my Ada corner

|Nasser M. Abbasil

August 28, 2015 Compiled on January 28, 2024 at 7:16pm

Contents

1 Original Ada web site and Ada links

My original Ada web site with links is

2 how to call Lapack and Blas directly from Ada

Important note added June 2013:

This page is obsolete now, left here for archive and information only.

The Ada Lapack code is now housed at http://sourceforge.net/projects/ada-1|

AP

2.1 Introduction

I downloaded the original BLAS Ada binding written by Duncan Sands from
V/topo.math.u-psud.fr/~sands/Programs/BLAS/index.htm] and the LAPACK
Ada binding written by Wasu Chaopanon from [ftp://ftp.cs.kuleuven.be/pub/Ada
1Belgium/mirrors/gnu-ada/ULD/contrib/lapack-ada/|

And made some minor improvments to the bindings.

This page describes the minor changes made and instructions how to use these bindings
from Ada in order call LAPACK and BLAS Fortran functions.

A new tar file for LAPACK and for BLAS with all the changes can be downloaded
from the link below.

The changes made to LAPACK binding involve streamlining the source tree structure,
writing new Makefiles, simplify the binding to use one package called 1apack and also
adding the documentation shown below.

mailto:nma@12000.org
original_ada_web_page/original_web_page.htm
http://sourceforge.net/projects/ada-lapack/
http://sourceforge.net/projects/ada-lapack/
http://topo.math.u-psud.fr/~sands/Programs/BLAS/index.html
http://topo.math.u-psud.fr/~sands/Programs/BLAS/index.html
ftp://ftp.cs.kuleuven.be/pub/Ada-Belgium/mirrors/gnu-ada/OLD/contrib/lapack-ada/
ftp://ftp.cs.kuleuven.be/pub/Ada-Belgium/mirrors/gnu-ada/OLD/contrib/lapack-ada/

Changes for the BLAS binding were minimal. It involved changes to the source tree
structure and writing Makefiles and adding the documentation shown below.

2.2 Review of the LAPACK and BLAS Ada binding

The Ada binding to LAPACK and BLAS is an Ada package which allows one to
interface to the native lapack and blas libraries.

The native lapack and blas libraries need to be first installed on the system (on Linux,
these libraries will normally be found in /usr/1ib/liblapack.so and /usr/lib/libblas.so

)
To use LAPACK from Ada, one needs to install both the native LAPACK and BLAS
libraries since LAPACK depends on BLAS.

The Ada binding is a thin binding, meaning there is 1-1 mapping between the call to
the Ada routine and the corresponding Fortran routine using the same function name
in the Fortran libraries.

The following diagram illustrates the use of the LAPACK binding with the needed
gnatmake command to compile and link the client Ada program.

ada_lapack/binding/
Jusr/lib/

lapack.ads lapack.adb

with Interfaces.Fortran;
with lapack;

liblapack.so(.a)

L.

lapack.SGESV(..)

Ada Lapack binding Y
|
——————————————————— \’

client.adb libblas.so(.a)

gnatmake -I ada_lapack/binding client.adb -largs -L/usr/lib -
lblas -llapack

Ada program access to Lapack 77 library via Ada binding interface

Figure 1: high levell lapack

And a similar diagram for the BLAS binding interface

ada_blas/binding/

with Ada_Blas.Real;

ads

ada_blas-real.

Ada_Blas.Real.DOT(A,B);

client.adb

gnatmake
-lblas

oot

libblas.so(.a)

Jusr/lib/

-I ada_blas/binding client.adb -largs -L/usr/lib

Ada program access to BLAS library via Ada BLAS interface

Figure 2: high levell blas

The source tree structure for LAPACK is described in this diagram

ada_lapack/
Makefile o
bind
common.mk tests/ convert/ inding/
Perl scripts |
| (do not use, Makfile
| | for future
|) binding lapack.adb
Makfile pilot/ lapack/ interf/ modification Lapack.ads
| | only)
Makfile Makfile
*.adb *.adb
Makfile LLS/ LIN/ EIV
Makfile Makfile Makfile
*.adb *.adb * adb

Source ree structure for Ada Lapack77 binding

Figure 3: tree structure for lapack

The full content of the LAPACK tree is listed here [lapack_tree listing.txt]|

The source tree structure for the BLAS binding is described in this diagram

ada_blas/
Makefile tests/ binding/
common.mk ‘ |
Makfile
Makfile ada blas.ads
* adb -

ada_blas-complex.adb
ada_blas-complex.ads
ada_blas-real.ads
ada_blas-real.adb
ada_blas-get_precision.ads

Source ree structure for Ada BLAS binding

Figure 4: tree structure for blas

2.3 Installation instruction

These instructions explain how to use the Ada LAPACK and BLAS binding in the
updated snapshot tar file.

