function nma_PCAaccuracy
%function nma_PCAaccuracy
%
% This is the main function to perform cancer detection
% accuracy analysis using the PCA algorithm

%short description: The matlab file requires that you have the following
%text files in the same folder as this file:
%
%      imputed_bladder.txt
%      imputed_liver.txt
%
%Next, you need to set a flag (see below) to indicate which of the above
%files to process. Only one file can be processed at one time.
%
%At the start of the file below, there is a CONFIGURATION section.
%one only need to edit this section before running this file.

%change history
% 041607 nabbasi added stats to check for sample classification
% 041907 nabbasi added logic to count how many samples go to correct bin
% 041907 nabbasi added support for more than one mode in doStats
% 042007 nabbasi modification of 3rd algorithm (combination) on how to
%                count accuracy, changes per Dr Lee input.
% 042007 nabbasi changed the order of check in the 3rd algorithm
% 060207 nabbasi Clean up code more and add more comments
%                before meeting with Dr Lee on 6/8/07

% project for Math 501 spring 2007
% Nasser Abbasi

clear all
close all
pause(1); %wait for windows to close, there seems to be bug in new matlab

%%%%%%%%% CONFIGURATION SECTION, EDIT ONLY THIS %%%%%%%%%%%%%%%%

REMOVE_MEAN_FROM_RAW_DATA = 1;  %do not change
USE_BLADDER_DATA          = 0;  %make this 1 to use LIVER data

PROJ_ON_TUMOR  = 1;  % do not change
PROJ_ON_NORMAL = 2;  % do not change

DO_CUT_OF_TEST = 1;  % change to 1 to do the excluded set test, i.e.
                     % changing the size of excluded set to see its
                     % effect on accuracy

NTEST = 10;  %number of tests: number of projection matrices to generate
ALL    = 0;  %set that to 1 to do statistical analysis on projections
             %this will do the original stats plots, but it is not
             %related to accuracy, so leave this set to ZERO if only
             %interested in accuracy results.

NMODE  = 3;  %This is the number of primary eignemodes to use.

nfig   = 1;  %This is figure counter. Leave at 1.

if DO_CUT_OF_TEST
    CUTOFF = 0.05:0.20:0.95;
else
    CUTOFF = .70:.70; % percentage of samples to remove before
                        % using the rest for eigensample. Use 70% of
                        % population to generate eigenmode.
end

if USE_BLADDER_DATA
    trueNormalIndex =  103:124 ; %bladder
    trueTumorIndex  = [1:6,8:102,125,126]; %bladder
else
    trueTumorIndex  = [4,9:112];  %liver
    trueNormalIndex = 116:191;  %liver
end

%%%%%%%%%%%%%%%%%%%% END CONFIGURATION %%%%%%%%%%%%%%%%%%%%%%%%%

if USE_BLADDER_DATA
    fprintf('***** BLADDER DATA ANALYSIS ********\n');
    xraw = load('imputed_bladder.txt');
else
    fprintf('***** LIVER DATA ANALYSIS ********\n');
    xraw = load('imputed_liver.txt');
end

if REMOVE_MEAN_FROM_RAW_DATA
    nrx=size(xraw,1);
    for i=1:nrx
        xraw(i,:)=xraw(i,:)-mean(xraw(i,:));
    end
end

nCutOff=length(CUTOFF);

tpt=zeros(nCutOff,1);
npt=tpt; tpn=tpt; npn=tpt; tpMixed=tpt; npMixed=tpt;

for z=1:nCutOff
    projectAndAnalyse(CUTOFF(z));
end

    function projectAndAnalyse(currentCutOff)
        fprintf('\n========> Number of trails=%d\n',NTEST);
        fprintf('percentage of samples used in generation of eigensample is =%3.3f%%\n',...
            (currentCutOff)*100);
        fprintf('Number of eigenmode=%d\n\n',NMODE);

