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The eigenvalues and eigenfunctions for y′′ + λy = 0 over 0 < x < L for all possible
combinations of homogeneous boundary conditions are derived analytically. For each
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boundary condition case, a plot of the first few normalized eigenfunctions are given as
well as the numerical values of the first few eigenvalues for the special case when L = π.

1 Summary of result
This section is a summary of the results. It shows for each boundary conditions the
eigenvalues found and the corresponding eigenfunctions, and the full solution. A partial
list of the numerical values of the eigenvalues for L = π is given and a plot of the first
few normalized eigenfunctions.

1.1 case 1: boundary conditions y(0) = 0, y(L) = 0

eigenvalues eigenfunctions
λ < 0 None None
λ = 0 None None
λ > 0 λn =

(
nπ
L

)2
n = 1, 2, 3, · · · Φn(x) = cn sin

(√
λn x

)
Normalized eigenfunctions: For L = 1,

Φn(x) =
√
2 sin

(√
λn x

)
For L = π,

Φn(x) =
√

2
π
sin
(√

λn x
)

List of eigenvalues {
π2

L2 ,
4π2

L2 ,
9π2

L2 ,
16π2

L2 , · · ·
}

List of numerical eigenvalues when L = π

{1, 4, 8, 16, 25, · · ·}

This is a plot showing how the eigenvalues change in value
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Figure 1: plot of eigenvalues change in value

This is a plot showing the corresponding normalized eigenfunctions for the first 4
eigenvalues. We see that the number of zeros for Φn(x) is n − 1 inside the interval
0 < x < π. (not counting the end points). Hence Φ1(x) which correspond to λ1 = 1
in this case, will have no zeros inside the interval. While Φ2(x) which correspond to
λ2 = 4 in this case, will have one zero and so on.
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Figure 2: plot showing the corresponding normalized eigenfunction

1.2 case 2: boundary conditions y(0) = 0, y′(L) = 0

eigenvalues eigenfunctions
λ < 0 None None
λ = 0 None None
λ > 0 λn =

(
nπ
2L

)2
n = 1, 3, 5, · · · Φn(x) = cn sin

(√
λn x

)
Normalized eigenfunctions: For L = 1,

Φn(x) =
√
2 sin

(√
λn x

)
For L = π,

Φn(x) =
√

2
π
sin
(√

λn x
)

List of eigenvalues {
π2

4L2 ,
9π2

4L2 ,
25π2

4L2 ,
49π2

4L2 , · · ·
}

List of numerical eigenvalues when L = π

{0.25, 2.25, 6.25, 12.25, 20.25, · · ·}
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This is a plot showing how the eigenvalues change in value
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Figure 3: plot showing how the eigenvalues change in value

This is a plot showing the corresponding normalized eigenfunctions for the first 4
eigenvalues.

0 π

4

π

2

3π

4
π

0.0

0.2

0.4

0.6

0.8

x

ϕ
(x
)

Normalized eigenfunction for eigenvalue number 1
λ1=0.25

0 π

4

π

2

3π

4
π

-0.5

0.0

0.5

x

ϕ
(x
)

Normalized eigenfunction for eigenvalue number 3
λ3=2.25

0 π

4

π

2

3π

4
π

-0.5

0.0

0.5

x

ϕ
(x
)

Normalized eigenfunction for eigenvalue number 5
λ5=6.25

0 π

4

π

2

3π

4
π

-0.5

0.0

0.5

x

ϕ
(x
)

Normalized eigenfunction for eigenvalue number 7
λ7=12.25

Figure 4: plot showing the corresponding normalized eigenfunctions
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1.3 case 3: boundary conditions y(0) = 0, y(L) + y′(L) = 0

eigenvalues eigenfunctions
λ < 0 None None
λ = 0 None None

λ > 0 roots of tan
(√

λL
)
+
√
λ = 0 Φn(x) = cn sin

(√
λn x

)
Normalized eigenfunctions: For L = π,

Φ1 = (0.729448) sin
(√

0.620x
)

Φ2 = (0.766385) sin
(√

2.794x
)

...

The normalization constant in this case depends on the eigenvalue.

List of numerical eigenvalues when L = π (since there is no analytical solution)

{0.620, 2.794, 6.845, 12.865, 20.879, · · ·}

This is a plot showing how the eigenvalues change in value
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Figure 5: plot showing how the eigenvalues change in value

This is a plot showing the corresponding normalized eigenfunctions for the first 4
eigenvalues.
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Figure 6: plot showing the corresponding normalized eigenfunctions

1.4 case 4: boundary conditions y′(0) = 0, y(L) = 0

eigenvalues eigenfunctions
λ < 0 None None
λ = 0 None None
λ > 0 λn =

(
nπ
2L

)2
n = 1, 3, 5, · · · Φn(x) = cn cos

(√
λn x

)
Normalized eigenfunctions for L = 1

Φ̃n =
√
2 cos

(√
λnx

)
n = 1, 3, 5, · · ·

When L = π

Φ̃n =
√

2
π
cos
(√

λnx
)

n = 1, 3, 5, · · ·

List of eigenvalues {
π2

4L2 ,
9π2

4L2 ,
25π2

4L2 ,
49π2

4L2 , · · ·
}
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List of numerical eigenvalues when L = π

{0.25, 2.25, 6.25, 12.25, 20.25, · · ·}

This is a plot showing how the eigenvalues change in value
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Figure 7: plot showing how the eigenvalues change in value

This is a plot showing the corresponding normalized eigenfunctions for the first 4
eigenvalues.

