
Solving the advection PDE in explicit FTCS, Lax,
Implicit FTCS and Crank-Nicolson methods for

constant and varying speed.

Accuracy, stability and software animation

Report submitted for fulfillment of the Requirements for
MAE 294

Masters degree project
Supervisor: Dr Donald Dabdub, UCI.

Written by Nasser M. Abbasi. Masters degree candidate student.
Mechanical engineering department

University of California, Irvine
Fall 2006

1

Contents
1 Introduction 4

1.1 Backward difference (Upwind) . 6
1.2 Forward difference (downwind) . 6
1.3 Center difference . 6

2 Numerical schemes 7
2.1 Explicit Methods . 7

2.1.1 FTCS . 7
2.1.2 Downwind . 7
2.1.3 Upwind . 7
2.1.4 LAX . 8
2.1.5 Lax-Wendroff . 8
2.1.6 Leap-frog . 8

2.2 Implicit Methods . 8
2.2.1 Implicit FTCS . 8
2.2.2 Wendrof . 10
2.2.3 Crank-Nicolson . 10

3 Stability analysis 11
3.1 Stability analysis for FTCS . 12
3.2 Stability analysis of the downwind method 13
3.3 Stability analysis of the upwind method . 14
3.4 Stability analysis of Lax . 15
3.5 Stability of Lax-Wendroff . 16
3.6 Stability analysis of the Implicit FTCS . 16

4 Solution Results and Output 17
4.1 Case 1 . 17
4.2 Case 2 . 18
4.3 Case 3 . 18
4.4 Case 4 . 19
4.5 case 5 . 19
4.6 case 6 . 22
4.7 case 7 . 22
4.8 case 8 . 23
4.9 CPU comparison tables . 24
4.10 Accuracy comparison tables . 27

5 Conclusion 28

6 Appendix 30
6.1 Plots . 30

6.1.1 case 1 . 30
6.1.2 case 2 . 32

2

3

6.1.3 case 3 . 34
6.1.4 case 4 . 36
6.1.5 case 5 . 38
6.1.6 case 6 . 40
6.1.7 case 7 . 42
6.1.8 case 8 . 44

6.2 Source code . 46

7 References 58

4

1 Introduction
The goal of this project is to analyze and compare different numerical methods for solving
the first order advection PDE.
Following the analytical analysis for stability of the numerical scheme, animation were done
to visually illustrate and confirm these results. This was carried for different parameters.
The animation was programmed in Mathematica and saved to animated gif files which was
then loaded into the HTML version of this report.
Fortran 95 was used for the computation part, while Mathematica was used for the animation
and graphics part.
The above link contains all the supporting material for the project, including the Fortran
program (in source and windows executable format) used to carry the main computation,
and the Mathematica program used to do the animation and the Unix bash file used to
process the computation for different parameters.
The specific PDE example used for the analysis and animation was the one provided by
Professor Donald Dabdub for the final exam for his MAE 185 course (Numerical methods
for mechanical engineers) in spring 2006. This PDE is described below:
Solve numerically

∂c

∂t
+ u

∂c

∂x
= 0

Where c(x, t) is the concentration of a given material as a function of time and space.
The above is solved for the following 2 cases

1. u (the advection speed, or the speed at which the mass is being transported) is a
constant value given as (2 ft/min.

2. u is a function of time defined as u(t) = t
20 ft/min

The problem parameters are:

t ≥ 0
0 ≤ x ≤ L

Where L = 100 feet.. Initial conditions are

c(x, 0) = F (x) =
{

1 + cos
(
π
(
x−30
5

))
25 ≤ x ≤ 25

0 otherwise

The boundary conditions are

c(0, t) = 0
c(L, t) = 0

5

This PDE is an example of an IBVP (Initial and Boundary Value Problem).
Different numerical methods are used to solve the above PDE. The methods are compared
for stability using Von Neumann stability analysis.
The numerical methods are also compared for accuracy. This was done by comparing the
numerical solution to the known analytical solution at each time step. The comparison was
done by computing the root mean square error (RMSE) between the numerical and the
analytical solution at each time step.
The method with the least RMSE at the end of the simulation is considered the most
accurate.
The above PDE has a known analytical solution which is

C(x, t) = F (x− ut)

The above analytical solution indicates that the initial concentration will move from left to
right with the advection speed u.
The formulation of each numerical method is shown below. h is used to represent ∆x, the
space between 2 space grid point, or the space step size, and τ is used to represent ∆t, the
time step.
The space line has N grid points. The spacing h was fixed at 0.01 ft for all the methods
and for all the test cases, while τ was changed. This made comparing the different methods
simpler. The following diagram illustrates the discretization used.

Should we consider the lower left and the lower right grid points above as part of the initial
conditions, or part of the boundary conditions?
Stability of each method is derived. Stability is important, since by the Lax-Richtmyer
equivalence theorem1, stability implies convergence of the solution. Convergence of the

1Richtmyer and Morton 1967. p45): "Given a properly posed linear initial value problem and a finite
difference approximation to it that satisfies the consistency condition, stability is the necessary and sufficient
condition for convergence."

6

numerical solutions implies that as the step size becomes smaller, the numerical solution
converges to the analytical solution.
Explicit and implicit numerical methods are used. When solving for the future value of
the solution at a single node in terms of only past values, the method is called an explicit
method. In other words, when the only unknown is the future value of the solution at a
single node, and everything else on the right hand side of the finite difference equation is a
solution derived at earlier time step, the method is explicit.
An implicit method is one in which the finite difference equation contains the solution at a
at future time at more than one node. In other words, future solution are being solved for
at more than one node in terms of the solution at earlier time. Implicit methods therefor
are usually solved by matrix methods by solving Ax = b where b represents present present
known solution values, and x are the unknown future solution values, and A is the coefficient
matrix which will usually be block diagonal (or tri diagonal) in shape.
In the derivations below, the notation of Cn

i is used to indicate the solution at time step
n and at space node i. Hence C(xi, tn) is written as Cn

i . This notation seems to be more
clear than the Ci,n notation.
Different finite difference schemes for solving a PDE are obtained by using different methods
of approximating the derivative terms in the PDE.
This will be illustrated using the space derivative ∂c

∂x
. This derivative can be approximated

in one of the following 3 ways (all at time step n)

1.1 Backward difference (Upwind)
∂c

∂x
≈

Cn
i − Cn

i−1
h

1.2 Forward difference (downwind)
∂c

∂x
≈

Cn
i+1 − Cn

i

h

1.3 Center difference
∂c

∂x
≈

Cn
i+1 − Cn

i−1
2h

The following are the derivation of a number of methods for solving the advection PDE
obtained by using the above definitions for the derivative when applied to both space and
time.