1. install native lapack 77 and blas libraries on your system. These will normally be
installed in /usr/1ib/.

2. download the updated Ada binding in the zip files given in the links at the bottom
of this page. They are ada_lapack_073012.zip and ada_blas_073012.zip

3. Extract the zip files to some location. This will create 2 source trees as shown in
the diagrams above.

4. At the top of the each source tree, there is a file called common .mk where a Makefile
variable is set to point to the directory that contains the native LAPACK and
BLAS libraries. This is currently defined to point to /usr/1ib. Edit this line to
change this location only if the location is different in your system.

lapack_and_blas/lapack_tree_listing.txt

5. To build the binding, just type make from the top of each tree. Make will build

the whole tree, including the bindings packages and the test programs.

6. To run the test program, type make testing from the top of tree for LAPACK

and for BLAS.

7. Examples of clients using the bindings are found in the tests/ directory of each

tree.

8. The binding is in the binding/ directory in each tree. This is the directory that
you need to set the -I option to point to when using gnatmake as shown in the

diagrams above.

9. The following is a simple example of using the Ada LAPACK binding to solve
Az = blmysolve.adb.txt|which can also be found in the ada_lapack/tests/pilot/

directory

10. That is all! Have fun using Ada with LAPACK and BLAS.

2.4 source code

1. [ada_Tapack 073012.zip]

2. [ada_blas_073012.zip|

3 How to compile GTK Ada program

$ gnatmake -I../pragmarc mine_detector.adb ‘gtkada-config®

gcc-4.4 -c -I../pragmarc -I/usr/share/ada/adainclude/gtkada2 mine_detector.adb

gcc-4.4 -c -I../pragmarc -I/usr/share/ada/adainclude/gtkada2 user_if.adb
gcc-4.4 -c -I../pragmarc -I/usr/share/ada/adainclude/gtkada2 field.ads

gcc-4.4 -c -I../pragmarc -I/usr/share/ada/adainclude/gtkada2 field-operations.adb

gnatbind -I../pragmarc -al/usr/share/ada/adainclude/gtkada2 -a0/usr/lib/ada

gnatlink mine_detector.ali -L/usr/lib -lgtkada2 -pthread -1gtk-x11-2.0 -1lgd}
-lpangoft2-1.0 -lpangocairo-1.0 -1gdk_pixbuf-2.0 -1lm -lcairo -lpango-1.0 -11
-1lfontconfig -lgobject-2.0 -lgmodule-2.0 -lgthread-2.0 -1lrt -1glib-2.0

$

adalib/gtkada2

k-x11-2.0 -latk-
freetype

lapack_and_blas/mysolve.adb.txt
lapack_and_blas/ada_lapack_073012.zip
lapack_and_blas/ada_blas_073012.zip

4 How to make Ada generate an exception on
some floating points operations?

On Thu, 20 Nov 2008 12:09:41 +0100, Markus Schoepflin wrote:

is it possible to influence the behaviour of GNAT regarding the hand
NANs? (Most importantly in the special case of division by zero.)

We need to get exceptions whenever a NAN is generated, is this possi
somehow? (For example by setting Machine_Overflow to True and recomp
the compiler itself.)

