My Physics 501 page
Special Topics: Mathematical Models of Physical
Problems I

Fall 2018
University of Wisconsin, Milwaukee

Nasser M. Abbasi

Fall 2018 Compiled on November 3, 2019 at 11:35am [public]


mailto:nma@12000.org

Contents

[1_Introduction| 3
1.1 syllabus|. . . ... ... 3
T2 Topics covered . . . oo oo 3

2__exams| 1
2.1 Practice exam from 2017 . . . .. ... ... ... o L. 11

211 Problem 1|. ... ... ... ... ... 11
212 Problem 2. .. ... ... .. .. ... 13
21.3 Problem 3. . ... ... ... .. .. .. .. 15
21.4 Problemd4l. ... ... ... ... .. .. ... 16
2.1 Problem &f . . . . .. ... ... o 18
........................................ 21
[22.1 exam lprepsheetl . . . . ... .. ... ... ... L. 21
222 exam lwriteup|. . . . ... ... ... 22
23 finalexaml . . . . . . . ... 30
2.31 exam lprepsheet ... ... ... ... ... ... .. ..., ... 30
[2.3.2 my final exam cheatsheetl . .. ..................... 31

3_HWs 33

BITHWI. .. ..o 33
811 Problem 1. ... ... ... ... ... 33
BI2 Problem 2. ......... . ... ... 35

1 Problem 3. . . ... ... ... ... . . o 36
[3.1.4 keysolutionto HW 1| . . . ... ... ... ... ... ... ... .. 39

32 HW 2. . . e 41
821 Problem1|. ... ... ... ... ... 41
822 Problem 2. .. .. ... ... .. .. ... 43
8.23 Problem 3. .. ... ... .. .. ... 45
.24 Problem 4. ... ... ... ... 48
825 Problem . ... ... ... . ... 49
1826 keysolutionto HW 2| . . ......................... 50

......................................... 54

8.31 Problem 1|. ... ... ... ... ... 54
2 Problem 2. ... ... .. ... ... . 59
Problem 3. . . ... ... ... ... o 64

18.3.4 keysolutionto HW 3 . . ......................... 66

B4 HW 4. ... 70

B4I Problem Il. . ... ... ... .. ... 70

42 Problem 2. ... ... ... .. ... 73

4 Problem 3. . . . ... ... . 74

844 Problemd|. .. .. ... ... ... .. .. ... 78
[3.4.5 keysolutionto HW 4| . . ......................... 82

3.0 HW . . oo 86
1 Problem1f. ... ... .. ... ... ... . .. 86

2 Problem 2. . ... ... . ... ... 96

8.3 Problemd|. ... ... ... ... .. ... 99
[3.5.4  key solutionto HW 5| . . . .. ... ... L oL 102

3.6 HWO. ... e 108
3.6.1 Problem 1|. ... ... ... ... .. .. ... 108

2 Problem 2. ... ... ... .. ... 112
8.6.3 Problemd|. ... ... ... ... .. ... 114









Chapter 1

Introduction

1.1

syllabus

Physics 501 Mathematical Models of Physical Problems I Fall, 2018

MW 12:30-1:45 Ken 1130

Prof. Daniel Agterberg
Ken 4063 Office hours: TR 11:00-12:00
Phone: 229-3472

Email: agterber@uwm.edu

Text: Mathematical Methods for Physics and Engineering, (third edition) by Riley,
Hobson, and Bence (required).

The text is available at the UWM bookstore. Mathematical Models of Physical Problems
by Anchordoqui and Paul is also a useful reference.

Brief Description

Infinite Series; Complex Analysis; Integral Transforms; Evaluation of Integrals; Ordinary
Differential Equations; Special Functions; Partial Differential Equations.

Sined al gebe )
Prerequisite: Physics 210 and Mathematics 234 = D /ﬁ é e ff@/ E[ ;,«§~ )

Homework: Sets of homework will be distributed once every one to two weeks
You are free to talk to the other students and me about the problems but you
must write up the solutions yourself.

Grading: Homework: 40 %
Test : 25%
Final: 35%

Makeup exams will be given only if there is a documented need to miss the exam (e.g.,
injury, illness, or on a family death).

Exam is scheduled for Dec 19 from 3:00-5:00 in room Ken 1130. The midterm will be
held in class. )

See hitp://uwm.edu/secu/wp-content/uploads/sites/122/2016/12/Syllabus-Links.pdf for
University Policies.

1.2 Topics covered

This is list of lectures and topics covered in each



Table 1.1: Topics covered

Date Topics
Wed. Sept 4, 2018
1. Infinite series, geometric series.
2. conditions for convergence,
3. harmonic series, alternating series.
4. tests for convergence such as ratio test, integral test.

Monday Sept 10, 2018

AT

Talked about series solution to (1-x?)y” —2xy’ +n(n+1)y =
0.
r(r-1)x2

2!

Binomial series (1 + x)" =1+ rx +
series of e, sin(x), cos(x).
Introducing Bernoulli numbers.

Show that alternating series is convergent but not abso-
lutely.

6. Leibniz condition for convergence and its proof.
7. Showed that sum of 1-1/2+1/3-1/4+ .. isIn2.

8. Working with absolutely convergent series.

Wed Sept 12, 2018

1. Familiar series, ¢, sinx, cos x, In(1 + x), arctan(x)

How to get Bernulli numbers. More on Bernulli numbers
but I really did not understand these well and how to
use them. hopefully they will not be on the exam.

Started Complex analysis. Basic introduction. Properties
of complex numbers and mapping.

Monday Sept 17, 2018

complex functions u(x, y) + iv(x, y)

continuity in complex domain.

3. Derivative in complex domain and how direction is im-

portant.

Cauchy-Riemman equation to test for analytical function.

5. Harmonic functions. Exponential function in complex

domain.

6. Multivalued functions, such as logz.

How to obtain inverse trig function and solve w =
arcsin(z)

Continued on next page




Table 1.1 — continued from previous page

Lecture # | Date Topics
5 Wed Sept 19, 2018

1. derivative in complex plane. Definition of analytic func-
tion.

2. log(z) and +/(z) in complex plane and multivalued.
Branch points and branch cuts.

3. Integration over contour. Parameterization £ fl2)dz =

b
I flam)z @ dt

4. Cauchy-Goursat theorem: f f(z) = 0 for analytical
functions. Proof using Cauchy-Riemman equations and
Green theorem.

. . _ (/@

5. Cauchy integral formula 27if(zy) = f ey dz

6. Like in real, in complex domain, Continuity Does Not
Imply Differentiability.

7. More on analytic functions and multivalued functions.
Principal value.

8. Power functions zF = /112

9. Complex integration.

6 Monday Sept 24, 2018

1. Proof of Cauchy integral formula.

2. Maximum moduli of analytic functions. If f(z) is analytic
in D and not constant, then it has no maximum value
inside D. The maximum of f(z) is on the boundary.

3. Taylor series for complex functions and Laurent series.

7 Wed Sept 26, 2018

1. If number of terms in principal part of Laurent series is
infinite, then it is essential singularity.

2. Proof of Laurent theorem.

3. properties of power series. Uniqueness.

4. Residues, types of singularities. How to find residues and
examples

8 Monday Oct 1, 2018

1. Residue theorem §Cf(z) dz = 2mi Y, residues inside C

2. examples using Residue theorem.

3. Analytic continuation. Examples.

4. T'(z) function. Defined for R(z) > 0. Using analytical con-

tinuation to extend it to negative complex plane. Euler
representation and Weistrass represenation.

Continued on next page




Table 1.1 — continued from previous page

Lecture # | Date Topics
9 Wed Oct 3, 2018
1. More on Euler represenation of I'(z) and how to use it
for extending definition I'(z) = £ e”'t*71 dt for negative z
using I'(z) = @ for -1 < z.
2. Euler reflection formula
00 tx—l e
rora-o= [ s—dt=
(T =) o 1+t sin(rx)
3. proof of Euler reflection formula using contour integra-
tion.
4. Some useful formulas for I'(z)
5. Method for integrations, some tricks to obtain definite
integrations.
10 Monday Oct 8, 2018 No class.
11 Wed Oct 10, 2018 No class.
12 Monday Oct 15, 2018
1. More on method of integration. Starting Contour inte-
gration.
2. How to decide that L f(z) = 0 on the upper half plane.
R
Using Jordan inquality.
3. More examples of integrals on real line using contour
integration.
13 Wed Oct 17, 2018
1. More contour integrations.
2. Starting approximation expansion of integrals. Example
using error function erf(x) = % fc e dt by applying
Taylor series.
3. Large x expansion by repeated integration by parts.
4. Starting Asymprtotic series. Definition. Example on find-
ing S(x) for erf(x) for large x. When to truncate.
5. Saddle point methods of integration to approximate in-
tegral for large x.
14 Monday Oct 22, 2018

1. More saddle point integration.

2. Saddle point methods of integration to approximate in-
tegral for large x. Method of steepest decsent. Example
to find I'(x +1) = £ tre~tdt = V2mxx¥e™

3. extend saddle point method to complex plane. Finding
correct angle. Long example.