7

2 Numerical schemes

2.1 Explicit Methods
2.1.1 FTCS

With FTCS, the forward time derivative, and the centered space derivative are used. Hence
the advection PDE can be written as

Cn+1
i − Cn

i

τ
= −u

(
Cn

i+1 − Cn
i−1

2h

)
(0)

Solving for Cn+1
i results in

Cn+1
i = Cn

i − uτ
2h

(
Cn

i+1 − Cn
i−1

)
(1)

This method will be shown to be unconditionally unstable.

2.1.2 Downwind

Here, the forward time derivative for∂C
∂t

is used and also the forward space derivative for∂C
∂x
.

This results in

Cn+1
i − Cn

i

τ
= −u

(
Cn

i+1 − Cn
i

h

)

Cn+1
i = Cn

i − uτ
h

(
Cn

i+1 − Cn
i

)
This method will be shown to be unconditionally unstable as well.

2.1.3 Upwind

Here, the forward time derivative for ∂C
∂t

is used, and the backward derivative for ∂C
∂x

is used.
This results in

Cn+1
i − Cn

i

τ
= −u

(
Cn

i − Cn
i−1

h

)

Cn+1
i = Cn

i − uτ
h

(
Cn

i − Cn
i−1

)
This will be shown to be stable if uτ

h
≤ 1

8

2.1.4 LAX

Looking at the FTCS eq (1) above, and shown below again

Cn+1
i = Cn

i − uτ

2h
(
Cn

i+1 − Cn
i−1

)
The term Cn

i above is replaced by its average valueC
n
i+1+Cn

i−1
2 to obtain the LAX method

Cn+1
i = 1

2

(
Cn

i+1 + Cn
i−1

)
− uτ

2h

(
Cn

i+1 − Cn
i−1

)
(4)

This method will be shown to be stable if uτ
h
≤ 1

2.1.5 Lax-Wendroff

By using the second-order finite difference scheme for the time derivative, the method of
Lax-Wendroff method is obtained

Cn+1
i = Cn

i − uτ

2h
(
Cn

i+1 − Cn
i−1

)
+ u2τ 2

2h2

(
Cn

i+1 + Cn
i−1 − 2Cn

i

)
2.1.6 Leap-frog

In this method, the centered derivative is used for both time and space. This results in

Cn+1
i −Cn−1

i

2τ = −u
(

Cn
i+1−Cn

i−1
2h

)
This method requires a special starting procedure due to the term Cn−1

i . Another scheme
such as Lax can be used to kick start this method.

2.2 Implicit Methods
2.2.1 Implicit FTCS

Given the explicit FTCS derived above

Cn+1
i − Cn

i

τ
= −u

(
Cn

i+1 − Cn
i−1

2h

)
The above is modified it by evaluating the space center derivative at time step n+1 instead
of at time step n, this results in

9

Cn+1
i − Cn

i

τ
= −u

(
Cn+1

i+1 − Cn+1
i−1

2h

)
(5A)

Hence

Cn+1
i + uτ

2hC
n+1
i+1 − uτ

2hC
n+1
i−1 = Cn

i (5B)

Writing it in matrix form, first letting α = uτ
2h results in



1 0 0 0 · · · 0 0
−α 1 α 0 · · · 0 0
0 −α 1 α · · · 0 0
0 0 −α 1 α · · · 0
...
0 0 0 0 0 0 1





Cn+1
0

Cn+1
1

Cn+1
2

Cn+1
3
...

Cn+1
N−1


=



Cn
0

Cn
1

Cn
2

Cn
3
...

Cn
N−1


Where N is the number of space grid points.
The above is written as

Ax = b

Solving for x, which represents the solution at time step n+ 1 or at time t = (n+ 1) τ . b
represents the current solution at time step n, and A is the matrix of the coefficients shown
above.
Due to the form of the A matrix, (Called tri diagonal, or Block diagonal), an algorithm that
takes advantages of this form is used. This is called the Thomas algorithm. This greatly
speeds up the solution. If we had used a general algorithm to solve this system such as the
Gauss elimination method, it would have been much slower, making the implicit method
not practical to use. (Some tests on the same data showed the Thomas algorithm to be 50
times faster than Gaussian elimination).

10

2.2.2 Wendrof

This method uses center difference for the derivative around the space step
(
i+ 1

2

)
h and

the time step
(
n+ 1

2

)
τ

This leads to the following scheme

(
1− uτ

h

)
Cn+1

i +
(
1 + uτ

h

)
Cn+1

i+1 =
(
1 + uτ

h

)
Cn

i +
(
1− uτ

h

)
Cn

i+1

This can also be solved using similar matrix method to that used for the implicit FTCS.
This method is not used in this report.

2.2.3 Crank-Nicolson

By taking the average of the explicit FTCS and the implicit FTCS formulations (shown
again below), the C-N scheme is derived

Cn+1
i − Cn

i

τ
= −u

(
Cn

i+1 − Cn
i−1

2h

)
Cn+1

i − Cn
i

τ
= −u

(
Cn+1

i+1 − Cn+1
i−1

2h

)
Taking the average of the above results in

Cn+1
i − Cn

i

τ
= −u

2

(
Cn

i+1 − Cn
i−1

2h

)
− u

2

(
Cn+1

i+1 − Cn+1
i−1

2h

)

Cn+1
i + uτ

4hC
n+1
i+1 − uτ

4hC
n+1
i−1 = Cn

i − uτ
4hC

n
i+1 + uτ

4hC
n
i−1

Now the system Ax = b is setup to solve for future values as follows. Let α = uτ
4h , the system

can be written as



1 0 0 0 0 0
−α 1 α 0 0 0
0 −α 1 α 0 0
0 0 −α 1 α 0
0 0 0 −α 1 0
0 0 0 0 0 1





Cn+1
0

Cn+1
1

Cn+1
2

Cn+1
3
...

Cn+1
N−1


=



Cn
0

Cn
1 − αCn

2 + αCn
0

Cn
2 − αCn

3 + αCn
1

Cn
3 − αCn

4 + αCn
2

...
Cn

N−1


Thomas algorithm is used to solve the above system for Cn+1

i .

11

3 Stability analysis
A numerical solution is stable if the "energy content" remain below some limiting value no
matter how long the solution is integrated. In essence, this means that the solution does
not ’blow up’ after some time. This can be called BIBO stability (Bounded In Bounded
Out).
Hence one way to analyze the stability of the numerical solution is to determine an expression
that relates the amplitude of the solution between 2 time steps, and to determine if this
ratio remain less than or equal to a unity as more and more time steps are taken.
This type of analysis is called Von Neumann stability analysis for numerical methods.
The analysis is based of finding an expression for the magnification factor of the wave
amplitude at each step. The solution will be stable if this magnification factor is less than
one.
Let the magnification factor be ξ. The numerical scheme is stable iff

|ζ| ≤ 1

The Courant–Friedrichs–Lewy (CFL) criteria for stability says that

|ζ| ≤ 1 ⇔
∣∣∣uτ
h

∣∣∣ ≤ 1

Where u, h, and τ are as defined above: u is the wave speed, h = ∆x and τ = ∆t.

The number uτ
h

is also called the courant number .

