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A low pass digital filter (IIR) is designed based on given specifications. Butterworth
analog filter H(s) is designed first, then it is converted to digital filter H(z)

Analytical procedure is illustrated below and simplified to allow one to more easily
program the algorithm. Four different numerical examples are used to illustrate the
procedure.

1 Introduction

This report derives a symbolic procedure to design a low pass IIR digital filter from an
analog Butterworth filter using 2 methods: impulse invariance and bilinear transforma-
tion. Two numerical examples are used to illustrate using the symbolic procedure.

There are a total of 13 steps. A Mathematica program with GUI is written to enable
one to use this design for different parameters. A Matlab script is written as well.

1.1 Filter specifications

Filter specifications are 5 parameters. The frequency specifications use analog frequen-
cies, while the attenuation for the passband and the stopband are given in db units.

F, | The sampling frequency in Hz

fe | The passband cutoff frequency in Hz

fs | The stopband corner frequency in Hz
0, | The attenuation in db at f,
0s | The attenuation in db at f,

This diagram below illustrates these specifications
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Figure 1: Minimal specifications



The frequency specifications are in hz, and they are first converted to digital frequencies
w where 0 < |w| < 7 before using the attenuation specifications. The sampling frequency
F is used to do this conversion where F corresponds to 27 on the digital frequency
scale.

2 The design steps

1. Specifications are converted from analog to digital frequencies.

2. Based on design method (impulse invariance of bilinear) the attenuation criteria
is applied to determine 2. and N (the filter order).

3. Using Q. and N the locations of the poles of the butterworth analog filter H(s)
are found.

4. H(z) is determined from H(s). The method of doing this depends if impulse
invariance or bilinear is used. This step is much simpler for the bilinear method
as it does not require performing partial fractions decomposition on H(s).

The analytical design procedure is given below.

2.1 Impulse invariance method

Fo_ f
2T wp?

and wg = 27r1f7f’;. Next, the criteria relative to the digital normalized scale is found

Analog specifications is converted to digital specifications: hence w, = 2%{,—’;

20log |H(ej“’1’)‘ > 0p
201log |H (e’*)| < 6,
Therefore
|H(e/)| > 105 T (A)
|H (/)| < 105T (B)

Notice that T scaling factor was added above. The Butterworth analog filter squared
magnitude Fourier transform is given by

T2

|H,(jQ)* = W



Equations (A) and (B) above are now written in terms of the analog Butterworth
amplitude frequency response giving

Hence

For impulse invariance, Q, = 22 and Q, = %¢. Therefore
y Shp s T

T
2N
1+<w—”/T) <1071 (1)
Q.
2N
1+(W;Z/T) > 1071 2)

Changing inequalities to equalities and simplifying gives

2N

Dividing the above two equations results in
(2)” 107 -1
Ws 1071 — 1
2Nlog (w,) — log (w,)] = log (10—% —1) —log (1075 — 1)

 log [10—% - 1} “log [10—% _ 1]
"2 log (wp) — log (ws)

N

The above is later rounded to the nearest integer using the Ceiling function N = [N].



For impulse invariance method, using equation (1) above to solve for 2. gives

2N
<°"P_/T) — 1075 —1

Q.
T )
ON (1og10 ‘”’{’2/ ) = logy, (10—% - 1)
wy/T 1 _%
logy, ;’2/ = 237 10810 (10 i —1)

wp/T _ 10(ﬁ o810 (10_%_1))
Q.

wy/T

10 (ﬁ log;o (10—% _1)>

Now that N and §2. are found, next the poles of H(s) are determined. Since the

Q. =

butterworth magnitude square of the transfer function is
T2

2N
1+ (%)

Then H (s) poles are found by setting the denominator of the above to zero which gives

s 2N
1 —
* (m) 0

s 2N
(mc) =1

= /lm+2mk)  }—0,1,2,---2N —1
i = ej<7r-g]2\;rk)
7€

s =78, ej(rgfzvﬂk)

[Ha(s)[ =

_q, &3l ()
0 j(r(1+22]§+N))
= c (A

Only the LHS poles needs to be found, and these are located at ¢ = 0--- N — 1. This is
because these are the stable poles. Hence the i** pole is
=0, (05