V V V V Vv V

You can scrap IEEE stuff in favor of Ada semantics by declaring your o
floating-point [sub]type with a range specified. The compiler will be
forced to check values:

type Safe_Float is digits 6 range -10.0E10..+10.0E10;

or

subtype Safe_Float is Float range Float’Range;

then
X : Safe_Float := 1.0;
Y : Safe_Float := 0.0;
begin
Y :=X/Y;
exception
when Error : others => -- Should print "range check failed"
Put_Line (Exception_Message (Error));
end;
Regards,

Dmitry A. Kazakov
http://www.dmitry-kazakov.de

ling of

ble
iling

5 How to use Ada 2005 O0O?

from http://en.wikibooks.org/wiki/Ada Programming/Object Orientation]

package X is
type Object is tagged null record;

procedure do (This: in Object; That: in Boolean);
end X;

with X;
procedure Main is
Obj : X.0Object;
begin
Obj.do (That => True);
end Main;

N

6 how to make simple Ada program

If gnat is not installed, install it (on linux) using something similar to

sudo apt-get install gnat-4.6

write the following code in file called hello_world.adb

with ada.text_io; use ada.text_io;
procedure hello_world is
begin
put_line("hello world");
end hello_world;

compile using

gnatmake hello_world.adb

gcc-4.6 -c hello_world.adb
gnatbind -x hello_world.ali
gnatlink hello_world.ali

Run it using ./hello_world

http://en.wikibooks.org/wiki/Ada_Programming/Object_Orientation

7

Ada implementation of decimal representation of
exp()

This is an Ada implementation of decimal representation of e based on SPIGOT al-
gorithm for = by S. Rabinowitz & S. Wagon, The American Mathematical Monthly,
March 1995.

More e digits trivia.
Feel free to copy, distribute as long as this header attached so
original algorithm creators and implementors are known.

This is an Ada implementation of decimal representation of 'e'
based on SPIGOT algorithm for \pi by
S. Rabinowitz & S. Wagon, _The_American_Mathematical_Monthly_, March 1995

A C implementation of the above was posted on the net by
Ed Hook

MRJ Technology Solutions, Inc.

NAS, NASA Ames Research Center

Internet: hook@nas.nasa.gov

This is an Ada implementation of the above using GNAT (gnu Ada compiler),

with the added feature is that it computes the frequency of each digit in e

and computes the largest consecutive sequences of each digit within the
expression that represents digits of e.

the following is the result. my PC is still running trying to find the
frequency for 200,000 digits and more for e, and it's been several days
and not finished. So this is a partial results. (PC is 200 MHz pentium,

running Linux 2.0.36, and compiler is GNAT 3.11p

offcourse as number of digits of e goes very large, each digit is expected
to show as often as any other digit.

by Nasser M. Abbasi nma@12000.org feb. 20, 1999.
results:

this is distribution table for digits in e as function of how many
digits.

~

-

-- for example, when looking at 5000 digits of e, we find 497 0's,
-- 478 1's, etc.. (this is for digits after the decimal point of e)

== #digits in e

-= 500 5,000 20,000 50,000 200,000

--how many O's 51 497 1,949 4,948 19,916
--how many 1's 43 478 2,010 5,055 20,367
--how many 2's 50 492 2,020 4,969 19,794
--how many 3's 53 514 2,080 5,026 20,071
--how many 4's 52 470 1,989 4,966 20,082
--how many 5's 44 478 1,979 5,046 20,038
--how many 6's 51 545 2,057 5,133 20,221
--how many 7's 60 525 1,977 4,959 19,817
--how many 8's 40 509 1,966 4,972 19,939
--how many 9's 56 492 1,974 4,926 19,755

--most occurring 'T7' 7' '3 '6' 1!
--least occurring '8' '4! '0! '9! '9!
--difference

--between largest 20 55 131 207 612

--and smallest
--in frequency

--difference

--between largest 4, 1.1% 0.655% 0.414), 0.306%
--and smallest

--frequency in %

--consecutive frequencies: under each column, there are 3 values, the first
--is the number of digits that occurred next to each others for that digit,
--and the start of this sub sequence, and its end, in position values.
--for example, for 5,000 digits of e, we see that largest consecutive
--sequence of digit 'O' had length of 3, and it started at digit position

--328 to position 330.

--the decimal point.