        %%%%%%%%%%%%%  DO THE PROJECTION ON TUMOR  %%%%%%%%%%%%%

        tumorSetSize   = length(trueTumorIndex);
        normalSetSize  = length(trueNormalIndex);

        workingPopulationTumorFirst = xraw(:,[trueTumorIndex trueNormalIndex]);

        sizeOfExcludedSet = floor((1-currentCutOff)*length(trueTumorIndex));
        projMatOnTumor    = zeros( tumorSetSize+normalSetSize, NMODE, NTEST);

        projMatOnTumor= process_2(workingPopulationTumorFirst,...
            tumorSetSize,...
            projMatOnTumor,...
            sizeOfExcludedSet);

        if ALL
            nfig=analyzeProjectionMatrix(projMatOnTumor,...
                tumorSetSize,...
                PROJ_ON_TUMOR,...
                nfig);
        end

        %%%%%%%%%%  DO THE PROJECTION ON NORMAL %%%%%%%%%%%%%%%%%%%

        %Call it now with flipping tumor/normal around
        workingPopulationNormalFirst = xraw(:,[trueNormalIndex trueTumorIndex]);
        sizeOfExcludedSet = floor((1-currentCutOff)*length(trueNormalIndex));

        projMatOnNormal = zeros(tumorSetSize+normalSetSize, NMODE, NTEST);

        projMatOnNormal = process_2(workingPopulationNormalFirst ,...
            length(trueNormalIndex),...  %notice, fliped
            projMatOnNormal,...
            sizeOfExcludedSet);

        %flip the result of the above call so that tumor sample is first as before
        B=projMatOnNormal([normalSetSize+1:end,1:normalSetSize],:,:);

        if ALL
            nfig=analyzeProjectionMatrix(B, ...
                length(trueNormalIndex),...       %notice, flipped
                PROJ_ON_NORMAL,...
                nfig);
        end

        [tpt(z),npt(z),tpn(z),npn(z),tpMixed(z),npMixed(z)]=...
                                  doStats(projMatOnTumor,B,tumorSetSize);
    end

figure;
plot(100*CUTOFF,tpt,'r')
hold on;
plot(100*CUTOFF,tpn,'k')
plot(100*CUTOFF,tpMixed,'b')
legend('projection against tumor','projection against normal','projection against combination');
title(sprintf('Liver data: accuracy of detection of cancer a function of the size\nof the random set used to generate dominant component'));
xlabel(sprintf('%% of the population used to generate the dominant component'));
ylabel('accuracy of detecting that a sample is cancerous');
ylim([-1 103]);
print -dtiff bladder_detect_cancer_all_algorithms

figure;
plot(100*CUTOFF,npt,'r')
hold on;
plot(100*CUTOFF,npn,'k'); hold on;
plot(100*CUTOFF,npMixed,'b');
legend('projection against tumor','projection against normal','projection against combination');
title(sprintf('Liver data: accuracy of detection of cancer-free as a function of the size\n of the random set used to generate dominant component'));
xlabel(sprintf('%% of the population used to generate the dominant component'));
ylabel('accuracy of detecting that a sample is cancer-free');
ylim([-1 103]);
print -dtiff bladder_detect_cancer_free_all_algorithms
%set(gca,'XTickLabel',{'5';'10';'15';'20';'25';'30';'35';'40';'45';'90';'100'})

if 1
    % plot above projections next to each others
    figure;
    %subplot(1,2,1);
    projMat=squeeze(B(:,1,:));
    [nr,nc]=size(projMat);
    pltProjMat=projMat;
    pltProjMat(nr+1,:)=pltProjMat(nr,:);
    pltProjMat(:,nc+1)=pltProjMat(:,nc);
    pcolor(pltProjMat)
    colorbar
    xlabel('Case Number')
    set(gca,'XTick',10:10:100);
    ylabel('Sample number')
    title('Projections on normal Component')