For an, using ? = 0, N = 6 gives

S0 = ej<W(;1+VN)>

s

= QC ej(ﬁ)



Now the analog filter is generated based on the above selected poles, which for impulse
invariance gives

H,(s) = N_ll (3)
II (s—si)
=0
K is found by solving H,(0) = T which gives
N-1
k= H (—si)
i=0

The poles are written in non-polar form and substituted into (3) which gives

() T(1+2+N) . w(l+2i+N) |
= - - on - - = ) —_
=Q.¢ Q. (cos N + jsin — 0 N_1
Therefore -

H,(s) = 5 . n

IT (5= (cos ™52 4 join 05
Where i
w
Q.= 2 =
10(*1%0 (10°%-1))

And

 log [10—% - 1} “log [10—% - 1]
2 log (wp) — log (ws)

Now that H(s) is found, it is converted to H(z) . We need to make sure that we multiply
poles of complex conjugates with each others to make the result simple to see.

N =

Now that H,(s) is found, the A — D conversion is done. This means to obtain H(z)
from the above H(s). When using impulse invariance, partial fraction decomposition
is performed on (4) above in order to write H(s) as

N-1

HE =3, f’sz

For example, to obtain A; the result is

Tk
-1

1_[ (s —si)

i=0
1#]

A; = lim H,(s) =

8—)81



Once the A’s are found, then H(z) becomes

N-1

— -1
P 1—exp(s

This completes the design. The above form of H(z) could also be converted to rational
N(z)

expression as H(z) = 5.

2.2 Bilinear transformation method

First step is to convert analog specifications to digital specifications: 5—; = f}—’;, hence
= 27r and Wy = 27r
Convertlng the criteria relative to the digital normalized scale gives
20log |H (¢/7)| > 6,
201log ]H(ej‘”s) <,
Hence
. 5p
|[H(e"r)| > 10 (A)
|H(e/)| < 10% (B)

Butterworth analog filter squared magnitude Fourier transform is given by
1
2N
iQ
1+ (fv)

Equations (A) and (B) above are now written in terms of the analog Butterworth
amplitude frequency response and become

1 3p\ 2 bp
- > (10%) — 10%
Q
1+ (Q_,,)
1 85\ 2 bs
5 < <1020> = 10710

()

Values for €, and Q, are assigned as follows: Q, = 2 tan (“2), Q, = 2 tan (%). Hence
the above becomes

|H,(5Q)|* =



2tan ()" .

1+ (T—2> < 1010 (1)
2 ws 2N

1+ <—Ttan(2>> > 10% 2)

Changing inequalities to equalities and simplifying gives

wp \ 2N
(%m@)) T

Qc

2N

Q.

Dividing the above 2 equations results in
2N 5
tan (“2) 101 — 1
(tan (% > N m
2N [log (tan (%)) — log <tan (%)H = log <10% — 1> — log <10% — 1)
qlog (10% . 1) “log (10% - 1)

T2 log (tan (%)) — log (tan (%))

The above is rounded to the nearest integer using the Ceiling function. i.e. N = [N].

For bilinear transformation equation (2) is used to find €2.. Solving for 2. gives

Qc
2 Ws
2N (103;10 T tag( 2 >) = log;, <10 0 — 1)
2 Ws
logyo Tta;( 7) _ 5710810 (10% - 1)
%tan (%) _ 10(%10&0 (10%_1))
Q.
o Atan(y)




Now that N and €. are found, the poles of H(s) can be determined. Since for bilinear
the magnitude square of the transfer function is

1
2N
1+ (%)

Hence H(s) poles are found by setting the denominator of the above to zero

s 2N
1 =
* (m) 0

s 2N
(jﬂc) =

=mH2mk) k=0,1,2,---2N — 1

j;c = 6‘7(%12\;”“)

s =78, ej<%w>

|Ha(s)|” =

= QC ej%ej(w-;?vﬂk)
_ Qc ej(”(1+221'3+N)>
Only need the LHS poles are needed, which are located at ¢ = 0--- N — 1, because these
are the stable poles. Hence the " pole is
s; = Q¢ ej(ﬂ(lg%W))
For example for : = 0, N = 6 the result is
.<7r(1+N)

SOZQC e‘] 2N >=QC e](%)

