & /@ eig
Out[140]= {0.729448, 0.766385, 0.782173, 0.788879, 0.792141, 0.79393, 0.795006, 0.7957, 0.796171, 0.796506}
In[141]= MapThread [Integrate [\#^2 > \ast Sin [Sqrt [\#2] \times] \ast2, {\times, 0, Pi}] &, {normalizedC, eig}]
Out[141]= {1., 1., 1., 1., 1., 1., 1., 1., 1., 1.}
```
Figure 19: normalized constants

The above implies that the first normalized eigenfunction is

$$
\Phi_1 = (0.729448) \sin\left(\sqrt{0.620}x\right)
$$

And the second one is

$$
\Phi_2 = (0.766385) \sin\left(\sqrt{2.794}x\right)
$$

And so on.

2.4 case 4: boundary conditions $y'(0) = 0, y(L) = 0$

Let the solution be $y = Ae^{rx}$. This leads to the characteristic equation

$$
r^2 + \lambda = 0
$$

$$
r = \pm \sqrt{-\lambda}
$$

Let $\lambda < 0$

In this case $-\lambda$ is positive and hence $\sqrt{-\lambda}$ is also positive. Let $\sqrt{-\lambda} = \mu$ where $\mu > 0$. Hence the roots are $\pm \mu$. This gives the solution

$$
y = c_1 \cosh(\mu x) + c_2 \sinh(\mu x)
$$

$$
y' = c_1 \mu \sinh(\mu x) + c_2 \mu \cosh(\mu x)
$$

First B.C. $y'(0) = 0$ gives

$$
0 = c_2 \mu
$$

$$
c_2 = 0
$$

Hence solution becomes

$$
y(x) = c_1 \cosh(\mu x)
$$

Second B.C. $y(L) = 0$ gives

$$
0=c_1\cosh\left(\mu L\right)
$$

But cosh (μL) can not be zero, hence $c_1 = 0$, Leading to trivial solution. Therefore λ < 0 is not eigenvalue.

Let $\lambda = 0$, The solution is

$$
y(x) = c_1 + c_2 x
$$

First B.C. $y'(0) = 0$ gives

 $0 = c_2$

The solution becomes

$$
y(x)=c_1
$$

Second B.C. $y(L) = 0$ gives

$$
0=c_1
$$

Therefore $c_1 = 0$, leading to trivial solution. Therefore $\lambda = 0$ is not eigenvalue. Let $\lambda > 0$, The solution is

$$
y(x) = c_1 \cos\left(\sqrt{\lambda}x\right) + c_2 \sin\left(\sqrt{\lambda}x\right)
$$

$$
y'(x) = -c_1 \sqrt{\lambda} \sin\left(\sqrt{\lambda}x\right) + c_2 \sqrt{\lambda} \cos\left(\sqrt{\lambda}x\right)
$$

First B.C. $y'(0) = 0$ gives

$$
0 = c_2 \sqrt{\lambda}
$$

$$
c_2 = 0
$$

The solution becomes

$$
y(x) = c_1 \cos\left(\sqrt{\lambda}x\right)
$$

Second B.C. $y(L) = 0$ gives

$$
0 = c_1 \cos \left(\sqrt{\lambda}L\right)
$$

For non-trivial solution, we want $\cos\left(\sqrt{\lambda}L\right) = 0$ or $\sqrt{\lambda}L = \frac{n\pi}{2}$ $\frac{n\pi}{2}$ for odd $n = 1, 3, 5, \cdots$ Therefore

$$
\lambda_n = \left(\frac{n\pi}{2L}\right)^2 \qquad n = 1, 3, 5, \cdots
$$

The corresponding eigenfunctions are

$$
\Phi_n = c_n \cos\left(\sqrt{\lambda_n}x\right) \qquad n = 1, 3, 5, \cdots
$$

The normalized $\tilde{\Phi}_n$ eigenfunctions are now found. In this problem the weight function is $r(x) = 1$, therefore solving for c_n from

$$
\int_0^L r(x) \Phi_n^2 dx = 1
$$

$$
\int_0^L c_n^2 \cos^2(\sqrt{\lambda_n} x) dx = 1
$$

$$
