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Chapter 1: Introduction

Took this course in Spring 2018 to learn more about PDE’s.

1.1 syllabus



1 Introduction

Introduction to Partial Differential Equations, Math 322, Section 1

Prerequisites: jr. st., Math 320; or grad st

Classes: Tuesday and Thursday 2:00-3:15 in EMS E160

Instructor: Hans Volkmer, Office: EMS E451, Phone: 229-5950

Email: volkmer@Quwm.edu

Course page: on D2L

Office hours: Tuesday and Thursday 1:00-2:00 and 3:15-4:00 and by appointment

Textbook: Elementary Differential Equations by W. Boyce and R. DiPrima, 10th
edition
Chapter 10 Partial Differential Equations and Fourier Series
Chapter 11 Boundary Value Problems and Sturm-Liouville Theory
Grading policy: Midterm exam on Chapter 10, Tuesday, 2:00-3:15, March 13,
2018.
Final exam on Chapters 10 and 11, Thursday, 10:00-12:00. May 17, 2018.

There will 4 take-home quizzes assigned on February 8, February 27, April 10,
April 26. You have a week to do these quizzes.

The midterm exam will be worth 120 points, the final exam 180 points and
each quiz 40 points with a total of 460 points. 390 points will certainly be
enough for an A, 360 will be an A- etc.

The midterm and final exam will be closed book and open notes. You can use
calculators on the exams.

Makeup policy: makeups are possible.

If you feel you are a student with a disability please feel free to contact me early in
the semester for any help or accommodations which you may need.



Chapter 2: HWs

2.1 my solved problems

2.1.1 Chapter 10.1, Problem 9

Problem Either solve y”’ + 4y = cos x with y’ (0) = 0,y’ () = 0 or show it has no solution.
Solution The homogeneous solution yj, can be easily found to be

Yp = ¢1 €os (2x) + ¢, sin (2x)

Therefore the basis solutions are

Y1 = COS 2x
Yy, = sin 2x
And
y; = —2sin2x
Y, = 208 2x
Hence
y;, (x) = —2¢; sin 2x + 2c; cos 2x
To find particular solution, let
yp = Acosx

The original ODE becomes

—Acosx +4Acosx = cosx

3Acosx = cosx

1
A=-
3

Hence the full solution is

y(x)=yn +yp

. 1
= —2¢1 SIn 2x + 2¢y cos 2x + 5 COS X

Therefore

, . 1 .
Y’ (x) = —4c; cos 2x — 4c; sin 2x — 3 sinx
First B.C. gives

y’ (0) =0 = —4c;

C1=0



2 HWs

Therefore the solution now becomes y (x) = 2¢; cos 2x + % cosx and y’ (x) = —4c, sin 2x — % sin x. The
second B.C. gives

y' (1) = 0 = —4c;(0)
0 = —4c, (0)

Hence c; can be any value. Therefore, there is no unique solution. There are infinite number of solutions.
Final solution is

1
Y (x) = 2¢c; cos 2x + 3 cosx

Since 2c, is constant, we can rename it to A and write the above as

y(x) = Acos2x + %cosx

To verify that there is no unique solution, we set up W where y; = cos2x,y, = sin 2x, and yy, y, as
found above. These are the two basis solutions for the homogeneous ODE.

0 2
0 2

y1(0) 43 (0)
yy (1) v, (1)

Since W = 0, this implies there is no unique solution. Therefore the ODE can has no solution, or it can
have an infinite number of solutions. In this case, as shown above, it has infinite number of solutions.

2.1.2 Chapter 10.1, Problem 12
Problem Either solve x?y” + 3xy’ + y = x? with y (1) = 0,y (e) = 0 or show it has no solution.
Solution The homogeneous solution is first found. This is a Euler ODE. Let y, = x", theny, = rx’1, y, =

r(r — 1) x"~% and the homogeneous ODE becomes

rr=1x"+3rx" +x" =0
r(r—1)+3r+1=0
PP—r+3r+1=0
rP+2r+1=0
r+D)(r+1)=0

Hence double roots. Therefore the solution is
1 1
yp =c1— +c—Inx
x x
To find particular solution, let y, = ¢; + c2x + c3x%. Plugging this in original ODE gives
2 2\ _ .2
x%(2c3) + 3x (c2 + 2¢3%) + (€1 + Cax + €3x°) = x

x?2(2¢3) + 1 + x (3¢ + ¢2) + x% (605 + ¢3) = x°

Comparing coefficients gives

C1:O
4c, =0
9C3:1

10



2.1 my solved problems

Hence solutionis ¢ = 0,¢; = 0,¢3 = %. Therefore y, = %xz and the full solution is

y(x) =11 + o2 Inx + §x? (1)

Boundary conditions are now applied to find ¢y, c;. First BC gives

1
0=cl+czln1+§

1
0=C1+—
9
1
= ——
T
Second BC y (e) = 0 gives
1 1
0=ci— +c—Ine + —¢?
e e
1 2
O0=—-—+c—+ —e
9e e
1 1,
Cp=———e
79 9
_ 1-¢3
9

Therefore the solution (1) becomes

g0 = - + 5+ (152) Linx

Therefore solution exist and is unique. This is verified using W where now y; = %, Yy = % In x. These
are found above as the bases solutions for the homogeneous ODE.

o] 1
== #0

e

y1 (1) y2(1)
yi1(e) yz(e)

1
1
e

Q |=

This confirms that a unique solution exists.

2.1.3 Chapter 10.1, Problem 14

Problem Find eigenvalue and eigenfunction of y” + Ay = 0 with y (0) = 0, ¢y’ () = 0.
Solution
Assuming the solution is y = Ae"™, then the characteristic equation is

rPHA=0

N ayy

Case A <0
In this case —] is positive and hence V-2 is also positive. Let V-1 = y where y > 0. Hence the roots
are +u. This gives the solution

y = ¢1 cosh (ux) + c; sinh (px)

First BC gives
0= C1

11



2 HWs

Hence solution becomes
y (x) = ¢, sinh ()
Second BC gives

Yy’ (x) = pic; cosh (px)
0 = picy cosh (urr)

But cosh uz # 0, hence only other choice is ¢; = 0, leading to trivial solution. Therefore A < 0 is not
eigenvalue.
Case A = 0, then the homogenous solution is

y(x) =c1 +cox

First BC gives

0= C1
Hence solution becomes
y(x) = cox
Second BC gives
y' (x) =c
0= Co

Leading to trivial solution. Therefore A = 0 is not eigenvalue.
Case A > 0, then the homogenous solution is

Y (x) = c; cos (\/Ix) + ¢y sin (\/Ix)

First BC gives
0= C1

Hence solution becomes

y(x) = ¢z sin (\/zx)
Second BC gives

y (x) = Ve, cos (\/Ix)
0= \/EC2 cos (\ﬁﬁ)

Non-trivial solution requires cos (\/In’) =0or Vir = %t forn =1,3,5,- . Therefore

Vigr = 22

2
Vin==  n=135-
Hence the eigenvalues are
(g) n=1,35,--
And the corresponding eigenfunction is sin (%x) for n = 1,3,5, - - -. The solution is

y(x) = Z cp sin (Ex)
n=1,35, 2

12



2.1 my solved problems

2.1.4 Chapter 10.1, Problem 20

Problem Find eigenvalue and eigenfunction of x?y”’ — xy’ + Ay = 0 withy (1) = 0,y (L) = 0,L > 1
Solution
This is Euler type ODE. Using standard substitution, ley y = x”. The ODE now becomes

Xr(r=1)x"?—xrx" '+ 2x" =0
rr—1)—-r+A=0
rP—2r+1=0

The above is called the characteristic equations. Its roots give the solution. The roots are

_ Vh2 — V4 —
= b+ Vb 4aC:2i 4 4/1:1im

2a 2

casel1 -1 >0
Let 1 — A = p? for some real p. Then the roots are 1 + ; and hence the solution is

y=cix + cox?

=cix'TH 4 cpxTH

4 1
=x|cix" +co—
xH

At first BC y (1) = 0 the above gives
0=c+¢

At second BCy(L) =0

0=0L[cLH i
= Cq +CZLF’

0=cL*+ !
=0 C2 A
_ Cle‘u + Cy
=
Hence
Cley +c3=0
But ¢y = —c;, therefore

ClLZIl —C = 0

c (L*-1) =0

For arbitrary L > 0 the above can only be satisfied if ¢; = 0. This means both ¢y, ¢, are zero. Hence
1— A > 0is not possible.

case 1 -1 =0

Hence the roots now are r = 1. Double root. We now in the case of double root the solution can be
written as

y=cx" +cx Inx

c1x + cooxlnx

At first BC y (1) = 0 the above gives
0= C1

13



2 HWs

Therefore the solution now becomes y = ¢yx In x. At second BC y (L) = 0

0=cLInL

0=cInL
Since L > 0 then only possibility is that c; = 0.This means both ¢y, c; are zero. Hence 1 — A = 0 is not
possible.

case 1 -4 <0
Let 1 — A = —p? for some real p. Then the roots are 1 + iy and hence the solution is

Yy =cix + cox
= ¢yx T 4 opx 1T
= x (c1x™ + cpx ™)
The above can be written as
y=x (clelnxi” + czelnxfm)
— (Clei,ulnx + Cze—iylnx)
Hence c,e#"* + ¢,e#1"X can be written as C; cos (4 Inx) + Cy sin (u In x). This is done using Euler
relation and the new constants Cy, C, are not the same as ¢y, ¢z. The solution becomes
y = x(Cy cos(pInx) + Cy sin (u1n x))
First BC y (1) = 0 the above becomes
0=Crcos(uln1) + Cysin(ulni)
=C
Therefore the solution is
y = xC; sin (uIn x) (1)
For second BC y (L) = 0 the above becomes
0=LCysin(ulnL)
0=Cysin(ulnlL)

Non-trivial solution requiressin (uInL) = 0 or gInL = nx for n = 1,2, 3, - - - . This means
e 1,2,3
= — n = s Ly dy "
F= L
Butl1—-A1= —/Jz, orA=1+ /12, therefore
ni \ 2
A =l+(—) n=1273,--- 2
n L (2)

These are the eigenvalues. The corresponding eigenfunctions are from (1)

Yn (x) = cpx sin (pn Inx)

= cpx sin (\//1,1 —1ln x)

:cnxsin( 1+(%)2—1lnx)
=cpx sin( (%)Zlnx)
(mr

14



2.1 my solved problems

Hence the solution is -
nmw
= i 1 )
y(x)=x n; cp sin (_lnL nx

2.1.5 Chapter 10.1, Problem 22

22. Consider a horizontal metal beam of length L subject to a vertical load f (x) per unit length.
The resulting vertical displacement in the beam y(x) satisfies the differential equation

d*y
Elﬁ = f(),

where E is Young’s modulus and [ is the moment of inertia of the cross section about
an axis through the centroid perpendicular to the xy-plane. Suppose that f(x)/EI is a
constant k. For each of the boundary conditions given below, solve for the displacement
y(x), and plot y versus x in the case that L =1 and k = —1.

(a) Simply supported at both ends: y(0) = y"(0) = y(L) =y"(L) =0
(b) Clamped at both ends: y(0) = y'(0) = y(L) = y'(L) =0
(c) Clamped atx = 0,free atx = L:y(0) = y'(0) = y"(L) =y" (L) =0

This is standard ODE with constant coefficients. Just integrating and substitutions.

2.1.6 Chapter 10.2, Problem 13 (With interactive animation)

Problem Sketch the graph of f (x) = —x,—L < x < L where f (x + 2L) = f (x) and find the Fourier
series of the function
Solution

Sketch of function

A

This is an odd function. Only b, needs to be evaluated.

1 (T

by = ——
T2 -T2

f (x)sin (nz%x)

15



2 HWs

T is the period of f (x) which is 2L. The above becomes

1 JL . T
b, = - —x sin (n—x)
L), L

Since x is odd and sin is odd then the product is even and the above simplifies to

b, = _TZ Lxsin (n%x) (1)

0

Using integration by parts fudv =uv - fvdu where u = x, dv = sin (n¥x), therefore du = 1 and

cosr(l ) —L ( T )

v=- z = ——cos(nyx
Integral (1) becomes
-2 (| -L T L L_p T
b, = —||—xcos (n—x) - — cos (n—x) dx
L niw L 0 o NI L
-2 72 —L L
=—||—cos(nr)-0| + — cos( Ex) dx
L nr nr L
-2 (-L? -L 1 T \1L
= —|—cos(nr)+ —— [sm( )]
L \ nr nmw n L 0
-2 (-I? -1?
=T (E cos (nm) + o [sin (n7) — 0] )
_o_72
=T m cos (nr)
2L
= — cos(nr)
Forn =1,2,3,---. Looking at few n values gives
2L 2L
by = —( D, —( 1),-
=2 ay
nr

Therefore the Fourier series is

f(x)= i % (—1)" sin (%x)

n=1

2L & (-1)" . nx
= S > sin (P
TN L

The following is an animation showing how the Fourier series converges to the function as more terms
are added. This animation runs inside the PDF (need to use standard PDF reader to run the animation.
Might not run inside Chrome or Firefox own browser PDF reader).

16



2.1 my solved problems

number of terms @81

f(x)
1.0}
05F
10 -05 o5 A0
~05[ *
_1.[15 “"‘n.
BRI EE

2.1.7 Chapter 10.2, Problem 18 (With interactive animation)

Problem Sketch the graph and find the Fourier series of the function

0 -2<x<-1
fx)=1 x -1<x<1
0 1<x<2

And f(x+4)=f(x)
Solution

Sketch of function

1.0f

0.5F

-0.5F

-1.0},

f (x) is an odd function. Therefore only b, needs to be evaluated.

b, = % Jfo(x) sin (%x)
17



2 HWs

2L is the period of f (x) which is 4. Hence L = 2. The above becomes

2

by, = % I, f (x)sin (%x)
= % J__: f(x)sin (n?ﬂx) + J_ll f(x)sin (n?nx) + sz(x) sin (%Tx))
= %:1 f (x)sin (%x)
= % :_11 X sin (%x)

Since x is odd and sin is odd then the product is even and the above simplifies to
V' nm
b, = | xsin (—x) (1)
0 2

Using integration by parts fudv =uv - fvdu where u = x, dv = sin (%£x), therefore du = 1 and

00 UF) 22 o (22,)
o nir 2

Integral (1) becomes

-2 T 1 12 T
b, = — [x cos n—x)] — | —cos (n—x) dx
nr 2

o [eos (5
= — |cos|—
nr 2
-2 (n
—cos|—m
nx 2

n

2

Therefore

The Fourier series is
had 2\? n 2 n ni
f(x):; [(%) sin (En) _ECOS (En)l sm(?x)

The following is an animation showing how the Fourier series converges to the function as more terms
are added. This animation runs inside the PDF (need to use standard PDF reader to run the animation.
Might not run inside Chrome or Firefox own browser PDF reader).

18



2.1 my solved problems

number of terms €81
f(x)
1.0

.
e e e e

|
g}

L R, P i QR e o |
-

ke e -

L 'I :';:.
o= —l1 J.r = 2
i .-' |
1 .rr _I:l 5 B
1 # |
o -
;
* -1.0F

2.1.8 Chapter 10.3, Problem 2

Problem Assume the function is periodically extended outside the original interval. (a) Find the Fourier
series of the extended function. (b) Sketch the graph of the function to which the series converges for

three periods.
0 —-T<x<0
fx)= { .

0<x<m

Solution
This is plot of the above function for one period, and then for 3 periods

Sketch of function over one period

2.5¢
2.0r

f(x)

1.5¢
1.0

0.0¢

19
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Sketch of function over 3 periods

30F
251

20F

f(x)

15F
10F

05F

0.0F
L1 L L L L L L L L L L L

-6mr 57 -4m -3m 21 -m 0 s 2w 3w 4w 5m 6

part a

The calculation of the Fourier series will have a,, b,, and will follow same methods as before. The period
here is 2.

part b

Since both f (x) and f” (x) are piecewise continuous, then the Fourier series will converge to the function
f (x). But at the points where f (x) has jumps (such as at x = +7) the Fourier series will converge to
the average value of f (x) at these points.

2.1.9 Chapter 10.3, Problem 4

Problem Assume the function is periodically extended outside the original interval. (a) Find the Fourier
series of the extended function. (b) Sketch the graph of the function to which the series converges for
three periods.

flx)=1-x* -1<x<1

Solution
This is plot of the above function for one period, and then for 3 periods

Sketch of function over one period

0.8}

0.6

f(x)

0.4F

0.2}
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Sketch of function over 3 periods

1.0

0.8

0.6

0.4

0.2

0.0

part a

The calculation of the Fourier series will have only a, since f (x) is even, and will follow same methods
as before. The period here is 2.

part b

Since both f (x) and f” (x) are piecewise continuous, then the Fourier series will converge to the function
f (x) for all x.

2.1.10 Chapter 10.4, Problem 17

Problem (a) Find the Fourier series of the given function (b) Sketch the graph of the function to which
the series converges for three periods.

f(x)= 0<x<m
Use cosine series, with period 2.
Solution
Extending this as even function gives
fe(x)=1 —r<x<n

Hence, since period is 27, then L = 7 now and

1t 1 (" 2 (7
aoz—J fe(x)dx:—J dx:—J dx =2
L -L VN T Jo

And

T

L

Therefore the cosine extension Fourier series is

f(x)= % + ian cos (nx)

n=1
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2.1.11 Chapter 10.4, Problem 18 (With interactive animation)

Problem (a) Find the Fourier series of the given function (b) Sketch the graph of the function to which
the series converges for three periods.

fx)=1 0<x<o

Use sin series, with period 2.
Solution
Extending this as odd function gives

1 0<x<m

fo(x) = {

-1 —-rT<x<0

Hence, since period is 27, then L = & now and, since this is an odd function, only b, terms will show up
1 (L
b, = I J_L fo (x) sin (%x) dx
1 T
=— J fo (x) sin (nx) dx
T J-n

But now f, (x) sin (%x) is even, therefore the above simplifies to

b, 2 Jﬂ fo (x) sin (nx) dx
T Jo

2 J sin (nx) dx
7

_ 2 (cos(nx))ﬂ

/4 n

0

-2
= — (cos(nr)—1)
nw
-2
= 2o
nmw
Therefore the sine extension Fourier series is
f(x)= Z b,, sin (nx)
n=1
221
= — 2 = (=1" = 1) sin (nx)
T f=tn

The following is an animation showing how the Fourier series converges to the function as more terms
are added. This animation runs inside the PDF (need to use standard PDF reader to run the animation.
Might not run inside Chrome or Firefox own browser PDF reader).
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number of terms 81

f{ﬁ}

1.4,
12|
1.0
0.8
06t
0.4}
02}

|

K>

2.1.12 Chapter 10.5, Problem 7

Problem Find solution to u; = 100u,, with 0 < x < 1,¢ > 0 and boundary conditions u (0,%) = u (1,f) =
0 and initial conditions u (x, 0) = sin (27rx) — sin (57x)

Solution

The fundamental solution for this problem with homogenous B.C. was derived in earlier problem and it
is given as

u(x,t) = i cpe 'kt gin (\/Zx)
n=1

Where in this problem k = 100 and A, = (mr)2 ,n = 1,2,3,.... The ¢, terms is the Fourier sine
coefficients of the initial conditions. But the initial conditions is already expressed as sum of sine terms.
Therefore the ¢, coefficient can be read directly from f (x), giving ¢, = 1, ¢5 = —1. Therefore only two
terms exist in the sum above, leading to the solution

—(27)%(100)¢ _(57m)*(100)¢

u(x,t) =ce sin (27x) + cse sin (57x)

—4007%t —250007 ¢

=e sin (27x) — e sin (57x)

2.1.13 Chapter 10.5, Problem 10 (With interactive animation)
Problem Solve u; = uyy, with 0 < x < L and L = 40cm and boundary conditions u (0, t) = u (L, t) = 0°
with initial conditions
X 0<x<20
u(x,0) =
40 — x 20 <x <40

Solution
The fundamental solution for this problem with homogenous B.C. was derived in earlier problem and it
is given as

u(x,t) = i cne Kt sin (\/Zx)
n=1

23
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Where in this problem k = 1 and A,, = (%) 2 ,n=1,2,3,....and L = 40 cm. To find c,,, initial conditions
are used. Att =0

fx)= Z cp sin (\/Ex)
n=1
Applying orthogonality result in
2 (* ,
=1 L f (x)sin (\/Ex) dx
9 {20 40
= — (J x sin (\/Zx) dx + (40 — x) sin (\/Zx) dx)
0 20

40

2 (3200 . (mr)
=—|—S=sm|—

40 \ n2x2 2

160 | (mr)
= sin | —
n2mr? 2

Hence the solution is
160 & 1 nm\2 nmw
u(x,t)=— —si ( ) (%) tsin(—x)
( ) 2 Z} 2 40

The following is an animation of the above solution for 510 seconds. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser
PDF reader).

time @O seconds

ux, 1)
EU_—

=
tn
—TTTT

10

[y}
T

o s Ny (em)
: 10 20 30 40

I
[y}
T

K>

2.1.14 Chapter 10.5, Problem 11 (With interactive animation)

Problem
Solve u; = uyy, with 0 < x < L and L = 40cm and boundary conditions u (0,t) = u(L,t) = 0° with

initial conditions
0 0<x<10

u(x,0)=4 50 10<x<30
0 30<x<40
24
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Solution
The fundamental solution for this problem with homogenous B.C. was derived in earlier problem and it
is given as

u(x,t) = i cne Kt sin (\/Ex)
n=1

Where in this problem k = 1 and A,, = (%) 2 ,n=1,2,3,....and L = 40 cm. To find c,,, initial conditions
are used. Att =0

fx)= 2 cp Sin (\/Ex)

Applying orthogonality result in
9 (L
Chp=— J f (x)sin (\//lnx) dx
L Jo
2 10 .
= m (J 0sin (\Mnx) dx + J

0 1
9 (30

= — J 50 sin (\/Anx) dx
200 nr . nrw

= — sin — sin —
nr 4 2

30

40
50 sin (\/Zx) dx + I 0 sin (\/Zx) dx)
0 30

Hence the solution is
200 & 1 nmr nr 2 niw
u(x,t)= — Z — sin (—) sin (—) e (50)" sin (—x)
Toin 4 2 40

The following is an animation of the above solution for 510 seconds. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser
PDF reader).

time BB seconds

e i)

u(x, t)
60

501

40F

30!

20}
10
E|:FMMJ_A_A_A_A_I_A_A_A_A_L : '

0 20 s v o Y

K>
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2.1.15 Chapter 10.6, Problem 5

Problem Find steady state solution that satisfies the given boundary conditions u; = a®uy, withu (0,t) =
0,ux (L,t) =0
solution at steady state

v’ (x)=0
v(0)=0
v (L)=0

Solution to the above ODE is v (x) = ¢1x + ¢3. At x = 0, this leads to ¢; = 0. Therefore the solution now
becomes v (x) = c¢1x and v’ (x) = ¢;. Second boundary condition implies ¢; = 0 as well. Therefore

v(x)=0

is the steady state solution.

2.1.16 Chapter 10.6, Problem 7

Problem Find steady state solution that satisfies the given boundary conditions u; = a?uy, with
U,y (0,8) —u(0,t) =0,u(L,t) =T
solution at steady state

v (x)=0
v (0)—v(0)=0
v(@)=T

Solution to the above ODE is v (x) = ¢;x + ¢2. At x = 0, this leads to ¢; — ¢, = 0. Second boundary
condition implies ¢;L + ¢; = 0. Two equations in 2 unknowns

ci—¢c2=0

citL+c, =T

From first equation, ¢; = c;. Second equation becomes ¢c; (1 + L) =T or ¢, = % Therefore the steady
state solution

T T
v(x)= —x+ ——
1+L 1+L

T
=——(1+
VAR

2.1.17 Chapter 10.6, Problem 9 (With interactive animation)

Problem Let L = 20 cm, with initial temperature 25°C, an initial conditions u (0, x) = 0, u (L, 0) = 60°C.
(a) Find u (x, t). (b) Plot initial temperature distribution, final steady state solution and solution are two
intermediate times on same axes. (c) Plot u vs. t for x = 5,10, 15. (d) determine how much time has
elapsed before the temperature at x = 5 cm comes and remains with 1% of the steady state value. Use
a* =0.86

solution

Uy = 0PUyy
u(0,x)=0
u(L,0) = 60
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Let solution be u (x,t) = w(x, t) + v (x) where v (x) is solution to v”’ (x) = 0 with boundary conditions
v(0) = 0,v (L) = 60. Hence the solution is

v(x)=c1x + ¢

At x = 0, this leads to ¢, = 0. Therefore solution is v (x) = ¢;x. Atx = L, 60 = ¢;Lor¢; = 6L—0 = % =3

Therefore
v(x) =3x

Hence the complete solution is

u(x,t) = (i cne_“zl"t sin (\/Zx)) +3x

n=1

Where A, = ("T”) 2forn = 1,2,3,---.c, is now found from initial conditions. Att = 0
25 = (Z c, Sin (\/Ex)) + 3x
n=1
25 —-3x = Z cp Sin (\/Zx)
n=1
Applying orthogonality gives
L
J (25 — 3x) sin (\/Zx) dx = cn£
0 2
9 (L
Cp=— J (25 — 3x) sin (\/Zx) dx
L Jo

= 22—0 JL (25 — 3x) sin (\/Ex) dx
0

Integrating gives ¢, = W. Therefore the solution is
250 + 70 (—1)"
u(x,t) = (Z #e_“m"t sin (\/Anx)) + 3x
n=1

The following is an animation of the above solution for 20 seconds. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser
PDF reader).

27



2 HWs

time B.08 seconds

u(x t)
60

a0f
30¢

10}

o ¥ (em)
5 10 15 20

K>

2.1.18 Chapter 10.6, Problem 10

10. (a) Let the ends of a copper rod 100 cm long be maintained at 0°C. Suppose that the
center of the bar is heated to 100°C by an external heat source and that this situation is
maintained until a steady state results. Find this steady state temperature distribution.
(b) Atatimet = 0 [after the steady state of part (a) has been reached], let the heat source
be removed. At the same instant let the end x = 0 be placed in thermal contact with a
reservoir at 20°C, while the other end remains at 0°C. Find the temperature as a function
of position and time.

(c) Plot u versus x for several values of z. Also plot u versus ¢ for several values of x.

(d) What limiting value does the temperature at the center of the rod approach after a
long time? How much time must elapse before the center of the rod cools to within 1°C
of its limiting value?

solution
To do.

2.1.19 Chapter 10.7, Problem 3 (With interactive animation)

Problem Consider elastic string of length L with ends held fixed. Let initial position u (x,0) = f (x) and
u; (x,0) = 0.Let L = 10,a = 1. (a) Find u (x, t). (b) Plot u (x, t) vs x for 0 < x < 10 and for several values
of time between t = 0 and ¢t = 20 (c) Plot u (x,t) vs. t for 0 < t < 20 and for several values of x (d)
Construct an animation of the solution for at least one period. (¢) Describe the motion of the string. Let

_ 2
fx) = 22t
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solution Since domain is finite, it is easier to use the series solution for wave equation than D’Alembert
solution. This is given by

u(x,t)= i Cpn COS (\/Zat) sin (\/A—nx)
n=1

Where A,, = (%)z,n =123,---andc¢, = %foLf(x) sin (v/lnx) dx. Hence, since a = 1 and L = 10,
the solution becomes
> nmw nmw
u(x,t) = c cos(—t) sin(—x)
G 1) g{ " 10 10
2 (8x(L-x)* . (n&
— ———~sin ( ) dx

C =
710 ), L3
2 Jlo 8x (10 —x)* . (nm
= — ———sin (—x) dx
10 103 10

Integrating gives
322+ (-1)")

n33

u(x,t) = o Z 2 +( 1)” (%t) sin (%x)

The following is an animation of the above solution for 50 seconds. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser
PDF reader).

Hence solution is

time B.08 seconds

u(x t)

=
!
|

0.4

02

K>

2.1.20 Chapter 10.7, Problem 7 (With interactive animation)

Problem Consider elastic string of length L with ends held fixed. Let initial position u (x,0) = 0 and
uy (x,0) = g(x). Let L = 10,a = 1. (a) Find u (x, t). (b) Plot u (x, t) vs x for 0 < x < 10 and for several
values of time between t = 0 and ¢ = 20 (c) Plot u (x, t) vs. t for 0 < t < 20 and for several values of x
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(d) Construct an animation of the solution for at least one period. (e) Describe the motion of the string.
8x(L-x)*

Let g (x) = =7

solution Since domain is finite, it is easier to use the series solution for wave equation than D’Alembert

solution. The eigenvalue ODE is gives solution for A > 0 as

X, (x) = ¢y sin (\/Ex)

Where A,, = (%)2 ,n=1,2,3,--- The time solution is T, (t) = A, cos (\/Eat) + B, sin (\/)L_nat). At
t = 0, this gives 0 = A,,. Therefore T, () = B, sin (\//Tnat) . Hence the complete solution is

8

w6 t) = > eaTh () X ()

n=1

=S, 1n(\/_at) sm(\/—x)

n=1

8

To find ¢, time derivative of the above is taken giving

iu(x t) = ch\/—cos(\/—at) sm(\/_x)

At t = 0 the above becomes

g(x) = 2 cn\/l—n sin (\/Zx)

Applying orthogonality

ILQ(X) sin (\/Zx) dx = \/ché
0

Cn =

L\/_ g(x)sm \/_x)

8x(L—x)*

7> L =10,a = 1 the above becomes

Hence since g (x) =

Cp =

2 Jlo 8x(10—x)2 o (nrm
sm(1

10 (22) Jo 10

Integrating the above gives
32002+ (D))
" ntrt
Therefore the solution is
203202+ (-1)"
wie = >, 22 )y 4y, (0

n=1

_32022+( Ol sm(\/_at)sm(\/—x)

4
ﬂnl

Where A, = (%){n =1,2,3,---

The following is an animation of the above solution for 40 seconds. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser
PDF reader).
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time B.808 seconds
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2.1.21 Chapter 10.7, Problem 9

9. If an elastic string is free at one end, the boundary condition to be satisfied there is that
u, = 0. Find the displacement u(x, ) in an elastic string of length L, fixed at x = 0 and
free at x = L, set in motion with no initial velocity from the initial position u(x,0) = f(x),
where f is a given function.

Hint: Show that the fundamental solutions for this problem, satisfying all conditions
except the nonhomogeneous initial condition, are

u, (x,t) = sin A, x cos A,at,

where A, = 2n — )w/(2L),n = 1,2,.... Compare this problem with Problem 15 of Sec-
tion 10.6; pay particular attention to the extension of the initial data out of the original
interval [0, L].

solution
The eigenvalue ODE is

X (x) = Acos (\/Ix) + Bsin (\/zx)

Boundary condition at x = 0 gives
0=A

Therefore the solution becomes X (x) = Bsin (‘/ZX) . And X’ (x) = BV cos (\/Ix) . Applying boundary

conditions at x = L gives

0 = BV cos (\/XL)
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Therefore
3m 51
ViL={Z 222
2727 27
Hence
VA, = % n=13,5,---
2n—1
N % n=12.3
Therefore
2n—1
X, (x) = ¢y sin (%x)
And

T, (t) = A, cos (\/Eat) + B, sin (\/Eat)
T, (t) = —AnaA, sin (\/Zat) + Bpay/A, cos (\/Zat)

Since initial velocity is zero, the above gives

0= Bna\/z
Which means B,, = 0. Hence

T, (t) = A, cos (\/Eat)

Therefore the complete solution becomes

u(x,t) = ni:; Cp COS (%at) sin (%x)

cp is found from initial position by applying orthogonality.

2.1.22 Chapter 10.7, Problem 10

10. Consider an elastic string of length L. The end x = 0 is held fixed, while the end x = L
is free; thus the boundary conditions are u(0,¢) = 0 and u,(L,t) = 0. The string is set in
motion with no initial velocity from the initial position u(x,0) = f(x), where

1, L/2—-1<x<L/24+1 (L>2),
fx) = .
0, otherwise.

(a) Find the displacement u(x, ).

(b) With L =10 and a = 1, plot u versus x for 0 < x < 10 and for several values of ¢. Pay
particular attention to values of  between 3 and 7. Observe how the initial disturbance is
reflected at each end of the string.

(c) With L =10 and a = 1, plot u versus ¢ for several values of x.
(d) Construct an animation of the solution in time for at least one period.
(e) Describe the motion of the string in a few sentences.
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Solution
Straight forward.

2.1.23 Chapter 10.8, Problem 3

2.1 my solved problems

3. (a) Find the solution u(x,y) of Laplace’s equation in the rectangle 0 < x < a,0 <y < b,

that satisfies the boundary conditions

u(0,y) =0, ua,y)=fy), 0<y<b,
u(x,0) = h(x), u(x,b) =0, 0<x<a.
Hint: Consider the possibility of adding the solutions of two problems, one with homo-

geneous boundary conditions except for u(a,y) = f(y), and the other with homogeneous
boundary conditions except for u(x,0) = A(x).

(b) Find the solution if 4(x) = (x/a)? and f(y) =1 — (y/b).
(c) Leta =2 and b = 2. Plot the solution in several ways: u versus x, u VEersus y, u versus

both x and y, and a contour plot.

Solution
To do.

2.1.24 Chapter 11.1, problem 12

Convert to form (py’) + q(x)y =0
Yy’ —2xy" + Ay =0

Solution
Writing the ODE as p (x)y”” + Q (x)y’ + R(x)y = 0, hence

plx)=1
Q(x)=—-2x
R(x)=41

Then the new form is (i (x) p (x)y’)" + p (x) R(x)y = 0, where

L G
p(x)
— ejx —2sds

p(x) =

Therefore the new form is
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2.1.25 Chapter 11.1, problem 13

Convert to form (py’)’ + q(x)y =0
Xy +xy + (x*-0%) y=0

Solution
Writing the ODE as p (x)y”" + Q (x)y’ + R(x)y = 0, hence

px) = x*
Qx)=x
R(x) = (x* = 0?)

The new form is (i (x) p (x) y’)" + p (x) R(x) y = 0, where

_ L M 8Yas
e

Therefore the new form is

2.1.26 Chapter 11.1, problem 18

18. Consider the boundary value problem
v+ 4y + 4+ 90y =0, y(0) =0, y'(L)=0.

(a) Determine, at least approximately, the real eigenvalues and the corresponding eigen-
tunctions by proceeding as in Problem 17(a, b).

(b) Also solve the given problem directly (without introducing a new variable).

Hint: Inpart (a) be sure to pay attention to the boundary conditions as well as the differential
equation.

Solution

part (a)

’

Let y(x) = s(x)u(x). Then y’ = s'u + su’ and y”’ = s"u + s'u’ + s’’’ + su” = s"u+ 2(s'u") + su”.
Therefore the original ODE becomes

s"u+2('u)+su” +4(G"u+su’)+(4+9)su=0
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Collecting terms in u gives

su” +u' (28" +4s) + (s" +4s" + (4 +9)s)u=0
Making u’ term vanish requires that 2s’ + 4s or s’ + 2s = 0. Hence d% (se

s’ = —2e72%,s” = 4e”%*. Substituting these into the above gives

2") =0ors = e ?¥. Hence

e U + (467 +4(-27) + 4+ ) e ) )u=0
U +(4+4(-2)+(4+9)u=0

U +(4-8+4+90)u=0

u” +9Au=0

Let 91 = 1 so the above becomes
u” +Au=0
With boundary conditions u (0) = %g; =0andu’ (L) = % = 0. This was solved before, the eigenfunc-

tions of the above are
sin ( inx)

N nm\ 2
Anz(—) n=1,35-
2L

Py, (x)

But /in = 9], therefore the above becomes

®, (x) = sin (3\//1,13()
1 /nm\?2
n:—(—) n=1,23, -
9\2L
Or
. (nx
®, (x) = sin (Ex)

Now the eigenfunction is normalized

jl (kn®y (X)) dx = 1
0

1
k2 J ®, (x)*dx =1
0

1
kflj sin® (n—ﬂx) dx =1
0 2L

L
kia =1
2
kn = Z
Hence
2
kn = z
And

o, (x) = \/gsin (;—Zx)

Mapping back to y (x) = s (x) u (s), and since s (x) = e™?* then the eigenfunction in y space is

2
O, (x) = e_zx\/;sin (%x) n=13,5,---
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Part b

Now the ODE is solved directly. y”” + 4y’ + (4 + 94) y = 0. The characteristic equation is
rPH4r+(4+91)=0

Hence roots are

—b+ Vb —4ac —4++16-4(4+94)

r =
2a 2
-4+ V16 — 16 — 361
= 5 =-2+3V-A

We know that A > 0. So the roots are r = —2 + iV and the solution is
y(x) =e > (A cos (\ﬁx) + Bsin (\/Zx))
Applying boundary conditions y (0) = 0 leads to A = 0. So the solution becomes
y(x) = e *Bsin (\/zx)

Hence

y’ (x) = —2¢"**Bsin (\/Ix) + e *BVcos (\/Zx)

Applying second B.C. y’ (L) = 0 the above becomes

0 =—2¢"?LBsin (\/IL) + e 2BV cos (\/IL)
=B (—2 sin (‘ﬁL) + VAcos (\ﬁL))

Non-trivial solution requires that

—2sin (\/IL) + VAcos (\/IL) =0
—2tan \/IL + \/I =0
tan \/XL = l‘ﬁ

2

Hence the direct method finds that the eigenvalues A,, are the solutions to the above nonlinear equation

and the corresponding eigenfunctions are > sin (\Mnx).

2.1.27 Chapter 11.1, problem 19
Determine the real eigenvalues and eigenfunctions.
YV +y' + A0y +y)=0
y'(0)=0
y(1) =0

Solution
Writing the ODE as
' +(1+A)y +Ay=0

36



2.1 my solved problems

Case A =0
y’/ + y/ — 0
The characteristic equation is
rP+r=0
r(r+1)=0
The roots are r = 0,—1. Hence the solution is y = ¢; + c2e™™. Hence y’ = —cye™™. First BC gives

Yy’ (0) = 0 — 0 = —c;. Therefore the solution becomes y = ¢;. Second BC gives y(1) = 0 — 0 = ¢;.
Therefore trivial solution and A = 0 is not eigenvalue.
Case A < 0 Let A = —m? for some real m. The ODE becomes

y'+(1-m?)y -mPy=0

The characteristic equation is
rrr(1-m?)r-m*=0

A1 = m2)? + 4m?

V1 +m* - 2m? + 4m?

The roots are

—_
—
+
3
N
o

[\
+
Nl= N N[ = DN -

Do
_
+
3
vN

+

(1)
2

(1=
2

Hence roots are r; = +2(1+m?) =mPandr, = - % (1+ m?) = —1. Therefore the

solution is
2 _
y=cem* +ce

2 2

Hence y’ = m clemzx — cpe™. First BC gives y’ (0) = 0 — 0 = m?c; — ¢, or ¢; = m?c;. Therefore the
solution becomes

2 _
y=ce™* +mice™

2 -
=c (e’"x+m2e x)

Second BC gives y (1) =0 — 0 = ¢4 (e’"Z + mze_l) therefore ¢; = 0 and trivial solution. Hence A < 0 is

not eigenvalue.
Case A > 0 The characteristic equation is

P+ +)r+1=0

The roots are

—(+A) 1 .
r= 5 + 2\/(1+/1) 4A
:Wi%\/1+)t2+2)t—4/1
=Mil (1— )
2 2
=Mil(1—l)
2 2
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Hence roots are r; = _71 (1+A)+ %(1 —-A)=-Adandr, = _71 1+4) - %(1 — A1) = —1. Therefore the

solution is

y=cre M 4+ e

Hence y’ = —Acie™ — cye™*. First BC gives Y’ (0) = 0 — 0 = —Ac; — ¢; or ¢c; = —Acy. Therefore the

solution becomes

Ax X

y=ce ™ —Acre”

=c (e_’lx - )Le_x)

Second BC gives y (1) = 0 — 0 = ¢; (e™* — Ae™!) For non-trivial solution, we need e ™* — de™! = 0. The
solution to thisis A = 1.
When A = 1 the eigenfunction is

y(x) = (€ — ™) =0

But eigenfunction can not be zero. Therefore there is eigenvalue when A > 0. Hence for all cases, there
is no eigenvalue with corresponding nonzero eigenfunction.

2.1.28 Chapter 11.1, problem 20

Determine the real eigenvalues and eigenfunctions.