    %subplot(1,2,2);
    figure;
    projMat=squeeze(projMatOnTumor(:,1,:));
    [nr,nc]=size(projMat);
    pltProjMat=projMat;
    pltProjMat(nr+1,:)=pltProjMat(nr,:);
    pltProjMat(:,nc+1)=pltProjMat(:,nc);
    pcolor(pltProjMat)
    colorbar
    xlabel('Case Number')
    set(gca,'XTick',10:10:100);
    ylabel('Sample number')
    title('Projections on tumor Component')
end

end

%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% tpt= tumor projection on tumor
% npt= normal projection on tumor
% tpn= tumor projection on normal
% npn= normal projection on normal
% tpMixed= tumor projection on combination
% npMixed= normal projection on combination
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tpt,npt,tpn,npn,tpMixed,npMixed]=doStats(...
    projMatOnTumor,projMatOnNormal,tumorSetSize)

maxNumberOfModes=size(projMatOnTumor,2);

for i=1:maxNumberOfModes
    fprintf('\n***** results for number of dominant modes of %d\n',i);
    [tpt,npt]=checkProjectionOnTumor(projMatOnTumor,...
        tumorSetSize,...
        i);
    fprintf('result of classification of sample based on correlation with Tumor mode\n');
    fprintf('Correct tumor detect=%%%3.2f, Correct normal detect=%%%3.2f\n',tpt,npt);

    [tpn,npn]=checkProjectionOnNormal(projMatOnNormal,tumorSetSize,i);
    fprintf('\nresult of classification of sample based on correlation with normal mode\n');
    fprintf('Correct tumor detect=%%%3.2f, Correct normal detect=%%%3.2f\n',tpn,npn);

    [tpMixed,npMixed,nUndecided]=checkProjectionOnCombination(projMatOnTumor,...
        projMatOnNormal,tumorSetSize,i);
    fprintf('\nresult of classification of sample based on correlation with combination of modes\n');
    fprintf('Correct tumor detect=%%%3.2f, Correct normal detect=%%%3.2f, Unable to classify=%%%3.2f\n',...
        tpMixed,npMixed,nUndecided);
end

end
%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tumorSamplesDetectOkCount,normalSamplesDetectOkCount]=...
    checkProjectionOnTumor(projMatOnTumor,tumorSetSize,nMode)

tumorSamplesDetectOkCount  = 0;
normalSamplesDetectOkCount = 0;
nCases = size(projMatOnTumor,3);
totalSampleSize = size(projMatOnTumor,1);


for i = 1:nCases  %over number of cases
    for j = 1:totalSampleSize

        pOnTumor = 0;
        for k=1:nMode
            pOnTumor=pOnTumor+projMatOnTumor(j,k,i);
        end

        if pOnTumor>0
            if j<=tumorSetSize
                tumorSamplesDetectOkCount  =  1+ tumorSamplesDetectOkCount;
            end
        else %assume normal, check if correct
            if j>tumorSetSize
                normalSamplesDetectOkCount  =  1+ normalSamplesDetectOkCount;
            end
        end
    end
end

%convert to percentages
tumorSamplesDetectOkCount=tumorSamplesDetectOkCount*100/(nCases*tumorSetSize);
normalSamplesDetectOkCount=normalSamplesDetectOkCount*100/(nCases*(totalSampleSize-tumorSetSize));

end
%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tumorSamplesDetectOkCount,normalSamplesDetectOkCount]=...
    checkProjectionOnNormal(projMatOnNormal,tumorSetSize,nMode)

tumorSamplesDetectOkCount   = 0;
normalSamplesDetectOkCount  = 0;

nCases = size(projMatOnNormal,3);
totalSampleSize = size(projMatOnNormal,1);

for i = 1:nCases  %over number of cases
    for j = 1:totalSampleSize

        pOnNormal = 0;
        for k = 1:nMode
            pOnNormal = pOnNormal+projMatOnNormal(j,k,i);
        end

        if pOnNormal>0
            if j>tumorSetSize
                normalSamplesDetectOkCount  =  1+ normalSamplesDetectOkCount;
            end
        else %assume tumor, check if correct
            if j<=tumorSetSize
                tumorSamplesDetectOkCount  =  1+ tumorSamplesDetectOkCount;
            end
        end
    end
end