c_n^2 \int_0^L \left(\frac{1}{2} + \frac{1}{2} \cos(2\sqrt{\lambda_n} x)\right) dx = 1
$$

$$
\int_0^L \frac{1}{2} dx + \int_0^L \frac{1}{2} \cos(2\sqrt{\lambda_n} x) dx = \frac{1}{c_n^2}
$$

$$
\frac{1}{2}L + \frac{1}{2} \left(\frac{\sin(2\sqrt{\lambda_n} x)}{2\sqrt{\lambda_n}}\right)_0^L = \frac{1}{c_n^2}
$$

$$
\frac{1}{2}L + \frac{1}{4\sqrt{\lambda_n}} \sin(2\sqrt{\lambda_n} L) = \frac{1}{c_n^2}
$$

$$
2\sqrt{\lambda_n} L + \sin(2\sqrt{\lambda_n} L) = \frac{4\sqrt{\lambda_n}}
$$

Hence

$$
c_n = \sqrt{\frac{4\sqrt{\lambda_n}}{2\sqrt{\lambda_n}L + \sin\left(2\sqrt{\lambda_n}L\right)}}
$$

For example, when $L = 1$ the normalization constant becomes (since now $\sqrt{\lambda_n} = \frac{n\pi}{2L} =$ *nπ* $\frac{\iota\pi}{2})$

$$
c_n = \sqrt{\frac{4\frac{n\pi}{2}}{2\frac{n\pi}{2} + \sin\left(2\frac{n\pi}{2}\right)}}
$$

$$
= \sqrt{\frac{2n\pi}{n\pi}}
$$

$$
c_n = \sqrt{2}
$$

Which is the same when the eigenfunction was $\sin\left(\frac{n\pi}{2L}\right)$ Which is the same when the eigenfunction was $\sin\left(\frac{n\pi}{2L}x\right)$. For $L = \pi$, the normalization constant becomes (since now $\sqrt{\lambda_n} = \frac{n\pi}{2L} = \frac{n}{2}$) $\frac{n}{2})$

$$
c_n = \sqrt{\frac{4\frac{n}{2}}{2\frac{n}{2}\pi + \sin\left(2\frac{n}{2}\pi\right)}}
$$

$$
= \sqrt{\frac{2n}{2n\pi}}
$$

$$
c_n = \sqrt{\frac{2}{\pi}}
$$

The normalization c_n value depends on the length. When $L = 1$

$$
\tilde{\Phi}_n = \sqrt{2} \cos \left(\sqrt{\lambda_n} x \right) \qquad n = 1, 3, 5, \cdots
$$

When $L=\pi$

$$
\tilde{\Phi}_n = \sqrt{\frac{2}{\pi}} \cos \left(\sqrt{\lambda_n} x \right) \qquad n = 1, 3, 5, \cdots
$$

2.5 case 5: boundary conditions $y'(0) = 0, y'(L) = 0$

Let the solution be $y = Ae^{rx}$. This leads to the characteristic equation

$$
r^2 + \lambda = 0
$$

$$
r = \pm \sqrt{-\lambda}
$$

Let $\lambda < 0$

In this case $-\lambda$ is positive and hence $\sqrt{-\lambda}$ is also positive. Let $\sqrt{-\lambda} = \mu$ where $\mu > 0$. Hence the roots are $\pm \mu$. This gives the solution

$$
y = c_1 \cosh(\mu x) + c_2 \sinh(\mu x)
$$

$$
y' = c_1 \mu \sinh(\mu x) + c_2 \mu \cosh(\mu x)
$$

First B.C. $y'(0) = 0$ gives

$$
0 = c_2 \mu
$$

$$
c_2 = 0
$$

Hence solution becomes

$$
y(x) = c_1 \cosh(\mu x)
$$

Second B.C. $y'(L) = 0$ gives

$$
0=c_1\mu\sinh\left(\mu L\right)
$$

But sinh (μ L) can not be zero since μ L \neq 0, hence $c_1 = 0$, Leading to trivial solution. Therefore $\lambda < 0$ is not eigenvalue.

Let $\lambda = 0$, The solution is

$$
y(x) = c_1 + c_2 x
$$

First B.C. $y'(0) = 0$ gives

$$
0 = c_2
$$

The solution becomes

 $y(x) = c_1$

Second B.C. $y'(L) = 0$ gives

 $0 = 0$

Therefore c_1 can be any value. Therefore $\lambda = 0$ is an eigenvalue and the corresponding eigenfunction is any constant, say 1.

