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This note describes how to design a PID controller for a system defined by second order
differential equation based on requirements for a step response specified by the rise
time and the settling time.

The goal is to determine the three PID parameters (Ki, Kd, Kp) from the plant transfer
function and tr, ts (rise time and settling time).

Consider the following mechanical system

M

b

k

ut

Mechanical system to control

yt

Figure 1: mechanical system

M is the mass of the car, b is the damping coefficient and k is the spring constant. To
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illustrate, assuming standard SI units:

M = 1 kg

b = 10 Ns/m

k = 20 N/m

The first step is to derive the mathematical model for the system. This means finding a
differential equation that relates the output (the displacment y(t)) to the input, which
is the applied force u(t).The fFriction force between the mass M and the ground is
ignored in this example.

The first step is to make a free body diagram

M ut

Free body diagram

yt

k yt

b y t

Figure 2: Free body diagram

Applying Netwon laws gives

F = ma

u(t)− by′(t)− ky(t) = My′′(t)

or
My′′(t) + by′(t) + ky(t) = u(t)

Taking Laplace transform and assuming zero initial conditions gives

Ms2Y (s) + bsY (s) + kY (s) = U(s)
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The transfer function is defined as the ratio of the output to the input in the Laplace
domain. Here the input is u(t), which is the external force, and the output is y(t) which
is the displacement. Taking the Laplace transform of the above differential equation
gives the transfer function

sys(s) = Y (s)
U(s) = 1

Ms2 + bs+ k

Using block diagram the transfer function is illustrated as

YsUs
1

Ms2bsk

System differential equation as a transfer function

Figure 3: Transfer function

The PID controller is now added. The transfer function of the PID controller itself is

Kp +Kds+
Ki

s

The controller is added to the system and the loop is closed. The following diagram
represents the updated system with the controller in place

YsUs 1

Ms2bsk

System Block diagram with a PID controller

+

-

Es Ns
Kp  Kds 

K i

s

Figure 4: With PID
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Let L(s) be the open loop transfer function

L(s) =
Kp +Kds+ Ki

s

Ms2 + bs+ k
= Kps+Kds

2 +Ki

Ms3 + bs2 + ks

Hence the closed loop transfer function is

G(s) = L(s)
1 + L (s) = Kps+Kds

2 +Ki

Ms3 + bs2 + ks+Kps+Kds2 +Ki

Therefore
G(s) =

1
M
(Kds

2 +Kps+Ki)

s3 + s2
(
b+Kd

M

)
+ s

(
k+Kp

M

)
+ Ki

M

(1)

YsUs +

-

Es

Ys
Us

Open loop transfer function using PID controller

a1Kds2KpsK i

s3a2s2a3s

a1Kds2KpsK i

s3s2a2a1Kdsa3a1Kpa1K i

Figure 5: Open loop

The closed loop transfer function (1) shows there are three poles.

Putting one pole at a distance of 5ζωn away from the imaginary axis, while the remaining
two poles are the dominant poles results in the following diagram
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pole placement

 

5n

Figure 6: Pole placement

The denominator of equation (1) can be rewritten as

s3 + s2
(
b+Kd

M

)
+ s

(
k +Kp

M

)
+ Ki

M
≡ (s+ 5ζωn)

(
s2 + 2ζωns+ ω2

n

)
≡ s3 + 2ζωns

2 + sω2
n + 5ζωns

2 + 10ζ2ω2
ns+ 5ζω3

n

≡ s3 + s2(7ζωn) + s
(
10ζ2ω2

n + ω2
n

)
+ 5ζω3

n

Equating coefficients gives

b+Kd

M
= 7ζωn

k +Kp

M
= 10ζ2ω2

n + ω2
n

Ki

M
= 5ζω3

n
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Solving for PID parameters results in

Kd = 7Mζωn − b (2)
Kp = M

(
10ζ2ω2

n + ω2
n

)
− k

Ki = 5Mζω3
n

These are the PID parameters as a function of ωn and ζ.

ωn and ζ are determined in order to obtain the PID parameters.

The time response specifications are now introduced in order to determine these pa-
rameters. Assuming these are the time domain requirments

1. The settling time ts = 2 sec

2. The rise time tr = 0.1 sec

Using the following for 2% criterion

ts =
4

ζωn
(3)

And the rise time is given by
tr =

π − β

ωd
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Dominant pole parameters

Figure 7: Dominant pole prameters

But β = arctan
(

ωn

√
1−ζ2

ζωn

)
, hence

tr =
π − arctan

(√
1−ζ2

ζ

)
ωn

√
1− ζ2

(4)

From (3) and (4) ωn, ζ are solved for

2 = 4
ζωn

0.1 =
π − arctan

(√
1−ζ2

ζ

)
ωn

√
1− ζ2

Solving numerically gives
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restart;

> eq1:= 2   = 4 / (zeta*omega);

> k:= sqrt(1-zeta^2);

> eq2:= 0.1 = (Pi-arctan( k/zeta )) / (omega*k);

> fsolve({eq1,eq2});

 := eq1 2
4

 

 := k 1 
2

 := eq2 0.1

















arctan

1 
2



 1 
2

{ }, 17.00484998  0.1176135045

Solution using Maple

Figure 8: Solution

Hence the solution is
ζ = 0.1176

and
ωn = 17 rad/sec

Substituting the values for ωn and ζ in (2), and the values given for M, b and k, gives
the PID parameters

Kd = 7(1)(0.1176)(17)− 10
= 3.9944

Kp = 1(10(0.11762)(172) + (17)2)− 20
= 308.97

Ki = 5(1)(0.1176)(17)3

= 2888.8
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Using Matlab, the step response is found
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clear all; close all;

s=tf('s');

M=1;

b=10;

k=20;

gama=17;

zeta=0.1176;

Kd=(M*7*zeta*gama)-b

Kp=M*(gama^2+10*zeta^2*gama^2)-k

Ki=5*zeta*gama^3*M

 

sys=(Kd*s^2+Kp*s+Ki)/(M*s^3+s^2*(b+Kd)+s*(k+Kp)+Ki);

t=[0:0.01:2];

step(sys,t);

hold on;

line([0 2],[1 1],'Color','r');

%Ylim([0 1.2]);

 

legend('y(t)','u(t)');

title('step response. PID controller')

Step response using PID controller

Figure 9: Step solution using Matlab
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