Continued on next page




Table 1.1 — continued from previous page

Lecture #

Date

Topics

15

Wed Oct 24, 2018

More on saddle point in complex plane. Angles. Example
applied on fI'(l +2z) = L exp—t+zlntdt

how to determine coefficients of asymptotic series expan-
sion.

3. Starting new topic. Fourier series. Definitions.

proprties of Fourier series. Examples how to find A,, B,,.

16

Friday Oct 26, 2018

Make up lecture.

1.

More on Fourier series. Examples. Fourier series using
the complex formula.

Parseval identity.

3. Fourier Transform derivation.

17

Monday Oct 29, 2018

1. Fourier transform pairs.

N

AT

How to find inverse fourier transform. Generalization to
higher dimensions.

Properties of Fourier transform.
convolution.
Example on driven harmonic oscillator.

Statring ODE’s. Order and degree of ODE.

18

Wed Oct 31, 2018

. More on first order ODE’s. Separable, exact. How to find

integrating factor.

Bernulli ODE y’ + f(x)y = g(x)y"

3. Homogeneous functions. defintion. order of.

isobaric ODE’s.

19

Monday Nov 5, 2018

How to find integating factor for exact ODE.

Finished example on isobaric first order ODE.

xy? By dx + xdy) — (Qydx — xdy) = 0

Higher order ODE’s. How to solve. How to find partic-
ular solution. Undetermined coefficients. What to do if
forcing function has same form as one of the solutions
to homogeneous solutions.

. How to use power series to solve nonlinear ode y” = x-1?

20

Wed Nov 7, 2018

First exam

Continued on next page
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Table 1.1 — continued from previous page

Lecture #

Date

Topics

21

Monday Nov 12, 2018

More on higher order ODE’s. Series solutions.

ordinary point. Regular singular point. Example Legen-
dre ODE (1 - x?)y” — 2xy’ + n(n + 1)y = 0.

Example for regular singular point, Bessel ODE x%y” +

xy' + (> —m?)y =0Usey=x> 3"  c,x"

22

Wed Nov 14, 2018

Continue Bessel ODE x?y” + xy’ + (x> — m?)y = 0 solving
using y = x> 3°  ¢,x". How to find second independent
solution.

23

Monday Nov 19, 2018

= b=

Started on Sturm Lioville, Hermetian operators
setting Bessel ODE in Sturm Lioville form
more on Hermitian operator.

Wronskian to check for linear independece of solutions.

24

Wed Nov 21, 2018

Thanks Giving.

25

Monday Nov 26, 2018

finding second solution to Bessel ODE for m integer us-
—-2sin m

ing the Wronskian. W(x) = 7% -

T

Generating functions to find way to generate Besself func-
tions.

26

Wed Nov 28, 2018

Using Generating functions

Bessel functions of half integer order, spherical Bessel
functions

Legendre polynomials, recusrive relations.

4. orthonomalization.

5. physical applications

27

Monday December 3, 2018

Ll O A

Second solution to Legendre using Wronskian
Spherical harmonics
Normalization of eigenfunctions

Degenerncy, using Gram-Schmidt to find other L.I. solu-
tions.

Expanding function using complete set of basis functions,
example using Fourier series

Inhomogeneous problems, starting Green function

Continued on next page
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Table 1.1 — continued from previous page

Lecture #

Date

Topics

28

Wed December 5, 2018

1. Green function. Solution to the ODE with point source.

2. Example using vibrating string y” + k?y = 0. Find Green
function. Two Methods. Use second method.

3. Started on PDE.

29

Friday December 7, 2018

(Make up lecture)

1. more PDE’s. Solve wave PDE in 1D

2. separation of variables. Solve Wave PDE in 3D in spher-
ical coordiates.

30

monday December 10, 2018

1. Solving wave PDE in 3D in spherical coordinates. Nor-
mal modes.

2. Solving wave PDE in 3D in cylindrical coordinates.

3. Inhomogeneous B.C. on heat PDE. Break it into 2 parts.

31

Wed December 12, 2018

Last lecture.
1. Finish Inhomogeneous B.C. on heat PDE. Break it into
2 parts. Final solution, using Fourier series.

2. Last problem. INtegral transform method. Solving heat
pde on infinite line using Fourier transform.




12



Chapter 2

exams

2.1 Practice exam from 2017

211 Problem1

i) Find Laurent series for f(z) = (21 5 around isolated singular pole z = i. What is the
z¢+1
order of the pole? ii) Use residues to evaluate the integral fo ( zdx )3
x“+1

solution

z2 +1 =0 gives z = +i. Hence there is a pole at z =i of order 3 and also a pole at z = —i
of order 3. Hence g(z) = (z - i)3 f (z) is analytic at z = i and therefore it has a Taylor series
expansion around z = i given by

§(@) =D a,(z—0)"
n=0

-’ f@) =Y a,(z=1)" (1)
n=0
d—’;g(z)
Where a, = £— . But
n:
z=1
g@) =z~ f(2)
1
= (z-i)’ 3
(22 - 1)
1
=(z-i) —
(z—1i)(z+1))
1
= (z-i) ———
(z—i) (z+i)
1
(z +i)°
To find a,, then a,, = %%(;)3 is evaluated for few n terms. Since order is 3, at least 5 terms
: Z+1

are needed to see the residue and the first term in the analytical part of the series (n > 0).
Starting with n =0

1 1 1 1.
R L S A
Forn=1
d 1 - T -
al_d_Z(z+i)3Z:l._(z+i)4zzi_@_ﬁ
Forn=2
Lold 3| 1364 193¢ 134 _6 3 5
2 dz (7 +i)* 2 (z +i) 2 (i 2 25 32i 160 16

z=1

13
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Forn=3
_la 13| 1A _13(HED) 5
TUBldziy| 6 @+d® |, 6 @) 6 26 3
Forn=4
1d-3-95] 1 3956 1 -3(-4(-5(-6) _13#G)E) 15

TN A et | 2B e "% @y | d @ 1%

Substituting all these back into (1) gives

=iy f@) =D a,@Ez-i)"
n=0

z=1 z=1

:ao+a1(z—i)+a2(z—i)2+a3(z—i)3+a4(z—i)4+---

Therefore
1
f&):(z_ (g +m@-i)+az-i) +a3(z— 1)’ +ag@—i)' + )
1 1, -3 . 3 N2 15
_(Z—i)g(él-’_E(Z_Z)_E(Z_Z)+ z-i)° + Ez(z—z)+ )
1 i 3 1 3 i 5 15

:g(z_i)3_ﬁ(z_i)2_1_6(z—i)+3_2 @z(z—z)— (1A)

The residue is the coeflicient of the term with = factor. Hence residue is —13—2. The order

is 3 since that is the highest power in L
zZ—1

The above method always works, but it means having to evaluate derivatives a number of
times. For a pole of high order, it means evaluating the derivative for as many times as
the pole order and more to reach the analytical part. Another method is to expand the
function using binomial expansion

(1+x)p=1+pz+p(p 1)x2+P(p 1)(P 2)x3+--- 2)

2! 3!

The above is valid for real p, which can be negative or positive, but only for |x| <1. This
is now applied to expand

1
(22 + 1)
B 1
z-i)P (z+i)]
Let z—i=¢&, or z=¢& + i and the above becomes

f2) =

3

- (é%) (1 :E)a (3)

Now the binomial expansion can be used on

e
5 term above, which is valid for |§| <1,
1+%)

which gives

2 3 4
(3) ( 3) (—4) ( ) (3 (A (D ( g ) N (-3)(-4) (-5) (-6) ( 5 ) N
(1 N :«‘ 2! 21 3! 21 4! 21
2i
2 3 4
_1+gz§+65 +102'§3 +152§14
3. 10 15

1472 3 10,5 15,
M L v
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Therefore (3) becomes
i 3,_32_10,3 15,
f(Z)—853(1+215 5& - i et )
(1 31 31 +E+ £+
\8&83 16&2 16& 64 (16)(8)
Butz=¢& +1ior & =z-1i, and the above becomes

f(z):( i 3 1 3 1 5 15 ) ()

- I + — 4+ —i(z=-0D+ -

8(z—1) 16(z—ip 16(-0) 32 125 ¢~
Which is valid for |z —i] < 1. In other words, inside a disk of radius 2, centered around
z =1

Comparing (4) with (1A), shows they are the same as expected. Which is the better
method? After working both, I think the second method is faster, but requires careful
transformation, the first method is more direct but requires more computations.

ii) Let oA I, hence, because L s even, then
(x2+1)3 (xz+1)3
I dx
2J (x2 + 1)

! _dx
2 RoooJp (xz + 1)3

1 .. R dx dz
[ [ gt
2 Roeo| J g (x2+1) A (22+1)

dz
3

The above is valid as long as one can show f — 0 as R — oo. The contour C is

(22+1)
from R to —R over semicircle, going anticlock wise. The radius of the circle is R. Since the

above integration now includes z = i, then by residual theorem, the above is just —f—;. The
residue was found in the first part. In other words

[ 3i
Zm(—E)

R s

22 +1

Letting z = R ¢ and taking R — co, then 56‘ ( Zdz P — 0 and the above simplifies to
ze+1

Therefore

2.1.2 Problem 2

X . . e _ _f _E
Expand f(x) = T as Fourier series for 0 < x < T and f (x) = T for - <x<0.

solution:

This function is even. For example, for L = 2, it looks like this
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T n
8 4 8
X

Hence the Fourier series will not have sin terms.

