
Enterprise JavaBeans (EJB) security
Nasser M. Abbasi

sometime in 2000 Compiled on September 8, 2023 at 12:12am

Contents
1 Introduction 1

2 Overview of security testing 1

3 Web project dataflow 3

4 Test setup and preparation 4

5 EJB Notes 4
5.1 EJB classes . 7
5.2 J2EE servlet and JSP Functionality testing for NetDynamics 5.0 SP2 . . . 8

6 References 9

1 Introduction
This report describes the tests I made and the process of testing performed for the EJB
security component of the NetDynamics server.
NetDynamics Application Server. 5.0.0.22 SP2. For Windows NT 4.0 + ND patch 40-
REFRESH, and Solaris 5.6 + ND patch 40-REFRESH.

2 Overview of security testing
The container is responsible for enforcing the security rules. It will enforce that the EJB
security methods in a bean at run-time are allowed to be called by the caller (bean client).
This is done by checking for the security role and the principle of the context that the call
is made under.
The principle is the name assigned to the SECUIRTY_PRINCIPLE by the caller.
The role is the name of the role (or group) that the principle belongs to.

1

mailto:nma@12000.org

2

The container will check that the bean method is allowed to be called by the principle
making the call, by checking that the SECURITY_PRINCIPLE of the caller belongs to a
role that the bean methods belongs to.
Roles are assigned to methods at design time of the bean, using the ND studio. The container
will read this information from the deployment serialized file when it first loads the bean
class. The mapping of the principle name to a role is already known to the server, this was
done earlier by loading the file called ejbUsers.txt into the server.
A stateful session bean context is fixed when the bean is created (when the ejbCreate()
method is called). It is not allowed to change the context of the stateful session bean after
it was created.
Figure 1 illustrates some of the above discussion.

m()
{
}

client
program

PRINCIPLE="joe doe"
ROLE="employee"

EJB container

Bean instance

Container will allow this call to procced if all of
the following conditions are met:
1. There is a role associated with method m(),
and the role is called "employee".
2. The principle "joe doe" belongs in the role
"employee".

If NO role is associated with the method m(),
then any call is allowed to procceed, and no
security checking is made.

Notice that the Context created by client is
propogated to the bean method, making it
possible to find the caller identity from inside
the bean.

bean
deployment

file

Container reads the bean
deployment to determine
security roles associated with
bean business methods.

ejbUsers.txt

This file contains the list of
PRINCIPLE names, passwords, and
which role the PRINCIPLE belongs
to.
Use MergePriciple utility to load
the list into the App server. then
restart the server.

Figure 1: Overview of EJB security concepts. ejb_sec_1.vsd

3

3 Web project dataflow
For web projects testing, the client will access the bean using a web server.
The client sends a URL string which contains the name of the web plugin, and the name
of the page to invoke. The webserver will then invoke the plugin executable and pass it the
information. The plugin will then communicate with the ND plugin server, the ND plugin
server then passes the data to a CP worker, which creates the bean using information from
the web server environment variables that was passed to it from the web plugin via the ND
plugin server.
The web plugin knows where the ND plugin server is by looking up its IP address from a
file called plugin.nd.
The ND plugin Server then returns the web page back to the client via the web plugin.
Additional requests/responses will follow this pattern. see figure ?? for illustration.
The following is an example of URL send from the client to the application server to bring
up a web page:

http://localhost/SCRIPTS/nd_CGI_50.exe/securityTestsWeb/Stateless3Page?^start=&^uniqueValue=934486027

Figure 2 illustrates this.

http://localhost:80/SCRIPTS/nd_CGI_50.exe/..... webServer

client

nd_CGI_50.exe
plugin

 serverAddress=rouse:35100

C:\InetPub\Scripts\plugin.nd

reads server
address

sends request to NetDynamics server

35100

plugin Server

NetDynamics Server

Projects/securityTests/testPage

bean loaded to
process request

remote host

response

Figure 2: Accessing a bean using a web page. web_flow.vsd

4

4 Test setup and preparation
We first list the steps needed to run the tests from the standalone clients, then show more
details on each step.
In General, these are the steps needed to run the tests

1. Install ND server.

2. Add roles and users to server.

3. Write the tests using ND studio. This steps includes adding roles to bean methods.

4. Use the console and set the needed parameters for the standalone tests.

5. Use the console to configure CP for servlets.

6. Update the license to increase users limit.

7. Update the test harness and run the tests

8. Run the servlet tests.

9. Run the web page project tests.

10. Investigate any failed tests. Report problems found.

5 EJB Notes
Netdynamics application server EJB service is an EJB container that meets 1.0 EJB
specification. Some of the services mentioned in the specification are:

• Swap to/from passivation storage for non-active beans (for session beans). Currently,
passivation storage in in-memory only.