Let $\lambda > 0$, The solution is

$$
y(x) = c_1 \cos\left(\sqrt{\lambda}x\right) + c_2 \sin\left(\sqrt{\lambda}x\right)
$$

$$
y'(x) = -c_1 \sqrt{\lambda} \sin\left(\sqrt{\lambda}x\right) + c_2 \sqrt{\lambda} \cos\left(\sqrt{\lambda}x\right)
$$

First B.C. $y'(0) = 0$ gives

$$
0 = c_2 \sqrt{\lambda}
$$

$$
c_2 = 0
$$

The solution becomes

$$
y(x) = c_1 \cos \left(\sqrt{\lambda} x\right)
$$

Second B.C. $y'(L) = 0$ gives

$$
0 = -c_1 \sqrt{\lambda} \sin \left(\sqrt{\lambda} L\right)
$$

For non-trivial solution, we want $\sin(\sqrt{\lambda}L) = 0$ or $\sqrt{\lambda}L = n\pi$ for $n = 1, 2, 3, \cdots$ Therefore

$$
\lambda_n = \left(\frac{n\pi}{L}\right)^2 \qquad n = 1, 2, 3, \cdots
$$

And the corresponding eigenfunctions are

$$
\Phi_n(x) = c_n \cos\left(\sqrt{\lambda}x\right) \qquad n = 1, 2, 3, \cdots
$$

The normalized $\tilde{\Phi}_n$ eigenfunctions are now found. In this problem the weight function is $r(x) = 1$, therefore solving for c_n from

$$
\int_0^L r(x) \Phi_n^2 dx = 1
$$

$$
\int_0^L c_n^2 \cos^2\left(\sqrt{\lambda_n}x\right) dx = 1
$$

As before, the above simplifies to

$$
c_n = \sqrt{\frac{4\sqrt{\lambda_n}}{2\sqrt{\lambda_n}L + \sin\left(2\sqrt{\lambda_n}L\right)}}
$$

For example, when $L = 1$ the normalization constant becomes (since now $\sqrt{\lambda_n} = \frac{n\pi}{L} =$ *nπ*)

$$
c_n = \sqrt{\frac{4n\pi}{2n\pi + \sin(2n\pi)}}
$$

$$
c_n = \sqrt{2}
$$

For $L = \pi$, the normalization constant becomes (since now $\sqrt{\lambda_n} = \frac{n\pi}{L} = n$)

$$
c_n = \sqrt{\frac{4n}{2n\pi + \sin(2n\pi)}}
$$

$$
c_n = \sqrt{\frac{2}{\pi}}
$$

The normalization c_n value depends on the length. When $L = 1$

$$
\tilde{\Phi}_n = \sqrt{2} \cos \left(\sqrt{\lambda_n} x \right) \qquad n = 1, 2, 3, \cdots
$$

When $L = \pi$

$$
\tilde{\Phi}_n = \sqrt{\frac{2}{\pi}} \cos \left(\sqrt{\lambda_n} x \right) \qquad n = 1, 2, 3, \cdots
$$

For $n = 0$, corresponding to the λ_0 eigenvalue, since the eigenfunction is taken as the constant 1, then

$$
\int_0^L c_0^2 dx = 1
$$

$$
c_0 = \sqrt{\frac{1}{L}}
$$

Therefore, When $L = 1$

$$
\tilde{\Phi}_0=1
$$

When $L=\pi$

$$
\tilde{\Phi}_0=\sqrt{\frac{1}{\pi}}
$$

2.6 case 6: boundary conditions $y'(0) = 0, y(L) + y'(L) = 0$

Let the solution be $y = Ae^{rx}$. This leads to the characteristic equation

$$
r^2 + \lambda = 0
$$

$$
r = \pm \sqrt{-\lambda}
$$

Let $\lambda < 0$

In this case $-\lambda$ is positive and hence $\sqrt{-\lambda}$ is also positive. Let $\sqrt{-\lambda} = \mu$ where $\mu > 0$. Hence the roots are $\pm \mu$. This gives the solution

$$
y = c_1 \cosh(\mu x) + c_2 \sinh(\mu x)
$$

$$
y' = c_1 \mu \sinh(\mu x) + c_2 \mu \cosh(\mu x)
$$

First B.C. $y'(0) = 0$ gives

$$
0 = c_2 \mu
$$

$$
c_2 = 0
$$

Hence solution becomes

 $y(x) = c_1 \cosh(\mu x)$

Second B.C. $y(L) + y'(L) = 0$ gives

$$
0 = c_1(\cosh(\mu L) + \mu \sinh(\mu L))
$$

But sinh (μL) can not be negative since its argument is positive here. And $\cosh \mu L$ is always positive. In addition $\cosh(\mu L) + \mu \sinh(\mu L)$ can not be zero since $\sinh(\mu L)$ can not be zero as $\mu L \neq 0$ and cosh (μL) is not zero. Therefore $c_1 = 0$, Leading to trivial solution. Therefore $\lambda < 0$ is not eigenvalue.

