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Hidden Markov Models (HMM) main algorithms (forward, backward, and Viterbi) are
outlined, and a GUI based implementation (in MATLAB) of a basic HMM is included along
with a user guide. The implementation uses a flexible plain text configuration file format
for describing the HMM.
This is screen shot of the final Matlab program written for the implmenetation.

Type in, or cut/past, the 
observation sequence here. 
(Spaces are ignored)

Click here to open HMM 
configuration file.

This window display the Beta 
(backward) probabilites at 
each node in the trellis 
diagram.

The position line shows the 
position in the observation 
sequence.

 

These are read and parsed 
from the HMM 
configuration file. They are 
the HMM model 
parameters. To change 
them, change the file and 
open it again.

This window display the 
Gamma (Viterbi) probabilites 
at each node in the trellis 
diagram.

A ‘*” here 
indicates that this 
state Is on the 
most likely state 
path

This window 
shows the Viterbi 
state path 
sequence.

This window display the 
ALpha (Forward) probabilites 
at each node in the trellis 
diagram.

This value is the probability 
of the observation sequence.

Click here to calculate the 
Alpha, Beta, and Gamma 
probabilites.

 

These 2 input windows are used 
for the Alpha-Beta (Forward-
Backward) calculation. Click on 
the small Run button to evaluate 
the Alpha-Beta probability.

Figure 1: Matlab HMM Program GUI

Description and download information on the above program as in the appendix.
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CHAPTER 1

INTRODUCTION

This report is part of my final term project for the course MATH 127, Mathematics
department, Berkeley, CA, USA
I have taken this course as an extension student in the fall of 2002 to learn about compu-
tational methods in biology. The course is titled Mathematical and Computational
Methods in Molecular Biology and given by Dr. Lior Pachter.
This report contains a detailed description of the three main HMM algorithms. An im-
plementation (in MATLAB) was completed. See page 29 for detailed description of the
implementation, including a user guide.
HMM are probabilitsic based methods for the analysis of signals and data. In the area of
computational biology, HMMs are used in the following areas:

1. Pattern finding (Gene finding[3]).

2. multiple sequence alignments.

3. protein or RNA secondary structure prediction.

4. data mining and classification.
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CHAPTER 2

DEFINITIONS AND NOTATIONS

To explain HMM, a simple example is used.
Assume we have a sequence. This could be a sequence of letters, such as DNA or protein
sequence, or a sequence of numerical values (a general form of a signal) or a sequence of
symbols of any other type. This sequence is called the observation sequence.
Now, we examine the system that generated this sequence. Each symbol in the observation
sequence is generated when the system was in some specific state. The system will continu-
ously flip-flop between all the different states it can be in, and each time it makes a state
change, a new symbol in the sequence is emitted.
In most instances, we are more interested in analyzing the system states sequence that
generated the observation sequence. To be able to do this, we model the system as a
stochastic model which when run, would have generated this sequence. One such model
is the hidden Markov model. To put this in genomic perspective, if we are given a DNA
sequence, we would be interested in knowing the structure of the sequence in terms of the
location of the genes, the location of the splice sites, and the location of the exons and
intron among others.
What we know about this system is what states it can be in, the probability of changing
from one state to another, and the probability of generating a specific type of element from
each state. Hence, associated with each symbol in the observation sequence is the state the
system was in when it generated the symbol.
When looking a sequence of letter (a string) such as “ACGT ”, we do not know which state
the system was in when it generated, say the letter ‘C’. If the system have n states that it
can be in, then the letter ‘C’ could have been generated from any one of those n states.
From the above brief description of the system, we see that there are two stochastic processes
in progress at the same time. One stochastic process selects which state the system will
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switch to each time, and another stochastic process selects which type of element to be
emitted when the system is in some specific state.
We can imagine a multi-faced coin being flipped to determine which state to switch to, and
yet another such coin being flipped to determine which symbol to emit each time we are in
a state.
In this report, the type of HMM that will be considered will be time-invariant. This means
that the probabilities that describe the system do not change with time: When an HMM is
in some state, say k, and there is a probability p to generate the symbol x from this state,
then this probability do not change with time (or equivalent, the probability do not change
with the length of the observation sequence).
In addition, we will only consider first-order HMM.1

An HMM is formally defined2 as a five-tuple:
1. Set of states {k, l, · · · , q}. These are the finite number of states the system can be in

at any one time.
It is possible for the system to be in what is referred to as silent states in which no
symbol is generated. Other than the special start and the end silent states (called the
0 states), all the system states will be active states (meaning the system will generate
a symbol each time it is in one of these states).
When we want to refer to the state the system was in when it generated the element
at position i in the observation sequence x, we write πi. The initial state, which is
the silent state the system was in initially, is written as π0. When we want to refer to
the name of the state the system was in when it generated the symbol at position i
we write πi = k.

2. Pkl is the probability of the system changing from state k to state l.
For a system with n number of states, there will be a transition matrix of size n× n
which gives the state transition probability Pkl between any 2 states.

3. bk(i) is the emission probability. It is the probability of emitting the symbol seen at
position i in the observation sequence x when the system was in state k.
As an example of the emission probability, assume that the observed sequence is
x = ATATTCGTC and assume that the system can be in any one of two states
{k, l}. Then we write the probability of emitting the first symbol A when the system
is in state k as bk(1).
We could also write the above as bk(A), since the symbol A is located at the first
position of the sequence. In the above observation sequence, since the letter A occurred
in the first and third positions, then bk(1) will have the same value as bk(3), since in
both cases, the same type of letter is being emitted, which is the symbol A.

1first-order HMM means that the current state of the system is dependent only on the previous state
and not by any earlier states the system was in.

2In this report, I used the notations for describing the HMM algorithms as those used by Dr Lior Pachter,
and not the notations used by the text book Durbin et all[1]
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4. Set of initial probabilities P0k for all states k. We imagine a special silent start state
0 from which the initial active state is selected according to the probability P0k. see
figure 2.1 on page 9 for illustration.

state k

state L

state v

state q

state 0

P(0,k)

P(0,L)

P(0,v)

P(0,q)

“A”

Initial silent state
No symbol is 
generated. Used to 
transfer to the first 
active state.

 

Active states. Will 
emit a symbol 
each time we visit 
such states

Figure 2.1: Initial silent state and initial transition to one of the active states. silentState.pdf

For a system with n number of states, there will be n such P0,k probabilities. So for
some state, say q, the probability of this state being the first state the system starts
in is given by P0q. Notice that another notation for the initial probability P0k is πk,
and this is used in [1] and other publication.

5. The set of possible observation sequences x. We imagine the system running and
generating an observation sequence each time according to the emission probability
distribution and according to the state sequence associated with this observation
sequence. The collection of possible observation sequences is the language of the
system. The unique alphabets that make up the observation sequences x are the
allowed alphabet of the language. As an example, an HMM used to model DNA
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sequences would have ACGT as its alphabets, while one used to model protein
sequences would have the 20 amino acids as its alphabets.

So, to summarize how this model generates an observation sequence: The system starts in
state 0. Then based the probability distribution P0k called the initial state probability, a
state k is selected. Then based on the emission probability distribution bk(i) for this state,
the symbol at position i is selected and generated. Then a new state l is selected based
on the transition probability distribution Pkl and the process repeats again as above. This
process is continued until the last symbol is generated.
The sequence generated by the system is called the observation sequence x. The symbol at
position i in the sequence is called x[i] or xi. We write x[i] = A to mean that the symbol
at position i is A.
In the implementation of HMM for this project, the length of each output symbol is limited
to one character.
For a system with n states, and an observation sequence of length m, the number of possible
state sequences that could have generated this observation sequence is nm. Each one of
these possible state sequences π1···m is of length m since the system will generate one symbol
for each state transition as we are considering that there will not be any silent states other
than the start and end states.
As an example, given a system with n = 2 with states {k, l}, and an observation sequence
of ‘GCT’ of length m = 3, then there are nm = 23 or 8 possible state sequences. They are

kkk, kkl, klk, kll, lkk, lkl, llk, lll

One of these 8 state sequences is the most likely one to have occurred.3

To summarize the above discussion, imagine we have a system with states {T,H}, and that
the possible symbols or alphabets of the system it can generate are 1, 2, 3, 4. Figure 2.2 on
page 11 shows one such possible state sequence π and the associated observation sequence
x.

3One of the HMM algorithms, called Viterbi, is used to find which one of these sequences is the most
likely one.
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state sequence PI T T T T T TH H H H H H H

1 1 1 10 12 233 344generated sequence  x

Emission probability b(State, Symbol)

State transition 
probability  P(T,H)

0 0

Initial State 
transition transition 
probability  P(0,T) end 

state

hidden

Observable

System states= {T,H}
System alphabets= {1,2,3,4}

Figure 2.2: HMM parameters and how they are related.stateSeq.pdf

The questions one could ask about the above HMM system are:
1. Given a sequence of symbols x of length L that represents the output of the system

(the observation sequence), determine the probability of the system generating this
sequence up to and including x[L]. This is solved using the forward algorithm α.

2. Given a sequence of symbols x that represents the output of the system (the ob-
servations), determine the probability that some specific symbol in the observation
sequence was generated when the system was in some specific state.
This is solved using the forward-backward algorithm (αβ). As an example, we can
ask about the probability that some DNA nucleotide from a large DNA sequence was
part of an exon, where an exon is one of the possible system states.

3. Given a sequence of symbols x of length L that represents the output of the system
(the observation sequence), determine the most likely state transition sequence the
system would have undergone in order to generate this observation sequence.
This is solved using the Viterbi algorithm γ. Note again that the sequence of states
πi···j will have the same length as the observation sequence xi···j.

The above problems are considered HMM analysis problems. There is another problem,
which is the training or identification problem whose goal is to estimate the HMM parameters
(the set of probabilities) we discussed on page 8 given some set of observation sequences
taken from the type of data we wish to use the HMM to analyze. As an example, to train
the HMM for gene finding for the mouse genome, we would train the HMM on a set of
sequences taken from this genome.
One standard algorithm used for HMM parameter estimation (or HMM training) is called
Baum-Welch, and is a specialized algorithm of the more general algorithm called EM (for
expectation maximization). In the current MATLAB implementation, this algorithm is not
implemented, but could be easily added later if time permits.
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A small observation: In these notations, and in the algorithms described below, I use the
value 1 as the first position (or index) of any sequence instead of the more common 0 used
in languages such as C, C++ or Java. This is only for ease of implementation as I will be
using MATLAB for the implementation of these algorithms, and MATLAB uses 1 and not
0 as the starting index of an array. This made translating the algorithms into MATALAB
code much easier.