8



0 π

4

π

2

3π

4
π

0.0

0.2

0.4

0.6

0.8

x

ϕ
(x
)

Normalized eigenfunction for eigenvalue number 1
λ1=0.25

0 π

4

π

2

3π

4
π

-0.5

0.0

0.5

x

ϕ
(x
)

Normalized eigenfunction for eigenvalue number 3
λ3=2.25

0 π

4

π

2

3π

4
π

-0.5

0.0

0.5

x

ϕ
(x
)

Normalized eigenfunction for eigenvalue number 5
λ5=6.25

0 π

4

π

2

3π

4
π

-0.5

0.0

0.5

x

ϕ
(x
)

Normalized eigenfunction for eigenvalue number 7
λ7=12.25

Figure 8: plot showing the corresponding normalized eigenfunctions

1.5 case 5: boundary conditions y′(0) = 0, y′(L) = 0

eigenvalues eigenfunctions
λ < 0 None None
λ = 0 Yes constant say 1
λ > 0 λn =

(
nπ
L

)2
n = 1, 2, 3, · · · Φn(x) = cn cos

(√
λn x

)
Normalized eigenfunction when L = 1

Φ̃n =
√
2 cos

(√
λnx

)
n = 1, 2, 3, · · ·

When L = π

Φ̃n =
√

2
π
cos
(√

λnx
)

n = 1, 2, 3, · · ·

For Φ̃0, When L = 1

Φ̃0 = 1
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When L = π

Φ̃0 =
√

1
π

List of eigenvalues {
0, π

2

L2 ,
4π2

L2 ,
9π2

L2 ,
16π2

L2 , · · ·
}

List of numerical eigenvalues when L = π

{0, 1, 4, 9, 16, · · ·}

This is a plot showing how the eigenvalues change in value
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Figure 9: plot showing how the eigenvalues change in value

This is a plot showing the corresponding normalized eigenfunctions for the first 4
eigenvalues.
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Figure 10: plot showing the corresponding normalized eigenfunctions

1.6 case 6: boundary conditions y′(0) = 0, y(L) + y′(L) = 0

eigenvalues eigenfunctions
λ < 0 None None
λ = 0 None None

λ > 0 Roots of
√
λ tan

(√
λL
)
= 1 Φn(x) = cn cos

(√
λn x

)
Normalized eigenfunctions for L = π are

Φ1 = (0.705925) cos
(√

0.147033x
)

Φ2 = (0.751226) cos
(√

1.48528x
)

...

List of numerical eigenvalues when L = π (There is no analytical solution for the roots)

{0.147033, 1.48528, 4.576, 9.606, 16.622, · · ·}
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This is a plot showing how the eigenvalues change in value
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Figure 11: plot showing how the eigenvalues change in value

This is a plot showing the corresponding normalized eigenfunctions for the first 4
eigenvalues.
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Figure 12: plot showing the corresponding normalized eigenfunctions
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1.7 case 7: boundary conditions y(0)+y′(0) = 0, y(L) = 0

eigenvalues eigenfunctions
λ < 0 Root of tanh

(√
−λL

)
=

√
−λ(one root) Φ(x) = sinh

(√
−λx

)
−
√
−λ cosh

(√
−λx

)
λ = 0 None None

λ > 0 Roots of tan
(√

λL
)
=

√
λ Φn(x) = sin

(√
λx
)
−
√
λ cos

(√
λx
)

List of numerical eigenvalues when L = π (There is no analytical solution for the roots)

{−0.992, 1.664, 5.631, 11.623, · · ·}

This is a plot showing how the eigenvalues change in value
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Figure 13: plot showing how the eigenvalues change in value

This is a plot showing the corresponding eigenfunctions for the first 4 eigenvalues.
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Figure 14: plot showing the corresponding eigenfunctions

1.8 case 8: boundary conditions y(0)+y′(0) = 0, y′(L) = 0

eigenvalues eigenfunctions
λ < 0 Root of tanh

(√
−λL

)
= 1√

−λ
(one root) Φ−1(x) = sinh

(√
−λx

)
−
√
−λ cosh

(√
−λx

)
λ = 0 None None

λ > 0 Roots of tan
(√

λL
)
= −1√

λ
Φn(x) = sin

(√
λx
)
−
√
λ cos

(√
λx
)

List of numerical eigenvalues when L = π (There is no analytical solution for the roots)

{−1.007, 0.480, 3.392, 8.376, 24, 368, · · ·}

This is a plot showing how the eigenvalues change in value
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Figure 15: plot showing how the eigenvalues change in value

This is a plot showing the corresponding eigenfunctions for the first 4 eigenvalues.
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Figure 16: plot showing the corresponding eigenfunctions
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1.9 case 9: boundary conditions y(0)+y′(0) = 0, y(L) + y′(L) = 0

eigenvalues eigenfunctions
λ < 0 −1 Φ−1(x) = sinh (x)− cosh (x)
λ = 0 None None
λ > 0 λn =

(
nπ
L

)2
n = 1, 2, 3, · · · Φn(x) = sin

(√
λnx

)
−

√
λn cos

(√
λnx

)
List of eigenvalues {

−1, π
2

L2 ,
4π2

L2 ,
9π2

L2 ,
16π2

L2 , · · ·
}

List of numerical eigenvalues when L = π

{−1, 1, 4, 9, 16, · · ·}

This is a plot showing how the eigenvalues change in value
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Figure 17: plot showing how the eigenvalues change in value

This is a plot showing the corresponding eigenfunctions for the first 4 eigenvalues.
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Figure 18: plot showing the corresponding eigenfunctions

2 Derivations

2.1 case 1: boundary conditions y(0) = 0, y(L) = 0
Let the solution be y = Aerx. This leads to the characteristic equation

r2 + λ = 0
r = ±

√
−λ

Let λ < 0

In this case −λ is positive and hence
√
−λ is also positive. Let

√
−λ = µ where µ > 0.