2nm — . [2nm
fx)=— 04 E a, cos (Tx) 7;1 b, sin (Tx)

n= 1
2
Where in the above T is the period of the function. In this problem T = zfn’ hence the above
becomes
2nmt
fx) = EO"‘E%COS[ xJ
T
=5 0 4 ;_:1 a,, cos (nLx) 1)
Where
T T
1 rz 2
o = Tfo(x)dx - f Fx)dx = —fnf(x)dx
2 2 f L
L Tx
) f o
~ L
211 (xz)f
nl\2/
1 (n?
7\ L?
m
T2
And

a, = % j: Ez f (x) cos (nLx) dx

= % 2) f g f (x) cos (nLx) dx
n
2L
Tt

j(; I cos (nLx) dx

7 n
=— fL x cos (nLx) dx
T Jg

Using integration by parts fudv = Uv — fvdu. Let u = x,du =1 and let dv = cos (nLx),v =
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sin(nLx)

, therefore the above becomes

a, =

2 ([ sin(nLx)
—_— x_
T nL

L T sin (nLx) ]
- f —dx
0 nL

0

2 —nsin(nL%) 1 r1
= ET—O —EJ; sin(an)dx

T

1 —_
-— f " sin (nLx) dx]
nL 0

) T
= — (fL sin (nLx) dx)
ntnL 0

2 (_ cos (an))%

mtnL nL

SREN

0

2 n
= (cos (nLx))§

2 T
T 2L2 (COS (HLE) - 1)

2
=2 (cos (nm) —1)

2 n
= 2 (D" -1)
-2 +2(-1)"

ntn?L?
Therefore from (1) the Fourier series is
fx) = 612_0 + ,;1 a,, cos (nLx)
Tt - 2 "
= ﬁ + nzzll m ((—1) - 1) COos (?ILX)

The convergence is of order 12, so it is fast. Only few terms are needed to obtain very good
approximation.

2.1.3 Problem 3
(i) Solve xy’ +3x +y = 0. (ii) Solve vy’ -2y’ +y =¢€*
Solution

(i). This is linear first order ODE.
y

y+3+;:0 x#0

1

Integrating factor is y = el 3% = gov = Multiplying both sides of the above by p, the left
side becomes complete differential and it simplifies to

d

— (uy) = -3u

d

= (xy) = -3x

d (xy) = —3xdx
Integrating gives
3

xy = —Exz +C

Hence the solution is
y= —gx + % x#0

(ii) ¥ — 2y’ + y = ¢ is linear second order with constant coefficients. The solution to the
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homogeneous part iy’ -2y’ +y = 0 can be found by first finding the roots of the characteristic
equation s> —2s+1 =0, hence s = ;—s + Zl—aVbz —4ac or, s = ; + %\/4 -4 =1. One double root.
Therefore

Y (x) = Cie* + Coxe*

To find the particular solution, the method of undetermined coefficients is used. Since the
forcing function is ¢, then a guess y, = ke*. But ¢* is a basis solution. Hence y, = kxe" is
now selected. But also xe" is basis solution. Then y,, = kx?¢* is finally selected. Substituting
this into the original ODE in order to solve for k, gives

Y- 2yptyp=e
But y;, = 2kxe* + kx®¢* and y;/ = 2ke* + 2kxe* + 2kxe* + kx*¢*. Hence the above becomes
(Zkex + 2kxe* + 2kxe* + kxzex) -2 (kaex + kxzex) + kx%e* = ¢
(2K + 2kx + 2kex + kx?) = 2 (2kx + ka?) + kx? =1
2k + 4kx + kx? — 4kx — 2kx* + kx® =1

2k =1
1
k=-
2
Therefore y, = %xzex, and the complete general solution is
y () =y (x) + y, ()
Therefore
y(x) = Ce* + Coxe™ + %xzex
2.1.4 Problem 4
Problem 4:
Consider the following differential equation (where 0 < z < 00)
dr d
2
T d*xg?/(w) + Qfﬁﬁy(ﬂv) + xzy(a:) =0 (5)

(i) Identify a regular singular point for this equation.

(ii) Consider ?he series solution y = % ; a,,2™ (note that a solution of this form exists).
Set ¢p = 1. Find the condition for c1 and then find a recurrence relation for Crm/Cm—2.

(ili) Write a closed form expression for the power series solution (the power series should
look familiar).

(1V) Using the Wronskian (note that the differential equation is a Sturm Liouville equa-
tion) and the above closed form solution, find a second solution.

Figure 2.1: Problem 4 Statement

solution

Part (1)
x%y” +2xy’ +x?y =0
"+ = +y=0
y ryty=

x is a regular singular point. Becuase lim,_,o (x - 0) - = 2. Since limit exist, then regular
singular point.



Part (2)
Let

[ee]

y= Z a,x"
n=0
[e¢]

y' = Y nax"!
n=0

y’ = Z n(n-1)a,x"2

n=0

The ODE becomes

[o¢] [ee] (e}
2y n(n-1)ax"2+2x Y na,x" 1+ 22 Y a,x" =0
n=0 n=0 n=0
o0 o0 o0
Minm-1)ax"+ Y 2na,x" + Y, a,x"*? =0
n=0 n=0 n=0

(o] [oe] o
Z nn-1)a,x" + Z 2na,x" + E a,x"=0
n=0 n=0 n=2

Therefore
E (m(n—-1)+2n)a,x" + E a, ,x" =0
n=0 n=2
We start from n =1 since n = 0 is used to find the indicial equation. For n =1
2611 =0
a| = 0
Forn>2
mn-1)+2n)a,+a,,=0
a,n(n-1)+2n) = -a,_,
g o= M2
" nm-1)+2n
Forn=2
a, = o
27 202-1)+4
1
=——a
Ay
Forn=3
Ar =
57 302)+6
Since a; = 0 then a3 = 0. All odd terms are therefore zero.
Forn=4
—a, 1 1(1 1
a, =— =—(gs=—|——an| = —a
"T(4)3)+8 202 20\ 6° " 1207°
Therefore
Y () = D a,x"
n=0
= ay + a;x® + agxt + -
1 1
=ag— gaoxz + @aox‘L -
1 1
— 1 _ 42 + — 4 _ cee
%0 ( 6" T 1200" )
Part (3)
3 5
setting a4y =1 as problem says, and since sinx = x — % + 13;—0 — --- then the above is

sin x

y1(x) = .

19
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Part (4)
Y1 Y S Y sin x XCosx —sinx
1 Y2 2 , X —
W(x) = P X COS X—sin x =0 —Y2 2
i o |— = V2 X X
But from Abel’s theorem, W (x) = Cel @8 where p(x) is the coefficient in the ODE
v ' +px)y +qx)y = 0. Since the ODE is ¢/ ——+y Othenp——and W(x)=e T
e 2Inx = =2 Hence
,sinx xcosx—sinx C
Y2 X Y2 2 - 2
xsin (x) y5 — Yo (x cosx —sinx) =
, cosx 1} C
V2= sinx x) xsinx
cosx T (sinx)
Integratlng factor is U= ef_ﬂlnx+31c = ef dsmx dx f T _ ef qud(smx) lnx = e ln(Sinx)x -

siE Multiplying both sides by this integrating factor gives

d( X )_ C
dx \P5inx) T sin? x

Integrating gives

x  Ccos (x)
Y sinx  —sin (x) 2
COS X sin x
yp(x) =-C +Cy
x x
COS X sin x
=0(q +C,
x x

But C, sin x is the second solution, so we only keep v, (x) =
is

cosx sin x
+ CZ

y(x)=C

2.1.5 Problem 5
2
Find solution to :—sz (x, x0) +k%G (x, x9) = 6 (x — xg) subject to boundary conditions G (0, x;) =
G (L, Xo) =0
solution

First we obtain the solution to the homogeneous ODE y” + k*y = 0 with y(0) = 0,y (b) =
which has the two solutions y; (x) = coskx, y, (x) = sin (kx).

