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Abstract

Digital signal processing plays an increasingly important rule in the field of medical
imaging. This report examines in details the mathematical formulation behind an
important medical imaging method called Computed Tomography or CT.

The mathematics of CT are outlined showing the central role played by spatial
Discrete Fourier Transform (DFT) and the 2D Inverse DFT in the formulation of the
method. The theory of reconstruction of a 2D medical image from a sequence of 1D
projections taken at different angles between zero and π is described.

Projections are generated by applying the Radon transform to the original image
at different angles. Only the parallel rays case is discussed in this report.

To reconstruct the 2D image from the sequence of projections, Filtered Backpro-
jection (FB) method is used. Filtering is performed the frequency domain. In the
report only the RAM-LAK filter is considered, but other filters are also possible.

The use of RAM-LAK filter allows for much improved 2D image reconstruction.
The use of FFT in the implementation of the DFT and IDFT algorithms makes this
medical image method practical
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1 Introduction
We are familiar with the standard x-ray imaging, the type one encounters at a doctor or a
dentist office. Briefly, this technique of medical imaging works as follows: A source is used
to emit x-rays which traverse through the body and is then detected and recorded as an
image on the detector surface located behind the body.
As x-rays travel throughout the body, its intensity attenuates. Each x-ray beam will atten-
uate differently, and will do so in proportion to the type and amount of tissue it passes
though. This attenuation occurs due to the fact that different types of tissue (for example,
bone vs. muscle vs. soft tissue) absorbs different amount of radiation.
The recording of the varying intensities of the x-rays leaving the body (the x-ray flux hitting
the detector surface) gives a 2D image which reflects the content of the section of the body
that the x-rays passed through.1

Figure 1: X-ray projections in CT

Due to overlapping and shadowing between the internal tissues in the body, the final image
recorded will not give a clear picture of the section of the body being examined.
CT uses x-rays as well, however in parallel x-ray CT, thin x-ray parallel beams are trans-
mitted across a section of the body at a specific angle θ. When the beams hits the detector
on the other side of the body, the flux is recorded which represents the projection of the
cross section at the angle θ. The angle is incremented to θ + δθ and another projection is
obtained of the same body section.
By repeating this process we will obtain a sequence of projections. This sequence of projec-
tions is used to reconstruct a 2D image of that section of the body. This report will show the
mathematical derivation of the reconstructed image using Filtered Back projection method

1Thanks for the Image goes to http://labspace.open.ac.uk

http://labspace.open.ac.uk
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(FBP) and the central role played by the spatial Fourier transform in this process. The
following diagram illustrates the above discussion.

X-rays

Section of body that we 

are interested in 

obtaining its 2D image 

Projection taken 

at angle θ
X-ray 

detector

Flux of x-ray 

(projection data)

Components of parallel X-ray CT system. Many projections 

are obtained at different angles. Projections are combined 

in software using filtered backprojection to obtain an 

accurate 2D image of the section of the body shown above.

Figure 2: Projections in CT scan

Therefore, we see that there are two main phases in CT. The first phase is one in which a
sequence of projections are generated, and the second phase is one in which these images
are combined to reconstruct an approximation to the original 2D image.
The operation which accomplishes the first phase is mathematically called the radon trans-
form. The operation which accomplishes the second phase is the filtered backprojection.
We start by reviewing the first phase, showing how the projection is first generated. The
equation of the projection is then used in the second phase.

2 Illustration of the problem of image reconstruction
by use of projections

Before going further into the discussion, it is useful to spend a little more time to illustrate
what we mean by a projection, and to make sure we understand the problem we are about
to solve. To do this, we will use an example of a simple 2D image of 4 pixels of some
random values as follows
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Figure 3: 2D image of 4 pixels

The above 2D image represent a simplification of the cross section of the body which the
xrays in CT scan would go through.
Now, let us obtain 2 projections (we can obtain more projections if we want to, but for now,
we will assume we have only 2 projections).
We point the xray source at 2 angles and generate the projections as follows

1 4

5 3

5

8

1 4

5 3

6 7

First projection at angle 0 degrees Second projection at angle 90 degrees

Figure 4: xray source at 2 angles

Notice that the projection is an integral operation along the path of the ray. In other words,
it sums the pixel values it encounters. Now that we have obtained 2 projections, the problem
is how to determine the original image from the knowledge of just these projections and
the angles they were obtained at
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Figure 5: result of projection