CHAPTER 3

GRAPHICAL REPRESENTATIONS OF AN
HMM

There are two main methods to graphically represent an HMM.
One method shows the time axis (or the position in the observation sequence) and the
symbols emitted at each time instance (called the trellis diagram). The other method is a
more concise way of representing the HMM, but does not show which symbol is emitted at
what time instance.
To describe each representation, I will use an example, and show how the example can be
represented graphically in both methods.

3.1 Example HMM^^E^^L
Throughout this report, the following HMM example is used for illustration. The HMM
configuration file for the example that can be used with the current implementation is
shown. Each different HMM state description (HMM parameters) is written in a plain
text configuration file and read by the HMM implementation. The format of the HMM
configuration file is described on page 29.
Assume the observed sequence is ATACC. This means that A was the first symbol emitted,
seen at time t = 1, and T is the second symbol seen at time t = 2, and so forth. Notice that
we imagine that the system will write out each symbol to the end of the current observation
sequence.
Next, Assume the system can be in any one of two internal states {S, T}.
Assume the state transition matrix Pkl to be as follows

PST = 0.3 PSS = 0.7
PTS = 0.4 PTT = 0.6
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And for the initial probabilities P0k, assume the following

πS = 0.4
πT = 0.6

And finally for the emission probabilities bk(i), there are 3 unique symbols that are generated
in this example (the alphabets of the language of the observation sequence), and they are
A, T, C. So there will be 6 emission probabilities, 3 symbols for each state, and given we
have 2 states, then we will have a total of 6 emission probabilities. Assume they are given
by the following emission matrix:

bS(A) = 0.4 bS(C) = 0.4 bS(T ) = 0.2
bT (A) = 0.25 bT (C) = 0.55 bT (T ) = 0.2

The first (non-time dependent) graphical representation of the above example is shown in
figure 3.1 on page 14

S T

HMM graphical description 
of the given example. 

b(‘C’)=0.4

b(‘A’)=0.4

b(‘T’)=0.2

P(S,S)=0.7

Pi(S)=0.4

Pi(T)=0.6

P(S,T)=0.3

P(T,S)=0.4

b(‘C’)=0.55

b(‘A’)=0.25

b(‘T’)=0.2

P(T,T)=0.6

Figure 3.1: HMM representation using node based diagram

In this representation, each state is shown as a circle (node). State transitions are represented
by a directed edge between the states. Emission of a symbol is shown as an edge leaving
the state with the symbol at the end of the edge.
Initial probability π0,k are shown as edges entering into the state from state 0 (not shown).
We imagine that there is a silent start state 0 which all states originate from. The system
cannot transition to state 0, it can only transition out of it.
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The second graphical representation is a more useful way to represent an HMM for the
description of the algorithms. This is called the trellis diagram.
Draw a grid, where time flows from left to right. On top of the grid show the symbols being
emitted at each time instance. Each horizontal line in this grid represents one state, with
state transitions shown as sloping edges between the nodes in the grid.
See figure 3.2 on page 15 for the graphical representation for the same example above using
the trellis representation.

t=0 t=1 t=2 t=3 t=4

state S

state T

Time flow 
direction

Node weight = 
Symbol emission 
probability from 
that state

‘A’ ‘T’ ‘A’ ‘C’ ‘C’

The observer only sees 
this sequence, the 
output of the HMM

 

b(T,’A’)=0.25 b(T,’T’)=0.2 b(T,’A’)=0.25 b(T,’C’)=0.55 b(T,’C’)=0.55

b(S,’A’)=0.4 b(S,’T’)=0.25 b(S,’A’)=0.4 b(S,’C’)=0.4 b(S,’C’)=0.4

P(S,S)=0.7

P(T,T)=0.6

Pi(S)=0.4

Pi(T)=0.6

Edge weight = state transition probability

Figure 3.2: HMM representation using trellis diagram.

On each line segment in the grid, we draw an arrow from position i to i+ 1 and label this
arrow by the state transition probability from the state where the start of the arrow was
to the state where the end of the arrow is. The weight of the edge is the state transition
probability.
Notice that the edge can only be horizontal or slopped in direction. We can not have vertical
edges, since we must advance by one time step to cause a state transition to occur. This
means there will be as many internal states transitions as the number of time steps, or
equivalently, as the number of symbols observed or the length of the observation sequence.
To use the above example in SHMM, we need to write down the state description. The
format of writing down the state description is given on page 29. This below is the SHMM
configuration file for the above example.
<states>
S
T
<init_prob>
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0.4
0.6
<symbols>
A,C,T
<emit_prob>
#emit probability from S state
0.4,0.4,0.2
#emit probability from T state
0.25,0.55,0.2

<tran_prob>
0.7, 0.3
0.4, 0.6



CHAPTER 4

HMM ALGORITHMS

Given the above notations and definitions, we are ready to describe the HMM algorithms.

4.1 Forward α algorithm^^E^^L
Here we wish to find the probability p that some observation sequence x of length m was
generated by the system which has n states. We want to find the probability of the sequence
up to and including x[m], in other words, the probability of the sequence x[1] · · ·x[m].
The most direct an obvious method to find this probability, is to enumerate all the possible
state transition sequences q = π1···m the system could have gone through. Recall that for
an observation sequence of length m there will be nm possible state transition sequences.
For each one of these state transition sequences qi (that is, we fix the state transition
sequence), we then find the probability of generating the observation sequence x[1] · · ·x[m]
for this one state transition sequence.
After finding the probability of generating the observation sequence for each possible state
transition sequence, we sum all the resulting probabilities to obtain the probability of the
observation sequence being generated by the system.
As an example, for a system with states {S,K,Z} and observation sequence AGGT a
partial list of the possible state sequences we need to consider is shown in figure 4.1 on
page 18.
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‘A’ ‘G’ ‘G’ ‘T’

S

K

Z

S

Z

S

Z

K K

‘A’ ‘G’ ‘G’ ‘T’ ‘A’ ‘G’ ‘G’ ‘T’

Figure 4.1: Finding the probability of a an observation sequence using brute search method.

We can perform the above algorithm as follows:
Find the probability of the system emitting the symbol x[1] from π1. This is equal to the
probability of emitting the symbol x[1] from state π1 multiplied by the probability of being
in state π1.
Next, find the probability of generating the sequence x[1] · · ·x[2]. This is equal to the
probability of emitting the sequence x[1] (which we found from above), multiplied by the
probability of moving from state π1 to state π2, multiplied by the probability of emitting
the symbol x[2] from state π2.
Next, find the probability of generating the sequence x[1] · · ·x[3]. This is equal to the
probability of emitting the sequence x[1] · · ·x[2] (which we found from above), multiplied
by the probability of moving from state π2 to state π3, multiplied by the probability of
emitting the symbol x[3] from state π3.
We continue until we find the probability of emitting the full sequence x[1] · · ·x[m]
Obviously the above algorithm is not efficient. There are nm possible state sequences, and for
each one we have to perform O(2m) multiplications, resulting in O(m nm) multiplications
in total.
For an observation sequence of length m = 500 and a system with n = 10 states, we have
to wait a very long time for this computation to complete.
A much improved method is the α algorithm. The idea of the α algorithm, is that instead
of finding the probability for each different state sequence separately and then summing
the resulting probabilities, we scan the sequence x[1] · · ·x[i] from left to right, one position
at a time, but for each position we calculate the probability of generating the sequence up
to this position for all the possible states.
Let us call the probability of emitting the sequence x[1] · · ·x[i] as α(i). And we call the
probability of emitting x[1] · · ·x[i] when the system was in state k when emitting x[i] as
αk(i).
So, the probability of emitting the sequence x[1] · · ·x[i] will be equal to the probability of
emitting the same sequence but with x[i] being emitted from one state say k, this is called
αk(i), plus the probability of emitting the same sequence but with x[i] being emitted from
another state, say l, this is called αl(i), and so forth until we have covered all the possible
states. In other words α(i) is the

∑
k αk(i) for all states k.
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Each αk(i) is found by multiplying the α(i− 1) for each of the states, by the probability of
moving from each of those states to state k, multiplied by the probability of emitting x[i]
from state k. This step is illustrated in figure 4.2 on page 19.

‘A’ ‘G’ ‘G’ ‘T’

S

K

Z

alpha(S,1) alpha(S,2)

alpha(K,1)

alpha(Z,1)

‘A’ ‘G’ ‘G’ ‘T’

S

K

Z

alpha(S,1)

alpha(K,2)alpha(K,1)

alpha(Z,1)

‘A’ ‘G’ ‘G’ ‘T’

S

K

Z

alpha(S,1)

alpha(Z,2)

alpha(K,1)

alpha(Z,1)

Figure 4.2: Finding the probability of a sequence using the α method

Each time we calculate αk(i) for some state k, we store this value, and use it when calculating
α(i+ 1). Hence We only need to store the α′s for one position earlier since we are working
with a first-order HMM here. This means we need space requirements for two columns each
of length of the number of states n.
From above, we see that we have reduced the running time O(mnm) of the direct method,
to O(mn) with the α method.
The following is a more formal description of the algorithm to find α for one state, say state
k.
Initialization step:

αk(1) = p0kbk(1)

What the above says is that α, initially (at position i = 1) and for state k , is equal to
the probability of the HMM starting initially in state k multiplied by the probability of
emitting the symbol found at x[1] from state k.
Iterative step:

j = 2· · · i αk(j) = bk(j)
∑
l

αl(j − 1)Plk

What the above says, is that α at position i = j when in state k, is the sum of all the α′s
from one observation earlier collected from all the states, multiplied by the probability of
transition from each of those states to the state k, multiplied by the probability of emitting
the symbol xj when in state k.
I will illustrate this iterative step for one time step, using the same example from above,
and using the grid representation of an HMM to find α(3). Since there are 2 states {S, T}
in this example, we need to calculate the iterative step for each state.
When the system is in state S at j = 3 we obtain the diagram shown in figure 4.3 on
page 20.
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t=2 t=3

state S

state T .
.Alpha(S,x[2]) P(S,S)=0.7 Alpha(S,x[3])