For bilinear H(s) is given by

H,(s) = N_lL (3)
II (s—si)
=0
K is found by solving H,(0) = 1 giving
N-1
k=1](-s)
i=0

The same expression results for k£ in both cases. Writing poles in non-polar form and
substituting them into (3) gives

.<7r(1+2i+N)) _q (COS 7T(1+2’i+N)

=0---N—1

1+2t+ N
s;i = Qe e’ 2N + jsin M) 7

2N 2N



Then

K
) = | _ (4)
1l <8 - Q (COSW +jsinw»
Where i )
0 = T tan (?s
10(& logyo (10%_1»
And

11ogyo (10% - 1) — logyg <10% - 1)
2 logy, (tan (“2)) — logy, (tan (%))

Now that H(s) is found, it is converted to H(z). After finding H(s) as shown above

then s is replaced by %};gj :

Before doing this substitution, we make sure to multiply poles which are complex conju-
gate of each others in the denominator of H(s). After this, then the above substitution

is made.

This is much simpler than the impulse invariance method.

2.3 Summary of analytical derivation method

Table with the derivation equations is made to follow to design in either bilinear or
impulse invariance. Note that the same steps are used in both designs except for step
5,6,8,13. This table make it easier to develop a program for the implementation

10



step | Impulse invariance common equation bilinear
1 Wy = 2%5—’;
2 Ws = 271'41%
3 ap = 15,,
1010
4 aS = 153
1010
5| Q=% 7 tan (7)
— Ws 2 Ws
6 |[=% 7 tan (%)
_ llog[ap—l]—log[as—l]
7 N = ’72 log(Qp)—log(2s) —‘
J— QP J— Qs
18 e = 10( 2l leg10lep-1]) e = 10(ziv a1
. w(142i+N)
9 polesofH(S)siche’( o) i=0--N—-1
N-1
10 k= 1] (—s:)
i=0
11| Ho(s) = 51 Hy(s) = &
il;IO (S_Si) il;IO (S
do partial fractions:
N-1
12 | Ho(s) = 3 2%
=0
N-1 N
13 Hz) = 2 magitaget H(2) = Hy(s

3 Numerical design examples

3.1 Example 1

Sampling frequency F; = 20khz, passband frequency f, = 2khz, stopband frequency
fs = 3khz, with §, > —1db and d4,p, < —15db

11



3.1.1 using impulse invariance method (using T=1)

step | Impulse invariance

27(2000)

1 |wy =21l — 20 5 027

2 Wy = 27r1{:—z — 27;%%%%0) —0.371

3 ap=1—01%—>m—lﬁr—>1.2589

4 as=m?—>m+lilo5—>31.623

5 Q=% %027

6 | Q=% %" 5037

T | = [ R o el
8 | Q.= Ly — 02 — 0.70321

log10(1.2589-1))

lo(ﬁloglo[al)—l]) 10(2><6

.(7r(1+2'i+N)

(25) =),
9 poles of H(S) s; = Q. e N —s5;=0.70321¢'\ 2 J§i=0---5

so = —0.182 + 50.67925,s; = —0.49724 + 70.4972, s, = —0.67925 + 50.182

s3 = —0.67925 — j0.182, 54 = —0.49724 — 50.497 24, s5; = —0.182 — j0.67925

N-1
10 | k=[] (—s;) — (0.182 — j0.67925) (0.497 24 — 50.497 24) (0.679 25 — j0.182)

=0

(0.67925 + 50.182) (0.49724 + 5j0.49724) (0.182 + j0.67925) — 0.120 92

11 | Hy(s) = 25— —
'];[0 (s—s;)

1x0.120 92
(5-+0.182 —50.679 25)(s+0.497 24—0.497 24)(s-+0.679 25—;0.182) (5+0.679 25+750.182) (5+0.497 24+50.497 24) (s+0.182 +0.679 25)

0.12092

—multiply complex conjugates— (-2-5351570.4945) (270,994 485+ 0.49150) (-2 1358 557 0.40945)

— 0.12092
5642.7170s5+3.691 0s4+3.178 953 +1.825 2524-0.664 385+0.120 92

N-1
- : _ A 0.14354+70.24861 _ 1.0714—;1.1668x10~5 | 0.92785—51.6071
12| partial fraction Hy(s) = >_ 4 5—s,  50.182 4067925  $+0.497244j0.49724 | 540.67925—;0.182
1=l