%convert to percentages
tumorSamplesDetectOkCount  = tumorSamplesDetectOkCount*100/(nCases*tumorSetSize);
normalSamplesDetectOkCount = normalSamplesDetectOkCount*100/(nCases*(totalSampleSize-tumorSetSize));

end
%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [tumorSamplesDetectOkCount,normalSamplesDetectOkCount,notDetectedCount]=...
    checkProjectionOnCombination(projMatOnTumor,...
    projMatOnNormal,...
    tumorSetSize,...
    nMode)

nCases = size(projMatOnTumor,3);
totalSampleSize = size(projMatOnTumor,1);
normalSetSize   = totalSampleSize-tumorSetSize;

tumorSamplesDetectOkCount  = 0;
normalSamplesDetectOkCount = 0;
tumorNotSure  = 0;
normalNotSure = 0;

for i = 1:nCases  %over number of cases
    result=zeros(totalSampleSize,1);
    for j = 1:totalSampleSize

        pOnTumor  = 0;
        for k = 1:nMode
            pOnTumor = pOnTumor+projMatOnTumor(j,k,i);
        end

        pOnNormal = 0;
        for k=1:nMode
            pOnNormal = pOnNormal+projMatOnNormal(j,k,i);
        end

        if  pOnTumor>0 || (pOnTumor-pOnNormal)>0
            result(j) = 1; % tumor
        elseif pOnNormal>0
            result(j) = 0; % normal
        else
            result(j) = -1; %unsure
        end
    end

    tumorSamplesDetectOkCount  = tumorSamplesDetectOkCount + sum(result(1:tumorSetSize)==1);
    normalSamplesDetectOkCount = normalSamplesDetectOkCount+sum(result(tumorSetSize+1:end)==0);
    tumorNotSure  = tumorNotSure  + sum( result(1:tumorSetSize) == -1);
    normalNotSure = normalNotSure + sum( result(tumorSetSize+1:end) == -1);
end

%convert to percentages

tumorSamplesDetectOkCount  = tumorSamplesDetectOkCount*100/(nCases*tumorSetSize-tumorNotSure);
normalSamplesDetectOkCount = normalSamplesDetectOkCount*100/(nCases*normalSetSize-normalNotSure);
notDetectedCount = (tumorNotSure+normalNotSure)*100/(nCases*totalSampleSize);

end
%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function plotProjection(B,nFig)

figure(nFig);
projMat=squeeze(B(:,1,:));
[nr,nc]=size(projMat);
pltProjMat=projMat;
pltProjMat(nr+1,:)=pltProjMat(nr,:);
pltProjMat(:,nc+1)=pltProjMat(:,nc);
pcolor(pltProjMat)
colorbar
xlabel('Case Number')
set(gca,'XTick',10:10:100);
ylabel('Sample number')

end

%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%
function projMat=process_2(xraw,...
    tumorSetSize,...
    projMat,...
    sizeOfExcludedSet)

if sizeOfExcludedSet>=tumorSetSize
    error('projMat: working set size is too small.');
end

ntests = size(projMat,3);

for k = 1:ntests
    if mod(k,50)==0
        fprintf('case # %d\n',k);
    end

    z = randperm(tumorSetSize);                             %nabbasi
    primaryTumorIndex = z(sizeOfExcludedSet+1:end);

    projMat = getProjectionMatrix(xraw(:,primaryTumorIndex), ...
        xraw, ...
        k, ...
        projMat);
end

end
%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function s=getTitlePrefix(projectionType)