Hence the roots are ±µ. This gives the solution

y = c1 cosh (µx) + c2 sinh (µx)

First B.C. y(0) = 0 gives
0 = c1

17



The solution becomes
y(x) = c2 sinh (µx)

The second B.C. y(L) = 0 results in

0 = c2 sinh (µL)

But sinh (µL) 6= 0 since µL 6= 0, hence c2 = 0, Leading to trivial solution. Therefore
λ < 0 is not eigenvalue.

Let λ = 0, The solution is
y(x) = c1 + c2x

First B.C. y(0) = 0 gives
0 = c1

The solution becomes
y(x) = c2x

Applying the second B.C. y(L) = 0 gives

0 = c2L

Therefore c2 = 0, leading to trivial solution. Therefore λ = 0 is not eigenvalue.

Let λ > 0, The solution is

y(x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx
)

First B.C. y(0) = 0 gives
0 = c1

The solution becomes
y(x) = c2 sin

(√
λx
)

Second B.C. y(L) = 0 gives
0 = c2 sin

(√
λL
)

Non-trivial solution implies sin
(√

λL
)
= 0 or

√
λL = nπ for n = 1, 2, 3, · · ·. Therefore√

λn = nπ

L
n = 1, 2, 3, · · ·

λn =
(nπ
L

)2
n = 1, 2, 3, · · ·

The corresponding eigenfunctions are

Φn = cn sin
(√

λnx
)

n = 1, 2, 3, · · ·
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The normalized Φ̃n eigenfunctions are now found. In this problem the weight function
is r(x) = 1, therefore solving for cn from

∫ L

0
r(x) Φ2

ndx = 1∫ L

0
c2n sin2

(√
λnx

)
dx = 1

c2n

∫ L

0

(
1
2 − 1

2 cos
(
2
√

λnx
))

dx = 1∫ L

0

1
2dx−

∫ L

0

1
2 cos

(
2
√
λnx

)
dx = 1

c2n

1
2L− 1

2

(
sin
(
2
√
λnx

)
2
√
λn

)L

0

= 1
c2n

1
2L− 1

4
√
λn

sin
(
2
√

λnL
)
= 1

c2n

2
√
λnL− sin

(
2
√

λnL
)
= 4

√
λn

c2n

Hence

cn =

√
4
√
λn

2
√
λnL− sin

(
2
√
λnL

)
For example, when L = 1 the normalization constant becomes (since now

√
λn = nπ

L
=

nπ)

cn =
√

4nπ
2nπ − sin (2nπ)

=
√

4nπ
2nπ

cn =
√
2

For L = π, the normalization constant becomes (since now
√
λn = nπ

π
= n)
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cn =
√

4n
2nπ − sin (2nπ)

=
√

4n
2nπ

cn =
√

2
π

The normalization cn value depends on the length. When L = 1

Φ̃n =
√
2 sin

(√
λnx

)
n = 1, 2, 3, · · ·

When L = π

Φ̃n =
√

2
π
sin
(√

λnx
)

n = 1, 2, 3, · · ·

2.2 case 2: boundary conditions y(0) = 0, y′(L) = 0
Let the solution be y = Aerx. This leads to the characteristic equation

r2 + λ = 0
r = ±

√
−λ

Let λ < 0

In this case −λ is positive and hence
√
−λ is also positive. Let

√
−λ = µ where µ > 0.

Hence the roots are ±µ. This gives the solution

y = c1 cosh (µx) + c2 sinh (µx)

First B.C. gives
0 = c1

Hence solution becomes
y(x) = c2 sinh (µx)

Second B.C. gives

y′(x) = µc2 cosh (µx)
0 = µc2 cosh (µL)
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But cosh (µL) can not be zero, hence only other choice is c2 = 0, leading to trivial
solution. Therefore λ < 0 is not eigenvalue.

Let λ = 0, The solution is
y(x) = c1 + c2x

First B.C. gives
0 = c1

Hence solution becomes
y(x) = c2x

Second B.C. gives

y′(x) = c2

0 = c2

Leading to trivial solution. Therefore λ = 0 is not eigenvalue.