4 0.92785+351.6071 1.0714+451.166 8x10~° + 0.14354—350.24861
s4-0.679 254-50.182 540.49724—350.497 24 540.1824-50.679 25

N-1
— A; 0.143 54+350.248 61 .
13 H(z) = ;} T—exp(Ts;)z—1 " T—exp(—0.182 +70.67925)z-1
1=

1.0714—;1.1668x10~5 4 0.92785-41.6071
T—exp(—0.49724—50.49724)2— T ' T1—exp(—0.679 25+;0.182)

+ 0.927 854-51.607 1 1.071 4-{—]’1.1668><10_5 + 0.143 54—30.248 61
-1

T—exp(—0.67925—30.182) z T  I1—exp(—0.497 24+;0.497 24)z 1—exp(—0.182 —0.679 25)z~ 1

H(Z) _ 0.143 54+350.248 61 _1.0714—351.1668x10~5 + 0.92785—31.6071
~ 1—(0.648 58+30.52368)z~1 1—(0.53455—30.29012)2—1 1—(0.498 62+59.176 5x10—2)z—1

4 0.92785+351.607 1 __1.0714+351.1668x 10-5 0.14354—350.24861
1—(0.49862—39.176 5x10—2) z—1 1—(0.5%4755+j0.29012)z_1 1—(0.648 58—30.52368)z—1




3.1.2 Bilinear method

1

Using the above design table, these are the numerical values: T' = - = m

13



step | Bilinear
1 |wy =21 - 220 5 027
2 |w,=2mf - 2E0) 037
3 ap = 1511 — 1_1 — 1.2589
1010 1010
4 s = 5 — —25 — 31.623
1010 1010
5 Q, = %tan (‘%) — 2 % 20000 tan (%) — 12997
6 | Q= 2tan (%) — 2 x 20000 tan (%37) — 20381
_ [ 1 loglap—1]—log[as—1] logo(1.258 9—1)—log;(31.623—1)
7 N = [5 glog(Qp)—log(Qs) W -3 glf)ogm(lzggn—105118(20381) — [5.3048] — 6
_ Qs 20381
8 Qc - 10(ﬁ10810[0¢s—1]) _) lo(ﬁlaloglo(314623—l)) _> 153256
. ( w(142i+N) . (w(7424)
9 polesofH(S)si=chJ( 2N >—>si=15325ej< ) i=0---5
S0 = —3966.4 4 714803, s; = —10836 + 510836., so = —14803 + 73966.4
s3 = —14803 — 53966.4, s, = —10836 — 510836., s5 = —3966.4 — 714803
N-1
10 k= ] (—s;) — (3966.4 — 714803) (10836 — 510836) (14803 — 73966.4)
i=0
(14803 + 73966.4) (10836 + 710836) (3966.4 + 714803)
— multiply complex conjugate terms
— (2.3486 x 10%) (2.3484 x 10%) (2.3486 x 10%) — 1.2954 x 10%
11 Ha(S) = # —
IT (s—s:)
=0
1.2954x1025
(5+3966.4—;14803) (5+ 10836 —;10836) (s+ 14803 —3966.4) (s5-+ 14803+3966.4) (5+ 1083615 10836) (s+3966.4+5 14803)
— multiply complex conjugate
1.2954x1025
(s2+7932.85+2.348 6x 10°) (s2+21 6725-+234 837 792) (52+29606.5+2.348 6 10°)
6257.4s—1.3558x10% _ _ 46702.s+5.0604x108 4 _,40445.548.765 4 108 —
T 52+7932.85+2.3486X108  s24+21672.5+2.3484x 105 | 52+29606.5+2.348 6x 108
1.2954x1025
T $5759211.5511.7530x 109571 3.2002x 10133+ 4.116 9x 1017571 3.265 8x 102151 1.205 3x 1025
12
13 H(Z) = Ha(8)|s_g 1—2—1 — TODO

T T 1421

14




3.2 Example 2

Sampling frequency F; = 10khz, passband corner frequency f, = 1khz, stopband corner
frequency fs; = 2khz, with criteria ¢, > —3db and s, < —10db