Let $\lambda = 0$, The solution is

$$
y(x)=c_1+c_2x\\
$$

First B.C. $y'(0) = 0$ gives

 $0 = c_2$

The solution becomes

 $y(x) = c_1$

Second B.C. $y(L) + y'(L) = 0$ gives

$$
0=c_1
$$

This gives trivial solution. Therefore $\lambda = 0$ is not eigenvalue.

Let $\lambda > 0$, The solution is

$$
y(x) = c_1 \cos\left(\sqrt{\lambda}x\right) + c_2 \sin\left(\sqrt{\lambda}x\right)
$$

$$
y'(x) = -c_1 \sqrt{\lambda} \sin\left(\sqrt{\lambda}x\right) + c_2 \sqrt{\lambda} \cos\left(\sqrt{\lambda}x\right)
$$

First B.C. $y'(0) = 0$ gives

$$
0 = c_2 \sqrt{\lambda}
$$

$$
c_2 = 0
$$

The solution becomes

$$
y(x) = c_1 \cos\left(\sqrt{\lambda}x\right)
$$

Second B.C. $y(L) + y'(L) = 0$ gives

$$
0 = c_1 \cos \left(\sqrt{\lambda}L\right) - c_1 \sqrt{\lambda} \sin \left(\sqrt{\lambda}L\right)
$$

$$
= c_1 \left(\cos \left(\sqrt{\lambda}L\right) - \sqrt{\lambda} \sin \left(\sqrt{\lambda}L\right)\right)
$$

For non-trivial solution, we want $\cos\left(\sqrt{\lambda}L\right) \sqrt{\lambda} \sin \left(\sqrt{\lambda} L \right) = 0 \text{ or } \sqrt{\lambda} \tan \left(\sqrt{\lambda} L \right) = 1$ Therefore the eigenvalues are the solution to

$$
\sqrt{\lambda} \tan \left(\sqrt{\lambda} L \right) = 1
$$

And the corresponding eigenfunctions are

$$
\Phi_n = \cos\left(\sqrt{\lambda_n}x\right) \qquad n = 1, 2, 3, \cdots
$$

Where λ_n are the roots of $\sqrt{\lambda} \tan(\sqrt{\lambda}L) = 1$.