Let λ > 0, the solution is

y(x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx
)

First B.C. gives
0 = c1

Hence solution becomes
y(x) = c2 sin

(√
λx
)

Second B.C. gives

y′(x) =
√
λc2 cos

(√
λx
)

0 =
√
λc2 cos

(√
λL
)

Non-trivial solution implies cos
(√

λL
)
= 0 or

√
λL = nπ

2 for n = 1, 3, 5, · · ·. Therefore

√
λnL = nπ

2√
λn = nπ

2L n = 1, 3, 5, · · ·

The eigenvalues are
λn =

(nπ
2L

)2
n = 1, 3, 5, · · ·

The corresponding eigenfunctions are
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Φn = cn sin
(√

λnx
)

n = 1, 3, 5, · · ·

The normalized Φ̃n eigenfunctions are now found. Since the weight function is r(x) = 1,
therefore solving for cn from

∫ L

0
r(x) Φ2

ndx = 1∫ L

0
c2n sin2

(√
λnx

)
dx = 1

As was done earlier, the above results in

cn =

√
4
√
λn

2
√
λnL− sin

(
2
√
λnL

) n = 1, 3, 5, · · ·

For L = 1 the normalization constant becomes (since now
√
λn = nπ

2L = nπ
2 )

cn =
√

4nπ
2

2nπ
2 − sin

(
2nπ

2

)
=
√

2nπ
nπ

cn =
√
2

For L = π, the normalization constant becomes (since now
√
λn = nπ

2π = n
2 )

cn =
√

4n
2

2n
2π − sin

(
2n
2π
)

=
√

2n
nπ

cn =
√

2
π

Therefore, for L = 1

Φ̃n =
√
2 sin

(√
λnx

)
n = 1, 3, 5, · · ·
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For L = π

Φ̃n =
√

2
π
sin
(√

λnx
)

n = 1, 3, 5, · · ·

2.3 case 3: boundary conditions y(0) = 0, y(L) + y′(L) = 0
Let the solution be y = Aerx. This leads to the characteristic equation

r2 + λ = 0
r = ±

√
−λ

Let λ < 0

In this case −λ is positive and hence
√
−λ is also positive. Let

√
−λ = µ where µ > 0.

Hence the roots are ±µ. This gives the solution

y = c1 cosh (µx) + c2 sinh (µx)

First B.C. y(0) = 0 gives
0 = c1

Hence solution becomes
y(x) = c2 sinh (µx)

Second B.C. y(L) + y′(L) = 0 gives

0 = c2(sinh (µL) + µ cosh (µx))

But sinh (µL) 6= 0 since µL 6= 0 and cosh (µx) can not be zero, hence c2 = 0, Leading
to trivial solution. Therefore λ < 0 is not eigenvalue.

Let λ = 0, The solution is
y(x) = c1 + c2x

First B.C. y(0) = 0 gives
0 = c1

The solution becomes
y(x) = c2x

Second B.C. y(L) + y′(L) = 0 gives

0 = c2L+ c2

= c2(1 + L)
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Therefore c2 = 0, leading to trivial solution. Therefore λ = 0 is not eigenvalue.

Let λ > 0, The solution is

y(x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx
)

First B.C. y(0) = 0 gives

0 = c1

The solution becomes
y(x) = c2 sin

(√
λx
)

Second B.C. y(L) + y′(L) = 0 gives

0 = c2
(
sin
(√

λL
)
+
√
λ cos

(√
λL
))

For non-trivial solution, we want sin
(√

λL
)
+
√
λ cos

(√
λL
)
= 0 or tan

(√
λL
)
+
√
λ =

0 Therefore the eigenvalues are given by the solution to

tan
(√

λL
)
+
√
λ = 0

And the corresponding eigenfunction is

Φn = cn sin
(√

λnx
)

n = 1, 2, 3, · · ·

The normalized Φ̃n eigenfunctions are now found. Since the weight function is r(x) = 1,
therefore solving for cn from

∫ L

0
r(x) Φ2

ndx = 1∫ L

0
c2n sin2

(√
λnx

)
dx = 1

As was done earlier, the above results in

cn =

√
4
√
λn

2
√
λnL− sin

(
2
√
λnL

) n = 1, 2, 3, · · ·
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Since there is no closed form solution to λn as it is a root of nonlinear equation
tan

(√
λL
)
+

√
λ = 0, the normalized constant is found numerically. For L = π, the

first few roots are

λn = {0.620, 2.794, 6.845, 12.865, 20.879, · · ·}

In this case, the normalization constants depends on n and are not the same as in
earlier cases. The following small program was written to find the first 10 normalization
constants and to verify that each will make

∫ L

0 c2n sin2 (√λnx
)
dx = 1

The normalized constants are found to be (for L = π)

cn = {0.729448, 0.766385, 0.782173, 0.788879, 0.792141, 0.79393, 0.795006, 0.7957, 0.796171, 0.796506}

In[137]:= L = Pi;

eig = lam /. NSolve[Tan[Sqrt[lam] L] + Sqrt[lam] ⩵ 0 && 0 < lam < 110, lam];

c[lam_] := Sqrt
4 Sqrt[lam]

2 Sqrt[lam] Pi - Sin[2 Sqrt[lam] Pi]
;

normalizedC = c[#] & /@ eig

Out[140]= {0.729448, 0.766385, 0.782173, 0.788879, 0.792141, 0.79393, 0.795006, 0.7957, 0.796171, 0.796506}

In[141]:= MapThread[Integrate[#1^2 * Sin[Sqrt[#2] x]^2, {x, 0, Pi}] &, {normalizedC, eig}]

Out[141]= {1., 1., 1., 1., 1., 1., 1., 1., 1., 1.}

Figure 19: normalized constants

The above implies that the first normalized eigenfunction is

Φ1 = (0.729448) sin
(√

0.620x
)

And the second one is

Φ2 = (0.766385) sin
(√

2.794x
)

And so on.
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2.4 case 4: boundary conditions y′(0) = 0, y(L) = 0
Let the solution be y = Aerx. This leads to the characteristic equation

r2 + λ = 0
r = ±

√
−λ

Let λ < 0

In this case −λ is positive and hence
√
−λ is also positive. Let

√
−λ = µ where µ > 0.