.
Alpha(T,x[2])

b(S,x[3])

b(T,x[3])

Figure 4.3: Recursive step for the α method for state S

In the above example, to find αS(3), we obtain

αS(3) = bS(3)[αS(2)PSS + αT (2)PTS]

αT (3) is found similarly, and is shown in figure 4.4 on page 20.

t=2 t=3

state S

state T .
.Alpha(S,x[2])

P(T,T)=0.6

.
Alpha(T,x[2])

b(S,x[3])

b(T,x[3])

.
Alpha(T,x[3])

Figure 4.4: Recursive step for the α method for state T

In the above example, for αT (3) we obtain

αT (3) = bT (3)[αT (2)PTT + αS(2)PST ]

Hence, to find the probability of the sequence up to and including x3, the final answer
would be

α(x3) = αT (3) + αS(3)
= bS(3)[αS(2)PSS + αT (2)PTS] + bT (3)[αT (2)PTT + αS(2)PST ]
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4.1.1 Calculation of the alpha’s using logarithms^^E^^L
Due to numerical issues (underflow) which will occur when multiplying probabilities (values
less than 1.0) repeatedly as we calculate the α in the forward direction, the log of the
probabilities will be used instead, and multiplications become summations. Any logarithm
for a base greater than 1 can be used. In the MATLAB implementation, I used the natural
logarithms e.
Initially, all the probabilities P (this includes the initial state probabilities π(0,k), the state
transition probabilities matrix Pxy, and the emission probabilities matrix bS(i) ) are con-
verted to log(P ) and stored in cache for later access, this speeds the implementation by
not having to call the log function each time the program is run for different observation
sequence but for the same HMM.
Assume the system has states {A,B,C, . . . , Z}, and we wish to find the α for the observation
sequence up to and including x[i] when the state at i was T . We obtain

αT (i) = bT (i)[αA(i− 1)PAT + αB(i− 1)PBT + · · ·+ αZ(i− 1)PZT ]

Taking the log of the above results in

log(αT (i)) = log(bT (i)) + log[αA(i− 1)PAT + αB(i− 1)PBT + · · ·+ αZ(i− 1)PZT ]

Now, looking at the term log[αA(i − 1)PAT + · · · + αZ(i − 1)PZT ], this is the same as
log(x+y+ · · ·+z). Here, we know the values of log(x), log(y), · · · , log(z), and not x, y, · · · , z
(recall that we have converted all the probabilities to log initially for performance purposes).
So we need to find log(x+ y) given log(x) and log(y).
This is done using the following transformation

log(x+ y) = log(x(1 + y

x
))

= log(x(1 + elog(
y
x
))

= log(x) + log(1 + elog(y)−log(x))

Applying the above transformation to many terms being summed, and not just two, is
straightforward. Take x as the first term, and let y be the rest of the terms (the tail of the
expression), we then apply the above transformation recursively to the tail to compute the
log of the sum of the probabilities as long as the tail is of length greater than one element.
As shown below.

log(a+ b+ c+ · · ·+ y + z) = log(a+H) = log(a) + log(1 + elog(H)−log(a))
Where

H = (b+ c+ · · ·+ y + z)
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Now repeat the above process to find log(b+ c+ · · ·+ y + z).

log(b+ c+ · · ·+ y + z) = log(b+H) = log(b) + log(1 + elog(H)−log(b))

Where now H = (c+ · · ·+ y + z).
Continue the above recursive process, until the expression H contains one term to obtain

log(y + z) = log(y) + log(1 + elog(z)−log(y))

This is a sketch of a function which accomplishes the above.
function Log_Of_Sums(A: array 1..n of probabilities) returns double IS

begin
IF (length(A)>2) THEN

return( log(A[1]) + log( 1 + exp( Log_of_Sums(A[2..n])) - log( A[1] )));
ELSE

return( log(A[1] + log( 1 + exp( A[2] - log( A[1] )));
END

end log_Of_Sums

The number of states is usually much less than the number of observations, so there is no
problems (such as stack overflow issues) with using recursion in this case.

4.2 Backward β algorithm^^E^^L
Here we are interested in finding the probability that some part of the sequence was
generated when the system was in some specific state.
For example, we might want to find, looking at a DNA sequence x, the probability that
some nucleotide at some position, say x[i] was generated from an exon, where an exon is
one of the possible states the system can be in.
Let such state be S. Let the length of the sequence be L, then we need to obtain P (πi =
S|xi...L). In the following, when x is written without subscripts, it is understood to stand
for the whole sequence x1· · ·xL. Also xi is the same as x[i].
Using Baye’s probability rule we get

P (πi = S|x) = P (πi = S, x)
P (x)

But the joint probability P (πi = S, x) can be found from

P (πi = S, x) = P (x1· · ·xi, πi = S)P (xi+1· · ·xL|πi = S)

Looking at the equation above, we see that P (x1. . . xi, πi = S) is nothing but αS(i), which
is defined as the probability of the sequence x1· · ·xi with x[i] being generated from state S.
The second quantity P (xi+1· · ·xL|πi = S) is found using the backward β algorithm as
described below.
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Initialization step:
For each state k, let βk(L) = 1
recursive step:

i = (L− 1) · · · 1 βk(i) =
∑
l

Pklbl(i+ 1)βl(i+ 1)

Where the sum above is done over all states. Hence

P (πi = S|x) = αS(i)βS(i)
P (x)

Where P (x) is found by running the forward algorithm to the end of the observed sequence
x, so P (x) = α(L). Hence we obtain

P (πi = S|x) = αS(i)βS(i)
α(L)

To illustrate this algorithm, Using the grid HMM diagram, I will use the example on page 13,
to answer the question of what is the probability of the observation at position 3 (which is
the letter ’A’) coming from state S, given the observation ATACC.
In the above, we will run the forward α algorithm from position 1 to position 3, then run
the backward algorithm from the end of the sequence back to position 3. (In practice, the
forward α′s and backward β′s are calculated once for all the states and all the positions
(that is, for all the nodes in the trellis diagram) and stored for later lookup). See figure 4.5
on page 23 for an illustration.

t=1 t=2 t=3 t=4 t=5

state S

state T
Time flow 
direction

‘A’ ‘T’ ‘A’ ‘C’ ‘C’

Forward algorithm Backward algorithm

Figure 4.5: The forward-backward algorithm

Initialization step:

βS(5) = 1
βT (5) = 1
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recursive step: t = (5− 1) · · · 1.
At time t = 4, we get

βS(4) = PST bT (5)βT (5) + PSSbS(5)βS(5)
βT (4) = PTT bT (5)βT (5) + PTSbS(5)βS(5)

The above quantities are calculated using the parameters in this example, resulting in

βS(4) = 0.3× 0.55× 1 + 0.7× 0.4× 1 = 0.445
βT (4) = 0.6× 0.55× 1 + 0.4× 0.4× 1 = 0.49

at time t = 3 we get

βS(3) = PST bT (4)βT (4) + PSSbS(4)βS(4)
βT (3) = PTT bT (4)βT (4) + PTSbS(4)βS(4)

The above quantities are calculated using the parameters in this example, resulting in

βS(3) = 0.3× 0.55× 0.49 + 0.7× 0.4× 0.445 = 0.2054
βT (3) = 0.6× 0.55× 0.49 + 0.4× 0.4× 0.445 = 0.2329

And so forth, until we reach t = 1

βS(1) = PST bT (2)βT (2) + PSSbS(2)βS(2)
βT (1) = PTT bT (2)βT (2) + PTSbS(2)βS(t)

This completes the iterative step of the backward algorithm. From the above we see that
βS(3) = 0.205449 Now, apply the forward algorithm from position 1 to position 5, and find
αS(3).
I will not show this step here, since the forward algorithm is already described above. But
if we calculate it, we will get α(S, t = 3) = 0.012488
So

P (π3 = S|ATACC) = αS(3)βS(3)
P (x) = 0.012488× 0.205449

P (x) = 0.0025656
P (x)

Where P (x) is the same as α(L), that is, the forward algorithm found at the end of the
sequence x. α(L) can be found to be 0.0046025920, so

P (π3 = S|ATACC) = 0.0025656
0.0046025920 = 0.557438
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4.3 Viterbi algorithm^^E^^L
The Viterbi algorithm is used to find the most likely state transition sequence q = π1· · · πi

associated with some observation sequence x = xi· · ·xi.
Since one symbol is generated each time the system switches to a new state, the state
sequence q will be of the same length as that of the observation sequence x.
In this algorithm, we need to calculate γ for each position, where γk(i) means the probability
of the most likely state path ending in state k when generating the symbol at position i in
the observation sequence.
If we know γk(i) for each state k, then we can easily find γl(i+ 1) for each state l, since we
just need to find the most probable state transition from each state k to each state l.
The following algorithm finds γk(i) at position i for state k.
Initialization step:
Find γ at position i = 1 for all states. Assume we have n states, a, b, c, . . . , z, then

γa(1) = P0a ba(1)
γb(1) = P0b bb(1)

...
γz(1) = P0z bz(1)

Now we need to calculate γ for the rest of the sequence.
Assume we have states a, b,m, c, . . . , z, then to find γ for each of these states at each time
step we do the following: (this below shows finding γ for some state m)
iterative step: j = 2. . . i

γm(j) = bm(j) max



Pam γa(j − 1)
Pbm γb(j − 1)
Pmm γm(j − 1)

...
Pzm γz(j − 1)

The above is illustrated in figure 4.6 on page 26.
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i=1 i=2

state S

state T

‘A’ ‘G’

state K

gamma(S,1)

gamma(K,1)

gamma(T,1)

gamma(K,2)

b(k,’G’)

P(S,K)

P(K,K)

P(T,K)

i=1 i=2

state S

state T

‘A’ ‘G’

state K

gamma(S,1)

gamma(K,1)

gamma(T,1)

gamma(T,2)

b(T,’G’)

P(S,T)

P(K,T)

P(T,T)

Gamma(K,2)= b(k,’G’) * 
       MAX(                     
               gamma(S,1)*P(S,K),        
               gamma(T,1)*P(T,K),
               gamma(K,1)*P(K,K)
              )

Gamma(T,2)= b(T,’G’) * 
       MAX(                     
               gamma(S,1)*P(S,T),        
               gamma(T,1)*P(T,T),
               gamma(K,1)*P(K,T)
              )

i=1 i=2

state S

state T

‘A’ ‘G’

state K

gamma(S,1)

gamma(K,1)

gamma(T,1)

gamma(K,2)

b(S,’G’)