Some numerical methods will be shown to be unconditionally unstable (such as explicit
FTCS and the explicit upwind). This means that even if courant number was ≤ 1, the
numerical solutions will eventually become unstable.
Some explicit methods such as LAX, are conditionally stable if the courant number was
≤ 1.
Implicit methods are unconditionally stable, hence courant number is not used for these
methods. However, this does not mean one can take as large step as one wants with the
implicit methods, since accuracy will be affected even if the solution remain stable.
Hence, the best numerical scheme is one in which the largest step size can be taken, with
the least amount of inaccuracy in the numerical solution while remaining stable.
For numerical scheme that are conditionally stable, it can be seen from the CFL condition
that for a fixed speed u and fixed h, the maximum time step that can be taken is given by

τmax ≤
h

u

It can be immediately seen from above, that for the case when the advection speed is
varying and is a function of time such as the case when u(t) = t

20 implying that the speed

12

is increasing with time, then when using a fixed time step τ it will eventually become larger
than h

u
and the numerical scheme will be unstable. This is because as u(t) is becoming

larger and larger, while h is fixed, the term h
u
will become smaller and smaller.

Hence to keep the courant number uτ
h
≤ 1 , the time step taken must remain less than h

u
,

hence using a fixed time step with increasing u will eventually lead to instability.
This will affect the explicit methods that are conditionally stable such as the LAX method,
since the Lax method is explicit and depends on satisfying the CFL all the time for its
stability. Implicit methods are stable for any time step.
In the following we derive the details of the stability analysis and use Von Neumann analysis
to derive an expression for the amplification factor ζ for different numerical schemes.
So to summarize:

1. Explicit FTCS is unconditionally unstable.

2. Explicit LAX is stable if uτ
h
≤ 1, or in other words, τmax ≤ h

u

3. Implicit FTCS and C-R are stable for all τ

3.1 Stability analysis for FTCS
Using Von Neumann method, the following trial solution to the PDE is assumed

c(x, t) = A(t) ejkx

where j =
√
−1 and k is the wave number and A is the amplitude of the wave, as a function

of time.
Hence the solution at time step n and at x = xi = ih is written as

Anejkih (2)

Substitute this trial solution (2) into the (1) results in

An+1ejkih = Anejkih − uτ

2h
(
Anejk(i+1)h − Anejk(i−1)h) (3)

Let ξ be the ratio of the amplitude of the wave at time step n+ 1 relative to that at time
step n. hence

ξ = An+1

An

Divide (3) by An results in

ξejkih = ejkih − uτ

2h
(
ejk(i+1)h − ejk(i−1)h)

13

Divide the above by ejkih

ξ = 1− uτ

2h
(
ejkh − e−jkh

)
= 1− uτ

h
j sin (kh)

Hence
|ξ| =

√
1 +

(uτ
h

sin (kh)
)2

This implies that |ξ| ≥ 1 regardless of the time step τ selected or the space step h, hence

FTCS is unconditionally unstable.

For a fixed speed u, the instability can be delayed by making τ
h
smaller, but it could not be

prevented. Eventually this numerical solution will blow up. This will be illustrated below
in an animation. See case 3 and 4 as examples.
The instability can be delayed by making τ smaller for a fixed h, or by making h larger for
a fixed τ .

3.2 Stability analysis of the downwind method

Cn+1
i = Cn

i − uτ

h

(
Cn

i+1 − Cn
i

)
Substitute the trial solution Anejkih into the above

An+1ejkih = Anejkih − uτ

h

(
Anejk(i+1)h − Anejkih

)
ξ = 1− uτ

h

(
ejkh − 1

)
= 1 + uτ

h
− uτ

h
ejkh

= 1 + uτ

h
− uτ

h
(cos (kh) + j sin (kh))

= 1 + uτ

h
(1− cos kh)− j

uτ

h
sin kh

Let uτ
h
= λ

Hence

ξ = 1 + λ(1− cos kh)− jλ sin kh

14

|ξ|2 = (1 + λ(1− cos kh))2 + (λ sin kh)2

= 1 + 2λ(1− cos kh) + λ2(1− cos kh)2 + λ2 sin2 kh

= 1 + 2λ(1− cos kh) + λ2(1− 2 cos kh+ cos2 kh
)
+ λ2 sin2 kh

= 1 + 2λ− 2λ cos kh+ λ2 − 2λ2 cos kh+ λ2 cos2 kh+ λ2 sin2 kh

= 1 + 2λ− 2λ cos kh+ 2λ2 − 2λ2 cos kh
= 1 + 2λ(1 + λ) (1− cos kh)

Hence for stability it is required that

|1 + 2λ(1 + λ) (1− cos kh)| ≤ 1

or

2λ(1 + λ) (1− cos kh) ≤ 0

since λ = uτ
h
, a positive quantity, then the above condition can not be satisfied. Hence the

downwind method is unconditionally unstable.

3.3 Stability analysis of the upwind method

Cn+1
i = Cn

i − uτ

h

(
Cn

i − Cn
i−1

)
Substitute the trial solution Anejkih into the above

An+1ejkih = Anejkih − uτ

h

(
Anejkih − Anejk(i−1)h)

ξ = 1− uτ

h

(
1− e−jkh

)
= 1− uτ

h
+ uτ

h
e−jkh

= 1− uτ

h
+ uτ

h
(cos (kh)− j sin (kh))

= 1− uτ

h
(1− cos kh)− j

uτ

h
sin kh

Let uτ
h
= λ

Hence

ξ = 1− λ(1− cos kh)− jλ sin kh

Hence

15

|ξ|2 = (1− λ(1− cos kh))2 + (λ sin kh)2

= 1− 2λ(1− cos kh) + λ2(1− cos kh)2 + λ2 sin2 kh

= 1− 2λ+ 2λ cos kh+ λ2(1 + cos2 kh− 2 cos kh
)
+ λ2 sin2 kh

= 1− 2λ+ 2λ cos kh+ λ2 + λ2 cos2 kh− 2λ2 cos kh+ λ2 sin2 kh

= 1− 2λ+ 2λ cos kh+ 2λ2 − 2λ2 cos kh
= 1− 2λ(1− λ) (1− cos kh)

Hence for stability it is required that

|1− 2λ(1− λ) (1− cos kh)| ≤ 1

or

−2λ(1− λ) (1− cos kh) ≤ 0

Which will be true only if (1− λ) ≥ 0 or λ ≤ 1 hence this implies

uτ

h
≤ 1

Hence the upwind method is stable if the CFL condition is satisfied. This will be seen as
the same stability condition for the Lax method below.