Xty = A(xy' —y) =0
y(1)=0
y(@) -y (2 =0
Solution
This is a Euler ODE. x%y” — Axy’ + Ay = 0. Let y = x", then y’ = rx""!,y” = r(r — 1) x" 2. The ODE
becomes
r(r—-1D)x"2 = dxrx™ '+ Ax" =0
rr=Dx"—Arx"+2x" =0
rr—=1)—-Ar+4A=0
Case A =0

The characteristic equation becomes
r(r—1)=0

The roots are r = 0, r = 1, hence the solution is
y=c +cx

AtBCy (1) = 0 — 0 = ¢; +co. Hence ¢; = —c¢; and the solution becomes y = ¢; — ¢;x = ¢1 (1 — x). Hence
Yy’ = —c;1. Second BC y (2) — y’ (2) = 0 gives

0:C1(1—2)+Cl
0=—-c1+c
0=0

Therefore any c¢; will work. Giving a solution

y=rc1(1-x)
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Therefore A = 0 is an eigenvalue with eigenfunction @, (x) = 1 — x.
Case A < 0 Let A = —m?. The characteristic equation becomes

r(r—1)+m2r—m2:O
P-r+m’r-m?>=0

r2+r(m2—1)—m2=0

The roots are

_ 2_1
r= (m )11\/(m2—1)2+4m2
2 2
2
—(m? -1
= (m2 )ié‘/m4—2m2+1+4m2
_=(m*-1) 1 iz
= > _5 (1+m)
=—%(m2—1)i%(1+m2)
Rootsarer = -3 (m* - 1) + 2 (1+m?) =lorr= —% (m?—1) - % (1+ m?) = —m? Hence solution is
m2

Yy =c1x +cax

AtBCy (1) = 0 — 0 = c;. Therefore the solution is y = c¢;x and ¢y’ = ¢;. Second BC gives y (2)—y’ (2) = 0
or

0:201—C1

0=C1

Hence trivial solution. So A < 0 is not an eigenvalue.
Case A >0
The characteristic equation becomes
rPP—r—lr+1=0
rP-r(1+M)+1=0

The roots are

1+4 1
r=Li—\/(1+)L)2—4)L

2 2
=#i%\/1+/12—2/1
1+14 1
="+ /(1=

S =5V -4

1+ 1
= —— 4+ — (1 —

- (1-2)

[\

Rootsarer=%(1+A)+%(1—/1)=10rr=%(1+/1)—%(1—A)=/1.Hencesolutionis
y:Cl)C'l‘CzX}L

This is similar to the case above for A < 0. Hence there is no eigenvalue for A > 0.
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2.1.29 Chapter 11.2, problem 1

Determine the normalized eigenfunction for

y'+Ay=0
y(0)=0
y(1)=0

Solution

The eigenfunction for the above problem can be easily found using chapter 10 methods to be

q’n(x)=sin(\/zx) n=1,3,5,--

Where

)Ln:—:—
2L 2

The normalized ®,, (x) = k,®,, (x). Where

1
jcﬁi(x)dle
0

Hence solving the above for k, gives

Ll (knp (X)) dx = 1

1
kf,‘[ % (x)dx =1
0

But Iol % (x)dx = Jol sin? (\//Tnx) dx = fol sin? (%£x) dx = 1. Hence the above becomes

Therefore
&, (x) = V20, (x)

. (nm
= 2s1n(7x) n=135---

_ {\/Esin(%x) ,\/Esin(g?ﬂx) ,\/isin(%”x),---}

2.1.30 Chapter 11.2, problem 2

Determine the normalized eigenfunction for

y' +Ay=0
y' (0)=0
y(1)=0

Solution
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The eigenfunction for the above problem can be found using chapter 10 methods to be

@n(x)=cos(\/ﬂx) n=13,5,---

Where

The normalized ®,, (x) = k,®,, (x). Where

1
J P2 (x)dx =1
0

Hence solving the above for k,, gives
1
J (kn®p (x))*dx = 1
0

1
kﬁj % (x)dx =1
0

But Iol % (x)dx = Iol cos? (\/)L_nx) dx = f; cos? (%x) dx = % Hence the above becomes

Therefore
&, (x) = V20, (x)

nm
= 2cos(7x) n=135---

_ {@ (Zx). Vzeos (%x) VZecos (%”x) }

2.1.31 Chapter 11.2, problem 3

Determine the normalized eigenfunction for

y' +Ay=0 (1)
y'(0)=0
y'(1)=0

Solution
The eigenfunctions are first found. Let the solution be y = Ae”*. This leads to the characteristic equation

rP+1=0
r=+V-1

Case A <0

In this case —A is positive and hence V-2 is also positive. Let V-1 = g where p > 0. Hence the roots
are . This gives the solution

y = c1 cosh (ux) + c; sinh (px)
y" = cypsinh (ux) + cap cosh (ux)
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First B.C. y’ (0) = 0 gives

0=cyp
Cy = 0
Hence solution becomes
y (x) = ¢y cosh (ux)

Second B.C. y’ (1) = 0 gives
0 = cyp sinh (p)

But sinh (1) can not be zero since p # 0, hence ¢; = 0, Leading to trivial solution. Therefore A < 0 is not
eigenvalue.
Let A = 0, The solution is

y(x) =c1 +cox

First B.C. y’ (0) = 0 gives

0= Co
The solution becomes
y(x) =c
Second B.C. 3’ (1) = 0 gives
0=0

Therefore c; can be any value. Therefore A = 0 is an eigenvalue and the corresponding eigenfunction is
any constant, say 1.
Case A > 0, The solution is

Y (x) = ¢y cos (\/Ix) + ¢5 sin (\/zx)
Y (x) = —c;VAsin (\/Ix) + ¢, VA cos (\ﬁx)

First B.C. y’ (0) = 0 gives

The solution becomes

Y (x) = c; cos (\/zx)

Second B.C. 3’ (1) = 0 gives
0= —cl\/zsin (\//_1)

For non-trivial solution, we want sin (\/I) =0or VA=nxforn= 1,2,3,--- Therefore
An = (n)? n=123,---
And the corresponding eigenfunctions are

‘Dn(X)=cos(\/Ix) n=123,---
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Hence
Dy (x) =1
<Dn(x)=cos(\/ﬂx) n=1273,---

The normalized & (x) = ko®, (x). Where

1
j r(x)fi)(z) (x)dx =1
0
But r (x) = 1. Therefore solving the above for k, gives
1
[ oo =1
0
1
kgj dx =1
0
k() =1

Andforn=1,2,3,--- we obtain
1 A
J % (x)dx =1
0
1
[ tn =1
0
1
kiJ % (x)dx =1
0
1
kij cos® (Vnzx) dx = 1

0

1
But Io cos” (ynzx) = 1. Hence the above becomes

2

Therefore

Andforn=1,2,3,---
b, (x) = V2@, (x)
= V2 cos (nrx)
= {V2cos (nx), VZ cos (2nx), V2 cos (37x) -}

2.1.32 Chapter 11.2, problem 4
Determine the normalized eigenfunction for
y'+Ay=0 (1)
y'(0)=0
y' (D)+y(1)=0
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Solution
The eigenfunctions for the above problem are first found. Let the solution be y = Ae"*. This leads to the
characteristic equation

rP+A=0
r— VTR

Case A <0
In this case —A is positive and hence V—A is also positive. Let V-1 = p where p > 0. Hence the roots
are 4. This gives the solution

y = ¢ cosh (ux) + ¢z sinh (ux)
y’ = cypsinh (ux) + czp cosh (ux)

First B.C. y’ (0) = 0 gives

0=cyp
Cy = 0
Hence solution becomes
y (x) = ¢y cosh (ux)
Second B.C. y (1) + y’ (1) = 0 gives

0 = ¢; (cosh () + p sinh (1))

But sinh (1) can not be negative since its argument is positive here. And cosh y is always positive. In
addition cosh (i) + p sinh (i) can not be zero since sinh () can not be zero as p # 0 and cosh (p) is not
zero. Therefore ¢; = 0, Leading to trivial solution. Therefore A < 0 is not eigenvalue.
Case A = 0, The solution is

y(x) =c1+cx

First B.C. y’ (0) = 0 gives

0= Co
The solution becomes
y(x)=c
Second B.C. y (1) + y’ (1) = 0 gives
0= C1

This gives trivial solution. Therefore A = 0 is not eigenvalue.
Case A > 0, The solution is

Y (x) = ¢y cos (\/Ix) + ¢5 sin (\/Zx)
y' (x) = —Cl\ﬁsin (‘/Ix) + cz\ﬁcos (\/Ix)

First B.C. y’ (0) = 0 gives
0= Cz\/z

62:0

The solution becomes

Y (x) = c; cos (\/zx)
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Second B.C. y (1) + ' (1) = 0 gives
0 = ¢; cos (V2) = &, Vasin (V1)
= 1 (cos (V) = Visin (VI) )
For non-trivial solution the above implies
cos (\/i) ~ Vsin («/Z) -0 (1)

Therefore the eigenvalues are the solution to the above nonlinear equation. And the corresponding

eigenfunctions are
®,, = cos (\/)Lnx) n=123,---

Where 4, are the roots of equation (1).
The normalized @, = k,®, eigenfunctions are now found.

1
J r(x) <i>fldx =1
0

Since the weight function is r (x) = 1, then

1
J‘ drdx =1
0

1
L@ﬁhzl

1
@Jﬁw=1
0

k2 Jl cos’ (\/A—nx) dx =1
0

But f; cos? (ax)dx = (¥ + —Sinz"x); = (% + —Sm(2mx)) = (% + Sm(zm)) = (2«/E+sm(2x/ﬂ) . Hence

2 4a NI, A, v

0
the above becomes

R S—
" 2\/E+sin(2m)
Wi,

= 4\//1_’1
241, + sin (2\//1_,1)

But sin (2a) = 2 sin a cos a and the above can be written as

4V,

k% =
" 242, + 2sin (\//1_,,) cos VA,

But from (1) earlier, we found cos (\/X) —VAsin (\ﬁ) = 0 or cos (\/I) = VAsin (\/I) . Substituting this
into the above gives

4V,

K2 =
! wz+wzm%ﬁg
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And since 4,, # 0 the above simplifies to

k% = 2
" 1 + sin? (\/Z)
B 4
B 4 + sin® (\//1_,,)
Therefore
kn = 2

1 + sin® (\/)L_n)

Since there is no closed form solution to 1, as it is a root of nonlinear equation VA, tan (\MHL) =1.

Hence the normalized eigenfunctions are

A

o, =k, P,

M PR
1 + sin® (\/E)

2.1.33 Chapter 11.2, problem 5

Determine the normalized eigenfunction for

y' =2y +(1+ )y =0 (1)
y(0)=0
y(1)=0

Solution
Let y(x) = s(x)u(x). Then y’ = s'u + su’ and y”’ = s"u + s'u’ + s’’’ + su” = s"u+ 2(s'u") + su”.
Therefore the original ODE becomes

s"u+2(6u)+su”’ =26 u+su )+ (1 +AD)su=0
Collecting terms in u the above becomes

su” +u (28" —=25)+u((1+A)s+s”"-2s)=0
To get rid of u” we therefore want 2s” — 2s = 0 or s’ — s = 0. Hence the integrating factor is [ = e™
and the solution is obtained from % (se™) = 0 or s = e*. Therefore, if s = e* then the original ODE
becomes

v’ +u((l+A)e’ +e*-2¢*)=0

v +u((1+A)+1-2)=0

u +u((1+2)-1)=0

u” +Au=0

With the boundary conditions u (0) = %8; = % =0andu(1) = % = 0. Hence we need to find the
eigenfunctions for

u' +Au=0
u(0)=0
u(1)=0
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But this we did before. It has ®, (x) = sin(nzx) for n = 1,2,---. And the normalized &, (x) =
V2 sin (nzx). Mapping this normalized eigenfunction back to y (x) using the transformation y (x) =
s (x) u (x) gives the normalized eigenfunction in y space as

d, (x) = V2 sin (nrx) n=123,---

2.1.34 Chapter 11.2, Example 1 redone. page 690

Here, example 1 is solved again, but without using normalization. Showing that one does not need to
normalize the eigenfunctions as the book shows and will get same answer. Solve

y' 2y = —x (1)

With boundary conditions y (0) = 0,y (1) + y’ (1) = 0. Using the method of eigenfunction expansion
without normalization.

Solution
The idea behind solving using eigenfunction expansion, is that
—(py") +q(x)y (x) = pr (x)y (x) + f (x) (1A)
Is solved using the eigenfunctions of the corresponding homogeneous eigenvalue ODE
= (py") +q(x)y (x) = Ar (x) y (x) (24)

Where in (1A) p is just a constant. And in (2A), A is an eigenvalue. Writing (1) in same form as (1A)
leads to

-) -2y =x
- =2y+x (3A)

Therefore y = 2 and r (x) = 1. The corresponding homogeneous eigenvalue problem is
-y =1y (x)

Or
Yy ' +Ay(x)=0

With boundary conditions y (0) = 0,y (1) + y’ (1) = 0. The solution of the above is used to solve (3A),
which is the original ODE. The solution to the above eigenvalue problem was done before. The result is
that A, is the solution of nonlinear equation

sin (\/Zx) + VAcos (\/zx) =0
Solving this numerically for the first 10 eigenvalues gives
An = {4.116,24.139, 63.659, 122.889, 201.851, 300.55, 418.987, 557.162, 715.077, 892.73}
And the eigenfunctions are
(bn(x):sin(\/Zx) n=123,---

Notice that the eigenfunction above is not normalized as in the text book. Now assuming that the
solution of the original nonhomogeneous ODE (3A) is given by

y (x) = i bnq)n (x)
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Where b, is unknown as of now and substituting the above into (3A) gives
d2 0 00 00
~ 7 2 0n®n () = 2 3 baa () + 5 g ()

Where 37 | g, ®, (x) is the eigenfunction expansion of the forcing terms —x. In this expression g, is
still not known. Now assuming that differentiation can be moved inside the summation above (this
needs conditions which assumed valid here). The above equation now becomes

- Z bnq);l’ (x) -2 Z b, ®p (x) = Z qn®y (x) (1A)
n=1 n=1 n=1

gn is now found. This is done by applying orthogonality as follows. Let x = X° | q,®, (x). Multiplying
both sides by ®,, (x) and integrating over the domain gives

Jl x®p, (x)dx = i qn Jl D, (x) Dy, (x) dx
0 n=1

0

1 1
J x®,, (x)dx = q, J @2 (x)dx (2)

0 0

Since @, (x) is not normalized, one can not replace the integral by 1 as in the book. But since &, (x) =

sin (\//Tnx) the integrals can be evaluated as follows. The right side of (2) is

1 1 sin (Zm)
sin? (VA,x) dx = = - —~ 3
Jo (\/_ ) 2 4V, )
And the left side of (2) is found by integration by parts
1 1
J x®,, (x)dx = J X sin (\/Zx) dx
0 0
_sin VA, — VA, cos Vi, @
= P
Using (3) and (4) in (2) g, is solved for giving
sin vz~ Vicos Vi _ (15 (2V7)
A i P
. _ sin VA, = VA, cos VA, )
" 1 sin(Zm)
An|3—— v

Now that g, is known, b, is found from (1A)
- Z bp®,; (x) -2 Z bn®p (x) = Z qn®n (x)
n=1 n=1 n=1

Since @, (x) = sin (\/)L_nx) then @/ (x) = VA, cos (V/l_nx) , D/ (x) = —Apsin (\//1_,,x) = -1,®, (x) and

the above simplifies to
Z buAn®, (x) -2 Z bn®p (x) = Z anbn (x)
n=1 n=1 n=1
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Canceling summations and also @, (x) since ®, (x) # 0 the above simplifies to

bnln - an =({n

Hence the solution to the original ODE is
Y (x) = Z bp®p (x)
n=1
= (q—") sin (\/A—nx)

n=1 An -2

Using the value found for g, in (5), the above becomes

B ad 1 sin VA, — VA, cos VA, .
D e sin () ©)
2 wa,

The above is the solution, found without normalization. The book solution is

v =43 - (Ai I coszl ) sin (Vinx) (7)

To show that (6) and (7) are actually the same, they are plotted against each others, using 10 terms in
the sum, which is more than enough. The result shows identical plots.
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Find eigenvalues numerically

ClearAll[y, z, X, A]
eigenvalues = x /. NSolve[Sin[x] + x Cos[x] == ©@&&0 < x < 30, x];
z = eigenvalues~2

(4.11586, 24.1393, 63.6591, 122.889, 201.851, 300.55, 418.987, 557.162, 715.077, 892.73}

This is the solution without normalization

max = Lengthez;

yApproxNoNormalization[x_] := Sum[)\ =z[[n]];

1 Sin[ﬁ] —‘\/TCDS[\/T]
A (A-2) [,_sinz«/?]

] Sin[\/; x], {n, 1, max)]
2 avx

Plot [yApproxNoNormalization[x], {x, @, 1}, GridLines -» Automatic, GridLinesStyle - LightGray, PlotStyle » Red, PlotLabel - "No normalization"]

No normalization

0.2 0.4 06 08 1.0

This is the solution using normalization (book solution)
Sin[‘\/;]
A(A-2) (1+Cos[\/7]2)

Plot [yApproxBook [x], {x, @, 1}, GridLines -» Automatic, GridLinesStyle - LightGray, PlotStyle - Red, PlotLabel » "Using normalization"]

yApproxBook [x_] := 4Sum[/\ =2z[[n]]; Sin[ﬁ x] 5 {n, 1, max)];

Using normalization

0.2 0.4 0.6 08 1.0

They also plotted against the solution found using standard methods, which is

~ sin (\/Qx) x
. sin(\/i) + V2cos (\/E) ) E

And both (6,7) matched exactly the above solution.

2.1.35 Chapter 11.2 Problem 14

Determine if the given boundary value problem is self-adjoint

v +y +2y=0
y(0)=0
y(1)=0

Solution
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The ODE can be written as (y” + y)” + 2y = 0. Hence the operator is

Llyl=@ +y)' +2y

The ODE is self-adjoint if
(L[u],v) = (u, L[v])

For any two functions u, v that satisfy the ODE. One way to proceed, is to start from the left side of the
above equation and see if the right side can be arrived at. By definition

rl

(L[u],v) L[u] vdx

rl

= | [ +w) +2u] vdx
Jo

r1

=| W +u) v+uvdx

Jo

dv u

B rtl/—,/%, A 1

=| W+u) o de+ | uvdx (1)

Jo

0

integration by parts of the above gives

1 1
(L{u],v) = [ +u)v]y - L W +u)v'dx + ‘[0 uvdx

1 1
= [ +u)v] - J u'v +uv’)dx + j uvdx
0

0

1 1 1
= [ +u)v]; - (J u'v'dx + J uv'dx) + J uvdx

0 0 0

Integrating by parts the term fol w'v'dx = [uv']y - fol uv” dx the above becomes

(L[u],v) = [( +u)v]) - ([uv'](l) - Il uv” dx + Jl uv’dx) + Jl uvdx

0 0 0

1 1 1
= [ +u)v—uv]y— (—I uv” dx + J uv'dx) + J uvdx

0 0 0

1 1 1
= [ +u)v—uv]y+ I uv” dx — I uv’'dx + J uvdx

0 0 0

1
= [ +u)v—ud]y+ ‘[ (" —v" +v)udx
0

The above can never be (u,L[v]) even if the boundary terms vanish, since f; " —v +v)udx #

Io (v” + v" + v) udx. There is a different sign in the operator obtained. Hence the ode is not self adjoint.

2.1.36 Chapter 11.2, Problem 15
Determine if the given boundary value problem is self-adjoint
(1+x%)y" +2xy’ +y=0
y'(0)=0
y()+2y (1) =0
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Solution
The ODE can be written as

(1+x*) ) +y=0
The operator
Llyl = ((1+x*) y) +y
The ODE is self-adjoint if
(L[u],v) = (u, L[v])
For any two functions u, v that satisfy the ODE. One way to proceed, is to start from the left side of the
above equation and see if the right side can be arrived at. By definition

(L[u],v) = [ L[u] vdx

= (! [((1 +x7%) u'),+u] vdx
= (! ((1+x%) u’)'v + uvdx

rl 1
=1 ((1+x%) u’)'vdx+f uvdx (1)

JO 0

Starting with the first integral in (1) and using integration by parts

dv
u
1,__—__-/&_—\

f ((1+x2) ') vdx = L (1+x) w) o dx

0
By integration by parts, where Judv = |uv| - Jvdu, the above becomes

1

[y v =0s )l - [ e ) wvan

u dv
D e

= [(1+x2) u’v]é—fO (1+x2) v u dx

Doing integration by parts again. But notice the choice of u and dv made above. This is important in
order to get to the form needed. The above becomes

Jl (1+2) ) vdx = [(145) wo] - ([u (14x%) 0] - Ll ((1+x2) v')’udx)

0

= [(1 +x*) wo—u(1+x% U'](l) + J: ((1+x% U'),udx

Going back to (1) and adding the second integral which is left there gives

1 1

((1+ xz) v’)'udx + J uvdx

(L[u],v) = [(1+x%) v'v—u(1+x%) v'](1)+J
0

0
1

= [(1 +x2) u'v—u(l +x2) v'](1)+ L [((1 +x2) v')’ +v] udx

But Iol [((1+x?) )"+ v] udx = (u, L[v]), hence the above becomes

(L[u],v) = [(1 +x%) u'v—u(1+x?) v'](l) + {u, L [v]) (2)
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We are almost there. If the boundary terms above all go to zero, then it is self-adjoint. If the boundary
terms do not vanish, then the problem is not self adjoint. Evaluating the boundary terms in (2)

A= [(1+x2) u'v—u(1+x2) v'](l)

= [2u" (D) v (1) - 2u (1)’ (1)] - [u' (0) v (0) —u (0) v’ (0)]
Since u’ (0) = 0 and v’ (0) = 0, from the given boundary conditions, then above simplifies to
A=2@ (D)o(1)-u(l)v (1)
But u (1) = —2u’ (1) and v (1) = —20’ (1), hence the above becomes
A =2 (1)(=20" (1) — (-2u’ (1)) " (1))

=4 (- (Do (1) +u (1) (1))
=0

Since the boundary terms A vanish, then from (2)

(L[u],v) = (u,L[v]) (3)
Hence the ODE is self-adjoint.

2.1.37 Chapter 11.2, Problem 16

Determine if the given boundary value problem is self-adjoint

y'+y =1y
y(0) -y’ (1)=0
Y (0 -y(1)=0

Solution
The operator is

Llyl=y" +y
The ODE is self-adjoint if
(L{u],v) = (u,L[v])
For any two functions u, v that satisfy the ODE. One way to proceed, is to start from the left side of the
above equation and see if the right side can be arrived at. By definition

rl

(L[u],v) = | L{u]vdx

o1
= | W' +u)vdx
0

rl 1
= | u”vdx + J uvdx
Jo 0
dv u
rl z—’T ~ 1
= u v dx+ | uvdx (1)
Jo 0
Integrating by parts
dv u
1 —/" " 1
(L{u],v) = [u'v]; - J u v odx+ J uvdx
0 0
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Integrating by parts again

(L[u],v) = [u'v]; - ([uv'](l) - Jl uv”dx) + Il uvdx

0 0

1 1
= [u'v —ud']; + j uv”dx + J uvdx
0 0

1
= [u'v —uv'] + J (" +v)udx
0

= [u'v - uv’]y + (u,L[v]) (2)
Hence if the boundary terms vanish, then it is self adjoint else it is not. Evaluating the boundary terms
in (2)
A = [u'v —uv'];
= [ (Do (1) -u@)v W)]-[u (0)v(0) —u(0) v’ (0)]
But »’ (1) = u(0) and v’ (1) = v(0) and v’ (0) = u (1) and v’ (0) = v (1) from the given boundary
conditions. Substituting these into the above gives
A=[u0)o(1)-u@)v(0)]-[u1)v(0)-u(0)v(1)]
=2u(1)v(0)
£0
Since the boundary terms A do not vanish, then from (2)
(L{u],v) # (u,L[v])
Hence the ODE is not self-adjoint.

2.1.38 Chapter 11.2, Problem 17

Determine if the given boundary value problem is self-adjoint
(1+x*) y" +2xy’ +y=21(1+x%)y
y(0) -y’ (1)=0
y' (0)+2y(1)=0
Solution
The ode can be written as
(1+x) y) +y=2(1+x") y
Hence the operator is
Llyl = ((1+x*) y) +y
The ODE is self-adjoint if
(L[u],v) = (u, L[v])
For any two functions u, v that satisfy the ODE. One way to proceed, is to start from the left side of the
above equation and see if the right side can be arrived at. By definition

rl
(L[u],v) = | L[u]vdx

r1
= (((1+x2) u’)/+u) vdx
0
do u
S R 1

= ((1+xz)u')' v dx+J uvdx

JO 0
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Integrating by parts

1 1
(L[u],v) = [(1 +x%) u'v](l) —J (1+x%) u'v'dx +J uvdx
0 0
u do
1 ] —— 1
= [(1+x2) u’v]O—J (1+x%) 0 o dx+J uvdx
0

Integrating by parts

(Lu],v) = [(1 +x°%) u'v] (1) - ([u (1+x% v'] (1) - J: ((1+x%) v’)’udx) + J: uvdx

1 1

((1+ xz) v’)'udx + J uvdx

:[(1+x2)u'v—u(1+x2)v,](l>+J 0

0
=[(1+x*) uvo—u(1+x%) 0| (1) + Ll [((1+x%) v')’ +v] udx
=[(1+x*) uvo—u(1+x%) 0| (1) +(u, L[v])
Therefore, if the boundary terms vanish, then the ODE is self adjoint.
A=[2u" (D)o (1) - 2u (1) ()] - [ (0)v(0) —u(0)v (0)]

But ' (1) = u(0) and v’ (1) = v(0) and u’ (0) = 2u(1) and v’ (0) = 2v (1), from the given boundary
conditions. Substituting these in the above gives
A=[2u(0)v(1)—2u(1)v(0)] —[2u(1)v(0) — u(0) 20 (1)]
=2u(0)v(1)—2u(1)v(0) —2u(1)v(0)+u(0)2v(1)
=4u(0)v (1) —4u(1)v(0)
=0

Hence (L [u],v) = (u, L [v]), therefore the ODE is self-adjoint.

2.1.39 Chapter 11.2, Problem 18
Determine if the given boundary value problem is self-adjoint
v +Ay=0
y(0)=0
y(m) +y' () =0

Solution
The ode can be written as

Hence L [y] = y”. The ODE is self-adjoint if
(L{u],v) = (u,L[v])

For any two functions u, v that satisfy the ODE. One way to proceed, is to start from the left side of the
above equation and see if the right side can be arrived at. By definition

/1

(L[u],v) =I L[u] vdx

0

T
= ‘[ u vdx
0
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Integrating by parts once

T

(L[u],v) =[u'"v]; — L u'v'dx

Integrating by parts again

(L[u],v) = [u"v]y — ([uv'](’)r - J” uv"dx)

0

= [v'v-ud]y + J uv” dx
0
= [u'v - ud']§ + (u, L[v])

Now we will check if the boundary terms vanish or not.

A =[u'v—uv']y

=[u (7)o (r) —u(r)v" (7)] = [u' (0)v(0) —u(0)v" (0)]
Since u (0) = 0, (0) = 0 then the above simplifies to
A=u'(r)v(r)-u(r)v (x)
But u’ () = —u (x) and o/ (1) = —v () the above becomes

A=-u(r)v(r)+u(r)ov(n)
=0

Hence (L [u],v) = (u, L [v]) and the ODE is self adjoint.

2.1.40 Chapter 11.3, Problem 1

Solve by method of eigenfunction expansion

Yy +2y=—x
y(0)=0
y(1)=0

Solution
The corresponding homogeneous eigenvalue ODE is y”” + Ay = 0 with y(0) = 0,y (1) = 0. This was
solved before.

®, (x) = V2sin (\/Zx)

A = (n)? n=123,---

Hence eigenvalues are 4, = {nz, 472,972 - .. } None of the eigenvalues is 2. Therefore the solution to
the original ODE can be assumed to be

y= anén (x) (1)
n=1

Substituting this into the original ODE gives

i bp®” (x) + 2 f} byd, (x) = —x
n=1 n=1
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Expanding —x using same basis function as the solution gives
Z bn(i);l (x)+2 Z bnci)n (x) = Z qnci)n (x)
n=1 n=1 n=1
Where g, is found by applying orthogonality on
—X = Z qnci)n (x)
n=1
1 . 00 1 . R
- J x®p, (x)dx = Z qn I O, (x) Dy, (x) dx
0 n=1 0
1 A
~gn | @
0

Since normalized, fol Cinn (x) dx = 1 and the above simplifies to

1
—J x®p, (x) dx = g
0

But ®,, (x) = V2 sin (n7x) and the above becomes

1
—\/EJ x sin (nzx) dx = qp
0

sm ax

Using fx sin (ax) dx = — *224% the above gives

\z ( sin (mrx) X COS (nﬁx))

(nm)? 0
N (sm (nm)  cos (nﬂ
T R
( cos (mt)) B

[ -

Now that g, is found, then b, can be solved for form (2) above giving

Zb CD"(x)+ZZbCI> (x)—Z\/_( )CI) (x)

2.1 my solved problems

(2A)

But & (x) = —1,®, (x) since the eigenfunction satisfy the ode y” = —Ay and the above simplifies to

—Zb/ld)(x)+22b<b(x) Z‘/_( )(D(x)

Since ®, (x) # 0 the above simplifies to

—byd, + 2b, = \/E(_l )

ni
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Therefore
alz)

nir
2—- Ay

V2 (-1)"

(2 = (nn)*) nx

b, =

Therefore the solution from (1) is

)= i V2 (-1)"

= (2-(nr)?) mrcpn ()

But &, (x) = V2@, (x) = V2 sin (nrx) and the above becomes

y=2 i i sin (nmrx)

= (2 - (n7)®) nr

y= ) i (_1)n+1

2 —((nﬂ)2 gy sin (n7rx)

2.1.41 Chapter 11.3, Problem 2

Solve by method of eigenfunction expansion

Yy +2y=—x
y(0)=0
¥y (1)=0

Solution
The corresponding homogeneous eigenvalue ODE is y”’ + Ay = 0 with y (0) = 0,y’ (1) = 0. This was
solved before.

®, (x) = sin (\/Anx)
nm\ 2
b= () nmnas
2
Or, to keep the sum continuous, it can be written as

Anz((Zn—l)%)z n=123,---

The normalized eigenfunctions weight k;, is found from solving J; k2 sin® (% x) dx = 1 which results

2
ink, = V2
Hence .
CIJn(x):\/Esin((Zn—l)Ex) n=123,---

The eigenvalues are 4, = {(%)2 ,9 (%) 2 , 25 (%)2 L o } None of the eigenvalues is 2. Therefore the

solution to the original ODE can be assumed to be

y=> b, (x) (1)
n=1
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Substituting this into the original ODE gives

i by ®” (x) + 2 i bud, (x) = —x
n=1

n=1

Expanding —x using same basis function as the solution gives

i bn(i);, (x)+2 i bn(i)n (x) = i qn(i)n (x)
n=1

n=1 n=1

Where g, is found by applying orthogonality on
—X = Z qnci)n (x)
n=1
1 . 00 1 . .
[ xbndr =30 | 80 B (0 dx
0 n=1 0
1 A
~gn | ¥
0
Since normalized, fol Cinn (x) dx = 1 and the above simplifies to

1
—J x®,, (x) dx = g

0

But &,,, (x) = V2 sin (2n-1) %x) and the above becomes

—\/EJ: x sin ((Zn -1) %x) dx = qy

Using Jx sin (ax) dx = $73% — *24% the above gives

_\/E(sin ((2n—1) %x) _ xcos ((2n—1) %x)) —

(2n-1)%)* 2n-1)%

_\/E(sin ((2n—-1) %x) _ cos ((2n-1) %x) )1 o
0

(en-1)2)° @2n-1)%

_\/E(sin((Zn—l)%)) —

((2n-1)Z)°

2.1 my solved problems

Using sin ((2n — 1) %) = —cos (nxr) which for n = 1,2,3,- - - can be written as — (—1)" or (=1)"*!. The

above simplifies to

_@(Lﬂﬁ) “

(en-1)%
v ( (1" ) .
(en-1)%)°
Now that g, is found, then b,, can be solved for form (2) above giving

0 _1n\/§ .
S 1)

bp® (x) +2> b, d, (x) =
nz;f 21 =(en-1)Z)°

@y (x)

(2A)
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But &/’ (x) = —A,®,, (x) since the eigenfunction satisfy the ode y”” = —Ay and the above simplifies to

00 _1n\/§
> =1

S bpdn®, S b,®, (x) = o,
nZ:; (x)+2nZ:; ) n=1 ((2n — 1)%)2 )

Since ®, (x) # 0 the above simplifies to

(-1)" V2

—bpAp + 2by = ——
(2n-1)%)

Therefore

(=1)"v2
((2n—1)%)2
2—An
(=1)"V2
((2n-1)Z)*
(2 ~(2n-1) g)z)
(-1)" V2

(z —(2n -1y (g)z) ((2n-1)Z)*

by =

Therefore the solution from (1) is
00 (_1)n \/5
y=2,
= (2-n-12(3)°) (en-13)°

&, (x)

But &, (x) = V2®, (x) = V2sin ((2n-1) %x) and the above becomes

ye zi (_1)n+1
=1 (@n-17 (5)*-2) (2n-1%)°

sin ((Zn -1) %x)

Since (2n-1)7% = (n- %) 7, the above can also be written as (to match back of book solution)

=3 ((n- %)an_—l)zr;t(n— =)=

2.1.42 Chapter 11.3, Problem 3

Solve by method of eigenfunction expansion

Yy +2y=—x
y'(0)=0
y'(1)=0

Solution
The corresponding homogeneous eigenvalue ODE is y” + Ay = 0 with y’ (0) = 0,3’ (1) = 0. This was
solved above in Chapter 11.2, problem 3. The eigenvalues are

Ap = {0, 72, 2n)?, 3n)%, - - }
= (nm)? n=0,1,2,---
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The normalized eigenfunctions are
Do (x) =1

Andforn=1,2,3,---
&, (x) = V2@, (x)
2 cos (nrx)

= {\/Ecos (x), V2 cos (27x), V2 cos (37x), - - - }
Since none of the eigenvalues is 2, the solution to the original ODE can be assumed to be
= > b, (x) (1)
n=0
Substituting this into the original ODE gives
Z bn(i);l’ (x)+2 Z bnqA)n (x)=-—
n=0 n=0
Expanding —x using same basis function as the solution gives
D ba®) (x) + 227 ba®y (x) = D en®n (x) (2)
n=0 n=0 n=0
Where ¢, is found by applying orthogonality on

-x = Z cn®p ()
n=0

0

1 ) 1
- ‘[ x®,, (x) dx = Z en | D (x) D,y (x)dx
0 n=0

1
=cCm ‘[ <i>,2n (x)dx
0

Since normalized then L} &2, (x)dx = 1 and the above simplifies to

1
—J x®, (x)dx = ¢,

0

For n = 0 the eigenfunction is &y (x) = 1 and the above gives ¢, = —% [xz]; = —% and for n > 0 the
eigenfunction is ®,, (x) = V2 cos (nzx) and the integrals becomes

1
—\/Ej x cos(nzx)dx = ¢y
0

cos ax X sin ax

Using fx cos(ax)dx = + the above gives

( cos (mrx) x sin (nx) )
(nm)? nr 0

( cos (mr) sin(nr) 1 )
(nr)’ nw (nr)’

(cos (nm) )
(nm)? (nm)?

= ) (cos (nmr)-1) n=12---
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When nis odd then ¢, = (rle\fiz and when n is even it is zero. Now that g, is found, then b,, can be solved

for form (2) above giving
375l () +2 3 b () = 3 cabn () 2)
n=0 n=0 n=0
But &/’ (x) = —1,®,, (x) since the eigenfunction satisfies the ode y”” = —Ay and the above simplifies to
- i budn®n (x) + 2 i bnd (x) = i cn®y (x)
n=0 n=0 n=0

Since &, (x) # 0 the above simplifies to

—bpAn +2b, =cp

c
b = 2 —n/ln
Therefore the solution from (1) is
T e ey
n=0 2~ An
= ; EO)LO o (x) + :1;5 zf—nan&’” (x)
But Ay = 0,¢9 = —%and ®y (x) = 1, therefore the above becomes
2V2

y(x)=—-——+ Z]S.”#J;);)Z\/Ecos(nnx)

1 2\/5
i 1;5 (2 = (nm)?) (nm)*
i 1

1 4 cos (nrx)
4 n=1,3,5,- ((”ﬂ)z - 2) (’UT)Z

V2 cos (nmx)

To make the sum continuous, let m = (2n — 1) and now m runs from 1, 2, 3, - - - and above becomes

> cos((2n —1) mx)

n=i3s5,. (2n—1)m)* = 2) (2n— 1) n)*

y()=— 4

2.1.43 Chapter 11.3, Problem 10

Determine if there is any value of the constant a for which the ODE has a solution. Find the solution
for each such value

y"+7r2y:a+x

y(0)=0

y(1)=0
Solution
The eigenvalues of the corresponding homogenous eigenvalue ODE ¢’ + Ay = 0 with same homogenous
boundary conditions are A, = (nx)* for n = 1,2, - - -. Therefore one can see that 1 is eigenvalue in the
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original ODE y”’ + 7%y = a + x. This means there is a solution (which will be non unique) only if the
forcing function is orthogonal to the specific eigenfunction ®; (x). Therefore the condition is

1
[ oo @ax=o
0

J‘1 (a+x)sin(rx)dx =0
0

1 1
J asin (rx)dx + J xsin (x)dx =0
0 0

cosmx\! [sinzx xcosmx]
a (— ) + >~ =0
T o /2 7 0
a sinm cosTw
——(cosTt—1)+ — = ]:0
7 T /s
a -1
—(-1-1)+|-——| =0
/2 /s
2a 1
Z+Z=0
T T
Hence
-1
a=—
2
Only when a is the above value, is there a solution. The original ODE is now solved using the direct
method (meaning, not eigenfunction expansion) when a = _71 as follows. Solve

1
y"+7r2y:—§ +x
y(0)=0
y(1)=0

The homogeneous solution is easily found to be y, = Acos (7x) + B sin (7x). Since the RHS is a polyno-
mial, let the particular solution be y, = ¢; + c2x. Then yj, = ¢; and y,/ = 0. Then

1
7% (c1 + cox) = -3 +x
2 2 1
1+ comtx = -3 +x
Therefore ;7% = 1 or ¢, = ﬁ and ¢y 7% = —% orc; = —#. Hence y, = —# + ﬁx. The solution is
Y=Yntlyp
. 1 1
= Acos(nx) + Bsin(rx) — — + —x
21 T
Applying boundary conditions, at y (0) = 0 the above becomes
1
0=A- —
22
A= —
272
Hence the solution becomes
(x) = — cos (x) + Bsin (x) — = + —
x) = — cos (rx sin(rx) — — + —x
y 272 2m2
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At y (1) = 0 the above gives

0 ! () + Bsin (1) ! + !
= —cos(m sin(7) - — + —
272 2r2 g2
-1 1 1
0=— - — +—
272 272 g2
0=0

Therefore B can be any value. Hence the final solution is

y(x) = # cos (mx) + Bsin (7x) + # (x - %)

The solution is not unique as expected. Any arbitrary value of B gives a solution.

2.1.44 Chapter 11.3, Problem 11

Determine if there is any value of the constant a for which the ODE has a solution. Find the solution
for each such value

Yy’ +4r’y=a+x
y(0)=0
y(1)=0

Solution

The eigenvalues of the corresponding homogenous eigenvalue ODE y”’ + Ay = 0 with same homogenous
boundary conditions are A, = (mr)2 forn =1,2,---. Therefore A, = 472 is eigenvalue in the original
ODE y” + 4%y = a + x. This means there is a solution (which will be non unique) only if the forcing
function is orthogonal to the eigenfunction ®; (x). Therefore the condition is

1
j F 0B, () dx = 0
0
r (a + x) sin (277x) dx = 0
0

1 1
J asin (2zx)dx + J xsin(2zx)dx =0
0 0

( cos Zirx)l [sin (2rx) xcos (27Tx)]1
al- + - -0

21 472 21 B

0 0

sin2wr  cos2rw
- =0
452 27

1
__] o
2r

1
—— =0
21

a
—— (cos2r — 1)+ [
21

a
——(1-1)+
Pt

But this is not possible. Hence there is no a which makes Io (a + x) sin (2x) dx = 0. This means there
is no solution for any a.
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2.1.45 Chapter 11.3, Problem 12

Determine if there is any value of the constant a for which the ODE has a solution. Find the solution
for each such value

y” +7r2y =a

y' (0)=0

y' (1)=0
Solution
The eigenvalues of the corresponding homogenous eigenvalue ODE ¢’ + Ay = 0 with same homogenous
boundary conditions are g = 0 and A,, = (nﬂ')2 forn = 1,2,---. Therefore A; = 7% is eigenvalue in

the original ODE y”” + 7%y = a + x. This means there is a solution (which will be non unique) only
if the forcing function is orthogonal to ®; (x). The eigenfunctions in this case are ®, (x) = cos (nxx).
Therefore the condition is

1
[ Feoo@ax=o
0

1
j acos(mx)dx =0

0
. 1
sin x
a =0
T 0

~ (=0

Hence any a will satisfy this. Therefore there is a solution for any a. The solution is
y = Acos (nx) + Bsin (nx) + y,

Since the RHS is a constant, let y, = k. This leads to mk=aork= % Hence the solution is
a
y = Acos (x) + Bsin (nx) + —
T

Or
y’ (x) = —mAsin (nx) + B cos (7x)

At y’ (0) = 0 the above becomes
0 =Br

Hence B = 0 and the solution now becomes
y = Acos (7x) + iz
T
y = —Ar sin (7x)

At y (1) = 0 the above becomes

0=—-Arsinm
=-A(0)

Therefore A is arbitrary. Any A will give a solution. Hence the final solution is

y = Acos(rx) + 25

For any A and where a is the given a in the original ODE which can take in any value.
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2.1.46 Chapter 11.3, Problem 13

Determine if there is any value of the constant a for which the ODE has a solution. Find the solution
for each such value

y” + 7’y = a — cos x

y(0)=0

y(1)=0
Solution
The eigenvalues of the corresponding homogenous eigenvalue ODE ¢’ + Ay = 0 with same homogenous
boundary conditions are g = 0 and A, = (mr)2 forn=1,2,---. Therefore A; = 72 is eigenvalue in the

original ODE y”" + 7%y = a — cos zrx. This means there is a solution (which will be non unique) only
if the forcing function is orthogonal to ®; (x). The eigenfunctions in this case are ®, (x) = sin (nzx).
Therefore the condition is

1
J fx) @1 (x)dx =0
0
‘[1 (a — cos x) sin (nrx)dx = 0
0

1 1
J asin (rx)dx — I cos (rrx) sin (rx)dx = 0
0 0

Using sin Acos B = % (sin (A — B) + sin (A + B)) then sin (rx) cos (rx) = % (sin (0) + sin (27x)) = % sin (27x)
and the above becomes
1 1 (!
J‘ asin (rx)dx — = f sin(2zx)dx =0
0 2 Jo

a 1
—— [cos x|} + yp [cos (27x)]; = 0
T

/s
a 1
——(cost—1)+ —(cos(2r)—1)=0
T 4
2a
— =90
7

Hence a = 0. Therefore there is a solution only when a = 0. The original ODE then becomes
y" + 7’y = — cos wx
The homogenous solution is
yp = Acos(x) + Bsin (7x)

Since the forcing function matches one of the basis solution, then the particular solution guess is
multiplied by extra x. Therefore

Yp = x (c1 cos (mx) + ¢z sin (7x))

yj’, = ¢ cos (mx) + ¢y sin (7x) + x (—c 7 sin (rx) + cor cos (7x))

y;,' = —cy sin (x) + comr cos (rx) + (—cyr sin (7rx) + ¢ cos (7x)) + x (—Clﬂz cos (1x) — ¢y sin (mx))
= sin (x) (—2¢17 — c2x) + cos (mx) (2c2m — e1x7°)

Substituting back into the ODE gives

sin (7x) (—2¢17 — cznzx) + cos (mx) (2com — c1x7r2) + 7% (x (¢ cos (mx) + ¢z sin (7x))) = — cos 7x
sin (rx) (—2c17r N nzxcz) + cos (rx) (Zczn —cxrt + 7T2xc1) = —COS TX
—2¢y 7 sin (rx) + 2¢o7 cos (1x) = — cos Tx

66



2.1 my solved problems

Hence
—2cit =0
2com = -1
Or
c1 = 0
1
Cyg = ——
2 2r
Therefore
~ s sin ()
= ——xsin (rx
Yp 21

And the general solution is
. 1
y (x) = Acos (x) + Bsin (rx) — 5, sin (mx)
b

At y (0) = 0 the above becomes
0 = Acos (1x)

Hence A = 0 and the solution now becomes

y (x) = Bsin (nx) — %x sin (7x)

One can stop here, since it is known that the solution is not unique and must contain an arbitrary
constant. It is not possible to solve for B using the second boundary conditions.

2.1.47 Chapter 11.3, Problem 16

Show that the problem y”’ + 7%y = n%x,y(0) = 1,y (1) = 0 has solution y = ¢; sin 7x + ¢; cos 7x + x
also show that the solution can not be obtained by splitting the problem as suggested in problem 15
since neither of the two subsidiary problems can be solve in this case.