P(S,S)

P(K,S)

P(T,S)

Gamma(S,2)= b(S,’G’) * 
       MAX(                     
               gamma(S,1)*P(S,S),        
               gamma(T,1)*P(T,S),
               gamma(K,1)*P(K,S)
              )

Figure 4.6: The Viterbi iterative step to find γ for each position viterbi.pdf

Now that we have found γ for each state at each position 1· · · i, we can find the most likely
state sequence up to any position j <= i by finding which state had the largest γ at each
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position.
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CHAPTER 5

DESIGN AND USER GUIDE OF SHMM

To help understand HMMs more, I have implemented, in MATLAB, a basic HMM with a
GUI user interface for ease of use. This tool accepts an HMM description (model parameters)
from a plain text configuration file. The tool (called SHMM, for simple HMM) implements
the forward, backward, and Viterbi algorithms. This implementation is for a first order
HMM model.
Due to lack of time to implement an HMM for an order greater than a first order, which
is needed to enable this tool to be used for such problems as gene finding (to detect splice
sites, start of exon, etc. . . ). This implementation therefor is restricted to one character
look-ahead on the observation sequence. However, even with this limitation, this tool can
be useful for learning how HMM’s work.
SHMM takes as input a plain text configuration file (default .hmm extension), which
contains the description of the HMM (states, initial probabilities, emission probabilities,
symbols and transition probabilities). And the user is asked to type in the observation
sequence in a separate window for analysis.

5.1 Configuration file description^^E^^L
The configuration file is broken into 5 sections. The order of the sections must be as shown
below. All 5 sections must exist. Each section starts with the name of the section, contained
inside a left < and a right > brackets. No space is allowed after < or before >. The entries
in the file are case sensitive. So a state called ’sunny’ will be taken as different from a state
called ’SUNNY’. The same applies to the characters allowed in the observation sequence:
the letter ’g’ is taken as different from ’G’.
The sections, and the order in which they appear in the configuration file, must be as this,
from top to bottom:

29
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1. <states>

2. <init_prob>

3. <symbols>

4. <emit_prob>

5. <tran_prob>

In the <states> sections, the names of the states are listed. One name per line. Names
must not contain a space.
In the <init_prob> section, the initial probabilities of being in each state are listed. One
per line. One number per line. The order of the states is assumed the same as the order in
the <states> section. This means the initial probability of being in the first state listed in
the <states> section will be assumed to be the first number in the <init_prob> section.
In the <symbols> section, the observation symbols are listed. Each symbol must be one
character long, separated by a comma. Can use as many lines as needed to list all the
symbols. The symbol must be an alphanumeric character.
In the <emit_prob> section, we list the probability of emitting each symbol from each state.
The order of the states is assumed to be the same order of the states as in the <states>
section.
The emission probability for each symbol is read. The order of the symbols is taken as the
same order shown in the symbols section. The emission probabilities are separated by a
comma. One line per state. See examples below.
In the <tran_prob>, we list the transition probability matrix. This is the probability of
changing state from each state to another. One line represent one row in the matrix. Entries
are separated by a comma. One row must occupy one line only. The order of the rows is
the same as the order of the states shown in the <states> section.
For example, if we have 2 states S1,S2, then the first line will be the row that represents
S1->S1, and S1->S2 transition probabilities. Where S1->S1 is in position 1,1 of matrix,
and S1->S2 will be in position 1,2 in the matrix. See example below for illustration.
Comments in the configuration file are supported. A comment can start with the symbol #.
Any line that starts with a # is ignored and not parsed. The comment symbol # must be in
the first position of the line.
To help illustrate the format of the HMM configuration file, I will show an annotated
configuration file for the casino example shown in the book ’Biological sequence analysis’
by Durbin et. all[1], page 54. In this example, we have 2 dies, one is a fair die, and one is a
loaded die. The following is the HMM configuration file.
# example HMM configuration file for Durbin, page 54
# die example.

<states>
fair
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loaded

<init_prob>
#fair init prob
0.5

#loaded init prob
0.5

<symbols>
1,2,3,4,5,6

<emit_prob>
#emit probability from fair state
1/6, 1/6, 1/6, 1/6, 1/6, 1/6
#emit probability from fair state
1/10, 1/10, 1/10, 1/10, 1/10, 1/10

<tran_prob>
0.95, 0.05
0.1, 0.9

See figure 5.1 on page 32 for description of each field in the HMM configuration file.
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#example HMM configuration file for Durbin, page 54
# die example. 

<states>
fair 
loaded

<init_prob>
0.5
0.5

<symbols>
1,2,3,4,5,6

<emit_prob>
1/6, 1/6, 1/6, 1/6, 1/6, 1/6
1/10, 1/10, 1/10, 1/10, 1/10, 1/10

<tran_prob>
0.95, 0.05
0.1,   0.9

Commants start with # at the first 
position of the line

section STATES start
Each state name is on one line. 
The order of the states is 
important and affects the rest of 
the configuration file.

section initial states probabilities  
start

This is  Pi for state ‘fair’, since 
state fair was listed first in the 
<states> section

This is  Pi for state ‘loaded’, since 
state fair was listed first in the 
<states> section

section symbols starts. List each 
character that will be generated, 
separate them by a ‘comma’

section emission starts.

These are the emission 
probabilities for state ‘fair’, since 
‘fair’ was listed first. 

These are the emission 
probabilities for state ‘fair’, since 
‘fair’ was listed first. 

The order of the characters 
emission probabilities follows the 
order of the characters shown in 
the <symbols> section

section emission starts.

This is the state transition matrix. It 
follows the order of states shown in 
the <states> section. So this matrix is 
the same as

                  FAIR   LOADED
FAIR         0.95       0.05
LOADED   0.1         0.9

Figure 5.1: Description of fields in the HMM configuration file. The HMM parameters

5.2 Configuration file examples^^E^^L
To help better understand the format of the HMM configuration file, I will show below a
number of HMM states and with the configuration file for each.
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5.2.1 Example 1. Casino example^^E^^L
This example is taken from page 54, Durbin et. all book [1]. See figure 5.2 on page 33

P(fair,loaded)=0.05

P(loaded,fair)=0.1

fair loaded

P(fair,fair)=0.95

P(loaded,loaded)=0.95

P(1)=1/6

P(2)=1/6

P(3)=1/6
P(4)=1/6

P(5)=1/6
P(6)=1/6

P(5)=1/10
P(6)=1/2

P(4)=1/10

P(3)=1/10

P(2)=1/10

P(1)=1/10

<states>
fair 
loaded

<init_prob>
#fair init prob
0.5

#loaded init prob
0.5

<symbols>
1,2,3,4,5,6

<emit_prob>
#emit probability from fair state
 1/6, 1/6, 1/6, 1/6, 1/6, 1/6
#emit probability from fair state
1/10, 1/10, 1/10, 1/10, 1/10, 1/10

<tran_prob>
0.95, 0.05
0.1,   0.9

P(0,fair)=0.5

P(0,loaded)=0.5

Figure 5.2: Example 1 HMM configuration file
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5.2.2 Example 2. Homework problem 4.1^^E^^L
This example is taken from Math 127 course, homework problem 4.1, Fall 2002.
See figure 5.3 on page 34

P(S,T)=0.05

P(T,S)=0.5

S T

P(S,S)=0.5
P(T,T)=0.5

P(1)=1/6

P(2)=1/6

P(3)=1/6
P(4)=1/6

P(5)=1/6
P(6)=1/6

P(5)=0
P(6)=0

P(4)=1/4

P(3)=1/4

P(2)=1/4

P(1)=1/4

P(0,S)=0.5

P(0,T)=0.5

<states>
S
T

<init_prob>
0.5
0.5

<symbols>
1, 2, 3,4,5,6

<emit_prob>
0.166666667, 0.166666667, 0.166666667, 0.166666667, 0.166666667, 0.166666667

0.25, 0.25, 0.25 , 0.25 , 0 , 0

<tran_prob>
0.5,   0.5
0.5,   0.5

Figure 5.3: Example 2 HMM configuration file

5.3 SHMM User interface^^E^^L
Figure 5.4 on page 35 shows the SHMM GUI. To start using SHMM, the first thing to do
is to load the HMM configuration file which contains the HMM parameters. SHMM will
parse the file and will display those parameters. Next, type into the observation sequence
window the observation sequence itself. This sequence could be cut and pasted into the
window as well. Spaces and new lines are ignored.
Next, hit the top right RUN button. This will cause SHMM to evaluate the α, β and γ for
each node in the trellis diagram, and will display all these values. For the γ calculations,
the nodes in the trellis diagram which are on the Viterbi path have a ‘*’ next to them.
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To invoke the (α, β) algorithm, enter the position in the observation and the state name
and hit the small RUN button inside the window titled Alpha Beta.
To modify the HMM parameters and run SHMM again, simply use an outside editor to do
the changes in the HMM configuration file, then load the file again into SHMM using the
‘Open’ button.

Type in, or cut/past, the 
observation sequence here. 
(Spaces are ignored)

Click here to open HMM 
configuration file.

This window display the Beta 
(backward) probabilites at 
each node in the trellis 
diagram.

The position line shows the 
position in the observation 
sequence.

 

These are read and parsed 
from the HMM 
configuration file. They are 
the HMM model 
parameters. To change 
them, change the file and 
open it again.

This window display the 
Gamma (Viterbi) probabilites 
at each node in the trellis 
diagram.

A ‘*” here 
indicates that this 
state Is on the 
most likely state 
path

This window 
shows the Viterbi 
state path 
sequence.

This window display the 
ALpha (Forward) probabilites 
at each node in the trellis 
diagram.

This value is the probability 
of the observation sequence.

Click here to calculate the 
Alpha, Beta, and Gamma 
probabilites.

 

These 2 input windows are used 
for the Alpha-Beta (Forward-
Backward) calculation. Click on 
the small Run button to evaluate 
the Alpha-Beta probability.

Figure 5.4: SHMM MATLAB user interface

5.4 Source code description^^E^^L
The following is a list of all the MATLAB files that make up SHMM, with a brief description
of each file. At the end of this report is the source code listing.

• nma_hmmGUI.fig: The binary description of the GUI itself. It is automatically gen-
erated by MATLAB using GUIDE.