3.2.1 wusing impulse invariance method

T=1

step | Impulse invariance

27(1000)

_ b
1 wp = 27rF’; — o0~ — 0.27
. fs 27(2000)
2 ws = 27TE — o000~ — 047
3 ap = 1517 — 1,3 — 1-9953
1010 1010

O!s = % _> 110 _) 100
1010 10 10

Q=72 =% 027

4
5
6 |Q=%—>% 504r
7

_ | 1 log[ap—1]—log[as—1] 1 log;¢(1.9953—1)—log;((10.0—1)
N = ’72 log(Qp)—log(£2s) —‘ - 2 1?oglo(0.271')—logl()l(00.47r) — 1.5884 — 2
_ Qp 0.2m
8 QC - 10(ﬁ1°glo[ap_1]) _) 10(2%210g10(1‘9953—1)) _) 0-629 06
. ( w(142i+N) . [ w(34214)
9 poles of H(S) s; = Q. () s; = 0.62906 ) 0.
so = —0.444 81 + 70.444 81, 57 = —0.444 81 — 50.444 81
N-1
10 k= ] (—s;) = (0.44481 — j0.444 81) (0.444 81 + j0.44481) — 0.39571
i=0
_ TK 0.39571 0.395 71
11 H,(s) = Nl__Il(s_s_) 7 (5+0.44481—50.444 81)(5+0.444 814j0.44481) ' 52+0.88962540.395 71
=0 ‘
. . =y, 0.444 815 0.444 81
12 | partial fraction H,(s) = ;} 5—5, 7 540444814044481  s40.44481—0.44481;
0.245 352
7 -1.1572240.41081
N-1
_ Ay 0.444 813 0.444 813
13 H(Z) - Zl—exp(T.si)z—1 - 1—exp(—0.44481—30.44481)2—1 = 1—exp(—0.44481+;0.44481)z1
i=0

15




3.2.2 Using bilinear

_ 1
T= 10000
step | Impulse invariance
> 27(1000

1 | wy=2rf — 205D 0.7
2 |wy=2rL — 2B 5 047
3 o= — -1+ 519953

1070 1010
4 a; = Y5 — —L5 — 10.0

1010 1010
5 | Q,=2tan (%) — 2 x 10000 tan (%27) — 6498.4
6 | Q,=2tan (%) — 2 x 10000 tan (%37) — 14531.

| 1 loglap—1]—log[as—1] 1 log;((1.9953—1)—log;,(10.0—1)

7 N = [5 glog(Qp)—loi(Qs) W 3 %210(6498 4)— 1og1g01?14531) — 1.3681 — 2
8 Q. = 2 — Linil — 8389.5

10(21\, log10[as—1]) 10( log1(10.0— 1))

7(14+2i4+N) m(34+21)

9 poles of H(S) s; Qe( 2N >—>31—83895e( ) i=0---1
Sp = —5932.3 + j5932.3, s; = —5932.3 — j5932.3

N-1
10 | k= J](—s:i) — (5932.3 — j5932.3) (5932.3 + j5932.3) — 7.0384 x 107
i=0
7
11 Ha(s) = Nﬁli—s ) (s+5932.3— 15;3(;33)222932 3+45932.3)
=0
12 N 7.0384x107

52411865.5+7.0384x107

_ 0.09945 922 +0.198 922-+0.09945 9
13 H(z) = H,(s) |3=%ﬁ1—z‘1 - 22—0.931 56240.329 38

+z

Mathematica GUI program is written to implement the above. It can be downloaded

from [here

Also a Matlab script pma_filter.m.txt| was written (no GUI) to implement this
design.

This script (written on Matlab 2007a). This script does not handle the conversion from
H(s) to H(z) well yet, need to work more on this... of course, one can just use Matlab
butter() function for this.

Example output of the above Matlab script is matlab_output.txt|

16


/my_notes/mma_demos/index.htm
code/nma_filter.m.txt
code/matlab_output.txt

4 IIR design for minimum order filter

This is another small note on IIR design for minimum order filter.

This document describes how to design an IIR digital filter given a specification in
which the filter order is specified.

