
PDE solution flow charts
Nasser M. Abbasi

May 24, 2020 Compiled on January 29, 2024 at 3:38am

Started to make flow charts for solving PDE’s. In progress...

1 Heat PDE

Simplified the original chart, which was getting too complicated, to the following one
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bounded
domain?

YES

0 < x < L

YES

NO

ut = kuxx +Q(x, t)

homogeneous
boundary
conditions?

semi-bounded
domain?
0 < x <∞

YES

Use Laplace
transform
method

Use Fourier
transform
method

NO

Source term
present?

YES

Use eigenfunction expansion
method
u(x, t) =

∑∞
n an(t)Φn(x)

Direct use of
separation of
variables
method

NO

NO

Reduce the problem to homogeneous boundary
conditions by writing u(x, t) = w(x, t) + r(x, t),
where r(x, t) is a reference function that needs to
only satisfy the nonhomogeneous boundary
conditions. This reference function can only depend
on x and becomes r(x) only if the nonhomogeneous
boundary conditions were not time dependent.

Find reference function r(x, t) or
r(x). This should be a simple
process of solving second order
ODE.

Substitute u(x, t) = w(x, t) + r(x, t) back in the
original PDE and obtain new PDE in w(x, t) which
now has homogeneous boundary conditions, but
possible a new source term due to contribution
coming from the reference function. This gives new
PDE wt = kwxx +Q(x, t) Where the source term
could be present or not dependening on nature of
original nonhomogeneous boundary conditions

Solver for w(x, t), now with
homogeneous B.C.

Solution will now look like u(x, t) = r(x, t) + w(x, t)
or u(x, t) = r(x, t) +

∑
cne

−λnktΦn(x) where λn are
the eigenvalues and Φn(x) the eigenfunctions of the
homogeneous eigenvalue ODE.

Final step is to find cn from initial conditions u(x, 0)
by applying orthogonality. This is straight forward
step. This complete the solution.

by Nasser M Abbasi
heat pde simple.ipe
March 7, 2018

Solution will now look like
u(x, t) =

∑
cne

−λnktΦn(x) where λn are the
eigenvalues and Φn(x) the eigenfunctions. These will
depends on the type of the homogeneous boundary
conditions on both ends. For example if the BC on
both ends are zero and Dirchilet, then λn =

(
nπ
L

)2
for n = 1, 2, . . . and Φn(x) = sin

(√
λnx

)

Heat PDE 2D (see next page)

1D heat PDE

(whole real line)

w(x, t) solution

Use real
Fourier
integral
method

Use real
Fourier
integral
method

Figure 1: heat PDE flow chart
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I have kept the first chart below for reference, but the above one is much simpler.
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bounded
domain?

YES

0 < x < L

Source
present?

YES
ut = kuxx +Q(x)
ut = kuxx +Q(x, t)

NO ut = kuxx

homogeneous
boundary
conditions?

YES

Let u = X(x)T (t),
sepration of variables.
Find eigenvalues λn and
eigenfunctions Φn(x)

u(x, t) =
∑∞
n cne

−λnktΦn(x)

Apply initial conditions
u(x, 0) = f(x) to find cn
using orthogonality of
Φn(λn, x).

cn = 2
L

∫ L
0
f(x)Φn(x) dx

NO

Time dependent
boundary
conditions?

YES

Let u(x, t) = u0(x, t) + r(x, t) where r(x, t) is a
reference function which only needs to satisfy
the boundary conditions. Solve for r(x, t). For

above BC r(x, t) = A(t) +
B(t)−A(t)

L
x. But

this will change depending on type of
boundary conditions.

NO
u(0, x) = A(t)
u(L, t) = B(t)

u(0, x) =T1

u(L, t) =T2

Let u(x, t) = v(x, t) + r(x)
where r(x) is the steady
state solution of the ode
v′′(x) = 0 with
v(0) = T1, v(L) = T2 which
only needs to satisfy the
boundary conditions

Plugging u(x, t) = v(x, t) + r(x)
back into original PDE
ut = kuxx gives new PDE
vt = kvxx to solve but now with
homogeneous BC
v(0, t) = 0, v(L, t) = 0 and initial
coditions v(x, 0) = u(x, 0)− r(x)

Solve for v(x, t) using process A

Final solution is
u(x, t) = v(x, t) + r(x) is now
found.

go to page 3

NO

Now that r(x, t) is found, plugin
u(x, t) = u0(x, t) + r(x, t) back in the PDE. This
will now generate a new pde in u0(x, t) but will
have a source term Q(x, t) = −rt(x, t) + krxx.

The new PDE is ∂u0
∂t

= ∂2u0
∂x2

+Q(x, t) but now it
has homogeneous B.C. but with a new source
term added.

ut = kuxx +Q(x, t)

ut = kuxx
ut = kuxx

Update initial conditions for
u0(x, 0) = u(x, 0)− r(x, 0).

Solve ut = uxx first (with no source). This is the
fundamental solution with homogenous B.C. in order
to find the eigenvalues and eigenfunctions Φn(x). For

example Φn(x) = sin(
√
λx). Since Φn(x) is needed to

expand Q(x, t) with.

Since source Q(x, t) is time and space dependent,
eigenfunction expansion is now used. Let
u(x, t) =

∑∞
n an(t)Φn(x) where now an(t) includes

all time dependent terms (this is not the same as
e−kλt, which will be found in the next step

Plug u(x, t) =
∑∞
n an(t)Φn(x) into ut = uxx +Q(x, t)

to obtain an ODE to solve for an(t).