• Persistence management for entity beans. (ND server currently does not implement
entity beans).

• Provide Home object implementation creation.

• Provide JNDI service to allow clients to lookup home interface object implementation
on the server.

• Creation and removal of bean instances.

• Support for transaction for business methods.

• Implementation of security related checking at run-time.

• generation of skeletons and stubs for remote method calls for the home interface and
remote interface implementation (objects).

Diagram 3 Illustrates a high level view of relationship between the server, the container,
and the EBJ instances.

5

EJB
containers

EB beans EB beans

Client
application

Application
Server

Server-Container Interface

Container-beans interface

Figure 3: Server, Container and EJB instances. view1.fig

A client uses JNDI to locate a reference to the Home object. The Home object is the name
given to implementation of the Home interface of the bean. Once the client has obtained
this reference, it will call the create() method in the Home object. This causes the container
to create the bean instance, and to allocate a remote interface object on the server side
(called EJBObject), which it then return its reference back to the client. The client then
uses the reference to the remote object to access the business methods inside the bean.
The client does not have a direct reference to the bean class instance itself, but to the
implementation of its remote interface. The remote interface then calls the business methods
in the bean on behave of the client.
So, the remote interface implementation, called EJBObject, is the one the calls the bean
business methods. In addition, the EJBObjec communicate with the container to determine
security and transaction context of the bean, since the container is the one who have
knowledge of such information.
So, the EJBObject, the implementation of the remote interface, acts as a remote proxy for
the bean instance.
The bean itself is not a network object, and can not be accessed directly over the network.
Access to the bean must occur via its proxy, the EJBObject. Both the EJBObject, and the
bean must reside in the same container.
Each bean instance, has a corresponding EJBObject instance. The EJBObject instance
contains a reference to the bean instance, which the container initialized the EJBObject
with when the bean was created.

6

The same Home interface can be used to create more instances of the bean (implying more
instances of EJBObject).
Figure 4 Illustrates some of the above concepts.

remoteHome
local proxy

remoteHome
server proxy

remoteInterface
local proxy

remoteInterface
server proxy (EJBObject)

m1()
{
 ... business method
 code here..
}

internal container
interface calls

m1()
{
 ...call container...
 .. bean.m1();
}

create()
{
 ...
}

deployment
descriptor

bean instance
inside EJB container

SessionContext
object

create(){..}

m1(){}

RMI or CORBA/IIOP

client application

extends javax.ejb.EJBObject

extends javax.ejb.EJBHome;

ejbCreate(){..}

implements javax.ejb.SessionBean;

X

xhome

x

XHome xhome= initialContext.lookup("com/mycompany","x.class");
X x= xhome.create();
x.m1();

Context initialContext= new InitialContext();

Figure 4: Container, Home, Remote, and bean relationship. view2.fig

The following are additional specific notes written down during EJB overview meeting given
by ELain.

• Container or worker is itself a stateful type of instance.
• Container is a CORBA object.
• On the client side, a proxy is used to communicate with the server side implementation

object.
• The client proxy contains Meta data that represent data that do not change (such as

name of bean.) Call to obtain meta data does not need to be send to the server side.
• On the client side, a pool is created when the first call to initial context is made.

This pool is used to store the local proxy objects. (Hash table indexed by container
handler).

7

• Each bean instance is uniquely identified by its object ID, and session ID.

• All beans belonging to same session are located inside single container.

• Web projects are stateless.

• Standalone EJB sessions do not go throw CP.

• Web project EJB sessions are created by the CP.

• Need to worry about CP view of the session, and the EJB view of the session for web
project.

• The studio automatically generates the EJBHome local proxy, EJBHome remote im-
plementation, EJBObject local proxy, and EJBObject remote implementation classes.