We see that this is an inverse problem with many solutions. In other words, one can come
up with more than one image whose projections are those given.
There are number of approaches to solve this problem, as illustrated by the following
diagram

Solving the CT 

inverse problem

Linear algebra 

approach
Frequency approach

Direct use of the Fourier Central 

Slice theorem and 2D Inverse 

Fourier Transform

Filtered Backprojection 

method

(Used more in practice)

Figure 6: approaches to solve projection problem
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2.1 Solving the problem algebraically
We can try to algebraically solve the above problem by setting 4 equations as follows. First
let the image pixels be variables as follows

A B

C D

5

8

6 7

Figure 7: Linear algebra approach

Hence we have the following equations

A+B = 5
C +D = 8
C + A = 6
D +B = 7

Or in matrix form 
1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1



A

B

C

D

 =


5
8
6
7


The above is in the form Qx = b. The Q matrix above is not invertible since its determinant
is zero. Hence there does not exist one unique solution to the problem. These are 3 possible
solutions among infinity many solutions

1 4

5 3

5

8

6 7

2 3

4 4

5

8

6 7

5 0

1 7

5

8

6 7

Figure 8: different solutions
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Hence the best we can do to obtain a solution using the above approach, is to find the
solution with the least square error. The more projections we obtain, the less this error will
becomes.
Solving this inverse problem algebraically is not done in practice due to the large number
of equations.

2.2 Solving the problem using the Fourier central Slice theorem
The following diagram illustrates the main idea behind this approach

2D Image

Projection #1

Projection #2

FFT

FFT

2D spatial  inverse 

Fourier transform

(2D IFFT)

2D spectrum of image 

whose projections are 

slices which fills the 

matrix data

Align each vector 

into the 2D 

spectrum domain 

using the same 

angle used for 

the projection

Using central slice theorem to solve the CT inverse problem
Nasser Abbasi

12/2/08
Central_slice_simple,vsd

Figure 9: central slice method

2.3 Solving the problem using filtered backprojection
The following diagram illustrates the main idea behind this approach. In filtered backpro-
jection, the projection spectrum is first filtered, then backprojected directly into a 2D space,
and additional projections and backprojections are accumulated on top of this, which results
in the final 2D reconstruction. This approach is the one used in practice in place of the
direct approach of using the inverse 2D FFT as shown in the above diagram since it leads
to a better quality image.



8

2D Image

Projection #1

Projection #2

FFT

FFT

The more projections used, the better the 

approximation of filtered backprojection 

image to original (unknown) image becomes

(See Matlab simulation)

Solving CT inverse problem using Filtered backprojectionNasser Abbasi
12/2/08
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Note: In backprojection, 
values from projection 
vector are smeared along 
each pixel in the 2D image 
in the path of 
backprojection. At the end, 
the average of all 
projections is taken.

Figure 10: central slice method

Now we begin a more mathematical analysis of the above solution, showing the derivation
of the filtered backprojection operation.
We start with discussion of the radon transform, which is the mathematical basis of the
projection operation.

3 Radon transform introduction
Consider a 2D object in the xy reference frame. Let L be an x-ray beam going through this
object at some angle θ as follows
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Line L

θ

x

y

f(x,y)

Figure 11: Radon transform

The equation of the line L can be written in 2 ways. The standard way is

y = mx+ b

where m is the slope and b is the intercept. It can also be written in terms of the parameters
p and θ as

L(p, θ) = {(x, y) : x cos θ + y sin θ = p}

Any point (x, y) on the line L with specific p and specific θ satisfies x cos θ + y sin θ = p

Assume now there exist a function f(x, y) defined over the region shown above. The integral
of this function over the line L(p, θ) is

I =
∫
L

f(x, y) ds

where ds is a differential element of the line
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Line L

θ
x

fx, y

ds
y

Figure 12: Radon transform (2)

It would be simpler to express the above integral in terms of x and y. To do that, a trick is
used with the help of the delta function. The above integral can be written as

I =
∞∫

y=−∞

∞∫
x=−∞

f(x, y) δ(x cos θ + y sin θ − p) dxdy

Hence for a specific p, θ the above will integrate f(x, y) over the line L(p, θ). The above is
the radon transform of f(x, y) over the line L(p, θ).
The result of the above radon transform is one numerical value. It is the line integral value.
We can imagine a projection line into which we accumulate the result of these line integrals
as follows