Solution

To attempt to solve the problem by splitting, the solution is first assumed to be y = u + v where u is the
solution to u”” + %u = 0,u (0) = 1,u (1) = 0 and v is the solution to v”’ + 7%v = 72x,v (0) = 0,v (1) = 0.
Let us now try to solve the u ODE. The solution is

u(x) = Acos x + Bsin x

Applying first BC u (0) = 1 gives A = 1. Hence the solution becomes u = cos 7x + B sin 7x. Applying
second BC u (1) = 0 gives

0=cosmt+ Bsinx

0=1+Btansx
-1 -1

" tanr 0

Therefore there is no solution for u. Hence no solution is possible by splitting it was suggested in
problem 15 for this problem. Now the problem is solved using the direct method. The homogeneous
solution is

yp = Acostx + Bsin rx
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Since the forcing function 7%x is a polynomial, let y, guess be y, = kxsubstituting this back into the

ODE gives k = 1. Hence the solution becomes

Y=Yn+Yp

= Acoszmx + Bsinzmx + x
Applying first BC y (0) = 1 gives 1 = A. Hence the solution now becomes y = cos 7x + Bsinzx + x.
Applying second BC y (1) = 0 gives

0=cosm+Bsinr +1

0=-1+Btanrm +1

0=Btanrx

0 =B(0)

Therefore, any B will work. Hence the solution is not unique. Let B = 1. Therefore the final solution is
Yy = cosx + sinwx + x

This is solution is not unique. This is also a solution y = coszx + 3sinzx + x and also this y =

cos 7x + 100 sin zx + x and also y = cos 7x + x and so on.

2.1.48 Chapter 11.3, Problem 19 (With interactive animation)

Use eigenfunction expansion to solve

U = Uyxy — X

X

With initial condition u (x, 0) = sin (7) and boundary conditions u (0, %) = 0,u, (1,) =0

Solution

The homogenous PDE is first solved to find the eigenfunctions, and these are used to expand the non-
homogenous term —x in the PDE. By separation of variables, the spatial eigenvalue ODE is

X"+AX =0
X(0) =0
X' (1)=0

The eigenfunctions for this ODE are @, (x) = sin (\/)L_nx) with A, = ("7”) “forn = 1,3,5,---. or
An = (2n—1)° (%)Z forn=1,2,3,--- . with now @, (x) = sin ((2n - 1) £x).

The normalized eigenfunctions are &, (x) = V2 sin (\//l_nx) . Using these, the original PDE is now solved
by assuming the solution is

u(x,t) = i by (1) &y (x)
n=1

The coefficient b,, (t) must be a function of time, since it includes all time contributions to the solution.
Substituting the above back into the original PDE gives

o) R d2 o) . [ .
Z b; (t) D, (x) = @ Z by () @, (x) + Z cn®p (x)
n=1 n=1 n=1

Where X7 ¢n®, (x) is the eigenfunction expansion of —x. Assuming term by term differentiation is
allowed (can be shown to be justified here), the above becomes

VB8, (0= Sy (08 () + > eniby ()
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But &/ (x) = —1,®,, (x) then the above becomes

20 (b (8) + Qb (1) @ (x) = D cn®i (%) (1)

n=1 n=1
Now ¢, is found. Since —x = X | cn®, (x), then applying orthogonality gives

1 . 00 1 . .

- J‘ r(x) x®,, (x)dx = Z cn | r(x)®, (x)P,,dx
0 n=1 0

But the weight r (x) = 1, hence the above simplifies to

1 1
—J x®,, (x)dx = an @fn (x)dx
0 0

. . . . 1 A
Since eigenfunctions are normalized, then fo r (x) @% (x)dx = 1 and the above reduces to

1
Cp = —J x®,, (x)dx

0

:—qu Zsin((Zn—l)%) dx

0
A\ [sin ((2n—1)Zx) _ xcos ((2n-1) %xw1

(en-1)x)? @n-1%
o sin ((2n - 1) %) _ cos ((2n-1) %)
) VEI((Zn-1>%>2 @n-1)3

But cos ((2n — 1) %) = 0 for all n, and the above now simplifies to

sin ((2n—-1) %)
"
(en-1)%)
2sin (2n-1)%)
((2n—1)7)?

Cp = —

But sin ((2n — 1) %) =(-1)""'forn=1,2,3,- -, hence the above becomes

(=1)""!
((2n—1)n)?
(-1)"
((2n-1) )’

Ch = —

Now that ¢, is found, (1) is used to solve for b, (t)

S8 (1) + Anbn (D) D (x) = S b ()
n=1

n=1

The above simplifies to
b, (t) + Anby (1) = ¢
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The integrating factor is el ndt = ¢lnt therefore L (b, (t)e*nt) = c,e’n!. Integrating gives

t

b, (t) et = b (0) + ¢y ‘[ e ds
0

t
b, (t) = b(0)e " + cne_’l"tJ' e ds
0
Ant _ 1)
An

= b(0)e ! + ;— (1-e)

e
=b(0) e Ant 4 cne_’l"t (

Therefore the solution becomes

wGet) = S by (08, ()
n=1
=> (b(O) et 4 )i—" (1 - e‘A"t)) D, (x)

n=1 n

At t = 0, the initial conditions is u (x, 0) = sin (%) therefore the above becomes

»
=8
’.3

1]

(b(O) + = (1- 1)) o, (x)

b(0) ®n (x)

12 304s 1

b (0) V2sin ((Zn -1) %x)

Il
—_

n

Hence only n = 1 gives a solution for b (0), and therefore the above becomes

sm( ) —b(O)‘/ﬁsm( )

b(o):\/iE

Therefore the solution (2) now becomes

Y oo
u(x,t) = (b (0) e Mt 4 clef’ht—(e 1) ) <i>1 (x) + Z ;—n (1 - ef’l"t) <i>n (x)

A n=2
Where
Ch = 4\/§Ln2
(2n—-1) )
b(0) = —

V2

An=((2n—1)g)2 n=1273,---

d, (x) = V2sin ((Zn -1) %x)
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Hence the solution (3) becomes

”2
1 (e -1) N
u(x,t)=|—=e 7t 4 cie77! - Zsm( x)
v z
> c x)\2 T
+ % (1 — e (@n-1F) t) V2 sin ((Zn -1) —x)
n=2 (2n - 1) z 2

To make it the same as back of the book solution, some more manipulation is needed.

2

u(x,t)=e 1t sm( ) +4\/_—e s ( A 1) sin(gx)
+ \/_Z ((2"_1)%) ! (e((zn_l)%)zt - 1) sin ((Zn -1) %x)

2 (2n — 1)2 71'2
Or
u(x,t)= e_”Tz sm(2 ) +4\/_c1 (1 —e nth) sin(%x)
) e s 2
Or
u(x,t):e_”TZ sm(2 )+4\/_ sm(2 )—4\/_ sm(Zx)
’ \/—Z 4 (2n - 1)2 ;Tz (1 - elennd) t) sin ((2" -1 %x)
Or

u(x,t)=v2 [40—1 + (i - 40—12) e_ﬁzt] sin (zx)
T s

2
+ \/_Z o 1)2 . (1 - e_((z”—l)%)zt) sin ((Zn -1) %x)
-1

The back of the book uses ¢, = 4\/_((2 1)1) 7 instead of ¢,, = 4\/_((2( 11)) 7 as was done in this solution.
Therefore, changing ¢, to be as the back of the book means flipping the sign of each c;,. (or multiplying

—1). Hence the solution becomes now the same as the back of the book

u(x,t)=V2 [—4% + (% + 4%) e_ﬁzt] sin (%x)
-V2 __fn (1 - e‘((zn—l)%)zt) sin ((Zn -1) gx)

a= (2n —1)° n2

Where in the above,
(_1)n+1
((2n-1) 71')2

Both solutions are the same. The sign is either added to ¢, or left outside. This completes the solution.
The following is an animation of the above solution for 1.8 seconds. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser
PDF reader).

Chp =
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2.1.49 Chapter 11.3, Problem 20 (With interactive animation)

Use eigenfunction expansion to solve

U = Uyx + et

With initial condition u (x, 0) = 1 — x and boundary conditions uy (0,t) = 0, uy (1,¢) + u(1,£) = 0
Solution

The homogenous PDE is solved first to obtain the eigenfunctions. These are then used to expand the
non-homogenous term e~ in the PDE. By separation of variables, the spatial eigenvalue ODE is

X"+2X =0
X'(0)=0
X' 1+X@1)=0
The eigenfunctions for this ODE were found earlier in problem 4, Chapter 11.2. They are
b, = k,®,

= V2 cos (\/A—nx)
1 + sin® (\//1_,,)

Where A,, are the roots of
cos (\/Z) — /A, sin (\//1—,,) =0
Forn=1,2,3,---. Using these, the original PDE is now solved by assuming the solution is

u(x,t) = i b (t) &y, (x)

The coefficient b, () must be a function of time, since it includes all time contributions to the solution.
Substituting the above back into the original PDE gives

(o] 2 oo [
STE 0 () = 3 b (08, () + Y (00 ()
n=1 n=1 n=1
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Where > ¢p (t) &, (x) is the eigenfunction expansion of e~*. In the above ¢, (t) is now a function of
time, since the forcing function depends on time in this problem. Assuming term by term differentiation

is allowed the above becomes
Dibn )Py (x) = D bp () D) (x) + D e (£) Dy ()
n=1 n=1 n=1
But CiD;l’ (x) = =A,,®, (x) therefore
Z (b, (1) + Anby (1)) CD (x) = ch () ®, (x)
n=1
Now ¢, (t) is found. Since e™* = 2% ¢, (t) &, (x), then applying orthogonality gives
1 R 00 1 . .
J r(x)e '®,, (x)dx = Z cn (1) J r(x) @, (x) ®,,dx
0 n=1 0
But the weight r (x) = 1, hence the above simplifies to
1 1
-t J D, (x)dx = ¢y, (t) J % (x)dx
0 0
Since eigenfunctions are normalized, then fol r(x) <i>%n (x) dx = 1 and the above reduces to
1 A
[ endr =,
0

Hence

To make it match the way the back of the book expressed the above, let us write
cn(t)=elc,

Where now

()

Cn =

Via

This makes it easier to verify the final solution found here is the same as the back of the book.

Now that ¢, (t) is found, (1) is used to solve for b,, (t)
Z (by, (£) + Anby (1)) @y (x) = Ze cn®y (x)
n=1

The above simplifies to

B! (£) + Anbn (1) = e 'cp
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The integrating factor is el ndt = ¢lnt therefore L (b, (t)e*nt) = e~'c,e’n?. Integrating gives

t
b, () e = b(0) + an e S ds

0

t
by (t) = b(0) et 4 Cne_A"tJ‘ eAn=1s ¢
0

= b(0)e M + c et

Tn—1
n=tt _ 4
= b(0)e M 4 cpe M 3)

n

Using the above in u (x,t) = X7 by (t) d, (x) gives the solution as

o0 en=Dt _ 1\ |
u(x,t) = 2 (b(O) et 4 cne_’lntﬁ) D, (x) 4)
n=1 n

At t = 0, the above simplifies to
1-x= > b(0)d,(x)
n=1
Applying orthogonality gives

I r(x)(1-x)®,, (x)dx = ib(o) . r(x) @, (x) &, (x) dx

0 n=1

J r(x) (1= x)®,, (x)dx = b(0) L r(x) &2 (x)dx

0

But r(x) = 1 and J; r(x) 2, (x)dx = 1 therefore
1
b(0) = j (1-x)d, (x)dx
0

- Ll by () dx — Ll xy (x) dx

=ky (Il D, (x)dx — Jl x®, (x) dx)

0 0

But @, (x) = cos (\//Tnx) , hence the above becomes
1 1
b(0) =k, (J cos (\/A—nx) dx — J X COS (\/Ex) dx)
0 0

ke sin (\//Tnx) ) cos (\//Tnx) X sin (\//Tnx)
Vin An Vin

+

n

. -sin (\//1_,1) ‘ ) lcos (\//l_n) . sin (\//1_,,) 1
| Vi A Vi An
sin (\/A_,,) cos (\//1_,1) sin (\//1_,1)

=k, - - +

Via An Vin

=
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Now that b (0) is found, then the solution (4) becomes

u(x,t) = i (;—n (1 — cos (\/Z)) e Mt 4 ¢ e tnt e(/l; 1)_t1 ) o, (x)

n=1
_Z( (1—cos(\//1_))e_l"t+acil - _At)k cos \/_x)
But k,, = L, hence the above becomes
1+sin2(m)

cos (V/l_nx)
1 + sin® (\//1_,,)

u(x,t)= «/Ei (ane_A"t = (e—t _ e—/lnt))

Where
oy = % (1 — Cos (\/E))
)
Anal1 + sin? (\//1_,1)
And

Cnp = \I/C;_n sin (\/Z)
\/5 sin (\//1_,[)

\/_ 1 + sin® (\/)L_n)

The following is an animation of the above solution for 6 seconds. This runs inside the PDF (need to use
standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser PDF
reader).
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2.1.50 Chapter 11.3, Problem 22 (With interactive animation)

Use eigenfunction expansion to solve
_ -t
U = Upy + € (1 —x)

With initial condition u (x, 0) = 0 and boundary conditions u (0, t) = 0, u, (1,£) =0

Solution

The homogenous PDE is solved first to obtain the eigenfunctions. These are then used to expand the
non-homogenous term e~* (1 — x) in the PDE. By separation of variables, the spatial eigenvalue ODE is

X"+AX =0
X(0) =0
X' (1)=0

The eigenfunctions for this ODE were found earlier. They are
d, = k@,
= V2sin (\/Zx)
Where A, = (%)2 forn=1,3,5---.0r
o, = V2sin (\/A—nx)
An=((2n—1)%)2 n=1,23,---
The original PDE is now solved by assuming the solution is

u(x,t) = i b (t) Dy, (x)
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The coefficient b,, (t) must be a function of time, since it includes all time contributions to the solution.
Substituting the above back into the original PDE gives

o) , . d2 o) . [ .
Z by, (t) @y (x) = dx? Z by (t) @, (x) + Z cn (1) ©p (%)
n=1 n=1 n=1
Where X7, ¢, (t) d, (x) is the eigenfunction expansion of e~ (1 — x). In the above ¢, (t) is now a

function of time, since the forcing function depends on time in this problem. Assuming term by term
differentiation is allowed the above becomes

DIACLARED WAULACES EACEAE
But &/’ (x) = —A,®,, (x) therefore
2 (by, (£) + Anby (1)) @y (x) = ch (t) D, (x) (1)
Now cj, () is found. Since e (1 —x) = X% ¢, (¢) &, (x), then applying orthogonality gives
1 o0 1
L r(x)e (1 -x)d,, (x)dx = nZ:; cn (1) L r (x) @, (x) D,dx
But the weight r (x) = 1, hence the above simplifies to
-t Ll (1 —x) Dy (x) dx = cp (2) Jol ? (x)dx
Since eigenfunctions are normalized, then fol r(x) Cifn (x) dx = 1 and the above reduces to

- Jl (1-x) ci:'m (x)dx = cn (t)
0

Hence

cn(t) = e Ll (1= x)kn sin(\/A—nx) dx
=t in (Vo) - [ s (V) ]

~tyf3 _ s (‘M_”x) [sin VA, x  xcos \//TnX} '
—e -~ 7| _ _
Vin An Vi, o

0

_t :_COS(\M—") 1 sinVA, cosVAi,
S e WA—H‘[ T w—]

_COS(\/’T") N 1 _sin An +cosx//1_n
Vin Vin An Vi,
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But A, = (2n — 1) Z, therefore sin ((2n - 1) ) = {1,-1,1,-1,--- } or (=1)""! and the above becomes

-t

(VA = -0
(VA + (-1)")
(VA + (-1)")

To make it match the way the back of the book expressed the above, let us write

cn(t) =

-t

-t

?Iﬁ ?Iﬁ 5"|§|

cn (t) =elc,

Where
= % (VA + (-1")

Now that ¢, (t) is found, (1) is used to solve for b,, ()
Z (b7, (1) + Anbn (1)) CD (x) = Ze cn®p (x)
n=1

The above simplifies to
b:z (t) + Anby () = e_tcn

The integrating factor is el Andt = ¢Ant therefore L (b, (t)e*nt) = e~'c e’ . Integrating gives

t

b, (t) e’ = b(0) + ¢, J‘ e S ds
0

t
by (1) = b (0) et + cpent J (=D g

0

=b(0)e M +cpe
= b(0)e Mt + cpe Mt

Using the above in u (x,t) = X7 by (t) d, (x) gives the solution as

o0 R e
u(x,t)= Z b(0)e "t +ce” "tﬁ oy, (x)
n=1 n

Which implies b (0) = 0. Now that b (0) is found, then the solution (4) becomes
(a1t _ 4

u(x,t) = Z cne_l"tell—_lcﬁn (x)

= Va3 (S s (v
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Where ¢, = A_\f (\//1_,1 + (—1)") and A, = ((2n - 1) %) ? This completes the solution.
The solution was animated and verified it is correct against a numerical solution.

The following is an animation of the above solution for 5 seconds. This runs inside the PDF (need to use
standard PDF reader to run the animation. Might not run inside Chrome or Firefox own browser PDF

reader).
time B.88 seconds

ux,1)
012

0.10}
0.08}
006f

0.04}

0.02}

U.DD-"'"'-'---l_-.......x
0.2 0.4 0.6 0.8 1.0

NEIEEE

2.1.51 Chapter 11.3, Problem 24 (With interactive animation)

-0.02

Solve
Up = Uyyx — 2

With initial condition u (x, 0) = x* — 2x + 2 and boundary conditions u (0,) = 1,u(1,t) = 0
Solution
Let

u(x,t) =wi(x,t)+ov(x)

where v (x) is steady state solution which only needs to satisfy the non-homogenous boundary condi-
tions and w (x, t) is the transient solution which needs to satisty the homogeneous boundary conditions.
At steady state, the PDE becomes an ODE

0=0"(x)-2

This has the solution
v(x) = ¢1 + cx + x°

Where x? is the particular solution. From boundary conditions v (0) = 1, v (1) = 0, the solution becomes
v(x)=1-2x+x*
Hence u (x,t) = w(x,t) + 1 — 2x + x?. Substituting this into the PDE u; = uy, — 2 results in
W = Wyx + 07 (x) — 2
= Wiy +2—-2

= Wxx
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Hence the PDE to solve is w; = wy, with w(0,t) = 0, w (1, t) = 0. This heat PDE was solved before. Its
solution is

w(x, )= i cpe Mt sin (\/Zx) (1)
n=1

Where A, = (nm)*forn = 1,2,3,---. Att = 0, since u (x, 0) = w (x, 0)+v (x) then w (x, 0) = u (x, 0)—v (x)
which gives

w(x,0) = (x -2x+2) - (1—2x+x2)

=1
Hence at t = 0, (1) becomes
= > cpsin (\/Ex) (1A)
n=1

Applying orthogonality gives

Ll sin (\/A_nx) dx = -

For even n the above is zero. And for odd n the above becomes
ch=— n=135---

niw

Therefore from (1) the solution to w (x, t) is

w(x,t) = % i %e_’l"t sin (\/Ex)

n=1,3,5, -

The above can also be written as
w(x, t) = Z (Zn — 1) e~ (-0t iy ((2n - 1) mx)
Now, since u (x,t) = w(x, t) + v (x), then the final solution is
u(x,t)=x*—2x+1+— Z me_(zn_l)z”zt sin((2n — 1) 7x)
The following is an animation of the above solution for half second. This runs inside the PDF (need to

use standard PDF reader to run the animation. Might not run inside Chrome browser PDF reader).
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time BBE seconds

u(x, t)
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2.1.52 Chapter 11.3, Problem 25 (With interactive animation)

Solve
Uy = Uyy — T2 COSTTX

3

> x) — cos (7x) and boundary conditions u, (0,£) = 0,u (1,) = 1

With initial condition u (x, 0) = cos (
Solution
Let

u(x,t) =wi(x,t)+ov(x)

where v (x) is steady state solution which only needs to satisfy the non-homogenous boundary condi-
tions and w (x, t) is the transient solution which needs to satisfy the homogeneous version of boundary
conditions.

At steady state, the PDE becomes an ODE

0=2v"(x)— n°cosmx

This ODE can be easily solved giving
v(x) = —cos (7mx)

Hence u (x,t) = w(x, t) — cos (rx). Substituting this into the PDE u; = uy, — 7% cos nx results in
Wi = Wex + 07 (x) — % cos x
But v’ (x) = 7 sin (rx) and v (x) = 72 cos (nx). The above becomes
Wi = Wxx

With boundary conditions wy (0, t) = 0, w (1, t) = 0. This was solved before. It has the solution

w(x,t) = i cne 7t cos (\/Zx) (1)

n=1,3,5,
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Where A,, = (%)2 with n = 1,3,5,---. At t = 0, from u(x,0) = w(x,0) + v (x), then w(x,0) =
u(x,0)—v(x)or

w(x,0) = cos (%Tx) —cos (x) + cos (7x)

Therefore, from (1) and at ¢t = 0 we obtain

(o)

w(x,0) = Z Cp, COS (\/)Lnx)
n=1,3,5,--
(37r ) & nm
cos | —x| = Z Cp COS (—x)
2 n=1,3,5,- 2

Therefore, only for n = 3 is there a solution. Therefore c¢; = 1. Hence (1) becomes

w(x, t) = e ™ cos (\//1—3x)

— e_(%r)zt CcOS (3_]Tx)
2
Therefore the final solution is

u(x,t) =wix,t)+ov(x)

2 3
= —cos(7mx) + e T cos (?x)

The following is an animation of the above solution for half second. This runs inside the PDF (need to
use standard PDF reader to run the animation. Might not run inside Chrome browser PDF reader).
time BPE seconds

u(x,t)
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2.1.53 Chapter 11.3, Problem 28

Part (a) Show that by method of variation of parameters that general solution to y”’ (x) = —f (x) can be
written as

y:c1+c2x—Jx(x—s)f(s)ds
0

part (b). Let the solution required to satisfy boundary conditions y (0) = 0,y (1) = 0. Show that ¢; =

0,c2= [ (1—x) [ (s)ds

1- 0<s<
part (c). Defining G (x, s) = { s(1=x) ’

show that the solution can be written as y (x) =
x(1-s) x<s<1

fol G(x,s) f(s)ds

Solution

Part (a)

The solution is y = yp + y,. Where y;" = 0. This has the solution
Yp = €1+ Cox

In this expression, the basis solutions are

y1 =1

Yz = X.
The particular solution is now found using variation of parameters, where it is assumed that

Yp = Y1ur + Yaup (1)
And uy, u, are two functions to be determined. Using the standard formulas for finding u;, u; gives

o [
Tl W)

ds (2)

Where in the above, F (s) is the forcing function in the RHS of the original ODE which is —f (x) here,
and W is the Wronskian. The Wronskian is found as follows

Wl o
9 Y
Substituting y; = 1,y, = x in the above gives
1 x
W = =
0 1

Therefore (2) becomes

ulzjm-s<<f@»ds

0

- [Fsreas )

0
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Similarly, u; is found using

YY1 F(s)
o W(s)

- [ rea (@

ds

Uy =

Using (3,4) in (1) gives the particular solution as

Yp

w[ srods-u| rod
r-x X
= sf(s)ds—xj f(s)ds
0 0
px X
= sf(s)ds—j xf (s)ds
0 0

[ s-xfe)ds
0

oJ

—-[[x=sr©as

Now that particular solution is found, the complete solution is found from y = y, + y,, giving

Part (b)

y=c +czx—Jox (x—s)f(s)ds (5)

Using the BC y (0) = 0 on (5) gives

0=c - f 5 (s)ds

0
01:0

Hence c¢; = 0 and the solution (5) now becomes

Y = CoX — JOX (x—s)f(s)ds (6)

Using the second BC y (1) = 0 the above becomes

Hence the solution (6) now becomes

84

0=c2—JO (1-5)f(s)ds

1
cz=j (1=5) £ (5)ds
0

xLl (1—s)f(s)ds—Lx(x—s)f(s)ds

(

x(l—s)f(s)ds—JO (x—3s)f(s)ds
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Writing JOI x(1=3s)f(s)ds= f;c x(1-s)f(s)ds+ Lt x (1 —s) f (s)ds then the above becomes

Y= Lxx(l—s)f(s)ds+£x(l—s)f(s)ds—Lx(x—s)f(s)ds

Combining the first and third integrals gives

X

Y= . [x(l—s)—(x—s)]f(s)ds+J x(1=3s)f(s)ds

= [x—xs—x+s]f(s)ds+J1x(1—s)f(s)ds

Jo

= nx(—xs+s)f(s)ds+[1x(1—S)f(s)ds
0 x

= ”xs(l—x)f(s)ds+Jlx(1—s)f(s)ds (7)
0 x

oJ

Which is the result required to show.

Part (c)
From part (b) above, the solution in (7) can be written as
x 1
y:J GL(x,s)f(s)ds+J Ggr(x,s) f(s)ds (8)
0 x

Where

G(x,s):{GL(x,x) :{s(l—x) 0<s<x

Gr (x,s)

Hence (8) can be combined into one integral
1
y= J G(x,s) f(s)ds
0

2.1.54 Chapter 11.3, Problem 29

By using procedure in problem 28 show that solution to y”" + y = —f (x),y (0) = 0,y (1) = 0 is

y= Llcxx,s)f(s)

Where

sin(s) sin(1—x)

G(x,s) = { sin(1) ss<
S . p
’ (x) sin(1-s)

D xsss

Solution

Let y = yp +yp. Where y, is solution to y;’ +y, = 0. This has the solution yj, = ¢; cos x + ¢z sin x. Hence
the bases solutions are

Y = COSX

Yo = sinx
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And therefore the Wronskian is

1 Yo cosx sinx .
W=y . . =cos’x +sin‘x = 1
y; y,| |—-sinx cosx
Hence .
—y2F (s)
U = ds
o W(s)

Where in the above, F (s) is the forcing function in the RHS of the original ODE which is — f (x) here,
and W is the Wronskian. Therefore

w=[ —sinerenas

0

= Jx sin(s) f (s)ds

0

Similarly, u, is found using

Y yiF (s)
0o W(s)

= [Ceose)=r onas

0

ds

Uy =

Hence the particular solution is
Yp = YU + Youz

= cos (x) JX sin (s) f (s)ds — sin (x) JX cos(s) f(s)ds
0 0
= J cos (x)sin(s) f (s)ds — j sin (x) cos (s) f (s)ds

0 0

= JX (cos (x) sin (s) — sin (x) cos (s)) f (s)ds
0

Applying (sin A cos B — cos Asin B) = sin (A — B) to the integrand above, where A = x, B = s gives

yp = —Jx sin(x —s) f (s)ds

0

Therefore the solution is

Y=Yn+Yp
= (c;cosx + ¢y sinx) — j sin(x —s) f (s)ds (1)
0

Applying BC y (0) = 0 the above becomes

0
0=1¢c —J sin(-s) f (s)ds

0
(31:0

And the solution (1) simplifies to

y(x) = cpsinx — Lx sin(x —s) f (s)ds (2)
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Applying BC y (1) = 0 the above becomes

y(x) =cysinl —Jl sin(1—s) f(s)ds
0

Hence )
2= = Jo sin(1—s) f(s)ds
The solution in (2) now becomes
. 1 x
y(x) = s1.nx J sin(1—s) f(s)ds — J‘ sin(x —s) f(s)ds
sinl J 0
| *
i L sinxsin(1 —s) f (s)ds — L sin(x —s) f(s)ds

Writing J; sinxsin(1—s) f(s)ds = f;c sinx sin (1 —s) f (s)ds+ Llc sinx sin (1 — s) f (s) ds then the above
becomes

y(x) = sirll N (JX sinxsin(1—s) f (s)ds + Jl sinx sin(1 —s) f (s) ds) - JX sin(x —s) f (s)ds
0 x 0
_ Lx sin xsj;n((ll) - s)f ) J‘Ox in () £ (5)ds + Jl sin xssi;n((ll) - S)f (s)ds
_ Lx sin xsiln((ll) —s) sin(x— s)} Fls)ds + Jl sin xssi;n((ll) - s)f(s) ds
1 o . . . Usinxsin (1 —s)
=0 o J‘o (sinx sin (1 —s) — sin (1) sin (x —s)) f (s)ds + L T(l)f (s)ds (3)

Using sin (A — B) = sin Acos B — cos Asin B, where now A = 1, B = s, then
sin(1—s)=sinl1coss—cos1lsins

And also
sin (x —s) = sinx coss — cosx sin s

Using the above two relations in first integral of (3) whichis I = f(')x (sinxsin (1 —s) — sin (1) sin (x — s)) f (s)ds
gives

X

I=| (sinx(sinlcoss—coslsins)—sin1(sinxcoss — cosxsins)) f (s)ds

Jo

X

= | (sinxsinlcoss—sinxcoslsins—sin1sinxcoss + sin1cosxsins) f (s)ds
Jo

rX

= | (—sinxcoslsins+ sinlcosxsins) f(s)ds

Jo

rX

= | (sins(sinlcosx —sinxcos1)) f(s)ds

r

= ) (sinssin(1—x)) f (s)ds

Jo

Substituting the above result in (3) results in

y(x) = Jx sin s sin (1 _x)f(s)ds+J1 sinxsin(l—s)f(s)ds @

0 sin 1 . sin (1)
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Let

sin(s) sin(1—x)

in(1 =T =
G (x’ S) = { sin(xs) si(nzl—s) <

sin(1)

Then the solution (4) can be written as
1
v = [ Gs o
0

2.1.55 Chapter 11.3, Problem 31

By using procedure in problem 30 find Green function and express solution as definite integral for

-y = fx)
y' (0)=0
y(1)=0

Solution

The first step is to determine y; (x), y, (x). These are the two fundamental solutions of y” = 0. As the
book says, to simplify the derivation, 1; (x) is selected to be the solution that satisfies the boundary
conditions at the left end of domain (x = 0 in this problem) and y, (x) satisfies the boundary condition
on the right end (x = 1).

The homogeneous solution to y”’ = 0 is

yn (x) = c1 + cox

Therefore y; (0) = 0. This gives c; = 0. Hence

y1(x) =1
The second boundary conditions y; (1) = 0 gives 0 = ¢; + ¢, or ¢; = —c; and this leads to y; (x) =
¢ (-1 +x).Or
Y2 (x) =x—1

Given y;, y2 found above, the next step is to determine the Wronskian as follows

1 x—-1
0 1

Yy Y2
1Y

W(x) = =1

Therefore, Green function is now computed using equation (iv) on page 701 of text book giving

G(x,s) = -1 { Y1 (s) yz (x) 0<s<x

POW () | yy(x)yz(s) x<s<1
But p (x) = 1 and W (x) = 1, and using values found earlier for yy, y,, the above becomes

(x—-1) 0<s<x
(s—-1) x<s<1

G(x,s) = —1{
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Hence the solution is )
yw9) = [ Glus) fe)ds 1)
0

To verify this solution, it is compared to solution to same ODE using the direct method. Let f (x) = x.
Hence the ODE is

_y// =x
y' (0)=0
y(1)=0

The solution found above in (1) can now be found as
1

y(x) = Jx G (x,s)sds +J G (x,s)sds

0 x

X 1
:J (1—x)sds+J (1—s)sds
0 x

s 2\ Y (s $%)!
=|l=-x=| +|=-=
[53),+(5-5),

- =x (2)

I
—_——
o | %,

|
| %,
N —

+
—_——
—_——
N | =

|
[SSH
N —

|
—_——
| %,

|
w|><w
N —
N —

Verification The solution is verified by solving the same problem using the direct method. The ho-
mogenous solution is y, = c¢; + czx. Since the forcing function is —x, let the particular solution be
yp = kx?, Y, = 3kx? y” = 6kx. Therefore 6kx = —x or k = %1 Therefore the particular solution is
Yp = %x3 and the general solution is

1
y(x) =c1 +cox — gx?’
Applying BC y’ (0) = 0 gives
Cy = 0
Hence the solution becomes y (x) = ¢; — %xe’. Applying BCy (1) = 0 gives 0 = ¢; — % orc; = %. Therefore
the solution is .
3

y(x) = ¢ - =x ®)

Which is the same answer found using Green function method. Of course in this case the direct method
is much simpler and easier to find. The advantage of Green method, is that once the G (x, s) is found, then
for any new f (x) only integration is needed to find the new solution, since G (x, s) does not change when
f (x) changes. The direct method requires one to find the particular solution each time, and to determine
the constants cy, c; again from boundary conditions each time f (x) changes since the particular solution
changes when f (x) changes. With Green function method, all the work in using G (x, y) is done in
the integration step only. The solution found using Green function already incorporated the boundary
conditions in it.

2.1.56 Chapter 11.3, Problem 32

By using procedure in problem 30 find Green function and express solution as definite integral for
-y = f(x)
y(0)=0
y()+y' (1) =0
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Solution

The first step is to determine y; (x), y, (x), where these are the fundamental solutions of y” = 0 where
y; (x) satisfies the boundary conditions at the left end of domain (x = 0) and y; (x) satisfies the boundary
condition on the right end (x = 1).

Since the homogeneous solution to y” = 0 is

Yyn (x) = c1 + cox

Then y; (0) = 0 gives ¢; = 0. Therefore
y1(x) =x
And to satisfy y, (1) + y; (1) = 0 then

0="(ci+¢c)+c

c1 = —2¢y
Therefore
Yo (x) = —2¢5 + cox
=c2(x—2)
Hence
Yo (x) =x—2

Now that y;, y; are found, the next step is to find the Wronskian.

x x-—-2
1 1

yr Y2
Y1 Y

W(x) = =x—(x—-2)=2

Therefore, Green function is, using equation (iv) on page 701 of text book

G(x,s) = 1 { Y1 () y2 (x) 0<s<x

POWX) | y1(x)ya(s) x<s<1

But p (x) = 1 and W (x) = 1, and using values found earlier for y;, 2, then the above becomes

-1 s(x-2) 0<s<x
G(x,s) = —
2 | x(s=2) x<s<1
~ s(Zz—x) 0<s<x
- x(22—s) x<s<1
And the solution is .
y(x,s) = J G(x,s) f(s)ds (1)
0

To verify this solution, it is compared to solution to same ODE using the direct method. Let f (x) = x.
Hence the ODE is

_y// = x
y' (0)=0
y(1)=0
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The solution found above in (1) is now found as

1

y(x) = Lx G(x,s)sds + J G(x,s)sds

X

x _ 1 _
= I $(2 x)sds + J x (2 S)sds
o 2 . 2

1
(23 —xs ) ds + ; J (2xs —xsz) ds

X

2s° s 1 2 )
— —X— xs°—x—
3 3 2 3/,

O\|»—~ c\|>—~ t\:l»—* Nlb—l

2.1 my solved problems

(2)

Verification The solution is now verified by solving the same problem using the direct method. The
homogenous solution is y, = ¢; + czx. Since the forcing function is —x, let the particular solution be
Yp = kx3,y;, = 3kx?,y” = 6kx. Therefore 6kx = —x or k = =*. Therefore the particular solution is

1

yp = %x?’ and the general solution is

Applying BC y (0) = 0 gives

Hence the solution becomes

1
y(x) =c +cox — gx3

Cl=0

Applying BC y (1) + y’ (1) = 0 gives

Therefore the solution is

Y (x) = g — =x*
. 1, 1
2% 279
2
0:202——
1
Co = —
273
11,
X)=—-X——X
y(x) ¥
:—(2x—x3)

Which is the same as (2) using Green function.
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2.1.57 Chapter 11.3, Problem 33

By using procedure in problem 30 find Green function and express solution as definite integral for

- +y) =f(x)
y' (0)=0
y(1)=0
Solution
The first step is to determine y; (x), y, (x), where these are the fundamental solutions of y”" +y = 0
where y; (x) satisfies the boundary conditions at the left end of domain (x = 0) and y, (x) satisfies the

boundary condition on the right end (x = 1).
Since the homogeneous solution to y” + y = 0 is

yp (x) = cj cosx + ¢y sinx
Then y; = —cy sinx + ¢, cosx and y; (0) = 0 leads to ¢, = 0, therefore
yp (x) = cosx

And to satisfy y; (1) = 0 then 0 = ¢ cos 1 + ¢ sin 1, hence ¢; = —¢; gfrf((i)) therefore

cos(1) .
Yz (x) = c1cosx — ¢ ) sin x
cos(1) .
=c (cosx - sin (1) sin x
Hence
s(1) .
Yz (x) = cosx — sin (1) sin x

Now that yy, y, are found, the next step is to determine the Wronskian.

Yy Y2
W(x) = .
Y Y
cos(1)
cos x (cosx ~ (D) smx)
—sinx -— (smx + (;f;((ll)) cos x)
. cos (1 . cos(1) .
= —cosx|sinx + — cosx| +sinx |cosx — — sin x
sin (1) sin (1)
] cos(l) . cos(1) . ,
= —cosxsinx — — COS“ X + SIin X COSX — — sin® x
sin (1) sin (1)
cos (1
= —— ) (coszx+sin2x)
sin (1)
_cos(1)
~ sin(1)

Therefore, Green function is, using equation (iv) on page 701 of text book

G(x,s) =

1 ) ye(x) 0<s<x
PEOWE) | yy(x)ya(s) x<s<1
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But p(x) = 1 and W (x) = 1, and using values found earlier for y;, y2, then the above becomes (using

p(x)=1)

-1 coss(cosx—%&l))sinx) 0<s<x

G(x’ S) = cos(1) _cos(l) . <s<1
~D | cosx (coss— Gy sins x<s

sin(1) | coss (cosx - Zﬁf((;)) sinx) 0<s<x

cos(1) | cosx (coss - %((B sins) x<s<1

— cos(1)

cos x
cos(1)

] s (sin(1) cos x — cos (1) sinx) 0<s<x
(sin(1) coss — cos (1) sins) x<s<1
Using sin A cos B—cos A sin B = sin (A — B) then sin (1) cos x—cos (1) sin x = sin (1 — x) and sin (1) cos s—

cos(1)sins = sin (1 — s) and the above becomes

COS s .
G(x,s)={ COs(l)sm(l—x) 0<s<x

f::(f) sin (1 —s) x<s<1

And the solution is )
y(x,s) = J G(x,s) f(s)ds
0

To verify this solution, it is compared to the solution to same ODE using the direct method. Let f (x) = x.
Hence the ODE is

-y +y) =x
y' (0)=0
y(1)=0

The solution found above in (1) is now computed as
1

y(x) = Ix G(x,s)sds + J G (x,s)sds

0 x

:J €059 sin(l—x)sds+f al sin (1 — s) sds

cos
o cos(1) , cos (1)

= I] +Iz (1)

1

The first integral is

sin(1—-x) ¥

I = s cos sds
! cos(1) Jo
sin(1—x
= sin(1 - x) (coss + ssins)y
cos (1)

sin(1 —x
= ¥(cosx+xsinx— 1)
cos (1)

The second integral is

co
L

s(alc) J‘1 ssin(1—s)ds

cos
CcoSs X . 1

= scos(s—1)—sin(s—1
coS X
cos (1)
COoS X

cos (1)

((cos(1—1)—sin(1 —1)) — (xcos(x — 1) — sin (x — 1)))

(1—=(xcos(x—1)—sin(x —1)))
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Hence (1) becomes

sin (1 — x) . Cos x
————~(cosx+xsinx —1) +
cos (1) cos (1)

y(x) = (1—=(xcos(x—1)—sin(x —1)))

1
= D (cosxsin(1 —x) +xsinxsin(1 —x) —sin(1 —x) + cosx —xcosx cos(x — 1) — cosx sin (x — 1))
cos

1
= (xsinxsin(1 —x) —sin(1 — x) + cosx — x cos x cos (x — 1))
cos (1)
1
= sl (x (sinx sin (1 — x) — cos x cos (x — 1)) — sin (1 — x) + cos x)
cos

But sin A sin B — cos A cos B = — cos (A + B), using this in the above, where now x = A, B = (1 — x) gives

y(x) = ﬁ(x(—cos(x+ 1—x))—sin(1—x) + cosx)

1
= (—xcos(1) —sin(1 — x) + cos x)
cos1

_cosx  sin(1-x)
_cos(l)_ cos (1) B

(2)

Verification The solution is now verified by solving the same problem using the direct method. The
homogenous solution to y”” + y = 0 is y, = c¢; cos x + ¢, sin x. Since the forcing function is —x, let the
particular solution be y, = kix,y, = k1,y”" = 0. Therefore k1x = —x or k = —1. Therefore the particular
solution is y, = —x and the general solution is

y(x) =cicosx +cpsinx — x
Now BC y’ (0) = 0 is applied. y’ (x) = —cy sinx + ¢z cosx — 1, therefore

O=Cg—1

Cz=1

Hence the solution becomes
y(x) =cicosx +sinx — x

Applying BC y (1) = 0 gives

0=cycos(1)+sin(1)—1

_ 1—sin(1)
~ cos(1)
Therefore the solution is
1—sin(1
y(x) = —( cossl?l() ) cosx + sin(x) — x
_ Cosx —cosxsin (1) +sin(x) - x
cos (1) cos (1)
_cosx  sin(x)cos(1)— cosxsin(1)
"~ cos(1) cos (1)
But sin (x) cos (1) — cos x sin (1) = sin (x — 1) = —sin (1 — x), hence the above becomes

v = 555 - "o - ®)

Which is the same solution in (2) found using Green function.
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2.1.58 Chapter 11.3, Problem 34

By using procedure in problem 30 find Green function and express solution as definite integral for

—y" = f(x)
y(0)=0
y'(1)=0

Solution

The first step is to determine y; (x), y2 (x), where these are the fundamental solutions of y”* = 0 where
y; (x) satisfies the boundary conditions at the left end of domain (x = 0) and y; (x) satisfies the boundary
condition on the right end (x = 1).

Since the homogeneous solution to y” = 0 is

Yyn (x) = c1 + cox
Then y; (0) = 0 gives ¢; = 0. Therefore
yi(x) =x
And to satisfy y; (1) = 0 then 0 = c,. and this leads to
Y2 (x) =1

Now that y1, y, are found, the next step is to find the Wronskian.

x 1
1

Y1 Y2
Y1 Y

=-1

W(x) =

Therefore, Green function is, using equation (iv) on page 701 of text book

-1 Y1 (s)y2 (s) 0<s<x
G(x,s) = ———
PEOWE) | y1(x)y2(x) x<s<1
But p (x) = 1 and W (x) = —1, and using values found earlier for y;, y, then the above becomes

<s<x

0<s<
G(x,s) = ’
x x<s<1

And the solution is

1
y(x.s) = L G(x.s) f (s)ds 1)

To verify this solution, it is now compared to the solution to same ODE using the direct method. Let
f (x) = x. Hence the ODE now is

_y// =x
y(0)=0
y' (1)=0
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The solution found above in (1) is now computed as

1

y(x) = Ix G(x,s)sds +J G(x,s)sds

0 x

= Lx (s) sds + Ll (x) sds

3 0 2 x

Il
|
2
+
I
-
|
%
\—[/\)

(2)

I
|
2
|
|
Y

Verification The above solution is now verified by solving the same problem using the direct method.
The homogenous solution to y”” = 0 is y, = c; + cyx. Since the forcing function is —x, the particular
solution is y,, = %x3 and the general solution is
13
y(x) =c1 +cox — gx

BC y(0) = 0 gives ¢; = 0. The solution becomes y (x) = cyx — %xs and ¢y’ (x) = ¢ — %xz. BCy'(1)=0
gives

0 1
= Cy — —
279
1
Cy = —
27
Hence the solution becomes
( ) 1 1,
X)=-x——-Xx
y 2 6

Which is the same solution in (2) found using Green function.