3.4 Stability analysis of Lax
Replace the trial function from (2) in Lax formulation in (4) and obtain

An+1ejkih = 1
2
(
Anejk(i+1)h + Anejk(i−1)h)− uτ

2h
(
Anejk(i+1)h − Anejk(i−1)h)

Divide by Anejkih , the magnification factor ζ is obtained

ζ = 1
2
(
ejkh + e−jkh

)
− uτ

2h
(
ejkh − e−jkh

)
= cos (kh)− j

uτ

h
sin (kh)

Hence

|ζ| =
√
cos2 (kh) +

(uτ
h

)2
sin2 (kh)

16

Since cos2 (kh) ≤ 1 and sin2 (kh) ≤ 1, then it is seen that |ζ| ≤ 1 if uτ
h
≤ 1

Hence the following is the condition for stability

τ ≤ h

u

As mentioned earlier, this is called the CFL condition.
The Lax method is stable for τ ≤ h

u
however, a modified version of this method is more

accurate, which is the Lax-Wendroff method.

3.5 Stability of Lax-Wendroff
This is the same as the Lax method. The method is stable if τ ≤ h

u

3.6 Stability analysis of the Implicit FTCS
Replace the trial function from (2) in (5B) results in

An+1ejkih + uτ

2hA
n+1ejk(i+1)h − uτ

2hA
n+1ejk(i−1)h = Anejkih

Divide by Anejkih

ξ + uτ

2hξe
jkh − uτ

2hξe
−jkh = 1

ξ
(
1 + uτ

2he
jkh − uτ

2he
−jkh

)
= 1

ξ
(
1 + j

uτ

h
sin (kh)

)
= 1

ξ = 1
1 + j uτ

h
sin (kh) =

1− j uτ
h
sin (kh)

1 + uτ
h
sin (kh)

Hence

|ξ| =

√
1 +

(
uτ
h

)2 sin2 (kh)
1 + uτ

h
sin (kh) < 1

Hence this shows that the

Implicit FTCS method is unconditionally stable.

This property is common to all implicit methods.
Even though the implicit FTCS is stable, it is not very accurate. See case 8 below for an
example.

17

4 Solution Results and Output
For the Fortran implementation, the following methods are implemented. The explicit FTCS,
Explicit Lax, Implicit FTCS, and Implicit Crank-Nicolson.
For each method, the following was generated

1. CPU time used for the run.

2. snap shot of the solution at t = 0, t = 15, and t = 30 minutes.

3. RMSE between the numerical solution and the analytical solution.

4. Animation of the numerical solution. The animation was done by taking snapshots
of the solution at regular intervals in Fortran. These were saved to disk. Then Mathe-
matica was used to generate the animation and the plots.

To compare the stability and accuracy of the methods, the time step was changed (increased)
and a new run was made. 8 different values of time steps are used. So there are 8 tests cases.
These 8 test cases were run for both fixed speed (u = 2 ft/min) and for u = t

20 ft/min.
This table below summarizes these cases. The appendix contains all the plots. The anima-
tions are added as HTML links.

4.1 Case 1
τ = 0.0001 sec, h = 0.1 ft

Speed Method CPU time (sec) RMSE Animation (2D) plots
U=2 Explicit FTCS 20 0.0546

Explicit LAX 31 0.0543
Implicit FTCS 45 0.0548
C-R 49 0.0544

U=t/20 Explicit FTCS 21 0.003
Explicit LAX 31 0.0031
Implicit FTCS 67 0.0031
C-R 69 0.0032

Note the following: The explicit FTCS remained stable throughout the run due to the
small time step. All other methods were stable as well during the run. For the CPU for the
varying u case, notice that for the implicit methods this value is larger than the CPU for
the same methods but when u is fixed. This is due to the fact that the matrix A is no longer
constant, and must be recomputed at each time step before calling Thomas algorithm to
solve Ax = b system.
Also notice that the CPU time for the implicit methods is larger than the explicit methods.
This is due to the extra computational cost in solving Ax = b. Even when using Thomas
algorithm, this is still more expensive than the explicit methods when number of time steps
is large.

18

4.2 Case 2
τ = 0.001 sec, h = 0.1 ft

Speed Method CPU time (sec) RMSE Animation (2D) plots
U=2 Explicit FTCS 2.42 0.01264

Explicit LAX 3.48 0.0057
Implicit FTCS 4.7 0.00742
C-R 4.9 0.00575

U=t/20 Explicit FTCS 2.5 0.00352
Explicit LAX 3.5 0.00329
Implicit FTCS 7 0.00337
C-R 7.5 0.0033

The explicit FTCS is stable for most of the run, near the end it is starting to be become
unstable.
Notice that around 26 minutes that "bubbles" are starting to show up in the numerical
solution downstream. This is a characteristic of how this method becomes unstable.
This will be more clear in the next test cases when the time step is made larger. For the
varying speed case, the explicit method using the same time step remained stable during
the whole 30 minutes. This is because the average speed was less than 2 ft/min, hence the
mass did not have to travel as long a distance as with fixed speed of u = 2, and so the
instability did not show up. Mathematically this can be explained by looking at the term
uτ
h
, hence for smaller u, the courant number is smaller. Notice also the RMSE is smaller for

variable speed compared to fixed speed. Again this is related to the smaller average speed
making the courant number smaller.

4.3 Case 3
In this case, we slightly make the time step longer than before. We start to see the instability
of FTCS.
τ = 0.0013 sec, h = 0.1 ft, uτ

h
= 0.026 ≤ 1 for fixed u

Speed Method CPU time (sec) RMSE Animation (2D) plots
U=2 Explicit FTCS 1.9 0.0494

Explicit LAX 2.78 0.01125
Implicit FTCS 3.7 0.01245
C-R 3.9 0.01128

U=t/20 Explicit FTCS 2.0 0.00365
Explicit LAX 2.9 0.00331
Implicit FTCS 5.56 0.00346
C-R 6 0.00331

19

For explicit FTCS, The solution now starting to show instability at 25 minutes. Lax remained
stable since CFL is satisfied. Explicit FTCS is becoming less accurate as well. Explicit Lax
is most accurate at this time step.

4.4 Case 4
In this case, we slightly make the time step even longer than before. Now FTCS becomes
more unstable.
τ = 0.0015 sec, h = 0.1 ft, uτ

h
= 0.03 ≤ 1.

Speed Method CPU time (sec) RMSE Animation (2D) plots
U=2 Explicit FTCS 1.73 0.15249

Explicit LAX 2.56 0.000563
Implicit FTCS 3.34 0.009005
C-R 3.45 0.00565

U=t/20 Explicit FTCS 1.84 0.00380
Explicit LAX 2.53 0.00336
Implicit FTCS 4,73 0.00358
C-R 5 0.003373

FTCS Instability starts at around 20 minutes. LAX remained stable since CFL is satisfied.
Lax remained the most accurate at this time step. It accuracy actually improved as the
time step became larger.

