
The port of MGI DVDMax software from Linux to
Solaris

Nasser M. Abbasi

Sept 18, 2000 Compiled on September 7, 2023 at 10:23pm

mailto:nma@12000.org

Contents

0.1 Introduction . 3
0.2 Software requirements . 3
0.3 Main port issues . 4

1 Design of DVDMax on Linux 7
1.1 High level Architecture . 7
1.2 Loading of a plugin and creation of a filter object 9
1.3 MPEG-2 decoder design and dataflow . 10

1.3.1 Assembler modules used by mpeg-2 decoder 13
1.3.2 general logic flow in the mpeg-2 decoder 13
1.3.3 Decoding macroblocks . 16
1.3.4 Assembler interfaces in mpeg decoder 18

1.4 Video output filter design . 33
1.4.1 VIDMEM mode for video display . 34
1.4.2 DGA mode for video display . 34
1.4.3 intel I810 mode for video display 35
1.4.4 Shared memory mode for video display 36
1.4.5 SDL mode for video display . 38

2 Building DVDMax 39
2.1 Current status of Solaris build . 43

List of Figures

1.1 Software architecture of DVDMax on Linux and Solaris. arch1.vsd 8
1.2 Internal data flow between filters in DVDMax demux_overview.vsd 9
1.3 Mpeg filter internals. mpeg filter.vsd . 12
1.4 mpeg-2 filter main logic . 15
1.5 macroblock decoding using samplemc.c as the driver 17
1.6 High level diagram showing the C and Assembler modules used in MPEG-2

decoder and global buffers . 19
1.7 walk though initGetBits MMX code used in GetBits.S 24

2

3

1.8 walk though InptToMmx MMX code used in GetBits.S 25
1.9 follow up of walk though InptToMmx MMX code used in GetBits.S 26
1.10 summary of InptToMmx MMX code used in GetBits.S 27
1.11 MmxToInput walk though MMX code used in GetBits.S 28
1.12 GetVideoBitsSmall walk though MMX code used in GetBits.S 29

0.1 Introduction
DVDMax was MGI Inc. software for playing DVD’s.
Current version on windows is version 5.0. A linux version is currently under development
and in final stages.
The purpose of this report is to describes the design and implementation of the DVDMax
software on Linux to help in the port of the software to SUN Solaris operating system.
The port of the DVDMax software to Solaris will be based on the Linux version.

0.2 Software requirements
The following is from the statement of work for DVDMax on Solaris

The features of the sunDVD player will be the same as the features listed in the
product description SoftDVDMax, entitled "SoftDVD Max Reviewer’s Guide
(july 1999)" and "MGI SoftDVD Max specifications (July 1999)" copies of which
are attached to this statement of work.

Examining the above mentioned document, I come up with the following points.
1. Auto detect DVD drive.
2. Allow window size reduction.
3. Parental control panel. (works if supported on DVD disc).
4. Supports following audio setting:

(a) Stereo 2 channel output.
(b) Surround Sound. 2 channel Dolby pro-logic output.
(c) 3D audio.
(d) Use DirectSound (windows specific I assume).
(e) Generate S/PDIF output. (Sony/Phillips Digital Interface format).
(f) speed up decoding via subsampling.
(g) Karoake vocals (if dvd disc supported)

5. Support 16:9 and 4:3 aspect ratios. These are the configurations
(a) Auto. Display 4:3 video in 4:3 screen. Display 16:9 video in 16:9 screen.

4

(b) letter box. Allows display of 16:9 in 4:3 screen.

(c) Pan and Scan. Display 16:9 to 4:3 using pan and Scan process.

(d) Wide screen. Display 4:3 video in 16:9 window.

6. Advanced features.
(a) Automatic adjust of resolution for optimum performance.

(b) Allows hardware motion compensation acceleration (if graphic controller sup-
ports it)

(c) Deinterlacing.

(d) Auto detect interlaced and non-interlaced content and select Bob or Weave.

0.3 Main port issues
These are the main port issues that I see right now for a successfully port of the Linux
based DVDMax to Solaris.

1. Build issues. Initially, the same build process used on Linux will used on Solaris,
making only the necessary changes to get a complete build. The goal is to make
minimal changes to the build process initially in order to speed the port. The current
build process on Linux is based on heavy use of GNU tools such as:
(a) bison

(b) cvs (for source control)

(c) flex

(d) autoconf

(e) m4

(f) gawk

(g) gcc

(h) libtool
All the above tools needs to be installed on Solaris before starting to build DVDMax.
To minimize changes to the build process, and to speed the port process, gcc will be
used initially.
After a successfully completion of the port, gcc can be replaced with SUN cc compiler
along with any changes to cc commands and options used in the current Makefiles.
There will be changes needed in the makefiles in order to build Sparc assembler
routines using VIS instructions. Those are the modules that will replace the current
intel assembler modules. My current understanding is that the Solaris build will target

5

UltraSparc with v9a extensions, so the option -Xarch=v9a will be used to assembler
the Sparc assembler modules.
The resulting executables will only run on Solaris with 64-bit Kernels on UltraSprac
hardware. 1

Another changes in the current Makefiles that needs to be made are those to link
against the Solaris libdvd and, if needed, against MediaLib libraries. The Makefiles
that come with the examples of how to use the above libraries will be used to help in
making the changes.
We also need to find a way to make the build system easier to use on multiple
operating systems. One possible way is to use autoconf macro to guess the OS name,
and based on the OS name, generate the correct compile and link options, and any
compile time variables, such as -DSOLARIS into the compile command and have
those automatically generated when the configure command is run. This needs to be
investigated more.

2. User interface issues. The current user interface on linux uses Qt libraries. It also uses
the skin technology to modify the look of the user interface dynamically.
On Solaris Motif will be used instead on Qt. But with latest announcement by SUN
that they will adopt GNOME as the default desktop for feature Solaris releases, it
seems that it will make more sense to use GTK+ for the user interface. 2.
There will also be an impact on the build process here for build the user interface,
a new Makefiles will be needed to build the user interface on Solaris since different
libraries are used than on Linux.

3. DVD Authentication software (CSS). On Linux, DeCSS is used for the authentication
of the DVD and used many Linux ioctls() and linux specific header files such as
<linux/cdrom.h>

On Solaris a new implementation will be used. This needs to be coordinated and
integrated into the Solaris DVDMax build process. My understanding is that a third
party will write this software.

4. DVD Keys. It is expected that SUN will supplies these keys. How/when? How will
this affect the build? I need to understand more about this.

5. Audio output. Now, on linux, OSS is used to output audio, and it used Linux specific
ioctls and header files. Need to understand how will audio be output on Solaris. Direct
interface to /dev/audio How will audio control be done? Note that /dev/audio can
only be opened by one process at a time. Also Solaris does support asynchronous IO on
/dev/audio. It is expected that audio output on Solaris will be a new implementation
from that of Linux, but this needs to be analyzed more.

1verify these requirements with SUN.
2discuses the Motif/GTK+ options with SUN to verify, also verify if current skin used on Linux will

work with GTK+ on Solaris

6

6. Video output. libdvd will be used on Solaris for display of video bitstream. This
will be a new implementation from that on Linux. Initially, I will try to use the X11
implementation that exist already on Linux as is on Solaris to see that will work, and
make changes to libdvd after that.
Linux implementation of display have an MMX module for doing color space conver-
sion from YUV to RGB.

7. MPEG-2 decoder. This is the most difficult software component to port to Solaris/S-
parc. MPEG-2 decoder implementation on Linux, which is based on the windows
version, is heavily dependent on intel assembler and MMX instructions. This is done
to achieve the maximum performance.
The Solaris implementation will use VIS sparc instructions to achieve the maximum
performance on Sparc hardware. Hence a conversion of the Intel assembler and MMX
to Sparc assembler and VIS will be the most critical work that needs to be completed
successfully.
I outline in details the current Linux design and implementation of MPEG-2 decoder
below with the interfaces to the Intel assembler in order to help with this conversion.
It is expected that SUN will do the actual conversion based on these interfaces. 3

8. Standard integer types include file. On linux, those are defined in /usr/include/st-
dint.h while on Solaris, those are obtained by including /usr/include/inttypes.h. An
#ifdefined will be used to include the correct header file at compile time.