Digit positions are counted from left to right at

--'1' is at position 2, etc..

for example e=2.718, here digit '7' is at position 1,

== #digits in e

- 5,000 | 20,000 I 50,000 | 100,000

-- 0's (3,328,330) | (4,7688,7691) | *no changex* | (6,89296,89301)
--1's (3,427,429) | (5,12220,12224) | #*no change* | *no changex
-- 2's (2,2744,2746) | (4,17309,17312) | (5,33483,33487) | *no change*
-- 3's (4,3354,3375) | *no change* | *no change* | *no change*
--4's (3,787,789) | (4,11806,11809) | #*no change* | *no change*
-- 5's (4,3620,3623) | *no changex | #*no change* | *no changex
-- 6's (5,4992,4996) | *no change* | #*no changex* | *no changex*
-- 7's (4,1071,1074) | *no changex | *no change* | *no changex*
-- 8's (4,723,726) | *no change* | *no changex* | *no changex*
--9's (3,47,49) | *no change* | (4,29344,29347) | *no change*
--Compiler: GNAT 3.11p , see http://www.adahome.com to download

--To compile:

--system:
--Date:
--To Run:

frequency
frequency
frequency
frequency
frequency
frequency
frequency
frequency

frequency of

of
of
of
of
of
of
of
of

save this file as dist_e_final.adb and type

gnatmake dist_e_final.adb

Linux 2.
feb. 17,

0.36
1999

./dist_e_final
For example, to see e for 70 digits do:

./dist_e_final 70
2.7182818284590452353602874713526624977572470936999595749669676277240766
frequency of

0 is
1 is
is
is
is
is
is
is
is

© 0 N O O b W N

is

10

performance note: On Pentium PRO 200 MHZ, using GNAT 3.11p, Linux 2.0.36,
128 MB RAM. No other activity on PC, and for 1,000,000 digits, this
program will generate about 50 digits each minutes. So, for 1,000,000
digits it will take about 13 days. for larger than 1,000,000 you might
encounter stack overrun, depending on amount of memory you have...

notice the main algorithm is 0(n~2).

with Ada.Text_Io; use Ada.Text_Io;
with ada.command_line; use ada.command_line;

procedure Dist_E_final is

type E_Type is array(Natural range <>) of Natural;
Distribution : array(0..9) of Natural := (others => 0);
Num_0f _Digits : Natural;

type Sequence_item is record
Starts_At, Ends_At, Length : Natural;
end record;
Sequence: array(0..9) of Sequence_Item := (others=>(0,0,0));
current_Digit, Current_Sequence_Length, Current_Sequence_Start: Natural :=

procedure Update_Sequence(Next_Digit_Position, next_digit: Natural) is
begin
if(next_Digit /= Current_Digit) then
if (Sequence(current_Digit).Length < Current_Sequence_Length) then
Sequence(current_Digit).Length := Current_Sequence_Length;
Sequence(current_Digit).Starts_At := Current_Sequence_start;
Sequence(Current_Digit).Ends_At := Next_Digit_Position -1;
end if;

Current_Digit := Next_Digit;
Current_Sequence_Length := 1;

Current_Sequence_Start Next_Digit_Position;

else

Current_Sequence_Length := Current_Sequence_Length +1;

end if;

11

end Update_Sequence;

procedure Done_Sequence(Current_Digit_Position: Natural) is
begin
if(Sequence(current_Digit).Length < Current_Sequence_Length) then
Sequence(current_Digit).Length := Current_Sequence_Length;
Sequence(current_Digit).Starts_At := Current_Sequence_start;
Sequence(Current_Digit).Ends_At := current_Digit_Position ;
end if;
end Done_Sequence;

begin

if (Argument_Count /= 1) then
Put_Line("usage: dist_e ");
return;

end if;

begin
Num_Of_Digits := natural'value(Argument(1));

if(Num_Of_Digits = O) then
Put_Line("value for number of digits must be larger than zero");
return;

end if;

exception
when others =>
Put_Line("Exception. invalid value for number of digits");

return;
end;

declare -- the algorithm itself is in this block
E: E_Type(1 .. Num_Of Digits+2) := (others=> 1);
Carry : Natural;

begin

Put("2.");

for I in E'first .. E'Last-2 loop
Carry := 0;

12

for J in reverse E'first .. E'Last loop
E(J) := (EQJ) * 10) + Carry;
Carry := E(J)/(J+1);
E(J) := EQJ) rem (J+1);

end loop;
Put (Natural'Image (Carry) (2)); -- print current digit of e
Distribution(Carry) := Distribution(Carry) + 1;

Update_Sequence(I,Carry);
end loop;

Done_Sequence(E'Last-2);
end;

New_Line;
for I in Distribution'Range loop
Put_line("frequency of " & Natural'Image(I) & " is "
& natural'Image(Distribution(I)));
end loop;

for T in sequence'Range loop
if (Sequence(I).Length = 0) then
Put_Line("Digit "& Natural'Image(I) & " was not seen.");
else