4.5 case 5
Again the time step is made longer than before. Now the explicit FTCS is completely
unstable.
τ = 0.045 sec, h = 0.1 ft
For the case of fixed U , we have uτ

h
= 2×0.045

0.1 = 0.9 ≤ 1, while for varying U , the maximum
value will be at the end of the run, which is 30/20 = 1.5 ft/min., hence the CFL condition
is changing, with a value of 1.5×0.045

0.1 = 0.675 at the end of the run which is still ≤ 1

20

Speed Method CPU time (sec) RMSE Animation (2D) plots
U=2 Explicit FTCS 0.73 blows up

Explicit LAX 0.281 0.000162
Implicit FTCS 0.437 0.1306
C-R 0.4 0.01028

U=t/20 Explicit FTCS 0.28 blow up
Explicit LAX 0.3 0.01117
Implicit FTCS 0.40 0.0386
C-R 0.4 0.01197

For the varying speed case, the explicit FTCS remained stable for the duration of the run
as compared to the case with the fixed speed. This is because the average wave speed is
less than with the fixed wave speed case.
The magnification factor depends on the speed of the wave.

|ξ| =
√
1 +

(uτ
h

sin (kh)
)2

With the varying speed case, the coefficient uτ
h

was smaller during the whole run, since the
maximum speed u attained will be 1.5 ft/min. as compared to 2 ft/min. in the fixed u case.

We see than the smaller the speed u the smaller the magnification (with everything else being fixed).

If we have run the simulation a little longer for the varying speed case, we will see the
instability with explicit FTCS. This below is a diagram showing 2 runs using the explicit
FTCS both with u = t

20 ft/min, one was run for 30 minutes, and the second for 53 minutes.
The run to 30 minutes showed no instability while the run for 53 minutes showed the
instability. This show the explicit FTCS will eventually become unstable.

21

This is an animation of the above

22

4.6 case 6
In this case, the time step is increased so that uτ

h
is just above the CFL condition.

Notice now that the Explicit LAX method become unstable as expected. The other implicit
methods remain stable. the explicit FTCS method now is completely unstable. The implicit
FTCS method is starting to become less accurate.
τ = 0.05025 sec, h = 0.1 ft, uτ

h
= 2×0.05025

0.1 = 1.005 > 1

Speed Method CPU time (sec) RMSE Animation (2D) plots
U=2 Explicit FTCS 0.7 blows up N/A blows up

Explicit LAX 0.25 0.1006
Implicit FTCS 0.5 0.13945
C-R 0.468 0.01104

U=t/20 Explicit FTCS 0.28 blows up N/A blows up
Explicit LAX 0.31 0.04385
Implicit FTCS 0.45 0.0428
C-R 0.56 0.01317

Notice that explicit LAX takes much less CPU than any other method.

4.7 case 7
τ = 0.06 sec, h = 0.1 ft, uτ

h
= 2×0.06

0.1 = 1.2 > 1

Speed Method CPU time (sec) RMSE Animation (2D) plots
U=2 Explicit FTCS 0.65 blows up N/A blows up

Explicit LAX 0.9 blows up
Implicit FTCS 0.42 0.1531
C-R 0.41 0.01244

U=t/20 Explicit FTCS 0.265 blows up N/A blows up
Explicit LAX 0.29 0.01389
Implicit FTCS 0.36 0.0493
C-R 0.36 0.01525

Notice that the CPU for the implicit method when speed is fixed is now higher than the
CPU for the explicit methods. This can be explained as follows: since the time step now is
larger than before, the number of times to solve Ax = b has been reduced. This made the
implicit methods faster.
This implies that

Using a relatively large time step, implicit methods become faster than the explicit methods.

23

4.8 case 8
τ = 0.07 sec, h = 0.1 ft, uτ

h
= 2×0.07

0.1 = 1.4 > 1

Speed Method CPU time (sec) RMSE Animation (2D) plots
U=2 Explicit FTCS 0.5 blows up N/A blows up

Explicit LAX 0.89 blows up
Implicit FTCS 0.453 0.1653
C-R 0.36 0.01403

U=t/20 Explicit FTCS 0.234 blows up N/A blows up
Explicit LAX 0.2187 0.01564
Implicit FTCS 0.344 0.0557
C-R 0.312 0.0174

24

4.9 CPU comparison tables
As expected, CPU time usage will be less as the time step is increased. There is an anomaly
cased noticed where the CPU time increased for the Lax method when the time step is
increased from 0.05025 to 0.06 , This needs further investigation.
This table below summarizes the CPU time in seconds used by each method for the case of
constant speed as time step is increased.

τ sec Explicit FTCS Explicit LAX Implicit FTCS C −R

0.0001 20 31 45 49
0.001 2.42 3.48 4.7 4.9
0.0013 1.9 2.78 3.7 3.9
0.0015 1.7 2.56 3.34 3.45
0.045 0.73 0.281 0.43 0.4
0.05025 0.7 0.25 0.5 0.468
0.06 0.65 0.9 0.4 0.41
0.07 0.5 0.89 0.45 0.36

This is the plot of the above table

This table below summarizes the CPU time in seconds used by each method for the case of
varying speed as time step is increased.

τ sec Explicit FTCS Explicit LAX Implicit FTCS C −R

0.0001 21 31 67 69
0.001 2.5 3.5 7 7.5
0.0013 2 2.9 5.56 6
0.0015 1.8 2.53 4.73 5
0.045 0.28 0.54 0.45 0.45
0.05025 0.28 0.31 0.45 0.56
0.06 0.265 0.29 0.36 0.36
0.07 0.23 0.22 0.33 0.31

This is the plot of the above table

25

This plot below compares the CPU time for each method when the speed is constant vs.
when the speed was changing with time.

26

27

4.10 Accuracy comparison tables
This table below summarizes the RMS error from each numerical method as a function of
changing the time step size. This is for case of constant speed.

time step Explicit FTCS Explicit LAX Implicit FTCS C −R

0.0001 0.0546 0.0543 0.0548 0.0544
0.001 0.01264 0.0057 0.00742 0.00575
0.0013 0.0494 0.01125 0.01245 0.00128
0.0015 0.15249 0.00056 0.009 0.0056
0.045 blows up 0.000162 0.1306 0.01028
0.05025 blows up 0.1006 0.1394 0.011
0.06 blows up blows up 0.1531 0.01244
0.07 blows up blows up 0.1653 0.01403

Notice that the Lax method became more accurate when the time step was increased from
0.0001 to 0.04 seconds, then it starts to become less accurate as time step is increased. This
is counter intuitive to what one can expect. It will be interesting to investigate this further
to obtain a mathematical explanation for this strange phenomena.
The accuracy of the implicit FTCS, and C-R also increased slightly as the time step became
larger from 0.0001 to 0.0015, then the implicit FTCS became worst in terms of accuracy as
the time step increased.
C-R method accuracy did not deteriorate as much with increasing the time step. This shows
the C-R scheme to be more robust.
This table below summarizes the RMS error from each numerical method as a function of
changing the time step size. This is for case of changing speed.

time step Explicit FTCS Explicit LAX Implicit FTCS C −R

0.0001 0.003 0.003 0.003 0.0030
0.001 0.00352 0.00329 0.0033 0.0033
0.0013 0.00365 0.00331 0.00346 0.0033
0.0015 0.0038 0.00336 0.0035 0.00337
0.045 blows up 0.01117 0.0386 0.0119
0.05025 blows up 0.04385 0.0428 0.01317
0.06 blows up 0.01389 0.0493 0.01525
0.07 blows up 0.01564 0.0557 0.0174

The effect of having the speed defined as µ = t
20 is to delay instability for the explicit

methods as time step is increased. Notice also here the case where the Lax method became
more accurate as the time step is increased from 0.0001 to 0.0015.