Given the following diagram, the specifications for the design will be

1. Digital filter order (N)
2. fpass, the passband corner frequency (or the cutoff frequency) at —3db. This

means Apqss = —3db
dB
. Filter design
0 specification
Apass """ h
'
]
(]
]
'
Astop ------ d=ccoe- v
' '
' '

freq&e ncy
I:pass I:stop

Figure 2: specifications

4.1 Impulse invariance method

We first convert analog specifications to digital specifications: 5—; = f’ﬁs, hence w, =
f ass

27TI)F—S

Then the cutoff frequency Q. = 52 for impulse invariance.

Next find the poles of H(s). Since the butterworth magnitude square of the transfer

function is
T2

2N
1+ (%)

Hence H(s) poles are found by setting the denominator of the above to zero
s \ 2N
1 =0
+(55)

17

[Ha(s)[ =




And as I did in the earlier document, the poles of H(s) are found at
=0, o)

We only need to find the LHS poles, which are located at ¢ = 0--- N — 1, because these

are the stable poles. Hence the i** pole is
5o = 0, ()

Now we can write the analog filter generated based on the above selected poles, which
is, for impulse invariance

H,(s) = N_IL (3)
H (s —s;)
i=0
K is found by solving H,(0) =T hence
N-1
k=[] (-s)
i=0

Now we need to write poles in non-polar form and plug them into (3)

j(T(42i4N) 1+2%+N 149 + N
<‘>’i=Qc€J< = )=QC(COS—7T( +2]z,+ )+jsin—7r( +21zr+ )) i=0---N—1
Hence,

TK
H,(s) = N-1 4)
H (8 —Q, (cos 7r(1—;2]\zl~l—N) + jsin w(1+2%+1v))>

=0
Now that we have found H(s) we need to convert it to H(z)

We need to make sure that we multiply poles of complex conjugates with each others
to make the result simple to see.

Now that we have H,(s), we do the A — D conversion. I.e. obtain H(z) from the above
H(s). When using impulse invariance, we need to perform partial fraction decomposition
on (4) above in order to write H(s) in this form

For example, to obtain A;, we write

A; = lim H,(s) =

5—S; N-1

18



Once we find all the A’s, we now write H(z) as follows

N-1
A;

H(z) = ; 1—exp(s; T)z1

This completes the design. We can try to convert the above form of H(z) to a rational
N(2)
D(2)

expression as H(z) =

4.2 Dbilinear transformation method

E

We first convert analog specifications to digital specifications: 32

fpass ence wp =
Wp
fpass
2m S

Now Q. = 2 tan (“2)

Now that we have N and Q. we find the poles of H(s). Since for bilinear the magnitude
square of the transfer function is

1
2N
1+ (%)

Hence H(s) poles are found by setting the denominator of the above to zero

s 2N
1 —
* (m) 0

.(«(1+21+N)

Which leads to poles at s; = Q. ’\ 2V ) We only need to find the LHS poles, which
are located at ¢ = 0--- N — 1, because these are the stable poles. For bilinear, H(s) is
given by

|[Ha(s)|” =

e E— (3)

We see that the same expression results for k for both cases.

Now we need to write poles in non-polar form and plug them into (3)

1+2:+ N
Si:chJ +]SIHM>

(mszem) m(14+2i+ N)
2N =0
¢ (COS ON ON
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then
K

Ha(s) = 55 (@)
H ( s—Q, ( cos TE2HN) 4 jgin 7r(1+23\i]+N))>
=0
Now that we have found H(s) we need to convert it to H(z). After finding H(s) as

shown above, we simply replace s by 2= This is much simpler than the impulse

T1+4+2"1"
invariance method. Before doing this substitution, make sure to multiply poles which

are complex conjugate of each others in the denominator of H(s). After this, then do

the above substitution

5 Appendix

The following is listing of the Matlab script, and a sample run output

5.1 Code listing
isource code filel

%Simple matlab script to design an IIR low pass filter using
%butterworth in either impulse inv. or bilinear method.

%

% EE 420, CSU Fullerton
h

% by Nasser M. Abbasi

% 5/5/201

% Filter SPECIFICATIONS

clear all;

close all;

Fs=10000;

£p=1000;

£s=2000;

dbp=-3;

dbs=-10;

BILINEAR=1; Yset this to O to do impulse inv.