Line L

θ
x

fx, y

y

This height represents the line 

integral of f(x,y) on line L

Figure 13: Radon transform (3)
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Now suppose we have many parallel lines and we perform the same line integral of f(x, y)
over each one of these lines (since all these lines are parallel to line L, then all of them
will have the same θ, but each they will have different p. This will result in many radon
transform integrals as shown in the following diagram

θ
x

fx, y

y

This height represents the line 

integral of f(x,y) on line L2

p1

p2

L1L2

This height represents the line 

integral of f(x,y) on line L3

L3

This height represents the line 

integral of f(x,y) on line L1

Z

Figure 14: Radon transform (4)

The projection shown above is a discrete function. It is a function of p and θ. For the
purpose of the discussion that follows, it is assumed that the projections generated by CT
are continuous function (each projection is the flux of the x-ray on the plate) and is then
written as

g(p, θ) =
∞∫

y=−∞

∞∫
x=−∞

f(x, y) δ(x cos θ + y sin θ − p) dxdy

4 Image reconstruction
The input to CT 2D reconstruction is the continuous function g(p, θ) .Before we go any
further, we need to make sure we keep track of the angle θ being used in the above expression.
Recall that this is the angle that each projection is generated at. This angle goes from 0 to
π. (Since going beyond that will duplicate measurements). Let the number of projections
to be generated be M . Hence

∆θ = π

M

Hence g(p, θm) means the projection at angle θm, which is the angle m π
M
. For example,

θ0 = 00, θ1 = π
M

and θM = M π
M

= π and so on.
The next step is to sample g(p, θm) and then to obtain the DFT of the sampled sequence.
To sample g(p, θm), we assume that the smallest distance between 2 adjacent repeating
cycles of intensities is τ cm (or in millimeter). What this means is that largest spatial
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frequency present in the projection data is W = 1
τ
. Therefore, the projection needs to be

sampled at frequency no less than 2W (Nyquist sampling theorem). Hence we will us as
the sampling frequency

fs = 2W

The above means that g(p, θm) is sampled with an interval of width τ
2 cm. Let the number

of samples obtained from the above sampling frequency be N (and we assume it to be even
as we can always reduce the sampling interval to obtain the next even value of N)
The result of sampling g(p, θm) will be the sequence of numbers g

(
n

2W , θm
)
where

n = −N

2 , · · · , 0, 1, · · · , N2 − 1

There will be different such sequence for different angle θm.

The following diagram helps illustrate the above formulation

θ
x

fx, y
y

g1 g2

gN


2

Projection at angle θ sampled 

at spatial frequency 2/τ

gp

gp sampled to sequence of samples

g
n

2W
where fs  2W, where W  1



Figure 15: sampling projection

Once a projection is sampled, its DFT is obtained as follows

S(k, θm) =
N
2 −1∑

n=−N
2

g
( n

2W , θm
)
e−j 2π

N
kn k = 0, 1, · · · , N − 1 (1)
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Since the sampling frequency is fs = 2W , hence the frequency axis will extend from −W
to W and ∆f = 2W

N
as shown in the following diagram

g1 g2
gN


2

gp

2W

(-W) (+W)

f  2W
N

DFT S1 SN

Figure 16: showing frequency axis

Let us now review what we have done so far. We sampled a projection at some angle θm
and obtained the discrete Fourier transform of the sampled projection. Now to make more
progress, we must resort to the Fourier central slice theorem. This theorem tells us that the
Fourier transform of a projection taken at angle θm is equal to the values found along a slice
in the 2D Fourier transform of the original image itself, as long as this line goes through the
origin of the 2D Fourier transform plane and has the same angle θm. The following diagram
illustrates the central slice theorem
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Figure 17: Central slice theorem

Let the 2D Fourier transform of f(x, y) be F (u, v), hence from the definition of the inverse
2D Fourier transform we write

h(x, y) =
∞∫

−∞

∞∫
−∞

F (u, v) ej2πxuej2πyvdudv (2)

Where h(x, y) is an approximation to the original image f(x, y).
h(x, y) is what we call the filtered backprojection image. We now need to rewrite (2) in
polar coordinates (to allow us to later substitute the Fourier transform of the projection
that we obtained earlier into the above double integral). Using the following diagram, we
obtain the substitution needed
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u

v

F(u,v)