PROJ_ON_TUMOR  = 1;
PROJ_ON_NORMAL = 2;

if projectionType==PROJ_ON_TUMOR
    s='[project on tumor]';
elseif  projectionType==PROJ_ON_NORMAL
    s='[project on normal]';
end

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function setLegend(projectionType)

PROJ_ON_TUMOR  = 1;
PROJ_ON_NORMAL = 2;

if projectionType==PROJ_ON_TUMOR
    legend('tumor','normal');
elseif  projectionType==PROJ_ON_NORMAL
    legend('tumor','normal');
end

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function projMat=getProjectionMatrix(...
    x,...      %set of tumor samples only to use to generate mode
    xraw,...   %the universe
    k,...      %test case number
    projMat)

nModes=size(projMat,2);

%%%%%%%%%% Generate covariance  THETA matrix %%%%%%%%%%%%%%%%%%%%%
nSamples = size(x,2);

gridSize = size(x,1);
theta    = zeros(nSamples);

for i=1:nSamples
    vi = x(:,i);
    for j=i:nSamples
        vj=x(:,j);
        theta(i,j) = vi'*vj/gridSize/nSamples;
        theta(j,i) = theta(i,j);
    end
end

%%%%%%%%% GENERATE DOMINANT EIGENSAMPLES  PHI VECTORS **********
[u,lam]    = eig(theta);
[lam, ind] = sort(-diag(lam));
%lam        = -lam;
u          = u(:,ind');

for i=1:nSamples
    u(:,i) = u(:,i)/norm(u(:,1),1);   %nabbasi 041407
end

%%%%%%%% Normalized eigenvectors %%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1:nModes %nabbasi 041407
    phi(:,i)=zeros(gridSize,1);
    for j=1:nSamples
        phi(:,i)=phi(:,i)+u(j,i)*x(:,j);
    end
    phi(:,i)=phi(:,i)/norm(phi(:,i));
end

% Determine sign for dominant eigenvector...select sign so that the sum
% of the projections of the tumor samples used for the POD is greater
% than 1.

for j=1:nModes   %nabbasi 041407
    sumP1(j)=0.;

    for i=1:nSamples
        sumP1(j)=sumP1(j)+sum(x(:,i)'*phi(:,j));
    end
    sumP1(j);
    if sumP1(j) < 0
        phi(:,j)=-phi(:,j);
    end

    % Projections...
    for i=1:size(xraw,2)
        projMat(i,j,k) = xraw(:,i)'*phi(:,j);
    end
end

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function nFig=analyzeProjectionMatrix(projMatA,...
    npta,... % length, from start of matrix of tumor (or normal) samples
    projectionType,...
    nFig)

titlePrefix = getTitlePrefix(projectionType);

nModes = size(projMatA,2);                               %nabbasi 041407
ntests = size(projMatA,3);

% for plotting, need to duplicate the last row and
% column so they will be plotted

for j=1:nModes
    projMat=squeeze(projMatA(:,j,:));
    [nr,nc]=size(projMat);
    outData(j).pltProjMat=projMat;
    outData(j).pltProjMat(nr+1,:)=outData(j).pltProjMat(nr,:);
    outData(j).pltProjMat(:,nc+1)=outData(j).pltProjMat(:,nc);
end

for j=1:nModes
    nFig=nFig+1;
    figure(nFig)
    pcolor(outData(j).pltProjMat)
    colorbar
    xlabel('Trial Number')
    set(gca,'XTick',10:10:100);
    ylabel('Sample number')

    title(sprintf('%s, Projections on Component number [%d]',titlePrefix,j))
    %print -dtiff liver_projection1_random  %FIX ME
end

