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1 introduction
These are part of my study notes on PDE’s.

Trying to classify PDE’s, here is current diagram. It is very large, but it is meant to include a
summary of many methods in one place. Easier to view in a browser than in the pdf.

Some diagrams I made

1-D PDE

ut  a ux

a wave speed

IC: ux, 0  u0x
BC: periodic

analytical solution ux, t  u0x  at

Forward time, centered 
space (FTCS)

Lax-Friedrich Lax-Wendroff Leapfrog UpwindBeam-WarmingCrank-Nicolson
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1-D Parabolic (heat equation or diffusion)

Stiff, Implicit, small time step

ut  Duxx

D diffusion constant  0

IC: ux,0  u0x
BC: u0, t  gt,u1, t  ft

FTCS (Forward-time, centered space)

(second order in space, first order in time)
Crank Nicholson 

(second order in space, second order in time)
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1-D PDE
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1D PDE, parabolic, heat/
diffusion, C-N
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second order linear par-
tial differential equation

hyperbolicparabolicelliptic
No characteristic curves. diffusion pro-
cess reached equilibrium, steady state
temperature distribution. Numeri-
cally solved by relaxation methods.

A ∂2u
∂x2 + B ∂2u

∂x∂y
+ C ∂2u

∂y2 + D ∂u
∂x

+ E ∂u
∂y

+ F u = G

B2 − 4AC < 0
A = 1, C = 1, B = 0

F = k2

G = g(x, y)
inhomogeneous Helmholtz
∂2u
∂x2 + ∂2u

∂y2 + k2u = g(x, y)
steady state oscillation

G = 0
homogeneous Helmholtz

∂2u
∂x2 + ∂2u

∂y2 + k2u = 0
eigenvalue equilibrium

F = 0
a function that satisfies

Laplace is called harmonic

G = g(x, y)
Poisson in 2D

∂2u
∂x2 + ∂2u

∂y2 = g(x, y)

G = 0
Laplace in 2D

∂2u
∂x2 + ∂2u

∂y2 = 0

linear second order PDE classification, solution is ux,y

elliptic

B2  AC
parabolic hyperbolic

B2  AC B2  AC

Laplace in 2D

2u

x2
 2u

y2
 0 2u

x2
 2u

y2
 fx,y

Poisson in 2D

A 2u

x2
 2B 2u

xy  C 2u

y2
 D u

x  E u
y  Fu  G

2u

x2
 2u

y2
 k 2u  0

G  0 G  gx,y

A  1,C  1,B  0

F  0 F  k 2

G  0 G  gx,y
Homogeneous Helmholtz inhomogeneous Helmholtz

2u

x2
 2u

y2
 k2u  gx,y

linear second order PDE classification, solution is ux,y

elliptic
parabolic hyperbolic

Laplace in 2D

2u

x2
 2u

y2
 0 2u

x2
 2u

y2
 fx,y

Poisson in 2D

2u

x2
 2u

y2
 k 2u  0

G  0 G  gx,y

A  1,C  1,B  0

F  0 F  k 2

G  0 G  gx,y
Homogeneous Helmholtz inhomogeneous Helmholtz

2u

x2
 2u

y2
 k2u  gx,y

A 2u

x2
 B 2u

xy  C 2u

y2
 D u

x  E u
y  Fu  G

B2  4AC  0
B2  4AC  0 B2  4AC  0

(diffusion process  reached 
equilibrium, steady state 
temperature distribution, 
Numerically, solved by 
relaxation methods)

supports solutions with 
discontinuitie: shock wave. 
mechanical oscillator, 
vibrating strings, convection 
driven transport problem

transition from the hyperbolic 
PDE to the elliptic PDEs. 
diffusion problems, transient 
flow of heat

solutions to linear hyperbolic 
equations as smooth as 
boundary and initial 
conditions

nonlinear hyperbolic PDE with 
smooth boundary and initial 
conditions give rise to nonsmooth 
solutions. stability issues.

Eigenvalue 
equilibrium 
problem

Evolution problem, 
propagation of waves

Initial disturbances 
propagate along the 
chracteristics

Two distinct 
characteristic directions

ONE characteristic 
directions. Any t=0 is 
such line

Diffusion problems. 
temperature in rod

No characteristic curves

Steady state oscillations

Drawn by Nasser M. Abbasi
7/17/2013
Pdes.vsd

A  0,B  0,C  k,D  1

u
t  k 2u

x2

k is called thermal diffusivity

A 2u

t2
 B 2u

tx  C 2u

x2
 D u

t  E u
x  Fu  G A 2u

t2
 B 2u

tx  C 2u

x2
 D u

t  E u
x  Fu  G

A  1,B  0,C  c2

2u

t2
 c2 2u

x2 c is wave speed

Analytical Numerical

On square/rectangular, using separation of variables 
method, with essential BC, leads to series solution.

See http://en.wikibooks.org/wiki/Partial_Differential_Equations/The_Laplacian_and_Laplace’s_Equation

Finite difference Finite elements

In 2D, using standard 5 point laplacian. This gives 
approximation of each grid point at each iteration. 
More iterations improves the solution. Use residual 
norm and epsilon to determine when to stop.