9. UDF file system interface for reading DVD discs. The C module dvd2/src/com-
mon/udf.c is the interface used by DVDMax to access the UDF file system on the
DVD disc. It is possible that some changes will be needed when porting this to Solaris.
udf.c uses large file programming environments and uses such calls as fsetpos64 to
position itself in the DVD disc file system.
udf.c is used by the DVDDisc filter and the IFO implementation.

10. Threads yielding issues. The Linux based code uses usleep() to yield, because linux-
threads does not have a pthread_yield(). Solaris has a pthread_yield(), so it might
be more efficient to use on Solaris that to force thread context switching than calling
usleep().

11. The timing synchronization code in dvd/src/filters/syncmaster/mpeg2sync.c needs to
examined to make sure it is correct under Solaris/Sparc and that there is nothing
Linux specific in that code.

3any one knows of an Intel/MMX to Sparc/VIS conversion software? :)

CHAPTER 1

DESIGN OF DVDMAX ON LINUX

1.1 High level Architecture
The DVDMax software on linux is based on individual components, called filters. Each filter
has what is called pins. These are software connection that connect the input of one filter
to the output of another filter.
Each filter takes some input, process the input, and sends the output to one of its output
pins. A filter can have more than one output pin. For example, the demux filter have a
number of output pins.
A plugin shared library is loaded at run time by the main program of DVDMax, each plugin
create one type of filter. So there is one-to-one mapping between the plugin and the filter it
creates. For example, the dvddisk.so plugin creates the filter that reads from the dvd disc
and write to the demux filter. The actual methods that implement the work of the filter
are in the plugin, the filter is the data structure that is used to interface to those methods.
The filter also contains pointers to other variables important for the working of the plugin,
such as buffers and flags.
Each plugin contains one pthread thread than continuously runs reading input and gener-
ating output. 1

Figure 1.1 on the following page shows the architecture of DVDMax on Linux and Solaris.
The grayed components indicates an assembler/MMX intel modules.

1On Linux, the Audio output filter, based on OSS, does not have a thread in it

7

8

GUI interface

libdvd

DVD_APP_Init()

Qt libs/Linux

Navigator SW (dvdmax_dvdnav.so)

/dev/dvd/

dvddisc

decss

authentication

DVD ioctls(),
fopen(), fread(),
etc..

AC3
decoder

MPEG
decoder

PCM
decoder

audio

subpic decoder

MPEG decoder

video

Hli
decoder

certificed

MOTIF/Solaris

OSS/linux

?/Solaris

alpha blending

X11/linux

libavd/solaris

IDCT.S

Vld.S

getBits.S

Monitor

Monitor

/dev/audio/

/dev/audio/

DVDmax Software
Architecture for Linux

and Solaris
Nasser Abbasi
080700 arch1.vsd

LMF framework

demux

display.c

yuvconv.S
vrecon.S

Vquant.S

vscale.S

vdata.S

mpeg.c

video.c

recon.c

swdisp.c

sync.c

vidqueu.c

or
GTK+/Solaris

synmaster

Figure 1.1: Software architecture of DVDMax on Linux and Solaris. arch1.vsd

The unit of data exchanged between filters is LMFpacket struct. Figure 1.2 on the next
page shows how an LMFPacket is send from the one of demux filter output pins that is

9

connected to the mpeg-2 decoder input pin.

demux filter
mpeg filter

input pin

mpeg2video

LMFPacket from source
filter

LMFPin

mpegaudio

cssout

ac3audio

pcmaudio

dsi

subpic

mpeg.c

mpegwrite()
{
...write pkt to RingBuffer...
}

input pin

video.c

playBackCycle()
{
 ...decode video stream...
}

Mpeg global variable

thread

demux has a number of output pins. Depending on the
type of the LMFPacket received from the source filter, the
pkt is written to the correct output pin of the demux filter.
The output pin is allready connected to the input pin of
the other filter. Resulting in the write() method being
called for the other filter.

/dev/dvd/

demux_overview.vsd
Nasser Abbasi 071800

Figure 1.2: Internal data flow between filters in DVDMax demux_overview.vsd

1.2 Loading of a plugin and creation of a filter object
A user program main() starts by a call to lmf_manager.c/loadLMFPlugin(), passing it a
string name of the plugin (the sharable module) to load. When this call returns, it return
back a pointer to a filter object associated with this plugin.
loadLMFPlugin() uses dlopen() to load the sharable library to memory, then dlsym() is
used to obtain a pointer to the function called ’initPlugin’ in that module. So each plugin
must have such an entry point.
Then initPlugin() is then called, which creates the filter object. The filter is then returned

10

to the caller. Notice that the handle to the plugin sharable library is saved in the filter
object, so it is not lost.
Each filter has an initPlugin(), which calls lmf_filter.c/createLMFFilter() to create the
Filter structure.
Then another call to lmf_filter.c/initLMFFilter() is made to do any initialization to the
filter struct and which will setup the command table in the filter, which contains pointers
to default functions in the lmf_filter.c module.

Name of Plugin
o---------->

lmf_manager.c
+---------------------------------------+ +--+
main()			
{	+->	loadLMFPlugin(char *path,	
LMFFilter *mpeg;			LMFFilter **filter)
			{
loadLMFPlugin(void *handle;
"/usr/local/DVDMax/plugins/mpeg.so"			
&mpeg);	--+	int res;	
}		int (*initplugin)(LMFFilter**);	
--+ | |

| handle = dlopen(path, RTLD_NOW); |
| initplugin = dlsym(handle, "initPlugin");|
| res = initplugin(filter); |
| (*filter)->pluginref = handle; |
| return LMFMANAGER_SUCCESS; |
| } |
+--+

Filter Object
<-----------o

The plugin simply allocates a filter struct from the heap. The filter struct contains a table
of function pointers. These functions are inside the plugin and the filter is passed around
during the calls. The filter struct contains pointers to any data buffers used by the plugin.

1.3 MPEG-2 decoder design and dataflow
The mpeg decoder is a filter, it contains a pthread thread, it reads its input from a ring
buffer, each entry in the ring buffer is a pointer to data of type LMFPacket. The ring buffer
is written to by the demux filter via the connection between the output pin of the demux
filter to the input pin of the mpeg filter. The ring buffer is protected by a pthread mutex
against concurrency access by more than one thread at a time.
The mpeg thread runs all the time, it calls video.c/PLayBackCycle(), which in turn calls
getvideo.c/requestConsecutiveVideoBytes(), which in turn calls mpeg.c/GetVideoInput-

11

BytesFromFile() which removes bytes from the ring buffer, and write them to the global
MPEG buffer.
So, when it returns, video.c has stream data in the global MPEG buffer to process.
Figure 1.3 on the following page shows the mpeg filter and related data structures involved.

12

LMFFilter

cmdtbl

LMFCmdTbl

mpeg.c

getinputpin() {...}
getoutputpin() {...}
filterstart() {....}
filterpause() {...}
filterflush() {...}
setIonly() {...}
setDispAll() {...}

filterdata

control mutex
control count
state mutex
state
input
output

LMFPin

setting
parent
write()
mutex

MPegPingSetting

buffer

RingBuffer

LMFPacketLMFPacket

mpegwrite()
{
 add LMFPacket to
 RingBuffer
...
}

function
pointer

MpegData

inputshead
tail
numelements
lock

LMFLinkedList

next
prev
mutex
data

next
prev
mutex
data

outputhead
tail
numelements
lock

LMFLinkedList

next
prev
mutex
data

next
prev
mutex
data

runfilter(..)
{

}

mpeg thread

static Ringbuffer *bufdata module global pointer
to mpeg ring buffer

video.c (mpeg-2 decoder)

playBackCycle()
{

}

GLOBAL Mpeg variables

mpeg thread
calls
decoder to
parse
a video
element.

getvideo.c

requestConsecutiveVideoBytes()
{
...

}

GetVideoInputBytesFromFile()
{
..read from ringbuffer, write to
GLOBAL mpeg variable..
}

process GLOBAL
mpeg data (video
stream)

can block...

mpeg_filter.vsd
nabbasi 071800

LMFListElementLMFListElement

LMFListElementLMFListElement

connection

To a
Connected
Pin

controlLMFPin

setting
parent
write()
mutex

pointer to function

controlLMFPinHandlerDefault()

in lmf_filter.c

w
ri

te
re

a
d

Notice: The mpegwrite() is called
from the demux filter output pin.