The normalized $\tilde{\Phi}_n$ eigenfunctions are now found. Since the weight function is $r(x) = 1$, therefore solving for c_n from

$$
\int_0^L r(x) \, \Phi_n^2 dx = 1
$$

$$
\int_0^L c_n^2 \cos^2\left(\sqrt{\lambda_n} x\right) dx = 1
$$

As was done earlier, the above results in

$$
c_n=\sqrt{\frac{4\sqrt{\lambda_n}}{2\sqrt{\lambda_n}L+\sin\left(2\sqrt{\lambda_n}L\right)}}\qquad n=1,2,3,\cdots
$$

Since there is no closed form solution to λ_n as it is a root of nonlinear equation $\overline{\lambda}$ tan $(\sqrt{\lambda}L) = 1$, the normalized constant is found numerically. For $L = \pi$, the first few roots are

$$
\lambda_n = \{0.147033, 1.48528, 4.57614, 9.60594, 25.6247, 36.6282, 64.6318, 81.6328, 100.634, 121.634, \cdots\}
$$

In this case, the normalization constants depends on *n* and are not the same as in earlier cases. The following small program was written to find the first 10 normalization constants and to verify that each will make $\int_0^L c_n^2 \cos^2(\sqrt{\lambda_n}x) dx = 1$

The normalized constants are found to be (for $L = \pi$)

$$
c_n = \{0.705925, 0.751226, 0.776042, 0.786174, 0.790773, 0.793157, 0.794531, \cdots\}
$$

In[247]:= **ClearAll[lam, c, eig]; L = Pi; eig = lam /. NSolve[Sqrt[lam] Tan[Sqrt[lam] L] ⩵ 1 && 0 < lam < 110, lam]; ^c[**lam_**] :⁼ Sqrt 4 Sqrt[**lam**] 2 Sqrt[**lam**] Pi + Sin[2 Sqrt[**lam**] Pi] ; normalizedC = c[**# **] & /@ eig** Out[251]= {0.705925, 0.751226, 0.776042, 0.786174, 0.790773, 0.793157, 0.794531, 0.795388, 0.795957, 0.796352, 0.796638} In[252]:= **MapThread[Integrate[**#1 **^ 2 * Cos[Sqrt[**#2**] x]^ 2, {x, 0, Pi}] &, {normalizedC, eig}]** Out[252]= {1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.}

Figure 20: normalized constants

The above implies that the first normalized eigenfunction is

$$
\Phi_1 = (0.705925) \cos \left(\sqrt{0.147033} x \right)
$$

And the second one is

$$
\Phi_2 = (0.751226) \cos \left(\sqrt{1.48528} x \right)
$$

And so on.

2.7 case 7: boundary conditions $y(0) + y'(0) = 0, y(L) = 0$

Let the solution be $y = Ae^{rx}$. This leads to the characteristic equation

$$
r^2 + \lambda = 0
$$

$$
r = \pm \sqrt{-\lambda}
$$

Let $\lambda < 0$

In this case $-\lambda$ is positive and $\sqrt{-\lambda}$ is positive. Let $\sqrt{-\lambda} = \mu$ where $\mu > 0$. Hence the roots are $\pm \mu$. This gives the solution

$$
y = c_1 \cosh(\mu x) + c_2 \sinh(\mu x)
$$

$$
y' = c_1 \mu \sinh(\mu x) + c_2 \mu \cosh(\mu x)
$$

First B.C. $y(0) + y'(0) = 0$ gives

$$
0 = c_1 + c_2 \mu \tag{1}
$$

Second B.C. $y(L) = 0$ gives

$$
0 = c_1 \cosh(\mu L) + c_2 \sinh(\mu L)
$$

From (1) $c_1 = -c_2\mu$ and the above now becomes

$$
0 = -c_2 \mu \cosh(\mu L) + c_2 \sinh(\mu L)
$$

= c_2(\sinh(\mu L) - \mu \cosh(\mu L))

For non-trivial solution, we want $\sinh(\mu L) - \mu \cosh(\mu L) = 0$. This means $\tanh(\mu L) = \mu$. Therefore $\lambda < 0$ is an eigenvalue and these are given by $\lambda_n = -\mu_n^2$, where μ_n is the solution to

$$
\tanh(\mu L) = \mu
$$

Or equivalently, the roots of

$$
\tanh\left(\sqrt{-\lambda}L\right) = \sqrt{-\lambda}
$$

There is only one negative root when solving the above numerically, which is $\lambda_{-1} =$ 0*.*992*.*The corresponding eigenfunction is

$$
\Phi_{-1} = c_{-1} \left(\sinh\left(\sqrt{-\lambda_{-1}}x\right) - \sqrt{-\lambda_{-1}}\cosh\left(\sqrt{-\lambda_{-1}}x\right) \right)