Hence the roots are ±µ. This gives the solution

y = c1 cosh (µx) + c2 sinh (µx)
y′ = c1µ sinh (µx) + c2µ cosh (µx)

First B.C. y′(0) = 0 gives

0 = c2µ

c2 = 0

Hence solution becomes
y(x) = c1 cosh (µx)

Second B.C. y(L) = 0 gives
0 = c1 cosh (µL)

But cosh (µL) can not be zero, hence c1 = 0, Leading to trivial solution. Therefore
λ < 0 is not eigenvalue.

Let λ = 0, The solution is
y(x) = c1 + c2x

First B.C. y′(0) = 0 gives
0 = c2

The solution becomes
y(x) = c1

Second B.C. y(L) = 0 gives
0 = c1

Therefore c1 = 0, leading to trivial solution. Therefore λ = 0 is not eigenvalue.

Let λ > 0, The solution is

y(x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx
)

y′(x) = −c1
√
λ sin

(√
λx
)
+ c2

√
λ cos

(√
λx
)
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First B.C. y′(0) = 0 gives

0 = c2
√
λ

c2 = 0

The solution becomes
y(x) = c1 cos

(√
λx
)

Second B.C. y(L) = 0 gives
0 = c1 cos

(√
λL
)

For non-trivial solution, we want cos
(√

λL
)
= 0 or

√
λL = nπ

2 for odd n = 1, 3, 5, · · ·
Therefore

λn =
(nπ
2L

)2
n = 1, 3, 5, · · ·

The corresponding eigenfunctions are

Φn = cn cos
(√

λnx
)

n = 1, 3, 5, · · ·

The normalized Φ̃n eigenfunctions are now found. In this problem the weight function
is r(x) = 1, therefore solving for cn from

∫ L

0
r(x) Φ2

ndx = 1∫ L

0
c2n cos2

(√
λnx

)
dx = 1

c2n

∫ L

0

(
1
2 + 1

2 cos
(
2
√
λnx

))
dx = 1∫ L

0

1
2dx+

∫ L

0

1
2 cos

(
2
√

λnx
)
dx = 1

c2n

1
2L+ 1

2

(
sin
(
2
√
λnx

)
2
√
λn

)L

0

= 1
c2n

1
2L+ 1

4
√
λn

sin
(
2
√
λnL

)
= 1

c2n

2
√

λnL+ sin
(
2
√
λnL

)
= 4

√
λn

c2n

Hence
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cn =

√
4
√
λn

2
√
λnL+ sin

(
2
√
λnL

)
For example, when L = 1 the normalization constant becomes (since now

√
λn = nπ

2L =
nπ
2 )

cn =
√

4nπ
2

2nπ
2 + sin

(
2nπ

2

)
=
√

2nπ
nπ

cn =
√
2

Which is the same when the eigenfunction was sin
(
nπ
2Lx
)
. For L = π, the normalization

constant becomes (since now
√
λn = nπ

2L = n
2 )

cn =
√

4n
2

2n
2π + sin

(
2n
2π
)

=
√

2n
2nπ

cn =
√

2
π

The normalization cn value depends on the length. When L = 1

Φ̃n =
√
2 cos

(√
λnx

)
n = 1, 3, 5, · · ·

When L = π

Φ̃n =
√

2
π
cos
(√

λnx
)

n = 1, 3, 5, · · ·
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2.5 case 5: boundary conditions y′(0) = 0, y′(L) = 0
Let the solution be y = Aerx. This leads to the characteristic equation

r2 + λ = 0
r = ±

√
−λ

Let λ < 0

In this case −λ is positive and hence
√
−λ is also positive. Let

√
−λ = µ where µ > 0.

Hence the roots are ±µ. This gives the solution

y = c1 cosh (µx) + c2 sinh (µx)
y′ = c1µ sinh (µx) + c2µ cosh (µx)

First B.C. y′(0) = 0 gives

0 = c2µ

c2 = 0

Hence solution becomes
y(x) = c1 cosh (µx)

Second B.C. y′(L) = 0 gives
0 = c1µ sinh (µL)

But sinh (µL) can not be zero since µL 6= 0, hence c1 = 0, Leading to trivial solution.
Therefore λ < 0 is not eigenvalue.

Let λ = 0, The solution is

y(x) = c1 + c2x

First B.C. y′(0) = 0 gives
0 = c2

The solution becomes
y(x) = c1

Second B.C. y′(L) = 0 gives
0 = 0

Therefore c1 can be any value. Therefore λ = 0 is an eigenvalue and the corresponding
eigenfunction is any constant, say 1.
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Let λ > 0, The solution is

y(x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx
)

y′(x) = −c1
√
λ sin

(√
λx
)
+ c2

√
λ cos

(√
λx
)

First B.C. y′(0) = 0 gives

0 = c2
√
λ

c2 = 0

The solution becomes
y(x) = c1 cos

(√
λx
)

Second B.C. y′(L) = 0 gives

0 = −c1
√
λ sin

(√
λL
)

For non-trivial solution, we want sin
(√

λL
)