• nma_hmmGUI.m: The MATLAB code that contains the properties of each component
in the GUI.

• nma_hmm_main.m: This is the main function, which loads the GUI and initializes
SHMM.

• nma_hmm_callbacks.m: The callbacks which are called when the user activate any
control on the GUI.
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• nma_readHMM.m:

• nma_hmmBackward.m: The function which calculates β.

• nma_hmmForward.m: The function which calculates α.

• nma_hmm_veterbi.m: The function which calculates γ.

• nma_hmmEmitProb.m: A utility function which returns the emission probability
given a symbol and a state.

• nma_trim.m: A utility function which removes leading and trailing spaces from a
string.

• getPosOfState.m: A utility function which returns position of state in an array given
the state name.

• nma_logOfSums.m: A utility function which calculates the log of sum of logs for the
α computation.

• nma_logOfSumsBeta.m: A utility function which calculates the log of sum of logs for
the β computation.

5.5 Installation instructions^^E^^L
Included on the CDROM are 2 files: setup.exe and unix.tar. The file setup.exe is the installer
for windows. On windows, simply double click the file setup.exe and follow the instructions.
When installation is completed, an icon will be created on the desktop called MATH127.
Double click on this icon to open. Then 2 icons will appear. One of them is titled HMM.
Double click on that to start SHMM. A GUI will appear.
On Unix (Linux or Solaris), no installer is supplied. Simply untar the file math127.zip. This
will create the same tree that the installer would create on windows. The tree contains a
folder called src, which contains the source code needed to run SHMM from inside matlab.
To run SHMM on Unix, cd to the folder where you untarred the file math127.tar, which
will be called MATH127 by default, and navigate to the src folder for the HMM project.
Then run the file nma_hmm_main from inside MATLAB console to start SHMM.
This report is in PDF format.
Example HMM configuration files for use with SHMM are included in the conf folder.



CHAPTER 6

APPENDIX

6.1 User guide and download^^E^^L
This contains information how to download the windows executable and install it on your
PC.

6.1.1 Multiple alignment applications installation^^E^^L
These instructions show how to install the HMM application on windows.

1. Download the file setup.exe (12 MB) to some folder on your PC.

2. Once setup.exe is downloaded, Double click on it to run it. This will bring up a
standard installation. Click next on the questions being asked.

3. When the installation is completed, double click on icon created on your desktop, it
will labeled Math127.

4. Now you will see 2 icons that represent 2 tools. One for the HMM application and
another for a multiple alignment application.

5. To run either application, double click on the icon. This will bring up the application.

37

Output/setup.exe
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6.1.2 Instruction for running and using HMM^^E^^L
Double click on the HMM icon as per the above instruction.

Figure 6.1: Screen shot

Now the main screen will come up

Figure 6.2: Main Screen

Now click the Open HMM configuration file to open the HMM file that describes the
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system being modeled. I include few files with this installation. Navigate as follows to find
the files Open->src->SHMM_project->conf and select the file report_example.
Now enter the observation sequence in the window (i.e. type the sequence). The sequence
must contain symbols that belong to the allowed set of symbols as shown in the symbols
window. For the report_example, these are "A" and "C" and "T" only. So you can type in
ACCCCTTT for an example.
Now hit the RUN botton on the upper right hand corner. This is the result

Figure 6.3: Result of the above



40

6.2 Source code^^E^^L
Source code in zip file
The following is the listing

6.2.1 nma_hmm_main.m^^E^^L� �
function nma_hmm_main()

%main line for SHMM. MATH 127
%Nasser Abbasi

h0= hgload('nma_hmmGUI');

nma_hmm_callbacks('init',h0);� �
6.2.2 nma_trim.m^^E^^L� �
function line=nma_trim(line)
%function line=nma_trim(line)
%
%removes leading and trailing spaces from the line
%
%Nasser Abbasi. Math 127.

N=length(line);
if(N==0)

return;
end

i=1;
while(i<=N & (line(i)==' '|line(i)=='\t'))

i=i+1;
end

if(i>N)
line='';
return;

end

line=line(i:end);

i=length(line);

source_code.zip
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while(i>=1 & (line(i)==' '|line(i)=='\t'))
i=i-1;

end

line=line(1:i);� �
6.2.3 nma_readHMM.m^^E^^L� �
function [symbols, initProb, states, tranProb, emitProb, err]=nma_readHMM(fileName)
%function [symbols, initProb, states, tranProb, emissionProb]=nma_readHMM(fileName)
%
% This function read the HMM configuration file for my final project
% for MATH 127, UC Berkeley. Fall 2002.
%
% INPUT:
% fileName: the full path of the configuration file.
%
% OUTPUT:
% symbols: a CELL array of characters. The allowed observation symbols.
%
% initProb: an array of numbers, there will be as many number as there
% are states
%
% states: a cell array of strings. The names of the states.
%
% tranProb: a matrix, nxn, where n is the number of states. the order
% of states is that indicated by the states array.
%
% emissionProb: The probability of emission of a symbol from each state.
% an nxm matrix, where n is the number of states, and m
% is the number of symbols. The order of the states is as
% indicated by the states array, and the order of the
%
% symbols is as indicated by the symbols array.
% err: a string, if empty, indicates no error in parsing the file, else
% the string shows the parsing error.
%

% by Nasser Abbasi

err='';
symbols={''};
initProb=[];
states={''};
tranProb=[];
emitProb=[];
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[fid,err]=fopen(fileName,'rt');
if(fid==-1)

return;
end

TRUE=1;
FALSE=0;

INITIAL=0;
STATES=1;
statesFound=FALSE;

INIT_PROB=2;
initProbFound=FALSE;

SYMBOLS=3;
symbolsFound=FALSE;

EMIT_PROB=4;
emitProbFound=FALSE;

TRAN_PROB=5;
tranProbFound=FALSE;

DONE=6;

nState=0;
nInitProb=0;
nSym=0;
nEmitProbStates=0;
nTranProbLines=0;

currentState=INITIAL;

while(currentState ~=DONE)
switch(currentState)

case DONE
if(fid ~= -1)

fclose(fid);
end
return;

case INITIAL
%fprintf('initial state\n');
err=findToken('<states>',fid);
if(isempty(err))
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currentState=STATES;
else

err=['failed to find states section' err];
currentState=DONE;

end

case STATES
% looking for list of names, one per line
%fprintf('states state\n');
line=fgetl(fid);
while(line ~= -1)

if(length(line)==0)
line=fgetl(fid)

else
break;

end
end

if(line==-1)
err='Invalid HMM file. incomplete states section';
currentState=DONE;

else
line=nma_trim(line);
if(length(line)>0)

if(line(1) ~='#')
if(isequal(line,'<init_prob>'))

if(nState==0)
err='No states found in the states section.';
currentState=DONE;

else
currentState=INIT_PROB;
statesFound=TRUE;

end
else

nState=nState+1;
states(nState)={line};

end
end

end
end

case INIT_PROB
%looking for name=value, one per line. each name must be
%allready found in the STATES.
%fprintf('init_prob state\n');
line=fgetl(fid);
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while(line ~= -1)
if(length(line)==0)

line=fgetl(fid)
else

break;
end

end

if(line==-1)
err='Invalid HMM file. incomplete init_prob section';
currentState=DONE;

else
line=nma_trim(line);
if(length(line)>0)

if(line(1) ~='#')
if(isequal(line,'<symbols>'))

if(nInitProb==0)
err='No init_prob entries found in the init_prob section.';
if(fid ~= -1)

fclose(fid);
end
return;

end

if(nInitProb ~= nState)
err='Number of init_prob entries must equal number of states.';
if(fid ~= -1)

fclose(fid);
end
return;

end

currentState=SYMBOLS;
initProbFound=TRUE;

else
%parse value from line. allready trimmed.
i=0;
thisValue=0;

thisValue=str2double(line);
if(thisValue==NaN)

err=sprintf('invalid numeric value for probability in init_prob section. Found %s',line);
if(fid ~= -1)

fclose(fid);
end
return;

end
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nInitProb=nInitProb+1;
if(nInitProb>nState)

err='Too many entries in init_prob. should equal to number of states';
if(fid ~= -1)

fclose(fid);
end
return;

end

initProb(nInitProb)=thisValue;
end

end
end

end

case SYMBOLS
%parse line with this a,b,c,d format
%fprintf('symbols state\n');

line=fgetl(fid);
while(line ~= -1)

if(length(line)==0)
line=fgetl(fid)

else
break;

end
end

if(line==-1)
err='Invalid HMM file. incomplete symbols section';
return;

end

line=nma_trim(line);
if(length(line)>0)

if(line(1) ~='#')
if(isequal(line,'<emit_prob>'))

if(nSym==0)
err='No symbols found in the emit_prob section.';
if(fid ~= -1)

fclose(fid);
end

return;
end
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currentState=EMIT_PROB;
else

lookForComma=FALSE;
%parse values from line. allready trimmed.
if(length(line)==1)

nSym=nSym+1;
symbols(nSym)={line};

else
i=0;
while(1)

i=i+1;
if(i>length(line))

break;
end

while(i<=length(line) & (line(i)==' ' | line(i)=='\t' ))
i=i+1;

end

if(i>length(line))
break;

end

if(lookForComma)
if(line(i)~=',')

err='expected a comma in symbols section, did not find it';
if(fid ~= -1)

fclose(fid);
end

return;
else

lookForComma=FALSE;
end

end

if(line(i) ~=',')
nSym=nSym+1;
symbols(nSym)={line(i)};
lookForComma=TRUE;

end
end

end
end

end
end
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case EMIT_PROB
%parse value,value,value
%fprintf('emission_prob state\n');

line=fgetl(fid);
while(line ~= -1)

if(length(line)==0)
line=fgetl(fid)

else
break;

end
end

if(line==-1)
err='Invalid HMM file. incomplete emit_prob section';
if(fid ~= -1)

fclose(fid);
end

return;
end

line=nma_trim(line);
if(length(line)>0)

if(line(1) ~='#')
if(isequal(line,'<tran_prob>'))

if(nEmitProbStates==0)
err='No emit_prob entries found in the emit_prob section.';
if(fid ~= -1)

fclose(fid);
end

return;
end

if(nEmitProbStates ~= nState)
err='number of lines in emit_prob section must equal to number of states';
return;

end

currentState=TRAN_PROB;
else

%parse values from line. allready trimmed.