2.1.59 Chapter 11.4, Problem 1

Find formal solution to
= (xy)" = pxy + f (x)
where y,y’ bounded as x — 0and y (1) =0

Solution
The given ODE can be written as

. (xy) = py + S (1)
X X

The corresponding homogeneous ODE

-~y = Ay @)

Where p = x,q = 0,r = x. This was solved in the textbook at page 707. The fundamental solution
is given by y, = &, (x) = Jo (\/)L_nx) where the eigenvalues A, are the roots of J, (\/)L_n) = 0. These

eigenfunctions are not normalized. Therefore, the solution of the inhomogeneous ODE (1) can be now
written as

y (x) = i bnq)n (x)
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Using this in (1) gives
1 N [Se] (o)
X (xy’) =p Z bn®y (x) + Z cn®p (%)
n=1 n=1

But from (2), —% (xy’)’ can be replaced by Ay, so the above becomes

S hba®n () = 1 3 bu () + 3 0y () 3)
n=1 n=1 n=1

Where . £
x
nZ:; cn®n (x) = X

¢n, is now found by orthogonality. Multiplying both sides of the above by r (x) ®,, (x), where the weight
r (x) = x, and integrating gives

f( )cb (x )dx—ZCn xCDn(X)CDm(x)dx

0 0

I f(x) P (x)dx = Z Cn xCD (x) Dy, (x) dx
0
Due to orthogonality of the eigenfunctions, the above simplifies to

[} f ()@, (x) dx
en = (4)
f; x®? (x) dx

Since ®,, (x) is not normalized, fol x®?2 (x) dx can not be replaced by 1. The above is left as is. Substituting
(4) in (3) and simplifying gives

Anbn = by + ¢y

Cn
by =
(An - /1)

Where A,, # p. Hence the formal solution y = 37" | b,®,, (x) can be written as

w>—Z@, o (Viax)

Using (4) in the above gives

n=1

o - i [3 £ ()@ (x)dx | Jo («/A_nx)
/ Io x®? (x)dx (An = p)

2.1.60 Chapter 11.4, Problem 2
Consider BVP

- (xy')" = Axy
where y, ¢y’ bounded as x — 0 and y’ (1) = 0. (a) Show that Ay = 0 is eigenvalue corresponding to
®y = 1. If A > 0 show formally that the eigenfunctions are given by ®,, = J, (\//Tnx) where V21, is the
n'" positive root in increasing order of b/ (\//1_,1 ) = 0. It is possible to show there are infinite sequence
of such roots.
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(b) Show that if m = 0,1,2,--- then [} x®p, (x) @y (x) dx = 0,m # .

(c) Find formal solution to nonhomogeneous problem — (xy’)’ = pxy + f (x), where y,y’ bounded as
x — 0 and y’ (1) = 0, where f is given continuous function on 0 < x < 1 and y is not eigenvalue of the
corresponding homogeneous ODE.

Solution
Part (a)
The given ODE can be written as
xy" +y +Axy =0 (1)
2
Let t = Vax, then% = d_yg_ = \/zand = %(%\ﬁ) =\ﬁ%% \/_dtz\/_ Ady Hence

(1) becomes
Ly () + VA () + A=y (1) = 0
=Y Yy —=yt)=
VA VA
Ay (1) + Ny’ (1) + VAty () = 0
Since problem says that A > 0, then dividing by VA the above simplifies to

ty” (1) +y (1) + 1ty (1) = 0

This is Bessel ODE of zero order. Its solution is y(t) = ciJo (t) + c2Yp (t). Where Jo(0) = 0 and
lim; o Yy (£) — o0. Hence a bounded solution requires that ¢, = 0. Therefore the solution becomes

y () =cio(t)

or in terms of x

y(x) = euo (Vix)

To satisfy the second boundary condition, since y’ (x) = c¢1J; (\/Ix) = —cih (\/Ix) Therefore the

eigenvalues are roots of

]1 (‘/Ix) =0
Plotting J; (\ﬁx) shows that the first roots are A = 0. Numerically, the first few eigenvalues are
A = {0, 14.682, 49.2185, 103, 499, 177.532, - - - } (2)

Hence the fundamental solution is y (x) = Jy (\/)Lnx) where A, is given by above. When A = 0, J, (0) = 1.
Therefore the eigenfunction associated with A = 0 is ®( (x) = 1. Since there are infinite eigenvalues (2),
there are infinite eigenfunctions ®, (x) = Jp (V/lnx) wheren=0,1,2,3,- -

Part (b)

Let @, (x), ®,, (x) be any two eigenfunctions of (xy’)" + Axy = 0. Therefore each satisfies the ODE.
Hence

(x®@,)" + Apx®y (x) = 0 (3A)
(x®@,)" + Amx @y, (x) = 0 (3B)
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Multiplying (3A) by ®,,, and (3B) by @, and subtracting gives

DOy (@) + Apx @ @y (x) = @ (X)) " = XX @@y (x) = 0
Dpy (x®,)" = @p (x®,) "+ Ay = An) XPp Dy (x) = 0

Integrating from 0 - - - 1 gives

1 1 1
j D,y (x@7,) "dx — J @, (x@),) dx + (A, — /lm)J‘ x®, D, (x)dx =0 4)
0

0 0
Integrating Iol @, (x®@,)" dx by parts gives

u dv

1 —r—_—" ) 1
J O (x@p) dx = [Dpx®) |, —J @, (x@,,) dx (5A)
0 0

And similarly, Integrating f; @, (x®},)" dx by parts gives

u dv
1 r——" ) 1
J @, (x@p,) dx = [©nx®),], —J @, (x@,,) dx (5B)
0 0

Substituting (5A,5B) back in (4) gives

[@mx®)], — I

0

1 1

1
o), (x®),) dx — [CD,,XCD;n](l) + I D) (x®),) dx + (An — )Lm)J x0, @, (x)dx =0
0

0

The above simplifies to
. 1
[©mx®), — ©px®;, | ) + (An — Am)I x®, D, (x)dx =0 (6)
0

The boundary terms above simplifies to
[@0x®), ~ @ux@, | = @ (1)@, (1) = @4 (1) @}, ()]

But @, (1) and @), (1) are zero. This is because of the given boundary conditions y’ (1) = 0. Hence
[<I>mx¢>;1 - Cancb;n] (1) = 0. Therefore (6) now simplifies to

1
An - Am)j x®, P, (x)dx =0
0
But since A, — 4, # 0, since these are different eigenvalues, then one concludes that
1
J x®,P,, (x)dx =0

0

Which is the result asked to show.
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Part (c)

The problem to solve is written as

- % (cy’) = py + @ (A)

The solution to the corresponding homogeneous ODE —% (xy’)’ = Ay was found in part (a). Using
eigenfunction expansion, the solution of the nonhomogeneous ODE (A) can then be written as

y(x) = D ba®y (x) (7)
n=0

Where @, (x) = Jp (\//Tnx) ,n=20,1,2,--- and A, are roots of —J; (\/I) = 0. Using (7) in — (xy’)" =
uxy + f (x) gives
1 (o) o
- (xy’), =X Z by @y, (x) + Z cn®n (x)
x n=0 n=0

But since —< (xy’)" = Ay from part (a), then the above becomes

i Anbn®p (x) = i by®, (x) + i cn®y (x) (8)
n=0 n=0 n=0
Where . £
x
nZ:(:) cn®p (x) = X

¢n, is now found by orthogonality. Multiplying both sides of the above by r (x) ®,, (x), where the weight
r (x) = x, and integrating gives

1 chbm (x)dx = ¢ Jl x®y (x) Opy (x) dx + i Cn 1 x®,, (x) Dy, (x) dx

0 x 0 n=1 0

Jl f ()@, (x)dx = ¢ Jl x®y (x) Oy (x) dx + i Cn 1 x®,, (x) Dy, (x) dx 9)
0 0 n=1 0

For m = 0, the eigenfunction is ®; (x) = 1, and the above becomes

Ll f(x)dx =¢ Ll xdx

le Co
= C _ = —
12, 2

Therefore

For m > 0, (9) becomes
1 =) 1
[ r@en@ar=3 e [ x@0000 00 dx
0 n=1 0

Due to orthogonality of the eigenfunctions from part (b) J; x®, (x) @y, (x)dx = 0 for m # n, and the
above simplifies to

[ f @@ () dx
fol x®? (x)dx

(11)

Cn
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Since @, (x) is not normalized, JOI x®?2 (x) dx can not be replaced by 1. The above is left as is. Substituting
(10,11) in (8) and simplifying gives

Z/lnbnq% (x) = ﬂzbn(bn (x) + chq)n (x) (12)
n=0 n=0 n=0
For n = 0 only, and since A, = 0 then (12) gives
0= ,Ub()q)o (X) + coPy (x)

But @, (x) = 1, hence

Oz,ubo+co
boz—c—o
U

For n > 0, then (12) gives

Z Anbn®p (x) = p Z b,®, (x) + Z cn®, (x)
n=1 n=1 n=1
Anbyn = pby + ¢y

Cn
by =
(An - /1)

Where A,, # p1. Hence the formal solution y = 3" b,®,, (x) can be written as

Y (x) = body (x) + i by (x)

Z(A - (\/A—x)

Jo £ ) Jo (Vnx) dx
J xJ? (\/_x) dx

:_I%Llf(x)ar“z‘(/1 1—,”) ]o(\//l—nx)

But f; xJ? (\/Ex) dx = % (]3 (\/E) + ]12 (\//1_,1) ) , hence the above becomes

v f f@ (\/)t_nx) dx
ki) £

y(x)=—l%£f(x)dx+22 Jo (VAax)

2.1.61 Chapter 11.4, Problem 3

Consider — (xy’)" + k;zy = Axy. with y, y’ bounded as x — 0 and y (1) = 0, where k is positive integer.
(a) using t = VAx show the ODE reduces to Bessel of order k. (b) show formally that the eigenvalues
A1, Ag, - -+ of the given differential equation are the squares of positive zeros of Ji (\/Z) and that the

corresponding eigenfunctions are @, (x) = (\/Ix) It is possible to show there as infinite sequence

of such zeros. (c) Show that the elgenfunctlons ®,, (x) satisfy the orthogonality relation

1
J x®,, (x) P, (x)dx =0 m#n
0
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(d) Determine the coefficients of the formal series expansion f (x) = X a,®, (x). (e) Final formal
solution of the nonhomogeneous problem

k.2
—(xy")" + ~y=pxy+ f(x)

With y, y’ bounded as x — 0 and y (1) = 0, where f is given continuous function on 0 < x < 1 and p is
eigenvalue of the corresponding homogeneous problem.
Solution

part (a)
The ODE to solve is 2
-(xy) + —y-Axy=0
x

Note: The problem seems to not have mentioned that A > 0 here as well, as in the problem above it. This
condition is needed to fully solve this problem with y, y” bounded as x — 0 and y (1) = 0. The ODE can
be written as

kZ
e 2 -0
xy’ -y +y(x x)
kz
xy"+y'+y(/lx——) =0 (1)
x
Let t = Vix, then % d = d_ys_ = \/Iand dxz (%\ﬁ) = \ﬁ%% = \ﬁ%\ﬁ = /1001”2 Hence

(1) becomes

F OV O 4y () (% K 3
2
tNay” (1) + YAy’ (t)+\/_y(t)( k—) 0
y

2.1

t?y” +ty’ + (t* - kP

This is Bessel ODE of k order.

Part (b)

The solution to the above ODE is known to be

y () = ek () + c2 Y (1)

Where Ji (0) = 0 and lim;_, Y () — oo. Hence a bounded solution requires that c; = 0. Therefore the
solution becomes

y (1) = ek (t)

Or in terms of x

y () = e (Vix)

To satisty the second boundary condition y (1) = 0 gives

c1Jk (\/Z) =0
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Non-trivial solution implies Ji (\/i) = 0. Therefore the eigenvalues are the square of positive roots of

this equation. Even though there are negative and positive roots for Ji (\/I) = 0 but for real root, A

must be non-negative. It assumed A > 0. There are infinite number of positive roots for Ji (\/I) = 0.

Hence the eigenfunctions are
(I)n(x):]k(v/lnx) n:1’2’3""

Where A, are square of the all positive zeros of Ji (\/I) =0.

Part (c)

Show that the eigenfunctions ®,, (x) satisfy the orthogonality relation

1
J x®p, (%)@, (x)dx =0 m#n
0

Let @, (x), P, (x) be any two eigenfunctions of — (xy’)" + k?zy = Axy where now &, (x) = J (\//I_nx)

and @, (x) = Ji (V/lmx) . Therefore each satisfies the ODE. Hence

2
— (x®;)" + k;fbn (x) = Anx®, (x) = 0

;K
- (x®;,)" + ;Cbm (x) = Aux®,, (x) = 0
Multiplying 3A by ®,, and 3B by ®,, and subtracting gives

2 2

(34)

(3B)

, k , k
=@y, (xP),) " + Oy — Dy (x) = Anx @@y, (x) — | = (Pnx®),) + — PPy (X) = Ay x Py, (x)] =0
x x

2

’ k 7 kz
=@y, (xP),) "+ — @@y (x) = Anx P, @y, (%) + Py (xD),) " — — P Ppyy (%) + Ay x PPy (x) = 0
X X

— (x®}) "+ (x@},) " + (A = An) X @y (x) = 0

Integrating from 0 - - - 1 gives

1 1 1
J D,y (xP)) "dx — J D, (xP),) "dx + (A, — Am)J x®, P, (x)dx =0
0 0 0

Integrating Jol @, (x@),) " dx by parts gives
u dv
NN L 1
J O (x®),) dx = [Pmx®),], —j @, (x®},) dx
0
And similarly, Integrating J; D, (xP1,) " dx by parts gives

u dv

1 —r—_—" . 1
J ®, (x®p,) dx = [©nx®),], —J @, (x®,,) dx
0 0

(5A)
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Substituting (5A,5B) back in (4) gives
[(I)meD;l](l) - Jol @, (x@},) dx — [@,xD), ]0 J @), (x®,) dx + (An — Am)J x®, P, (x)dx =0
The above simplifies to
[@mx®), — @ux®, | ) + (A = Am) Ll x®p @,y (x)dx = 0 (6)
LetA = [CImeCI);l - <I>nx<l>;n] é, then the boundary terms above simplifies to
A= [ (1) @], (1) = @5 (1)@, (D] = lim [xDp, (x) @, () = xDp (x) B, ()]
But @, (1) and ®,, (1) are zero. This is because of the given boundary conditions. Hence the above

simplifies to
[@mx®), — Ppx®), ], = - lim (x (P () @, (x) = Py (x) @}, ()

But since both @, (x), ®, (x), ®), (x), ), (x) are bounded as x — 0 then the above vanishes. This means
the all the boundary terms are zero and (6) simplifies to

1
An — )Lm)J x®, 0, (x)dx =0
0
But since A, — A, # 0, since these are different eigenvalues, therefore

1
J x®,®,, (x)dx =0
0

Which is the result asked to show.

Part (d,e)

This is both parts combined. To solve — (xy’)" + k;y = pxy + f (x), we start with dividing by x to get
the ODE to the form
k? f (X)

. (xy") + ZY T (1)
X

The homogeneous ode —% (xy’) + i—zy = Ay was solved in part (a,b). And since the problem says that
A # u, then the solution to the above nonhomogeneous ODE is

y(x) = D ba®y (x) (1)
n=1

Where @, (x) are eigenfunctions of the homogeneous ODE found above to be

q’n(x)=]k(\//1—nx) n=123-

Substituting (2) in RHS of (1) gives
1 A\ k2 > >
-=(xy) + Y= .qunq)n (x)"‘ch(bn (x)
X X n=1 n=1
Where > | ¢, ®p (x) = ) (x) .But -1 < (xy’) + k y Ay from part (a,b). Therefore the above becomes

i Anbn®p (x) = p i b,®, (x) + i cn®@, (x)
n=1 n=1 n=1
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Anbn = by + ¢y,
Cn

An — 1

What is left is to to find ¢, (called a, in this problem). Since X ¢, ®, (x) = @, then applying
orthogonality gives

Cn ‘r r(x) @ (x)dx = Jl r(x) M(IJ,, (x)dx
0 X

0
But r (x) = x, and the above becomes

Cn Ll x],f (\/Zx) dx = Ll () Jx (\/Ex) dx
) [o f )k (\//Tnx) dx
B fol xJ? (\/)L_nx) dx

n

This complete the solution.

y(x) = g bnJk (\/A—nx)
:1 Anci ﬂ]k (\/A—"x)
o [o F )k (\//Tnx) dx Ji (\//TnX)
ng f;x]]f (\/Ex) dx An =

2.1.62 Chapter 11.4, Problem 4

Consider Legendre equation — ((1 - x?) y’)" = Ay subject to boundary conditions y (0) = 0 with y, y’
bounded as x — 1 and ®; (x) = P; (x), @, (x) = P5 (x), D, (x) = P,—1 (x) corresponding to eigenvalues
AM=2,1=4-3,---, 1, =2n(2n —1). (a) Show that the eigenfunctions ®@,, (x) satisfy the orthogonality
relation

'r(l)m(x)d)n(x)dxzo m#n
0

(b) Final formal solution of the nonhomogeneous problem — ((1 — x?) y’) "= py + f (x) where y (0) = 0
with y, y’ bounded as x — 1 where f (x) is continuous function on 0 < x < 1 and y is not eigenvalue
of - ((1-x?)y) =y
Solution
Part (a)
Let @, (x), P, (x) be any two eigenfunctions of — ((1 —x?) y’) " = My associated with eigenvalues
An, Am, where @, (x) = P, (x) and ®,,, (x) = P,, (x). Therefore each satisfies the ODE. Hence
((1-x%) @, (x)) + An®, =0 (3A)
((1=x%) @, (%)) + An®@p, = 0 (3B)
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Multiplying 3A by ®,, and 3B by ®,, and subtracting gives

D (1= %) ) () + 0P = (@ (1= 2%) @, (1) + An@p®p) = 0
D ((1=x%) @ (%)) = @ ((1=x%) @, (%) + (An = Ap) @p@py = 0

Integrating from 0 - - - 1 gives (all upper limits below show be lim,_,¢- fol ~ instead of J; but to simplify
notation, the latter is used and at the end, it is switched back to former.

Jlepm ((1-x%) @, (x))/dx—J

0 0

1

O, ((1- %) @, (x)) dx + (Ap = Am) Jl OB (x)dx =0 (4)
0

dv

u
—~

The first integral in (4) f; @, ((1-x?%) @, (x)) dx is integrated by parts, giving

1

Ll D ((1-x%) @, (x)) dx = [®m (1-x%) @), (x)](l) - J.o @), ((1-x%) @, (x)) dx
1

= [® (1- %) @, ()] - J o (1-2%) @, () dx  (48)

0

u dv

—
Similarly, the second integral in (4) fol o, ((1-x%) @, (x)) "dx is integrated by parts, giving

1

L @, (1= %) ®), (1)) dx = [@ (1 - x%) @ ()] - L @ ((1-x2) @), (x)) dx

= [ @ (1-x2) @, (0] - L o, ((1-x%) ¥, () dx  (4B)

Substituting (4A) and (4B) back into (4) gives

1

[ (1) @, 0] - [ 00 (1) @}, (0) -

([0 (152 0] - |

1

@ ((1-x) @), () dx)
+(An = Am) Ll D, D, (x)dx =0
Terms cancel and the above reduces to
(@ (1-x%) @, ()] 4 = [®m (1= x%) @} ()] g + (An — Am) Ll O, @, (x)dx = 0
[ (1—x*) @, (x) — P (1 - x%) @), (x)](l) + (A, - Am)Ll P, P, (x)dx =0 (5)
Let A = [®y, (1 - x%) @), (x) = ®p (1 - x%) ), (x)] , The boundary terms above are evaluated as follows

A= thI [@1 (x) (1= x*) @), (x) = P (x) (1 = x?) @), (x)] = (D (0) D], (0) — Dy, (0) D), (0))
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Since ®,, (0) = 0, ®,, (0) = 0, the above simplifies to
A= lim1 [d)m (x)(1- xz) P (x) = Dy (x) (1 - xz) 0} (x)]

= lim (1 - x) [®p () 7, (x) = Dy (x) ¥}, ()]

Since @, (x), P}, (x), P (x) @), (x) are all bounded as x — 1 then the above goes to zero in the limit.
Which means all boundary conditions term vanish. Hence (5) reduces to

1
un—LwL;EQmawu=o

But since A,, — A, # 0, since these are different eigenvalues, therefore

1
J D, D, (x)dx =0
0

Which is the result asked to show.

Part (b)

Since A # p, then the the solution to nonhomogeneous ODE is
L} (x) = Z by @y, (x) (1)
n=1

Where @, (x) are eigenfunctions @, (x) = P(z,-1 (x). Substituting (1) in — ((1 — x?) y’) "=y + f(x)
gives

— ((1 — x2) y')’ = IUZ b, ®, (x) + Z cn®n (x)
1 n=1

Where ¥, ¢, @, (x) = f (x). But — ((1 - x?) v//) " = Ay, therefore the above becomes

i Anbp®, (x) = H i bp®, (x) + i cn®p (x)
n=1 n=1 n=1

Anby = by + cpy

Cn
b, =
An —

What is left is to to find c,. Since X} ¢, ®, (x) = f (x), then applying orthogonality gives

1 1
an r(x) @2 (x)dx = J r(x) f(x)®, (x)dx

0 0

But r (x) = 1, and the above becomes

1 1
n || Py @1 = | £ 0 Planey )

_ Jol f (%) Pan-1) (x) dx
J‘O1 P(Zzn_l) (x) dx

Cn
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This complete the solution.

8

y(x) = Zb Pan-1) (x)

n=1

P(Zn 1 (%)

MX ||M8

)L
J f (%) Pan-1) (x) dx Pion-1) (x)
f (2n-1) (x)dx An = pt

3
Il
—_

2.1.63 Chapter 11.4, Problem 5

Equation (1 —x?) y”” — xy’ + Ay = 0 is Chebyshev’s equation. (a) show it can be written as

—(Vl—xzy') =\/%y -1<x<1
- x

(b) consider boundary conditions y, y’ bounded as x — —1 and x — +1. Show that the problem is self
adjoint. (c) Show that

' T (0) T (%) ()
dx =0
-1 V1-—x2
Where T, (x) are the eigenfunctions :Ty (x) = 1,T; (x) = x,T> (x) = 1 — 2x?% - -- and eigenvalues are
A, =n?forn=0,1,2,---
Solution
Part (a)

Writing the ODE (1 - x%) y” — xy’ + Ay = 0 as
P(x)y”"+Q(x)y +R(x)y =0
Where P (x) = (1 —x%),Q(x) = —x, R(x) = A, then the integrating factor is

1 J' Q(x)d

= —e P(x)

F=p
_ 1 ef (1:;2)‘1’(
S (1-x?)

But J (l_x—xz)dx = %ln |1 - x2|, therefore 2 "1=%°l = V1 = xZ and the above becomes U=
the SL form is

L_H
—_—. ence
V1-x2

(uPy’)" + uR(x)y = 0

1
Ay=0
V1 — x?

- (my')’ = ! Ay
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Part (b)
A problem is self adjoint if
(L{u],v) = (u,L[v])

Where u, v are any two arbitrary eigenfunctions of the ODE which therefore by definition satisfy the
ODE and the boundary conditions as given. Starting with (L [u], v) and it is evaluated to see if it leads
to (u, L [v]). The operator is defined as (from part (a)) as

L[y]=—(V1—x2y’),= 11 Ay

Therefore

Integrating by parts gives

(L[u],v) = [— (mu') v] 1_1 - ‘[_11 - (mu’) v'dx

Integrating by parts again gives

(L[u],v) = :— (mu') v] 1_1 - ([— (mv') u]

1

- j - (Vi) udx)

r 1 1 ’
= [-V1-x2u'v+V1- xzv'u] + J‘ - (Vl — xzv') udx
] -1 ),

. 1
= [V1-x2(0'u— u’v)] ) + {u, L[v])
1
Therefore the ODE is self adjoint if the boundary terms vanish. Let A = [‘Vl —x?(0'u—u'v)| .Evalu-
-1
ating this gives
A= lim1 V1-x2(@ (x)u(x)—u (x)v(x)) — lim1 V1-x%(0 (x)u(x)—u (x)v(x))

But since u,u’ are bounded as x — —1 and x — +1 and also v, v’ are bounded as x — —1 and x — +1,
then this shows that A — 0. Therefore

(L{u],v) = (u,L[v])
Hence the ODE is self adjoint.
Part (c)

Since T, (x), T, (x) are two eigenfunctions of — (Vl - xzy’) = ﬁ/ly then each satisfies the ODE.

Hence

’ 1
(Vl x Tn) + mAnTn 0 (3A)
’ 1
— 2 4 —_— =
(Vl x Tm) + mAme 0 (3B)
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Multiplying 3A by T,,, and 3B by T}, and subtracting gives

T (V1 - xZT,;) + AT Ty - (Tn (\/1 - xZT,’n) +

1—x2

—AanTm) =0

1—x2

— ) _ —ar )
m(\h xTn) T, (V1 me) + (A=) mT T,
Integrating from —1-- - 1 gives
1 ’
J Tm(Vl—sz,;) dx—J (Vl—sz ) dx + (A, — m)f dx =0 (1)
-1 -1 l—x2

Integrating by parts the first integral in (1) above gives
1 ) 1 1
J Ty (V1 =Ty ) dx = [Tm\/l - xZT,;] - j T (V1 - xZT,;) dx (1A)
-1 -1 -1
Integrating by parts the second integral in (1) gives

Jl T, (WT,;)'dx = |mVi=w 11 - Jl T, (VI=7Ty,) dx (1B)
- -1

Substituting (1A) and (1B) back into (1) and simplifying gives

1 11 1 T.T
[me/l - xZT,;] - [Tn\/l | e | \/;”_”zdx -0
) |- b Vi

11 rl TT
T, V1 = x2T. = T,V1 — x2T +(A, = A " dx=0
[m Xin " x ] (n m)u—l Vl—xzx

11 rl T.T
V1 -x2 (T, T, - T, T, +(Ap—Am) | —==dx=0 (1C)
[ (TwT, ’")_ -1 JoaaVi—x2

1
Let A= [VT=2 (T, T; - TuT;,) | then
-1

A= J1{1_>m1 V1 —x2 (T, (x) T, (x) = Ty (x) Ty, (x)) — xli_)rr_ll V1= x2 (T, (x) T, (x) = Ty (x) Ty, (%))

But since T,, (x), T, (x), T, (x), T,, (x) are all bounded as x — —1 and as x — +1, then A — 0. Therefore
(1C) becomes
>j ~ 0
But since A,, # A,,,, since m # n, then
1
TmThy
dx =0

-1 V1 —x2
Which is what we are asked to show.

2.1.64 Chapter 11.5, Problem 2 (With interactive animation)

Find displacement u (r, t) in vibrating circular elastic membrane of radius 1 that satisfies the boundary
conditions
u(l,t)=0 t>0
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And initial conditions

u(r,0)=0
ur (r,0) =g(r)

For 0 < r <1, where g(1) = 0.
Solution
The wave equation is u;; = a? (uxx + uyy) . In polar coordinates this becomes

1 1 1

— Ut = Upr + —Ur + —Uge
a r r

Due to circular symmetry, the above simplifies to

1

—SUtt = Upr + —Ur
a r

2.1 my solved problems

Applying separation of variables. Let u = T (t) R (r). Substituting this in the above PDE gives

1 1
—T"R=R'T+>RT
a r

Dividing by RT results in
1 TN 3 R/l 1RI B

- +-o—=-)?
at T R rR

Where A is the sepration constant. For A > 0 (it is known A = 0 is not eigenvalue, as well as there are

no negative eigenvalues.) The above gives two ODE
T + 2%a*T = 0

And
rR”(r)+R (r)+ A*rR(r) =0

(1)

With the boundary conditions R(1) = 0 and to R (0) is bounded. This comes from physics, since one
expects the vibration not to blow up in the center of the membrane. The ODE (1) is now transformed

to Bessel ODE using
E=Ar
Hence 4R = d—lgd—f = /13—? and Zz—rlf = AZ%. Therefore (1) becomes

%)LZR” (&) + AR’ (&) + /12§R & =0

The above simplifies to
ER" () + R (E) +ER(H) =0
The above is Bessel ODE of order zero. Its solution is

R(&) = c1Jo (&) + c2Yo (&)

Converting back to r the above becomes

R(r) = c1Jo (rd) + c2Y (rd)

Since R(r) is bounded as r — 0, then ¢; = 0 as Y (rA) blows up at r = 0. Therefore the radial solution

becomes

R(r) = c1)o (rd)
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At boundary conditions R (1) = 0 the above becomes
0=cijo(4)

Non trivial solution requires Jy (1) = 0. Therefore the eigenvalues are the the positive roots of J; (1) = 0.
The first few eigenvalues are A; = 5.78319, 1, = 30.4713, A3 = 74.887, - - - . Hence

R, (r) = cnJo (Anr) n=123,---
Now the time ODE is
T” + A2a*T =0
Since A > 0 then the solution is
T, (t) = A, cos (Apat) + B, sin (A,at)

Therefore the fundamental solution is

un (r, 1) = Tn (£) R (r)

And by superposition, the general solution is

u(r,t) = i (Ap, cos (Apat) + By sin(A,at)) Jo (Anr) (1A)

n=1

Where the ¢, is merged into A,, B, due to the product. At t = 0 and since u (r, 0) = 0, the above becomes

0= ZAnJO (Anr)
n=1

Hence A, = 0. The solution simplifies to

u(r,t) = i By, sin (Anat) Jo (Anr)

n=1

Taking time derivative gives

uy (r,t) = Z BuAnacos (Anat) Jo (Anr)
n=1

At t = 0, and from initial conditions, the above becomes

[

g (r) = BpAnaly (Anr)

n=1

Applying orthogonality, and since the weight is r, therefore

1 1
J rg (r) Jo (Ayr)dr = BnAnaJ r]o2 (Apr)dr

0 0
P s 790 JoChur)dr o
An@ [ 17 J2 (Anr)dr

Therefore the final solution is

u(r,t) = i By, sin (Apat) Jo (A1)
n=1

With B,, given by (2).

The following is an animation of the above solution. a = 0.2 and g(r) = r was used. This runs inside the
PDF (need to use standard PDF reader to run the animation. Might not run inside Chrome browser PDF
reader).
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2.1.65 Chapter 11.5, Problem 3 (With interactive animation)

Find displacement u (r, t) in vibrating circular elastic membrane of radius 1 that satisfies the boundary
conditions
u(lL,H)=0  t>0

And initial conditions
u(r,0)=f(r)
uy (r,0) =g (r)

For 0 < r < 1, where g(1) = 0.

Solution

The same steps are used to reach the general solution as was done in the above problem. The difference
is when initial conditions are used to determine the coefficients.

The general solution from the above problem was found to be

u(r,t) = i (A, cos (Anat) + B, sin (Ayat)) Jo (A,r) (1A)
n=1
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Att=0 .
f(r) = ZAnJO (Anr)
n=1

Applying orthogonality, and since the weight is r results in

J‘l I’f (r) Jo(Apr)dr = A, Jl r]02 (Anr)dr
0 0
L L0 hOwnar

I (2)
[y rJE (Anr)ar
Taking time derivative of the solution (1A)
u; (r,t) = Z -A, \/A_na sin (Anat) + ByAnacos (A,at) Jo (Anr)
n=1

At t = 0, and from initial conditions, the above becomes
g(r)= Z BnAnao (Anr)
n=1

Applying orthogonality, and since the weight is r, therefore

1 1
J rg (r) Jo (Anr)dr = anlnaj r]o2 (Apr)dr
0 0
P /5 9 () Jo (Anr) dr "
Ana Io rJi (Aur)dr

The two coefficients A,,, B,, are now found. Therefore the final solution is

u(r,t) = Z (A,, cos (\/A—,,at) + B,, sin (\/Zat)) Jo (\/Zr)
n=1

With A, given by (2) and B, given by (3)

The following is an animation of the above solution. a = 0.2, g(r) = r and f(r) = 1 — r was used.

This runs inside the PDF (need to use standard PDF reader to run the animation. Might not run inside

Chrome browser PDF reader).
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2.1.66 Chapter 11.5, Problem 4

The wave equation in polar coordinates is

1 1
—Utt = Uprr + -u, + —Uo0
a r r

Show that if u (r,0,t) = R(r)®(0) T (t) then R,®, T satisfy the ODE’s

r*R” +rR + (A*r* —=n*) R=0
0" +n*0 =0
T” + 2%a°T = 0
Solution

Letu(r,0,t) = R(r)© (0) T (t). Substituting in the wave PDE gives

1 1 1
—T"RO =R'TO + -R'TO + —O"RT
a? r r2

2.1 my solved problems
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dividing by ROT gives
1T"_R”+1R’+ 10”7 12
T R rR rPe
Where A is separation constant. The above now become
1 TII
pi M
RII 1R/ 1 @/I
—t =+ =—=-)?
R rR r2e
The second ODE above can now be written as
R// R/ @//
rP—4r— 4+ — = —r’)?
R R ©
R// R/ @//
Pe—tr—+r’)=——=n°
R R C)

Where n is the new separation constant (I do not like using n for this, but this is what the book did).
The above now gives the ODE’s

@Il 9
- = 2
= @
rP— +r— +r’A* = n? (3)

Therefore (1,2,3) becomes

T” +a*2*T =0 (1A)
0" +n*0 =0 (2A)
r*R” +rR + (r*A* = n*) R=0 (3A)

Which is what the problem asked to show.

2.1.67 Chapter 11.5, Problem 5

In the circular cylindrical coordinates r, 8, z defined by

x =rcosf
y=rsinf
z=2z

Laplace equation is
1 1
Urr + —Ur + —Uge + Uzz = 0
r r
(a) Show that if u (r,0,t) = R(r)© (0) Z (z) then R, ©, Z satisfy the ODE’s
R’ +rR + (A*r* —=n®*)R=0
" +n*@=0
Z'-2Z=0
(b) Show that if u (r, 8, z) is independent of 6 then the first equation in (a) becomes
r*R” +rR + A*r*R=0

The second is omitted altogether and the third is unchanged.
Solution

116



2.1 my solved problems

Part (a)

Letu(r,6,z) = R(r)© () Z (z). Substituting in the wave PDE u,, + %ur + rizugg + u,, = 0 gives

1 1
R'®Z + -R'©Z + 0"RZ+Z"RO =0
r r

dividing by R®Z gives
R/I 1R/ 1 @Il Z// 9
—t——t+t—=—-—=-1
R rR r2e VA
Where A is separation constant. The above now become
zZ"-2Z=0 (1)

R/I 1Rl 1 @l/ 3

o+ —=-1%
R rR r20
The second ODE above can now be written as
R// R/ @//
rPP— +r— + — = —r2)?
R R ®

R// RI @//
Pe—tr—+r22=- = n?
R R 0

Where n is the new separation constant. The above now gives the ODE’s

0"
e n? (2)
rzl + rR—, +7r2)% =n? (3)
R R

Therefore (1,2,3) becomes
Z"-NZ=0 (1A)
0" +n*0 =0 (2A)
r*R” +rR + (r*A* = n*) R=0 (3A)

Part (b)
When no dependency on 6 then the ODE becomes u,, + %ur +uy,, = 0. Let u(r,z) = R(r)Z(2).
Substituting into the wave PDE
1
R'Z+-R'Z+Z"R=0
r
dividing by RZ gives
R// lRI ZI/ 9
—_t-—— = —-— = —/1
R rR Z
The above gives

RN 1 Rl 3

+-— = -}
R rR

_Z_N:_AZ
z

1
R'+-R +A*R=0
r
7" -NZ=0
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2.1.68 Chapter 11.5, Problem 6

Find steady state solution in semi-infinite rod 0 < z < 00,0 < r < 1 if the temperature is independent
of 6 and approaches zero as z — co. Assume u (r, z) satisfies boundary conditions

u(l,z)=0 z2>0
u(r,0) = f(r) 0<r<i

Solution
The PDE is .
Upp + —Up + Uz, =0
r

By separation of variables, as was done in problem 5 above, this gives
1
R'+-R +2°R=0 (1)
r
R(1)=0
lirr}) R(0) — bounded
r—
And
zZ'-2Z=0 (2)
Z(0)=f(r)
lim Z(r) - 0
Z—00

The solution to (2) is known to be
R(r) = cno (Anr)
Where 4, are the positive roots of Jy (4,,) = 0. The solution to (2) is

Z(z) = AneA"Z + Bne_’l"z
Since u goes to zero as z — oo, then this implies A, = 0. Hence
Z (z) = Bye 'n?

Hence the overall solution becomes

w(rnz)= > Bae %y (Aor)

n=1

Where ¢, is combined with B,,. To find B,,, using the final boundary condition u (r,0) = f (r) gives

fr)= i BnJo (Anr)

n=1

Applying orthogonality and using the weight of r gives

Jl rf (r) Jo (Apr)dr = By Jl r]oz (Apr)dr
0 0

ol f Ol Ganydr
f; rJ¢ (Anr)dr

Hence the solution is now complete. It is given by

u(r)=3 Jyrf 0o Gor)dr

Jo (Anr)
n=1 L: rJE (Anr)dr ot
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2.1.69 Chapter 11.5, Problem 7

7. The equation
Uy + Uy, + kKv=0

is a generalization of Laplace’s equation and is sometimes called the Helmholtz!? equation.

(a) In polar coordinates the Helmholtz equation is
U + (1/P)v, + (1/r)vge + k20 = 0.
If v(r,6) = R(r)® (), show that R and O satisfy the ordinary differential equations
R +rR + (k*r* — A»)R = 0, ®" 4+ 120 = 0.

(b) Consider the Helmholtz equation in the disk r < c. Find the solution that remains
bounded at all points in the disk, that is periodic in  with period 27, and that satisfies the
boundary condition v(c, ) = f(#), where f is a given function on 0 < 6 < 2.
Hint: The equation for R is a Bessel equation. See Problem 3 of Section 11.4.

Solution

Part (a)
Substituting v (r, 8) = R(r) © (0) into the PDE gives

’” 1 ’ 1 77 2
R ®+—R®+—2® R+ kRO =0
r r

Dividing by RO gives
RII 1 R/ 1 @Il
—t-—+=—+k*=0
R rR r2oe
R// RI @II
et r— +r%k? = —— = }?
R R (C]

Where A is the separation constant. This gives

124 ’

P r— P2k -2 =0
R R

And .,
_8_ =22
€]

Hence

rR” +rR + R (r’k* - n®) =0
0" +2’0=0
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Part (b)

Starting with ®” + A?@ = 0. The eigenvalue A can not be negative. The following two cases are
considered.
Case A =0
Solution is

0 (9) =c¢10+c
The boundary conditions are periodic with period 27, meaning

©(0) =0 (2n)
0’ (0) =0’ (27)
Applying first BC gives
Cy =C12m + Co (1)

Applying second BC gives
1 =0C (2)

So ¢; can be any value. But to solve (1) ¢c; must be zero. Hence first BC now gives
Co = Cy

Which means c¢; can be any value, say 1. Therefore A = 0 is an eigenvalue with eigenfunction @, (0) = 1
Case A >0
The solution now is

0 () = Acos(A8) + Bsin (16)

The boundary conditions are periodic with period 2, meaning

©(0) = © (27)
®(0) = © (27)

Applying the above boundary conditions gives

A = Acos(A2r) + Bsin (A21)
BA = AAsin (A2) + BA cos (A27)

This means A must be an integer n = 1,2, - - - for the above relations be satisfied. Since only when n is
an integer, the above gives A = A and BA = BA. Hence the eigenfunction in this case is

®, (0) = Ay, cos (nd) + By, sin (nf) n=12---

Now that the eigenvalues are found, the solution to the R ODE is found. Summary of the above result:
The eigenvalues are n = 0 with eigenfunction @y (f) = 1and n = 1, 2,3, - - - with eigenfunction @, (6) =
A, cos (nf) + B, sin (nf) .

Case A=n=0

In this case, the R ODE above r’R” + rR’ + R (rzk2 - /12) = 0 reduces to

r’R” +rR' +Rr’k? = 0
let

t=rk
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Therefore R’ (r) = R’ (t) k and R” (r) = R” (t) k. Substituting these in the above ODE gives

t2

t t?
v k*R” (t) + EkR’ (r) + Rﬁkz =0

t’R” (1) + tR' (t) + t’R(t) = 0
This is now Bessel ODE of order zero. Its solution is
Ro (t) = AoJo (t) + BoYo (1)
Converting back to r, the above becomes
Ry (r) = AoJo (rk) + BoYo (rk)
Since R is bounded at r = 0, this implies By = 0, since Y, (rk) blows up at r = 0. Hence

Ry (r) = AoJo (rk)

This is the solution for eigenvalue n = 0.
CaseA=n>0
The Bessel PDE now has the form r?R” (r) + rR’ (r) + (r’k® — n*) R(r) = 0. To convert the ODE to
standard Bessel form let
t=rk

Therefore R’ (r) = R’ (t) k and R” (r) = R” (t) k. Substituting these in the above ODE gives
ﬁsz” (t) + EkR' (r)+R ﬁkz -n?l =0
k2 k k2 B
t?R” (t) +tR () + R(t) (t* —n*) =0
This is now Bessel ODE of order n. Its solution is
R, (t) =AnJn (t) + B, Y, (t)
Converting back to r, the above becomes

Ry (r) = ApJn (rk) + B, Y, (k)

Since R is bounded at r = 0, this implies B,, = 0, since Y, (rk) blows up at r = 0. Hence R (r) = A, J,, (rk).
This is the solution for eigenvalue n > 0.
Hence the fundamental solution is

v (r,0) = Og (0) Ry ()
= AoJo (rk)

Since @ (6) = 1 and

Un (1,0) = @, (0) Ry (1)
= (A cos (n) + By, sin(nh)) J, (rk)

Where the constants are combined. Therefore the general solution becomes

v(r,0) = Ao (rk) + i (Ap cos (nf) + By, sin (nf)) J, (rk) (3)
n=1

121



2 HWs

Constants Ay, A,, B, are found from boundary conditions. At r = ¢, u(c,0) = f(6) and the above
becomes

f(0)=AJ (ck)+ Z (A, cos (n) + By, sin(n0)) J, (ck)
n=1
For n = 0 only and applying orthogonality
2m 2m
J f(6)do = J Ao Jo (ck) do
0 0

2m 21
f f(9>de:AOJo<ck>j 46
0 0

= 21 AoJo (ck)
Hence -
I f@a
0 27 Jo (ck)

And forn > 0

2w 00 2

J f(6)sin(m6)do = Z (A, cos (n) + By, sin(n#)) sin (m6) J, (ck) do
0 n=14J0

00 27 0 2
= Z Jn (ck) Ay J cos (nf) sin (m0) do + B, Z Tn (ck) J sin (nf) sin (m6) d6
n=1 0 n=1 0

But L)z;r cos (n#) sin (m0) df = 0 for all n, m and the above now is solved for B,

7 f(0)sin(mb)db = B, i T (ck) JM sin (nd) sin (m#) do
0 =1 0

2
= By Jm (ck) ‘[ sin? (m0) do
0

= BiJm (ck)
Hence .
_Jo f(0)sin (n0) do
" 7 Jn (ck)
Similarly, to find A,
27 =) 27
J f(0)cos(mb)do = Z (A, cos (n) + By, sin (n6)) cos (m0) J,, (ck)do
0 n=14J0

= i Jn (ck) A, Jzn cos (nf) cos (mf)do + B, i Tn (ck) ‘[2” sin (nf) cos (m6) do
n=1 0

0 n=1

But Jjﬂ sin (n@) cos (m@) dO = 0 for all n, m and the above now is solved for A,

2

i f(0)sin(mb)do = A, i Tn (ck) Jzn cos (n#) cos (mb) do
0 =1 0

2

= ApJm (ck) J cos? (mb) df
0

=AmnJm (Ck) T
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Hence

N 2 £ () cos (n) d6
- 7 Jn (ck)

n

The complete solution from (3) becomes

v(r,0) = AgJo (rk) + i (A, cos (nf) + B, sin (nh)) J, (rk)
n=1

N RAGL
* 7 2nmJ (ck)
o™ f(0)sin (n6) do
" 7] (ck)
o £(8) cos (nd) d6
" 7] (ck)

2.1.70 Chapter 11.5, Problem 8

8. Consider the flow of heat in a cylinder 0 <r < 1,0 <6 < 27, —00 < 7 < oo of radius 1
and of infinite length. Let the surface of the cylinder be held at temperature zero, and let
the initial temperature distribution be a function of the radial variable r only. Then the
temperature u is a function of r and ¢ only and satisfies the heat conduction equation

o’ [u,, + a/ru,] = u,, O<r<l1, t>0,
and the following initial and boundary conditions:
u(r,0) = f(r), 0<r<l,
u(l,n =0, t > 0.
Show that N
u(r,t) =y cudoGuurye e,

n=1

where Jy(A,) = 0. Find a formula for c,,.