= 0 or
√
λL = nπ for n = 1, 2, 3, · · ·

Therefore
λn =

(nπ
L

)2
n = 1, 2, 3, · · ·

And the corresponding eigenfunctions are

Φn(x) = cn cos
(√

λx
)

n = 1, 2, 3, · · ·

The normalized Φ̃n eigenfunctions are now found. In this problem the weight function
is r(x) = 1, therefore solving for cn from

∫ L

0
r(x) Φ2

ndx = 1∫ L

0
c2n cos2

(√
λnx

)
dx = 1

As before, the above simplifies to

cn =

√
4
√
λn

2
√
λnL+ sin

(
2
√
λnL

)
For example, when L = 1 the normalization constant becomes (since now

√
λn = nπ

L
=

nπ)
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cn =
√

4nπ
2nπ + sin (2nπ)

cn =
√
2

For L = π, the normalization constant becomes (since now
√
λn = nπ

L
= n)

cn =
√

4n
2nπ + sin (2nπ)

cn =
√

2
π

The normalization cn value depends on the length. When L = 1

Φ̃n =
√
2 cos

(√
λnx

)
n = 1, 2, 3, · · ·

When L = π

Φ̃n =
√

2
π
cos
(√

λnx
)

n = 1, 2, 3, · · ·

For n = 0, corresponding to the λ0 eigenvalue, since the eigenfunction is taken as the
constant 1, then

∫ L

0
c20dx = 1

c0 =
√

1
L

Therefore, When L = 1

Φ̃0 = 1

When L = π

Φ̃0 =
√

1
π
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2.6 case 6: boundary conditions y′(0) = 0, y(L) + y′(L) = 0
Let the solution be y = Aerx. This leads to the characteristic equation

r2 + λ = 0
r = ±

√
−λ

Let λ < 0

In this case −λ is positive and hence
√
−λ is also positive. Let

√
−λ = µ where µ > 0.

Hence the roots are ±µ. This gives the solution

y = c1 cosh (µx) + c2 sinh (µx)
y′ = c1µ sinh (µx) + c2µ cosh (µx)

First B.C. y′(0) = 0 gives

0 = c2µ

c2 = 0

Hence solution becomes
y(x) = c1 cosh (µx)

Second B.C. y(L) + y′(L) = 0 gives

0 = c1(cosh (µL) + µ sinh (µL))

But sinh (µL) can not be negative since its argument is positive here. And coshµL is
always positive. In addition cosh (µL)+µ sinh (µL) can not be zero since sinh (µL) can
not be zero as µL 6= 0 and cosh (µL) is not zero. Therefore c1 = 0, Leading to trivial
solution. Therefore λ < 0 is not eigenvalue.

Let λ = 0, The solution is
y(x) = c1 + c2x

First B.C. y′(0) = 0 gives
0 = c2

The solution becomes
y(x) = c1

Second B.C. y(L) + y′(L) = 0 gives

0 = c1

This gives trivial solution. Therefore λ = 0 is not eigenvalue.
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Let λ > 0, The solution is

y(x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx
)

y′(x) = −c1
√
λ sin

(√
λx
)
+ c2

√
λ cos

(√
λx
)

First B.C. y′(0) = 0 gives

0 = c2
√
λ

c2 = 0

The solution becomes
y(x) = c1 cos

(√
λx
)

Second B.C. y(L) + y′(L) = 0 gives

0 = c1 cos
(√

λL
)
− c1

√
λ sin

(√
λL
)

= c1
(
cos
(√

λL
)
−
√
λ sin

(√
λL
))

For non-trivial solution, we want cos
(√

λL
)
−
√
λ sin

(√
λL
)
= 0 or

√
λ tan

(√
λL
)
= 1

Therefore the eigenvalues are the solution to
√
λ tan

(√
λL
)
= 1

And the corresponding eigenfunctions are

Φn = cos
(√

λnx
)

n = 1, 2, 3, · · ·

Where λn are the roots of
√
λ tan

(√
λL
)
= 1.

The normalized Φ̃n eigenfunctions are now found. Since the weight function is r(x) = 1,
therefore solving for cn from

∫ L

0
r(x) Φ2

ndx = 1∫ L

0
c2n cos2

(√
λnx

)
dx = 1

As was done earlier, the above results in
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cn =

√
4
√
λn

2
√
λnL+ sin

(
2
√
λnL

) n = 1, 2, 3, · · ·

Since there is no closed form solution to λn as it is a root of nonlinear equation√
λ tan

(√
λL
)
= 1, the normalized constant is found numerically. For L = π, the first

few roots are

λn = {0.147033, 1.48528, 4.57614, 9.60594, 25.6247, 36.6282, 64.6318, 81.6328, 100.634, 121.634, · · ·}

In this case, the normalization constants depends on n and are not the same as in
earlier cases. The following small program was written to find the first 10 normalization
constants and to verify that each will make

∫ L

0 c2n cos2
(√

λnx
)
dx = 1

The normalized constants are found to be (for L = π)

cn = {0.705925, 0.751226, 0.776042, 0.786174, 0.790773, 0.793157, 0.794531, · · ·}

In[247]:= ClearAll[lam, c, eig];

L = Pi;

eig = lam /. NSolve[Sqrt[lam] Tan[Sqrt[lam] L] ⩵ 1 && 0 < lam < 110, lam];

c[lam_] := Sqrt
4 Sqrt[lam]