lookForComma=FALSE;
nValuesFoundOnThisLine=0;
values=[];
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i=1;
while(1)

if(line(i)~=',' & (line(i)==' ' | line(i)=='\t'))
i=i+1;
if(i>length(line))

break;
end

end

if(lookForComma)
if(line(i)~=',')

err='expected a comma in emit_prob section';
if(fid ~= -1)

fclose(fid);
end

return;
else

lookForComma=FALSE;
i=i+1;

end
end

if(i>length(line))
break;

end

while(line(i)==' ' | line(i)=='\t')
i=i+1;
if(i>length(line))

break;
end

end

startPos=i;
while(i<length(line) & line(i)~=' ' &line(i)~='\t' &line(i)~=',')

i=i+1;
end

if(i==startPos)
endPos=i;

else
if(line(i)==' ' | line(i)=='\t' | line(i)==',')

endPos=i-1;
else

endPos=i;
end
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end

value=line(startPos:endPos);
value=str2double(value);
if(value==NaN)

err='Invalid numeric value for emit_prob found';
if(fid ~= -1)

fclose(fid);
end

return;
end

nValuesFoundOnThisLine=nValuesFoundOnThisLine+1;

if(nValuesFoundOnThisLine>nSym)
err='emit probability line contains too many entries, more than number of symbols';
if(fid ~= -1)

fclose(fid);
end

return;
end

values(nValuesFoundOnThisLine)=value;
if(i==length(line))

if(nValuesFoundOnThisLine ~= nSym)
err='emit_prob section, missing emit_probability for some symbols';
if(fid ~= -1)

fclose(fid);
end

return;
end
nEmitProbStates=nEmitProbStates+1;
if(nEmitProbStates>nState)

err='number of lines in emit_prob section can not be more than the number of states';
if(fid ~= -1)

fclose(fid);
end

return;
end
emitProb(nEmitProbStates,1:nSym)=values(1:end);
break;

else
lookForComma=TRUE;
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end
end

end
end

end

case TRAN_PROB
%parse matrix v11,v12
% v21,v22
%there will be n number of lines, where n is the number of
%states

%fprintf('tran_prob state\n');

line=fgetl(fid);

while(line ~= -1)
if(length(line)==0)

line=fgetl(fid)
else

break;
end

end

if(line==-1)
if(nTranProbLines < nState)

err='Invalid HMM file. incomplete tran_prob section';
end

if(fid ~= -1)
fclose(fid);

end

return;
end

line=nma_trim(line);
if(length(line)>0)

if(line(1) ~='#')
if(nTranProbLines==nState)

err='Too many lines in tran_prob section. can only have same lines as number of states';
if(fid ~= -1)

fclose(fid);
end

return;
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end

lookForComma=FALSE;
nValuesFoundOnThisLine=0;
values=[];
i=1;
while(1)

if(line(i)~=',' & (line(i)==' ' | line(i)=='\t'))
i=i+1;
if(i>length(line))

break;
end

end

if(lookForComma)
if(line(i)~=',')

err='expected a comma in tran_prob section';
if(fid ~= -1)

fclose(fid);
end

return;
else

lookForComma=FALSE;
i=i+1;

end
end

if(i>length(line))
break;

end

while(line(i)==' ' | line(i)=='\t')
i=i+1;
if(i>length(line))

break;
end

end

startPos=i;
while(i<length(line) & line(i)~=' ' &line(i)~='\t' &line(i)~=',')

i=i+1;
end

if(i==startPos)
endPos=i;

else
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if(line(i)==' ' | line(i)=='\t' | line(i)==',')
endPos=i-1;

else
endPos=i;

end
end

value=line(startPos:endPos);
value=str2double(value);
if(value==NaN)

err='Invalid numeric value for tran_prob found';
if(fid ~= -1)

fclose(fid);
end

return;
end

nValuesFoundOnThisLine=nValuesFoundOnThisLine+1;

if(nValuesFoundOnThisLine>nState)
err='tran probability line contains too many entries, more than number of states';
if(fid ~= -1)

fclose(fid);
end

return;
end

values(nValuesFoundOnThisLine)=value;
if(i==length(line))

if(nValuesFoundOnThisLine ~= nState)
err='tran_prob section, missing tran_probability for some states';
if(fid ~= -1)

fclose(fid);
end

return;
end
nTranProbLines=nTranProbLines+1;
if(nTranProbLines>nState)

err='number of lines in tran_prob section can not be more than the number of states';
if(fid ~= -1)

fclose(fid);
end

return;
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end
tranProb(nTranProbLines,1:nState)=values(1:end);
break;

else
lookForComma=TRUE;

end
end

end
end

end
end

%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%
function err=findToken(token,fid)

err='';
found=0;

while(~found)

line=fgetl(fid);
while(line ~= -1)

if(length(line)==0)
line=fgetl(fid)

else
break;

end
end

if(line==-1)
err='Invalid HMM file. Expected <states> section, did not find it';
return;

end

line=nma_trim(line);
if(length(line)>0)

if(line(1) ~='#')
if(isequal(line,token))

%fprintf('found %s\n',token);
found=1;

else
err='Failed to find <states> section where it is expected';
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end
end

end
end� �
6.2.4 nma_logOfSumsBeta.m^^E^^L� �
function sum=nma_logOfSumsBeta(beta,tranProb,emitProb)
%function sum=logOfSumsBeta(alpha,tranProb,emit)
%
%INPUT:
% beta: This is an array of the beta values (backward
% algorithm)
% tranProb: This is an array of transition probability
% from all the states to the state we are calculating
% beta at.
% emitProb: the emission probability
% x: the observation sequence

%By Nasser Abbasi
%Dec 2, 2002
%
% Final project , Math 127, computational biology.

x= emitProb(1) + tranProb(1) + beta(1);

if(length(tranProb)>2)
y = nma_logOfSumsBeta( beta(2:end), tranProb(2:end), emitProb(2:end) );

else
y = emitProb(2) + tranProb(2) + beta(2);

end

sum = x + log( 1 + exp(y - x ));� �
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6.2.5 nma_logOfSums.m^^E^^L� �
function sum=nma_logOfSums(alpha,tranProb)
%function sum=logOfSums(alpha,tranProb)
%
%INPUT:
% alpha: This is an array of the alpha values (forward
% algorithm) at t=i-1
% tranProb: This is an array of transition probability
% from all the states to the state we are calculating
% alpha at.

%By Nasser Abbasi
%Dec 2, 2002
%
% Final project , Math 127, computational biology.

x = tranProb(1) + alpha(1);

if(length(tranProb)>2)
y = nma_logOfSums(alpha(2:end),tranProb(2:end));

else
y = tranProb(2) + alpha(2);

end

sum = x + log( 1 + exp( y - x ));� �
6.2.6 nma_hmmForward.m^^E^^L� �
function [alpha,err]=nma_hmmForward(observation,symbols,initProb,emitProb,tranProb)
%function prob=nma_hmmForward(observation,h.symbols,h.initProb,h.emitProb,h.tranProb)
%
%calculate the HMM forward algorithm
%
%INPUT
% observation: a char array of the observation sequence
%
% symbols: a char array. represents the alphabets allowed
% in the observation. It is assumed the observation
% sequence allready contains only valid alphabets
%
% initProb: An array of doubles. represents the LOG_e initial probability
% of the states.
%
% emitProb: A matrix nxm. There are n rows for n states, and m columns for
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% m alphabets. The order of the alphabets is taken from the
% symbols array. The emission probability, in Log_e
%
% tranProb: The state transition probability matrix. In Log_e
%
% OUTPUT
% alpha: Alpha matrix. nxm
% err: empty if no errors.
%

err='';

nStates=size(emitProb,1);
alpha=zeros(nStates,length(observation));

for(state=1:nStates)
[p,err]=nma_hmmEmitProb(state,observation(1),emitProb,symbols);
if(~isempty(err))

return;
end

alpha(state,1) = initProb(state) + p;
end

for(time=2:length(observation))
x=observation(time);

for(currentState=1:nStates)
[emitProbAtCurrentState,err] = nma_hmmEmitProb(currentState,x,emitProb,symbols);
if(~isempty(err))

return;
end

sum=nma_logOfSums(alpha(:,time-1),tranProb(currentState,:));

alpha(currentState,time)=sum + emitProbAtCurrentState;

end
end� �



57

6.2.7 nma_hmmEmitProb.m^^E^^L� �
function [emit,err]=nma_hmmEmitProb(state,c,emitProb,symbols)
%function [emit,err]=nma_hmmEmitProb(state,c,emitProb,symbols)
%returns the emit probability of c from state.
%

%Nasser Abbasi, MATH 127.

err='';
emit=0;
nSyms=length(symbols);

for(i=1:nSyms)
if(c==char(symbols(i)))

emit=emitProb(state,i);
return;

end
end

err=sprintf('observation char %c not found in emit probability matrix.',c);� �
6.2.8 nma_hmmBackward.m^^E^^L� �
function [beta,err]=nma_hmmBackward(observation, symbols, initProb, emitProb, tranProb)
%
%calculate the HMM backward algorithm
%
%INPUT
% observation: a char array of the observation sequence
%
% symbols: a char array. represents the alphabets allowed
% in the observation. It is assumed the observation
% sequence allready contains only valid alphabets
%
% initProb: An array of doubles. represents the initial probability
% of the states.
%
% emitProb: A matrix nxm. There are n rows for n states, and m columns for
% m alphabets. The order of the alphabets is taken from the
% symbols array.
%
% tranProb: The state transition probability matrix.
%
% OUTPUT
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% beta: beta matrix. nxm
% err: empty if no errors.
%

err='';
beta=[];
nSeq=length(observation);

nStates=size(emitProb,1);
beta=zeros(nStates,nSeq);

for(state=1:nStates)
beta(state,end) = log(1);

end

for(time=nSeq-1:-1:1)
x=observation(time+1);
currentEmitProb=[];
for(k=1:length(symbols))

if(x==char(symbols(k)))
currentEmitProb=emitProb(:,k);
break;

end
end

for(currentState=1:nStates)
beta(currentState,time)=nma_logOfSumsBeta(beta(:,time+1),tranProb(currentState,:),currentEmitProb);

end
end� �
6.2.9 nma_hmm_veterbi.m^^E^^L� �
function [statePath,stateSeq,gamma]=nma_hmm_veterbi(observation,symbols,initProb,emitProb,tranProb)
%function gamma=nma_hmm_veterbi(observation,initProb,emitProb,tranProb)
%
%
%Find Viterbi Gamma values.
%
% INPUT
% observation: the observation sequence. a Vector of characters.
% symbols: the allowed alphabets of the language, or observation
% initProb: a vector of the initial probabilities for each state
% in logs.
% emitProb: a matrix that represents the emission probability of each
% symbol from each state
% tanProb: a matrix that represents the state transition
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% probability.
%
% OUTPUT
% gamma: the gamma for each state and each position. a matrix.
% stateSeq: the state sequence vector of most likely states.