% Statistics for projections
for i=1:nModes
    tumorMean(i,:) = mean(outData(i).pltProjMat(1:npta,:));
    tumorStd(i,:)  = std(outData(i).pltProjMat(1:npta,:));
    normalMean(i,:)= mean(outData(i).pltProjMat((npta+1):size(outData(i).pltProjMat,1),:));
    normalStd(i,:) = std(outData(i).pltProjMat((npta+1):size(outData(i).pltProjMat,1),:));
end

save chenLiverSave

% Investigate whether or not the normal distribution assumption is valid
% Just do for representative case

k=1;
for j=1:ntests
    caseNo=j;
    znormal=sort((outData(k).pltProjMat((npta+1):size(outData(k).pltProjMat,1),...
        caseNo)-mean(normalMean(k,:)))/mean(normalStd(k,:)));

    ztumor=sort((outData(k).pltProjMat(1:npta,caseNo)-mean(tumorMean(k,:)))/...
        mean(tumorStd(k,:)));
    nmax=length(znormal);
    for i=1:nmax
        alphaLevel=i/nmax;
        zalpha_normal(i)=norminv(alphaLevel,0,1);
    end
    nmax=length(ztumor);
    for i=1:nmax
        alphaLevel=i/nmax;
        zalpha_tumor(i)=norminv(alphaLevel,0,1);
    end
    if 0
        nFig=nFig+1;
        figure(nFig)
        subplot(2,1,1)

        plot(zalpha_tumor,ztumor,'k*',zalpha_tumor,zalpha_tumor,...
            'k:',zalpha_tumor,3+zalpha_tumor,'k:',zalpha_tumor,zalpha_tumor-3,'k:')

        title(sprintf('%s, Chen Liver Cancer - Tumor Samples - Component %d',titlePrefix,k));
        xlabel('Standard Normal Percentile')
        ylabel('Normalized projection')
        hold on
        subplot(2,1,2)

        plot(zalpha_normal,znormal,'k*',zalpha_normal,zalpha_normal,'k:',...
            zalpha_normal,3+zalpha_normal,'k:',zalpha_normal,zalpha_normal-3,'k:')

        title(sprintf('%s, Normal Samples',titlePrefix));
        xlabel('Standard Normal Percentile')
        ylabel('Normalized projection')
        hold on
    end
end

subplot(2,1,1)
hold off
subplot(2,1,2)
hold off

ctr=1:ntests;
k=1;
x=-80:0.1:80;
ftumor=1/sqrt(2*pi)/mean(tumorStd(k,:))*exp(-(x-mean(tumorMean(k,:))).^2/(2*mean(tumorStd(k,:))^2));
fnormal=1/sqrt(2*pi)/mean(normalStd(k,:))*exp(-(x-mean(normalMean(k,:))).^2/(2*mean(normalStd(k,:))^2));
nFig=nFig+1;

figure(nFig);
plot(x,ftumor,'r-',x,fnormal,'k-')

setLegend(projectionType);
title(sprintf('%s, Chen Liver Cancer Normal Distribution Curves - Component %d',titlePrefix,k));
xlabel('Projection Value')
ylabel('Normal Probability Density Function')


% Try using sum of the first two projections
sumProjMat=0;
for j=1:nModes   %nabbasi 041407
    sumProjMat=sumProjMat+outData(j).pltProjMat;
end
sumTumorMean=mean(sumProjMat(1:npta,:));
sumTumorStd=std(sumProjMat(1:npta,:));
sumNormalMean=mean(sumProjMat((npta+1):size(sumProjMat,1),:));
sumNormalStd=std(sumProjMat((npta+1):size(sumProjMat,1),:));