Figure 1.3: Mpeg filter internals. mpeg filter.vsd

13

1.3.1 Assembler modules used by mpeg-2 decoder
The mpeg decoder contains a number of assembler modules. They are:

1. mmxGetBits.S: MMX optimized version of the bit streaming routines. Services offered
are functions to consume, show, initialize and swap bits.

2. mmxRecon.S: mmx version of software motion comp reconstruction

3. vdata.S: Defines data structures used by assembly language modules. Optimized for
4-way, 16kbyte data cache.

4. vidct.S: Computes IDCT on 8x8 array of DCT coefficients. Optimized for Pentium
MMX.

5. vld.S: Decodes MPEG Variable Length Code blocks into 8x8 arrays. Optimized for
Pentium II.

6. vquant.S Dequantizes, scales, and clamps output arrays from VLD. Requires Pentium
MMX or Pentium II

7. vrecon.S Video reconstruction and averaging routines. Requires Pentium MMX or
Pentium II

8. vscale.S Scales IDCT results to suit formats required by software and hardware motion
comp. Optimized for Pentium MMX.

1.3.2 general logic flow in the mpeg-2 decoder
Life starts when the runfilter() thread is started, this is the mpeg-2 internal thread, which
continues to loop calling playbackcycle() in video.c.
When playbackcycle() is called, it calls GetVideoStartCode() in video.c which in turn looks
into the global vd variable, if it needs video stream data to process, it calls requestConsec-
utiveVideoBytes() in getvideo.c to get the required number of bytes.
requestConsecutiveVideoBytes() will call GetVideoInputBytesFromFile() in mpeg.c to move
the required bytes from the mpeg-2 ring buffer to the global vd variable. If the Ringbuffer
is empty, It will block waiting.
During the decoding of the bit stream. many calls are made to MmxGetBits.S (MMX
instructions) for parsing video bit stream.
When GetVideoStartCode() returns, playBackCycle() continues by doing a large switch
statement on the picture code (in the global vd.i.startcode). Looking at one case, when a
picture() start code is detected, picture() is called (in video.c).
picture() parses the picture stream, it parses each macroblock, there is a LOOP over all
macroblocks, each time it needs to decode a macroblock, it calls SampleProcessMacroBlock()
in samplemc.c. This assumes that samplemc.c is the modules used to driver the actual
decoding at the assembler level. There are two main C modules for doing this, one is
samplemc.c which the diagram below is based on, and another one called fastmc.c which

14

I’ll will into in more details later on. These C modules interface to the assembler modules
for doing the actual decoding in assembler.
SampleProcessMacroBlock() finds the type of the block. Motion compensation is first done
by making calls to ’recon()’ C routine, which ends up calling ’recon_comp()’ in recon.c, in
this file, there is a #if USE_MMX_FOR_RECON to decide if motion compensation is
done using MMX or plain C. If MMX is to be used, MMX routine in recon.S is called.
When motion compensation is done, MMX routines in Vscale.S are called to decode the
blocks. Either IntraVldIdctEightBitOutput() is called, or NonIntraVldIdctNineBitSun() is
called.
MMX instructions in Vscale.S calls _intraVld or _NonIntraVld MMX routine in vld.S
to Decodes MPEG Variable Length Code blocks into 8x8 arrays. After the routines in
Vld.S return, Vscale.S calls _IntraQuant or _NonIntraQuant MMX routines in vquant.S
to Dequantizes, scales, and clamps output arrays from VLD.
vquant.S MMX routines in turn jump to the idct MMX routine in idct.S to Computes
IDCT on 8x8 array of DCT coefficients.
When this is all done, and when end of picture is reached, then SampleEndingPictureMC()
in samplemc.c is called. This in turn called QueueForDecodeAndDisplay() in vidqueue.c
to queue the decoded frame. This ends up calling SampleRenderingFunctionMC() in sam-
pelmc.c which call DecodedYCrCbToDisplay() in swdisp.c to display the frame.
In swdisp.c, there is a queue where the decoded frame is send to the output filter (X11
filter for example). Which will actually display the picture to the display. Notice that color
mapping conversion is done in the output filter and not by the mpeg decoder.
Figure below shows the main dataflow in the mpeg-2 filter.

15

runfilter()
{
}

1

playbackcycle()
{

}

GetVideoFromFile()
{
/* move data from ringbuffer to vd struct */
}

GetVideoStartCode()
{

}

2

RequestConsecutiveVideoBytes(int numOfBytes)
{

}

3

4

5

/* when GetVideoStartCode()
returns, readvd.i.startCode */

switch (vd.i.startcode)
{
case(PICTURE_START_CODE):
.................. ..picture();
case(...)..
}

6

picture()
{
/* parse picture */
/* LOOP over all macroblocks*/

}

mmGetBits.S

getVideo.c

mpeg.c

_MmxToInput:
_InputToMmx:
_SkipBits:
_NextBits:
_InitGetBits::

RingBuffer
GLOBAL "vd" mpeg buffer

video.c

samplemc.c

SampleInitMC()
{..}

startingPicture()
{...}

SampleProcessMacroBlockMC()
{
...

}

7

vscal.S

.global IntraVldIdctEightBitOutput

.global NonIntraVldIdctNineBitSum
10

11

Vld.S Vquant.S

12

idct.S

13

recon.c

recon_comp()
{
}

8 recon.S9

SampleEndingPictureMC()
{

}

14

vidqueue.c

QueueForDecodeAndDisplay()
{
} 15

SampleRenderingFunctionMC()
{
}

16
swdisp.c

Display

call DecodedYCrCbToDisplay()
X() calls...

17
18

demux filter Source filter

/dev/dvd

Nasser Abbasi
mpeg_flow_highlevel.vsd
072500

ByteSwap()
{
 asm(" ... x86 instructions...");
}

Figure 1.4: mpeg-2 filter main logic

16

1.3.3 Decoding macroblocks
The core of the decoder is in decoding macrobloacks. This is in samplemc.c, in the func-
tion SampleProcessMacroBlock() or in fastmc.c in the function FastSoftwareProcessMac-
roBlockMC() depending on how the build was done.
Figure ?? on the next page shows the algorithm used.

17

D block?

YesNo

SampleProcessMacroBlock()

process D block
(IntraMacroBlock)

many calls to recon()

return

need to do
forwardprediction OR

picture of type P

Yes

No
process

(Many calls to
recon())

backward
prediction
needed?Yes

Noprocess
(Many calls to

recon())

decode MPEG
variable length code
blocks into 8x8 array

vld.S

dequantization,
scales, and clamp

output of VLD

compute IDCT on
8x8 array of DCT

coefficients

vquant.S

idct.S

More Blocks in the
macroblock?

Yes

perform
correction on

Cb blocks

perform
corrections on

the Cr block
No

return to
caller

Algorithm used to decode
macro blocks in the mpeg-2
decoder

Nasser Abbasi
072500
macroblock_process_logic.vsd

Figure 1.5: macroblock decoding using samplemc.c as the driver

18

1.3.4 Assembler interfaces in mpeg decoder
The decoding process goes through these steps

1. Motion compensation for non Intra blocks.

2. Variable length decoding VLD.

3. Dequantizes, scales, and clamps output arrays from VLD.

4. IDCT.

5. color mapping conversion from YUV to RGB before display.
The mpeg is divided in two main section, the C modules does the high level processing, such
as reading the bit stream, locating the macroblocks, deciding on the type of the picture
and type of prediction needed. Once the macroblock is found and needs to be decoded, the
assembler routines are called to do the process. The interface between the C modules and
the assembler modules can be looked at as being the fastmc.c module, or the samplemc.c
modules depending on the build parameter used (only one of those can be used).
Figure ?? on the facing page illustrate the above. It shows that the C modules share C
based global variables, and that the assembler modules share assembler based data buffers
and tables. Also, the assembler routines have access to the C based buffers.