Therefore the solution to the Green function is

(x xo) _ Al]/l (X) + Azyz (X) O<x< X0
’ Bl]/l (X) + Bzyz (X) X <Xxy< b

| Aqcos(kx) + Aysin(kx) 0<x <xg
- Bq cos (kx) + Bysin (kx) x<xg<b

Where A;, B; are constants to be found. From the condition G(0,x;) = 0 then the first
solution above gives A;cos(0) =0 — A; = 0. And from G (L,xy) = 0 the second solution

above gives B; cos (kL) + B, sin (kLb) = 0 or B; = %, hence the solution now becomes
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Ay sin (kx) 0<x<x
G (x, xo) = )
By cos (kx) + Bysin (kx) x <xp <L
Agsin (k) 0<x<x
By sin(kL) .
~eoste) €08 (kx) + Bysin (kx) x <xo <L
Ay sin (kx) 0<x<xg
cof(sz) (sin (kx) cos (kL) — sin (kL) cos (kx)) x <xy <L

Using sin (a — b) = sina cos b—cos a sin b, then sin (kx) cos (kL)—sin (kL) cos (kx) = sin (kx — kL) =
sin (k (x — L)) and the above becomes

G (. x0) { Ay sin (kx) 0<x<x (1A)
X, Xp) = By .
msm(k(x—L)) x<xy<L

Now from continuity condition G (x, x) =G(x, xo)x:x0+£ i.e. at x = xg, then (from now

X=xg—¢
on, we switch to xg).

B
Ay sin (kxo) = — sz) sin (k (xo — L)) 1)

Now we find the derivative of G at x = x gives

—G (x, %))
G(x,x
7 X0 kB,

cos(kL)

kA cos (kxg) 0<x<x
_— cos(k(xg—L)) x<xg<L

And from jump discontinuty in derivative of G at x = x; would obtain, since Gl ., —

! = —L then

x<xg—& — F@’

kB -1
p— (;b) cos (k (xg — L)) — kA, cos (kxp) = M

But since the ODE is i’ + k?y = 0 then in SL form this is — (y’), +k?y =0, and comparing
to — (py’)/ +k2y = 0 we see that p = —1. Then above becomes

kB
com k) ©©% (0 = L)) = kg cos fag) =1 (2)

From (1,2) we solve for Ay, B,. From (1)

Ay = B
27 cos (kb) sin (kxg)

sin (k (xo — L)) (3)

Substituting into (2) gives

kB, B, . _
cos (kD 0~ ED =K (Cos () sin (g €00~ L))) costiero) =1
KBy cos (k (¥ ~ 1) ~ KBysin (k (i ~ L)) ((’;isi ~ cos (kL)

kB, (sin (kx,) cos (k (xo — L)) — sin (k (xo — L)) cos (kxg)) = cos (kL) sin (kxg)  (4)

Using sin (a — b) = sinacosb — cosasinb, then
sin (kxg) cos (k (xg — L)) — sin (k (xg — L)) cos (kxg) = sin (kxg — k (xg — L))
= sin (kL)
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Then (3) becomes

kB, sin (kL) = cos (kL) sin (kxp)

_cos (kL) sin (kxp)
27 ksin (kL)
Substituing the above in (3) gives
cos (kL) sin (kxg)

2~ Jesin (kL) cos (kL) sin (kxo) sin (k (xo — L))

_ sin(k(xo— L))
~ ksin(kL)

Using A, B, found above in (1A) gives

sin(k(xp—-L)) .
ksT(kL)Sln(kx) 0<x<x0

G (x,xp) = { cos(kL) sin(kxg)

Fem(D) cosy Sk (x = L)) x <xo <L

~ ksin (kL)

1 sin (k (xg — L)) sin (kx) 0 < x < xg
sin (kxg) sin(k(x — L)) x<xg<L

The following approach seems faster.

second solution

Instead of starting from

Ay () + Ayyp (x) 0 <x <xg

G (x, =
0, %0) { Biyy (x) + Boyo (x) x<xp<b

We first find the eigenfunction @, (x) that solves y”” + k*y = 0 which satisfies the boundary
conditions y (0) = 0,y (L) = 0. Then write

AD,(x) 0O<x<uxg
G(x,x9) =
BO,(x-L) x<xg<b
So now we have only 2 unknowns to find, A, B using the continutity and jump conditions
on G. Let see how this works on this same problem. The solution to y” + k?y = 0 is
y(x) = Acoskx + Bsinkx. At y(0) = 0 implies A = 0, so the solution becomes y (x) = B sin kx
and at x (L) = O this gives 0 = Bsin (kL), which implies kL = nmt or k = % Hence the solution

is @, (x) = sin (%x) Therefore we set up the Green function as

. nrt
Asm(?x) 0<x<x

Bsin(%(x—L)) X<xy<b

G (v, x0) = {
Or by letting k,, = %

Asin (k,x) 0<x<xg

. 1)
Bsin(k,(x—-L)) x<xy<L

G(x,x9) = {

Now continutity says
Asin (k,xg) = Bsin (k,, (xg — L)) (2)
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Taking derivative of (1) at x = xq gives

Ak, cos (k,xg) 0<x<x

G’ (x,xq) =
(¥ %) {Bkncos(kn(xO—L)) x<xy<L

Then jump discontinutiy gives

Bk, cos (k, (xg — L)) — Ak, cos (k,x9) =1 (3)

Solving (2,3) for A, B gives, as we did earlier

_ sin(k(xg— L))
~ ksin(kL)

_ sin (kxp)

~ ksin (kL)

Using these in (1) gives

G (x, %) = —— { sin (k (xo — L)) sin (k,x) 0 < x <xg

ksin (kL) | sin (kxg)sin(k,(x—L)) x <xg<Lb

Which is the same result obtained earlier.

2.2 exam 1

2.21 exam 1 prep sheet

Preparation sheet for the test: November 7 in class

The test will cover notes and examples on infinite series, complex analysis, and
evaluation of integrals (not including the saddle point integration) and problem
sets 1-4.

1. Things to know without thought:

a) Sum of a geometric series.

b) Definitions of convergence and absolute convergences of infinite series.
c¢) Ratio test for convergence.

d) Series expansions for e*, sinx, cosx, and In(1 + x) (for |z| < 1).
e) Cauchy-Riemann conditions and definition of analytic functions.
f) The meaning of log z, Logz, and z°

g) Cauchy-Goursat Theorem and Cauchy Integral formula.

h) The form of Taylor and Laurent series.

i) The meaning of analytic continuation.

j) The residue theorem.

k) The definition of Cauchy principle value.

1) The definition of an asymptotic series.

(
(
(
(
(
(
(
(
(
(
(
(
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2.2.2 exam 1 writeup

Problem 1

Using a well known sum, find a closed for expression for the following series
f(z)=1+2z+32% +423 +5z% + -+
Using the ratio test, find for what values of z this series converges.
Solution
Method 1
Assume that the closed form is
(1-2)"=1422+322+42% + 5z + -

For some unknown a. Now a will be solved for. Using Binomial series definition (1 — 2)" =
(@@1) o _ ala-D)@-2) 3

1-az+ — 52 + - in the LHS above gives
-1 -1)(@-2
1—az+a(a2| )Zz—a(a ;,(a )Z3+---:1+2z+322+4z3+5z4+---

By comparing coefficients of z in the left side and on the right side shows that 2 = -2 from
the coefficient of z term. Verifying this on the coefficient of z? shows it is correct since it

(_2)2(_3) = 3. Therefore

gives
a=-2
The closed form is therefore

=1+2z+32%2+423 +5z* + -+

(1 -2y
Method 2

Starting with Binomial series expansion given by
1
—— =1+z+22+28+24+
1-z
Taking derivative w.r.t. z on both sides of the above results in

d( 1 d
== 248344
dz(l—z) dz(1+z+z +z7+z% + )

—(1-2)2(-1)=0+1+2z+322+423 + -

=1+2z+32%2+42% + ---

(1-2z)

Therefore the closed form expression is

=1+2z+322+42% + -+

(1-2)
Which is the same as method 1.

The series general term of the series is
14224322 +423 + -+ = E(n+1)z”
n=0
Applying the ratio test

N 7S]
L= lim |2
n—-o| q,

o | m+2) 2+
= lim [————
n—eo | (n+1)z"
n+2)z
n—oo| n+1
n+2

n—eo|p +1

2
1+ -
n

n—o0 1+1
n
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2

But lim,,_,, =1 and the above limit becomes

—nn
1+

n

L=z

By the ratio test, the series converges when |L| < 1. Therefore 1+2z+3z2+4z°+ --- converges
absolutely when |z| <1. An absolutely convergent series is also a convergent series. Hence
the series converges for |z| < 1.

Problem 2

Find the Laurent series for the function

flg) = —

(2 +4)

About the isolated singular pole z = 2i. What is the order of this pole? What is the residue
at this pole?

Solution

The poles are at z2 = 4 or z = +2i. The expansion of f(z) is around the isolated pole at
z = 2i. This pole has order 3. The region where this expansion is valid is inside a disk
centered at 2i (but not including the point z = 2i itself) and up to the nearest pole which
is located at —2i. Therefore the disk will have radius 4.