Jacobi Gauss-
Seidel

SOR

Conjugate 
gradient

Use Matrix splitting method to obtain the iterative equation

Multigrid methods

To do

Solution methods

stationary solvers
non-stationary solvers

Gauss-
Seidel
Red/
black

SOR
With

Chebyshev
(best among 

stationary 
solvers)

GMRES

Steepest 
descent

BiCGSTAB

With 
preconditioner

Without 
preconditioner

Preconditioner method can 
be NONE, SSOR, ILU0, ILUT, 

ILUTP, and others

Direct solver Ax=b Matrix splitting methods

Ax  f
Rewritten as

x k1  Tx k  Cf

where T is the iteration matrix

and k is the iteration number

There are different 
methods to generate the 
iteration matrix T above, 
based on different 
splitting methods. 
Different algorithms uses 
different splitting.

1-D, using 3-point central difference formula

d2u

dx2
 fx,u0  a,u1  b

Generate A,b from 
scheme uised

1D

Neumann boundary 
conditions (use image point 
method)

dirichlet 
boundary 
conditions

To derive the PDE, we start by setting up the state quantities and the flow quantities, and
relate these to each others by the use of the constitutive law. Then substiting this into the local
conservation law, lead to the PDE.
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state quantity constitutive law flow quantity
density tension

tempreture velocity
pressure ⇐⇒ momentum

specific internal energy heat flux
entropy

2 linear PDE’s

2.1 Elliptic

Some properties

1. Solution to the PDE represents steady state of u.

2. Only boundary conditions are used to solve. No initial conditions.

3. Relation to complex analytic functions: If f(z) = φ(x, y) + iψ(x, y) is analytic, then φ(x, y)
and ψ(x, y) are solutions to Laplace pde’s

4. Solutions to Laplace PDE are called harmonic functions.

5. constitutive law: Either consider them as stationary process, or take the time dependent
pde, and set those terms in that which depend on time to zero.

Examples of elliptic PDE’s

1. Laplace uxx = 0 or in general ∇2u = 0

2. Poisson uxx = −f(x)

3. Helmholtz in 1D uxx + λu(x) = −f(x)

4. Helmholtz in 2D uxx + uyy + λu(x, y) = −f(x, y)

2.2 Parabolic

Some properties

1. Diffusion. Material spread is one specific example of diffusion. Here the state variable is the
concentration of the diffusing matrial. The flow quantity is its flux. The constitutive law is
Fickś law.

2. Heat spread. Here the state variable is the temprature, and the flow quantity is the heat
flux. The constitutive law is Fourierś law.

3. Stiff PDE, hence requires small time step, solved using implicit methods, not explicit for
stability.

4. Numerically, use Crank-Nicleson, in 2D, can use ADI.

5. Requires initial and boundary conditions to solve.

Examples of parabolic PDE’s
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1. Diffusion. ut −Duxx = 0 where D is the diffusion constant, must be positive quantity. For
heat PDE, D is the thermal diffusivity D = κ/cpρ where κ is thermal conductivity, cp is
specific heat capacity, ρ is density of medium.

2. In higher spatial dimension ut −D∇2u = 0

3. Foller-Plank, Black-Sholes PDEs

4. Diffusion-Reaction ut −Duxx = F (u(x, t)) where F (u(x, t)) is the reaction term, which can
be stiff or not. Examples

(a) Fischer equation, nonlinear PDE for modeling population growth. ut−Duxx = ru(x, t)(1−
u(x,t)
K ) where K is carrying capacity, and r is growth rate.

2.3 Hyperbolic

Some properties

1. Advection PDE (or Transport or convection?). ut + aux = 0, Transport or drift of conserved
substance (pollutant) in Fluid or Gas where a is speed of fluid. Analytic solution is u(x, t) =
f(x− at) where f(x) = u(x, 0) is the initial conditions.

2. The state variable is the concentration u of the contaminant, and the flow quantity is its
flux φ. The constitutive law is φ = cu.

3. Wave equation utt = c2uxx. Analytic solution is u(x, t) = 1
2 [f(x − ct) + f(x + ct)] +

1
2c

∫ x+ct
x−ct g(y) dy where f(x) = u(x, 0) and g(x) = ut(x, 0).

Examples

1. Advection, Wave (See above)

2. non-homogenouse advection and wave: ut + aux = f(x, t) and utt = c2uxx + f(x, t).

3. Klein-Gordon utt = c2uxx − bu

4. Telegraphy utt + kut = c2uxx + bu

3 hints
reference

Characteristics are curves in the space of the independent variables along which the
governing PDE has only total differentials

http://how.gi.alaska.edu/ao/sim/chapters/chap3.pdf
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4 references
1. Elements of partial differential Equations, Pavel Drabek and Gabriela Holubova, 2007.

2. Applied partial differental equations. 4th edition, Richard Haberman

3. http://www.phy.ornl.gov/csep/pde/node3.html

4. http://www.me.metu.edu.tr/courses/me582/files/PDE_Introduction_by_Hoffman.pdf

5. http://en.wikibooks.org/wiki/Partial_Differential_Equations/Introduction_and_
Classifications

6. http://www.scholarpedia.org/article/Partial_differential_equation

7. http://how.gi.alaska.edu/ao/sim/chapters/chap3.pdf good discussion on classifica-
tion via Characteristics lines

8. http://gwu.geverstine.com/pde.pdf table on classification, diagram for discriminant sign
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http://www.me.metu.edu.tr/courses/me582/files/PDE_Introduction_by_Hoffman.pdf
http://en.wikibooks.org/wiki/Partial_Differential_Equations/Introduction_and_Classifications
http://en.wikibooks.org/wiki/Partial_Differential_Equations/Introduction_and_Classifications
http://www.scholarpedia.org/article/Partial_differential_equation
http://how.gi.alaska.edu/ao/sim/chapters/chap3.pdf
http://gwu.geverstine.com/pde.pdf
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