%by Nasser Abbasi

nState=size(tranProb,1);
statePath=zeros(nState,length(observation));
gamma=zeros(nState,length(observation));

c=observation(1);
theMax=-Inf;

%initial
for(state=1:nState)

[emit,err]=nma_hmmEmitProb(state,c,emitProb,symbols);
if(~isempty(err))

return;
end

gamma(state,1)= initProb(state) + emit;

if(gamma(state,1)>theMax)
theMax=gamma(state,1);

end
end

for(time=2:length(observation))
c=observation(time);

for(currentState=1:nState)

[emit,err]=nma_hmmEmitProb(currentState,c,emitProb,symbols);
if(~isempty(err))

return;
end

theMax=-Inf;

for(k=1:nState)
t= tranProb(k,currentState) + gamma(k,time-1);

if(t>theMax)
theMax=t;
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end
end

%gamma(currentState,time)=theMax*emit;
gamma(currentState,time)=theMax+ emit;

end
end

for(time=2:length(observation))
for(to=1:nState)

theMax=-Inf;
for(from=1:nState)

t= tranProb(from,to) +gamma(from,time-1);

if(t>theMax)
theMax=t;
statePath(to,time)=from;

end
end

end
end

stateSeq=zeros(length(observation),1);
[V,I]=max(gamma(:,end));
stateSeq(end)=I;
for(i=length(observation)-1:-1:1)

stateSeq(i)=statePath(stateSeq(i+1),i+1);
end� �
6.2.10 nma_hmm_callbacks.m^^E^^L� �
function nma_hmm_callbacks(arg,h0)
%function nma_hmm_callbacks(arg,h0)
%

%
% Final project
% course MATH 127, UC Berkeley, FALL 2002 tought by Dr Lior Pachter.
%

%change history
%nabbasi-112802 started
%nabbasi-0201402 all algorithms implemented OK. Need more GUI work.

switch arg
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case 'init'
% called by nma_alignment_main just after loading the GUI

warning on;

h = struct( ...
'isHMMLoaded',0,...
'fullHMMFileName','',...
'hmmLastFolder','',...
'fullLogFileName','',...
'hmmFileName_tag',0,...
'logFileName_tag',0,...
'seq_tag',0,...
'hmmFID',0,...
'modelSeq_tag',0,...
'modelStates_tag',0,...
'modelStateTranMatrix_tag',0,...
'modelEmitProbMatrix_tag',0,...
'modelInitialProb_tag',0,...
'forward_tag',0,...
'forward_log_tag',0,...
'veterbi_tag',0,...
'grid_tag',0,...
'forward_grid_tag',0,...
'backwardPos_tag',0,...
'backwardState_tag',0,...
'backwardProb_tag',0,...
'backwardGrid_tag',0,...
'symbols',{''},...
'emitProb',[],...
'Log_Emit_Prob',[],...
'states',{''},...
'tranProb',[],...
'Log_Tran_Prob',[],...
'initProb',[],...
'Log_Init_Prob',[],...
'beta',[],...
'alpha',[],...
'gamma',[],...
'observation','');

zoom(h0,'on');

%
% set version number to display and program name and update build date
%
set(h0,'Name','Simple HMM model, V 1.0. Written by Nasser Abbasi for MATH 127 course tought by Dr Lior Pachter, UC Berkeley. Fall 2002.');
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set(h0,'NumberTitle','off');

%
% store all GUI handles in userData for quick access in the callbacks
%
h.hmmFileName_tag = findobj(h0,'Tag','hmmFileName_tag');
h.logFileName_tag = findobj(h0,'Tag','logFileName_tag');
h.seq_tag = findobj(h0,'Tag','seq_tag');
h.modelSeq_tag = findobj(h0,'Tag','modelSeq_tag');
h.modelStates_tag = findobj(h0,'Tag','modelStates_tag');
h.modelStateTranMatrix_tag = findobj(h0,'Tag','modelStateTranMatrix_tag');
h.modelEmitProbMatrix_tag = findobj(h0,'Tag','modelEmitProbMatrix_tag');
h.modelInitialProb_tag = findobj(h0,'Tag','modelInitialProb_tag');
h.forward_tag = findobj(h0,'Tag','forward_tag');
h.forward_log_tag = findobj(h0,'Tag','forward_log_tag');
h.veterbi_tag = findobj(h0,'Tag','veterbi_tag');
h.grid_tag = findobj(h0,'Tag','grid_tag');
h.forward_grid_tag = findobj(h0,'Tag','forward_grid_tag');

h.backwardPos_tag = findobj(h0,'Tag','backwardPos_tag');
h.backwardState_tag = findobj(h0,'Tag','backwardState_tag');
h.backwardProb_tag = findobj(h0,'Tag','backwardProb_tag');
h.backwardGrid_tag = findobj(h0,'Tag','backwardGrid_tag');

set(h0,'UserData',h);

case 'backward_callback'

[o,FF]=gcbo;
h=get(FF,'UserData');

if(~h.isHMMLoaded)
uiwait(errordlg(sprintf('Error. No HMM model loaded. Please load an HMM model first')));
return;

end

observation= get(h.seq_tag,'String');
observation=cleanSeq(observation);
if(length(observation)==0)

uiwait(errordlg(sprintf('Error. No observation sequence available. Please type in a sequence.')));
return;

end

theTime = get(h.backwardPos_tag,'String');
theTime = str2double(theTime);
if( isnan(theTime))
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uiwait(errordlg(sprintf('Error in backward algorithm input. Invalid numeric value for symbol position. [%s]',theTime)));
return;

end

if(theTime<1 | theTime>length(observation))
if(theTime<1)

uiwait(errordlg(sprintf('Error in backward algorithm input. can not have a negative value for symbol position.')));
else

uiwait(errordlg(sprintf('Error in backward algorithm input. position given exceeds length of sequence')));
end
return;

end

inputState = nma_trim(get(h.backwardState_tag,'String'));
if(isempty(inputState))

uiwait(errordlg(sprintf('Error in backward algorithm input. Empty state name.')));
return;

end

found=0;
for(i=1:length(h.states))

s=char(h.states(i));
if(length(s)==length(inputState))

if(s==inputState)
found=1;
break;

end
end

end

if(~found)
uiwait(errordlg(sprintf('Error in backward algorithm input. Invalid state name. Unrecgnized. check spelling')));
return;

end

statePos=getPosOfState(h.states,inputState);
prob=exp(h.beta(statePos,theTime))*exp(h.alpha(statePos,theTime))/fullProb(h);
set(h.backwardProb_tag,'String',prob);

case 'run_callback'

[o,FF]=gcbo;
h=get(FF,'UserData');

if(~h.isHMMLoaded)
uiwait(errordlg(sprintf('Error. No HMM model loaded. Please load an HMM model first')));
return;
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end

observation= get(h.seq_tag,'String');
observation=cleanSeq(observation);
if(length(observation)==0)

uiwait(errordlg(sprintf('Error. No observation sequence available. Please type in a sequence.')));
return;

end

set(h.seq_tag,'String',observation);

h.observation=observation;

[h,err]=forward(h);
if(~isempty(err))

uiwait(errordlg(sprintf('%s',err)));
return;

end

h=viterbi(h);

[beta,err]=nma_hmmBackward(observation,h.symbols,h.Log_Init_Prob,h.Log_Emit_Prob,h.Log_Tran_Prob);
if(~isempty(err))

uiwait(errordlg(sprintf('%s',err)));
return;

end
h.beta=beta;

Formatted_String = Format_Probability_Grid( h.beta, h.states , []);
Position_String = Format_Position_String( h.alpha );
Final_String = Append_Cell_Array( Formatted_String, Position_String);

set( h.backwardGrid_tag, 'String', Final_String);

set(FF,'UserData',h);
return;

case 'openHMMFile_callback'

[o,FF]=gcbo;
h=get(FF,'UserData');

if(~isempty(h.hmmLastFolder))
cd( h.hmmLastFolder);

end
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[fileName, pathName] = uigetfile(['*.hmm;*.txt'], 'Select HMM configuration file to open');
if(pathName==0)

return;
end

fullFileName=[pathName fileName];

% [fid,err] = fopen(fullFileName,'rt');
% if(~isempty(err))
% uiwait(errordlg(sprintf('Error opening HMM file[%s]. error=%s.',fullFileName,err)));
% h.hmmFID = 0;
% set(FF,'UserData',h);
% return;
% end
%
% fclose(fid);
%
h.hmmLastFolder=pathName;
h.fullHMMFileName=fullFileName;

set(h.hmmFileName_tag,'String',fullFileName);

[symbols, initProb, states, tranProb, emitProb, err]=nma_readHMM(h.fullHMMFileName);
if(~isempty(err))

uiwait(errordlg(sprintf('Error parsing HMM configuration file[%s]. error=%s.',fileName,err)));
return;

end

DELTA=0.00001;
LOW_THRESHOLD=1-DELTA;
HIGH_THRESHOLD=1+DELTA;

T=sum(initProb);
if(T<LOW_THRESHOLD | T>HIGH_THRESHOLD)

uiwait(errordlg(sprintf('Initial probability sum is found to be %f. It must equal 1.0. Correct the configuration file',T)));
return;

end

Number_Of_States = size(tranProb,1);
for(row=1:Number_Of_States)

T=sum(tranProb(row,:));
if(T<LOW_THRESHOLD | T>HIGH_THRESHOLD)

uiwait(errordlg(sprintf('Probability transition matrix, row %d, the sum must equal 1.0, found %f Correct the configuration file',row,T)));
return;

end
end
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for(row=1:Number_Of_States)
T=sum(emitProb(row,:));
if(T<LOW_THRESHOLD | T>HIGH_THRESHOLD)

uiwait(errordlg(sprintf('emit probability matrix, row %d, the sum must equal 1.0, found %f Correct the configuration file',row,T)));
return;

end
end

h.isHMMLoaded=1;

h.symbols=symbols;
h.initProb=initProb;
h.emitProb=emitProb;
h.states=states;
h.tranProb=tranProb;