Expand Q(x, t) using the same eigenfunction
Φn(x) giving Q(x, t) =

∑∞
n qn(t)Φn(x)

Above step gives∑∞
n a′n(t)Φn(x) = k

∑∞
n an(t)Φ′′n(x) +

∑∞
n qn(t)Φn(x). Be

careful with the term by term differentiation done above. This
is justified if u0 and ∂u0

∂x
are continuous. Replacing Φ′′n(x) by

−λΦn(x) since this is an eigenfunction. This reduces the
above to first order ODE to solve a′n(t) + kλnan(t) = qn(t).
The solution using integrating factor is

an(t) = an(0)e−kλnkt + e−λnkt

∫ t

0
qn(τ)eλnkτ | dτ

qn(t) is found from Q(x, t) =
∑∞
n qn(t)Φn(x). Applying

orthogonlity gives qn(t) = 2
L

∫ L
0 Q(x, t)Φn(x) dx

an(0) is found from from initial conditions u(x, 0). Since
u(x, 0) =

∑∞
n an(0)Φn(x), applying orthognality gives

an(0) =
∫L
0 u0(x,0)Φn(x) dx∫L

0 Φ2
n(x)

u(x, t) = u0(x, t) + r(x, t) is now complete.

Source
depends on
time also?

solve PDE for u0(x, t) with
time dependent source but
homogeneous BC

u(x, t) =
∑∞
n an(t)Φn(x) is now found

YES

u(0, x) = 0
u(L, t) = 0

homogeneous
boundary
conditions?

YES

by Nasser M Abbasi
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Figure 2: original heat PDE flow chart
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2 Wave PDE

Solve for ψ(r, θ, φ, t) where ∂ψ2

∂t2
= c2∇ψ (Wave PDE in 3D spherical coordinates)

Let ψ = T (t)X(r, θ, φ). First
seperation gives the following two
equations

T ′′(t) + c2k2T (t) = 0

∇2X + k2X = 0

k2 is first
separation constant

T (t) = cos(ωt) + sin(ωt)
solution

Helmholtz eqution

Let X = R(r)Θ(θ)Φ(φ) and apply separation again.

Φ′′ +m2Φ = 0

solve first, m2 is separation constant

Φ (φ) =

{
eimφ

e−imφ

}

(
1− x2

)
Θ′′ − 2xΘ′ +

(
l (l + 1)− m2

1+x2

)
Θ = 0

angular equation.
Second sepration. Use
l(l + 1) as separation
constant.

Associated legendre equation
Note: l is integer and −l ≤ m ≤ l

solution

Θ (x) =

{
Pml (x)
Qml (x)

}
solution

associated Legendre
polynomial of first kind

associated Legendre
polynomial of second kind.
not used. blows up x = ±1

x = cos θ

r2R′′ + 2rR′ + (r2k2 − l(l + 1))R = 0

Radial equation
(Bessel like)

Can be converted to standard Bessel ODE
by some transformation (not shown)

solution
R(r) =

{
jl(kr)
yl(kr)

}shperical bessel
function first kind

shperical bessel
function second kind.
Not used as it blows
up at r = 0

Final solution is summation of fundamental solution∑
jl (kr)P

m
l (cos(mφ) + sin(mφ)) (cosωt+ sinωt)

⇓

ω = ck

Solve for ψ(r, φ, t) where ∂ψ2

∂t2
= c2∇ψ (Wave PDE in 2D disk, polar coordinates).

Membrane is fixed on edge of disk. Radius a.

Let ψ = T (t)X(r, φ). First
seperation gives the following two
equations

T ′′(t) + c2k2T (t) = 0

∇X + k2X = 0

k2 is first
separation constant

T (t) = cos(ωt) + sin(ωt)
solution

Helmholtz eqution

ω = ckmn

Let X = R(r)Φ(φ) and apply separation again.

Φ′′ +m2Φ = 0

solve first, m2 is separation constant

Φ (φ) =

{
eimφ

e−imφ

}
solution

Due to periodicity, m must be integer.

r2R′′ + rR′ + (r2k2 −m2)R = 0

Radial equation

Bessel ODE

solution
R(r) =

{
Jm(kr)
Ym(kr)

}Bessel function order m

Bessel function second kind.
Not used as blow up at r = 0

Jm(ka) = 0 from boundary conditions. This fixes k. Let Zmn be the nnt zero
of the Bessel Jm function. Therefore kmn = Zmn

a
are allowed values of k.

ψ ∝ Jm(kmnr) (cos(mφ) + sin(mφ)) This gives rise to modal shapes
ψ(r, φ, t) =

∑
Jm(kmnr) (cos(mφ) + sin(mφ)) (cos(ckmnt) + sin(ckmnt)) Nasser M. Abbasi December 14, 2018

3DSpherical coordinates (ISO/Physics convention)

∇2u(r, θ, φ) = urr + 2
rur + 1

r2

(
cos θ
sin θ uθ + uθθ

)
+ 1

r2 sin2 θ
uφφ

r

θ

x

y

z

φ Azimuthal angle

Polar angle

r

θ

x

y

z
Polar angle
solution in terms of
associated
Legendre
polynomials

Radial solution in terms of
spherical Bessel functions of
first kind

Azimuth angle
solution in terms of
exponentials

x

y

r
x

y

r

y

2D polar coordinates

∇2u = urr + 1
rur + 1

r2uθθ

θ
r

x

y

radial solution in
terms of Bessel
functions

polar angle
solution in terms of
exponentials

φ

Figure 3: Wave PDE flow chart
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