Tt oo oo o ToToToToToToTo o o

fprintf ('***x*x STARTING DESIGN *******\n');

20



code/nma_filter.m

fprintf ('Sampling frequency=%f Hz\n',Fs);
fprintf('freq at passband=)f Hz\n',fp);
fprintf('freq at stopband=}f Hz\n',fs);
fprintf('db at passband=Y;f \n',dbp);
fprintf('db at stopband=/f \n',dbs);
if BILINEAR

fprintf ('Doing Bilinear method\n');
else

fprintf('Doing impulse invariance method\n');

end

if BILINEAR
T=1/Fs;
else
T=1;
end

fprintf ('T=Yf\n',T);

wp=2%pix*fp/Fs;
ws=2xpixfs/Fs;
alphap=1/(10~(dbp/10));
alphas=1/(10"(dbs/10));

if BILINEAR

gammap=2/T * tan(wp/2);
else

gammap=wp/T;
end

if BILINEAR

gammas=2/T * tan(ws/2);
else

gammas=ws/T;
end

oldn=.5%(logl10(alphap-1)-logl0(alphas-1))/(logl0(gammap)-loglO(gammas)) ;

n=ceil(oldn);
fprintf('n=Yf, rounded to %d\n',oldn,n);
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if BILINEAR
gammaC=gammas/ (10~ (1/(2*n)*1logl0(alphas-1)));
else
gammaC=gammap/ (10~ (1/(2*n)*1ogl10(alphap-1)));
end

fprintf ('Gamma C =)f\n',gammaC) ;

poles_of_hs=zeros(n,1);
for i=0:n-1

poles_of_hs(i+1)=gammaC*exp (sqrt(-1)*(pi*(1+2*i+n)/(2*n)));
end

fprintf ('POLES Of H(s)\n');
poles_of_hs

k=prod(-poles_of_hs);
den=poly(poles_of_hs);

fprintf('k=)d\n',k);

fprintf ('H(s)=\n',k);

if BILINEAR

hs=tf (k,den)
else

hs=tf (T*k,den)
end

[r,p,k]l=residue(k,den) ;
hzp=zeros(n,1);
for i=1:n

hzp (i)=exp(p(i)*T);
end

fprintf ('POLES Of H(z)\n');
hzp
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‘[B,A]=residue(r,th);
‘fprintf('H(z)=\n',k);
'hz=tf(T*B',A')

5.2 Sample run output

[text output from run|

*%kx*k STARTING DESIGN 3*3¥kkk*%
Sampling frequency=20000.000000 Hz
freq at passband=2000.000000 Hz
freq at stopband=3000.000000 Hz
db at passband=-1.000000

db at stopband=-15.000000

Doing impulse invariance method
T=1.000000

n=5.885783, rounded to 6

Gamma C =0.703205

POLES Of H(s)

poles_of_hs =
-0.182002858631059 + 0.6792439155338871i
-0.497241056902828 + 0.4972410569028281i
-0.679243915533887 + 0.182002858631059i
-0.679243915533887 - 0.182002858631059i
-0.497241056902828 - 0.4972410569028281i
-0.182002858631059 - 0.6792439155338871i

k=1.209183e-001
H(s)=
Warning: Transfer function has complex coefficients.
> In tf.tf at 246
In nma_filter at 92

Transfer function:

(0.1209-1.041e-0161)

s76 + (2.717-4.441e-016i) s~5 + (3.691-1.998e-015i) s~4 + (3.179
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code/matlab_output.txt

-2.22e-015i) s73 + (1.825-1.554e-015i) s~2 + (0.6644-4.996e-0161i) s

+ (0.1209-1.041e-0161i)

POLES 0f H(z)

hzp =
0.534553736986506 + 0.2901159614276231i
0.534553736986506 - 0.2901159614276231i
0.648579932539211 + 0.5236709777967431
0.648579932539211 - 0.5236709777967431
0.498626135868541 - 0.09176688744135621
0.498626135868543 + 0.09176688744135611

H(z)=

Warning: Transfer function has complex coefficients.
> In tf.tf at 246

In nma_filter at 107
Transfer function:

-(0.9938-0.85771i) s”4 - (0.22-0.703i) s~3 + (1.377+1.095i) s~2 - (0.6574

+2.854i) s - (0.9146-1.1141)