θ

(u,v)

u  f cos
v  f sin 

Figure 18: Jacobian

In the above diagram, f is radial distance from the original (the DC frequency) and θ is
the angle measured counter clock wise from the u axis.
Hence u(f, θ) = f cos θ and v(f, θ) = f sin θ, and the Jacobian of transformation is the

determinant of J =

 ∂u
∂f

∂u
∂θ

∂v
∂f

∂v
∂θ

, hence

|J | =

∣∣∣∣∣∣
∂u
∂f

∂u
∂θ

∂v
∂f

∂v
∂θ

∣∣∣∣∣∣ =
∣∣∣∣∣ cos θ −f sin θ
sin θ f cos θ

∣∣∣∣∣
= f cos2 θ + f sin2 θ

= f

Hence the integration differentials can now be changed as

du dv = |J | dfdθ
= f dfdθ (3)

Using (3) in (2), we obtain, after changing the limit of integration

h(x, y) =
2π∫

θ=0

∞∫
f=0

F (f, θ) ej2πxf cos θej2πyf sin θ f dfdθ

=
2π∫

θ=0

∞∫
f=0

F (f, θ) ej2πf(x cos θ+y sin θ) f dfdθ (4)

The above is the 2D inverse Fourier transform in polar coordinates.
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Split the outside integral in (4) which goes from 0 to 2π into 2 halves as follows

h(x, y) =
π∫

θ=0

∞∫
f=0

F (f, θ) ej2πf(x cos θ+y sin θ) f dfdθ

+
2π∫

θ=π

∞∫
f=0

F (f, θ) ej2πf(x cos θ+y sin θ) f dfdθ (5)

The above 2 integrals can be combined into one integral using the property of the symmetry
of the Fourier Transform F (f, θ). To do that, we manipulate the second term in the above
as follows. First, let the second term be called ∆ for now, i.e.

∆ =
2π∫

θ=π

∞∫
f=0

F (f, θ) ej2πf(x cos θ+y sin θ) f dfdθ

Then

∆ =
π∫

θ=0

∞∫
f=0

F (f, θ + π) ej2πf(x cos(θ+π)+y sin(θ+π)) f dfdθ

and since the object f(x, y) is real valued, the 2D Fourier transform F (f, θ) is symmetric.
Hence F (f, θ + π) = F (−f, θ), then the above becomes

∆ =
π∫

θ=0

∞∫
f=0

F (−f, θ) ej2πf(x cos(θ+π)+y sin(θ+π))f dfdθ

and cos (θ + π) = − cos θ and sin (θ + π) = − sin θ, hence the above becomes

∆ =
π∫

θ=0

∞∫
f=0

F (−f, θ) ej2π(−f)(x cos θ+y sin θ)f dfdθ

Let α = −f , the above becomes

∆ =
π∫

θ=0

−∞∫
α=0

F (α, θ) ej2π(α)(x cos θ+y sin θ)(−α) (−dα) dθ

=
π∫

θ=0

− −∞∫
α=0

F (α, θ) ej2π(α)(x cos θ+y sin θ)(−α) dαdθ


=

π∫
θ=0

0∫
α=−∞

F (α, θ) ej2π(α)(x cos θ+y sin θ)(−α) dαdθ
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Since α is free variable, we call rename it as we wish. Let it be called f again, then the
above becomes

∆ =
π∫

θ=0

0∫
f=−∞

F (f, θ) ej2πf(x cos θ+y sin θ)(−f) dfdθ (6)

The above completes the manipulation needed in the second term, replace the above equation
(6) into equation (5), then the 2D inverse polar Fourier transform becomes

h(x, y) =
π∫

θ=0

∞∫
f=0

F (f, θ) ej2πf(x cos θ+y sin θ) f dfdθ

+
π∫

θ=0

0∫
f=−∞

F (f, θ) ej2πf(x cos θ+y sin θ)(−f) dfdθ

Using |f | we can combine the above 2 terms into one

h(x, y) =
π∫

θ=0

 ∞∫
f=−∞

F (f, θ) ej2πf(x cos θ+y sin θ) |f | df

 dθ (7)

Converting the outside integral to Riemann sum, and recalling that we have M projections
(or equivalently M angles), we obtain

h(x, y) = π

M

M−1∑
m=0

 ∞∫
f=−∞

F
(
f,m

π

M

)
ej2πf

(
x cos

(
m π

M

)
+y sin

(
m π

M

))
|f | df

 (8)