Solution
Let u (r,t) = R(r) T (¢). Substituting into the PDE gives

1 1
—T'R=R"T+ -R'T
a? r
Dividing by RT gives

1T R’ 1R _

=i =)
T R rR
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Where A is the separation constant. This gives the ODE

1

R’'+ =R+ MR=0
r

rR” + R+ A*rR=0

(rR) +A**R=0 (1)
With BC
R(1)=0
li_r)r(l)R (r) — bounded
And

T +a?A’R=0 (2)

ODE (1) is Sturm Liouville ODE where p = r,q = 0 and the weight is r. The eigenvalue can not be
negative. Two cases to consider.

CaseA=0

The ODE becomes (rR’)" = 0 which has solution rR’ = ¢; or r‘fl—f = ¢, or dR = “1dr. Integrating gives

R(r)=ciInr+c

Since R is bounded at r = 0, then ¢; = 0. The solution becomes R (r) = c,. Since R(1) = 0 then ¢, = 0.
Hence trivial solution. Therefore A = 0 is not an eigenvalue.
Case A >0
The ODE now becomes rR” (r) + R(r) + A>rR(r) = 0. Let t = Ar. Hence R’ (r) = AR’ (t) and R” (r) =
A2R” (t) and the ODE becomes
t 2pr ’ 2 t
1/1 R7"(t)+ AR (t)+ A ER(t) =0
tAR” (t) + AR' (t) + AtR(t) = 0
tR"(t) +R () +tR(t) =0
This is Bessel ODE of order zero. Its solution is

R (t) = Cl]o (t) + CZYO (t)

Converting back to r

R(r) = c1Jo (Ar) + c2Y, (Ar)

Since R is bounded at r = 0 then ¢, = 0 and the solution becomes
R(r) = c1)o (Ar)

Since R(1) = 0 then
0=rciJo(A)

For nontrivial solution, J, (1) = 0. This gives the eigenvalues as the positive roots of J, (1) = 0. Hence
the solution is
Ry (7’) = cnJo (/1,17“)

Where A, are roots of J, (1) = 0forn =1,2,3,---. The Time ODE (2) has solution
T, (t) = Ape 4t
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Hence the final solution is

u(r,t) = > cne o (Aar)
n=1

Where constants A, ¢,, are combined into c,,. ¢, is now found from initial conditions. At ¢ = 0 the above
becomes

w(r,0)= ()= > endy Uar)

The weight is r, since the R ODE in S.L. form is (rR’)" + A>rR = 0. Therefore, applying orthogonality
gives

‘[1 rf (r) Jo(Apr)dr = cy Jl r]oz (Anr)dr
0

0
o rf @) Jo Gy
L: rJe (Anr)dr

This completes the solution.

=3 [ rf (1) Jo Qar)dr

n=1 f; rJ3 (Aur)dr

e_/lflaz z‘JO (Anr)
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2.1.71 Chapter 11.5, Problem 9

9. In the spherical coordinates p,6,¢ (p > 0,0 < 6 < 27,0 < ¢ < 7) defined by the equations
X = pcosBfsing, y = psinfsin ¢, Z = pcosq,
Laplace’s equation is
P21y + 21, + (€S P)utgy + Ugy + (cOt P)uty = 0.

(a) Show that if u(p, 6, ¢) = P(p)©(0)D(¢), then P, ©, and P satisfy ordinary differential
equations of the form

p*P" 4+ 2pP — *P =0,
®" 4+ 1’0 =0,

(sin® ¢)®” + (sin ¢ cos P)®' + (u? sin® g — A2)d = 0.

The first of these equations is of the Euler type, while the third is related to Legendre’s
equation.

(b) Show that if u(p,0,¢) is independent of 6, then the first equation in part (a) is
unchanged, the second is omitted, and the third becomes

(sin® ¢)®" + (sin ¢ cos ¢)®’ + (u” sin® p)® = 0.

(c) Show thatif a new independent variable is defined by s = cos ¢, then the equation for
® in part (b) becomes

Note that this is Legendre’s equation.

Solution

Part (a)

Let
u(p,0,9) =P(p)0 () 2(¢)
Substituting the above in the Laplace PDE given results in

p*P"Od + 2pP'O® + (csc® ¢) ©”PD + &' PO + cot () &'PO = 0

Dividing by PO® gives
PN Pl @Il 7 (DI
pz? + Zp? + (csc® ) ot s + cot (¢) e 0
Pl/ Pl @// (I)Il q)/
PP+ 2 == (e’ §) o = - —cot(P) o = 4
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Where y is the first separation constant. The above gives

124 ’

2
— +2p— =
Pip T2y =H
@ll (I)N (I)l )
_ = t = =0
o o ot g —H

2

- (Csc2 )

The first ODE above becomes
p*P” +2pP’ — Py = 0

2.1 my solved problems

And the second equation is now separated again into two additional ODE’s as follows

e 1 @ cotgp @’ u?

® csc?p @ cs?pd  csc? -
1 @ cot(h) pwoer
csc2p @ csc2p @ csc2p 0 O

/12

Where A is the second separation constant. The above gives the following two ODE’s

0" +21’0=0

And, since csc? ¢ = —— and cot (¢) = ﬁ, the third ODE is

sin® ¢
o sin®¢ @’
.2 2 i 2 2
sin® g— + — 4+ u°sin“¢g = A
¢ ® tang @ a ¢
144 ’

d d
sin? ¢E + sin ¢ cos ¢6 + p? sin® ¢ = A?

(sin® §) ®” + (sin g cos ¢) @’ + (psin*p — A*) @ =0
Part (b)
If u is independent of 0 then the PDE simplifies to
pzupp +2pup, + ugg + cot puy = 0

Let
u(p,¢) =P(p)@($)

Substituting the above in the Laplace PDE (1) results in

p*P"® + 2pP'® + ®"'P + cot (¢p) ®'P = 0

Dividing by P® gives
14 Pl 7" @/
2
— +2p— + — +cot(¢)— =0
prp t2pp g Heot(9)
PII PI q)// q)/
2 2
— +2p— =—— —cot(§) — =
P tep o Ot g =p

Where p is the first separation constant. The above gives

12 ’

2 1 2p— =
PP 2 = g

124 ’

) o
—E—cot(gb)g—,uz =0
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The first ODE above becomes
p*P” +2pP" — *P = 0
And the second ODE becomes
—®" —cot(¢p) D' — p*® =0

" + Y+ =0
tan ¢ K

77 COS¢ ’ 2

"+ —®' + pud=0
sin ¢

(sin@) @” + (cos §) @’ + (p®sing) & =0
Multiplying again by sin ¢ to get it to the form needed gives
sin p&”’ + (sin ¢ cos #) @’ + (u*sin® ) & = 0 (2)

Therefore the first PDE in P (p), the second ODE in © () is now eliminated, and the third ODE changes
to the above.

Part (c)
The equation for ® found in part (b) is
2
sin® ¢ZT:I; + (sin ¢ cos ¢) fl;; + (pPsin®¢) @ =0 (1)
Let s = cos ¢, then
@ _dvds
dp — ds de
do ,
== (—sin @) (2)
And
Fo_d (a0
dg* ~ d¢ \dg
- (d—‘f (= sin ¢>)
d’*® do
= - (sin®¢) - — (cos §) (3)

Substituting (2,3) into (1) gives
sin® ¢ O::T(ZD (sin® ¢) — Z—T (cos ¢)) + (sin ¢ cos ¢) ((2—? (= sin gb)) + (psin® @) @ =0

Dividing by sin® ¢ gives
d*® do

dd
— sin®¢ — — cos ¢ — cos p— + p*d = 0
ds ds

ds?
20 d®
d—szsin2¢—2d—scos¢+,u2d) =0
But cos ¢ = s and sin® ¢ = 1 — cos? ¢ = 1 — s?, therefore the above reduces to
(1-5%) AP B 0
ds? as

Which is Legendre’s equation.
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2.1 my solved problems

2.1.72 Chapter 11.5, Problem 10

10. Find the steady state temperature u(p, ¢) in a sphere of unit radius if the temperature is
independent of 6 and satisfies the boundary condition

ul,¢) =f(p), O=¢=m

Hint: Refer to Problem 9 and to Problems 22 through 29 of Section 5.3. Use the fact that
the only solutions of Legendre’s equation that are finite at both £1 are the Legendre
polynomials.

Solution
TO DO
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Chapter 3: Quizzes

3.1 Quizz 1

3.1.1 Problem 1

Problem Solve the boundary value problem
y () -y(x)=x (1)

withy (0) = 1,y (1) =1
solution
The general solution is the sum of the homogeneous and the particular solution

Y=yp+typ (2)

Where yj, (x) is the homogeneous solution of y;” — y, = 0. Since this is a constant coefficients ODE, the
characteristic equation is found by assuming y;, = e and substituting this into y”’ (x) — y (x) = 0 and
finding the roots. This results in

Therefore the two linearly independent basis solutions are y; = e* and y, = e™*. The homogeneous
solution is a linear combination of these two basis solutions. In other words

yn (x) = cre” + ce™
Before proceeding to find the general solution, a check is made now to determine if a unique solution

exists or not. The Wronskian W (x) is
e? e

el el

y1(0) y2(0)
y1(1) y2(2)
Since W (x) # 0, then a unique solution exists.

The particular solution is now found using the method of undetermined coefficients. Since the RHS is
polynomial, let the particular solution guess be the following polynomial

yp = A+ Bx+ Cx?
Therefore y;, = B + 2Cx and y,’ = 2C. Substituting these into the original ODE (1) gives

2C — (A+Bx+Cx2) =x
x2(=C)+x(-B)+(2C - A) = x

Comparing coefficients of both sides results in

—C=
~B=1
2C-A=0
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3 Quizzes

Solving for the coefficients gives

C=0
B=-1
A=0

Therefore the particular solution is now found as

yp=A+Bx+Cx2

= —X

The full solution from (2) becomes
Yn
——
y=ce* +ce ¥ —x

Boundary conditions are now used to determine c; and c;. At x = 0 the above becomes
l=c1+c

And at x = 1 (3) gives

cie + cze_1 -1
2

1

cie + cze_1

Equations (4,5) are now solved for c¢;, ¢c;. From (4), ¢; = 1 — cz. Substituting this into (5) gives

(1-c))e+ce =2

cz(—e+e_1)+e=2

Cy =
el—e

Therefore

Hence the general solution (3) becomes

2—e 2—e
x)=|1- e + *—x
y() ( e‘l—e) (e‘l—e)
(el—e—2+e) 2—-e _,
= e e — X
el—e el—e
Or ( . )
e —2 (2—e)e™
x) = e* + -
y(x) 1_¢ el—e

This is a plot of the above solution
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y(x)

1.0F

0.8

0.6

0.4

0.2

0.0

Plot of solution to problem 1

0.0

0.2

0.4 0.6

0.8

1.0

3.1 Quizz 1
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3 Quizzes

3.1.2 Problem 2

Problem Find the Fourier sine series for f (x) = x(1—x),0 < x < 1. Use the result to evaluate the

infinite series 1% - 3% + 5% - 7%

solution
This is a plot of the function f(x) =x(1-x),0 <x <1

Plot of x(1-x)

f(x)

In the above
L=1

To obtain the Fourier sine series, the function is first odd extended to —1 < x < 0 and after the extension
is made, it is repeated using a period 2L so that it becomes a periodic function. Here is a plot of the
periodic function, called f, (x) now. One period is shown in this plot for illustration.

Plot of odd extension of f(x)

fo(x)
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3.1 Quizz 1

Since f, (x) is an odd function, its Fourier series will contain b,, terms only. The b, terms are given by
the standard formula

1 L
b, = I J_L fo (x) sin (%x) dx
But f, (x) is odd function and sine is also odd, therefore the product is an even function, and the above
simplifies to

b, = % LL fo (x) sin (%x) dx

But over 0 < x < 1, the function f, (x) is the same as the original function f (x) which is the non-
periodic function given. Therefore the above can be written as

b, = % ‘[OLf(x) sin (%x) dx

Since L = 1 in this problem, the above simplifies to

b, =2 J; f (x) sin (n7mx) dx

And since f (x) = x (1 — x), and the above becomes

1
b, = ZJ (x - x2) sin (nzrx) dx
0

=2 (Il x sin (nx) dx — Jl x% sin (n7x) dx)

0 0

=2(h - D) (1)
These two integrals are solved using integration by parts. Considering I; = f; x sin (nmx) dx and using
Judv =uv — fvdu. Let u = x,dv = sin (nrx), thendu = 1and v = — (#) cos (nrx). Hence
L =uv - Jvdu

1 Pt
= (—x (E) cos (mrx)) + — L cos (nzx)dx

0 niw

) (sin (nx))g

-1, 1.
= (E (-1) ) + - (sin (nxr) — 0)
(

ni

For the second integral, let I, = L: x? sin (nmx) dx and u = x?, dv = sin (nxx), therefore du = 2x,v =

1

—-—- cos (nzx). Hence

I =uv—Jvdu

L

+ —
nimr

1 1
= (—x2 — cos (mtx)) J x cos (nmx) dx
ni 0

0
1 " 2 (!

=(-— (1) +—I x cos (nrx) dx
nrw nr Jo
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3 Quizzes

The above integral in the RHS is also found by integration by parts. Let u = x,dv = cos(nzx) or
du=1,0= % sin (nzrx). The above becomes

n+1 [ 1
L= =) + 2 (xi sin (mrx)) L Jl sin (nzx) dx]
nr nz |\ nx o NnrJo
n+ [ 1
= )" + 2 0-— 1 (—L cos (mrx)) }
nr nz | nx\ nx 0
B (_1)n+1 2 [ 1
= + — | oy (cos (nm) — 1)]
B (_1)n+1 2 .
= e (0=

Substituting Iy, I, found above back into equation (1) gives the final result

bp =2 S ((_1)n+1 A S (D) - 1)))
nmr nmr (nﬂ_’)
_ (_1)n+1 (_1)n+1 2 "
=2 I - (=" - 1))
_, (_1)n+1 ~ (_1)n+1 ~ 2(_1)n s 2 )
ni nw (mr)3 (nn)3
=4 _=” ;)
(nr)’  (nn)’
(1 <—1>")
(nr)’
For odd n, the above gives
2 2 2
= {4(5) ’4((3@3) ’4(<sn>3)""}

8{%)((371[)3)(@) }

And for even n all b,, = 0. Therefore

8 o )
bn — (n”)S n= 1’ 3’ 5,
0 otherwise

The Fourier sine series for f (x) can now be written as

f(x)= Z by, sin (nmx)

n=1,3,5,---

8

1
== — sin (nx)
n

n=1,3,5,

Since f (x) = x (1 — x), the above is the same as

1 1 1 1
x(1-x)=8 —5sin (mx) + 35,3 Sin (37x) + 3,73 Sin (57x) + 75,3 Sin (7rx)+---
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3.1 Quizz 1

To obtain the required result, let x = % in the above, which gives

1 1 1 8 1 . (n) N 1 (3 N 1 . (5 N 1 (7 N
—[1-=-]=8|—=—=sin|— ——sin|-x ——sin|-x ——sin|-x
2 2 1373 2 3373 2 5373 2 7373 2

1 8 (1  y« 1 . (3 1 . (5 1 . (7

- =— —sm(—)+—s1n —nm|+—Zsmn|-m|+_—zsm|-m|+---
4 g3\13 2 33 2 53 2 73 2
1 1 1 1

+ +
32 13 33 5 73

The above can also be written as
(_1)n+1

= (-1 + 2n)®
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3 Quizzes

3.1.3 Problem 3

Problem Find the solution to heat equation u; = u,, with initial conditions u (x,0) = f (x) with
f(x)=x(1-x),0 <x < 1andboundary conditions u (0,¢) = u(1,t) = 0. Approximate u (%, 1) to 10
decimal places.

solution

Using separation of variables, let u (x, f) = X (x) T (¢). Substituting this back into the PDE gives

T'X =X"T
T/_x//_
T X

Where the separation constant is some real value —A. This gives the following two ODE’s to solve

T +AT =0 (1)
X"+ 21X =0 )

Starting with the spatial ODE in order to obtain the eigenvalues and eigenfunctions. The boundary
conditions on the spatial ODE become

X(0)=0
X(1)=0
Since equation (2) is a constant coefficient ODE, its characteristic equation is r* + A = 0, which has the
solution r = +V—A, therefore its solution is given by
X (x)=cie™ +cpe™

_ eV N )

+coe

There are three cases to consider, depending on if A < 0,4 = 0,1 > 0. Each one of these cases gives a
different solution that needs to be examined to see if the solution satisfies the boundary conditions.
Case 1 Assuming A < 0. Therefore —A is positive and V-2 is also positive. Let V=1 = y1, where 1 is some
positive number. The solution (3) can now be written as

X (x) = cie"™ + cpe™H* (3A)
This can be rewritten in terms of the hyperbolic trig functions (to make it easier to manipulate) as
X (x) = ¢1 cosh (ux) + ¢, sinh (ux) (3B)

Where the constants c; in (3A) are different from the constants in (3B), but kept the same for simplicity
of notation so as not to introduce new constants. Applying left boundary conditions to (3B) results in

0:C1

The solution (3B) now reduces to
X (x) = c; sinh (ux)

Applying right side boundary conditions to the above results in
0 = ¢, sinh ()

But sinh (1) # 0 since it was assumed y is not zero and sinh is only zero when its argument is zero. The
only possibility then is c; = 0, which leads to trivial solution. Therefore A < 0 is not an eigenvalue.
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3.1 Quizz 1

Case 2. Assuming A = 0. The ODE becomes X"’ = 0, which has the solution
X(x)=cix+c

Applying left side B.C. gives

0= Co
The solution now reduces to
X (x) =c1x
Applying right side B.C. gives
0= C1

Leading to the trivial solution. Therefore A = 0 is not an eigenvalue.

Case 3 Assuming A > 0. In this case equation V-4 is complex and equation (3) can be expressed in
terms of trig functions using Euler relation which results in

X (x) = ¢y cos (\ﬁx) + ¢y sin (\/zx) (4)

Applying left side B.C. gives
0= C1

Solution (4) now reduces to

X (x) = ¢y sin (\/Xx) (5)

Applying right side B.C. gives
0 =cysin (\ﬁ)

Non-trivial solution implies sin (\/Z) =0or VA=nxforn= 1,2,3,---. Therefore the eigenvalues are

Ap = (n)? n=123---

And the corresponding eigenfunctions from (5) are

X, (x) = ¢y sin (\/Ex) (6)
Now that the eigenvalues are known, the solution to the time ODE (1) can be found.
T+, T=0
This has the solution (using an integrating factor method)
To (1) = e (7)

The constant of integration is not needed for (7) since it will be absorbed with the constant of integration
coming from solution of the spatial ODE (6) when these solutions are multiplied with each others below.
Therefore the fundamental solution is

Up (x,t) = Ty (t) X (x)
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3 Quizzes

Linear combination of fundamental solutions is also a solution (since this is a linear PDE). Therefore
the general solution is given by

M

u(x,t) Up

S
1l
—_

T (£) X (x)

cne ! sin (\/Zx) (8)

Initial conditions is now used to determine c,, . Att = 0, u (x,0) = f (x) and the above becomes

fx)= 2 cp sin (\/Zx)

M e

3
Il
—_

M

3
Il
—_

Multiplying both sides of the above equation by eigenfunction sin (\me) and integrating over the
domain of f (x) gives

1 1 o
J f(x)sin (\me) dx = J Z ¢, sin (\/Ex) sin (\//lmx) dx
0 0 n=1
Interchanging the order of summation and integration gives

1 0 1

J f(x)sin (\/Amx) dx = Z an sin (\/Zx) sin (\//lmx) dx
0 n=1 0

By the orthogonality of the sine functions, all terms in the right side vanish except when n = m, leading
to

Ll f (x)sin (\/ﬂx) dx = ¢y Jol sin® (\/ﬂx) dx

1
Cm=

2

Therefore (replacing m back to n now, since it is arbitrary)

1
cnzzj f(x)sin(\/l—nx)dx n=123,---
0

But VA,, = nx, hence
1
cn:ZJ f (x)sin (n7x) dx n=1,23,---
0

Since f (x) is the same as in problem 2, the above shows that c, is the same as b, found in problem 2
above. This means ¢y, is the sine Fourier series coefficients of f (x) which was found in problem 2. Using
that result obtained earlier
8
_8 =1,3,5,-
Ch = bn = { (n”)S "

0 otherwise

Using the above in (8), the general solution is therefore
u(x,t) = 8 i ie_’l"t sin [ VA,x
’ - 77:3 T’l3 n

> 1 22
= — Z —e " Lsin (nx)

3 3
T n=1,3,5,--- 1
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3.1 Quizz 1

The Following is plot of the solution for increasing values of time starting from ¢ = 0, using 10 terms in
the sum. At about ¢t = 0.3 seconds, the temperature reduces to almost zero.

u(x,t) at time =0 u(x,t) at time =0.05 u(x,t) at time =0.1

2 z z
=1 =1 =1

X X X

u(x,t) at time =0.15 u(x,t) at time =0.2 u(x,t) at time =0.25

2 Z Z
=1 =1 =1

X X X

To approximate u (%, 1) to 10 decimal places, first the solution is written at x = 1 and t = 1. From above,

2
the solution is
had 1 2 2

1 8 T
_’1 = — e M g ( —)
u(z ) E e Sin n2

3 3
T p=135,.. 1

Due to the fast convergence, only one term was needed. Result for n = 1 and n = 3 are

1 8 g . (T
U E,l = = (e sin (E)) = 0.000013345216966776341

1 8 ( o . (m\ 1 oo (7
us | =, 1| = —|e sin (—) + —e sin (3—) = 0.000013345216966776341
2 73 2) " 27 2

The above shows that the solution u, (%, 1) did not change beyond the first 10 decimal points when
adding one more term in the series. Therefore, only one term is needed. Therefore, the final result
(rounded to 10 decimal points) is

u(3,1) =0.0000133452
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3 Quizzes

3.1.4 Problem 4

Problem Solve u; + u = u,, with initial conditions u (x, 0) = f (x) and boundary conditions u (0, t) =
u(L,t) =0.

solution

Using separation of variables, let u (x, t) = X (x) T (t). Substituting this back into the PDE gives

T'’X+TX=X"T

Where the separation constant is some real value —A. This gives the following two ODE’s to solve

T"+(1+M)T =0 (1)
X" 42X =0 @)

Starting with the spatial ODE in order to obtain the eigenvalues. The boundary conditions on the spatial
ODE become

X(0)=0
X(1)=0
The above boundary value ODE was solved in problem 3. The eigenvalues were found to be

ni\ 2
) n=12,73,---

h=(T

And the corresponding eigenfunctions are

X, (x) = ¢ sin (\/Ex)
The solution to the time ODE (1) using integrating factor method is
T (1) = e-(+An)t

Therefore, as before, the general solution is obtained by linear combination of the fundamental solutions
giving

u(x,t) = i cpe” At gin (\/Zx) (3)
n=1

Initial conditions are used to determine c¢,. Att = 0, u (x,0) = f (x) and the above becomes
f(x)= Z cp sin (\/Anx)
n=1

Multiplying both sides by sin (V/lmx) and integrating over the domain of f (x) gives

L L o
J f (x)sin (\//Ex) dx=| > cpsin (\/A—nx) sin (\/Ex) dx
0 0 n=1

Interchanging the order of summation and integrating gives

(o8]

J‘OLf(X) sin (\//Ex) dx = Z cn LL sin (\/A—nx) sin (\/A_mx) dx

n=1
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By orthogonality of sine functions, all terms in the right side vanish except when n = m, leading to

JOL f(x)sin (\/)L_mx) dx = cp, LL sin? (\//Ex) dx

Therefore

9 (L
C":_I f(x)sin(\/zx)dx n=123-- )
L Jo
But V1, = ”T”,hence
9 (L
cnzzjo f(x)sin(%x)dx n=123,---

The above shows that ¢, is the Fourier sine series of f (x). Since f (x) is not given, explicit solution for
¢, can not be found. Therefore the final solution is

[e9)

u(x,t) = Z cpe” 1At gin (\/Zx)

=1

B

[>9)

= (% JL f (x)sin (\/Zx) dx) e An)t i (\//l_nx)
n=1 0
With 4, = (2£)*,

3.1.5 key solution



Homework 1, Math 322

1. Solve the boundary value problem
y'—y=1z, y(0)=0,y(1) =1
Solution: The general solution is
y = cpcoshx + cosinhae — .

The boundary condition give ¢; = 0, co sinh 1 = 2. The solution of the BVP

is
2
Yy = b1 sinhx — x.

2. Find the Fourier sine series for the function f(z) =z(1 —z), 0 <z < 1.
Use the result to evaluate the infinite series
1 1 1 1

Solution: The Fourier coefficients are
1
Cn :2/ z(1 — x)sinnrz dx
0
2 (1-2) \“+2/1(1 2z) d
=—— z(1l —x)cosnmx| _ — — 2z) cosnmwx dx
nm =0 " Jo
) 1
=— [ (1—-2x)cosnrzdr
nm 0
2 , o1 2 [t _
=2 (1 —2z)sinnrzdr|;—, + ) (—2)sinnmrx dx
4 1
:—/ sinnrz dx
'n/2772 0
B n3—i3 if n is odd
o if n is even.

By the convergence theorem, we have, for all 0 < x <1,

z(l—x) = % Z (2ki1)3 sin(2k — 1)mx.

s

If we choose = = %, we get

SO
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3. Find the solution to the heat equation u; = u,, with initial condition
u(z,0) = f(x) with f(x) as in problem 2, and boundary conditions u(0,t) =
u(1,t) = 0. Approximate u(%, 1) to 10 decimal places.

Solution: The solution is

8 = 1 2.2
_ 2 o —(2k—1)27%t N
u(z,t) 3 kgl o = 1)36 sin((2k — 1)7x).
Then

2k —1)3
k+1

8 o= _(op_ 13,2 (—1)FF1
u(, 1) = ;Ze (2k—1)
k=1

This is an alternating series s = » 7, (—1)
ar — 0. Then ‘s — Z?Zl(—l)kﬂak‘ < ag41. Therefore,

ar with ap > 0, ap > agy1,

K 52 (—
u(%’ 1) _° —(2k—1)°~

1)k+1
w3 L (2 — 1)3

é —(2K+1)372 1

< 2K 1 1)3

When we choose K = 1, the error is less than 10740, Therefore, we obtain

8
w(l, 1) ~ =™ =0.00001334521692. . .
2 7T3

with an error less than 1049,

4. Solve the partial differential equation u; + © = ug, with initial condition

u(z,0) = f(z) and boundary conditions u(0,t) = u(L,t) = 0 using Fourier

series.

Solution: Using the method of separation of variables u(z,t) = X (x)T(t)

we find - P
0, ,_X'w

T(t) X(z) -

Therefore, we obtain
X"+ XX =0, X(0)=X(L)=0,
and
T +(\+1)T(t) = 0.
This gives
un(x,t) = e~ (n*m*/ L2+ 1)t sin(nmx/L).

The solution is
u(z,t) = Z cpe” (WP L) sin(nrz/L),
n=1

where

2 [* -
Cn = L/o f(z)sin(nmx/L) dx.



3 Quizzes

3.2 Quizz 2

3.2.1 Problem 1

Problem Solve the wave equation u;; = uy, for infinite domain —co < x < co with initial position
u(x,0)=f(x)= ﬁ and zero initial velocity g (x) = 0. Plot the solution for ¢t = 0, 1, 2 seconds.
solution
The solution for wave PDE u;; = a’u,, on infinite domain can be written as a series solution or as
general solution using D’Alembert form. Using D’Alembert, the solution is

1 1 x+at
u(x,t):5(f(x—at)+f(x+at))+£f g(s)ds

x—at

Where in this problem a = 1 and g (x) = 0. Therefore the above simplifies to

W)= 2 (fG=0+f(+0)

f (x — t) is the initial position shifted to the right by ¢ and f (x + £) is the initial position shifted to the

left by t. Since f (x) = Tlxz the above solution becomes

(x. 1) 1 1 N 1
u(x,t) ==
2\1+(x—1t)* 1+ (x+1)

This is a plot of the solution at time ¢ = 0 (which is just —)

1+x2

Plot of solution to problem 1 at t=0

0.8f —

u(x,t)

0.2} ]

L L L L L L L L L L L L L

This is a plot of the solution at time ¢ = 1
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3.2 Quizz 2

Plot of solution to problem 1 at t=1

1.0

0.6

u(x,t)

0.2

_bA

This is a plot of the solution at time ¢t = 2

Plot of solution to problem 1 at t=2

1.0(

0.8+

u(x,t)

0.45

0.0

The above shows that, eventually, the initial position splits into two halves, where one half moves to
the right and one half moves to the left, but the sum (energy) of the parts remain equal to that at t = 0
since there is no damping. An Animation was also made of this solution for better illustration.
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3.2.2 Problem 2

Problem Apply the method of separation of variables to the damped wave equation u;; + 2uy = Uyy
on finite domain with fixed ends u (0,¢) = 0 and u (7, t) = 0. Let initial position be u (x,0) = f (x) and
initial velocity u; (x, 0) = 0. Determine the first term in the series solution.

solution

Let the solution be u (x,t) = X (x) T (t). Substituting this back into the PDE gives

T'X +2T'X =X"T
Dividing throughout by XT # 0 and simplifying gives
T// T’ X’/ :

—+2==—=-A
T T X
Hence the eigenvalue ODE is
X"+AX =0 (1)
X(0)=0
X(r)=0
And the corresponding time ODE
T” +2T" + AT =0 (2)

The eigenvalue ODE for the homogeneous boundary condition was solved before. The eigenvalues are

nm\ 2
/1,1:(—) n=123---
L
Since L = r, the above becomes
Ap = n? n=1,23,--- (3)

The corresponding eigenfunctions are
X, (x) = ¢y sin (nx)
Now that the eigenvalues are found, the time ODE (2) is solved.
T + 2T, + n*T, =0
This is constant coefficient ODE. The characteristic equation is
rP+2r+nf=0

The roots are

—b + Vb2 — 4ac

2a
-2+ V4 an?
B 2

=-1xV1-n?

r =

For n = 1 the root becomes r = —1 (double root), hence the solution is

T (t) = Ale_t + Blte_t (4)
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3.2 Quizz 2

And for the remaining value n = 2,3, - - -, the term V1 — n? becomes complex. Therefore the roots can
now be written as » = —1+iVn? — 1. This implies that the solution can be expressed using trigonometric

functions as
T, (t)=e! (An cos (t\/nz - 1) + B, sin (t\/nz — 1)) n=273,.- (5)

Since initial velocity is zero at ¢ = 0, then (4) leads to T/ = —A;e™ + Bie™" — tBje™!. At t = 0 this gives
0 = —A; + Bj. Therefore solution (4) becomes

Ty (t) = Ay (e7" +te?) (4A)

Taking time derivative for (5) gives

T, (t)=—e"* (An cos (‘/nz——lt) + B, sin (mr)) +
et (_An\/nz——lsin (mt) + Bnmcos (mt))

At t = 0 the above becomes

0=-A,+B,Vn?2-1
Hence A, = B, Vn? — 1 and (5) reduces to

T, (1) = Bpe ! (Vnz —1cos (t\/nz — 1) + sin (t\/nz _ 1)) n=273,--- (5A)
Therefore the fundamental solution is
Un (x’ t) =T, (t)Xn (x)

u(x,t) = > Ty (1) Xp (x)
n=1
=Ty () Xy (%) + > T () X (%)
n=2
=c ((e7" +te™") sinx) + Z cne! (Vnz — 1cos (t\/nZ - 1) + sin (t\/n2 - 1)) sin (nx) (6)
n=2
Where the constant A; was combined into ¢; and B,, combined into ¢,. The constants ¢; and c,, are now
found from initial position. At t = 0 (6) becomes
f(x)=cysinx + Z cnVn? — 1sin (nx)
n=2
Multiplying both sides by sin (mx) and Integrating gives
J‘ f(x)sin(mx)dx = J ¢y sin x sin (mx) dx + Z cnVn2 -1 (J sin (nx) sin (mx) dx (7)
0 0 n=2 0

For m = 1 the above reduces to

J f (x) sinxdx = J ¢; sin® xdx
0 0
T

J f (x)sinxdx = —¢;
0 2

2 Vs
¢ = —J f (x) sin xdx
T Jo
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And form = 2,3, (7) becomes

0

J” f(x)sin(mx)dx = J” c1 sinx sin (mx) dx + ¢, Vm2 — 1 (In sin? (mx) dx)
0 0

0
=c,Vm? -1 (J” sin? (mx) dx)
0

Hence for n = 2,3, - - the above gives

J” f () sin (nx) dx = Vi — 1 (£
0

2
Therefore
2 [ f oy sinnxd 23
Cp = —— x) sin nxdx n=23,---
aVn? -1 Jo

This completes the solution. The final solution from (6) becomes

u(x,t) = (% Lﬂ f(x) sinxdx) (7" +te™") sin(x)

9 & f(;[ f (x) sin (nx) dx
+— e

2

n=2 n?—1

-t (mcos (tm) + sin (tmw sin (nx)

T

To test the solution, it is compared to numerical differential equation solution. Using f (x) = x (& — x)
as an example. The result showed an exact match. An animation was also made. Therefore the first term
is o pn
(; J f (x)sin xdx) (7" +te™") sin(x)
0

And forn =2,3,--- the n'" term is

e’ (MCOS (t%) + sin (tﬁ)) sin (nx)

n—1

(% Lﬂ f (x) sin (nx) dx)
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3.2.3 Problem 3

Problem Solve uyyx + uyy = 0 on the square 0 < x,y < 1. Ifu(0,y) = u(x,0) = u(x,1) = 0 and
u(1,y) = y — y2. Find an approximate value for u (%, %)

solution To make the solution steps more useful and general, a is used for the length of the x dimension
and b for the length of the y dimension, then these are replaced by 1 at the very end. This is a plot of
boundary conditions

)
A
u=0
]. \\
\\
\
\
u=0]| Usa+ Uy =0 V() =yl —y)
//
/
=~ px
u=20 1

Let u (x,y) = X (x) Y (x). Substituting this into the PDE gives
X'Y+Y'X=0

Dividing throughout by XY # 0 and simplifying gives

X" Y”
x v
This gives the eigenvalue ODE
Y'+AY =0 (1)
Y(0)=0
Y(b)=0

The solution to (1) gives the eigenvalues A, = (%) “forn = 1,2,3--- and since L = b, this becomes

And the corresponding eigenfunction

Y, (y) = cp sin (\/Ey)

. (nx
=cpsin|—

b

Therefore the corresponding nonhomogeneous X (x) ODE

XV = AnXn =0 (2)
Xn (O) =0
Xn ((1) =y- y2
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The solution to (2), since 4, is positive is
X, (x) = A, cosh (\/Ex) + B, sinh (\/Ex)
= A, cosh (%x) + B,, sinh (%x)

Boundary conditions X (0) = 0 gives
0=A4,

The solution (3) now simplifies to

X, (x) = By, sinh (n%x)

Hence the fundamental solution is
up (x, y) =XnYn
o () ()
= ¢p sinh | —x | sin | —
" b b Y
Where the constants By, is merged with c,,. The solution is
- nmw nim
9) = 2 ensinh () sn (o) 3
u(x,y) nZ:;cnsm bx sin by (3)
¢n, is now found by applying the boundary condition at x = a. The above becomes

= Sy o1
y-y gc sinh { —-a) sin [ <~y

Multiplying both sides by sin (%£y) and integrating gives

[ -son (o= Sy (5] [ 3] )

By orthogonality the above reduces to

Jb (y -4 sin (%y) dy = ¢y sinh (%a) J

0 0

= gcm sinh (%a)

’ sin® (%y) dy

Therefore
2 1

b
o . [(NT
nmo—— | (y- M)
¢ bsinh(%a) L (y y)sm(by) y

Now replacing a = 1, b = 1, the above becomes

Cn = ﬁ(m) L (y - y*) sin(nzy) dy
B 2 (—2(—1 +(—1)"))

~ sinh (nr) n33
-4 (-1+(-D")
sinh (nr) n3x3
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Hence the solution (3) becomes

u(x,y) = ) Z 1+ ( 2 s;:ﬁ;((n:x)) sin (nry)

Atx = %, y= % the above becomes

(L) S e g o)

sinh (ns)

For n = 1, the above gives 0.0514136952911346 and for n = 2 the value do not change beyond 16 decimal
points. So only need to use one term to get very good approximation value as

11
u (5’ 5) = 0.0514136952911346

This value is between zero and 0.25, where 0.25 is the maximum value at the boundary and zero is
the minimum value at the boundary. This agrees with the min-max principle. This is a 3D plot of the
solution over the whole square.

-1+ (-1)~n Sinh[nPix
ina0)= mySol[x_, y_1] =-4/Pi"35um[( 7 ( L !

] Sin[nPiy], {n, 1, 2}]
n~3 Sinh[nPi]

Plot3D[mySol[x, y], {x, @, 1}, {y, 0, 1}, AxesLabel -» {"x", "y", "u(x,y) "}, BaseStyle -» 14]

Out[41]=

This is a contour plot
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ContourPlot [Evaluate[mySol[x, y]], {x, @, 1}, {y, ©, 1}, AxesLabel -» {x, y},
PlotRange » {-1, 1}, Contours - 100, PlotTheme -> "Scientific", PlotLegends - Automatic]

0.247
0.209
0.171
Out[16]= 0133
0.095

0.057

0.019
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3.2.4 Problem 4

Problem Solve uy + uyy = 0 on disk x* + y* < 1 with boundary condition xy* when x* + y* = a. Where
a = 1 in this problem. Express solution in x, y

solution The first step is to convert the boundary condition to polar coordinates. Since x = rcos 8,y =
rsin 0, then at the boundary u (r, 8) = r cos 6 (r sin §)*. But r = 1 (the radius). Hence at the boundary,
u(1,60) = f (0) where

£ (6) = cos Osin* 0
=cos @ (1 — cos? 0)

= cos 6 — cos’ @

But cos® 4 = % cos 0 + i cos 360. Therefore the above becomes

f(6)=cosb - ZcosG+;}cos39

1 1
= —cosf — — cos 30 (1)
4 4

The above is also seen as the Fourier series of f (0). The PDE in polar coordinates is
1 1
Urr + —Ur + —ugg =0
r r
The solution is known to be

u(r,6) = %0 + i r" (c, cos (n) + k,, sin (nf)) (2)

n=1
Since the above solution is the same as f () when r = 1, then equating (2) when r = 1 to (1) gives

1 1 _ ¢ s ]
1 cosf — 208 30 = 5 + ; (cp, cos (n) + ky, sin (nB))

By comparing terms on both sides, this shows by inspection that
Co =
C1 =

C3 =

| = 2
SN

And all other c,, k, are zero. Using the above result back in (2) gives the solution as

u(r,0) = gcost - %3 cos 36 (3)

This solution is now converted to xy using the formula

n

r" cosnf = Z " X"k (—1)% yk

k=0 \k

C n! n—k L3
SN |

I TR

even
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For n = 1 the above gives

1!

1m0, 4Y0.0
rcosf = oa _0)!x -1y
=x (4)
Andforn=3
r’ cos 30 = 3—!x3_0 (1) " + ————x3 2 (=1)' 2
T 0 (3-0) SPTICIESY y
= x° - 3xy? (5)
Using (4,5) in (3) gives the solution in x, y
u(x,y) = ‘—11x - % (x3 - 3xy2) (6)

This is now verified that is satisfies the PDE uyx + uyy = 0.

ou 1 1, , 5
—=-—-(3x*-3
ox 4 4( X y )
0%u 6
ox2 4x
And

ou 6

—_— = =X

oy 4 v

Pu 6

—_— = -

oy 4

Therefore % + giy'; =0.
Now the boundary conditions u (x, y) = xy? are also verified. This condition applies when x? + y? = 1
or y? = 1 — x2. Substituting this into (6) gives

y2
1 1
u(X, Yep = T x* = 3x(1-x?%)
Simplifying gives
1 | 3
u(x,yY)op = Zx— 2 (x* = (3x = 3x7))
1 1
= —x— X"+ - (3x— 3x3)
4 4
1 1, 3 3.,

Il
2
=
|
=
N

Verified. This is 3D plot of the solution
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ini76)= ParametricPlot3D[{r Cos[t], rSin[t], r/4Cos[t] -r~3/4Cos[3t]},
{r, 0, 1}, {t, @, 2Pi}, AxesLabel -» {x, y, "u(x,y)"},
PlotLabel -» "3D plot of solution to problem 4", ImageSize - 500]

3D plot of solution to problem 4

0.2

Out[76]= 1.0

0.0

uey)

-1.0

This is a contour plot
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injos= ContourPlot[1/4x-1/4 (x*3-3xy~2), {x, -1, 1}, {y, -1, 1}, AxesLabel » {x, y},
Contours - 50, PlotLegends » Automatic, ColorFunction -» "Pastel",
Epilog -» {Thick, Circle[]},
PlotRange - {-1, 1},
RegionFunction - Function[{x, y, z}, Norm[{x, y}] <1.]1]

1.0

o5 0.351
0.234
0.117
outjgel=  0-0f

-0.117

-0.234

-0.5 -0.351

[l [TIT11 I

3.2.5 key solution



Homework 2, Math 322

1. Solve the wave equation uy = Uy, for —oo < x < oo, t > 0 with initial

conditions
1

1422’
Plot the solutions u(x,t) for t =0,t=1,¢t= 2.
Solution: The d’Alembert solution is

u(z,0) = ug(x,0) = 0.