Put_line("largest concecutive seq of " & Natural'Image(I)
&" started at digit "
& natural'Image(sequence(I).Starts_at)
& " and ended at digit "
& natural'Image(sequence(I).ends_at)
& " of length "
& natural'Image(sequence(I).length));
end if;
end loop;

end Dist_E_final;

13

8 Ada implementation of getopt()

This package is an Ada implementation of getopt() as specified by the document "The
Single UNIX Specification, Version 2", Copyright 1997 The Open Group

- GETO

== Spe

PT

C

-- $Header: getopt.ads,v 1.1.1.1 1999/03/01 12:23:04 nabbasi Exp $

== Copyright (C) 1998 Nasser Abbasi

-- This is free software; you can redistribute it and/or modify it under

-- terms of the GNU General Public License as published by the Free Soft-

—-- ware Foundation; either version 2,

—- 0UT ANY WARRANTY; without even the
-- or FITNESS FOR A PARTICULAR PURPOSE.

—-- for more details. Free Software Foundation,

-- 330, Boston, MA 02111-1307, USA.

-- As a special exception, if other fil

or (at your option) any later ver-
-- sion. GETOPT is distributed in the hope that it will be useful, but WITH
implied warranty of MERCHANTABILITY
See the GNU General Public License

59 Temple Place - Suite

es instantiate generics from this

-- unit, or you link this unit with other files

to produce an executable,

-- this wunit does not by itself cause the resulting executable to be

-- covered by the GNU General Public

License.

This exception does not

-- however invalidate any other reasons why the executable file might be

—-- covered by the GNU Public License.

-- change history:

—-- name changes

-- NMA0O21899 created

-- NMA030299 Made it modified GPL. chanegd header.

-- description:

14

This package is an Ada implementation of getopt() as specified by the
document "The Single UNIX Specification, Version 2", Copyright 1997 The
Open Group

Compiler used: GNAT 3.11p
Platform: Linux 2.0.36 (Red hat 5.2)

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;

package Getopt is

function Getopt (Optstring : String) return Integer;

Optind : Positive;

Optarg : Unbounded_String;
Optopt : Character := ' ';
Opterr : Integer := 1;

end Getopt;

GETOPT
BODY

$Header: getopt.adb,v 1.2 1999/03/01 12:54:03 nabbasi Exp $

Copyright (C) 1998 Nasser Abbasi

This is free software; you can redistribute it and/or modify it under
terms of the GNU General Public License as published by the Free Soft-
ware Foundation; either version 2, or (at your option) any later ver-
sion. GETOPT is distributed in the hope that it will be useful, but WITH
OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License

15

for more details. Free Software Foundation, 59 Temple Place - Suite
330, Boston, MA 02111-1307, USA.

As a special exception, if other files instantiate generics from this
unit, or you link this unit with other files to produce an executable,
this unit does not by itself cause the resulting executable to be
covered by the GNU General Public License. This exception does not
however invalidate any other reasons why the executable file might be
covered by the GNU Public License.

change history:

name changes

NMA021899 created
NMA030299 Changed header to make it modified GPL

description:

This package is an Ada implementation of getopt() as specified by the
document "The Single UNIX Specification, Version 2", Copyright 1997 The
Open Group

This describes the items involveed using example

curopt
I
\'
"-f foo -dbc -k"
I
optind

optind is position (index) that tells which command line argument is
being processed now.

curopt tells which optchar is being processed within one command line
argument. This is needed only if more that one optchar are stuck
togother in one argument with no space, as in -df where both d and f

16

-- are valid optchar and d takes no optarg.