28

5 Conclusion
4 different numerical finite difference schemes are examined for CPU time, stability and
accuracy in solving the advection PDE for constant speed and for a speed which is a function
of time.
For accuracy, an interesting result is observed. The Lax scheme is the most accurate for
Courant number close to unity. This means as the time step is increased, the Lax become
more accurate of the 4 methods. But beyond the CFL condition, Both explicit methods
(FTCS and Lax) became less accurate. Explicit FTCS became unstable sooner than Lax,
while the implicit methods remained stable.
The implicit FTCS was less accurate than the C-R method. This implies that one should
use the Lax method if one can be satisfied with a time step such that the courant number
is close to a unit.

For stability, Crank-Nicolson was the most stable of all methods. Stability by itself is not
sufficient condition to use to select a numerical scheme. It must also be accurate. The
C-R method has both these properties for the range of the time steps considered. But as
mentioned above, there is a range of time steps in which the Lax method is more accurate
than all the other methods.

For CPU usage, the explicit methods used less CPU time when the time step was small,
up to 0.0015 sec . This can be explained as follows: for small step size, the number of time
to solve Ax = b is large. Hence the implicit methods will be slower. As the time step is
increased to the range of 0.045 sec and over, the implicit methods actually became more
CPU efficient due to the fact that the number of times to solve Ax = b is less because the
number of steps is less.
In conclusion, the selection of a finite difference scheme depends on many factors. Stability
and accuracy being the most important. The time step size plays a critical rule. For Courant

29

number close to a unity, the Lax method is the most attractive. For larger time steps, the
C-R method should be considered.

30

6 Appendix

6.1 Plots
6.1.1 case 1

31

32

6.1.2 case 2

33

34

6.1.3 case 3

35

36

6.1.4 case 4

37

38

6.1.5 case 5

39

40

6.1.6 case 6

41

42

6.1.7 case 7

43

44

6.1.8 case 8

45

46

6.2 Source code� �
!***
!*
!* Solve the advection PDE using Explicit FTCS,
!* Explicit Lax, Implicit FTCS, and implicit Crank-Nicolson
!* methods for constant and varying speed.
!*
!* Solve dc/dt = -u dc/dx
!* u = t/20 ft/minute
!* and
!* u constant
!*
!* Compiler used: gnu 95 (g95) on Cygwin. Gcc 3.4.4
!* Date: June 20 2006
!*
!* by Nasser Abbasi
!***

PROGRAM advection
IMPLICIT NONE

REAL :: DT,DX,max_run_time,length,snapshot_delta, &
first_limit,second_limit

INTEGER :: N,SNAPSHOTS
character(10) :: cmd_arg ! to read time step from command line

INTEGER :: method ! 1=FTCS, 2=LAX, 3=Implicit FTCS, 4=C-R
INTEGER :: mode ! 1=Fixed wind speed, 2=speed function of time

REAL :: t_start, t_end, cpu_time_used,end_line(1002)
INTEGER :: ALL_DATA_FILE_ID
PARAMETER(ALL_DATA_FILE_ID=900)

! Initialize data. All methods will use the same
! parameters to make comparing them easier

! read delta t from command line.
CALL getarg(1,cmd_arg)
cmd_arg=TRIM(cmd_arg)
print *,'= ', cmd_arg
read(cmd_arg,*)dt !delta in time, in minutes

print *,'Dt=',DT

N = 1000 ! number of grid points in space
length = 100 ! length of space solution in feet

47

first_limit = 0.25*length
second_limit = 0.35*length

DX = length/N ! delta in space, in feets

max_run_time = 30.0 ! how long to run for in minutes
SNAPSHOTS = 200 ! number of snapshots per run. Used for animation

snapshot_delta = max_run_time / SNAPSHOTS ! time between each snap shot

print *,'DT=',DT,' minutes, DX=',DX,' feets'
print *,'taking snapshots every ', snapshot_delta ,' minutes'

DO mode=1,2
print*,'=======> processing mode ',mode
DO method=1,4 ! No enumeration data types in Fotran 90

CALL CPU_TIME(t_start) ! get current CPU time
CALL process(mode,method,N,DT,DX,max_run_time,snapshot_delta,&

first_limit,second_limit)
CALL CPU_TIME(t_end) ! get current CPU time

cpu_time_used = t_end - t_start

WRITE(*,FMT='(A,I2,A,F12.5)') 'CPU TIME used for method', method, ' =
', cpu_time_used

! Now record test case parameters in last line
end_line=0
end_line(1)=cpu_time_used
end_line(2)=DT
end_line(3)=DX
end_line(4)=mode
end_line(5)=method

WRITE(UNIT=ALL_DATA_FILE_ID,FMT=*) end_line
CLOSE(ALL_DATA_FILE_ID)

END DO
END DO

END PROGRAM advection
!************************************
!*
!*
!************************************
SUBROUTINE process(mode,method,N,DT,DX,max_run_time,snapshot_delta,&

48

first_limit,second_limit)
IMPLICIT NONE

INTEGER, INTENT(IN) :: mode,method,N
REAL, INTENT(IN) :: DT,DX,max_run_time,snapshot_delta,&

first_limit,second_limit

INTEGER :: I
LOGICAL :: snap_shot_at_15_taken
INTEGER :: ALL_DATA_FILE_ID
PARAMETER(ALL_DATA_FILE_ID=900)
REAL :: snap_current_time
REAL :: current_time
REAL :: C(N) ! current solution
REAL :: CNEW(N) ! future solution
REAL :: CEXACT(N) ! current exact solution
REAL :: current_first_limit
REAL :: A(N,N),aa(N),b(2:N),cc(N-1),CTEMP(N) ! for C-R and implicit FTCS
REAL :: K,speed
REAL :: error,RMS ! root mean square error between current and initial

sol.

current_time = 0.
snap_current_time = 0.

CALL initialize_solution(C,N,DX,first_limit,second_limit)
CEXACT = C
current_first_limit = first_limit

CALL pre_loop_initialization(mode,method,current_time,K, &
DT,DX,N,C,ALL_DATA_FILE_ID, &
A,aa,b,cc)

snap_shot_at_15_taken=.FALSE.