19

C modules

C based global data structures

getvideo.c

mpeg.c

recon.c

swdisp.c

video.c

vidqueue.c

fastmc.c

MMX modules

vscale.S
vld.S

vquant.S

idct.S

output_vector:

assembler data buffer and tables

data.S

vrecon.S

nasser abbasi
assembler_interface_1.vsd

Figure 1.6: High level diagram showing the C and Assembler modules used in MPEG-2
decoder and global buffers

mmxGetBits.S interface

mmxGetBits is used to obtain, examine, and skips bits in the video bit stream. It is the
main interface to access the video bit stream during the decoding process.
The bit stream is accessed via global pointer vd.i.puDword, 2 MMX registers are used to
store the top 128 bits in the bit stream. 2. The symbolic names of these 2 MMX registers
is FIRST and SECOND.
Another MMX register, with a symbolic name of COUNT is used to store the number of
bits consumed in the FIRST register. The value in the COUNT register is saved in memory
in the variable vd. i.bitsUsedInDword.
Another MMX register with symbolic name of SOURCE is used to contain the address the
top of the bit stream, and is advanced by 8 bytes at a time. The value of this register is
saved in memory in the variable vd.i.puDword.

2Each MMX register is 64 bit long

20

The C interface to the mmxGetBits.S is as follows

signature: unsigned int GetVideoBitsSmall(int numberOfBits)
semantics: returns back the number of bits requested from the video

stream, and consumes them. internally it updates the MMX
registers COUNT and FIRST and SECOND, and SOURCE.

Notice that a maximum of 32 bits can be returned per call,
since this is the sizeof unsigned int.

signature: unsigned int NextVideoBitsSmall(int numberOfBits)
semantics: Similar to GetVideoBitsSmall() function, expect the bits

returned are not consumed, i.e. the COUNT MMX register is not
advanced. Also, the SOURCE, FIRST and SECOND MMX registers are
not modified. This is like a ’peek’ call, just to see the bits
in the bit stream, without advancing.

Notice that a maximum of 32 bits can be returned per call,
since this is the sizeof unsigned int.

signature: void SkipVideoBitsSmall(int numberOfBits)
semantics: Skips the numberOfBits bits in the bitstream.

No bits are returned, but bits are consumed. the MMX registers
COUNT, FIRST, SECOND, and SOURCE are all modified.

signature: void initGetBits(unsigned int *ptr)
semantics: This is the first call to use to initialize the mmxGetBits.S module.

It will initialize the MMX registers COUNT, FIRST, SECOND and
SOURCE to the correct values.
The argument ptr have the value of vd.i.puDword<<2

signature: void InputToMmx()
semantics: This call is used to load MMX registers from the values

stored in memory. after this call returns, the MMX registers
FIRST, SECOND, COUNT and SOURCE contains the correct values
as before. The variables vd.i.puDword and vd.i.bitsUsedInDword
are read and used to updated the content of the MMX registers.

signature: void MmxToInput()
semantics: This call is made to store the content of SOURCE register

(after dividing by 4 and adding 2) back in vd.i.puDword
and to store the content of MMX register COUNT into

21

vd.i.bitsUsedInDword

This is a high level version of mmxGetBits. Lets call this cGetBits.c It will have the same
interface as the Mmx based functions. The purpose of this is to help show what the GetBits
MMX code does, this is not meant to be working code that will compile as is.� �
static unsigned char first[8]; /* first is MMX register in assembler*/
static unsigend char second[8]; /* second is MMX register in assembler*/
static int count; /* count is another MMX register in assmbler code*/
static unsigned char *src; /* src points to current top of buffer of bit stream*/

static _initGetBits(char *ptr)
{

int i;
count=0;

for(i=0;i<7;i++)
first[i]=ptr[i];

ptr=ptr+8;

for(i=0;i<7;i++)
second[i]=ptr[i];

src=ptr;
}

static loadBits()
{

src= src+8;

for(i=0;i<7;i++)
second[i]=src[i];

//left shift second by count INTO lower first
// note: count here is the overflow

}

static _skipBits()
{

count = count +n;
// left shift first by n
// left shift second by n into first lower first
if (count >= 64)
{

count = count - 64;

22

loadBits();
}

}

/* gets and consumes the numberOfBits bits from the bitstream. */
unsigned int GetVideoBitsSmall(int numberOfBits)
{

unsigned int result= /* top most numberOfBits from first */
// shift left first by numberofbits
//shift left second by numberOfBits INTO lower first
count = count + numberOfBits;
if (count >=64)
{

count = count - 64;
loadBits();

}

return result;
}

/* Returns the numberOfBits bits from the bitstream without consuming them. */
unsigned int NextVideoBitsSmall(int numberOfBits)
{

return top-most numberOfBits from first;
}

/* Skips the numberOfBits bits in the bitstream. */
void SkipVideoBitsSmall(int numberOfBits)
{

count = count + numberOfBits;
//left shift first by numberOfBits
//left shift second by numberOfBits INTO lower first
if(count >= 64)
{

count = count - 64;
loadBits()

}
}

void MmxToInput()
{

vd.i.puDword = (src/4) -2 ; // check on this
vd.i.bitsUsedInDword = count;

}

void InputToMmx()

23

{
_initGetBits((vd.i.puDword)<<2);
_skipBits(vd.i.bitsUsedInDword)

}

void initGetBits()
{

_initGetBits((vd.i.puDword)<<2);
}� �
Figure ?? on the next page shows detailed walkthough of the initGetBits MMX code. Figure
?? on page 25 shows detailed walkthough of the InputToMmx MMX code. Figure ?? on
page 26 shows the rest of the walkthough of the InputToMmx MMX code. Figure ?? on
page 27 shows summary of InputToMmx MMX code.
Figure ?? on page 28 shows detailed walkthough of the MmxToInput MMX code, Mmx-
ToInput() basically takes the output of the opertation in MMX registers, and update the
vd.i.puDword and vd.i.bitsUsedInDword.
Figure ?? on page 29 is a walk though of GetVideoBitsSmall(), it takes as an argument the
number of bits to return from the video stream, and the return value will contains those
bits. Since unsigned int is used for the return value, only 32 bites can be returned per each
call. MMX registers COUNT, FIRST and SECOND are updated as needed for next call.

24

vd.i.puDword= 40 %eax= vd.i.puDword <<2 = 160

160 164 168 172

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4

This describes the operation of initGetBits() used by the mpge-2 decoder.

The Input is vd.i.puDword, which is loaded into register EAX. In this example, we assume the address value of puDword happened to be 40
(base 10). Notice that EAX will contain the value of puDword multiplied by 4. I show the layout of memory in that location. This routines
saves current pointer to video stream, and keeps 16 bytes ready in MMX registers for quick access.
I show each instruction in the initGetBits MMX routine to the left, and to the right show the effect after the instruction is completed.

movd (%eax), FIRST

EAX

160

FIRST

a1 a2 a3 a4

psllq $32,FIRST

FIRST

a1 a2 a3 a4

movd 4(%eax),TEMP2

TEMP2

b1 b2 b3 b4

por TEMP2,FIRST

Notice:
FIRST=MM0,
TEMP2=MM5,
SECOND=MM1,
SRC=MM3
COUNT=MM2

note: MMX registers
are 64 bit wide.

b1 b2 b3 b4a1 a2 a3 a4

FIRST

leal 8(%eax),%eax

160 164 168 172

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4

EAX

168

movd (%eax),SECOND

SECOND

c1 c2 c3 c4

psllq $32, SECOND

SECOND

c1 c2 c3 c4

movd 4(%eax), TEMP2

TEMP2

d1 d2 d3 d4

por TEMP2, SECOND d1 d2 d3 d4c1 c2 c3 c4

SECOND

movd %eax, SRC SRC168

pxor COUNT,COUNT 0 0 0 00 0 0 0

COUNT

Nasser Abbasi
073100 getbits.vsd

Figure 1.7: walk though initGetBits MMX code used in GetBits.S

25

psllq $32,FIRST

movd 4(%eax),TEMP2 TEMP2b1 b2 b3 b4

por TEMP2,FIRST

leal 8(%eax),%eax

160 164 168 172

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4

EAX

168

movd (%eax),SECOND SECONDc1 c2 c3 c4

psllq $32, SECOND SECONDc1 c2 c3 c4

movd 4(%eax), TEMP2 TEMP2d1 d2 d3 d4

por TEMP2, SECOND d1 d2 d3 d4c1 c2 c3 c4 SECOND

movd %eax, SRC SRC

pxor COUNT,COUNT 0 0 0 00 0 0 0

COUNT

Nasser Abbasi
080100 inputtommx.vsd

movl vd.i.puDword, EAX 40 EAX

leal (,EAX,4), EAX 160 EAX

movl vd.i.bitsUsedInDword, ecx 16 ECX

Assume that vd.i.puDword has the value 40,
and vd.i.bitsUsedInDword had the value 16
(all base 10)

inputToMmx()

call _InputToMmx

movd (%eax), FIRST FIRSTa1 a2 a3 a4

movd EAX, SRC

168

160 SRC

movd ECX, COUNT 16 COUNT

call _InitGetBits

160 164 168 172

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4

EAX

160
on entry to _InitGetBits, this is then how
things look:

FIRSTa1 a2 a3 a4

b1 b2 b3 b4a1 a2 a3 a4 FIRST

movl ECX, EDX EDX16

call _SkipBits

 see next page

Figure 1.8: walk though InptToMmx MMX code used in GetBits.S

26

call _SkipBits

movd EDX, TEMP2
TEMP216

paddd TEMP2, COUNT 0 0 0 0 COUNT16

movq SECOND, TEMP1 d1 d2 d3 d4c1 c2 c3 c4 TEMP1

psllq TEMP2, FIRST b3 b4 0 0a3 a4 b1 b2 FIRST ; left shift FIRST (quadword) by 16 bits

d3 d4 0 0c3 c4 d1 d2 SECONDpsllq TEMP2, SECOND

negl EDX
EDX-16

addl $64, EDX EDX48

movd EDX, TEMP2 TEMP248

; left shift SECOND (quadword) by 16 bits

; right shift temp1 by 48 bites (6 bytes)psrlq TEMP2, TEMP1 0 0 c1 c20 0 0 0 TEMP1

por TEMP1, FIRST b3 b4 c1 c2a3 a4 b1 b2 FIRST ; bitwise OR first with TEMP1, store result in FIRST

movd COUNT, EDX EDX16

addl $0xFFFFFFFC0, EDX * EDX

jc .LreloadBits

What these 2 instruction are doing is this: It checks if EDX has
value greater than 64. If EDX had values > 64, adding it to
0xFFFFFFC0 will cause overflow.

nasser abbasi
inputtommx2.vsd 080100

Figure 1.9: follow up of walk though InptToMmx MMX code used in GetBits.S

27

d1 d2 d3 d4c1 c2 c3 c4

SECOND

Nasser Abbasi
080100 inputtommx_summary.vsd

160 164 168 172

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4

EAX

160

b1 b2 b3 b4a1 a2 a3 a4

FIRST

This is a summary of the inputToMmx() routine.

inputToMmx() loads 2 MMX registers with with data from the video input stream (pointed to by vd.i.puDword
On entry, there is a count in vd.i.bitsUsedInDword, whic tells how many bits from pointer to bit stream are allready consumed.
This is a summary of input and output. Assume puDword is 40 and bitsUsedInDword is 16.

memory

d3 d4 0 0c3 c4 d1 d2

SECOND

160 164 168 172

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4

EAX

168

b3 b4 c1 c2a3 a4 b1 b2

FIRST

memory

After initGetBits, this is the picture:

After inputToMmx() returns, this is the pictire:

Figure 1.10: summary of InptToMmx MMX code used in GetBits.S

28

Nasser Abbasi
080100 mmxtoinput.vsd

 168 EAX

Assume that SRC contains 168 allready, and COUNT
contains 16 allready (all base 10)

MmxToInput()

call _MmxToInput

movd SRC, EAX

movd COUNT, ECX 16 ECX

shrl $2, EAX
42 EAX ; divid by 4

subl $2, EAX 40 EAX ; why we subtract 2 ??

addl $0xFFFFFFE0, ECX

adcl $0, EAX

I am not sure I understand these two instructions. My guess
is that if ECX is more than 32, then the address in EAX will
have 1 added to it (or is that 4?). This is need to advance the
ptr. check on this.

andl $0x1F, ECX

0xFFFFFFF0 ECX

40 EAX

16 ECX

movl EAX, vd.i.puDword

movl ECX, vd.i.bitsUsedInDword

update memory with new pointer and count

Figure 1.11: MmxToInput walk though MMX code used in GetBits.S

29

d1 d2 d3 d4c1 c2 c3 c4

SECOND

Nasser Abbasi
080100 getvidebitssmall.vsdunsigned in GetVideoBitsSmall(int numberOfBits)

160 164 168 172

a1 a2 a3 a4 b1 b2 b3 b4 c1 c2 c3 c4 d1 d2 d3 d4

b1 b2 b3 b4a1 a2 a3 a4

FIRST

Assume in this example that numberOfBits=8 and before calling this routine, this is the state:

vd.i.puDword = 42
vd.i.bitsUseInDword=0

movl numberOfBits, ECX ECX8

call _GetBits

movl $64, EDX EDX64

subl ECX, EDX EDX56

movq FIRST, TEMP1
b1 b2 b3 b4a1 a2 a3 a4 TEMP1

movd EDX, TEMP2
TEMP256

psrlq TEMP2, TEMP1 ; shift TEMP1 to the rigth by 56 bites (7 bytes)0 0 0 a10 0 0 0 TEMP1

movd ECX, TEMP2
TEMP28

COUNT

16

padd TEMP2, COUNT
COUNT

24
; update COUNT of bits consumed

movd TEMP1, ECX ECXa1

movq SECOND, TEMP1 d1 d2 d3 d4c1 c2 c3 c4 TEMP1

psllq TEMP2, FIRST b2 b3 b4 0a2 a3 a4 b1 FIRST

d2 d3 d4 0c2 c3 c4 d1psllq TEMP2, SECOND SECOND

movd EDX, TEMP2 TEMP256

c1 TEMP1psrlq TEMP2, TEMP1 ; right shift TEMP1 by 7 bytes

por TEMP1, FIRST b2 b3 b4 c1a2 a3 a4 b1 FIRST
; move left shifted data from SECOND to FIRST so it
dont get lost

movd COUNT, EDX EDX24

addl $0xFFFFFFC0, EDX EDX* ; This is used to check if COUNT has become greater than 64

jnc .LNoReloadBits

code
here
handles
the count
> 64
case. will
do later

.LNoReloadBits:
ret

movl ECX, ret ret= 'a1'

Figure 1.12: GetVideoBitsSmall walk though MMX code used in GetBits.S

30

vrecon.S interface

The vrecon.S MMX module contains the code for doing video reconstruction and averaging
routines. the C interfaces to the entry points in this module is declared in vrecon.h This
MMX module is called from the fastmc.c module. Total number of lines in vrecon.S module
is about 1130 including comments.
These are C interfaces from vrecon.h� �
void MMX_Recon_no_motion_f();
void MMX_Recon_full();
void MMX_Recon_right_half();
void MMX_Recon_down_half();
void MMX_Recon_rightdown_half();
void MMX_Recon_full_fb();
void MMX_Recon_right_half_f_full_b();
void MMX_Recon_down_half_f_full_b();
void MMX_Recon_full_f_right_half_b();
void MMX_Recon_full_f_down_half_b();
void MMX_Recon_right_half_f_right_half_b();
void MMX_Recon_down_half_f_right_half_b();
void MMX_Recon_right_half_f_down_half_b();
void MMX_Recon_down_half_f_down_half_b();
void MMX_Recon_rightdown_half_f_full_b();
void MMX_Recon_full_f_rightdown_half_b();
void MMX_Recon_rightdown_half_f_right_half_b();
void MMX_Recon_rightdown_half_f_down_half_b();
void MMX_Recon_right_half_f_rightdown_half_b();
void MMX_Recon_down_half_f_rightdown_half_b();
void MMX_Recon_rightdown_half_f_rightdown_half_b();� �
I’ll will look at one function from the above, the MMX_Recon_no_motion_f() to show
the interface to it.� �

MMX_Recon_no_motion_f(int motionCompStride,
unsigned char *from1,
unsigned char *to,
int lineStride,
int nYlines);� �

This MMX code will copy 8 bytes at a time from where ’from1’ points to, to buffer pointed
to by ’to’. It does this for nYLines number of times.
There is a C version of vrecon.S that exist. It is commented out code sections in the same
file vrecon.S, so it is possible to initially use that for Solaris. See the C code (all written as
macros) for more description of what the assembler does.