$$

Let $\lambda = 0$, The solution is

$$
y(x) = c_1 + c_2 x
$$

First B.C. $y(0) + y'(0) = 0$ gives

$$
0=c_1+c_2
$$

The solution becomes

$$
y(x) = c_1(1-x)
$$

Second B.C. *y*(*L*) gives

$$
0=c_1(1-L)
$$

This gives trivial solution. Therefore $\lambda = 0$ is not eigenvalue. Let $\lambda > 0$, The solution is

$$
y(x) = c_1 \cos\left(\sqrt{\lambda}x\right) + c_2 \sin\left(\sqrt{\lambda}x\right)
$$

$$
y'(x) = -c_1 \sqrt{\lambda} \sin\left(\sqrt{\lambda}x\right) + c_2 \sqrt{\lambda} \cos\left(\sqrt{\lambda}x\right)
$$

First B.C. $y(0) + y'(0) = 0$ gives

$$
0 = c_1 + c_2 \sqrt{\lambda}
$$

The solution now becomes

$$
y(x) = -c_2\sqrt{\lambda}\cos\left(\sqrt{\lambda}x\right) + c_2\sin\left(\sqrt{\lambda}x\right)
$$

$$
= c_2\left(\sin\left(\sqrt{\lambda}x\right) - \sqrt{\lambda}\cos\left(\sqrt{\lambda}x\right)\right)
$$

Second B.C. $y(L) = 0$ the above becomes

$$
0 = c_2 \Bigl(\sin \Bigl(\sqrt{\lambda} L \Bigr) - \sqrt{\lambda} \cos \Bigl(\sqrt{\lambda} L \Bigr) \Bigr)
$$

For non-trivial solution, we want $\sin\left(\sqrt{\lambda}L\right)$ – $\sqrt{\lambda} \cos \left(\sqrt{\lambda} L \right) = 0 \text{ or } \tan \left(\sqrt{\lambda} L \right) -$ √ $\lambda =$ 0 or $\sqrt{\lambda} = \tan\left(\sqrt{\lambda}L\right)$

Therefore the eigenvalues are the solution to the above (must be done numerically) And the corresponding eigenfunctions are

$$
\Phi_n(x) = c_n \Bigl(\sin \Bigl(\sqrt{\lambda_n} x \Bigr) - \sqrt{\lambda_n} \cos \Bigl(\sqrt{\lambda_n} x \Bigr) \Bigr)
$$

for each root λ_n .

2.8 case 8: boundary conditions $y(0) + y'(0) = 0, y'(L) = 0$

Let the solution be $y = Ae^{rx}$. This leads to the characteristic equation

$$
r^2 + \lambda = 0
$$

$$
r = \pm \sqrt{-\lambda}
$$

Let $\lambda < 0$

In this case $-\lambda$ is positive and hence $\sqrt{-\lambda}$ is also positive. Let $\sqrt{-\lambda} = \mu$ where $\mu > 0$. Hence the roots are $\pm \mu$. This gives the solution

$$
y = c_1 \cosh(\mu x) + c_2 \sinh(\mu x)
$$

$$
y' = c_1 \mu \sinh(\mu x) + c_2 \mu \cosh(\mu x)
$$

First B.C. $y(0) + y'(0) = 0$ gives

$$
0 = c_1 + c_2 \mu \tag{1}
$$

Second B.C. $y'(L) = 0$ gives

$$
0 = c_1 \mu \sinh(\mu L) + c_2 \mu \cosh(\mu L)
$$

From (1) $c_1 = -c_2\mu$ and the above becomes

$$
0 = -c_2 \mu^2 \sinh(\mu L) + c_2 \mu \cosh(\mu L)
$$

= $c_2 \mu (-\mu \sinh(\mu L) + \cosh(\mu L))$

For non-trivial solution, we want $-\mu \sinh(\mu L) + \cosh(\mu L) = 0$. This means $-\mu \tanh(\mu L) +$ $1 = 0$. Or tanh $(\mu L) = \frac{1}{\mu}$ $\frac{1}{\mu}$, therefore $\lambda < 0$ is eigenvalues and these are given by $\lambda_n = -\mu_n^2$, where μ_n is the solution to

$$
\tanh(\mu L) = \frac{1}{\mu}
$$

$$
\tanh(\sqrt{-\lambda}L) = \frac{1}{\sqrt{-\lambda}}
$$

This has one root, found numerically which is $\lambda_{-1} = -1$. Hence $\sqrt{-\lambda} = 1$. The corresponding eigenfunction is

$$
\Phi_{-1}(x) = c_{-1}(-\mu \cosh(\mu x) + \sinh(\mu x))
$$

= c_{-1}(-\cosh(x) + \sinh(x))

Let $\lambda = 0$, The solution is

$$
y(x) = c_1 + c_2 x
$$

First B.C. $y(0) + y'(0) = 0$ gives

 $0 = c_1 + c_2$

The solution becomes

$$
y(x) = c_1(1-x)
$$

$$
y' = -c_1
$$

Second B.C. $y'(L)$ gives

$$
0=-c_1
$$

This gives trivial solution. Therefore $\lambda = 0$ is not eigenvalue.