2 Sqrt[lam] Pi + Sin[2 Sqrt[lam] Pi]
;

normalizedC = c[#] & /@ eig

Out[251]= {0.705925, 0.751226, 0.776042, 0.786174, 0.790773, 0.793157, 0.794531, 0.795388, 0.795957, 0.796352, 0.796638}

In[252]:= MapThread[Integrate[#1^2 * Cos[Sqrt[#2] x]^2, {x, 0, Pi}] &, {normalizedC, eig}]

Out[252]= {1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.}

Figure 20: normalized constants

The above implies that the first normalized eigenfunction is

Φ1 = (0.705925) cos
(√

0.147033x
)

And the second one is

Φ2 = (0.751226) cos
(√

1.48528x
)

And so on.
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2.7 case 7: boundary conditions y(0) + y′(0) = 0, y(L) = 0
Let the solution be y = Aerx. This leads to the characteristic equation

r2 + λ = 0
r = ±

√
−λ

Let λ < 0

In this case −λ is positive and
√
−λ is positive. Let

√
−λ = µ where µ > 0. Hence the

roots are ±µ. This gives the solution

y = c1 cosh (µx) + c2 sinh (µx)
y′ = c1µ sinh (µx) + c2µ cosh (µx)

First B.C. y(0) + y′(0) = 0 gives

(1)0 = c1 + c2µ

Second B.C. y(L) = 0 gives

0 = c1 cosh (µL) + c2 sinh (µL)

From (1) c1 = −c2µ and the above now becomes

0 = −c2µ cosh (µL) + c2 sinh (µL)
= c2(sinh (µL)− µ cosh (µL))

For non-trivial solution, we want sinh (µL)−µ cosh (µL) = 0. This means tanh (µL) = µ.
Therefore λ < 0 is an eigenvalue and these are given by λn = −µ2

n, where µn is the
solution to

tanh (µL) = µ

Or equivalently, the roots of

tanh
(√

−λL
)
=

√
−λ

There is only one negative root when solving the above numerically, which is λ−1 =
0.992.The corresponding eigenfunction is

Φ−1 = c−1

(
sinh

(√
−λ−1x

)
−
√
−λ−1 cosh

(√
−λ−1x

))
Let λ = 0, The solution is

y(x) = c1 + c2x
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First B.C. y(0) + y′(0) = 0 gives
0 = c1 + c2

The solution becomes
y(x) = c1(1− x)

Second B.C. y(L) gives
0 = c1(1− L)

This gives trivial solution. Therefore λ = 0 is not eigenvalue.

Let λ > 0, The solution is

y(x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx
)

y′(x) = −c1
√
λ sin

(√
λx
)
+ c2

√
λ cos

(√
λx
)

First B.C. y(0) + y′(0) = 0 gives

0 = c1 + c2
√
λ

The solution now becomes

y(x) = −c2
√
λ cos

(√
λx
)
+ c2 sin

(√
λx
)

= c2
(
sin
(√

λx
)
−

√
λ cos

(√
λx
))

Second B.C. y(L) = 0 the above becomes

0 = c2
(
sin
(√

λL
)
−
√
λ cos

(√
λL
))

For non-trivial solution, we want sin
(√

λL
)
−
√
λ cos

(√
λL
)
= 0 or tan

(√
λL
)
−
√
λ =

0 or √
λ = tan

(√
λL
)

Therefore the eigenvalues are the solution to the above (must be done numerically)
And the corresponding eigenfunctions are

Φn(x) = cn
(
sin
(√

λnx
)
−
√
λn cos

(√
λnx

))
for each root λn.
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2.8 case 8: boundary conditions y(0) + y′(0) = 0, y′(L) = 0
Let the solution be y = Aerx. This leads to the characteristic equation

r2 + λ = 0
r = ±

√
−λ

Let λ < 0

In this case −λ is positive and hence
√
−λ is also positive. Let

√
−λ = µ where µ > 0.

Hence the roots are ±µ. This gives the solution

y = c1 cosh (µx) + c2 sinh (µx)
y′ = c1µ sinh (µx) + c2µ cosh (µx)

First B.C. y(0) + y′(0) = 0 gives

(1)0 = c1 + c2µ

Second B.C. y′(L) = 0 gives

0 = c1µ sinh (µL) + c2µ cosh (µL)

From (1) c1 = −c2µ and the above becomes

0 = −c2µ
2 sinh (µL) + c2µ cosh (µL)

= c2µ(−µ sinh (µL) + cosh (µL))

For non-trivial solution, we want−µ sinh (µL)+cosh (µL) = 0. This means−µ tanh (µL)+
1 = 0. Or tanh (µL) = 1

µ
, therefore λ < 0 is eigenvalues and these are given by λn = −µ2

n,
where µn is the solution to

tanh (µL) = 1
µ

tanh
(√

−λL
)
= 1√

−λ

This has one root, found numerically which is λ−1 = −1. Hence
√
−λ = 1. The

corresponding eigenfunction is

Φ−1(x) = c−1(−µ cosh (µx) + sinh (µx))
= c−1(− cosh (x) + sinh (x))
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Let λ = 0, The solution is
y(x) = c1 + c2x

First B.C. y(0) + y′(0) = 0 gives
0 = c1 + c2

The solution becomes

y(x) = c1(1− x)
y′ = −c1

Second B.C. y′(L) gives
0 = −c1

This gives trivial solution. Therefore λ = 0 is not eigenvalue.