31

vscale.S interface

The vscale.S module is called after motion compensation. There are number of interface to
this module, however, only two are used. One for non-intra blocks, and one for intra blocks.
These are the entry points to the vscale.S module:� �
.globl IntraVldIdctSevenBitShiftedOutput
.globl NonIntraVldIdctEightBitShiftedSum
.globl IntraVldIdctEightBitOutput
.globl IntraVldIdctEightBitSignedOutput
.globl NonIntraVldIdctNineBitSum
.globl NonIntraVldIdctEightBitShiftedOutput
.globl NonIntraVldIdctSixteenBitOutput� �
For intra blocks, IntraVldIdctSevenBitShiftedOutput is called.
For non-intra NonIntraVldIdctEightBitShiftedSum is called.
vscale.S does not access C based structures, but will access the 8x8 IDCTbuffer defined in
data.S assembler module.

vld.S interface

For intra blocks, the entry point is _intraVld and for non-intra blocks, the entry point is
_NonIntraVld. These MMX entry points read from C based global structures and read
and write to assembler based buffers such as the IDCTbuffer, VLCTable0, VLCtable1,
VLCTable2, VLCTable3, DCluma buffer, DCShift.
The C based fields in C structures that this assembler code reads are fields in a structure
of type struct MPEG_VIDEO_VLD_VARIABLES_STRUCT declared in vld.h and type
struct MPEG_VIDEO_INPUT_DATA_VARIABLES declared in video.h.
The C fields read from struct MPEG_VIDEO_VLD_VARIABLES_STRUCT are: flag
mc_intraBlockIsLumFlag, flag dPictureFlag, intra_vlc_format, macroblockIsIntraFlag,
mpeg2IfNotZero.
The C fields written into struct MPEG_VIDEO_VLD_VARIABLES_STRUCT are: vldLim-
itOverflowFlag.
The C fields read from struct MPEG_VIDEO_INPUT_DATA_VARIABLES are: bit-
sUsedInDword, puDword, bitsUsedInDword.
The C fields written into struct MPEG_VIDEO_INPUT_DATA_VARIABLES are: bit-
sUsedInDword.

32

vquant.S

Dequantizes, scales, and clamps output arrays from VLD.
There are two main entries into this assembler module. For Intra blocks it is _IntraQuant
and for non-intra blocks, it is _NonIntraQuant.
This assemble module access C based global variables, and assembler based buffers and
tables.
The C based variables accessed are fields in global variable vld, which is of type MPEG_VIDEO_VLD_VARI-
ABLES_STRUCT. The variable vld itself is a field in a larger variable, vd, of type
MPEG_VIDEO_DECODER_VARIABLES_TYPE that is allocated in the module video.c.
The C based fields in struct MPEG_VIDEO_VLD_VARIABLES_STRUCT accessed in
vld.S are: intra_dc_precision (which can be 1,2,4 or 8), mc_pDcPredictor (ptr to block),
psIntraQuantMatrix (ptr to Intra quantizing matrix), intraQuantMatrixScale, psNonIn-
traQuantMatrix (ptr to non-intra quantizing matrix), nonIntraQuantMatrixScale, quan-
tizer_scale(global quantizer scale).
Assembler based buffers accessed are located in data.S module, and they are: IdctColumn-
Mask, 8x8 IDCTBuffer (read/write access).

vidct.S interface

Computes IDCT on 8x8 array of DCT coefficients.
The entry point in this module is idct, which is called to do idct on the 8x8 IDCTBufger.
The C based variables read in this module are fields in structure of type MPEG_VIDEO_VLD_VARIABLES_STRUCT,
and these are: mc_IdctblockDestinationStride, and mc_pucBlockDestination.
The assembler based buffer accessed are: 8x8 IDCTBuffer. This contains the dct coefficients,
to perform idct on. the DCSTEP and various other assembler based constants, all of these
are defined in data.S.
idct stores 16 bits final results in MMX registers, then it calls the output routine, which
clamps the results, scales them to a specified precision, and stores or sums the results into
8-bit, pre-configured C based buffers.
The output routine for intra blocks is called Out7BitIntra in the assembler module vscale.S,
and the output routine for non-intra blocks is called Sum8BitNonIntra in the assembler
module vscale.S.

33

1.4 Video output filter design
The X11 output filter takes as input a decoded picture frames from the mpeg-2 decoder
(or subpic decoder), and will display the frame. Currently, the output filter will do YUV to
RGB conversion using an MMX module.
The X11 output filter is located in dvd2/src/filters/sink/video/x11/ directory in the
source tree.
The main filter is implemented in the file x11video.c. Other supporting files are display.c
which has functions that are called from X11video.c to actually display the frames, and
yuvconv.S, which is an MMX modules that does the YUV to RGB conversion. There are
two versions of YUV to RGB conversions, one with alpha blending and one without.
The MMX code is called from the display.c module to do the conversion before displaying.

+-------------+ +---------+
| X11video.c |<--- input frames from mpeg-2 decoder<--- | MPEG-2 |
| | | decoder |
+-------------+ +---------+
| display.c |
+-------------+
| yuvconv.S |
+-------------+

The video output filter is build in one of 5 modes. Once selects the mode to build the
filter in by manually editing the file build.h in the same directory, and setting the variable
OUTPUT_MODE to the mode needed. Looking at build.h we see:� �
/* the different types of output modes. Selected with OUTPUT_MODE */
#define OUTPUT_MODE_VIDMEM 2
#define OUTPUT_MODE_XSHM 3
#define OUTPUT_MODE_SDL 4 /* not implemented fully (requires addition

of -lSDL in the makefile) */
#define OUTPUT_MODE_DGA 5
#define OUTPUT_MODE_I810 6

/* the mode selected */
#define OUTPUT_MODE OUTPUT_MODE_XSHM� �

34

1.4.1 VIDMEM mode for video display
If OUTPUT_MODE_VIDMEM is selected, the the device /dev/agpgrat is opened and
used to write to. The device is opened, then queried using an IOCTL call to compute the
video memory size. Then the device is memory maped using mmap() call for the calculated
size.
The result of the mmap() call is to return a memory pointer which is the mapped memory
the the device accessable memory to write the frame to. This memory address is used in
the function DisplayFrame() by the x86 instructions to move the frame buffer to the device
/dev/agpgrat/ mapped buffer as shown below� �

dest=vidmem; /* vidmem is address of mapped graphic device memory */

if(vfbd->blendframe!= ((void *)0)){
CALL_YUV_ALPHA(yval,

cbval,
crval,
dest, /* address of mapped memory */
vfbd);

}
else
{

asm("movl %3,%%edi\n" "call yuv_convert" :: "S" (yval),
"c" (cbval),
"d" (crval),
"m" (dest), /* address of mapped memory */
"a" (bobFlag) : "%esi","%ecx","%edx","%edi","%eax"); ;

}� �
1.4.2 DGA mode for video display
If OUTPUT_MODE_DGA is used, the file /usr/X11R6/include/X11/extensions/xf86dga.h
is included and the build is linked to shared library xf86dga.so. The process of using direct
graphics calls is initialized using the following sequence of calls to function in the xf86dga.so
library.� �

display=XOpenDisplay(((void *)0));
screen= (((_XPrivDisplay) display)->default_screen) ;

int min,maj,flags;

XF86DGAQueryVersion(display,&min,&maj);

XF86DGAQueryDirectVideo(display,screen,&flags);

XF86DGAGetVideo(display,screen,(char**)&vidmem,&vidmem_width,&vidmem_size,&ram_size);

35

XF86DGAGetViewPortSize(display,screen,&sizex,&sizey);

XF86DGADirectVideo(display,screen,0x0002);
}� �

To output a frame using direct graphics mode, after calling YUV to RGB conversion, calls
to XF86DGASetViewPort() are made as shown� �

dest=whichpage ? page2 : page1;

if(vfbd->blendframe!= ((void *)0)){
CALL_YUV_ALPHA(yval,cbval,crval,dest,vfbd);

}else{
asm("movl %3,%%edi\n" "call yuv_convert" ::
"S" (yval),
"c" (cbval),
"d" (crval),
"m" (dest),
"a" (bobFlag) : "%esi","%ecx","%edx","%edi","%eax"); ;

}

if(whichpage==0){
XF86DGASetViewPort(display,screen,0,0);
whichpage=1;

}else{
XF86DGASetViewPort(display,screen,0,vidmem_height);
whichpage=0;

}� �
The screen is closed in DGAmode by making a call to XF86DGADirectVideo(display,screen,0).