% Check normal distribution assumption
nFig=nFig+1;
figure(nFig);

for j=1:ntests
    caseNo=j;
    znormal=sort((sumProjMat((npta+1):size(sumProjMat,1),caseNo)-mean(sumNormalMean))/mean(sumNormalStd));
    ztumor=sort((sumProjMat(1:npta,caseNo)-mean(sumTumorMean))/mean(sumTumorStd));
    nmax=length(znormal);
    for i=1:nmax
        alphaLevel=i/nmax;
        zalpha_normal(i)=norminv(alphaLevel,0,1);
    end
    nmax=length(ztumor);
    for i=1:nmax
        alphaLevel=i/nmax;
        zalpha_tumor(i)=norminv(alphaLevel,0,1);
    end
    figure(nFig)
    subplot(2,1,1)
    plot(zalpha_tumor,ztumor,'k*',zalpha_tumor,zalpha_tumor,'k:',zalpha_tumor,3+zalpha_tumor,'k:',zalpha_tumor,zalpha_tumor-3,'k:')

    title(sprintf('%s, Chen Liver Cancer - Tumor Samples - Sum of Projections onto Components 1,2,3',titlePrefix));
    xlabel('Standard Normal Percentile')
    ylabel('Normalized projection')
    hold on
    subplot(2,1,2)
    plot(zalpha_normal,znormal,'k*',zalpha_normal,zalpha_normal,'k:',zalpha_normal,3+zalpha_normal,'k:',zalpha_normal,zalpha_normal-3,'k:')

    title(sprintf('%s, Normal Samples',titlePrefix));
    xlabel('Standard Normal Percentile')
    ylabel('Normalized projection')
    hold on
end
subplot(2,1,1)
hold off
subplot(2,1,2)
hold off
%print -dtiff liver_checkNormalSum

ftumor=1/sqrt(2*pi)/mean(sumTumorStd)*exp(-(x-mean(sumTumorMean)).^2/(2*mean(sumTumorStd)^2));
fnormal=1/sqrt(2*pi)/mean(sumNormalStd)*exp(-(x-mean(sumNormalMean)).^2/(2*mean(sumNormalStd)^2));
nFig=nFig+1;
figure(nFig)
plot(x,ftumor,'k-',x,fnormal,'r-')
setLegend(projectionType);

title(sprintf('%s, Chen Liver Cancer Normal Distribution Curves - Sum of Projections onto Components 1,2,3',titlePrefix));
xlabel('Projection Value')
ylabel('Normal Probability Density Function')
%print -dtiff liver_normalDistSum

%tumorCDF1 = normcdf(0,mean(tumorMean(1,:)),mean(tumorStd(1,:)));
%tumorCDF2 = normcdf(0,mean(tumorMean(2,:)),mean(tumorStd(2,:)))
%sumCDF = normcdf(0, mean(sumTumorMean), mean(sumTumorStd));

tMu=mean(tumorMean(1,:));
tSigma=mean(tumorStd(1,:));
nMu=mean(normalMean(1,:));
nSigma=mean(normalStd(1,:));
ftumor=normpdf(x,tMu,tSigma);
fnormal=normpdf(x,nMu,nSigma);
xp=-80:1:80;

%ft=1/sqrt(2*pi)/tSigma*exp(-(x-tMu).^2/(2*tSigma^2));
%fn=1/sqrt(2*pi)/nSigma*exp(-(x-nMu).^2/(2*nSigma^2));
% Check if cancer
ft=normpdf(xp,tMu,tSigma);
fn=normpdf(xp,nMu,nSigma);
fp=normpdf(xp,tMu+nMu,sqrt(tSigma^2+nSigma^2));
lrt=1-fn./((ft+fn));
% for i=1:length(xp)
%     if (xp(i) < -19)
%         if lrt(i)>.5*(ft(i)+fn(i))
%             lrt(i)=.5*(ft(i)+fn(i));
%         end
% 	end
%     %lrt(i)=1-fn(i)./(ft(i)+fn(i));
% end
%lrt=ft./fp;
nFig=nFig+1;
figure(nFig)
plot(x,ftumor,'k-',x,fnormal,'r-')
hold on