-(0.6979+1.411i) s~4 + (0.6009-0.8998i) s~3 - (0.03618-0.9428i) s~2

+ (0.1901+0.7751i) s - (0.6018+0.2461i)

*%kxk* STARTING DESIGN 3*3kkkk*%
Sampling frequency=20000.000000 Hz
freq at passband=2000.000000 Hz
freq at stopband=3000.000000 Hz
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db at passband=-1.000000
db at stopband=-15.000000
Doing Bilinear method
T=0.000050

n=5.304446, rounded to 6
Gamma C =15324.588619
POLES 0f H(s)

poles_of_hs

-3966.29539304108
-10836.1205316146
-14802.4159246557
-14802.4159246557
-10836.1205316146
-3966.29539304108

+ + +

k=1.295188e+025
H(s)=
Warning: Transfer function has complex
> In tf.tf at 246
In nma_filter at 90

Transfer function:

(1.295e025-1.

14802.41592465571
10836.12053161461
3966.295393041091
3966.295393041091
10836.12053161461
14802.41592465571

coefficients.

288e010i)

s76 + (5.921e004-7.276e-012i) s°5 + (1.
+ (3.29€013-0.01172i) s~3 + (4.

2.

POLES 0f H(z)
hzp =
0.498385402712059 +

0.49838540271206 -
0.467705977269569 -

0.

753e009-3.576e-0071i) s~4

117e017-224i) s~2 + (3.265e021

49e006i) s + (1.295e025-1.288e0101i)

299971817994199i
0.299971817994199i
0.09398839450941211
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0.605559876472429 + 0.5530645361185241i
0.467705977269569 + 0.0939883945094127i
0.60555987647243 - 0.5530645361185241

H(z)=
Warning: Transfer function has complex coefficients.
> In tf.tf at 246
In nma_filter at 107
Transfer function:

-(0.5053-1.947i) s~4 + (0.02086-1.348i) s~3 - (0.9771+0.04836i) s~2

+ (0.01411+0.02526i) s - (0.3816-0.3931i)

(0.1988-1.53i) s~4 + (0.6374+0.9373i) s~3 - (1.064+0.2778i) s~2

- (0.7076-0.61481) s + (0.4667-0.62821i)

Sampling frequency=10000.000000 Hz
freq at passband=1000.000000 Hz
freq at stopband=2000.000000 Hz

db at passband=-3.000000

db at stopband=-10.000000

Doing impulse invariance method
T=1.000000

n=1.588388, rounded to 2

Gamma C =0.629065

POLES 0f H(s)

poles_of_hs =
-0.444816082052343 + 0.4448160820523431
-0.444816082052343 - 0.4448160820523431
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k=3.957227e-001
H(s)=
Warning: Transfer function has complex coefficients.
> In tf.tf at 246
In nma_filter at 92

Transfer function:
(0.3957-8.327e-0171)

s”2 + (0.8896-5.551e-017i) s + (0.3957-8.327e-0171)

POLES 0f H(z)

hzp =

0.578571949761589 + 0.2757921924435731
0.578571949761589 - 0.2757921924435731

H(z)=
Warning: Transfer function has complex coefficients.
> In tf.tf at 246

In nma_filter at 107

Transfer function:
(-6.9e-016+1.2531)

Sampling frequency=10000.000000 Hz
freq at passband=1000.000000 Hz
freq at stopband=2000.000000 Hz

db at passband=-3.000000

db at stopband=-10.000000

Doing Bilinear method

T=0.000100

n=1.368163, rounded to 2

Gamma C =8389.390482

POLES Of H(s)

poles_of_hs =
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-5932.19490014964 + 5932.19490014964 i
-5932.19490014964 - 5932.194900149641

k=7.038187e+007
H(s)=
Warning: Transfer function has complex coefficients.
> In tf.tf at 246
In nma_filter at 90

Transfer function:
(7.038e007-2.235e-0081i)

s72 + (1.186e004-9.095e-013i) s + (7.038e007-2.235e-0081i)

POLES 0f H(z)

hzp =

0.458140439181504 - 0.3088913583053351
0.458140439181504 + 0.308891358305335i

H(z)
Warning: Transfer function has complex coefficients.
> In tf.tf at 246

In nma_filter at 107

Transfer function:
(2.058e-016-1.781i)

EDU>>
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