1

1 1 1
u(x?t):g(f(x"i't)"i'f(x_t)):i<(1+(x_t)2+1+(x_t)2>'

2. Apply the method of separation of variables to the damped wave equation
Ug + 2up = Uy, u(0,t) = u(m,t) = 0, u(z,0) = f(z), u(z,0) = 0.
Determine the first term in the solution u(z,t) =Y 72 ...

Solution: By separation of variables we obtain the solutions

yn(x,t) = sin(nx)T,(t),
where T, is the solution of
T/ 42T +n*T,, =0, T,(0) =1,7T"(0) = 0.
Thus
Ti(t) = (1+t)e™"
and, for n > 2,

_ysin(tvn? — 1) '
= e _—

+ e teos(tyv/n2 —1).
~— ( )

By superposition, we obtain the solution

T(t)

y(x,t) =Y bpT(t) sin(na)
n=1



where b, are the Fourier sine coefficients of f(z). The first term in the
solution formula is

g ! s)sinsds | et inx
W(/o f(s)s d> (t+1)sinz.

3. Solve the Dirichlet problem wu,; + uy, = 0 on the square 0 < z,y <1 if
u(0,y) = u(z,0) = u(x,1) =0 and u(1l,y) = y(1 — y). Find an approximate
value for u(3, 3).
Solution: The Fourier sine series for y(1 —y), 0 <y <1, is
8 ~— 1
Wiy == S —sin(imy).
n=1,n odd
According to Section 10.8, the solution of the Dirichley problem is

o0

8 Z 1 sinhnrx

u(x,y) = = sin(nmy).

n3 sinhnw
n=1,n odd
Then - .
W =2 1 sinhny -y
272 3 n3 sinhnm
n=1,n odd
Taking two terms of the series, we find

u(3,3) ~0.05132...

4. Solve the Dirichlet problem
Ugy + Uyy = 0 if 22 4+9% <1,
u(z,y) =xy? if 22 +9% =1

Express the solution u(z,y) in terms of x,y.
Solution: We use the terminating Fourier series

1 1 1
cos fsin® 6 = cos §—cos® @ = cos f— <Z cos 0 + 1 cos(30)> = cos H—Z cos(30).
Then from Section 10.8

v(r,0) = u(rcosf,rsinf) = 2" cos 0 — ng cos(36),

or
1 1
v(r,0) = Zrcos@ - Z'r3(—3c089 + 4 cos® 6).
Then 13 1 1, 3
_ i 2 2 .2y 3_ Lt 13 9 9
u(m,y)—4m—|—4x(m +y)—=x AL —|—4xy.



3.3 Quizz 3

3.3 Quizz 3

3.3.1 Problem 1

Problem Find the eigenvalues and normalized eigenfunctions of the RSL problem

y' " +Ay=0 (1)
y(0)-y'(0)=0
y(r) -y (m)=0

solution
The characteristic equation for y”” + Ay = 0 is given by r2 + 1 = 0. Hence the roots are

r= VA

There are 3 cases to consider.
case A = 0 This implies that » = 0 is a double root. The solution becomes

Yy=2c+0x
’
y=c

The first boundary conditions y (0) — y’ (0) = 0 gives ¢; — ¢; = 0 or ¢; = c¢;. The above solution now
becomes

y=rc(1+x)

y=a

The second boundary conditions y () — y’ (x) = 0 gives ¢; (1 + ) —¢; = 0 or 7 = 0. Which is not
possible. Therefore A = 0 is not an eigenvalue.
case A < 0Let A = —w? for some real . Hence the roots now are r = +Vw? = +w. Therefore the solution

1S

Yy =c1e”" +cpe” "

Since the exponents are real, the solution can be written in terms of hyperbolic trigonometric functions
as

y = ¢1 cosh wx + ¢ sinh wx

y’ = cjw sinh wx + c2 cosh wx

The first boundary conditions y (0) — y’ (0) = 0 gives 0 = ¢; — cow or ¢; = cyw. Therefore the above
solution becomes
Yy = ¢ cosh wx + ¢; sinh wx (2)
= ¢3 (w cosh wx + sinh wx)
Hence
y’ = c; (0* sinh wx + @ cosh wx)

The second boundary conditions y () — y’ (r) = 0 gives

0 = ¢3 (wcoshwr + sinh wr) — ¢y (a)z sinh wr + w cosh wr)
=cy (a) cosh w7 + sinh wr — w? sinh wr — @ cosh a)n)
=y (sinh o1 — »® sinh anr)

=y (1 - wz) sinh wr
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Non-trivial solution implies either (1 — @?) = 0 or sinh wzr = 0. But sinh ws = 0 only when its argument

is zero. But w # 0 in this case. The other option is that (1 — @?) = 0. This implies w? = 1 or, since A = —w?,

that A = —1. Hence A = —1 is an eigenvalue. Therefore the solution from (2) above becomes

y (x) = co coshx + ¢, sinh x

¢; (cosh x + sinh x)
But e* = cosh x + sinh x, hence the solution can be written as
y = cye”
The eigenfunction in this case is therefore
O (x)=¢"

To obtain the normalized eigenfunction, let d_; (x) = k_;®_; (x). The normalization factor k_; is found

. 2
by setting L;r (r (x)D_q (x)) dx = 1. But the weight r (x) = 1 in this problem from looking at the Sturm

Liouville form given. Therefore solving

|
—_

J & (x)dx =
0

Il
—

J (k_1e*)? dx
0

3
kflj e dx =1
0

2x\ T
e
K2, (—) =1
2 /o

Therefore

Hence the normalized eigenfunction is

d_y (x) = (L) e*

elr — 1

case A > 1 Since A is positive, then the roots are r = +V—2 = +iVA. This gives the solution

y = clei\ax +cze—i\ax

Since the exponents are complex, the above solution can be written in terms of the circular trigonometric
functions as

c1 COS (\/Zx) + ¢y sin Vx
y = —c; VA sin (\/Xx) + ¢, VA cos Vx

B
Il
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The first boundary conditions y (0) — y’ (0) = 0 gives 0 = ¢; — ¢V or ¢; = ¢, V. The above solution
becomes

y = c;VAcos (\/Ix) + ¢ sin Vx 3)
=c (\/I cos (\/Xx) + sin \/Ix)

Therefore
Yy =c (—)L sin (\/Zx) + VAcos \/Ix)

Applying second boundary condition y () — i (i) = 0 to the above gives
0 = ¢, (VAcos (Vi) +sin (Vax) ) = ¢, (~Asin (Vi) + Vicos (Var))
= ¢, (VAcos (V) + sin (Vix) + Asin (VAx) - VAcos (Vir) )
= ¢ (sin (VAx) + 2sin (Vir)
= ¢(1+ A)sin (‘//_171)

For non-trivial solution, either 1 + A = 0 or sin (\/Iﬂ') = 0.But 1+ A = 0 implies A = —1. But it is

assumed that A is positive. The other possibility is that sin (\/In) = 0 which implies

Vr=nr n=123,--
Or
Ap =n? 1,23,

The corresponding solution from (3) becomes
Yn (x) = ¢, (ncos (nx) + sin (nx))
Therefore the eigenfunctions are

®,, (x) = ncos (nx) + sin (nx)

. 2
To obtain the normalized eigenfunctions, as was done above, f: (r (x) D, (x)) dx = 1is solved for k,

giving

f” (kny (0)) dx = 1

0

k2 j” (ncos (nx) + sin (nx))* dx = 1

0
k2 ‘[ (n2 cos? (nx) + sin? (nx) + 2n cos (nx) sin (nx)) dx =1
0

T T T 1
n? J cos® (nx) dx + J sin? (nx) dx + 2n j cos (nx) sin (nx) dx = 2 4)

2
0 0 0 n
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But L;T cos® (nx)dx = £ and L;T sin? (nx) dx = 7 and for the last integral above

T T 1
J cos (nx) sin (nx) dx J 2 sin (2nx) dx

0 0

_ 1 (—cos(2nx) ”
2 2n o

= ;—; (cos (2nx))y

= ;—; (cos(2nm) — 1)

But cos (2n7r) = 1 because n = 1,2,3, - - -. Therefore the above simplifies to f: cos (nx) sin (nx) dx = 0.
Using these results in (4) gives

2 27'[ JT _
k(w5 5) =1
Or
L\
" Jr(+ )

The normalized eigenfunctions are therefore

V2

d, (x) = ———— (ncos (nx) + sin (nx)) n=123,---

V7 (1 + n?)

In summary

\/>

An = n?forn = 1,2, - with corresponding normalized eigenfunctions d, (x) = \/% (ncos (nx) + sin (nx)).
T n

A = —1 is eigenvalue with corresponding normalized eigenfunction &_; (x) = (

The normalized eigenfunctions d_,, &y, &y, ds are plotted next to each others below

First eigenfunction (eigenvalue = -1)

second eigenfunction (eigenvalue = 1)

0.0 ‘ ‘ ‘ x 10t
s s
0 ‘ 2

=5
3

third eigenfunction (eigenvalue = 4) Fourth eigenfunction (eigenvalue = 9)

00 ‘ ‘ ‘ % 00 ‘ ‘ ‘ .
i by 3
b 2 e b
-0.5} -0.5f \/ \

Rt
NS

w
&
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The normalized eigenfunctions d_y, &y, &y, & are plotted on the same plot below as well for illustration.

Normalized eigenfunction

1.5¢
1.0

0.5

: : s — x
bus 2 -
-0.5r \ n=1
n=3

Some observations: The first eigenfunction ®_; (x) has no root in [0, 7], the second eigenfunction &,
has one root in [0, 7] and the third eigefunction has two roots in [0, 7] and so on. This is what is to be
expected. The n*" ordered eigenfunction will have (n — 1) number of roots (or x axis crossings) inside
the domain.

3.3.2 Problem 2

Problem Expand f (x) = 1 in a series of eigenfunctions of problem 1
solution
Let

FG) = brbor (1) + D) by () 1)
n=1

The goal is to determine b_y, by, by, - - - . This is done by applying orthogonality. Multiplying both sides
of (1) by r (x) ®_; (x) and integrating over the domain gives
T

‘[” r(x) f (x)d_y (x)dx = J” b_ir (x) CTJEI (x)dx + i b, J r(x)®_; (x) D, (x) dx
0 n=1

0 0

But 7 (x) = 1 and due to orthogonality of eigenfunctions, all terms in the sum are zero. The above
simplifies to

Jﬂ f )Py (x)dx = by Jﬂ | (x)dx
0 0

But f (x) =1 and J: Ci)il (x) dx = 1 since normalized eigenfunctions. Hence the above becomes

b_l = J (i)_l (X) dx
0
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From problem one, ®_; (x) = ( \/2£1) e*, therefore the above becomes
e I
2 T
by = L e*dx
e?” —1Jo
V2 p
=——Ie'ls
e’ —1
B V2(e™ - 1)
e’ — 1

Going back to equation (1), but now the equation is multiplied by r (x) ®,, (x) for m > 0 and integrated
using r (x) = 1 and f (x) = 1 giving

r d,, (x)dx = Lﬂ b_1®_q (x) D, (x) dx + i b, j ®,, (x) D,y (x) dx
n=1

0 0

Due to orthogonality of eigenfunctions, the above simplifies to

r ®,, (x)dx = by, J” &2 (x)dx

0 0

But L;T &Dfn (x) dx = 1, therefore the above becomes

b, = J d,, (x)dx
0

vz

m(1+n?)

From problem one, using &, (x) = (n cos (nx) + sin (nx)) the above becomes

b (ncos (nx) + sin (nx)) dx

:LJ”
! V7 (1+n?) Jo

N2 ([ .
= Nrrree (L ncos (nx) dx + L sin (nx) dx)

_ V2 (n [sin (nx)]” | cos (nx)] ”)
V(1 +n2) n 0 n 0

V2

But sin (n7r) = 0 since n is integer and cos (n7) = (—1)". The above becomes

)

(sin (nm) — % [cos (nm) — l])

——[-1" - 1]
n

I S ((_1)n+1 + 1)

n/m (1 + n?)

Forn =1,3,5,- - the above simplifies to

__ 2V
n/m (1 + n?)
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And forn = 2,4,6,--- gives b, = 0. Therefore the expansion (1) becomes

V2(e" - 1) © 2o,
- D S
fx)= —1 d_y (x) + n:mZ,;S,--- T (x)

=\fz<eﬂ—1>( V2 )ex+ S R
n=1,3,5

(n cos (nx) + sin (nx))

Ve2r — 1 \/62” -1 o 7 (1 + n2) /7 (1 + n2)
2 -1 s 1
(e - 1) 2 n:%‘é’m pYeR (ncos (nx) + sin (nx))
The above can also be written as
20" —1) , 4 & 1 .
1:— — 2n—1)cos((2n—-1)x)+sin((2n—-1)x
1 T B T s gy (@1 Deos(@nm 1)+ sin(an = )

To verify the above result, it is plotted for increasing number of n and compared to f (x) = 1 to see how
well it converges.

number of terms 5 number of terms 10
f(x) f(x
1 10f 1.10-
1.05 1.05}
1.00} 1.00
0.95 0.95+
. X : : X
0 : 3 iz o : : 7 "
number of terms 20 number of terms 40

f(x) Approximation f(x) Approximation

1.101 1.101

1.05r 1.05-

1.00 M\} 1.00 Y
,’\_/VW

0.95- 0.95r-

@
5
~5r

o
Al
N
>

g F
o

Lt
NN

Some observations: As more terms are added, the series approximation approaches f (x) = 1 more. The
convergence is more rapid in the internal of the domain than near the edges. Near the edges at x = 0
and x = 1, more terms are needed to get better approximation. More oscillation is seen near the edges.

This is due to Gibbs phenomenon. Converges is of the order of O (#) and the converges is to the mean
of f (x).
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3.3.3 Problem 3
Problem Consider the regular SL problem
y'+Ay=0 (1)
y(0)=0
2y -y’ (1) =0

Show that the problem has exactly one negative eigenvalue and compute numerically.

solution

The characteristic equation is r? + A = 0. Therefore the roots are r = +V—A. There are 3 cases to consider.
This problem is asking only for the negative eigenvalues. Therefore only the case A < 0 is considered.
Let A = —w? for some real constant. The roots are r = +Vw? = +w. The solution becomes

y =c1e“" +cpe” "
Since the exponents are real, the solution can be written in terms of hyperbolic trigonometric functions
y = c¢1 cosh wx + ¢, sinh wx

The first boundary conditions y (0) = 0 gives 0 = c;. The solution becomes

Y = ¢y sinh wx (2)

’
y" = cyw cosh wx

Applying the second boundary conditions 2y (1) — y’ (7) = 0 gives

0 = 2¢y sinh w — cyw cosh w

¢z (2 sinh w — w cosh w)
Non trivial solution requires that

2sinhw — wcoshw =0

2tanhw = w

The above equation needs to be solved numerically to find its real roots w. One root is w = 0, but this
implies A = 0. To find if there are other real roots, the function 2 tanh v and « were plotted and where
they intersect is located. Root finding was then used to obtain the exact numerical value of the roots.
The plot below shows that near w = +2 there is an intersection. There are no other roots since the line
f (w) = o will keep increasing/decreasing and will not intersect f (w) = 2 tanh w any more after these
two roots.
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2 tanh(w)

-3 -2 -1

Numerical root finding was used to find the roots near points of intersections. It shows that the exact
value of w = £1.91501. Since A = —w?, therefore

A= -3.66726
Is the only negative eigenvalue.
3.3.4 Problem 4
Problem Solve the inhomogeneous B.V.P.
Y =y +1 1)

y(0) -y’ (0)=0
y(m) -y (7)=0

for y = 0, p = 1 by methods of section 11.3

Part (a)
-y —py =1
y’ +py = -1

Using chapter 11.3 method, first the eigenfunctions for the corresponding homogenous ODE y”’ +uy = 0
are found for the same boundary conditions. In problem one, it was found that A = —1 is eigenvalue

. . . . . 2 _ V2 _ 2 _
with corresponding normalized eigenfunction ®_; (x) = (ﬁ) e¥and A, = n“forn = 1,2,---

. . . . L O\ . . 3
with corresponding normalized eigenfunctions @, (x) = N (ncos (nx) + sin (nx)). Since A = 0
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is not an eigenvalue of the corresponding homogeneous B.V.P., then there is a solution which is by

eigenfunction expansion is given by

U= baby (1) + 3 buds () ®

n=1

Substituting this back into the original ODE gives

by @) (x) + D by @) (x)) +u (b_lcb_1 () + D ba®y ()| = co1D-y (x) + D en®p (%)
n=1 n=1

n=1

Where —1 = c_1d_; (x) + pI cn®, (x) is the eigenfunction expansion of —1. Since i = 0, and &/ (x) =
-1, D, (x), the above simplifies to

_A—lb—l(i)—l (x) - Z bn)tn(i)n (x) = C—l(i)—l (x) + Z Cn(i)n (x)
n=1 n=1

Therefore, equating coefficients gives

What is left is to find c_y, ¢,. These are found by applying orthogonality since
-1= C—lci)—l (x) + Z Cnci)n (x)
n=1

This was done in problem 2. The difference is the minus sign. Therefore the result from problem 2 is
used but c_1, ¢,, from problem 2 are now multiplied by —1 giving

_\/E(e” -1)

-1 = e——

5

Ve2r — 1
2V2
nyr (1 + n?)

Now that c_y, ¢, are found, using equation (2) b_1, b,, are can now be found

n=1,3,5,-

Ch = —

V2(e™-1)
27 _1 \/E(eﬂ - 1)
b_1 = = —
(-1) e — 1
2V2 v
N, 2 2vV2
bn:nn(l+n): n=1,3.5,
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Hence the solution (1) becomes

y=b_d_ 1(x)+Zb o, (x)

\/_(e . > N2
R CIGE Y > 2,
1()+n135 -3 (14 n?) )

«f<e —1)( )ex+ fl 22 V2

(ncos (nx) + sin (nx))

Ve?r — 1 n=1,5.5,- n3yJm (1 + n2) [z (1 + n?)
2(e" - 1) 1 _
= e——l + = n_l’zg,ls’ EA (n cos (nx) + sin (nx)) (2A)

The above can also be also be written as

20" -1) , 4 1

y(x) = —_16 +—Z

7ami (2n—1)° (1+(2n - 1))

((2n—=1)cos((2n—1)x) +sin((2n — 1) x))

(2A)
To verify the above solution, it was plotted against the solution of y”” = —1 found using the direct
method to see if they match. The solution using the direct method is found as follows: The homogenous
solution is yj, = ¢1 + cx. Let y, = kx?, Yy, = 2kx,y, = 2k. Substituting these back into y”" = —1 gives

2k=-1ork= —%. Hence y, = —x?z and the solution becomes
Y=Yn+Yp
+ x
=c+cx— —
1+ 5

Boundary conditions are now applied to determine cy, ¢;. From above, y’ (x) = ¢, — x. Applying y (0) —
y’ (0) = 0 gives
0= C1—C
Cr =C
Therefore the solution becomes
2
X
y(x)=c1(1+x) - >
y(x)=c-x
Applying second BC y () — y’ (1) = 0 gives

2
T
0:C1(1+7l')—7—(31+7f

2
0=cl(1+7r—1)—7+7r

C1 =

|

I

|
—_

Therefore, the solution, using direct method is
0= (Z-1) aen -
X) = —_—— xX)— —
y 2 2
2

T
=—+—x—-1-x—-—
2 2 2
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Or

y) = - +x(Z-1)-1+Z2 3)

What the above says, is that if (2A) solution is correct, it will converge to solution (3) as more terms are
added. In other words

2 T =)
X T T 2" -1 4
——+x(——1)—1+—z—¥ex+— Z ——— (ncos (nx) + sin (nx))
2 2 2 er —1 T ooi5s .. n3(1+n?)

To verify this, the solution from both the direct and the series method were plotted next to each other.
Using only n = 10 in the sum shows that the plots are identical.

Solution using direct method Solution using eigenfunction expansion method, n=10
y(x) y(x)
0.5F 0.5F
; P N : P N

_05L0 4 2 4 _050 4 2 4
-1.0 -1.0
-15F -1.5F
-2.0F -2.0F
_25F -2.5F

Then the difference between these two solution was plotted. A maximum of n = 50 is used in the sum.
The plot shows the difference is almost zero in the internal region and near the edges of the domain
the difference of order 1077. This is expected due to Gibbs phenomenon. Adding more terms made the

difference smaller. The converges is of order O (#)

_ 2 (Exp[Pi] - 1)

mySol [max_, x_] := Exp[x] +£Sum[ (nCos[nx] +Sin[nx]), {n, 1, max, 2}]
i

1
N3 (1+n72)

Exp[2Pi] -1
. -x2 Pi Pi
direct[x_ ] := — +Xx (— —1) -1+ —;
- 2 2 2
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Showing difference in direct and 11.3 method

difference

4.x107°F

2.x107F
AI\I\,\AA‘II\V vvvvvvvvvv VoW NN} - A‘\II\I\AAAA\ X
IRAAAE : ANV

4 2 4
-2.x1078}
-4.x1078}

Part (b)

Now the same process as in part (a) is repeated for y = 1

-y —py=1
Y’ +py = -1
Using 11.3 method, first the eigenfunctions for the corresponding homogenous ODE y” + uy = 0
are found for the same boundary conditions. In problem one, it was found that A = -1 is eigen-
. . . . s (2 3 B
value with corresponding normalized eigenfunction ®_; (x) = ( W) e and A, = n? forn =
1,2,- - with corresponding normalized eigenfunctions &, (x) = V2 (ncos (nx) + sin (nx)). There-

Vr(1+n?)

fore A = 1is an eigenvalue that corresponds to u = 1. In this case, a solution will exist (and will not be

unique) only if the forcing function —1 is orthogonal to ®; (x). This is verified as follows. Since r (x) = 1,
and n = 1, then

(n cos (nx) + sin (nx)) dx

[ cormbiarn=- | J%

=- ‘[ﬂ i (cos (x) + sin (x)) dx
0 A (1+1)

= E )

= :/_% ((sinx)§ — (cosx)j)

cos (x) + sin (x) dx

-1
—W(O—(—l—l))
_ 2

\r

Which is not zero. This means there is no solution.

3.3.5 key solution



Homework 3, Math 322

1. Find the eigenvalues and normalized eigenfunctions of the regular Sturm-
Liouville problem

v + Ay =0, y(0)—y'(0) =0, y(r) —y(m) = 0.
Solution: Let A\ = —w? with w > 0, and y(z) = ¢1e*% + coe™*?. Then the
boundary conditions give

(c1 +c2) —wler —c2) =0, (c1€¥" 4+ c2e™“™) = (crwe”™ — cowe™ ™) = 0.

In order to get a nontrivial solution ¢y, co we need

1—w 1+w 1 2N —wT | _wT
(1 _ w)euﬂr (1 _i_w)efuﬂr - (1 w )(6 € ) - O
The only solution w > 0 is w = 1. Then cg = 0. Therefore, A = —1 is an

eigenvalue and ¢g(z) = kpe® is a corresponding eigenfunction.
If A =0 then y(x) = ¢; + cox. The boundary conditions give

cp—co=0, ci+com—co=0.
It follows that ¢y = co = 0, so A = 0 is not an eigenvalue.
Let A = w? w > 0, and y(z) = cicoswx + cosinwr . The boundary
conditions give
1 —wee =0, (¢pcoswm+ easinwr) — (—ciw sinwn 4 cow cos wm) = 0.
In order to get a nontrivial solution we need
1 —w

. . = (1 + w?)sinwn.
coswT + wsinwm  sinwm — w cos wr

The solutions w > 0 are w = n = 1,2,.... Then ¢; = ncy. Therefore, we
found the eigenvalues )\, = n? with corresponding eigenfunctions ¢, (x) =
kn(ncosnx 4 sinnz). We calculate

s

1
=13 [ (2 da= k(e - 1),

0 2
T T
1=k / (ncos nx + sinnx)? de =k (1 + n2)§,

0
and find the normalized eigenfunctions

R B V2 .
¢0(33)—W

- 2 1
r) =1\ ——=(ncosnx +sinnx), n=12 ...
) =2 )

2. Expand the function f(z) =1 in a series of eigenfunctions of problem 1.
Solution: For general f(x) the expansion is

i

[e.o]

f(dj) = ch(gn(x%

n=0
1



2

where .
en = /O F()dat) dt.
If f(z) =1 then

™

C():k‘() €tdt:k‘0(€ﬂ—1),

cn=ky (ncosnt + sinnt) dt = ky,

/0 ( )+1
/O” 14+ (=1)" '

Therefore,

2 4 1 .
1= eﬂ+1ex+; Z m(ncosnac—i—smnx).
n>1 odd

3. Consider the regular Sturm-Liouville problem

y'+ Ay =0, y(0)=0, 2y(1)—-y'(1)=0.
Show that this problem has exactly one negative eigenvalue and compute it
numerically.
Solution: We set A = —w? with w > 0. The condition y(0) = 0 gives
y(z) = csinhwz. The boundary condition at z = 1 shows that A is an
eigenvalue if and only if

2sinhw = w cosh w

or

1
tanhw = —w.
anh w 2w

The function tanh w is concave for w > 0 so it is clear from the picture that
there is exactly one positive solution w = 1.9150... The negative eigenvalue
is A =—3.66725...

0.59




4. Solve the inhomogeneous boundary value problem

' =py+1, y(0)—y(0)=0,y(m) -y (r)=0
for 4 =0 and g =1 by the method of Section 11.3.
Solution: If u is not an eigenvalue, then the solution is

(e}
Cn
T) = On(x).
o) = 3 5o
Therefore, if ¢ = 0 the solution is
2 4 1
y(r) = o e + - Z m(ncosnm + sinnx).
n>1 odd

1 =1 agrees with the eigenvalue A;. There exists a solution only if ¢; = 0.
But in our example, ¢; # 0 so there is no solution.



3.4 Quizz 4

3.4 Quizz 4

3.4.1 Problem 1

Problem Solve the PDE
Up = Uy + XT 0<x<1,t=20 (1)
With boundary conditions
u(0,t)=0
u(1,t)=0

And initial condition
u(x,0) = sin (7x)

Solution
The corresponding homogeneous PDE u; = u,, with the same homogeneous boundary conditions was
solved before. It was found to have eigenfunctions

®, (x) = sin (\/Zx)

With corresponding eigenvalues
An =n*m® n=1,23,---

Using eigenfunction expansion, it is now assumed that the solution to the given inhomogeneous PDE
is given by

u(x,t) = f] bn (t) @p (x)
n=1

Substituting the above into the original PDE (1), and since term by term differentiation is justified
(eigenfunctions are continuous) results in

Dbh (P (x) = D ba ()P (x) + D ¥ (1) @ (%) (1A)
n=1 n=1 n=1

Where 17| yn (t) 5 (x) is the expansion of the forcing function xt using same eigenfunctions

xt = 3y () Dy (x) (1B)
n=1

But @}/ (x) = —A,P, (x) since the eigenfunctions satisfy the eigenvalue ODE X" = —A1,X. Therefore
(1A) simplifies to

SO B (x) = D “Anbn (1) B (x) + Sy (1) D (%)
n=1 n=1 n=1
by (t) + Anbn (t) = yu (1) (2)

¥n (t) is now found by applying orthogonality to (1B), and using the weight r (x) = 1 gives

t Jol x®, (x)dx =y, (t) ‘[01 @2 (x) dx
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Using @, (x) = sin (V/l_nx) = sin (nrx) and f; sin? (nrx)dx = %, the above simplifies to

1
1
tI x sin (nzx) dx = yp (t) 2
0

1

Yn (1) = ZtJ x sin (nzrx) dx
0

The integral on the right side above is found using Jx sin (ax) dx = S“;# — *224% therefore

nm? nr

. 1
S niwx X COS mrx)
0

Jl x sin (n7x) dx = (

0

sinnm  coshrm
n2m? nr
COS nIr

ni
- (="
ni
(_1)n+1
ni

Hence equation (3) now can be written as

_1\n+1
=20,

Substituting the above in (2) gives the first order ODE to solve for b, ()

n+1
b (1) + (P by (1) = 20

The integrating factor is I = """t Hence the above becomes, after multiplying both sides by I

i (enzﬂztbn (t)) _ 2 (—1)n+1 tengnzt
dt nm
Integrating both sides gives
2(-1 n+l pt
T (1) = —ﬁ——l——-j 5" ™S ds + by (0)
ni 0

Where b, (0) is the constant of integration. Dividing both sides by en'm’t gives

2 (_1)n+1
ni

t
b (1) = ‘[ se™ ™ 0ds + by, (0) e

0

t 2, 2(c_ 2,24 —n?n2: . .
But Jo se st s = % by integration by parts. The above now becomes

nrlt—1+e

—n?x?t 2 2
—n°m°t
e + b (0)e

bn (£) = 2(-1)™"! (
Now that b, (t) is found, the final solution is

u(x,t) = i by (t) @y (x)

o0 2,2 -n?r?t
n‘rt—1+e
= (2 (-p™*? ( ) + b, (0) e_"z”zt) sin (nrx)

5,75
n=1 -
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by, (0) is determined from the given initial conditions u (x, 0) = sin zx. The above becomes at t = 0

sin rx = i (2 (-1)"*! (_1 hl 1) + b, (O)) sin (nmx)

n=1 n>m’
= i b, (0) sin (nmzx)
n=1
Therefore when n = 1 (since LHS is sin zx ) the above gives
b (0) =1

And b, (0) = 0 for all other n. Equation (5) now simplifies to

n=1 term

2 -t 0
Tét—1+e 1 2
ulx,t)= 2| ———— | + e ™| sin (mx) + — Z — (-)"*! (I’lzﬂ'zt ye T 1) sin (nx)
T’ = nd

To verify the above solution, it was plotted against numerical solution for different instances of time
and also animated. It gave an exact match. A small number of terms was needed in the summation since

convergence was fast and is of order O (%) . The following is a plot of the above solution for different

instances of times using 5 terms.

time = 0. seconds time = 0.1 seconds time = 0.2 seconds
1.0 1.0 1.0
0.8} 0.8 0.8
06 0.6 0.6
04t 0.4 0.4
0.2t 0.2 0.2
0.2 0.4 0.6 0.8 1.0 0.2 0.4 06 038 1.0 0.2 0.4 0.6 0.8 1.0
time = 0.3 seconds time = 0.4 seconds time = 0.5 seconds
10 1.0 1.0
0.8} 0.8 0.8
06F 0.6 0.6
0.4f 0.4 0.4
0.2t 0.2 0.2
e ——
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

3.4.2 Problem 2

Problem Show that

(A= p) j xJo (VAx) Jo (Vix) dx = il (VE) Jo (V2) = VAJ; (VA) Jo (VR)

Hint: Use the same method that proves orthogonality of eigenfunctions in 11.4
Solution
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In the above, A and p are the eigenvalues, with the corresponding eigenfunctions

@5 (x) = Jo (V) 1)
D, (x)=Jo (\/ﬁx) (2)
These come from the Sturm Liouville equation
= (xy)" = Axy (3)
Where
px)=x
q(x)=0
r(x)=x
In operator form
L[®;] = - (®}) = Ax®; (4)

Similarly for any other eigenvalue such as y. Multiplying both sides of (4) by ®, (x) and integrating
gives
dv u

1 1 — " ——
J L[®;]®,dx = J - (@) @, dx
0 0

Integrating by part the right side results in

1 1
J L[®;] @dx = [-0,D,] —J ~®) P dx
0 0

Integrating by parts again the second integral above, where now dv = —®,u = @/, gives

1

1 1
[} cewiae = [ajm, ) (o] - [0

1

1
’ 1 ’ ”
[~20,] - [-@20 | + L 0, ®//dx

1 1 ’
-2}, + 2,9, + L @, (-2 ) dx
!’
But (—@L) =L [QD#] . Hence the above can be written as

1 - 11 1
J L[®;]®udx = [P, + 1P, | + j L[®,] ®dx
0 ! 1o

1 1 - B
j L[®;] ®,dx — J L[®,] @rdx = | -0} D, + 03D,
0 0 - -

1 - :
L (L[@A] @, — L [®y] @2) dx = @)+ 220 |

But L[®,] = Ax®, and L [<I>ﬂ] = ux®,, therefore the above can be written as

1 - 11
J (Ax®3 @, — pxd,®,) dx = |0/, + B, P,
0 L 10

1 i .
L (A= p) (x®,®,) dx = »—CI);LCI)L, + %q);,_

1 i .
A - ,u)J x®;®pdx = | =00y + 01D, (5)
O L B
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Since @, (x) = J, (\/Ix) , @ (x) = \/I](; (\/ix) and @, (x) = J, (y/Ex) L@, (x) = i, (y/Hx), then the

above simplifies to

1
0

(A—p) Ll o (VAx) Jo (Vi) dx = [=VAT; (VAx) Jo (Vix) + Jo (VAx) VR, (Vi) |

1
What is left is to evaluate the boundary terms A = [—\/i](; (\/ix) Jo (\/ﬁx) + Jo (\/Ix) Vi, (\/ﬁx)] .

0
This gives

A = |~V (V2) Jo (VA + Jo (V2) VBTG (VA) | = |-VAT; 00 Jo (0) + Jo (0) VAT, (0)]
But J; (0) = 0 (since J, (x) = —J; (x) and J; (0) = 0 ). Therefore the boundary terms reduces to
A = Jo (VZ) Vs (V) = VAT; (VA) o (VR)
Substituting this back in (5) gives the desired result

O [ et (VE) 1o () = 5 (V) Jo (V) = (V) Jo ()

3.4.3 Problem 3

Problem By letting 1 — A in the formula of problem 2, derive a formula for f; xJ? (\/Ix) dx. Then show

that the normalized eigenfunctions of the eigenvalue problem in section 11.4 is

2 _ \/5]0 (jnx)
Oy (x) = ——7
s G|
where 0 < j; < j, < j3 < --- denote the positive zeros of J
Solution
Part (a)

From problem 3, the formula obtained is

(A~ p) j: xJo (VAx) Jo (Vix) dx = VTl (VE) Jo (V2) = VAT, (VA) Jo (VA)
Moving (A — p) to the right side gives

VAT (VE) Jo (VA) = N (V) Jo (V)
(A=p)

1
J xJo (\/Ix) Jo (\/ﬁx) dx =

0
Taking the limit lim y — A then the integral on the left becomes fol x@idx resulting in

VAT (VR) Jo (VA) = VAT; (V) Jo (vA)
(A=p)

When y — A the right side becomes indeterminate form g. Therefore L’hospital rule is used, which says

that
lim & = lim f)
ou g(x)  xoa g (x)

. .
L xJy (\/Zx) dx = ;{EBI (1)
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Comparing the above to (1) shows that p is now like x and A is like a. Therefore f’ (x) is like
70 = 4 (VL (3R) o (VE) = V2, (V2) 1 (V) )
ﬁﬁvwww%iwwﬂ<@

= 5o e VB Jo () Vit (V) Jo (VA) = 5= (V) Js ()
And ¢’ (x) is like % (A — p) = —1. Using the above result back in (1) gives

fps () b=t 5

= lim (=320 ) Jo (V) =gz (V) s (V) + 5=V (V) 2 (4
— tim (-3 (VA 2o (V2) = 322 (30 4o (V) + 322 (¥2) 2 (v |

Now the limit is taken, since there is no indeterminate form. The above becomes

[ (V)= -3 (8] 2 7)) )+ 2299 299

2 Vi
1 ’ 2 1 ’ 44
(O () e
To simplify the above, the following relations were obtained from dlmf.NIST.gov to simplify the above
T ) = I 0= g o

T ) = =T () + x] ()

Using these, then J; (\/I) =-Ji (\/I) and J§’ (\/Z) =—J (\/Z) +

to

lejﬁ(«/_) =%([]( )]2—%(—]1(‘/1))]0(\5)—(—]0(\/1)+%]1(\/I))]0(\/I))

[ (5 () 20 (33) 30 () 2o () = 2 () 3 ()

\/LX Ji (\/I) .Equation (2) now simplifies

The second term cancels with the last term above giving the final result

[y (Vi) = 3 ()< () 0

Part (b)

VA, are the positive zeros of Jj (\//1_,,) = 0. Below, V1, is replaced by j, where now j, are the zeros

of Jo (jn). One way to find the normalized eigenfunction Jo Gnx) is by dividing Jp (j,x) by its norm. In
other words,
Jo (jnx)

[1Jo Gn)l

Jo (nx) = (1A)
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But

1o Gl = \/j () JE (o) dx
Which is by the definition of the norm of a function with the corresponding weight r (x). But from
part(@) [1Jo Ga)ll = [}  (x) J& (jnx) dx was found to be 1 ( 2 Gu)]? + 2 (j,,)) . Therefore (1A) becomes
Jo i)
VU8 G + J2 )
_ VZhGen)
U G + J2 )

But since j, are the zeros of J; (j,), then all the J; (j,) terms above vanish giving

jO (nx) =

‘/5]0 (jnx)
s Gn)®
_ ‘/EJO (jnx)
Jo Gn)l
Another way to find the normalized eigenfunctions Jo (j,X) is as was done in the text book, which is to
first determine k, as follows. Let Jo (jux) = knJo (jux), then the following equation is solved for k,,

jO (nx) =

(1)

L r () [y Go)] 2 dx = 1 )

But the weight r (x) = x, equation (2) becomes
1
k2 J x](f (jux)dx =1
0

But from part(a), fol xJZ (jnx) dx = ([]5 (],,)] ¥ JE (],,)) . Hence the above becomes

1

2
k% = !

" (UG + T8 Gn))
V2

JUs Gl + 2 Gin)

kn =

As above, since all J; (j,) = 0 then

V2
VUG Ga)?

kn =

And the normalized eigenfunction become

Jo (jux) = knJo (jnx)
_ V2Jo (jnx)
U5 Gn)T?
_ V2Jo (jnx)
1Jo Gn)l
Which is the same result as (1).
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3 Quizzes

3.4.4 Problem 4
Problem Solve the inhomogeneous differential equation
~((1-x*)y) =y+x° -1<x<1

With boundary conditions y (x), y’ (x) bounded as x — —1* and x — 1~
Solution
This problem is solved using 11.3 method (Eigenfunction expansion). The ODE is written as

(1= ) = py +° (1)
Where p = 1 in this case. The corresponding homogeneous eigenvalue ODE to solve is then
- ((1=x%)y) = 2y (2)

Comparing to Sturm-Liouville form — (py’)’ + qy = rly, then p (x) = (1 — x?) ,q = 0,r = 1. Since p (x)
must be positive over all points in the domain, and since in this problem p (=1) = 0 and p (1) = 0, then
both x = —1, +1 are singular points. They can be shown to be regular singular points.

Equation (2), where A is now is an eigenvalue, is the Legendre equation

(1-x*)y"—2xy’ +ly=0
Comparing to the standard Legendre equation form in chapter 5
(1-x*)y"—2xy’ +n(n+1)y=0 (3)

There are two cases to consider. n is integer and n is not an integer.
Case n is not an integer. It is know that now the solution to (3) is

Y (x) = 1P (x) + c20n (x)

Where P, (x) is called the Legendre function of order n and Qy, (x) is called the Legendre function of
the second kind of order n. These solutions are valid for |x| < 1 since series expansion was about point
x = 0. But both of these functions are unbounded at the end points (Q, (x) blows up at x = +1 and
P, (x) blows up at x = —1) leading to trivial solution.

This means n must be an integer. When n is an integer, then A, = n(n + 1). It is known (from chapter 5),
that in this case the solution to (3) becomes a terminating power series (a polynomial), which is called
the Legendre polynomial P, (x) .These polynomials are there bounded everywhere, including at the end
points x = +1, and therefore these solutions satisfy the boundary conditions. Hence the Legendre P, (x)
are the eigenfunctions to (3). This table summaries the result found

n | eigenvalue eigenfunctions

0| A=0 Py(x) =1

1| A=2 Pi(x)=x

2| 22=6 P (x) = 5 (3x* — 1)

3| A3 =12 P3(x) = § (5x° — 3x)
n|A,=n(n+1) Pn(x):ﬁ%(xz—l)"
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3.4 Quizz 4

What the above says, is that the solution to
(1= x*) P}/ (x) — 2xP}, (x) + AyPy (x) = 0

Is P, (x) with the corresponding eigenvalue A, = n(n + 1) as given by the above table. Now that the
eigenfunctions of the corresponding homogeneous eigenvalue ODE are found, they are used to solve
the given inhomogeneous ODE

’
—((1=x")y) = py +° 4)
Using eigenfunction expansion method. Since p = 1 and since there is no eigenvalue which is also 1,
then a solution exists. Let the solution be

y(x) = Z cnPn (x)
n=0
Substituting this solution into (4), and noting that L[y] = — ((1 — x?) y’) " = Aoy gives
An Z cnPn(x)=p Z cnPp (x) + x°
n=0 n=0

Expanding x°® using the same eigenfunctions (this can be done, since x? is continuous function and the
eigenfunctions are complete), then the above becomes

An i cnPn(x)=p i cnPp (x) + i dnPp (x)
n=0 n=0 n=0

AnCn = pcp + dy

What is left is to determine d,, from
X’ = Z d, Py (x)
n=0

The above can be solved for d, using orthogonality, or by direct expansion (otherwise called undeter-
mined coefficients method). Since the force x> is already a polynomial in x and of a small order, then
direct expansion is simpler. The above then becomes

x* = doPy (x) + d1 Py (x) + do Py (x) + d3P3 (x)

There is no need to expand for more than n = 3, since the LHS polynomial is of order 3. Substituting
the known P, (x) expressions into the above equation gives

1 1
X3 = d() + dlx + dza (3x2 — 1) + d3§ (5X3 — 3x)
3 1 5 3
= do + dlx + dz (Exz — 5) + d3 (EX'3 — Ex)

Collecting terms of equal powers in x results in

1 3 3 5
x* = x° (do - Edz) +x (d1 - Edg) +x? (Edz) +x° (Edz.)
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3 Quizzes

Or
1
dy——=d, =0
0~ 5%
3
di——-d3; =0
1750
3
-d, =0
5%
5
—-d; =1
5%

From third equation, d, = 0. From first equation dy = 0, and substituting last equation in the second
equation give d; = % Therefore

3
d ==
' 5
2
dy = =
75
And all other d,, are zero. Now the ¢, are found using ¢, = Aj—fu. Forn=1
d 2 3
c1 = = = —
M—p 2-1 5
Andforn=3 )
d3 5 2

“h-p 12-1 55

C3

And all other ¢, are zero. Hence the final solution from y (x) = X ¢, Py, (x) reduces to only two terms
in the sum

y(x) = c1P; (x) + c3P5 (x)

Giving the final solution as

This is a plot of the solution
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Solution to Problem 4 using eigenfunction expansion

0.4+

-04F

0.6

-1.0 -0.5 0.0 0.5 1.0

Appendix for problem 4

Initially I did not know we had to use eigenfunction expansion, so solved it directly as follows. Let the
solution to
(1-x*)y" -2xy +y=x°
Be
y(x) =yn (x) +yp (x)
Where yj, (x) is the homogeneous solution to (1 — x?) y” —2xy’+y = 0 and y, (x) is a particular solution.