A Sz
Region where Laurent series
expansion around z = 27 is valid
-7 - T ~
- ~
y N
/ N
/ N\
/ \
A\
! R=14 \
/
| \
| 2 |
\ I
\ /
\ /
» Rz
\ /
N 7/
N e
~ re
~_ -
—2i

Let
u=z-2i

z=u+2i
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Substituting this expression for z back in f (z) gives
1
f2) = IR
((u +2i)" + 4)
1
R

(u2—4+4uz+4)

1
(u2 + 4ui)3

1

- (u(u+ 41’))3
1 1

T8 (y + 4i)
1 1

R p—

a5 +1)]
4 (i)’ (& 1)

1 1

T _i6d13 3
164u (%‘H)

i 1
) .

4i

Expanding the term ( 1u 5 using Binomial series, which is valid for |43| <1 or |u] < 4 gives

T+o !

(-3)(-9) (3)2 L A ED) (3)3 L (DA (D) (-6) (3)4 L
2! 4i 3! 4i 4! 4i

=1+ (-3) G
w3 T g
(1+3)
u 3-4u* 3-45u> 3-4-5-6 u
- + - =+ S+
4i 2! 1612 3! 64 4! 256
u 3-4u®> 3-4.5 u¥3 3-4.5-6ut
— - ~ + —+
4 216 3! 64(-i) 4! 256
u 3-4u* 3-4.5u% 3.4.5.6 u*
=1+3i—-- ——i —t ——+
4 2!'16 3! 64 4! 256
Substituting (2) into (1) and simplifying gives

i u 3-4u> 3-4-5u® 3-4-5-6 u*
F@) =143 -2 L X
64u° 4 2! 16 31 64 4! 256

(2)

i i u i (3-4u? i (3-4-5u3 i (3-4-5-6 u*
:—+—(3z—)—— - — =+ — |+
64u®  64ud 4 64ud\ 2! 16 64u3 31 64 64u3 4! 256
1 1 3 i (3~41) 1 (3~4-51) i(3-4'5'6 u )+

_____ +— F— —
21 16) 64\ 3! 64 o4 4! 256
i 3 .31 5 . 15
~6h® 2562 '512u ' 2048 '1638"
Replacing u back by z - 2i in the above results in
i 1 3 1 3i 1 5 15i .
f@) = 64(z_2)° 256(;—2i)7 512(z—2i) @ 2048 ' 16384 (z=20)+ - 3

This expansion is valid for |z - 2i| < 4. The above shows that the residue is

3i

512

Which is the coefficient of the ﬁ term in (3).
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Problem 3

Use residues to evaluate the following integral

I_f“’ dx
Jy o249

The integrand is an even function. Therefore the integral f -

Solution

is evaluated instead
1

x4+6x2+9

the zeros of the denominator. Factoring the denominator as (xz + 3) (x2 + 3) = 0, shows the

x
x44+6x249

and then the required integral I will be half the value obtained. The poles of are

roots are x = +iV3 from the first factor and x = J_ri\/§ from the second factor.

Since the upper half plane will be used, the pole located there is +iy3 and it is of order two.

Now that pole locations are known, the following contour is used to evaluate f i

x44+6x2+9
as shown in the plot below
Sz
pole of order 2
Rz
+R
§f(z)dz - lim f F(2)dz + lim f F () dx
2 R—oo J - R—oo J _p
d +R d
—lim [ —Z 4 im [ —E i )

Rooo -z +62249 Rocod_ g x4 +6x2+9

Where the integral f_ ;R is Cauchy principal integral. Since the contour C is closed and
because f (z) is analytic on and inside C except for the isolated singularity inside at z = iV/3,
then by Cauchy integral formula § f (z)dz = 27t Y, Residue. Where the sum of residues is

C
over all poles inside C. Therefore (2) can becomes

+oo dx . . .
f gy =2 X Residue Jim S@ 3)
But
| f F)de| <ML
C max
-lf@| _nR )
Using
1
|f @)

<
max ~ |22+ 3| |2 +3|
min

min
By inverse triangle inequality |22 + 3| > |z - 3. But |z| = R on C, therefore |22 +3| > R?-3
and the above can now be written as

1
|f (Z)lmax < (RZ _ 3) (RZ _ 3)
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Using the above in (4) gives

TR
ff(z)dz <
c max | (R2-3)(R2-3)
B 7R
~ RY-6R2+9
n
_ R
R2—6+ =

In the limit as R — co then | £ f(z)dz

— 0. Using this result in (3) it simplifies to

max

[ 2 dr = 2ni Y] Resid (5)
. x4+6x2+9x_ Tl esiaue

What is left now is to determine the residue at pole zy = i\/§ which is of order 2. This is
done using

d
Residue (z) = lim — ((z - z0)" f (2)

But zy = iV3 and the above becomes

d 2 1
Residue (iV3) = lim — |(z - iV3
(8=l 8

= lim i !

—iV3 42 (2 4 iyB)
= lim 2 3

i3 (z+z 3)
2

(iV3+iv3)
_ 2

(v
2

-(8)(3)iV3

1

- 12i/3

Using the above value of the residue in (5) gives

f+°° dx = o 1
—_—0X = 1
oo X+ 6x2+9 " 12iv3
m

"6V

is half of the above result which is

dx
x4 +6x349

Therefore the integral £OO

f‘x’ dx .
0 ¥*+6x2+9 1243
Problem 4

Find two approximations for the integral x > 0
1 E

I(x)= — fz ercos? 0,40
2n -z

One for small x (keeping up to linear order in x) and one for large values of x (keeping
only the leading order term).

Solution

The integrand has the form ¢*. This has a known Taylor series expansion around zero
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given by
“=14+z+ Z—z + .-
c=l+z+
Replacing z by x cos? 6 in the above gives
2
5 x cos? 8)
"0 =1 + xcos? O + —— + -+

2
The problem is asking to keep linear terms in x. Therefore

2
e 51+ xcos? 0

Replacing the integrand in the original integral by the above approximation gives

1 (2 )
I(x)zﬂf_z(l+xcos G)dH

1 s
~ — f d6+xf2 Cos QdQ]
27 n

1 2101
NEI 46 + x f —+500829d6]

L[ (1, Lsin20)2
Y LA AL S S

%( +;—C(29+sin29)_5§)
= i( +f(27t+0))

2m 4

1 X

7z (757

27
~3(1+3)
2 2

For large value of x, The integrand is written as e/(9) where f (6) = x cos? 0. The value of 0

where f(0) is maximum is first found. Then solving for 0 in

d
%x cos?6 =0

—2xcos0sind =0
Hence solving for 0 in
cosOsinf =0
There are two solutions to this. Either 6 = g or 6 = 0. To find which is the correct choice,
the sign of f (6) is checked for each choice.

d2

@x COS

d
20 = —( 2x cos O sin 6)

= —2x% (cos O sin 0)

= —2x(—sin @sin 6 + cos 6 cos O)

= -2x (— sin’ 6 + cos? 9) 1)
Substituting 6 = % in (1) and using cos (g) =0 and sin (%) =1 gives
dz
1z~ cos? 6 = -2x(-1)
=2x

2
Since the problem says that x > 0 then d%x cos? 6| _ > 0. Therefore this is a minimum.



30

Using the second choice 6 = 0, then (1) becomes (after using cos (0) =1 and sin (0) = 0)
d2

—xcos? 0

q6? -

0=0

2
And because x > 0 then d%x cos? 6| < 0. Therefore the integrand is maximum at
0=0

Qpeak =0

Now that peak 6 is found, then f(0) is expanded in Taylor series around 6,,., = 0. Since
f(0) = xcos? 0, then

f (Gpeak) =X
And f'(0) = —2xcosOsin0. At O, this becomes f’ (Gpeak) = 0. The next term is the
quadratic one, given by
144 d s
f(0) = —Zx% (cos O'sin )

= —2x (— sin 0 + cos? 6)
Evaluating the above at 0., = 0 gives

f” (Qpeak) = -2

The problem says to keep leading term, so no need for more terms. Therefore the Taylor
series expansion of f(0) = xcos? 0 around 6 = Opear 1s

xcos? 0 ~ f (Gpeak) + f/ (epeak) 0+ %fﬁ (Qpeak) 02
2x

_ _
=x+0 2!8

=x—x6?
=x (1 —~ 62)
The integral now becomes

I(x) = % fi #1039

1 2
~ x—x@de
2nfﬂee

2

1 g 2
_ X —x6
27 (e f_z ¢ d@)

2

13

NERY

Comparing f 2 ¢%04 to the Gaussian integral f ~ 16’4 = \/E, then the above can be
L — 0 X

Small x approximation | - (1 + —)

2
approximated as

Summary of result

2 2
Large x approximation Ly
g 1YY VT

Note that using the computer, the exact solution is

1
27

us

2 1z
j:zz eXoos 049 — 562 Bessell (0, g)
2
Problem 5
Use the Cauchy-Riemann equations to determine where the function

fle)=z+2
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Is analytic. Evaluate f f (z)dz where contour C is on the unit circle |z| =1 in a counter-

C
clockwise sense.

