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CT Overview

Uses X-ray to obtain multiple projections at
different angles of the same cross section
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Projection data processed using signal processing
software to reconstruct 2D image of the cross section

DSP medical imaging software converts projection data to 2D section images.
More projections leads to better images, but more x-ray exposure



Simplified view of CT with parallel X-ray
showing projection data capture
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\. Section of body that we

are interested in
obtaining its 2D image

Components of parallel X-ray CT system. Many projections
are obtained at different angles. Projections are combined
in software using filtered backprojection to obtain an
accurate 2D image of the section of the body shown above.




lllustrating the problem of image reconstruction on a simple
4 pixels image with 2 projections
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A projection is an integral operation along the path of the ray. In other words, it
sums the pixel values along its path, generating a vector of projection values.



The CT Inverse problem

Determine the original image from the
projection data only




The problem of image reconstruction from
projections and possible solutions

The problem is the following:
Given a set of projections with corresponding angles that these projections
obtained at, determined the original image Method of solution

Solving the CT

inverse pro blem

Linear algebra Frequency approach
approach

Direct use of the Fourier Central

Filtered Backprojection
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Slice theorem and 2D Inverse method

Fourier Transform

(Used more in practice)



Solving the problem using linear

algebra
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Solving the problem using frequency domain with Fourier
Central Slice Theorem
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Solving the inverse CT problem using
Filtered back projection

o RAMLLAK Filtered F|I‘ter-.=f-d
Projection #1  FFT Filter projection IFFT  projection
B — I - . . =
= spectrum spEcirum
£ Backprojection
E Filtered  Filtered (inverse rad@n transform)
p projection projection
a This is an
8 FFT |FFT additive
operation
Fadon transform which is
E'“‘,k"mjm"’" averaged at
inverse
the end
Frojection #2 RE“;‘;]F spectrum spatial radon :
2D |ITIEIQE transform) Mote: In backprojection,
| values from projection
! wactor are smaarad along
1Il / each pixel in the 2D image
The more projections used, the better the in the path of
\ . . . . . backprojection. &L the end,
N\ approximation of filtered backprojection 7 the average of all
™~ image to original (unknown) image beuames / projactions is taken.
™ - (See Matlab simulation) P
~ -
— — — — -

— —
T e ——

Nasser Atbasi— Solving CT inverse problem using Filtered backprojection

Cantral_slica_simple vad



Affect of Filtering using RAM-LAK on quality of back projection image,
result found by simulation using Matlab radon/inverse radon functions
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Radon Transform

 Mathematically, a projection is performed using
radOn tranSform This height represents the line

integral of f(x,y) on line L

g(p,0) = j jf(x,y)5(xcos€+ysin9—p)dxdy



Sampling the projection data

Once a complete projection is obtained, it is sampled at
frequency larger than its Nyquist spatial frequency
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Obtain Fourier transform of each
sampled projection (using FFT)
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First solution method
Apply the Fourier Central Slice Theorem

The Fourier transform of a projection taken at angle 9 m Is equal to the
values found along a slice in the 2D fourier transform of the original image
Itself, as long as this line goes through the origin of the 2D fourier

transform plane and has the same angle 9 m
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Second solution method:
Filtered back projection

* Flow diagram shown earlier

 The mathematical expression of FBP
derived from first principles in the project
paper as follows

One filtered backprojection image
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Matlab simulation

« A Matlab application is written to simulate the CT
reconstructions. Matlab radon and iradon used for the

Implementation.

)| <Student Version> : Computed tomography simulation by Nasser Abbasi, CSUF. EE 518, Digital Signal Processing
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Conclusions

CT image reconstruction is an inverse problem.

Hard problem to solve using linear algebra due to large
number of equations to solve.

2 methods based on frequency domain examined: Central
slice theorem (SCT) and filtered back projection (FBP)

SCT requires gridding and interpolation of 2D spectrum to
enable 2D IFFT.

FBP filters the projection spectrum before applying back
projection. Back projection is an accumulative and
averaging approach. Used more in practice than SCT.

Digital signal processing is critical to implement all the
Important current medical imaging methods such as CT,
MRI, SPECT, PET and others
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