Now, since (1 — x?) y” — 2xy’ + y = 0 is a Legendre ODE but with a non-integer order, then its solution
is not a terminating polynomials, but instead is given by

Yn (x) = Clpn (x) + CZQn (x)

Where P, (x) is called the Legendre function of order n and Q,, (x) is called the Legendre function of the
second kind of order n, and y,, (x) is a particular solution. The particular solution can be found, using
method of undetermined coefficients to be y,, (x) = 1—11x3 + 1—61x. Hence the general solution becomes

y (x) = Clpn (x) + CZQn (x) + 1—11)( (XZ + 6)

Now since the solution must be bounded as x — +1, then we must set ¢; = 0 and ¢; = 0, because both
P, (x) and Q, (x) are unbounded at the end points (Q, (x) blows up at x = +1 and P, (x) blows up at
only x = —1), therefore the final solution contains only the particular solution

1 2

x)= —x(x"+6
y(x) = x (" +6)
Which is the same solution found using eigenfunction expansion. At first I thought I made an error
somewhere, since I did not think all of the homogenous solution basis could vanish leaving only a

particular solution.

3.4.5 key solution



Homework 4, Math 322

1. Solve the the partial differential equation
U = Ugr + 28, 021,620
with boundary conditions
uw(0,t) =u(l,t) =0
and initial condition
u(z,0) = sin7x.

Solution: The eigenvalue problem —y” = Ay, y(0) = y(1) = 0 has eigen-

values A, = n?7? and normalized eigenfunctions ¢,(z) = v2sin(nz), n =

1,2,... Therefore, we are looking for a solution in the form

u(l‘, t) = Z bn(t)qgn(x)

n=1

We know from the textbook, Section 11.3, that by () is determined by

b,n(t) + /\nbn(t) = 'Vn(t)7 bn(0) = By,

where
1
() = ton(z)d
() /Ow(x) v

and the sequence B,, is determined by

u(a:, 0) = Z Bném(x)

Therefore, in our problem, B; = % and B, = 0 for n > 2. Moreover,

nm

Tn(t) = t\/i/ol zsin(nrz) de = t\/ﬁ(_l)"ﬂi'

Solving the differential equation for b, (¢) we find
\/i 2 —m2t 1 5
bl(t)zﬁ 7Tt—1+€ 577' +1 .
and, for n > 2,

2(—1 n+1
ba(t) = \[(572 <7T2n2t 14+ efn%%) .
™n

1



The solution is

2 1
u(z, ) =— < 21 4e ™! <27r5 + 1)) sin T
Z w202t — 1 4 e sin(nmx)
7T5n5
(o]
2(—1 n+1
—e ™ lsinmr + Z L (7r2n2t -1+ e_"2”2t> sin(nmz).
2. Show that

1
(A= p) / 2 do(VAx) Jo(/fi) de = /Ty (Vi) To(VA) — VATH(VA) To(/R)

for A\, u > 0.
Solution: Let y = Jo(VAz) and z = Jo(y/fiz). Then
(ay) = Aay, (a7 = paz.

We multiply the first equation by z, the second by y, subtract and integrate,
to find

1 1
/0(@2)9_(331/)2) dm:(A—u)/O xyzdx.

Integration by parts gives

1
xzy—xyz‘o (A — u)/ xyz dx
0
which is the desired identity.

3. By letting 4 — X in the formula of Problem 2, derive a formula for
fol xJo(vXx)?dzr. Then show that the normalized eigenfunctions of the
eigenvalue problem in Section 11.4 are

n _ﬁJO(]nI)
V7S

where 0 < j1 < j2 < j3 < ... denote the positive zeros of Jj.
Solution: We divide the identity from problem 2 by A — u, and let 4 — .
Using L’Hospital’s rule we find

/1 zJo(Vz)? da = hmA \/EJ(/)(\/E)JO(\&))\ fJO(ﬁ)Jo(\f)
0 n—
:—E_)Hi;u_l/Qjé(\/ﬁ)Jo(\/X)—}-;J(/)/(f> (\/>) IJO(\/») —1/2J/(f>

AR = ST NI + ST

Now we use

VAT (V) + T5(VA) + VAJo(VA) = 0



Then we obtain
/01 zJo(VAx)? dx = %Jo(\r)\)2 + %J(’)(\F)\)Q.
If A = j2 then this formula simplifies to
/01 v o) d = 3 (i)’

The normalized eigenfunctions are

JO(jnT‘) _ \/5']0(]7@7“)
(fol xJO(jn$)2 dl’) 12 ‘JO(]n)‘

4. Solve the inhomogeneous differential equation
(A=) =y+a2® —-1<z<l1
with boundary condition
y(z),y () bounded as * — —1" and x — 1™

Solution We use the method from Section 11.3. It is stated for regular
Sturm-Liouville problems but it works equally well for our singular Sturm-
Liouville problem. We look for the solution in the form

Yy = Z b Py ().
n=0

The b,, satisfy

by, = .
" )\n —H
The sequence ¢, is determined by

23 = Z enPp(x).
n=0

Since Ps(z) = 523 — %x and Pj(z) = x, we find
3 5’ 1= 5’

and all other ¢, = 0. The eigenvalues are A\, = n(n + 1) and pu = 1.
Therefore,

3 21 (5 3 6 1
y= = Pi(z) + ——Py(x) = Sz + 511 (:l?3 - ar) = —x+ —a2°

12 -1 ) 11 \ 2 2
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4.1 Fourier hand out, Jan 31,2018
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THE FOURIER CONVERGENCE THEOREM

Before we can prove the Fourier convergence theorem we need some prepa-
rations.

Lemma 1. Let g be a T-periodic function which is integrable on [0,T].

Then, for all a,
T a+T
/ g(x)dx :/ g(z) dz.
0 a

Proof. There is an integer k such that (k — 1)T < a < kT. Then
a+T kT a+T
/ g(x)dx = / g(x)dx + / g(x)dx.
a a k

T

In the first integral on the right-hand side we substitute x = ¢t —T" and use
g(t —T) = g(t). Then we obtain

a+T (k+1)T a+T
/ g(x)dx = / g(t)dt + / g(x)dx.
a a k

+T T
Therefore,
a+T (k+1)T T
[ swan= [ gwyde= [ gs)as
a kT 0
where we substituted x = s + kT O

The Dirichlet kernel D,,, n =0,1,2,..., is defined by
1
Dy,(t) = B + cost 4 cos(2t) + - - - + cos(nt).

This is an even function with period 27w. The graph of Ds is shown in
Figure 1.

Lemma 2. Ift # 0,127, +47, ... then
sin(2n + 1)1t

D,(t) =
() 2sin 3¢

Otherwise, Dy, (t) =n + 3.

Proof. Using cost = 3(e® + ™), we have

1 —
Dn(t):§ Z €th.

m=—n

1



2 THE FOURIER CONVERGENCE THEOREM

/\g/n\ﬁ/ ; \/\\/\\

FIGURE 1. Graph of Ds(t)

We set z = e't. Then

1
Dn(t) =52 "(1+2+ 224+ 27

1 _ 22n+1 -1
N 5 z—1
1 J—int 6(2n+1)it -1
—9° et —1
1 62(2n+1)%t _ 6—i(2n+1)§t
D) st _ bt
sin((2n + 1)5t
=01,
2sin 5t
where we used sint = o (et — e~ ). O

Lemma 3 (Bessel’s inequality). Let f be a 2L-periodic function which is
integrable on [—L, L] with Fourier coefficients

L
(1) / f(t) cos—dt by = %/Lf(t)sianmdt.
Then
1 2 L 2
(2) —a0+m§:1 G+ 0) < 7 _Lf(t) dt

In particular,
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Proof. Let n be a positive integer, and consider

1 - t t
sp(t) = Zag + Z (am cos mTﬂ + b, sin mgr > .

2
m=1
Then
L L L L
o< [ GO-soPd= [ g@ra-2 [ s [ s

Now, using the definition of s,

L n
2 /L F(t)sult) dt =2 <%a(2) + 3+ bfn)> .

By orthogonality,

Therefore,

1 /L 2 Ly N2 2
0< — f@) dt — | zag + (a7, +0;,) | -
AR G
This is true for all n so (2) follows. O

Actually, equality holds in (2) (Parseval’s equation) but we do not need
this result right now.

A function f is said to be piecewise continuous on the interval [a, b] if the
interval can be partitioned by a finite number of points a = zg < 21 < --- <
T, = b so that

1. f is continuous on the open interval (z;_1,2;) for i =1,2,... n;
2. the one-sided limits f(z} |) = lilrna:_mit1 f(z) =and f(z; ) = limgg_m; f(zx)
exist and are finite for each i = 1,2,...,n.

Theorem 4 (Fourier convergence theorem). Let f be a function with period
2L such that f and f' are piecewise continuous on [—L,L]. Let a,, by, be
the Fourier coefficients of f as defined in (1). Then, for all real x,

1 1 = MmmnT mmx
—(ft) + f(27)) = zap + Z (am cos ——— + by, sin—) .
2 2 = L L

In particular, if f is continuous at x,

1 > mmnx . mnx
flx) = 540 + 231 (amcos < + b, sin T) .
m=



4 THE FOURIER CONVERGENCE THEOREM

Proof. In order to simplify the writing we assume that L = 7 (consider
I (%t) in place of f.) In the following x denotes a fixed real number. For a

positive integer n we define the partial sum of the Fourier series
n

1
sp(z) = S0+ Z (@m cos max + by, sinma) .

m=1
Then using (1)
( )—i ﬂf(t)dt—kil 7rf(t)(cos cos mt + si sinmt) dt
sn(2) = o - 2z ), mx cos m inmaxsinm
1 (" ~1 (7
= f@ydt+ > = [ f(t)cosm(t —x)dt.
2 Jn m=1" J-T

By definition of D,,,

sp(z) = 1 /ﬂx f(z +u)Dy(u) du.

—TT—X

By Lemma 1,
1 ™
sn(x) = - f(z + w)Dy(u) du.

—T
We split the integral in two

0 ™
sp(z) = % f(z+wu)Dy(u) du + % /0 f(z +u)Dy(u) du.

—T

It follows easily from the definition of D,, that

% (;Dn(t) dt = %/OﬂDn(t)dt — %
Therefore,
n(a) = 5 (P + F@)) = T+
where
L=t i( Flas)—fa N Dalw)du, gy =2 [ (1)) da

We now show that the two integrals I, J, converge to 0 as n — oo which
completes the proof. We do this only for J,, I, is treated similarly. Now,
using Lemma 2,

™ sin(2n 1y
J":‘/ (Fo +u) — flat) 2t Dgu
0

1
2sin U
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Substituting u = 2t we can write this as
1

2 =57
Ip = — /2 g(t)sin(2n + 1)t dt,
™ Jo
where fl@+20) - fa) 1
x4+ 2t) — f(x t
- < o
9(t) 2t sint for 0 <t < 27T

Since we assumed that f’ is piecewise continuous, the limit lim,_ o+ g(t)
exists as a finite number (to see this one has to apply the mean-value the-
orem). Therefore, the function ¢ is piecewise continuous and thus inte-
grable on [0, 37]. It follows from Lemma 3 (with L = 17 and g(t) = 0 for

—L <t <0) that limy, e Jp = 0.

Remark: In the proof we did not directly use that f’ is piecewise con-
tinuous. It would be simpler to just assume that the limits

flatt) - flz7)

t) — +
i F@ )~ flz )’ lim
t—0+ t t—0— t
exist and are finite.
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THE DIRICHLET PROBLEM ON AN ELLIPSE

We want to solve the Dirichlet problem
Ugg + Uyy = 0 for (z,y) in D,
u(z,y) = f(x,y) for (z,y) on the boundary of D

when D is the region inside the ellipse

2 2
T+l o
a b2
We assume that a > b > 0. The focal points of the ellipse are (+¢,0). We

introduce elliptic coordinates
x = ccosh&cosn, 4y = csinh¢sinn.

Usually ¢ >0and 0 <np<2mor —m <n <.

Ficure 1. Elliptic Coordinates

We set v(&,m) = u(ccosh & cosn, csinh £ sinn). Then, by the chain rule,
vge = (csinh § cos 1)*tge + 2¢2 cosh € sinh € cos nsin g Ugy
+(ccosh € sinn)?uy, + ccosh € cosnu, + csinh € sinnuy,
vy = (ccosh € sinn)?u,, — 2¢* cosh € sinh € cos 7sin 1 g,

+(csinh € cos n)Quyy — ccosh & cosnu, — csinh{sinnu,,.
1



2 THE DIRICHLET PROBLEM ON AN ELLIPSE

SO
Vee + Uy = c(cosh? € — cos? n) (Ugy + Uyy)-
Therefore, the equation g, +uy, = 0 is equivalent to vee + vy, = 0. We use
separation of variables
v(&,n) = E(E)EM).
Then we find
- MNe=0, E'+)\E=0.
The equation for E has to have nontrivial 27 periodic solutions. Therefore,
A=n?n=0,1,2,... and

E,(n) = ¢, cos(nn) + d,, sin(nn).
The general solution of the differential equation for = with A = n? is
=(&) = ay, cosh(nf) + d, sinh(né).
If we consider the function
v(&,m) = cosh n sinnn,

then we notice that v(&, —n) = —v(&,n) so u(x,—y) = —u(z,y). But then
u(z,0) should be zero on the focal line which is not true. Therefore, u(z,y)
is discontinuous at the focal line [—¢,¢]. Similarly, the function v(&,n) =
sinh n§ cos nn has a discontinuous derivative u,,. Therefore, we consider only

(1) vn(&,m) = ¢ coshn€ cosnn + d, sinh né sin ny.

In fact, we show below that the corresponding function u,(x,y) is a poly-
nomial in z,y. Therefore, by superposition, we find the solution

(o)
(2) v(&,n) = %0 + Z(C” cosh n& cos nn + d, sinh n sin nn).

n=1
The boundary of D is given by & = &j, where £ > 0 is determined from
ccosh &y = a. Therefore, in order to satisfy the boundary condition

F(n) := f(ccosh§ycosn, csinh §osinn) = v(£o,7)

we set
1 27

cpcoshnéy = — F(n)cosnndn, n >0
™ Jo

and
1 2
d,, sinhnéy = —/ F(n)sinnndn, n>1.
T Jo

Substituting these values of ¢, d,, in (2) we find the solution of the Dirichlet
problem for the ellipse. We see that the series in (2) converges very well for
& < &. The quality of convergence on the boundary ellipse £ = & is the
same as that of the Fourier series for F'(n).

The function v,, defined in (1) ic called an ellipsoidal harmonic of degree
n. These functions are polynomials in x,y as we show below. We use the
Chebyshev polynomials 7;, defined by cosn# = T),(cos ). They also satisfy
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coshnz = T, (cosh z). The Chebyshev polynomials can be calculated from
the recursion

To(z) =1, T1(2) = 2z, Thy1(2) = 22T, (2) — Th—1(2)

SO
To(z) =222 —1, T3(z) =423 — 3z, Ty(z) =821 —822 +1.
Then
cosh né cos nn + i sinh né sin nn = coshn(§ + in)
= T, (cosh(& +in))

= T, (cosh & cosn + i sinh £ sinn)
= T, (c Yz +1y)).

For example,

2 2
cosh 2€ cos 2n = Re (20_2(55 + z’y)2 —1)=2 (%) -9 (y) —1,

sinh 2€ sin 27 = Im (2¢ ™ 2(z 4 iy)*> — 1) = 2:C_2y'
c
Example: Solve the Dirichlet problem ug; + uy, = 0 inside the ellipse

% + % = 1 with boundary condition u(z,y) = 1z°.

Solution: We have a = 3, b= 2 and ¢ = v/5. The ellipse is given by & = &
where ccosh &y = a, csinh &y = b. The boundary condition is given by the

function F(n) = %aQ cos?n = 3cos?n. Its Fourier expansion is

f(n) =3cos’n = % —l—§c03277.

2
The solution of the Dirichlet problem in elliptic coordinates is
3 3 cosh2
v(€mn) =5+ : 0s 21).

= c
2 2cosh2§
Transforming to cartesian coordinates we get

3 35 (2% 4 12 3,5
=" 4o (20 —28 1) = = (22— ).
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LOWER BOUND FOR EIGENVALUES

We want to derive a lower bound for the eigenvalues of a regular Sturm-
Liouville problem. We first need a lemma (related to the Sobolev embedding
theorem.)

Lemma 1. Let f € CYa,b], x € [a,b], h > 0. Then

s < (hoey) [ rwraen [ fora

Proof. For all x, s € [a,b] we have

T b
f($)2—f(8)2=/ 2f(t)f'(t)dt§/ 2£ @)1 ()] dt.

S a

We estimate

2F I ] =2 (’f“)‘) WRIFO) <

2 102
7 f@&) +hfi(@).

1
h
Therefore,

P~ f6) < 5 / " fey it / PR

We integrate this inequality from s = a to s = b. Then we obtain

b b b
(b—a)f(:v)z—/ F(s)2ds < bh/ f(t)2dt+(b—a)h/ P02 dt.

This is equivalent to the inequality in the statement of the lemma. O

We consider the regular Sturm-Liouville problem

2 (P2 ) = ataly + xrtaly =o.

ary(a) + agy'(a) =0, Biy(b) + B2y (b) = 0.

We define
0 if ap =0 or 52 <0,
c1 = oL i a ’
pla)gr i 5L >0,
and
0 ifﬁZZOOr%zo,
2= B1 e B ’

Then we set c =¢; + ¢ > 0.



2 LOWER BOUND FOR EIGENVALUES

Theorem 2. Every eigenvalue \ of a reqular Sturm-Liouville problem, sat-
isfies the inequality

2
(1) - ( c )+me.

minr b—a minp r

Proof. Let ¢(x) be an eigenfunction corresponding to the eigenvalue .
Then, using integration by parts,

s [rot == [woYor [a6* = - g @)+ [ o)+ [0,
where [ f denotes fab f(z)dz. Now

— p(2)¢'(@)o(x)], = p(b)gicﬁ(b)Z —p(a)—d(a)?,

where % =0if g2 =0 and Z—; = 0 if ag = 0. Using the definition of ¢, we
find

a1
a2

— p(;n)gb'(:v)gb(xﬂz > —cmax {(Z)(a)2, ¢(b)2} )

Therefore,

(2) A/'Nb? > —cmax {¢(a)?, ¢(b)*} +minp/(¢/)2+minz/r¢2_

If ¢ = 0 then
)\/rd)Q Zming/rd)?

This gives (1) after division by [r¢? > 0.
If ¢ > 0 then we use Lemma 1, and obtain from (2)

)
s frotz e (e g) [ en [ ming [@7vmin? 1o

where h can be any positive number. We choose h = w. Then (3) gives

2 1
A/r¢22<— < - ° > : /r¢2+minq/r¢2
b—a minp/ minr r

which again gives (1) after division by [ r¢?. O
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THE PRUFER ANGLE

We consider a regular Sturm-Liouville eigenvalue problem

(1) —(p(@)y') +q(x)y = Ar(2)y, =z € [a,l]
with boundary conditions of the form

(2) cosay(a) = sinap(a)y'(a),
(3) cos By(b) = sin S p(b)y'(b),
where

0<a<nm, 0<pB<m.
Let y(z) be a nontrivial solution of (1). Then we set

§(x) = p(a)y'(z) = p(x)cos (x), n(z) =y(x) = p() sin ¢(z).
Then
p(x) = VE&(x)? +n(x)?, ¢(x) = arctan % = arccot%.

¢ is called Priifer angle, and p is called Priifer radius. In order to determine
¢(x) we first choose ¢(a), for example, —7 < ¢(a) < 7. Then we use the
arctan-formula if £ # 0 and the arccot-formula if n # 0. We have to choose
the proper branch of the multi-valued arctan, arccot, so that ¢(z) becomes
a continuous function (and then also continuously differentiable.)

From the equations

¢ =pcosp—p¢'sing, 1 =p'sing+ p¢cos o,
we obtain
n' cosp — &' sinp = pg'.
Since &' = (pu’) = (¢ — A\r)psing, ' = % = I‘—;cos ¢, it follows that

1

(4) ¢ = =cos> ¢+ (\r — q) sin? ¢.
p

A similar calculation shows that

p = (% + g — Ar)pcos ¢sin ¢.

It is important to note that (4) is a first order differential equation for
the Priifer angle. In order to satisfy the first boundary condition (2), we
choose ¢(a) = a. Then ¢(x,\) is uniquely determined by (2). The second
boundary condition (3) is satisfied if

¢(b,A) = B +n,

where n is an integer. One can show that limy_, o, ¢(b, \) = 0, limy_, o0 ¢(b, A) =
oo and ¢(b,\) is an increasing function of A\. Therefore, for every n =
1
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0,1,2,..., there is a unique solution A = A, of ¢(b,\) = 8+ n and the se-
quence {\,}5° , represents all the eigenvalues of the regular Sturm-Liouville
problem.
Example: Consider

—((1L+a)y' (@) +ay =A1+2%)y, y(0)=0,4'(1)=0.
Then p(z) =1+2z, qz) =z, r(z) =1+2% a=0, 8 =7/2.

FIGURE 1. Priifer angle ¢(1, \)

The smallest two eigenvalues are
Ao = 2.51173, A =24.9158
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FIGURE 2. Eigenfunction for A = Ay
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FicURE 3. Eigenfunction for A = X\;






Chapter 5: Exams

5.1 First exam

5.1.1 First exam practice questions
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Review for midterm exam Math 322,
Tuesday, March 13, 2018

The midterm exam is on sections 10.1-10.8 of our textbook.

1. (Section 10.1) Find the solution (if it exists) of the boundary value
problem

y'—y=e" y(0)=1y1)=0
2. (Sections 10.2-10.4) Find the Fourier cosine series for the function

r if0<x <],
f(x)_{1 ifl<z<?2.

Choose L = 2. Apply the Fourier convergence theorem. What do we get at
x =17

3. (Sections 10.2-10.4) Find the Fourier sine series for the function f(x) of
Problem 2. Choose L = 2. Apply the Fourier convergence theorem.

4. (Section 10.5) Solve the heat equation

Up = Ugy
with boundary conditions
uz(0,8) =0, ug(2,8) =0
and initial condition
u(z,0) = f(z)

with f(x) from Problem 2. Find the steady-state temperature.
5. (Section 10.6) Solve the heat equation

Ut = Ugy
with boundary conditions
u(0,t) =t, wu(m,t)=0
and initial condition
u(z,0) = 0.
6. (Section 10.7) Solve the wave equation
Ut = gy, O<z<m,t>0
with boundary conditions
u(0,t) =0, wu(m,t)=0
and initial conditions
u(z,0) =sin?z,  w(x,0) = 0.

Find the d’Alembert solution and the Fourier series solution.
7. (Section 10.7) Find d’Alembert’s solution for the wave equation

U (2, 1) = dugg(z,t), —oo <z <o00,t>0



with initial conditions
u(z,0) =sinz, wu(z,0)=cosz.

8. (Section 10.8) Solve the Dirichlet problem ug, + uy, = 0 in the disk

22 +1y% <1 and
20 ify>0
u(z,y) = :
0 ify<oO
on the unit circle 22 + y* = 1. Find u(0,0) and u(0, 3).
9. (Section 10.8) Find the solution u(z, y) of Laplace’s equation uz, +uyy =
0 in the semi-infinite strip 0 < z < a,y > 0, that satisfies u(0,y) = 0,

u(a,y) = 0 for y > 0 and u(z,0) = F(z), 0 < x < a and the additional
condition that u(x,y) — 0 as y — oo.
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5.1.2 My solution to first exam practice questions
Problem 1

Find the solution to y”’ —y =¢*,y(0) = 1,y (1) =0
solution

The solution to the homogeneous ODE is y, = Ae* + Be™. Let the particular be y, = Cxe*. Hence

Yy, = Ce* + Cxe* and y; = Ce* + Ce* + Cxe™. Substituting into the ODE gives

2Ce* + Cxe* — Cxe* = e*
2C=1

1

C=-

2

Hence y, = %xex and the complete solution is

1
y=Ae" +Be ™ + Exex
A, B are now found from boundary conditions. At x = 0

1=A+3B

Andatx =1 )
0=Ae+Be_1+Ee

(1,2) are now solved for A, B. From (1), A = 1 — B. (2) becomes
1
0=(1-B)e+Be '+ Ee
1
=e—Be+ Be  + Ee

B(e_1 —e) + ge

3 e
B=-=-
2el—e¢

3 e

2e—e1

Hence

A1 3e :2(6—6_1)—36
2(e—e1) 2(e—e1)
2e —2e7 ! —3e
2(e—e1)

—e—2e7!

2(e—e1)

e+ 2!

2(e1—e)

Therefore the solution is
X

1
y=Ae" +Be " + S%e

e+ 2!
= e*
2(e71—e)

3
2
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Problem 2

Find Fourier cosine series for

1 1<x<2

f(x):{x 0<x<1

Choose L = 2. Apply the Fourier convergence theorem. What do we get at x = 1?
solution
For cosine series, the function is even extended from x = —2 - - - 2. Therefore only a, terms exist.

f(x)= % +n§;ancos(%x)

Where L = 2. But % is average value. Since the area is 2 (% + 1) = 3, then the average is %, since the
extent is 4. Therefore ag = % To find a,

1t n
an =7 J_L f (x) cos (Tﬂx) dx
But f (x) and cosine are even. Hence the above simplifies to
2 nmr
an = J f(x) cos (—x) dx
0 2
1 2
= (I X COS (Ex) dx + I cos (Ex) dx)
0 2 1 2
But Ix cos axdx = COZ# + % therefore

[ xcos () = (( ) +xsin<7x))

0

And

Hence

ni

(2] eos(22) # (2 ) sn () - (2] - ()

2
2 nm nmr . (nmw 2 . nrm
anp =|— (005(7)+—sm(?)—1)——sm—

|
S
™
S|
N
—_—
[\
+
[\
o
]
7]
—_—
E
~—
+
S
S|
<]
=]
—_—
E
SN —
~—
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a2
Which simplifies to a, = —%. Therefore
3 8 K1 . [nm\2 nr
X)=--— —sin[—) cos[—x
f ) 4 nznZ:;nZ (4) (2)
38 . (m\2 P 81 . (2r)\?
=———sm(—) cos(—x)———sm — | cos(mx)—---
4 g2 4 2 724 4
3 4 (n) 2 (%)
=—-——cos|—x) - —cos(mx)—---
4 g2 2 2
Atx =1
3 8 1 n\ 2 nmw
1)=--— —sm(—) cos(—)
F=7 nZHZ:;nZ 4 2
3 8 31 nor\ 2 nmw
=—- - — —sin|{—) cos|—
4 g2 nz;f n? ( 4 ) ( 2 )
In the limit, % # sin (T”) cos (%) = —”—22. Therefore the above becomes
3 8 x?
N=>+=>=—
f() 4 7232
3 1
= — 4+ —
4 4
=1

Which is the value of original f (x) at 1 as expected.
To apply Fourier convergence theorem. The function f (x) is piecewise continuous over -2 < x < 2.

f'(x):{ 1 0<x<1

0 1<x<2

f’ (x) is also piecewise continuous. Therefore, the Fourier series of f (x) will converge to the average
of f (x) at each point.

Problem 3

Find Fourier sine series for

f(x):{x 0<x<1

1 1<x<2
Choose L = 2.
solution
For sine series, the function is odd extended from x = —2 - - - 2. Therefore only b,, terms exist.

> nr
= > by sin (—
f(x) 24 sm( i x)
Where L = 2. To find b, ,
1 . (nm
b, = > J—z f (x)sin (Tx) dx
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But f (x) is now odd, and sine is odd, hence the product is even and the above simplifies to

But J x sin axdx =

And

Therefore

Therefore

sin ax
a2

1

J

= sz(x) sin (%x) dx

([ woin () -+ |

- %, therefore

sin (%x) dx)

nr
x sin (?x) dx

7)

2

nmr

nimr

) (sm (%

ni
— —cos
2

)

nmr

(_

2

nmw

)

) )) - 2 (cosnr—cos ™2

2 (mt CcoS nsr — 2 sin

|

n2m?

b 251n——n7'rcosn7'r

=

n=1

f)=—

n ()
sin [ —x
L

As in problem 2, both f (x) and f’ (x) are PW.C. So F.S. converges to average of f (x) at all points.

Problem 4

Solve heat PDE u; = u,, with boundary conditions u, (0,t) = 0,u, (2,t) = 0 and initial conditions
u(x,0) = f (x) with f (x) from problem 2. Find steady state solution.

solution

0<x<1
1<x<2

When both ends are insulated the solution to the heat PDE is

Where A, = (%)Zwithn: 1,2,3,---.

u(x, t)——+ch An cos(\/_x)

Since L = 2, then

n7z

u(xt)——+ch 2

teos ()
Peos | —x
2
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Att=0 -
f(x)= %0 + ; Cp COS (%x) (1)
But the E.S. of f (x) was found in problem 2, with even extension. It is
3 & z
f(x)= 1 Z; sm( ) cos (%x) (2)
Comparing (1) and (2) gives
Co _ 3
2 4
8 (nﬂ)z
Cp = sin | —
n?n? 4

Hence solution is

3 & 8 nmw\2 _(nx\2 nmw
u(x,t - sin (—) e_(T) ' cos (—x)
( ) 4 Z 4 2
At steady state, the solution is
2y

Since as t — oo, the term e~ ()t 50,

Problem 5

Solve heat PDE u; = u,, with boundary conditions u(0,¢) = t,u(x,t) = 0 and initial conditions
u(x,0)=0

solution

Since boundary conditions are nonhomogeneous, the PDE is converted to one with homogenous BC
using a reference function. The reference function needs to only satisfy the nonhomogeneous B.C.

In this case, it is clear that the following function satisfies the nonhomogeneous B.C.

r(x,t) = t(l—%)

Therefore
ul,t)=w(x,t)+r(xt)

Substituting this back into u; = uy, gives
Wi+ T = Wyx + Fxx
butr;, =1- % and ry, = 0, therefore the above simplifies to
x
W = Wyx +——1
T
wr = Wy + Q (%) (1)
Where Q (x) = £ — 1 and where now this PDE now has now homogenous B.C

wi(0,t) =0
w(mr,t)=0
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Since a source term exist in the PDE (nonhomogeneous in the PDE itself), then equation (1) is solved
using the method of eigenfunction expansion. Let

W t) = 3 an (£) By (x)

Where @, (x) is the eigenfunction of the homogeneous PDE w; = wy,, which is known to be have the
eigenfunction ®@,, (x) = sin (\Mnx) = sin nx where the eigenvalues are known to be A,, = (%) 2o p?

withn =1, 2,3, -. Therefore the above becomes
w(x,t) = Z ap (t) sin (nx) (1A)
Substituting this back into (1) gives
2 an (D@ (x) = D7 an (1) @) (x) + D ¢n®n (%)

Where Q (x) = X ¢, P, (x) is the eigenfunction expansion of the source term. In the above, and after
replacing @}/ (x) by —14,®, (x) since ®, (x) satisfies the eigenvalue PDE ®// (x) + A, P, (x) = 0 the above
becomes

Z a;l () @p (x) = - Z an (t) An®y (x) + Z qn®n (x)
a;z (t) = —dap (t) An + qn
a;z (t) +ap (t) An = dn (2)

qn is now found by applying orthogonality on Q (x) = X ¢,®, (x) as follows
Q(x) = > qnPn (x)
n=1
i T
[Tewa,xax =24,
0

qn = 2 J” (2 - 1) sin (nx) dx

T Jo
_ 2 (—nm + sin(nr)
o n’m
2 (—mr)
© o \n2x
2
" onm
Equation (2) becomes
a, (t)+a, (t)yn* = —
The solution to this first order ODE can be easily found as
2 iy
an (t) = ———=+an(0)e 3)
n3r
Therefore (1A) becomes
w(x, t) = Z (—— +a,(0)e ”Zt) sin (nx) (4)
n=1
At time ¢ = 0 the above becomes
w(x,0) = Z (—— +ay (0)) sin (nx) (5)
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But

w(x,0)=u(x,0)—r(x,0)
0-0

=0

Therefore (5) becomes
> 2
0= Z (—— +ay (O)) sin (nx)

3
n=1 n-n

Which implies
2
al’l (0) = 3
n’m

Hence from (4)

w(x,t) = i 2 (e_"zt - 1) sin (nx) (6)

3
n=1 7

The complete solution is therefore

u(x,t)=w(x,t)+r(xt)

X X2 2
=t(1——)+ —(e_”t—l)sinnx
T %n?’ﬂ (nx)

Problem 6

Solve wave PDE u;; = 4u,, on bounded domain 0 < x < =, ¢ > 0 with boundary conditions u (0, t) =
0,u (,t) = 0 and initial conditions u (x, 0) = sin® x, u; (x, 0) = 0. Find d’Alembert solution and Fourier
series solution.

solution

Putting the PDE in standard form u;; = a’uy, shows that a = 2. Let f (x) = u(x,0) = sin?x and
g (x) = u; (x,0) = 0, then the d’Alembert solution is (per key solution, one must use the sign function).
Let F (x) = sign (sin x) sin’ x, then the solution becomes

U (x.t) = %(F(x+at)+F(x—at))+ irmg(s)ds

x—at

= %(F(x+at)+F(x—at))

Now the Fourier solution is found. Applying separation of variables gives

T”X = 4X"T
1 T// 3 Xll 3
4T X

The eigenvalue ODE is X"’ + AX = 0 with X (0) = 0,X (n) = 0. This has eigenfunctions ®, (x) =
sin (\//l_nx) with A,, = n® where n = 1,2, 3, - - - . The time ODE becomes

T +42,T =0
Since A, > 0, the solution is
T (t) = A, cos ( 4/1,,1‘) + B, sin ( 4/1,11‘)
= A, cos(2nt) + By, sin (2nt)
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And
T’ = —2nA,, sin (2nt) + 2nB,, cos (2nt)

Since T’ (0) = 0, then the above implies that B, = 0. Therefore the solution simplifies to
T, (t) = A, cos (2nt)
And the fundamental solution becomes

up, = T, X,

= ¢, cos (2nt) sin (nx)

Hence by superposition, the general solution is
u(x,t) = Z ¢p cos (2nt) sin (nx)
n=1
Att =0, u(x,0) = sin® x, therefore the above becomes
sin® x = Z ¢y, sin (nx)
n=1
Applying orthogonality gives

V.
J sin? x sin (nx) dx = ¢,
0

CH IR SR

(1 1 .
25~ 5 cos 2x | sin (nx)dx = ¢,

0

To evaluate [ (
first part is

1_1
2 2

1 1 .
L 5 sin (nx)dx = ~on (cos (nx));

1
= ——(cos(nr)—1)
2n
For even n = 2,4, - - - the above vanishes. For odd n = 1, 3,5, - - - the above becomes
T 1
j —sin (nx)dx = —
0o 2 n

Now the second integral is evaluated

T 1 1 T
I — cos 2x sin (nx) dx = -3 I cos 2x sin (nx) dx
0 0

5.1 First exam

cos 2x) sin (nx) dx, it is split into L;r (3 sin (nx) — 3 cos 2x sin (nx)) dx. But the

Using f: sin (px) cos (gx) dx = —Cozsg__g))x - COZS((;;:;I))’C, then the above becomes, where p = n,q = 2
1 (" . 1 cos(n—Z)x cos(n+2)x\”
—— | sin(nx)cos2xdx = —=
0 2 2(n—2) 2(n+2) /,
1{cos(n—2)x cos(n+2)x 4
2\ 2(n-2) 2(n+2) /,
1 cos(n—2)7r cos(n+2)x 1 1
2\ 2(n-2) 2(n+2) 2n-2) 2(n+2)
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1 1 ),and for

For evenn = 2,4, - - - the above vanishes, since it becomes % (z(nl—z) + 2(n1+2) - T — T
oddn =1,3,5,- -, the above becomes
1 1{ -1 1 1 1
—— J sin (nx) cos 2xdx = — - _ _
2 Jo 2\2(n-2) 2(n+2) 2(n-2) 2(n+2)
1{ -2 2
= - +
2\2(n-2) 2(n+2)
_1 _1
= +
2(n—=2) 2(n+2)
: n
T on?2-4

Therefore, the final result of integration is

i . 2 . 1 n
sin” x sin (nx) dx = — — — n=1,3,5---
0 n n“—4
4 1,3,5
-~ n = 2 9 9 te
n(n?—4)
Hence from (1), this results in
2 4
ch=————————
mn(n®—4)
—8 1,3,5
= - n= 99y Jy T
mn(n? — 4)
Hence the final solution is
(=2 > L cos(znt)sin(ny)
u(x,t)= — cos (2nt) sin (nx
T i35, 00 —4n

The above solution was verified against numerical solution. The result gave an exact match (20 terms

was used in the sum).

Problem 7

Find d’Alembert solution for wave PDE u;; = 4uy on infinite domain with initial position u (x, 0) = sinx

and initial velocity u; (x,0) = cos x
solution

Putting the PDE in standard form u,; = a®uyy, shows that a = 2. Let f(x) = u(x,0) = sinx and

g (x) = u; (x,0) = cos x, then the d’Alembert solution is

WD =3 ran s fa-an o [ g6
= % (sin (x + 2t) + sin (x — 2t)) + 1 L::z: cos(s)ds

1 1 1
3 sin (x + 2t) + 3 sin (x — 2t) + " sin (s)¥*2!

3 1
n sin (x + 2t) + 2 sin (x — 2t)
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1 1 1
2 sin (x + 2t) + 2 sin (x — 2t) + 1 (sin (x + 2t) — sin (x — 2t))

1 1 1 1
Esin(x+ 2t) + 53in(x—2t)+ Zsin(x+2t)— Zsin(x—Zt)
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Problem 8
. o .9 o 20 y>o0
Solve the Dirichlet problem u, + uy, = 0 inside the disk x* + y* < T and u (x,y) = 0 0 on
y <
the unit circle x? + y* = 1. Find u (0,0) and u (0, 1)
solution
The PDE in polar coordinates is
1
Uprr + —Ur +ugg =0 (1)
.

Where r is radial distance and 8 the polar angle. The boundary conditions in polar coordinates become

20 0<0<m
0 T<0<2r

f(9)={

The solution to (1) is
Co - n .
u(r,0)= > + ; r" (a, cos (nf) + by, sin (nd))

At r =1 (on the boundary) the above solution become

) = %0 + i an cos (nf) + b, sin (nf)

n=1

By orthogonality on cosine the above becomes

2 2 0o 2 2
J f(6)cos(mb)do = J %0 cos (m#) d9+z an cos (m0) cos (nf) d6+b,, J cos (m0) sin (n6) do
0 0 n=1 0 0
(2)
Forn=20
2 2 ¢
f(0)do = J —do
0 o 2

J 20d6 = £ (271
. 2

C

20m = = (27)
2
co =20

For n > 0 (2) becomes

2

21 =) 21
f(0) cos(mb)do = Z an cos (m#) cos (nf) d6 + by, I cos (m#) sin (n6) do
0 n=1 0 0

But fj” cos (mB) sin (n8) dO = 0 for all n, m and the above reduces to

2ﬂf(@) cos(n0)do = a,rx

0

j 20 cos (n0)dO = aprx
0

- [sin (nO)]y = ann
% (sin(nm) — 0) = a7
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Hence a, = 0 for all n > 0. By orthogonality on sine, for n > 0, (2) becomes

2
sin (mB) cos (n6)do + b, J sin (m#) sin (nf) do

0

2

Jz” f(0)sin(m6)do = i an
0 n=1

0

But L?” sin (m#) cos (nf) d6 = 0 for all m, n and the above reduces to

7 f(0)sin(nb)dob = b,

0
Lﬂ 20sin (n8)dO = b,w
—% (cos(n@))y = bpm

—% (cos(nm)—1)=byx

% (1 —cos(nr)) =bym

When n = 2,4,6, - - - the above gives b, = 0. Forn = 1,3,5, - - - the above gives

40
— =b,r
n
40
b, = —
nr

Therefore the complete solution is
00 n

4
u(r,0) =10+ 20 Z r—sin(n@)

T p=13,5,. 1

At u (0, 0), which corresponds to r = 0,0 = 0, the above gives u (0,0) = 10. Atu (0, %) which corresponds
tor = %, 0= % the solution gives

40 & (1\"1  (nm
u(r,@):10+; Z (5) —5111(?)

n=1,3,5,---

Evaluated numerically, it converges to 15.90381156
To convert to x, y, the solution is first written as

40 1 1
u(r,0) =10+ — (r sin (0) + §r3 sin (30) + grs sin(50) + - - )
T

But
rsin(0) =y
And
r3 sin (30) = i —n! X"k (—1)% k
T & ki(n- k) v
odd
6
=>xy -y’
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And
5in (50) = : n! n—k Bk
r Sll’l(5 )— ;mx (—1) y
odd
120 , 120 , 5
= - +
24 *Y 12 Yy

And so on. Hence the solution in xy is
_ 40 Yoo o3y lica 023 5) 4 ...
u(x,y) =10+ y+3(3xy y)+5(5xy 10x%y> + xy°) +
T

To verify is the above 3 terms give good approximation, the value at x = 0,y = % is now evaluated from
the above, which gives 15.8356812467. Which is very close to the above result. One more term can be
added to improve this. I am not sure now if there is a way to obtain closed form expression in x, y as
the case was with the solution in polar coordinates.