Solution

Using z = x + iy, the function f (z) becomes

=x+iy + (x% — 12 +2zxy)
e 2zxy)
= (x+x -y )+z(y—2xy)
Writing f (z) = u + iv, and comparing this to the above result shows that
2

=x+1iy+(x

f(z)=x+iy+(x+zy)
(2
(x

u=x+x’-y

v=y-2xy (1)
Cauchy-Riemann are given by
du Jv
dx " dy
-Jdu  Jv
Ty ox

Using result in (1), Cauchy-Riemann are checked to see if they are satisfied or not. The
first equation above results in

A
dx

80_
a—y—1—2x

Therefore g—z * 3—;. This shows that f (z) is not analytic for all x, y.

Since f (z) is not analytic, Cauchy integral formula can not be used. Instead this can be
integrated using parameterization. Let z = ¢/ (No need to use re'” since r =1 in this case
because it is the unit circle). The function f (z) becomes

f(z)=¢"+ (eie)z

_ 0i0 4 p2i0

_ 0i0 4 o200

And because z = ¢ then dz = dO¢'’. The integral now becomes

27-[ . . .
§f(z) dz = f (3’9 + e‘zle) e'9do
J 0

27T ) )

:f (6219 +e"9) do

0

Q20 PP [ pi0 PT
Bl
bl Tl

1
=5 [cos20 +isin 26]5” +1i[cos O —isin 9]3“

1
=5 [(cos4m +isindm) — (cos0 +isin0)] + i[(cos 2w —isin 27) — (cos 0 — isin 0)]

1 ,
=Z[1—1]+1[1—1]

Hence

ff(z)dz:O
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2.3 final exam
2.3.1 exam 1 prep sheet

Preparation sheet for the exam: Dec 19 from 2:45 to 5:15 in class

The exam will cover notes and examples on infinite series, complex analysis, eval-
uation of integrals, integral transforms, ordinary differential equations, eigenvalue
problems, and partial differential equations. The exam will also cover problem sets
1-7. You are allowed to have a 8.5 by 11 sheet of sheet of paper with equations on it.

1. Things to know without thought:

(a) Sum of a geometric series.

(b) Definitions of convergence and absolute convergences of infinite series.
(c) Ratio test for convergence.

(d) Series expansions for e”, sinz, cosz, and In(1 4 z) (for |z| < 1).

(e) Cauchy-Riemann conditions and definition of analytic functions.

(f) The meaning of log z, Logz, and z¢

(g) Cauchy-Goursat Theorem and Cauchy Integral formula.

(h) The form of Taylor and Laurent series.

(i) The meaning of analytic continuation.

(j) The residue theorem.

(k) The definition of Cauchy principle value.

(1) The definition of an asymptotic series.

m

(m) The definition of Fourier series and transform The definition of a separable
first order ODE.

(n) The criterium to check if an ODE is exact.

(0) Solution of linear first order differential equation using an integrating factor
(q) Definition and solution of a homogeneous ODE

(q) Use of the method of undetermined coefficients to solve inhomogeneous linear

(r) Ordinary and regular singular points of a linear differential equation (and the
form of the series solutions for these).

(s) Definition of a Hermitian differential operator.

(t) Sturm Lioville differential equation and related orthogonality of eigenfunctions.
(u) Use of the Wronskian to check if two solutions are independent.

(v) The definition of generating functions and how to use these to find recurrence
relations.

(w) The completeness relation.

(x) The definition of the Green function in solving inhomogeneous problems.

(y) The eigenfunction expansion of the Green function.

(z) The form of the wave, Laplace, and diffusion equations in 1,2, and 3 dimen-
sions.

(aa) The solution of the 1D wave equation.

(bb) The use of separation of variables. Specifically in 3D spherical coordinates
and in 2D polar coordinates.



2.3.2 my final exam cheat sheet

Solve for ¥ (r, 0, ¢,t) where %‘;’2 = ¢?Vi) (Wave PDE 3D spherical coordinates)

Let v = T(t)X(r,0,¢). First
seperation gives the following two
equations

2 is firs

k= is ﬁ!‘.bt w=ck
separation constant

solution

T"(t) + PR*T(t) = 0 ——=2ution T(t) = cos(wt) + sin(wt)
VX + k?X =0 +— Helmholtz eqution

no

Let X = R(r)©(0)®(¢) and apply separation again.

angular equation.
Second sepration. Use
(1 4+ 1) as|separation
constant.

solve first, m? is separation constant cimo
4 m2p=0 —» P (@) = { e—ime }
associated Legendre
polynomial of first kind

PP(@)

Qr'(x)
associated Legendre
polynomial of second kind.
not used. blows up z = +1

(lfxz)e)”72x(—)’+(l(l+1)7%)(—):()—>9(1>:{

x = cosf Associated legendre equation

Note: [ is integer and —l < m <1

Radial equation
(Besgel like) function first kind ———
j1(kr
R+ 2rR + (r?k? — 1+ 1))R=0 —> R(r) = f,l((m%
Yl
Can be converted to standard Bessel ODE
by some transformation (not shown) shperical bessel function
| second kind. Not used as it
blows up at r =0

Final solution is summation of fundamental solution
> g (kr) P™ (cos(mg) + sin(me)) (cos wt + sinwt)

shperical bessel

9 _ 20u
wave 1D: 5T = C 57

Uz, t) =
Where fo(z) is initial position of strmg and go(z) i s
initial velocity

Bessel: =

solutions Jy, (x), Yo, (z

33

Oz

3 (fn(z —ct)+ folw+ct) + £ [ gos

Zy// + Ty +

t intger, solutions

(22 — )J_[)VV:% When m
Jm (), J_m(x). When m integer,
)

LegendrE' (1 —2?)y" —2zy’ +n(n+ 1)y =0,

W= . Solutions Py, (z), Qn(x). Where Q blows
at il

Sturm-Lioville: (py’)’ — qy + Ary = 0, operator

Lly] = —(py’)" + ¢. When ¢ = 0, equation becomes

L[y] = Ary. Inner product < u;,u; >= [ @u; dx
Bernuli ¢/ + f( )y = g (z)y", where n # 0, 1. Divide
by y" — - m/ + f(2)y'™" =g (z) and let

v=y!"" 5 = (1-n)y "y converts ODE to
separable in v (z)

isobaric given y weight m and z weight 1. each term must
have the same weight if we can find m. Then let y = va™
Find %4 sub into ODE to get rid of y. Separable in v.
solve.

Exact Write ode as Mdx + Ndx = 0 then check if

(2)—1:,1 = ‘2—2 If so then set up 2 equations g—: =M, g‘j =N.
Integrate the first to get ® = [ Mdz + f (y), differentiate
this w.r.t y, and compare to g—,‘: = N and solve for f(y).
Solution is ® (z,y) = ¢

Sturm-Liouville To convert ay” + by’ + (¢ + Ad)y = 0 to
(P (@) %) —q(@)y @) + M @)y () = 0 use:

Solve for 1(r, ¢, t) where a'/ = ¢?Vi) (Wave PDE in 2D disk, polar coordinates).
Membrane is fixed on edge oi disk. Radius a.

Laplacian in 2D polar
2 2
Let v = T()X(r,¢). First Vu=S+i5+moe
sepergtlon gives the following two K2 i first " ok
equations separation constant mn
T"(t) + K*T(t) = 0 solution T(t) = cos(wt) + sin(wt)

VX + kX

= 0 = Helmholtz eqution

Let X = R(r)®(¢) and apply separation again.

solve first, m? is separation constant
"+ m?Pd =0 2 (¢) =

Due to periodicity, m must be integer.

X ) solution
Radial [equation

Bessel function order m

2R+ 1R + (r’k? = m*)R =0 unon™ (1) = {
Bessel ODE

i) }

Bessel function second kind.
Not used as blow up at 7 =0

Jm(ka) = 0 from boundary conditions. This fixes k. Let Zn, be the n™

(,i meo
(,—imq;

b(x) (2
() = ¢/ 5O and ¢ (2) = —p(2) £2 and r (z) = 224

a(z)

generating functions. Bessel g (z.t) = e%(‘f%), then write

gz, t)=>0"_  Jn(x)t". Find
Ay (z) = 2’171?{ (E,“ )dt L[5 cos (n — xsin6) df. To
find recusive relations, do %, % add/subtract we get

o (@) = Jp-1 (x) = 2Jn (x) and

Iy (@) = S n ( ) = Jn—1 (z) For Legendre use

9@t = e = oo Pa @)t Do G, 5
add/subtract we getP, 1 (z) = (n+ 1) P, (z) + 2P}, (z)
and Py, ( ) = —nPy () + P, (z)

P, (z) = 50 45 (22 —1)". Special values,
Py(z)=1,P (z) =z,P(x) = % (3.’1;2 - 1)

Laplace PDE on disk:

y(x) = Ag + > r™ (Cy, cosnb + ky, sinnf)
Ao = 2= [27 £(6)d6 and

Cha™ 02" £ () cosnfd6 and

kpa = %joh f(0) sinnfdf where a is radius and
£ (0) is boundary condition.