DO WHILE(current_time < max_run_time)

IF(snap_current_time >= snapshot_delta) THEN
snap_current_time = 0.
WRITE(UNIT=ALL_DATA_FILE_ID, FMT=*) current_time, error, C

END IF

SELECT CASE(method)

CASE(1:2)

IF(method==1) THEN ! ftcs

49

IF(mode==2)THEN
K = speed(mode,current_time)*DT/(2.*DX)

ENDIF

DO I = 2,N-1
CNEW(I) = C(I) - K * (C(I+1) - C(I-1))

END DO
ELSE !lax

IF(mode == 2) THEN
K = speed(mode,current_time)*DT/(DX)

ENDIF

DO I = 2,N-1
CNEW(I) = C(I) - K/2. * (C(I+1) - C(I-1)) + &

(K**2.)/2 * (C(I+1) +C(I-1)-2.*C(I))
END DO

END IF

CNEW(1) = C(1)
CNEW(N) = C(N) ! Boundary conditions
C=CNEW

CASE(3) ! implicit ftcs

IF(mode == 2) THEN ! only need to update Matrix for varying U
K = speed(mode,current_time)*DT/(2.*DX)

CALL init_A_matrix(A,K,N)
CALL init_diagonal_vectors(N,A,cc,aa,b)

END IF

CALL solve_thomas_algorithm(N,aa,b,cc,C,CNEW)
C = CNEW

CASE(4) ! C-R

IF(mode == 2) THEN !only need to update A if U changes
K = speed(mode,current_time)*DT/(4*DX) ! C-R
CALL init_A_matrix(A,K,N)
CALL init_diagonal_vectors(N,A,cc,aa,b)

END IF

CTEMP(1) = C(1)
CTEMP(N) = C(N)

DO I=2,N-1
CTEMP(I)=C(I)+K*C(I-1)-K*C(I+1)

50

END DO

CALL solve_thomas_algorithm(N,aa,b,cc,CTEMP,C)

END SELECT

IF(current_time>=15.0 .AND. (.NOT. snap_shot_at_15_taken)) THEN
snap_shot_at_15_taken = .TRUE.
CALL take_one_snap_shot(mode,method,15,N,C,DX)

END IF

current_time = current_time + DT
current_first_limit = current_first_limit + speed(mode,current_time)*DT
CALL get_current_exact_solution(CEXACT,N,current_first_limit,DX)
error = RMS(CEXACT,C,N)

snap_current_time = snap_current_time + DT

END DO

CALL take_one_snap_shot(mode,method,30,N,C,DX)

END SUBROUTINE process
!************************************
!*
!*
!************************************
SUBROUTINE pre_loop_initialization(mode,method,current_time,K,&

DT,DX,N,C,ALL_DATA_FILE_ID,&
A,aa,b,cc)

IMPLICIT NONE

INTEGER, INTENT(IN) :: mode,method,N,ALL_DATA_FILE_ID
REAL, INTENT(IN) :: C(N),DT,DX,current_time
REAL, INTENT(OUT) :: K,A(N,N),aa(N),b(2:N),cc(N-1)
REAL :: speed

SELECT CASE(method)
CASE(1) ! FTCS

K = speed(mode,current_time)*DT/(2.*DX)

IF(mode==1) THEN
OPEN(UNIT=ALL_DATA_FILE_ID, file='expAll.txt') ! all time shots
CALL print_to_file(C,'exp0.txt',N,DX)

ELSE
OPEN(UNIT=ALL_DATA_FILE_ID, file='exp_extraAll.txt') ! all time shots

51

CALL print_to_file(C,'exp_extra0.txt',N,DX)
END IF

CASE(2) ! Lax

K = speed(mode,current_time)*DT/(DX)

IF(mode==1) THEN
OPEN(UNIT=ALL_DATA_FILE_ID, file='laxAll.txt') ! all time shots
CALL print_to_file(C,'lax0.txt',N,DX)

ELSE
OPEN(UNIT=ALL_DATA_FILE_ID, file='lax_extraAll.txt') ! all time shots
CALL print_to_file(C,'lax_extra0.txt',N,DX)

END IF

CASE(3) ! Implicit FTCS

K = speed(mode,current_time)*DT/(2.*DX)

CALL init_A_matrix(A,K,N)
CALL init_diagonal_vectors(N,A,cc,aa,b)

IF(mode==1) THEN
OPEN(UNIT=ALL_DATA_FILE_ID, file='impAll.txt') ! all time shots
CALL print_to_file(C,'imp0.txt',N,DX)

ELSE
OPEN(UNIT=ALL_DATA_FILE_ID, file='imp_extraAll.txt') ! all time shots
CALL print_to_file(C,'imp_extra0.txt',N,DX)

END IF

CASE(4) ! C-R

K = speed(mode,current_time)*DT/(4*DX) ! C-R

CALL init_A_matrix(A,K,N)
CALL init_diagonal_vectors(N,A,cc,aa,b)

IF(mode==1) THEN
OPEN(UNIT=ALL_DATA_FILE_ID, file='crAll.txt') ! all time shots
CALL print_to_file(C,'cr0.txt',N,DX)

ELSE
OPEN(UNIT=ALL_DATA_FILE_ID, file='cr_extraAll.txt') ! all time shots
CALL print_to_file(C,'cr_extra0.txt',N,DX)

END IF
END SELECT

WRITE(UNIT=ALL_DATA_FILE_ID, FMT=*) current_time,0, C

52

END SUBROUTINE pre_loop_initialization
!************************************
!*
!*
!************************************
SUBROUTINE init_diagonal_vectors(N,A,cc,aa,b)
IMPLICIT NONE

INTEGER, INTENT(IN) ::N
REAL, INTENT(IN) ::A(N,N)
REAL, INTENT(OUT) ::aa(N),b(2:N),cc(N-1)

INTEGER ::I,J

J=2
DO I=1,N-1

cc(I)=A(I,J)
J=J+1

END DO
cc(1)=0

DO I=1,N
aa(I)=A(I,I)

END DO

J=1
DO I=2,N

b(I)=A(I,J)
J=J+1

END DO

END SUBROUTINE init_diagonal_vectors
!************************************
!*
!*
!************************************
SUBROUTINE initialize_solution(C,N,DX,first_limit,second_limit)
IMPLICIT NONE

INTEGER, INTENT(IN) :: N
REAL, INTENT(IN) :: DX,first_limit,second_limit
REAL, INTENT(INOUT) :: C(0:N-1)

INTEGER :: I
REAL :: x, PI,av,R

53

PARAMETER(PI = ACOS(-1.))

x = 0
av = (second_limit+first_limit)/2.0
R = av - first_limit

C = 0.0

DO I=0,N-1

IF(x >= first_limit .AND. x <= second_limit) THEN
C(I) = 1 + COS(PI * (x-av)/R)

END IF

x = x + DX
END DO

END SUBROUTINE initialize_solution
!************************************
!*
!*
!************************************
SUBROUTINE print_to_file(C,file_name,N,DX)
IMPLICIT NONE