Problem 9

Solve uyx +uy, = 0 inside semi-infinite strip 0 < x < a,y > 0 withu (0,y)—-0,u (a,y) = 0,u(x,0) = F (x)
and additional conditions that u (x,y) —» 0 asy — oo

solution

This is a plot of the boundary conditions.

to oo
S
A |
a >z
u= F(x)
Let u = X (x) Y (y). Substituting this in the PDE gives
X'Y+Y'X=0
X// YII
= —— = —/1
X Y
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Which gives the eigenvalue ODE

X" (x)+AX (x) =0
X(0)=0
X(a)=0

which gives the eigenfunction @, (x) = ¢, sin (V/l_nx) where 4, = (”7”)2 forn = 1,2,3,---. The
corresponding Y ODE is
Y' -1, Y =0
Since A, > 0, then the solution to this ODE is
Yy = ApeVin¥ 4 B e~ Viny

Since A, > 0 and the solution goes to zero for large y, then A, must be zero. Therefore the above
simplifies to
Yo (y) = Bue Vin¥

And the complete solution becomes
u(x,y) = Z cne_my sin (\/)Lnx)
n=1
Where constants are combined into c,,. Since A,, = (%) 2, the above becomes
u(x,y) = Z cne” @ Ysin (Ex)
n=1 a

At y = 0, the above becomes

F(x)= Z cp sin (Ex)

n=1 a
Applying orthogonality gives
a

La F(x)sin (%x) dx = tnsy

Cp = 3 La F (x) sin (%x) dx

Hence the complete solution is

u(x,y)=§i(

n=1

Ja F (x) sin (%x) dx) e @ Ysin (Ex)

0 a

5.1.3 My post-exam solution to first exam
Problem 1

Problem
Find the Fourier cosine series of
0<x<1

X
f(x):{o 1<x<2

Take L = 2.

solution

To obtain the Fourier cosine series, the function f (x) is first even extended to —2 < x < 2 with period
2L or 4. Then repeated again with period 2L over the whole x domain. The following plot shows the
original f (x)
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Original f(x) before even extension

The following plot shows then even extended f. (x) over 3 periods for illustrations

even f(x) extension

f(x)

The Fourier cosine series is

f(x)= % +n§;ancos(%x)

Where
1 L
w=1[ rwa
L)1

Since extension is even, then the above simplifies to

L
ag = %J;) f(x)dx

J: f(x)dx = Ll xdx + f 0dx

But L = 2, therefore

ap

5.1 First exam
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And L
1 ni
an =7 J_Lf(x)cos (T) dx

Since cosine is even, and f (x) extension is even, then the product is even and the above simplifies to

an = %ij(x) cos (n%) dx

Since L = 2
r2
nr
anp = | f(x)cos (—) dx
JO 2
r1 2
nmw nmw
= xcos(—) dx+J‘ Ocos(—) dx
JO 2 1 2
r1
nmw
=] xcos (—) dx
JO 2
But )
cosax xsinax
J‘xcos (ax)dx = —— +
a a

Where a = “F here. Therefore the integral becomes

_ (cos (”Tx) . x sin ("Tx))
(5)* =)/,
_ cos ("T”) sin("T) 1
(=) () ()
_ 4cos(%) ZSin("T”) 4
(nm)? ni (nm)?
~ 4cos () + 2nm sin (2F) — 4
B n2m?
2 nr . (nx
= NO) (2 cos (7) + n sin (7) - 2)
Therefore the Fourier series is
1 & 2 nr . (nrx nir
fx)= 4—} + ; N (2 cos (?) + nJ sin (7) - 2) cos (?x)

By Fourier convergence theorem, since f (x) and f’ (x) are piecewise contiguous, the Fourier series will
converge to each point of f (x) where there is no jump discontinuity, and will converge to the average
of f (x) at the point where there is a jump. In this example, it will converge to % at the points where
is a jump discontinuity There are x = 1,3,5,--- and at x = —1, -3, -5, - - - . At all other points, Fourier
series will converge to f (x). This is a plot of the above Fourier series for increasing number of terms
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Using 5 terms in sum Using 10 terms in sum

U

-4 -3VVV1 1VVV3 4 5 -AVV»S 4

Using 20 terms in sum Using 40 terms in sum

10 1.0+
0.8 08}
06l 06l
o 4
obl 0RH
L ) Toen M ‘_;-"»"45 e "&1 s 4 l‘*‘?
Problem 2

Problem Solve heat PDE u; = 9uy, on0 < x < ,¢ > 0 with boundary conditions uy (0, t) = uy (7,¢) = 0
and initial conditions u (x, 0) = f (x) = 5sin® x

solution
The solution to the heat PDE with isolated end points is

IAAAAL QA
VY VIi[s 4 s|[V'é
| U

o

>
ot
<
E:
<
g
<
P

u(x,t)=Ag + Z cne_’l"“zt cos (\/Anx)
n=1

Where A,, = (%)2 forn=1,2,3---.But L = x here. Hence A, = n? and a = 3. Therefore the above

solution becomes

u(x,t) = A+ Z cne_g"zt cos (nx) (1)
n=1
At t = 0 the above becomes

f(x)=Ap+ i cp cos (nx)
n=1

[s]
5sin®x = Ay + Z cp cos (nx)

n=1

But sin® x = % - % cos (2x), therefore the above becomes

5 5 >
5 5 cos (2x) = Ag + Z ¢y cos (nx)

n=1
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Hence Ay = % and ¢y = —% and all other ¢, = 0. Therefore the solution (1) becomes

5
u(x,t)=—-— Ee_%t cos (2x)

\CR &

At steady state when t — oo, the solution becomes u (x) = % The solution u (%, t) becomes

T 5 5 T
u (—, t) =2 — Ze 3 cos (2—)
2 2 2 2
S0 3
=—-——e cos (
>3 ()
5 5
=2 2%t
2 2
5
= - (1 + e_%t)
2
Problem 3
Problem

Solve the wave equation u;; = uy, on string, where initial position f (x) = 0 and initial velocity is

g (x) = sin (x) + sin (2x). The string is fixed at both ends.
solution
a = 1 in this problem. Using D’Alembert method

x+at

u(x,t)z%(f(x+at)+f(x—at))+%J‘ tg(s)ds

X—a
Where f, g above are the odd extensions. Since f (x) is zero and a = 1, the above simplifies to

rxX+1

u(x,t) = g(s)ds

x—t
rX+1

2

sin (s) + sin (2s) ds
x—t

[

x+t

N|—= N|= D=

1
—cos(s) — > cos (25))
x—t
x+t

1 1
-3 (cos (s) + 5 €os (23))

x—t

—% (cos(x+t)+%cos(z(x+t))—cos(x—t)—%cos(z(x—t))

—%cos(x+t)—icos(z(x+t))+%cos(x—t)+icos(2(x—t))

% (cos(x —t) —cos(x +t)) + }1 (cos(2(x —t)) — cos (2 (x + t)))

Using Fourier series method. The solution with initial position zero is
o0
u(x,t)= Z ¢y, Sin (\/Anat) sin (\/)Lnx)
n=1
Where A, = (%) 2 with n = 1,2,3,---.Since L = 7 and a = 1, the above solution simplifies to

u(x,t)= i cp, sin (nt) sin (nx)
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To determine c,, the velocity from the above solution is % =

t = 0, this becomes

[ee]
n=1

f(x)= Z ne, sin (nx)
n=1
But f (x) = sin(x) + sin (2x). Hence the above becomes

sin (x) + sin (2x) = Z ney, sin (nx)
n=1

5.1 First exam

cpn cos (nt) sin (nx). And at

Therefore by inspection ¢; = 1 and 2¢; = 1 orc; = % Therefore the solution (1) becomes

u(x,t) = sin (¢) sin (x) + % sin (2t) sin (2x)

Since the Fourier series and the D’Alembert must be the same, then this implies that

sin (t) sin (x) + % sin (2¢) sin (2x) = % (cos(x —t) —cos(x +1))+ i (cos(2(x —t)) —cos(2(x +1)))

This was confirmed on the computer as well. In this problem, it turned out that it is easier to use the
Fourier method, since the initial velocity was given as a Fourier sine series already.

Problem 4

Problem

Solve Laplace PDE u,, + }ur + r—lzugg = 0 inside annulus a < r < b where a > 0. The boundary conditions

isu(acosf,asinf) =0and u(bcosb,bsinb) = f(0).
solution
Let u(r,0) = R(r)© (0). Substituting this back into the PDE gives

R// R’ @’/
r‘—+r—+-—=0
R R ©
Or 7 R/ @//
rP—tr—=—-—=1
R R C)
The eigenvalue ODE is
0" +10 =0
©(0) =0 (27)

0’ (0) =0’ (27)
The solution to the above is known to be

0, (0) = c, cos (\/ZG) + k, sin (\//1—,,9)

Where A, =n?andn =0,1,2,3,---. Therefore solution (1) becomes

0, (0) = ¢, cos (nh) + k,, sin (nb) n=1,23,---

0, (0) =c n=0
Therefore the solution to the ©,, (6) ode is

Co n=20

O, (0) = {

(1A)
(1B)

¢ cos (nf) + ky, sin (nf) n=123,--
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The solution to the R (r) ode (this is a Euler ODE) will have two solutions, one when Ao = 0 whenn = 0
and another solution for A,, = n? when n > 0. When eigenvalue is zero, the R (r) ODE becomes

ZR// Rl
r‘'—+r—=20
R R
r’R” +rR' =0
rR"+R =0

This has the solution
Ro(?") = Agln(l") +B0

Applying the boundary conditions r = a to the above gives
0= Aoln(a) + By

B() = _A(] In (a)
Therefore (2) becomes
Ry (r) =ApIn(r) — Agln(a)
= Ao (In(r) - In(a)) 3)
The above is only for the zero eigenvalue. When n > 0, the R (r) ode becomes the Euler ODE
rR” +rR = A,R=0
r*R” +rR' —n*R =0
(4)

The solution to this ODE is
Ry(r)=A,r" + Dpr™"
Here the term D, r~" does not vanish as the case with the solution to the disk. But using the boundary

condition that u = 0 when r = a, the above ODE at r = a becomes
R,(a)=0=A,a" + Dpa™"
an
Dn = _A"aTn

= -A,a""

Substituting the above back in (4) gives
R, (r) = Aur™ — Apa®™r™"
— An (rn _ a2nr—n)

(4A)

Therefore the solution to the R (r) ode is

Ao (In(r) —In(a)) n=20
R,(r) = on
A, (r"=a®r ™) n=1,23,-
The fundamental solution is
Uy (r,0) =R, (r)©,(0)
zero eigenvalue n>0 eigenvalues

= coAo (In(r) — In(a)) + (r" - aznr_") (cn, cos (nB) + k, sin (nf))
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By superposition, the complete solution is

u(r,0) = cgAg(In(r) —In(a)) + Z A (r" - a?"r” ™) (cy cos (nf) + ky sin (nb))
n=1

Combining ¢yA, into ¢y and A, ¢, into ¢, and Ak, into k, the above simplifies to

(o9

u(r,0) =cy(In(r) —In(a)) + Z (r" - a?"r” ™) (¢, cos (nB) + ky, sin (n6)) (5)

n=1

Now the boundary condition at r = b is used to determined cy, ¢, and k,,. At r = b and for n = 0 case,
the above becomes, by orthogonality

2
£(0)do = (27) co (In(b) — In(a))

0

- T E@ J f&do ©

And for n > 0, solution (5) becomes

(5]

= Z —a"p " ) (¢, cos (n0) + ky, sin (nf)) (7)

n=1

By orthogonality with cos (n8) equation (7) becomes

r” £(6) cos (n6)do = (b™ — a®™b™") ¢
0

1 2

m . f (6) COS (T’l9) do

Ch =

And by orthogonality with sin (nf) equation (4) becomes

2

f(0)sin(n0)do = (b" — a*"b™") knm

1 e .
kn = m J;) f(g) sin (n@) do

This completes the solution. Solution (5) becomes

u(r,0) = %% :ﬂ f(0)do + 2 (r" = @®"r™") (cn cos (n) + ky sin (n0))
1 2
Ch = m f(€) COS (n9) do
kn = m J f (9) sin (n@) do
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5.2 Final exam

5.2 Final exam

5.2.1 questions

Final exam, Math 322
due Thursday, May 17, 12 noon, 2018

1. Solve the heat equation
Ut = Uz, 0<2<1,¢t>0
with boundary conditions
u(0,t) =0, u(1,t) =1
and initial condition

u(z,0) = z2.

2. Solve the Dirichlet problem u,, + Uyy = 0 on the disk 22 + 2 < 1 with
boundary condition u(cosd,sinf) =72 — 92, -7 < § < 7.
3. Solve the inhomogeneous wave equation
Uy = Ugz +Tsint, 0<z<1,t>0
with boundary conditions
~u(0,t) =u(l,t) =0
and initial condition

u(z,0) = w(z,0) = 0.

. 4. Solve the wave equation uy = Ugg + Uyy on the unit disk 22 + 2 <1
with boundary condition
u(z,y) =0if 2% + 4% = 1,
and initial conditions
1
L2 % o
u(@,y,0) =0, w(z,y,0)=Jrz T TV =6
0 otherwise.

where 0 < € < 1. Hint: The formula d—di(rJl(r)) = zJp(x) may be used.
Extra credit: Plot the solution u(r, t) for € = %, t=1and t=2.

5. Find the radial eigenfunctions and corresponding eigenvalues of the
Laplace operator A on the unit ball subject to Dirichlet boundary condi-
tions. A radial eigenfunction is one which depends onlyonr = /22 + y2 + 22.
That is, solve ~ .
Ugg + Uyy + Uzy + XNMu=0

where u(z,y, z) = R(r) with boundary condition

u(z,y,2) =0 ifz?4+y?4+22=1.
Hint: The substitution rR(r) = R(r) is useful.
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5.2.2 Problem 1

Solve the heat equation
Ur = Uxx

For 0 < x < 1,t > 0 with boundary conditions

u(0,t)=0

u(l,t) =1
And initial conditions

u(x,0) = x?

solution
Since the one of the boundary conditions are inhomogeneous, the solution is broken into two parts. Let
the solution be

u(x,t) =wxt)+o(x) (1)

Where w (x, t) is the solution to the PDE with homogeneous boundary conditions and v (x) is a reference
solution which is only required to satisfy the inhomogeneous boundary conditiorﬂ

Let v (x) = Ax + B. At x = 0 then v (0) = 0 which gives B = 0. Hence v (x) = Ax. Atx =1,v(1) = 1or
A = 1. Therefore

v(x)=x
And (1) becomes
u(x,t)=w(xt)+x (1A)
Where now w (x, t) satisfies the PDE
Wr = IWyy (1B)

For 0 < x < 1,t > 0 but with the following homogeneous boundary conditions

w(0,t) =0
w(l,t) =0
And initial conditions given by
w(x,0)=u(x,0)—v(x)

xt—x (2)

The PDE (1B) is the heat PDE with homogeneous boundary conditions. This was solved before. It has
the solution

w(x, t) = i cne_’lnazt sin (\/Ex)
n=1

Where in this problem a’>=9and 1, = (%) 2 ,n=1273---.But L = 1, therefore the above solution
reduces to

w(x,t) = Z cne_g”z”zt sin (nx) (3)

n=1

¢ is now found from the initial conditions (2). At t = 0 the above becomes

(o]
x—x= Z ¢y sin (nzx)
n=1

L (x, t) is called the transient solution with homogeneous boundary conditions, and v (x) the steady state solution with the
inhomogeneous boundary conditions.
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Applying orthogonality gives

1
sin? (nrx) dx

Jl (x* = x) sin (n7x) dx = ¢y J

0 0

Hence
1
cp = ZJ (x2 — x) sin (nrx) dx
0

1 1
=2 (J x?sin(nrx) — | xsin (n7x) dx)
0

0

Applying the following rule based on integration by parts fxz sin (ax) =

a2
the first integral above becomes (where a = nr)
t 2x sin nrx 2 2 !
x°sin(nnx) = > 5 — —— | cosnmx
0 (nr) (nr)”  nm
2 sin nw 2 1
= — + 5 — —— | cosnm - 3
(nr) (nn) ni n)
But sinnz = 0 and cos nr = (—1)", therefore the above becomes
[ oo = (25~ L) cor - 2
x* sin (nzx) = -— (=)= =
0 nr3  nr n33
_2(-=n"  (=1)" 2
© 3l nr n3n3
(_1)n+1
T onn
sm ax __Xcosax

Applying the following rule based on integration by parts Ix sin (ax) =
integral in (3A) becomes (where a = nr)

1 . SInNrTx X COSNIX !
x sin (nzrx)dx = o
0 neimw ni 0
B sinnmr  cosnrm
T n2g? nr
(_1)n+1
- ni
Substituting (3A1) and (3A2) into (3A) gives
(_1)n+1 2 (_1)n+1
.= " -
ni n3sr ni

Therefore, the solution w (x, t) from (3) becomes

w(x, t)—Z4( L+ ()7 _9"”ts1n(mrx)

n3x3

2x sin ax
= 1+

5.2 Final exam

(3A)

2
(% - x—) cos ax,

a

(3A1)

, then the second

(3A2)
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And the solution u (x, t) from (1A) is

4 & (-1+(-1)"
ulx,t)=x+— E (—g))e_gnzﬂzt sin (nzx)
w3 = n

Only few terms are needed to obtain a very good approximation, since the convergence is of order

o(%).
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5.2.3 Problem 2

Solve the Dirichlet problem uyy + uyy = 0 on the unit disk x* + y* < 1 with boundary conditions
u(cosf,sin@)=n*-0’and -1 <0 <n

solution

This is Laplace PDE on disk. Where a = 1 is the radius and 7, 6 are polar coordinates. The Laplacian in

polar coordinates is
1

1
Urr + —Ur + —uge =0
r r
With boundary conditions on r being
u(a,0) = f(0) = — 6
u(0,0) < o0

And with standard periodic boundary conditions on 6

u(r,—m)=u(r,m)
o rm = 9 )

This PDE was solved before and the solution to the Laplace PDE inside a disk is known to be

u(r,0)=Ay + Z r" (¢, cosnf + d, sin nf) (1)

n=1
With Fourier coefficients given by

T

fo=—|" reoyae

27w J_n
Ch = — f(0)cos(nd)do
ma® J_,
1 T
dn = — J f(0)sin(nb)do
ma® J_,

Since the radius a = 1 in this problem, then the above become

1 Vs

AO = g J_ﬂf(ﬁ)d@

cp = 1 Jﬂ f(6) cos (nd)do
T J-x

d, = J” £(0) sin (n) d6
TJ-r

The coefficients are now calculated?]
1 T
Ay = — (77,'2 - 92) do

o r

But Jfﬁ (m? —6%) dO = Jfﬁ n*df — IZT 02do = 27 — [%3] = 273 — % [71'3 + 713] =27 — %JTE' = 273

3
Therefore
1 (4
AO = — —71'3
2w \3

272

3

21t is important to use integration limit —z - - - 7 and not 0 - - - 27z.
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And
e 1 Jw f(6)cos(nd)do
TJ-x

:.l.[” (72 = 6%) cos (nf) d0

TJ-n

= JTJ cos (nf)do — 1 J 6% cos (n0) dO
T J-n

-7

But Kﬂ cos(nf)df = 0 and by integration by parts as was done earlier Ktﬂ 62 cos (nf)do = 4(_,1#,

hence the above simplifies to
_ 4D

Cp =

n2
And

@=1J”fwnmmmw
T J-r

zlr{ﬁ—mnmmmw

TJd-n

= EJ sin (nd) d0 — 1 J 62 sin (n6) d6
7

-7 -7
But fn sin (n6) d6 = 0, and by integration by parts as was done earlier, f:r 62 sin (nf) dO = 0, hence
dp =0

Using the value of Ay, c,;, d,, found above the solution (1) becomes

u(r,0)=Ay + Z r" (¢, cosnf + d, sin nf)

n=1

272 < (=1)"
=— -4
3 ; n?

r" cosnf
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5.2.4 Problem 3

Solve the inhomogeneous wave equation
Urr = Uyx + x8iNt

For 0 < x < 1,t > 0 with boundary conditions

u(0,t)=0
u(1,t)=0
And initial conditions
u(x,0)=0
u; (x,0) =0

solution
Since the inhomogeneity is in the PDE itself (rather than in the boundary conditions), then the method
of eigenfunction expansion is used to obtain the solution. Let the solution be

uGn )= S by (5, (x) 1)
n=1

Where ®,, (x) are the eigenfunctions of the spatial eigenvalue ODE problem that comes from solving
the homogeneous wave equation with the given homogeneous boundary conditions, which is u;; = uyy.
This wave PDE with the given homogeneous boundary conditions was solved before using separation
of variables. The eigenfunctions were found to be

@n(x):sin(\/Zx) n=123,---

With eigenvalues

nim\ 2
A,,:(—) n=1,23, -
L
But L = 1 here, therefore
Ap=n’m®  n=1,23--

Now that the eigenvalues and eigenfunctions are found, equation (1) is substituted back into the PDE
resulting in

i b, (t) @y (x) = i b (t) @) (x) + x sint
n=1 n=1

Since x sin t is a piecewise continuous function in x, it can be represented using the same eigenfunction
and the above equation becomes

Db ()@ () = Db (DD () + D yn (1) P (x)
n=1 n=1 n=1
Since @} (x) = —1,P, (x), which comes from the eigenvalue ODE, the above simplifies to

STB (00 (1) = S = (8) 2B () + D 1 (£) By ()
n=1 n=1 n=1

b, (t) + by (t) Ay = yn (t) ()

3This is the same as saying the eigenfunctions are complete.
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To solve the above ODE for b, (), y, (¢) needs to be found first. Using
xsint = Z Yn () @y (x)
n=1
Applying orthogonality gives
1 1
sin (1) J x®, (x)dx =y, (t)J @2 (x) dx
0 0

Since @, (x) = sin (\//Tnx) then I; % (x)dx = % and the above reduces to

sin (t) J‘Ol x sin (n7x) dx = %yn (t)

But f; x sin (nrx)dx = % by integration by part as was done before, and the above becomes

(_1)n+1

sin (t) = %yn (t)

(_1)n+1
ni

yn(t) =2 sin (t)

Using the above back in (2), ODE (2) now becomes

b (t) + by (t)n*r* = 2 sin (t) (3)

(_1)n+1
ni

This is a second order, inhomogeneous, linear, with constant coefficients ODE. The solution is the sum
of the homogeneous and particular solutions (the subscript n is removed for now from b, (¢), to simplify
the notations, then added back after the solution is obtained). Let the solution to (3) be

b(t) = by (t) + by (1)

272 is always positive)

The homogeneous solution is seen to be (since n
by (t) = Acos(nt) + Bsin (nrt)
To find the particular solution, the method of undetermined coeflicients is used. let
b, (t) = Ccos(t) + Dsin (t) (4)

Hence bj', = —Csin(t) + Dcos (1), bI’J’ = —Ccos (t) — D sin (t). Substituting these into (3) gives

(_1)n+1

—Ccos(t) — Dsin (t) + (Ccos (t) + Dsin (t)) n®n? = 2 sin (t)

(_1)n+1

cos (1) [—C + ann'z] + sin (t) [—D + Dnzﬂ'z] =2 sin (t)

Therefore, by comparing coefficients

—C+Cn’rt=0
C(n27r2—1) =0
C=0

240
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And
-1 n+1
—-D + Dn*n? = 2L
ni
-1 n+1
D(nzrr2 - 1) = 2( )
ni
(_1)n+1

D=2—F——
nr (n?r? — 1)

Hence the particular solution (4) is
b, (t) = Ccos(t) + Dsin(t)
(_1)n+1 )
nr (n?r? - 1) sin (1)

Now that the particular solution is found, the final solution to (3) becomes

D"

b, (t) = A, cos(nnt) + B, sin (nnt) - 2———————
nr (n®r? —1)

sin (t) 4)

Using the above in the solution (1) gives

o) = S by (08, ()

n=1
- . (-1)" . .

= Ap cos (nrt) + By sin (nnt) — 2———————sin(t) | sin (nrx)
~ nr (n?r? - 1)

Ap, By, are found from initial conditions. At t = 0 the above simplifies to
0= Z Ay, sin (nrx)
n=1

Therefore A, = 0 and the solution above reduces to

00 1"
u(x,t) = ; (Bn sin (nt) — ZW sin (t)) sin (nx) (5)
Taking time derivative gives
& (-1)" .
uy (x, 1) = HZ:; (Bnmt cos (nrt) 2n” (= 1) cos (t) | sin (nzx)

At t = 0 the above simplifies to

0= i (Bnmr - Zi) sin (nzx)

e nr (nx? - 1)

Since this is valid for each n, then (Bnmr - Zi) =0or

nr(n?r’-1)
(-1)"
B,=2—F7+—"——
nr? (nr? - 1)
Using the above in (5), the final solution becomes
0 —1)" 1"
u(x,t) = Z 2 (# sin (nrt) — L sin (t)) sin (nzx)

= \n?m?(n*nx?-1) nr (n?r? - 1)

_, i (=" (sin (nrt)

_ S s — sin (t)) sin (nmx)

n=1
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5.2.5 Problem 4
Solve the wave equation
Upr = Uxx + uyy
On the unit disk x* + y? < 1 with with boundary conditions
u(x,y)=0 ifx*+y* =1

And initial conditions

u(x,y,0) =0
L ifyx?+y? <e
U (X, Y, 0) = e .
0 otherwise

Where 0 < € < 1. Hint: The formula % (xJ; (x)) = xJp (x) may be used. Extra credit: Plot the solution
u(r,t)fore = %,t=1andt= 2.

solution

The PDE and initial and boundary conditions are converted to polar coordinates to become

1 1
Urp = Upr + ;ur + r_2u99 (1)

On the unit disk with radius 1. The boundary conditions are

u(1,0,t) =0
u(0,0,t) <

Where u (0, 8, t) < oo means the solution is bounded at center of disk » = 0. The boundary conditions
on 0 are the standard periodic boundary conditions

u(r,-mt)=u(r,m1t)

ug (r,—m,t) = ug (r,m,1)

And initial conditions are]

u(r,0,0)=0
1 .
— ifr<e
up (r,0,0) =4 =€ .
0 otherwise

The above PDE is solved by separation of variables. Let u (r,0,t) = T () R(r) © (8). Substituting this in
the PDE (1) gives

1 1
T”RO = R"TO + —R'TO + O"RT
r r
Dividing by RT®
T// R// 1R/ 1 @// 9
_:_+__+——=—/1
T R rR r20
Where A is the first separation variable. This results in two equations

TII 3

== -2? (1)
R// 1R/ 1 @//
ot = 2

o=+ ——
R rR r20

“The original r? < e was changed tor < €
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The time ODE (1) is
T” + *T =0 (1A)
Multiplying (2) by r? and rearranging

R// R/ @’/
rP—tr— 41 = —— =
R R €]

Where p is the second separation constant. This gives the R ODE as
r’R” +rR + (2> =) R=0 (3)

And the © ODE as
Q" + *® =0 (4)

The eigenvalues for (4) determine the Bessel equation (3) order. Therefore (4) needs to be solved first to
determined the order. The ODE boundary conditions for (4) are periodic

O(-m)=0(n)
0 (-r) =0 ()

case p = 0. This leads to solution

0= 019 + Co
@l =C
First BC gives

—C1T+Cy=C1w+Co
c1 = 0
And since second BC @’ = ¢y, this implies © () is constant. So p = 0 is an eigenvalue, with ©, (0) = 1

being the eigenfunction.
Case p > 0 The solution to (4) becomes

© (0) = Acos (u0) + Bsin (ud)

To satisfy the periodic boundary conditions, p must be an integer, and since p > 0, then y = n for
n=1273,---. Therefore

@ =1 n=0 (54)
©,(0) = A, cosnf + B, sinnf n=1273--- (5B)

The above solution can be combined to one
0, (0) = A, cosnd + B, sinnf n=0,1,2,--- )

Because when n = 0 the above solution gives ©y () = Ay which is the constant eigenfunction. Now
that p is found, Bessel ODE (3) can be solved.

r*R” (r) + rR (r) + (r2/12 - n2) R(r)=0 n=0123,-- (56)
R(1)=0
R(0) < o0
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A = 0 is not a possible eigenvalue. This can be shown as follows. When A = 0 equation (5C) becomes
the Euler ODE
r*R”(r)+rR (r)+n*R(r) = 0 n=0,1,23,---

Now, when n = 0, then the ODE becomes r?R” (r) + rR’ (r) = 0 whose solution is R (r) = ¢; + ¢z In (7).
Since solution is bounded at r = 0, then R(r) = ¢;. And since R(1) = 0 then ¢; = 0 also, leading to
trivial solution. When n > 0, the ODE becomes r?R” (r) + rR’ (r) + n?R (r) = 0 whose solution is R (r) =
cir’ + Czrln- Since solution is bounded at r = 0, then ¢, = 0 and the solution now becomes R (r) = ¢;r".
Using BC R (1) = 0 gives ¢; = 0 leading again to trivial solution. This shows that A = 0 is not eigenvalue.
Now that A is is shown not to be zero, the Bessel ODE (5C) is solved . The first step is to convert the
ODE to a Bessel ODE in the classical form in order to use the standard solution. Let t = Ar, then
R’ (r) =R’ (t)Aand R” (r) = R” (t) A2. ODE (5C) becomes

2pr t ’ tz
AR (t) + ZAR (t) + (F}L

t*R” (t) + tR (t) + (t* = n®) R(t) = 0

t2

Tz 2—nz)R(t)=0

This is now in standard Bessel ODE form. This is of order n, where nisn =0, 1, 2, 3, - - - . Since the order
is integer, then the solution is given by

Ry (t) = CnJn (t) + DYy, (t)

Where J, (t) is the Bessel function of order n and Y, (¢) is the Bessel function of second kind of order n.
In terms of r the above solution becomes

Ry (r) =CnJn (Ar) +DnY, (/1?‘)

Because the solution is bounded at r = 0 and since Y, (0) blows up, then D, = 0. The above solution
simplifies to
Ry (r) = CnJn (Ar)
Applying the second boundary conditions, when r = 1 then
0=CnJn (A)

For non-trivial solution J,, (1) = 0. Hence A are the positive zeros of J, (z). Let the positive zeros of J, (z)
be jum.Form =1,2,3,---. Therefore

Anm:jnm n:0,1,2,"',m:1,2,3,"‘

This means that j,.,, is the m*" eigenvalue for the n*"* order Bessel function J, (z). So there are two indices
to handle in this problem. The order of the Bessel function is determined from the ©,, (0) eigenvalues,
and then once this order n is fixed, the second eigenvalue A,,, is determined from the zeros of the Bessel
function J, (z). Hence the Ry, (r) solution is

Rum (r) = ComJn Anm?) n=0,123---,m=123,---
Now that A, is known, the time ODE (1) can be solved
T+ Ao Tum =0
Tum = Apm €08 (Anmt) + Bpm sin (Apmt) n=0,123,--,m=1,273,---
The fundamental solution is therefore

Unm (1, 0,1) = 0, (0) Tpm (t) Rum (1)
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The complete solution is the superposition of the fundamental solutions given by

u(r,0,t) 0, (0) Tnm () Rum (1)

M 1M
1M 31

(A, cosnf + B, sinnf) {Anm cos (Apmt) + Bum sin (Aumt)} ComJn (Anmr)

1

I
f=]
3
I

n

The above can now be written as

u(r,0,t) Z A, cosnl ((Apm cos (Apmt) + Bum sin (Anmt)) ComJn (Aumr))

1

M# 11

Z By, sinnf ((Anm cos (Anmt) + Bpm sin (Anmt)) CnmJn (Anmr))

m=1

+
ﬂ

n

M

=
Il
o
Me il il § e

u(r,0,t) = A, cosnBA,, cos (Anmt) ComJn (Anmr)

3
Il
o

A, cos n0By, sin (Apmt) CumJn (Anm?)

B, sinnfA, ., cos (Anmt) ComJn (Anm?)

S
Il
—_

By, sin n0B, sin (Anmt) CrmJn ()anr) (6)

Mg

1

3
I}
3
I

Constants are now merged and renamed as follows in order to simplify the rest of the solution. Let

AnAnmCrm = Anm
AnBnmCnm = Bum
BnAnmCnm = Com
BuBumCnm = Dnm

Equation (6) can now be written as

u(r,0,t) = Apm cos (n0) cos (Anmt) Jn Anm?)

+

IMr 1M
M5 305 05 3

+

+

[M# 1P

Dy sin (n6) sin (Anmt) Jn (Anmr) (7)

1

3
[I§
3
I

Initial conditions are used to determine the 4 new constants above. Using initial condition at t =
0,u (r, 0,0) = 0 the above equation becomes

= i i Anm cos (ne)]n (Anmr) + i i C_nm sin (n@) Jn (Anmr)

n=0 m=1 n=1 m=1
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Applying orthogonality on cos (nf) and sin (n6) in turn shows that A,,, = 0 and Cp,,, = 0. Therefore
the solution (7) reduces to the following two sums only

u(r,0,t) = i i Bym cos (n8) sin (Apmt) Jo Anmr) + i i Dy sin (n0) sin (Apmt) Jo Anmr)  (8)

n=0 m=1 n=1m=1

Taking time derivative gives

uy (r,0,t) = Z Z Bnm cos (n0) Apm cos (Apmt) Jn (Anmr)'i'z Dnm sin (n0) Apm c0s (Anmt) Jn (Anm?)
n=0 m=1 n=1m=1
Applying the second initial condition at ¢ = 0 gives
2 - 2 - L ifr<e
Bum cos (n0) AnmJn Anmr) + Dy sin(n0) ApmJn (Apmr) =3 7€ -
nZ:;) 2 (n0) AnmJn (Anmr) HZ:; m2=1 (n0) AnmJn (Anmr) { 0 otherwise
Case n = 0 (9) becomes
S - ifr<e
> BomAomJo (Aomr) = { e .
m=1 0 otherwise
Applying orthogonality on J, (Ao, r) results in
B 1 1 €
Bondan | 1% Ganr)dr = — [ vl Gopr) e
0 e Jo
_ 1 Jy 7o (Aomr) dr
Bom = Jy b0 (94)

2 1
7€ hom [ rJ2 (Aomr) dr
Case n > 1 Applying orthogonality on cos (nf), equation (9) becomes

o T 1 /1 6 d@ f 9 <
Z B (J cos® (n@) d@) AnmJn (llnmr) = { e I_ﬂ cos (n ) nr-=se

= - 0 otherwise
> - 0 ifr’<e
Z TBumAnmJn (Anmr) = .
v 0 otherwise

Hence B,,,,, = 0 for all n > 0.
The same is now done to find D,,,,,. Applying orthogonality on sin (nf), equation (9) becomes

S g L |7 sin(nf)do  ifr* <
> Dum (j sin? (n6) de) A Gonmr) = { nel Jop Sinn0)d6 i< €
m=1 - 0 otherwise
o] B T 0 f 2 S
S Dy (j sin? (nf) de) AnmJn Gonmr) = { et
m=1 -7 0 otherwise
Hence all D,,,,, = 0 for all n > 0.
Therefore the solution (8) reduces to only using n = 0,m = 1,2, 3, - - - . The solution can now be written
as -
u(r,0,t) = > Bom sin (Aomt) Jo (Aomr) (10)

m=1

= “r Aomr)dr
Where By, = —5 Jy rhGomn)

7 Jom [ 7 Gamnar And Ay, are all the positive zeros of Jy (z), m = 1,2,3,---.
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Bom is now simplified more. Considering first the numerator of By, which is Joe ¥ Jo (Aomr) dr. The hint
given says that

d
SR =R ()
’
This is the same as saying

P () = JrJo (r)dr (104)

However the integral in By, is f rJo (Aomr) dr and not f rJo (r)dr. To transform it so that the hint can
be used, let Ag,,r = 7, then % = t ordr = Ado—;. Now Jr]o (Aomr) dr becomes Jt]o (7) Ado_; or
ﬁ I 7 Jo (7) dF and now the hint (10A) can be used on this integral giving

1 I | D
Il rlo(F)dr| = 2 (7)1 (7))

om om
Replacing 7 back by Ag,r, gives the result needed
1

2
AOm

("1 (7)) = Azi Gomr s Gomr))

0m

1
= mrﬁ (Aomr)

Now the limits are applied, using the fundamental theory of calculus

€ 1
J rJo (Aomr) dr = F [rJi (Aom?)]5

0 0m

= Aifl (Aome) (10B)
om

This completes finding the numerator integral in By,,. The denominator integral in By, is J; r ]g (Aomr) dr.
This was found in HW4, from problem 3, which is

1
[ 138 Ganrydr = 5 135 Gom)]

But J; (Aom) = —Ji (Aom), hence the above becomes
! 1
[| 738 Ganrydr = 32 Gon) (100)
0
Applying (10B) and (10C), By, simplifies to the following expression
1 7J1(Aome)
me*dom %Jiz (AOm)

— 2 Jl (AOmE)
HEA(Z)m ]12 (AOm)

BOm =

Therefore the final solution becomes
u (}", 0, t) = Z BOm sin ()LOmt) Jo (AOmr)
m=1

2 & 1 Ji(Agme) .
u(r,0,t) = — mZ EJ}T”M)JO (Adomr) sin (Aomt) (11)
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Plotting. When € = %, the above solution (11) becomes

4.8 1 i (3h0m) ,
u(r,0,t) = - Z Emh (Aomr) sin (Agpmt) (11A)

This is the 3D plot at t = 1 second

time = 1.
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This is the 3D plot at t = 2 seconds

time = 2.
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5.2.6 Problem 5

Find the radial eigenfunctions and corresponding eigenvalues of the Laplace operator on the unit
ball subject to Dirichlet boundary conditions. A radial eigenfunction is one which depends only on

r = /x% + y? + z2. That is, solve

Uxx + Uyy + Uzz +Au=0

Where u (x, y, z) = R (r) with boundary conditions u (x, y, z) = 0 when x? + y* + z% = 1.

Hint: The substitution 7R (r) = R (r) is useful.

solution

This is Helmholtz PDE V?u + A%u = 0 in 3D. (Steady state of the wave equation, or standing waves).
The following spherical coordinates system are usedE]

z
x(1 0, 9
7|
oat
reoo
/ !
o I
A’ E
’ : y
Ty :
0
N

The Laplace operator in 3D using spherical coordinates (r, 8, ¢) is given by
10 (,0u 1 0 Ou 1 0%u
Viu == + —— O— |+ ——=-——
T or ( ar) r2sinf 90 (sm ) r2 sin? 6 0?2

Therefore V?u + A>u = 0 becomes

13 20u +—— 1 9 s1n0% ! &+A2u—0
r2or\" ar) " r2sing 00 00  r2sin® 6 0¢?

The problem says that u (x, y, z) = R (r). This implies that solution depends only on r. This means there
is no dependency on 8 nor on ¢. In this case, the PDE above simplifies to an ODE in r only.

1d du 9
rzdr(r dr)-i-)L

d ( ,du g 9

I ( dr)+)tru—0
,d*u du ., ,
rﬁ+2ra+iru—0

And since u (r, 6, ¢) = R(r), then the above can be written as

r’R” (r) + 2rR’ (r) + A*r*R(r) = 0 (1)

>Image obtained from Wikepedia
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With the boundary conditions R (1) = 0. Now the eigenvalue will be found.

case A =0

The ODE (1) becomes r*R” + 2rR’ = 0. Let R’ (r) = v(r), and the ODE becomes v’ + %v = 0. The
[ 2ar 2lnfr| _ ,2 d (

integrating factor is e ar

again gives

=e r’v) = 0 or v = 7. Therefore R’ (r) = %. Integrating

R(r)zcz—c—1
.

At R(1) = 0, the above becomes
0=cy—cg
Cr = (1
Hence the solution becomes

R(r)=c; (1—1)
,

The solution must be bounded as r — 0, therefore only choice is ¢; = 0, leading to trivial solution.
Therefore A = 0 is not eigenvalue.

Case A # OE]

The ODE is

r*R” (r) + 2rR’ (r) + A’r*R(r) = 0

Using standard transformation t = Ar, then R’ (r) = AR’ (t) and R” (r) = A*R” (t). The above ODE
becomes

A2F2R” (t) 4 2ArR’ () + A*r?R(t) = 0
t’R” (t) + 2tR’ (1) + t*R(t) = 0 (2)
This looks like a Bessel ODE of zero order, except Bessel ODE is t2R” (t) + tR’ (t) + t?R(t) = 0. The

difference is (2) has 2t instead of t. To convert it to Bessel ODE, there is another transformation in the
dependent variable to achieve this. Let R(t) = ii) then

\/>
pon_ 21 1 1
R== 2 - 20 ®)
oo 2@ 1, 01 1, 1 13 1
R"(t) = i _EZ (t)t_%_iz (t)t—z—g(—g)z(t)t—g (4)
_Z2TW _n L3,
Y z (t)t% +42(t)tg
Substituting (3,4) back in (2) gives
zZ'(t) 1 2Z_(t):

t2 (Z// (t) 0

, .1 3 1 1
NG _Z(t)t_§+ZZ(t)t_§)+2t( Vi —Ez(t)t_;)ﬂ 7

6T am assuming 2 is real eigenvalue. Not complex.
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Multiplying by vt gives
2 (z” (t) -2’ (t)% + ZZ(t) tiz) ot (Z'(t) _ %Z(t) %) L 2Z(1) =0
(tzZ” (1) =12 (1) + ZZ(t)) FtZ (6 = Z (1) + 22 () = 0
277 (8) + 17" (1) + ZZ(t) _ZW)+2Z (1) =0
27" () +tZ' (t) + (Z -1+ tz) Z({t)=0

127" (1) + tZ' (1) + (t2 - ;}) Z(t)=0

22Z7 () +tZ' (t) + (t2 - ‘11) Z({) =0

This is now in standard Bessel ODE form. To find the order, comparing it to t2Z” (t) + tZ'(t) +
(t = n?) Z(t) = 0 shows that n? = i, hence the order is % (the negative root, give Bessel function
that blow up at zero. Therefore only % root is used as the order. The solution of the above Bessel ODE is
known to be

Z(t) = iy (t) + c2Y1 (1)

From above, R (t) = % Therefore the solution now becomes

Ji(®) Y1 (2)

R(t)=61 \/Z + c \/E

And converting back to R () finally gives the radial solution as

LG Y

R(r)=c +c
Since the solution is bounded at r = 0, then c; = 0 and the solution simplifies to
R = ot ®)
r)=c
VI
Using R(1) = 0 gives
A
=c
Rz
For non-trivial solution then
Ji(H)=0

Hence A are the positive zeros of J 1 (A). These are the eigenvalues. The zeros of J 1 (A4) are multiple of .

Hence the first zero is 7, the second zero is 27 and so on.
Ap =nm n=12,3,---

Therefore, the eigenfunctions (5) becomes

Rn(r):1[n;r]%(nﬂr) n=123,--- (6)
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These are also called spherical Bessel functions, since half integer order. There is a known relation
between spherical Bessel functions and circular trigonometric functions which says

Jy ) = | = sin (@)

Using the above, the eigenfunctions (6) can also be written as

2 sin(nmzr
Rn(r): _3¥ n:1,2,3,"'
\N = nr
. 2 sin(n7nr) [2
limy/ ————= = ,/—
r—0 N\ 13  nr d

Note that

= 0.797885
For all n. Below is a plot of the first 6 eigenfunctions
Radial solution R(r) for the eigenvalue 7t Radial solution R(r) for the eigenvalue 2 7t
0.8} 0.8}
0.6} ] 0.6}
= 04r = 04r
T 02} 1% o2f
0.0 0.0
-0.2¢ -0.2¢
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
r r
Radial solution R(r) for the eigenvalue 3 it Radial solution R(r) for the eigenvalue 4 7t
0.8} 0.8}
0.6} ] 0.6}
= 04r 1 o~ 04p
® o2f ® 02f
0.0 \/ 0.0
-0.2f ] -0.2f \\/
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
r r
Radial solution R(r) for the eigenvalue 5 it Radial solution R(r) for the eigenvalue 6 7t
0.8} ] 0.8}
0.6} ] 0.6}
= 04r 1 o~ 04r
® o2t 1% 02t
0.0 \//\ 0.0 \//\\/
-0.2¢ ] -0.2¢
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
r r
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References

In working on this exam, I have used a number of references such as Wikepidia, Wolfram Mathworld
and the NIST Digital Library of Mathematical Functions.
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Chapter 6: Study notes, cheat sheets

6.1 cheat sheets

6.1.1 First exam cheat sheet
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