Let $\lambda > 0$, The solution is

$$
y(x) = c_1 \cos\left(\sqrt{\lambda}x\right) + c_2 \sin\left(\sqrt{\lambda}x\right)
$$

$$
y'(x) = -c_1 \sqrt{\lambda} \sin\left(\sqrt{\lambda}x\right) + c_2 \sqrt{\lambda} \cos\left(\sqrt{\lambda}x\right)
$$

First B.C. $y(0) + y'(0) = 0$ gives

$$
0 = c_1 + c_2 \sqrt{\lambda}
$$

The solution becomes

$$
y(x) = -c_2\sqrt{\lambda}\cos\left(\sqrt{\lambda}x\right) + c_2\sin\left(\sqrt{\lambda}x\right)
$$

$$
= c_2\left(\sin\left(\sqrt{\lambda}x\right) - \sqrt{\lambda}\cos\left(\sqrt{\lambda}x\right)\right)
$$

Second B.C. $y'(L) = 0$ gives

$$
0 = c_2 \left(\sqrt{\lambda} \cos \left(\sqrt{\lambda} L\right) + \lambda \sin \left(\sqrt{\lambda} L\right)\right)
$$

For non-trivial solution, we want $\lambda \sin \left(\sqrt{\lambda} L \right) +$ $\sqrt{\lambda} \cos \left(\sqrt{\lambda} L \right) = 0 \text{ or } \lambda \tan \left(\sqrt{\lambda} L \right) =$ − *λ* Therefore the eigenvalues are the solution to √

$$
\tan\left(\sqrt{\lambda}L\right) = \frac{-\sqrt{\lambda}}{\lambda} = \frac{-1}{\sqrt{\lambda}}
$$

And the corresponding eigenfunction is

$$
\Phi_n(x) = c_n \left(\sin \left(\sqrt{\lambda} x \right) - \sqrt{\lambda} \cos \left(\sqrt{\lambda} x \right) \right)
$$

2.9 case 9: boundary conditions $y(0) + y'(0) = 0, y(L) + y'(L) = 0$

Let the solution be $y = Ae^{rx}$. This leads to the characteristic equation

$$
r^2 + \lambda = 0
$$

$$
r = \pm \sqrt{-\lambda}
$$

Let $\lambda < 0$

In this case $-\lambda$ is positive and hence $\sqrt{-\lambda}$ is also positive. Let $\sqrt{-\lambda} = \mu$ where $\mu > 0$. Hence the roots are $\pm \mu$. This gives the solution

$$
y = c_1 \cosh(\mu x) + c_2 \sinh(\mu x)
$$

Hence

$$
y' = \mu c_1 \sinh (\mu x) + \mu c_2 \cosh (\mu x)
$$

Left B.C. gives

$$
0 = c_1 + \mu c_2 \tag{1}
$$

Right B.C. gives

$$
0 = c_1 \cosh(\mu L) + c_2 \sinh(\mu L) + \mu c_1 \sinh(\mu L) + \mu c_2 \cosh(\mu L)
$$

= cosh(μ) (c₁ + μ c₂) + sinh(μ) (c₂ + μ c₁)

Using (1) in the above, it simplifies to

$$
0=\sinh\left(\mu L\right)(c_{2}+\mu c_{1})
$$

But from (1) again, we see that $c_1 = -\mu c_2$ and the above becomes

$$
0 = \sinh(\mu L) (c_2 - \mu(\mu c_2))
$$

= $\sinh(\mu L) (c_2 - \mu^2 c_2)$
= $c_2 \sinh(\mu L) (1 - \mu^2)$

But $\sinh(\mu^2 L) \neq 0$ since $\mu^2 L \neq 0$ and so either $c_2 = 0$ or $(1 - \mu^2) = 0$. $c_2 = 0$ results in trivial solution, therefore $(1 - \mu^2) = 0$ or $\mu^2 = 1$ but $\mu^2 = -\lambda$, hence $\lambda = -1$ is the eigenvalue. Corresponding eigenfunction is

$$
y = c_1 \cosh(x) + c_2 \sinh(x)
$$

Using (1) the above simplifies to

$$