1.4.3 intel I810 mode for video display
The intel i810 graphic card has the following features (obtained from the net http://www.xfree86.org/4.0/i810.html).

• Full support for 8, 15, 16, and 24 bit pixel depths.

• Hardware cursor support to reduce sprite flicker.

• Hardware accelerated 2D drawing engine support for 8, 15, 16 and 24 bit pixel depths.

• Support for high resolution video modes up to 1600x1200.

• Fully programmable clock supported.

• Robust text mode restore for VT switching.

36

Hardware acceleration is not possible when using the framebuffer in 32 bit per pixel format,
and this mode is not supported by this driver.
Interlace modes cannot be supported.
This driver currently only works for Linux/ix86, and normal use requires the agpgart.o
kernel module, included in Linux kernels 2.3.42 and higher.
This mode requires mgilib.h which I was not able to find in the source tree. (ask Ben on
that).
some of the functions called in the mgilib when running in i810 mode are:
mgiGetDriverInfo(), mgiMapDriverInfo(), mgiStartOverlay(), mgiCloseOverlay().
(Need to find more information on this mgilib).

1.4.4 Shared memory mode for video display
In this mode, we use functions as defined in X11 extention /usr/X11R6/include/X11/extensions/XShm.h

To load the display window in XSHM mode we create a shared memory segment and map
it to the window created as shown:� �

XSizeHints hint;
int screen;
XEvent xev;

display=XOpenDisplay(((void *)0));
screen= (((_XPrivDisplay) display)->default_screen) ;
gc= ((&((_XPrivDisplay) display)->screens[screen]) ->default_gc) ;

window=XCreateSimpleWindow(...);
XSetStandardProperties(display,window,

"DVDMax",
"DVDMax",
0L ,
((void *)0) ,
0,
&hint);

XSelectInput(display,window,(1L<<17));
XMapWindow(display,window);

do{
XNextEvent(display,&xev);

}while((xev.type!= 19) || (xev.xmap.event!=window));

XSelectInput(display,window,(1L<<17) | (1L<<2));
printf("window created\n");

}

37

int pixtype;
int datalen;

CompletionType = XShmGetEventBase(display) + 0 ;
pixtype=XShmPixmapFormat(display);

image = XShmCreateImage(
display,
0L ,
16,
pixtype,
((void *)0) ,
&shminfo,
720 , 480);

datalen=image->bytes_per_line*(image->height+2);
shminfo.shmid = shmget(((__key_t) 0) , datalen, 01000 |0777);
shminfo.shmaddr = shmat(shminfo.shmid,((void *)0) ,0);

image->data=shminfo.shmaddr;
shminfo.readOnly= 0 ;
XShmAttach(display,&shminfo)

}� �
To close the display in XSHM mode we detach from the shared memory segment and then
use X call to destroy the display.� �

XShmDetach(display,&shminfo);
XDestroyWindow(display,window);
shmdt(shminfo.shmaddr);� �

To display a frame in XSHM mode we make a call to XShmPutImage() followed by a call
to XSync().� �

unsigned char *crval = vfbd->baseframe->planes[2];
unsigned char *cbval = vfbd->baseframe->planes[1];
unsigned char *yval = vfbd->baseframe->planes[0];

unsigned char *dest;

dest=image->data;

if(vfbd->blendframe!= ((void *)0)){
CALL_YUV_ALPHA(yval,cbval,crval,dest,vfbd);

}else{

38

asm("movl %3,%%edi\n" "call yuv_convert" :: "S" (yval),
"c" (cbval), "d" (crval), "m" (dest), "a" (bobFlag) :
"%esi","%ecx","%edx","%edi","%eax"); ;

}

XShmPutImage(
display,
window,
gc,
image,
0,0,
0,0,
image->width,
image->height,
0

);
XSync(display,0);� �

1.4.5 SDL mode for video display
The SDL functions used when running in this mode are:� �
int SDL_Init(Uint32 flags); void SDL_Quit(void); int SDL_LockSO(void);
void SDL_Quite(); SDL_UpdateRect(...);� �
To load the display window in SDL we do� �

SDL_Init(0x0020);
screen = SDL_SetVideoMode(720 ,480 +2,16,0x00000000 | 0x00000002);� �

To display a frame in SDL mode, do� �
dest=(unsigned char *)screen->pixels;

if(vfbd->blendframe!= ((void *)0)){
CALL_YUV_ALPHA(yval,cbval,crval,dest,vfbd);

}else{
asm("movl %3,%%edi\n" "call yuv_convert" ::

"S" (yval), "c" (cbval), "d" (crval),
"m" (dest), "a" (bobFlag) : "%esi","%ecx","%edx","%edi","%eax"); ;

}
SDL_UpdateRect(screen,0,0,720 ,480);� �

The SDL functions are implemeted in the directory dvd2/src/filters/sink/video/sdl/
in the source tree.

CHAPTER 2

BUILDING DVDMAX

These are the steps I did to build DVDMax on Solaris.
1. download the following packages from my web site at MGI and install using the

commands
gunzip file.gz
pkgadd -d file

where file.gz is any one of the following
• cvs-1.10.7-sol8-sparc-local.gz

• bison-1.28-sol8-sparc-local.gz

• flex-2.5.4a-sol8-sparc-local.gz

• autoconf-2.13-sol8-sparc-local.gz

• m4-1.4-sol8-sparc-local.gz

• gawk-3.0.4-sol8-sparc-local.gz

• make-3.79-sol8-sparc-local.gz

• pkg SMCgcc for gcc, this is already installed on Solaris 8 before building. If we
later decide to go with Sun CC, then need to remove this package. If unable to
find the solaris SMCgcc already installed on Solaris8, use gcc-2.95.2-sol8-sparc-
local.gz (I did build with gcc-2.95.2).

2. download fileutils-4.0i_build_solaris8.tar.gz. I’ve already pre-build fileutils
for Solaris8/sparc with my changes to the install.c to ignore -C option (which is used
by our Makefiles, this is until I find out how to make autoconf not generate -C option
for install)..

39

40

Simply gunzip and tar xf the above, and run ’make install’ from the top level directory.
If for some reason you get an error /usr/local/bin/install not found, then from
the top level directory of fileutils do this

cp /src/ginstall /usr/local/bin/install
make install

3. download libtool-1.3.5_build_solaris8.tar.gz. I’ve already prebuild this for
solaris8/sparc. simply extract and run make install from its top level directory.

4. download qt-2.2.0-beta2_build_solaris8.tar.gz, I’ve already pre-build this for
Solaris8/sparc, so simply extract only (i.e. gunzip followed by tar xf). No need to
install this. The only thing needed is to set an env. variables to point to where it is
located.
Assume this is installed in /home/nabbasi/data/QT_downloads/qt-2.2.0-beta2
then add this to your .bashrc (for bash):� �

QTDIR=/home/nabbasi/data/QT_downloads/qt-2.2.0-beta2
PATH=$QTDIR/bin:$PATH
if [$MANPATH]
then

MANPATH=$QTDIR/man:$MANPATH
else

MANPATH=$QTDIR/man:
fi
if [$LD_LIBRARY_PATH]
then

LD_LIBRARY_PATH=$QTDIR/lib:$LD_LIBRARY_PATH
else

LD_LIBRARY_PATH=$QTDIR/lib
fi
LIBRARY_PATH=$LD_LIBRARY_PATH
if [$CPLUS_INCLUDE_PATH]
then

CPLUS_INCLUDE_PATH=$QTDIR/include:$CPLUS_INCLUDE_PATH
else

CPLUS_INCLUDE_PATH=$QTDIR/include
fi
export QTDIR PATH MANPATH LD_LIBRARY_PATH LIBRARY_PATH
export CPLUS_INCLUDE_PATH

� �
To build QT yourself, do this� �

1. make sure QTDIR path is first set correctly to the QT your
are building as shown above.