where

Euler ode r%y” +ry’ +y =0, let y = 7 ‘

zero
of the Bessel J,, function. Therefore k., = Z’(;'" are allowed values of k. Polynomial ODE. y (z) =f (az Ty + c). Let
w o< Jm(km,,v) (cos( m¢) + sin(mg)) This gives rise to modal shapes V =az + by + ¢, then dV = adz + bdy, converts it to

=3 Jm(kmnr) (cos(mg) + sin(me)) (cos(ckmnt) + sin(ckmnt)) dy ’ F(v) ’

separable Z = FEeyiool
G function. For bound 1 bl Ity = ite it as
reen function. For boundary value problem y” +y = f (z) write it as Wronskian W (x) = detllpr. gol. - vhll =
‘log (z) =In|z| + i (6 + 2nm) ‘ G (2,20) = Ayi (z) 0<z <m0 Ce~JP(@) de Where p is from
? Bys(z) o<z <L y' +py +qu=0

Where y; (z) is one of the solutions to y” + y = 0 that satisfies left BC and y» (x) is one which satifies right BC. Then solve for A, B from
contuinity condition Ay (zo) = By2 (xu) and jump discontinuty Byj (zo) — Ay} (z0) = ﬁ where p () is from SL form. (—1) for the above.

f (@o) dxo + f" G (xo, ) f (w0) dxo
f yl(z f(z)

(o, x)
dz +y2 (z

Then flipe the x, zo roles and then do y fo

Variation of parameters y, (z) = —y1 ( “ f<’”) dx

Fourier series f (z) = 42 + 37 | A, cos (2&nz) + Bysin (Znz) where A, = 2 j f )cos (%nz) and

B, = %f?g [ (z)sin (%n. ) Complex form is f (z) = Zn—foc Cne’fre ¢, = j z)e TNy,
Fourier transform f (z) = 5= [*0 F (w) €*"dw and F (w) = [*_f (x) e"™"da. Parsvalea. IS (@ W do = & f_ |F (w)]? dw
S ber 14

Bhbasi D
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Eigenfunction expansion. Startting from L [y] — ky = f (z), assuming y (z) = >_,, C,,®,, (x) where ®,, (z) eigenfunctions found by solving
Lyl — Ay = 0 with homogenous B.C. Then f (z) =3, dn®, (). Subtltutlng in the ode and use that L [y] = Ay results in

Yo (A k) Cr®, (x) =3, dpy®y (). But dp = (@, (), f (:r)) = % /'OL D, (2) f (z)da. The due to nolmaluatlon This glves
C, = A . Now that C,, is found the solution is y (L) e o, (2) =30 @"(T) f o, (z) ory(z) = "(“) L@ ( («) da’

ory(z f Z )% (x )f (2')dz’. Compare to y(z) = [* G (z,2') f (¢') dz’ shows that G (z,2') = M This is called
Green functlon elgenfunctlon expansion. This assumes <I> are normalized so weight is 1.

Py
completeness relation [ @u;jr (z)de =6;;. f =3 Cp®y (x) and r (2') Y, @ (2) @y (2/) =0 (x — &'). If f(2) =6 (z — '), then
LG (z,2")] — kG (z,2") = (z — x’) Operator is Hermite if [ aL [v]dz = [ 0L [u] dx

Asymptotic series S (z) = co + % + % +--- is series expansion of f(z) gives good approximation for large z. we truncate S (z) before
it becomes divergent. n is the number of terms in S, (2). Tt is optimally truncated when n & |z|%. S (z) has the following two

tmportant properties 0o pa—1 If pole of order n. to find residue, use
1. im0 2™ (f (2) — S (2)) = 0 for fixed n. F@ri-a= /o 1 +zdt 0<z<1 (2 = 20)"
B T Residue (z0) = lim ~ 7|f (2)
2. limy, 00 2" (f (2) — Sy (2)) = oo for fixed z. = sin(r2) soz dzt (n—1)!

S (z) ~ f(z) when S (z) is the asymptotic series expansion of f (z) for large z. common method to find S (z) is by integration by parts

Cauchy theoreom. Cauchy-Goursat: If f (z) is analytic on and inside closed contour C' then f (z) dz = 0._But remember that if

_ residue, use
Gaussian [ aa® gy = 2 ’

R (z0) = limz—2, (2 — 20) f (2)
j{ f(2)dz = 0 then this does not necessarily imply f (z). If f (z) is analytic on and inside C' then and z is a point in C then

C Green’s Theorem says
. z z i p(n z = 2Q _ op
2mif (z0) = j{zf(zl dz and 2mif’ (z0) = j{<z{(zj)2 dz and ZEf() (z) = f#dz Jo Pdz+Qdy = [}, ( ay) A
C C C
Laurent series f (z) = Yoo g an (2 — 20)" + Yoy (szizg)” where a,, = ﬁ]{ﬁdz and b, = 5= Wﬁ%dz. Power series of

[ (2) around zg is Y o an (2 — 20)" where a, = ”i, Fim (z)|2:zO For Laurent series, lets say singularity is at z = 0 and z = 1. To expand
about z = 0, get f (2) to look like 1

= and use geometric series for \z\ < 1. To expand about z =1, there are two choices, to the inside

an (0] e outside or € outsiae, ie. |z (54 zZ) 1o havt z
d to th tside. For th td > 1, get to ! > 1.
if e7? <1 does not work, use Jordan inquality - P o dn where O cosazr  wsinax
andusee ¥V < I for contour integration If f (2) satisfies CR Ot]fc.f () tz \;V e;e 11 some t;pgnht /wCOS ar = T2 T T
everywhere in that region |Pa'M 1.6 notclosed, such as a stralg . .
Euler Gamma functlon . . line or a half circle arc. Use . _ sinaz zcosax
hen it is analytic. L A . zsinazr =
T = [ ¢l tdt R 0 T then it is analytic. Let parameterization. This converts the a? a
(Z) _f() N 9 e(Z) ” . o f(z) :u(zvy)+iv(xvy)v integral to line integration. If C' i i
extend I' (2) to the left half plane, i.e. for . tegral to line integratio s .o T sinZaz
» 1 Let us defi N i then these two equations | straight line, use standard ¢ smtar = o -
negative va L}es. €t us deline, using the in Cartesian coordinates parameterization, ' o sin2az
above mﬁ}i’f}YC formula are 9% = 2% and z (t) = (1 —t) zo + tz1 and /6052 az = +—
() ==% Re(z) > —1 0w v G it s |9 () = (L= Do + by where (w0, y0) -,
e in the line initial point and (z1,y1) is sin aE cos ax = sin” ar
I'(z)=(z—1)T'(z—1) Re(z)>1 easler to use the polar the line end point. This works for T 24
ra=1 form of these. Let straight lines. Use the above and G| 1
- f(z) =rcosf +isinb, rewrite z = & + iy as /az+b aln(am+b)
@)= m-1 / 69 cos Az = ——||then the equations become | (t) = = (t) + iy (t) and plug-in in this > + b
F(nJrl):n! 0 a? H A2 Qu _ 19v poq 19u _ du z(t) in f(2) to obtain f (¢), then the / b:—f—zln(azﬁ»b)
/ —aw g ) A or _ roo 7 99 97 |integral becomes ar + @ a
1 e sin\r = 5—— - )
r (,) = 0 a? HA? || F.S. (period 2L). rt=1 = arcsin (z)
2 I s (2 )dI—Land [t@e=[ o na ﬁ
9 c t=0
I'(z4+1)=2I'(2 recursive formula = =
(z+1) ) f 1 Sin ( @) du = Now evaluate this integral. / \/7 = arccos (v)
I'(z)=r(z) Geometric series: 1
N-1 - = >
r 1 71.3A5...(2n_1)f Nor"*1+r+r + 73 +~-+7‘N:1_{_T and /1+12 arctan (z)
ntg )= V7T oyt =1+r+r2 48 4. =1 |r|<land )
1 it _ o—iw 1 ;x.c:n(*l)nrn:177"+7'2*T3+"':141r7 Ir| <1 (1+I):171+12713+»~ lz| <1
sinz = PR v sinf = = 7; Binomial series: (z +y)" = 1
i
L gln gt 171 RO 1y+anz+Mn3y3+” - —ltaota?tad .. 2] < 1
cosz = 55 cosh = = +z From this can generate all other specnl cases. For (1-=)
2 22 23
sin (A £+ B) = sin A cos B + cos Asin B z = ret(0+2n7) hence ez:1+z+§+§+'--
cos (A £ B) = cos Acos B Fsin Asin B aw _ €°° 1 23 =rde® 2 for R S
ze't = T — = T T T
sin2A = 2sin Acos A a a n=0,1. Hence 2 1n(1+1):5”7?+?7?+"‘|93‘<1
5 5 2 az 2 9 roots. n = 0 gives
cos2A = cos* A —sin®A=1—2sin* A p2e0r = & ((,KQ —Zr+ 7) principle part 1 In 1+z) ot z° n z° n 7 o < 1
1 a a a 5 = - T+t~
sin Asin B = 5 (cos (A — B) — cos (A + B)) £ae 2 1 i 5 7
sinbre"” = ———— (asinbx — bcos bz) T
1 / a? + b2 log(z) = sint =2 — = +---
cos Acos B = 5 (cos (A+ B) + cos (A + B)) ( ) In|z| + i(6o + 2nr) 321 .
Inz=zlnz —z 26 = eclnz n = 0 principle part T T

sinAcosB:%(sin(A—B)+sin(A+B)) COSZ‘:l_?"’E""



Chapter 3

HWs

31 HW1

3.11 Problem1

Part a

. . 9 81 729
For what values of x does the following series converge. f(x)=1+ 5+ 5+ 5 + -
X X X

answer

The general term of the series is

fmzier

n=0
The ratio test can be used to determine convergence. Since all the terms are positive
(powers are even), then the absolute value is not needed.