figure(nFig)
[AX,H1,H2] = plotyy(x,ftumor,xp,lrt,'plot');
plotyy(x,ftumor,xp,lrt)
xlabel('Projection')
set(get(AX(1),'Ylabel'),'String','Distribution Function')
set(get(AX(2),'Ylabel'),'String','Prob of Cancer')
grid on
set(AX(1),'YTick',0:.02:.1)
set(AX(2),'YTick',0:.2:1)
set(AX(1),'YColor',[0 0 0])
set(AX(2),'YColor',[0 0 0])

title(sprintf('%s, Chen Liver Cancer Normal Distribution Curves & Prob of Cancer',titlePrefix));
hold off
% print -dpng normDist_probCancer

if 0
    x=-100:.1:100;
    mt=mean(tumorMean(1,:));    mn=mean(normalMean(1,:));
    st=mean(tumorStd(1,:));     sn=mean(normalStd(1,:));

    ft=normpdf(x,mt,st); %1/sqrt(2*pi)/st*exp(-(x-mt).^2/(2*st^2));
    fn=normpdf(x,mn,sn); %1/sqrt(2*pi)/sn*exp(-(x-mn).^2/(2*sn^2));
    pcancer=ft./(ft+fn);
    figure(10)
    plot(x,pcancer)
    title(sprintf('%s, Chen Liver Cancer Study - Probability of Cancer',titlePrefix));
    xlabel('Projection Value')
    ylabel('Probability of Cancer')
end

nFig=nFig+1;
figure(nFig)
plot(x,ftumor,'k-',x,fnormal,'r-.')
title(sprintf('%s, Chen Liver Cancer Normal Distribution Curves',titlePrefix))
xlabel('Projection Value')
ylabel('Normal Distribution')
axis([-40 50 0 0.08])
setLegend(projectionType);

nFig=nFig+1;
figure(nFig)
if nFig==8 || nFig==16 || nFig==24
    ptumor=1-fnormal./(ftumor+fnormal);
    figure(8);
    hold on;
    if nFig==8
        plot(x(501:1601),ptumor(501:1601),'r-')
    elseif nFig==16
        ptumor=1-fnormal./(ftumor+fnormal);
        plot(x(501:1601),ptumor(501:1601),'b-')
    else
        plot(x(501:1601),ptumor(501:1601),'k-')
        legend('Project on Tumor','Project on Normal','Project on Tumor-Normal');
    end

    title(sprintf('%s, Chen Liver Cancer - Probability of Cancer',titlePrefix));
    xlabel('Projection Value')
    ylabel('Probability of Cancer')
    %   axis([-40 50 0 1])
    axis([-80 80 0 1])
end
%print -dpng normDist_probCancer2

xciMean=mean(outData(1).pltProjMat(1:npta,:));
xciStd=std(outData(1).pltProjMat(1:npta,:));
pltciLow=xciMean-xciStd*tinv(.025,npta-1)/sqrt(npta);
pltciHi=xciMean+xciStd*tinv(.025,npta-1)/sqrt(npta);

nFig=nFig+1;
figure(nFig)
xcinormalMean=mean(outData(1).pltProjMat((npta+1):size(outData(1).pltProjMat,1),:));
xcinormalStd=std(outData(1).pltProjMat((npta+1):size(outData(1).pltProjMat,1),:));
pltcinLow=xcinormalMean-xcinormalStd*tinv(.025,npta-1)/sqrt(npta);
pltcinHi=xcinormalMean+xcinormalStd*tinv(.025,npta-1)/sqrt(npta);

if projectionType ~=PROJ_ON_RATIO  %BUG if ratio, figure it out later
    plot(1:ntests,pltciLow(1:ntests),'r:',1:ntests,xciMean(1:ntests),'r-',1:ntests,pltciHi(1:ntests),'r:', ...
        1:ntests,pltcinLow(1:ntests),'k:',1:ntests,xcinormalMean(1:ntests),'k-',1:ntests,pltcinHi(1:ntests),'k:')
    xlabel('Case Number')
    ylabel('95% confidence intervals')

    title(sprintf('%s, 95 percent Confidence Intervals for Means',titlePrefix));
end
end