REAL, INTENT(IN) :: C(N),DX
INTEGER, INTENT(IN) :: N

CHARACTER* (*), INTENT(IN) :: file_name

INTEGER :: I
INTEGER :: FILE_ID
PARAMETER(FILE_ID=999)
REAL :: current_position

OPEN(UNIT=FILE_ID, file=file_name)

current_position = 0;
DO I=1,N

WRITE(UNIT=FILE_ID, FMT=*) current_position ,'\t', C(I)
current_position = current_position + DX

END DO

CLOSE(FILE_ID)

54

END SUBROUTINE print_to_file
!************************************
!*
!*
!************************************
SUBROUTINE init_A_matrix(A,K,N)
IMPLICIT NONE

INTEGER, INTENT(IN) ::N
REAL, INTENT(IN) ::K
REAL, INTENT(OUT) ::A(N,N)

INTEGER ::I

DO I = 2,N-1
A(I,I-1) = -K
A(I,I) = 1
A(I,I+1) = K

END DO

A(1,1) = 1
A(N,N) = 1

END SUBROUTINE init_A_matrix
!************************************
!*
!*
!************************************
SUBROUTINE solve_thomas_algorithm(N,aa,b,c,old_c,new_c)
IMPLICIT NONE

REAL, INTENT(IN) :: aa(N),b(2:N),c(N-1),old_c(N)
INTEGER, INTENT(IN) :: N
REAL, INTENT(INOUT) :: new_c(N)

INTEGER :: I
REAL :: alpha(N),beta(2:N),g(N)

alpha(1) = aa(1)
DO I=2,N

beta(I)=b(I)/alpha(I-1)
alpha(I)=aa(I)-beta(I)*c(I-1)

END DO

g(1)=old_c(1)
DO I=2,N

55

g(I)=old_c(I)-beta(I)*g(I-1)
END DO

new_c(N)=g(N)/alpha(N)
DO I=N-1,1,-1

new_c(I)=(g(I)-c(I)*new_c(I+1))/alpha(I)
END DO

END SUBROUTINE solve_thomas_algorithm
!************************************
!*
!*
!************************************
REAL FUNCTION speed(MODE,time)
IMPLICIT NONE

INTEGER, INTENT(IN) :: MODE
REAL, INTENT(IN) :: time

IF(MODE == 1) THEN
speed=2.0

ELSE
speed=time/20.0

END IF

END FUNCTION speed
!************************************
!*
!*
!************************************
SUBROUTINE take_one_snap_shot(mode,method,TIME,N,C,DX)
IMPLICIT NONE

INTEGER, INTENT(IN) ::TIME,mode,method,N
REAL, INTENT(IN) ::C(N),DX

IF(TIME==15) THEN
SELECT CASE(method)
CASE(1)

IF(mode==1) THEN
CALL print_to_file(C,'exp15.txt',N,DX)

ELSE
CALL print_to_file(C,'exp_extra15.txt',N,DX)

END IF
CASE(2)

IF(mode==1) THEN
CALL print_to_file(C,'lax15.txt',N,DX)

56

ELSE
CALL print_to_file(C,'lax_extra15.txt',N,DX)

ENDIF
CASE(3)

IF(mode==1) THEN
CALL print_to_file(C,'imp15.txt',N,DX)

ELSE
CALL print_to_file(C,'imp_extra15.txt',N,DX)

END IF
CASE(4)

IF(mode==1) THEN
CALL print_to_file(C,'cr15.txt',N,DX)

ELSE
CALL print_to_file(C,'cr_extra15.txt',N,DX)

END IF
END SELECT

ELSE
SELECT CASE(method)
CASE(1)

IF(mode==1) THEN
CALL print_to_file(C,'exp30.txt',N,DX)

ELSE
CALL print_to_file(C,'exp_extra30.txt',N,DX)

END IF
CASE(2)

IF(mode==1) THEN
CALL print_to_file(C,'lax30.txt',N,DX)

ELSE
CALL print_to_file(C,'lax_extra30.txt',N,DX)

ENDIF
CASE(3)

IF(mode==1) THEN
CALL print_to_file(C,'imp30.txt',N,DX)

ELSE
CALL print_to_file(C,'imp_extra30.txt',N,DX)

END IF
CASE(4)

IF(mode==1) THEN
CALL print_to_file(C,'cr30.txt',N,DX)

ELSE
CALL print_to_file(C,'cr_extra30.txt',N,DX)

END IF
END SELECT

END IF
END SUBROUTINE take_one_snap_shot
!************************************
!*

57

!*
!************************************
REAL FUNCTION RMS(CEXACT,C,N)
IMPLICIT NONE

REAL, INTENT(IN) :: CEXACT(N),C(N)
INTEGER, INTENT(IN) :: N

INTEGER :: I

RMS=0.
DO I=1,N

RMS = RMS+(CEXACT(I)-C(I))**2
END DO

RMS = RMS/N
RMS = SQRT(RMS)

END FUNCTION RMS
!************************************
!*
!*
!************************************
SUBROUTINE get_current_exact_solution(CEXACT,N,current_first_limit,DX)
IMPLICIT NONE
REAL, INTENT(IN) :: current_first_limit,DX
REAL, INTENT(OUT) :: CEXACT(0:N-1)
INTEGER, INTENT(IN) :: N

INTEGER :: I
REAL :: first_limit
REAL :: second_limit
REAL :: av,R,shift,x,PI

PARAMETER(PI = ACOS(-1.))

first_limit = 25.0
second_limit = 35.0

shift = current_first_limit - FIRST_LIMIT
first_limit = current_first_limit
second_limit = second_limit + shift

av = (second_limit+first_limit)/2.0
R = av - first_limit

CEXACT = 0.
x = 0.

58

DO I = 0,N-1

IF(x >= first_limit .AND. x <= second_limit) THEN
CEXACT(I) = 1 + COS(PI * (x -av)/R)

END IF

x = x + DX
END DO

END SUBROUTINE get_current_exact_solution� �
7 References

1. Numerical Methods for physics. Second edition. Alejandro Garcia

2. Applied Numerical Methods for Engineers. Terrence Akal.

3. Computational Techniques for fluid dynamics. Second edition. C.A.J.Fletcher

	Introduction
	Backward difference (Upwind)
	Forward difference (downwind)
	Center difference

	Numerical schemes
	Explicit Methods
	FTCS
	Downwind
	Upwind
	LAX
	Lax-Wendroff
	Leap-frog

	Implicit Methods
	Implicit FTCS
	Wendrof
	Crank-Nicolson

	Stability analysis
	Stability analysis for FTCS
	Stability analysis of the downwind method
	Stability analysis of the upwind method
	Stability analysis of Lax
	Stability of Lax-Wendroff
	Stability analysis of the Implicit FTCS

	Solution Results and Output
	Case 1
	Case 2
	Case 3
	Case 4
	case 5
	case 6
	case 7
	case 8
	CPU comparison tables
	Accuracy comparison tables

	Conclusion
	Appendix
	Plots
	case 1
	case 2
	case 3
	case 4
	case 5
	case 6
	case 7
	case 8

	Source code

	References