y = -\mu c_2 \cosh(x) + c_2 \sinh(x)
$$

= $c_2(-\mu \cosh(x) + \sinh(x))$

But $\mu =$ √ $-\lambda = 1$, hence the eigenfunction is

 $y(x) = c_2(-\cosh(x) + \sinh(x))$

Let $\lambda = 0$ Solution now is

 $y = c_1 x + c_2$

Therefore

 $y' = c_1$

Left B.C. $0 = y(0) + y'(0)$ gives

 $0 = c_2 + c_1$ (2)

Right B.C. $0 = y(L) + y'(L)$ gives

$$
0 = (c_1L + c_2) + c_1
$$

$$
0 = c_1(1 + L) + c_2
$$

But from (2) $c_1 = -c_2$ and the above becomes

$$
0 = -c2(1+L) + c2
$$

$$
0 = -c2L
$$

Which means $c_2 = 0$ and therefore the trivial solution. Therefore $\lambda = 0$ is not an eigenvalue. Assuming $\lambda > 0$ Solution is

$$
y = c_1 \cos \left(\sqrt{\lambda}x\right) + c_2 \sin \left(\sqrt{\lambda}x\right) \tag{A}
$$

Hence

$$
y' = -\sqrt{\lambda}c_1\sin\left(\sqrt{\lambda}x\right) + \sqrt{\lambda}c_2\cos\left(\sqrt{\lambda}x\right)
$$

Left B.C. gives

$$
0 = c_1 + \sqrt{\lambda}c_2 \tag{3}
$$

Right B.C. gives

$$
0 = c_1 \cos \left(\sqrt{\lambda}L\right) + c_2 \sin \left(\sqrt{\lambda}L\right) - \sqrt{\lambda}c_1 \sin \left(\sqrt{\lambda}L\right) + \sqrt{\lambda}c_2 \cos \left(\sqrt{\lambda}L\right)
$$

$$
= \cos \left(\sqrt{\lambda}L\right) \left(c_1 + \sqrt{\lambda}c_2\right) + \sin \left(\sqrt{\lambda}L\right) \left(c_2 - \sqrt{\lambda}c_1\right)
$$

Using (3) in the above, it simplifies to

$$
0 = \sin\left(\sqrt{\lambda}L\right)\left(c_2 - \sqrt{\lambda}c_1\right)
$$

But from (3), we see that $c_1 = -$ √ *λc*2. Therefore the above becomes

$$
0 = \sin\left(\sqrt{\lambda}L\right) \left(c_2 - \sqrt{\lambda}\left(-\sqrt{\lambda}c_2\right)\right)
$$

$$
= \sin\left(\sqrt{\lambda}L\right) \left(c_2 + \lambda c_2\right)
$$

$$
= c_2 \sin\left(\sqrt{\lambda}L\right) (1 + \lambda)
$$

Only choice for non trivial solution is either $(1 + \lambda) = 0$ or $\sin(\sqrt{\lambda}L) = 0$. But $(1 + \lambda) = 0$ implies $\lambda = -1$ but we said that $\lambda > 0$. Hence other choice is

$$
\sin\left(\sqrt{\lambda}L\right) = 0
$$

$$
\sqrt{\lambda}L = n\pi \qquad n = 1, 2, 3, \cdots
$$

$$
\lambda_n = \left(\frac{n\pi}{L}\right)^2 \qquad n = 1, 2, 3, \cdots
$$

The above are the eigenvalues. The corresponding eigenfunction is from (A)

$$
\Phi_n(x) = c_{1_n} \cos \left(\sqrt{\lambda_n} x\right) + c_{2_n} \sin \left(\sqrt{\lambda_n} x\right)
$$

 $\text{But}\; c_{1_n}=-$ √ $\lambda_n c_{2n}$ and the above becomes

$$
\Phi_n(x) = -\sqrt{\lambda_n} c_{2_n} \cos\left(\sqrt{\lambda_n} x\right) + c_2 \sin\left(\sqrt{\lambda_n} x\right)
$$

$$
= C_n \left(-\sqrt{\lambda_n} \cos\left(\sqrt{\lambda_n} x\right) + \sin\left(\sqrt{\lambda_n} x\right)\right)
$$