-- Compiler used: GNAT 3.11p

-- Platform:

Linux 2.0.36 (Red hat 5.2)

with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;

with Ada.Command_Line; use Ada.Command_Line;
with Ada.Text_Io; use Ada.Text_Io;

package body Getopt is

Curopt : Natural := 2;

-- No_Optarg_Case —-

procedure No_Optarg_Case is

begin
if (Curopt
Curopt :
else
Curopt :
Optind :
end if;
end No_Optarg_

Argument (Optind) 'Length) then
Curopt + 1;

2;
Optind + 1;

Case;

function Getopt (Optstring : String) return Integer is

begin

if (Argument_Count = O or else optind > Argument_Count
or else (Argument (optind)(1) /= '-')) then

return -1;

end if;

17

if (Argument (optind)'Length = 1) then
return -1;
end if;

-- according to The Single UNIX Specification, Version 2, if "--"
-- 1is found, return -1 after ++optind.
if (Argument (Optind)(2) = '-') then
Optind := Optind + 1;
return -1;
end if;

-- 1if we get here, the command argument has "-X"
for I in Optstring'Range loop
if (Optstring (I) = Argument (optind) (Curopt)) then
if (I < Optstring'Length) then
if (Optstring (I + 1) = ':') then

-- see if optarg stuck to optchar
if (Argument (Optind) 'Length - Curopt > 0) then
Optarg := To_Unbounded_String

(Argument (optind) (Curopt + 1 .. Argument (optind)'Leng]

Curopt := Curopt + 1;

optind := Optind + 1;

return character'Pos (Optstring (I));
end if;

-- see if optarg on separate argument
if (Optind < Argument_Count) then

Curopt := 2;
optind := optind + 1;
optarg := To_Unbounded_String (Argument (optind));

optind := optind + 1;
return character'Pos (Optstring (I));
else
Optind := Optind + 1;
Optopt := Optstring (I);
if (Opterr = 1 and Optstring (1) /= ':') then

Put_Line (Standard_Error,
"Argument expected for the -"&
Optstring (I .. I) & " option");

18

th));

end if;

if (Optstring (1) = ':') then
return Character'Pos (':');
else
return Character'Pos ('?');
end if;
end if;
else -- current optchar matches and has no arg option
No_Optarg_Case;
return character'Pos (Optstring (I));
end if;
else -- last char in optstring, can't have argument
No_Optarg_Case;
return character'Pos (Optstring (I));
end if;
end if;
end loop;

Optopt := Argument (Optind) (Curopt);
No_Optarg_Case;

-- we get here if current command argument not found in optstring
return character'Pos ('?');

end Getopt;

begin
Optarg := To_Unbounded_String ("");
Optind := 1;

end Getopt;

N\

This is a test program of the above package.

-

-- Test example showing how to use GETOPT Ada package
-- Nasser M. Abbasi

with Ada.Text_Io; use Ada.Text_Io;
with Ada.Command_Line; use Ada.Command_Line;
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;

19

with Getopt;

procedure Test_Getopt is

Test_String : String := "c:di:n:p:u:V";
Optchar : character;
Value : Integer;

begin

Getopt.Opterr := 1;

loop
Value := Getopt.Getopt(Test_String);
exit when Value = -1;
optchar := Character'Val(Value);

case optchar is

when 'c' =>

Put_Line("commant is "& To_String(Getopt.Optarg));
when 'd' =>

Put_Line("debug on");
when 'i' =>

Put_line("got -i, its argument is:" & To_String(Getopt.Optarg));
when 'n' =

Put_line("got -n, its argument is:" & To_String(Getopt.Optarg));
when 'p' =>

Put_line("got -p, its argument is:" & To_String(Getopt.Optarg));
when 'u' =>

Put_line("got -u, its argument is:" & To_String(Getopt.Optarg));
when 'V' =

Put_line("got -V");

when '?' =>

Put_Line("got 7, optopt is " & Getopt.Optopt);

when ':' =>
Put_Line("get :, optopt is "& Getopt.optopt);

when others => null;

end case;
end loop;

20

-- now lets print the remaining arguments if any
declare

Index : positive;
begin

Index := Getopt.Optind;

for I in Index..Argument_Count loop

Put_Line(Argument(I));
end loop;

end;

end Test_Getopt;

9 GNAT 2012 installation log file

[enat2012 installation_log file.txt|

21

gnat2012_installation_log_file.txt

	Original Ada web site and Ada links
	how to call Lapack and Blas directly from Ada
	Introduction
	Review of the LAPACK and BLAS Ada binding
	Installation instruction
	source code

	How to compile GTK Ada program
	How to make Ada generate an exception on some floating points operations?
	How to use Ada 2005 OO?
	how to make simple Ada program
	Ada implementation of decimal representation of exp()
	Ada implementation of getopt()
	GNAT 2012 installation log file