Let λ > 0, The solution is

y(x) = c1 cos
(√

λx
)
+ c2 sin

(√
λx
)

y′(x) = −c1
√
λ sin

(√
λx
)
+ c2

√
λ cos

(√
λx
)

First B.C. y(0) + y′(0) = 0 gives

0 = c1 + c2
√
λ

The solution becomes

y(x) = −c2
√
λ cos

(√
λx
)
+ c2 sin

(√
λx
)

= c2
(
sin
(√

λx
)
−

√
λ cos

(√
λx
))

Second B.C. y′(L) = 0 gives

0 = c2
(√

λ cos
(√

λL
)
+ λ sin

(√
λL
))

For non-trivial solution, we want λ sin
(√

λL
)
+
√
λ cos

(√
λL
)
= 0 or λ tan

(√
λL
)
=

−
√
λ Therefore the eigenvalues are the solution to

tan
(√

λL
)
= −

√
λ

λ
= −1√

λ

And the corresponding eigenfunction is

Φn(x) = cn
(
sin
(√

λx
)
−

√
λ cos

(√
λx
))
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2.9 case 9: boundary conditions y(0) + y′(0) = 0, y(L) + y′(L) = 0
Let the solution be y = Aerx. This leads to the characteristic equation

r2 + λ = 0
r = ±

√
−λ

Let λ < 0

In this case −λ is positive and hence
√
−λ is also positive. Let

√
−λ = µ where µ > 0.

Hence the roots are ±µ. This gives the solution

y = c1 cosh (µx) + c2 sinh (µx)

Hence
y′ = µc1 sinh (µx) + µc2 cosh (µx)

Left B.C. gives
(1)0 = c1 + µc2

Right B.C. gives

0 = c1 cosh (µL) + c2 sinh (µL) + µc1 sinh (µL) + µc2 cosh (µL)
= cosh (µL) (c1 + µc2) + sinh (µL) (c2 + µc1)

Using (1) in the above, it simplifies to

0 = sinh (µL) (c2 + µc1)

But from (1) again, we see that c1 = −µc2 and the above becomes

0 = sinh (µL) (c2 − µ(µc2))
= sinh (µL)

(
c2 − µ2c2

)
= c2 sinh (µL)

(
1− µ2)

But sinh (µ2L) 6= 0 since µ2L 6= 0 and so either c2 = 0 or (1− µ2) = 0. c2 = 0
results in trivial solution, therefore (1− µ2) = 0 or µ2 = 1 but µ2 = −λ, hence
λ = −1 is the eigenvalue. Corresponding eigenfunction is

y = c1 cosh (x) + c2 sinh (x)

Using (1) the above simplifies to

y = −µc2 cosh (x) + c2 sinh (x)
= c2(−µ cosh (x) + sinh (x))
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But µ =
√
−λ = 1, hence the eigenfunction is

y(x) = c2(− cosh (x) + sinh (x))

Let λ = 0 Solution now is
y = c1x+ c2

Therefore
y′ = c1

Left B.C. 0 = y(0) + y′(0) gives
(2)0 = c2 + c1

Right B.C. 0 = y(L) + y′(L) gives

0 = (c1L+ c2) + c1

0 = c1(1 + L) + c2

But from (2) c1 = −c2 and the above becomes

0 = −c2(1 + L) + c2

0 = −c2L

Which means c2 = 0 and therefore the trivial solution. Therefore λ = 0 is not an eigenvalue.

Assuming λ > 0 Solution is

(A)y = c1 cos
(√

λx
)
+ c2 sin

(√
λx
)

Hence
y′ = −

√
λc1 sin

(√
λx
)
+
√
λc2 cos

(√
λx
)

Left B.C. gives
(3)0 = c1 +

√
λc2

Right B.C. gives

0 = c1 cos
(√

λL
)
+ c2 sin

(√
λL
)
−

√
λc1 sin

(√
λL
)
+
√
λc2 cos

(√
λL
)

= cos
(√

λL
)(

c1 +
√
λc2
)
+ sin

(√
λL
)(

c2 −
√
λc1
)
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Using (3) in the above, it simplifies to

0 = sin
(√

λL
)(

c2 −
√
λc1
)

But from (3), we see that c1 = −
√
λc2. Therefore the above becomes

0 = sin
(√

λL
)(

c2 −
√
λ
(
−
√
λc2
))

= sin
(√

λL
)
(c2 + λc2)

= c2 sin
(√

λL
)
(1 + λ)

Only choice for non trivial solution is either (1 + λ) = 0 or sin
(√

λL
)

= 0. But
(1 + λ) = 0 implies λ = −1 but we said that λ > 0. Hence other choice is

sin
(√

λL
)
= 0

√
λL = nπ n = 1, 2, 3, · · ·

λn =
(nπ
L

)2
n = 1, 2, 3, · · ·

The above are the eigenvalues. The corresponding eigenfunction is from (A)

Φn(x) = c1n cos
(√

λnx
)
+ c2n sin

(√
λnx

)
But c1n = −

√
λnc2n and the above becomes

Φn(x) = −
√

λnc2n cos
(√

λnx
)
+ c2 sin

(√
λnx

)
= Cn

(
−
√

λn cos
(√

λnx
)
+ sin

(√
λnx

))
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