% convert prob to log now for speed, so we do not have
% to do this every time.
Number_Of_States = length(states);
Number_Of_Symbols = length(symbols);

for(i=1:Number_Of_States)
if(initProb(i) == 0 )

h.Log_Init_Prob(i) = -inf;
else

h.Log_Init_Prob(i) = log(initProb(i));
end

for(j=1:Number_Of_Symbols)
if(emitProb(i,j)==0)

h.Log_Emit_Prob(i,j) = -inf;
else

h.Log_Emit_Prob(i,j) = log(emitProb(i,j));
end

end

for(j=1:Number_Of_States)
if(tranProb(i,j)==0)

h.Log_Tran_Prob(i,j) = -inf;
else

h.Log_Tran_Prob(i,j) = log(tranProb(i,j));
end

end
end

T='';
symbolsAsString=char(symbols);
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for(i=1:length(symbols))
if(i==length(symbols))

T=[T sprintf('%c',symbolsAsString(i))];
else

T=[T sprintf('%c,',symbolsAsString(i))];
end

end

set(h.modelSeq_tag,'String',{T});

set(h.modelStates_tag,'String',states);

theText={''};
nLine=0;
T='';
statesAsString=char(states);
for(j=1:size(tranProb,2))

T=[T sprintf('%10c %s',' ',statesAsString(j,:))];
end
nLine=nLine+1;
theText(nLine)={T};

for(i=1:size(tranProb,1))
T=sprintf('%s ',statesAsString(i,:));
for(j=1:size(tranProb,2))

T=[T sprintf('%6.6f ',tranProb(i,j))];
end
nLine=nLine+1;
theText(nLine)={T};

end

set(h.modelStateTranMatrix_tag,'String',theText);

theText={''};
nLine=0;
T='';
for(i=1:size(emitProb,1))

T='';
for(j=1:size(emitProb,2))

T=[T ' ' sprintf('%6.6f',emitProb(i,j))];
end
nLine=nLine+1;
theText(nLine)={T};

end

set(h.modelEmitProbMatrix_tag,'String',theText);
set(h.modelInitialProb_tag,'String',initProb);
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set(FF,'UserData',h);
return;

case 'openLogFile_callback'

[o,FF]=gcbo;
h=get(FF,'UserData');

if(~isempty(h.hmmLastFolder))
cd( h.hmmLastFolder);

end

[fileName, pathName] = uigetfile(['*.txt'], 'Select log file to open');
if(pathName==0)

return;
end

fullFileName=[pathName fileName];

[fid,err] = fopen(fullFileName,'at');
if(~isempty(err))

uiwait(errordlg(sprintf('Error opening log file[%s]. error=%s.',fullFileName,err)));
h.hmmFID = 0;
set(FF,'UserData',h);
return;

end

fclose(fid);

h.hmmLastFolder=pathName;
h.fullLogFileName=fullFileName;

set(h.logFileName_tag,'String',fullFileName);

set(FF,'UserData',h);
return;

end

%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%
function sum=fullProb(h)
sum=0;
for(i=1:size(h.alpha,1))
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sum=sum+exp(h.alpha(i,end));
end

%%%%%%%%%%%%%%%%%%%%%%%%%
%
% removes spaces
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Output_Sequence=cleanSeq(seq)

Number_Of_Lines = size(seq,1);
Length_Of_Line = size(seq,2);

Output_Sequence = zeros(Number_Of_Lines * Length_Of_Line , 1);

k=0;

for(i=1:Number_Of_Lines)
for(j=1:Length_Of_Line)

if(seq(i,j)==' ' |seq(i,j)=='\t')
;

else
k=k+1;
Output_Sequence(k)=seq(i,j);

end
end

end

Output_Sequence = char(Output_Sequence(1:k))';
Output_Sequence = nma_trim(Output_Sequence);

%%%%%%%%%%%%%%%%%%%%%%%%%%%
%check if char in observation sequence is valid
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function valid=validSymbol(c,allowed)

valid=0;

for(i=1:length(allowed))
if(c == char(allowed(i)))

valid=1;
return;

end
end

%%%%%%%%%%%%%%%%%%%%%%%
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%
%
%%%%%%%%%%%%%%%%%%%%%%%%
function [h,err]=forward(h)

err='';

for(i=1:length(h.observation))
if(~validSymbol(h.observation(i),h.symbols))

err=sprintf('Error. observation sequence contains an invalid character ''%c''',h.observation(i));
return;

end
end

[alpha,err]=nma_hmmForward(h.observation,h.symbols,h.Log_Init_Prob,h.Log_Emit_Prob,h.Log_Tran_Prob);
if(~isempty(err))

err=sprintf('Error. Failed in forward algorithm. err=%s',err);
return;

end

h.alpha=alpha;
prob=0;
for(state=1:size(alpha,1))

prob=prob+exp(alpha(state,end));
end

set(h.forward_tag,'String',sprintf('%g',prob));

Formatted_String = Format_Probability_Grid( h.alpha, h.states, [] );
Sum_Of_Probability_String = Format_Sum_Of_Probability_String(h.alpha);
Position_String = Format_Position_String(h.alpha);

Final_String = Append_Cell_Array( Formatted_String , Sum_Of_Probability_String);
Final_String = Append_Cell_Array( Final_String , Position_String);

set(h.forward_grid_tag,'String',Final_String);

%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%
function h=viterbi(h)

[statePath,stateSeq,gamma]=nma_hmm_veterbi(h.observation,h.symbols,h.Log_Init_Prob,h.Log_Emit_Prob,h.Log_Tran_Prob);
h.gamma=gamma;

final={''};
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k=0;
for(i=1:length(stateSeq))

if(i==1)
T=char(h.states(stateSeq(i)));

else
T=[T ',' char(h.states(stateSeq(i)))];

end
if(0==mod(i,20))

k=k+1;
final(k)={T};
T='';

end
end
k=k+1;
final(k)={T};

set(h.veterbi_tag,'String',final);

Formatted_String = Format_Probability_Grid(h.gamma, h.states, stateSeq);
Sum_Of_Probability_String = Format_Sum_Of_Probability_String(h.alpha);
Position_String = Format_Position_String(h.alpha);

Final_String = Append_Cell_Array( Formatted_String , Sum_Of_Probability_String);
Final_String = Append_Cell_Array( Final_String , Position_String);

set(h.grid_tag,'String',Final_String);

%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Formatted_String = Format_Probability_Grid(Data_Matrix, HMM_States,Viterbi_State_Seq)

n=0;
Formatted_String={''};
T='Probabilites in logs';
n=n+1;
Formatted_String(n)={T};

for(state=1:size(Data_Matrix,1))
name=char(HMM_States(state));
L=length(name);
T='';

for(m=1:10)
if(m>L)

c=' ';
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else
c=name(m);

end
T=[T c];

end

T=[T ':'];

for(time=1:size(Data_Matrix,2))
c=' ';
if( (~isempty(Viterbi_State_Seq)) & (Viterbi_State_Seq(time)==state) )

c='*';
end

if(Data_Matrix(state,time)==-Inf)
Z=sprintf(' -Inf ');

else
Z=sprintf('%10.10f',Data_Matrix(state,time));

end

if(time==size(Data_Matrix,2))
T=sprintf('%s%s%c',T,Z,c);

else
T=sprintf('%s%s%c ',T,Z,c);

end
end

n=n+1;
Formatted_String(n)={T};

end

T=' ';
n=n+1;
Formatted_String(n)={T};

T='Probabilites';
n=n+1;
Formatted_String(n)={T};

for(state=1:size(Data_Matrix,1))
name=char(HMM_States(state));
L=length(name);
T='';
for(m=1:10)

if(m>L)
c=' ';

else
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c=name(m);
end
T=[T c];

end
T=[T ':'];
for(time=1:size(Data_Matrix,2))

if(Data_Matrix(state,time)==-Inf)
Z=sprintf(' 0 ');

else
Z=sprintf('+%3.10f',exp(Data_Matrix(state,time)));

end

if(time==size(Data_Matrix,2))
T=sprintf('%s%s%c',T,Z,' ');

else
T=sprintf('%s%s%c ',T,Z,' ');

end
end
n=n+1;
Formatted_String(n)={T};

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Sum_Of_Probability_String = Format_Sum_Of_Probability_String(Data_Matrix)

Line_Number = 0;

Line=' ';
Line_Number = Line_Number + 1;
Sum_Of_Probability_String(Line_Number) = {Line};

Line='Column Sums of Probabilites';
Line_Number = Line_Number + 1;
Sum_Of_Probability_String(Line_Number) = {Line};

%Now also display the probability of partial sequences.
Line='prob. :';
for(time=1:size(Data_Matrix,2))

prob=0;
for(state=1:size(Data_Matrix,1))
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prob=prob+exp(Data_Matrix(state,time));
end

Line=sprintf('%s+%10.10f ',Line,prob);
end

Line_Number = Line_Number + 1;
Sum_Of_Probability_String(Line_Number)={Line};

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Position_String = Format_Position_String(Data_Matrix)

Line_Number = 0;

Line=' ';
Line_Number = Line_Number + 1;
Position_String(Line_Number) = {Line};

Line='Position :';

for(time=1:size(Data_Matrix,2))
Z=sprintf(' %12d',time);
Line=sprintf('%s%s%c ',Line,Z,' ');

end

Line_Number = Line_Number + 1;
Position_String(Line_Number) = {Line};

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%5
%
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function S=Append_Cell_Array(S1,S2)

S=S1;
N=length(S);
for(i=1:length(S2))

S(N+i)=S2(i);
end� �
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6.2.11 getPosOfState.m^^E^^L� �
function pos=getPosOfState(stateArray,stateName)
%function pos=getPosOfState(stateArray,stateName)
% returns the position of state name from state Array
%
% Nasser Abbasi
pos=-1;

stateName=nma_trim(stateName);
N=length(stateName);
for(i=1:length(stateArray))

s=char(stateArray(i));
M=length(s);
if(N==M)

if(s==stateName)
pos=i;
return;

end
end

end� �
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