2. cd $QTDIR; ./configure

41

NOte the build type.
3. cd configs

and edit the correct config that matches the solaris build type
(default should be solaris-cc-shared and do the following
changes (notes difference between original and changed file.)
basically, I've used -fPIC instead of -KPIC (since building with
gcc not Sun Compiler for now). and to fix a problem in Qt
build on Solaris, use the '-isystem' instead of '-I' as shown

#diff solaris-cc-shared solaris-cc-shared.orig
6c6
< SYSCONF_CXXFLAGS_X11 = -isystem /usr/openwin/include

> SYSCONF_CXXFLAGS_X11 = -I/usr/openwin/include
84,87c84,85
< #SYSCONF_CXXFLAGS_LIB = -KPIC
< SYSCONF_CXXFLAGS_LIB = -fPIC
< #SYSCONF_CFLAGS_LIB = -KPIC
< SYSCONF_CFLAGS_LIB = -fPIC

> SYSCONF_CXXFLAGS_LIB = -KPIC
> SYSCONF_CFLAGS_LIB = -KPIC
89,92c87,88
< #SYSCONF_CXXFLAGS_SHOBJ = -KPIC
< SYSCONF_CXXFLAGS_SHOBJ = -fPIC
< #SYSCONF_CFLAGS_SHOBJ = -KPIC
< SYSCONF_CFLAGS_SHOBJ = -fPIC

> SYSCONF_CXXFLAGS_SHOBJ = -KPIC
> SYSCONF_CFLAGS_SHOBJ = -KPIC

4. Now, simply do 'make' from top level, go get a cup of
coffee, and in about 1-2 hrs, Qt will be build.

� �
5. download kde-1.1.2-1-Solaris-7-Sparc.tar.gz. This is a pre-build KDE for Solaris. It is

only needed to make our GUI configuration happy.(it is OK that it is for Solaris 7),
Simply extract it to some directory.
Assume you extracted it to /export/home/kde-1.1.2-1-Solaris-7-Sparc/ then do this� �

cd /opt
ln -s /export/home/kde-1.1.2-1-Solaris-7-Sparc kde

and edit .bashrc and add this

KDEDIR=/opt/kde
export KDEDIR

42

and add $KDEDIR/bin to your PATH also.

� �
6. Edit your .bashrc and have this PATH (notice, /usr/local/bin is first)� �

PATH=/usr/local/bin:/usr/bin:/usr/sbin:/sbin:/bin:/sbin:/usr/ccs/bin:/usr/openwin/bin:$KDEDIR/bin
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib
export PATH
export LD_LIBRARY_PATH

we add /usr/local/lib since during the build this where our libraries go, and linker
needs to find them.

� �
7. Ok, now we have all the needed software. Use CVS to obtains the source tree.

8. Build the tree using these steps 1

(a) add some symbolic links� �
cd /usr/loca/bin
ln -s gcc CC
ln -s gcc cc
ln -s flex flex++
ln -s flex lex

� �
(b) set a CC env. variable as follows� �

export CC=''gcc -DSOLARIS''

� �
(c) cd dvd2/src/filters/sink/video/x11 and edit the build.h file as needed to

specify the video mode output to be used. (I used XSHM)
/* the mode selected */

#define OUTPUT_MODE OUTPUT_MODE_XSHM

(d) cd lmf; rm config.cache; ./configure; make uninstall; make; make install

(e) cd sconv; rm config.cache; ./configure; make uninstall; make; make install

1You do not need to be root unless root permission is needed to write to /usr/local. I had my /usr/local
write allowed by everyone so I do not need to keep switching to root to install sw.

43

(f) For DVD2, need to do make twice:
cd dvd2; rm config.cache; ./configure; make uninstall; make -

i; make -i install; make -i; make -i install

(g) Make sure X11 is running in 16 bit depth (since this is what DVDmax on linux
based source now supports). On Linux2 this is done as follows

startx -- -bpp 16

(h) set up the skin directory:
cp ./dvd2/src/app/frontend/skin.tar.gz $HOME
cd
gunzip skin.tar.gz
tar xf skin.tar

(i) su; export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/lib; cd dvd2/src/tests;
./ftest12

2.1 Current status of Solaris build
As of 090500, result of Solaris build shows these plugins being build (9 plugins)� �
cd /usr/local/DVDMax/plugins
SunOS>ls -l *.so

-rwxr-xr-x 1 nabbasi staff 99028 Sep 5 00:55 dvdmax_demux.so
-rwxr-xr-x 1 nabbasi staff 72184 Sep 5 00:55 dvdmax_dvddisc.so
-rwxr-xr-x 1 nabbasi staff 650248 Sep 5 00:55 dvdmax_dvdnav.so
-rwxr-xr-x 1 nabbasi staff 48420 Sep 5 00:55 dvdmax_hli.so
-rwxr-xr-x 1 nabbasi staff 33684 Sep 5 00:55 dvdmax_mpeg2sync.so
-rwxr-xr-x 1 nabbasi staff 39024 Sep 5 00:55 dvdmax_pcm.so
-rwxr-xr-x 1 nabbasi staff 93396 Sep 5 00:55 dvdmax_rawfile.so
-rwxr-xr-x 1 nabbasi staff 95572 Sep 5 00:55 dvdmax_subpic.so
-rwxr-xr-x 1 nabbasi staff 111880 Sep 5 00:55 libdvdapp.so� �
On Linux, complete build shows 14 plugins.� �
cd /usr/local/DVDMax/plugins
nabbasi>ls -l *.so
-rwxr-xr-x 1 nabbasi users 209711 Sep 4 23:38 dvdmax_ac3_filter.so
-rwxr-xr-x 1 nabbasi users 113375 Sep 4 23:38 dvdmax_decss.so

2find how to do this on CDE/Solaris

44

-rwxr-xr-x 1 nabbasi users 79181 Sep 4 23:38 dvdmax_demux.so
-rwxr-xr-x 1 nabbasi users 69295 Sep 4 23:38 dvdmax_dvddisc.so
-rwxr-xr-x 1 nabbasi users 418122 Sep 4 23:38 dvdmax_dvdnav.so
-rwxr-xr-x 1 nabbasi users 44292 Sep 4 23:38 dvdmax_hli.so
-rwxr-xr-x 1 nabbasi users 271365 Sep 4 23:38 dvdmax_mpeg.so
-rwxr-xr-x 1 nabbasi users 43113 Sep 4 23:38 dvdmax_mpeg2sync.so
-rwxr-xr-x 1 nabbasi users 71574 Sep 4 23:38 dvdmax_oss.so
-rwxr-xr-x 1 nabbasi users 48213 Sep 4 23:38 dvdmax_pcm.so
-rwxr-xr-x 1 nabbasi users 74610 Sep 4 23:38 dvdmax_rawfile.so
-rwxr-xr-x 1 nabbasi users 79182 Sep 4 23:38 dvdmax_subpic.so
-rwxr-xr-x 1 nabbasi users 112248 Sep 4 23:38 dvdmax_x11video.so
-rwxr-xr-x 1 nabbasi users 113059 Sep 4 23:38 libdvdapp.so
nabbasi>� �
plugins failed to link on Solaris are: ac3, decss, mpeg, oss, x11.

	Introduction
	Software requirements
	Main port issues
	Design of DVDMax on Linux
	High level Architecture
	Loading of a plugin and creation of a filter object
	MPEG-2 decoder design and dataflow
	Assembler modules used by mpeg-2 decoder
	general logic flow in the mpeg-2 decoder
	Decoding macroblocks
	Assembler interfaces in mpeg decoder
	mmxGetBits.S interface
	vrecon.S interface
	vscale.S interface
	vld.S interface
	vquant.S
	vidct.S interface

	Video output filter design
	VIDMEM mode for video display
	DGA mode for video display
	intel I810 mode for video display
	Shared memory mode for video display
	SDL mode for video display

	Building DVDMax
	Current status of Solaris build