Now we are ready to use the central slice theorem as follows. In equation (4) above, the
function F (f, θ) is the 2D Fourier transform along a radial line at angle θ. But this is the
same as the Fourier transform of a projection taken at the same angle θ. Hence we can
replace F

(
f,m π

M

)
in (8) with the Fourier transform of g(p, θ), which we already found its

DFT in (1) as S(k, θm) .
Recalling that ∆f = 2W

N
equation (8) above becomes

h(x, y) = π

M

M−1∑
m=0

2W
N

N
2 −1∑

n=−N
2

S

(
n
2W
N

,m
π

M

)
e
j2π

(
i 2W

N

)(
x cos

(
m π

M

)
+y sin

(
m π

M

)) ∣∣∣∣n2WN
∣∣∣∣

= 2Wπ

M

M−1∑
m=0

 1
N

N
2 −1∑

n=−N
2

filtered projection︷ ︸︸ ︷
S

(
n
2W
N

,m
π

M

)∣∣∣∣n2WN
∣∣∣∣ enj 4Wπ

N

(
x cos

(
m π

M

)
+y sin

(
m π

M

))
 (9)
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And now we see why h(x, y) is called a filtered backprojection. The spectrum S(k, θm)
of each projection is being multiplied by

∣∣n2W
N

∣∣ or |f | before the 2D inverse Fourier
transform is obtained. The filter whose spectrum given by |f | is called RAM-LAK

W-W

|f|

f
RAM-LAK spectrum magnitude

Figure 19: ram lak filter

The use of this filter before performing backprojecting, causes the resulting image to be
much sharper and details shown more clearly than without this filter.
We see the reason for this from the shape of the filter in the frequency domain. Low pass
frequencies are attenuated, this is what reduces the blurring effect, while higher frequencies
are amplified, which corresponds to sharpening those parts of the image where sudden
changes occur, causing boundaries between portions of the image to become more apparent.
The following diagram, shows a 2D reconstruction generated by simulation using Matlab,
where one backprojection was done without the use of the above filter, and one was done
with the use of the above filter. We see that the one that used the filter is sharper, while
the other without the filter is more blurred.
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Original Image

Reconstruction, 100 projections, Filtered 

backprojection (RAM-LAK filter)

Reconstruction, 100 projections, No 

filtering used before backprojection

Figure 20: Effect of ram lak filter

We see that without the use of filtered backprojection, computed tomography will not be
practical as images reconstructed could not be useful for medical images purposes. We see
that with RAM-LAK, there is now streak lines across the image, which are not there in the
non filtered image. However, the eye can tolerate these streaking effect and the advantages
of filtered backprojection remain clear over the unfiltered image.
In the above derivation, the RAM-LAK filter came out naturally from the use of the
Jacobian of transformation. The above derivation follows that given by Kak and Slaney
book. However, in this report more details and steps are shown and explained.
We note that in (9) above, that the outside loop accumulates each generated 2D image
after each projections 2D inverse Fourier transform has been found. The 2D Inverse Fourier
Transform can be implemented using 2D IFFT for speed.
There are other filters that can be used to replace the RAM-LAK filter with. The simulation
software supports other types of filters.
The Matlab simulation also shows how the final backprojection images converges to the
original image as more projections are added. The following is a screen shot of the application
GUI
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Figure 21: screenshot of Matlab app

5 Conclusion
We have obtained an expression for filtered backprojection for parallel lines CT. Which is
the following

h(x, y) = 2Wπ

MN

M−1∑
m=0

 N
2 −1∑

n=−N
2

S

(
n
2W
N

,m
π

M

)
enj

4Wπ
N

(x cos
(
m π

M

)
+y sin

(
m π

M

)
)
∣∣∣∣n2WN

∣∣∣∣


Where M is the number of projections, N is the number of samples per projection (All
projections are sampled using the same number of samples).
Hence, given an x and y coordinates, we can obtain the pixel value at that location using
the above expression. W is the largest spatial frequency in all the projections, and is used to
determine the Nyquist sampling frequency. S(k, θm) is the DFT of the projection at angle
θm and is found using FFT for speed.
We have shown above the steps needed to obtain a 2D reconstruction from a set of projections
taken at different angles. In the above we used a number of digital signal processing
techniques such as FFT, Central Slice theorem and Nyquist theorem. This shows the
importance of signal processing in image processing and in medical imaging specifically.
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