5.1 EJB classes
We now look at the classes involved in implementation of EJB. First, we look at the classes
used to implement the client side of the Home and Remote interfaces.
Figure 5 shows the relationship.

8

extend

extend

extend

extend

extend

public class NDFooHomeProxy

extend

extend

public class CNdServerObjectProxy
public static class _ND_Data{
 public org.omg.CORBA.Object objectref;
 public TNdObjectContext objectContext;
 public TNdEJBInfo ejbInfo;
}

public static class _ND_LocalData extends _ND_Data{
 public CNdServerObjectImpl beanImpl;
}

public static class _ND_RemoteData extends _ND_Data{
 public CNdEJBProxy workerProxy;
}

{

}

Serializable

implements

public class CNdServerObjectImpl{
 protected CNdEJBWorkerImpl _ND__worker;
 protected TNdEJBInfo _ND__ejbInfo;
 protected in _ND_stateManagementType;
 protected CNdAccessControlEntryTable _ND__access;

}

INdEJBWorkerOperations

extend

extend

INdWorkerOperations

CNdTimerObserver

public class CNdAdmin

public abstract class CNdEJBWorkerOperations

public class CNdEJBWorkerImpl{..}

implement

public abstract class CNdWorkerImpl

implementextsnds

client-side implementaion of
Foo Home interface

client-side implementaion of
Foo object interface

public abstract interface javax.ejb.EJBObject

public interface java.rmi.Remote

{

}

public interface Foo

 public void m1();

implements

implements

public class NDFooProxy

public abstract class CNdEJBObjectProxy

extend

public interface java.rmi.Remote

public abstract interface javax.ejb.EJBHome

public interface FooHome

{

 public Foo create();

}

implements

public abstract class CNdEJBHomeProxy

implements

uses
uses

Netdynamics application server class releationship for client-side
implementation of EJB Home and Object interfaces.

Nasser Abbasi 9/29/99

Figure 5: Client side EJB classes. ejb_client_side_classes.fig

5.2 J2EE servlet and JSP Functionality testing for
NetDynamics 5.0 SP2

This is a report on how to setup and run the J2EE Compatibility Tests for servlet/JSP for
ND 5.0 SP2.
Directory structure
To make it easier to setup the test environment, I’ll first show a diagram of how the directory
structure should look like before running the tests.
Assume that you will install everything on the C: drive. (On UNIX, simply replace the C:
in the diagram with the root where you will installed the software.
In This diagram, I’ll also show the files that you need to edit/configure before running the
tests.

some root (example C:\ or /)
|

9

|
|
|

+--------------------+-----------------+----------------+-------------------+
| | | jdk1.2.1/ |
qa/ NetDynamics/ j2eects/ temp/
| | |
+---------+ | |
| | | |

Servlets/ wwwroot/ bin/ +-----+------------+
| | | |
| | AllTestsJTReport/ AllTestsJTWork/

Tests/ cts_env.bat
| jets.bat

AllTestSuite.html AllTestSuite.jtp
netdyn.jte
netdynurl.maps

To set up the above directory, download the J2EE CTS and install it. Look for the file
j2eects.tar.gz in the J2EE related web page. extract the content of the above tar file
to create the /j2eects directory. Look at the CTS user guide for any special configuration
before starting going further.
The latest qa directory shown above can be obtained from CVS (when it is on-line :)
Install JDK 1.2.1 (Make sure it is JDK 1.2.1 since that is the one j2EE CTS supports.

6 References
1. Sun 1.0 EJB specification document by Vlada Matena and Mark Hapner.

2. Developer’s Guide to understanding EJB, by Chris Crenshaw, Nova labs.

3. Notes taken during Elain group meeting on EJB overview.

4. EJB white paper, by Anne Thomas, December 1988. Patricia Seybold Group.

5. Servlet Service Design report. By John Ellithorpe. April 14, 1999.

6. Release notes for NetDynamics 5.0 service pack 2. Servlets and JSP section.

7. Smita Srivastava report on EJB security test plan and setup.

8. Sun EJB 1.0 specification, Support for security section, pages 113,114.

9. Sun EJB 1.1 specification. chapter 15, Security management, pages 223-242.

	Introduction
	Overview of security testing
	Web project dataflow
	Test setup and preparation
	EJB Notes
	EJB classes
	J2EE servlet and JSP Functionality testing for NetDynamics 5.0 SP2

	References