An+1
an
_ llm an+1

L= lim

n—00

n—oo q,

I
g.

. . 9 .
The series converges when L <1, which means 5 <1 or x2 > 9. Therefore it convergence
for

|x| > 3

Part b

. . . oo 1
Does the following series converges or diverges? >, _ In (1 + ;)

answer

The terms are {In(2),In (2 + %),ln (2 + %),ln (2 + 31),--~}.

35
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Since the terms become monotonically decreasing after some n (after the second term in

this case), the integral test could be used. Let

I:fln(1+l)dx
X

The above indefinite integral is first evaluated. Since In (1 + 3—() =In (1+x

T) —In@ +x)—1n(x),
the above can be written as

I:fln(1+x)dx—fln(x)dx 1)

To evaluate the first integral in (2) f In(1+x)dx, let u =1+ x, then du = dx, therefore

fln(1+x)dx=fln(u)du

= uln () - u
Hence
fln(1+x)dx:(1+x)ln(1+x)—(1+x) )
The second integral in (1) is
fln () dx = xIn (x) - x 3)

Using (2,3) back into (1) gives
I=(Q+x)In(1+x)-1+x)) - (xIn(x) —x)
=1+x)Ind+x)-1-x—xIn(x)+x
=1+x)In(I+x)—xIn(x)-1 (4)
Now that the indefinite integral is evaluated, the limit is taken using
R = I\ljl_r)rio Nln(l + Jl—c)dx

Only upper limit is used following the book metho Using the result found in (4), the
above becomes

R:I\lli_r)rgo[(l+x)ln(1+x)—xln(x)—1]N
The above becomes
R = lim [(1+x)n(+x)-xln @ -1]"
= lim [(1+N)In(1+N) - NIn(N) - 1]
= lim [In(1+N)+ NIn(1+N) - NIln(N) - 1]

1
= lim [1n(1+N)+Nln( +N)—1]
N—oo N

1+N
= lim In(1+N) + Jim Nln( - )—1 5)

But

o (1+N)
1+N
lim Nln (—) = lim ol
N—ooo N N—oo
N
This gives indeterminate form 1/0. So using I’Hospital’s rule, by taking derivatives of

numerator and denominator gives

1 (1N (-5 LN 2
1 n li 1+N 1i N 1i (N_l _N)N 1i N 1
11m = 1m — = 1m - —— = 111l —— = 111 =
N—oo l N—ooo _iz N—oo 1+N N—>oo 1+N Noco1l+ N
N N

1See page 131, second edition. Mathematical methods for physics and engineering. Riley, Hobson and
Bence.
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1+N

Therefore limy_,,, NIn (T) =1. Using this result in (5) results in

R:I\%irn Inl+N)+1-1
= lim In(1 + N)
N—>oo
= 0

Therefore, by the integral test the series diverges.

3.1.2 Problem 2

Find closed form for the series f (x) = Z:’:O n?x?" by taking derivatives of variant of 11:

For what values of x does the series converge?

answer
F(x) = 2%+ 4x* +9x° + 1638 + 25410 + -
Observing that
2oop . X d )
next = EE (nx ”)

Therefore the sum can be written as

f(x)= ;—C i % (nxzn)

= (x2 (1 +2x2 4+ 3x% + 4x° + 528 + )) 1)

To find what 1 + 2x2 + 3x* + 4x° + --- sums to, we compare it to the binomial series
al@-1z2 a(@-1)(a-2)2°
@-1Z a@-D@-27

5 3 o =1+ 202+ 3x% + 4x0 + 58 + -

1+2)"=1+az+

Hence, by setting

shows they are the same. Therefore

vy (a2V oy (A (ay [ a2)
(1—x2)_2:1+(—2)(—x2)+( 2( 2( 2) +( 2 3);!4)( x?) s

=1+2x% +3x% +3x* + -

The above is valid for |z| < 1 which implies x> <1 or |x| < 1. Hence

)
1+2x2 +3x* +4x0 + -+ = (1—x2)
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Using the above result in (1) gives

x d X
f)= > dx m
_x 4x3 . 2x
2w (-
2x* x?

Therefore

xz(x2+1)

3

fo) =

(1)

Where the above converges for [x| < 1, from above, where we used Binomial expansion
which is valid for [x| < 1. This result could also be obtained by using the ratio test.

(1 +1)% x20+D)
n2x2n

Ap+1
ay

lim

n—00

= lim

n—00

Since all powers are even, the absolute value is not needed. The above becomes

. (n +1)* 22

hm——hm—2
n—oo q, n—o0 7

2

. n+1

:xzhm( )

n—00 n2
= xz

An+1

Therefore for the series to converge, we know that must be less than 1. Hence x? < 1

an

or |x| <1, which is the same result as above.

3.1.3 Problem 3

Part a

. 1 1 1 1 1
Find the sum of 1 + Z —'ig —'EZ +'£gg +'1651 — e
solution

We would like to combine each two consecutive negative terms and combine each two
consecutive positive terms in the series in order to obtain an alternating series which is
easier to work with. but to do that, we first need to check that the series is absolutely

.1
convergent. The |a,| term is Yok therefore
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L= lim |22
1
— hm 4n+l
n—oo l
471
4n
= lim —|
n—oo | 4n+1
1
4

Since |[L| < 1 then the series is absolutely convergent so we are allowed now to group (or
rearrange) terms as follows

S=\|1+ ! ! + ! + 1 + ! ! + 1 +
B 4 16 64 256 1024 4096 16384
5 5 5 5

T1 641024 Teasa

5 1 1 1
=-1-=+—=-——+-
4 16 256 4096

5 (-1)"
-33

471:04T
58 (1Y
:an:%(_l) (E) (1)

n
But E:;O (-1)" (1—16) has the form E:’:O (-1)" " where r = %6 and since || < 1 then by the
binomial series

MY P =1—r4r2 =P+

n=0
1
T 147
Therefore the sum in (1) becomes, using r = %
5 1
1+ 1_6
_5(16
T 4\17
Hence
20
S=3
Or
S~1.176
Part b
. 1 8 16 64
Fmdthesumofi+i+§+z+---
solution
The sum can be written as
o0 n3
S = —'
~ n!
& nn?
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But = = - = ! and the above reduces to

n! n-1)'n (n 1)!
) Z (n 1)!

Letn—1=m or n =m+1. The above becomes
— (m+ 1)
m!

(n +1)?
n!

Nk

3
I
o

=
I
[}

24+1+2n

Il
EMS
N

I
NgE
:|:
ﬁMg‘:—
:|>—\

=
1
o

D &y

2
Considering the first term Z:;O % which can be written as

N

DM
23
I
DM
25

N

N
I
o
=
Il
—_

(2)

S
I
—

Il
Ngk
=
Iy
=

(o]

Again, letting Let n—1 = m then Y _ }%1 Hence (2) becomes

D"
)
o
o
8
o
w2
M

nl( )

|
=)

Nk
2%
1l
Mg
S
LR+

=
I
o
3
I
o

Il
=
i Nok
=
=3

3
I]
o
3
I
o

I
DM

F_Jlr:
N

I

NgE
|2

+

Ngk
S~ 2=

N
I
—
3
Il
(=]

—and the above

BUtEnll n=0 n!

reduces to

= E;O = 1), Letting n —1 = m, this becomes E =y

N

N
2|3
I
N
S|~
+
N
S|

3
Il
o
I
Il
o
3
Il
o

=e+e
=2e (3)
The above takes care of the first term in (1) Therefore (1) can now be written as
1 — 1
n=0
=2e¢+e+2 E —
n= O
— 7
=3e+2 Z 5
n=0
But Z:’:o% = En 17 ~ and E — was calculated above. It can be written as E:’:O % The
above now becomes .
— 1
S§=3e+2 —
2(33)
=3e+2¢
Therefore
S =>be
or

S = 13.5914
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3.1.4 key solution to HW 1
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3.2 HW 2

3.2.1 Problem 1

Find all possible values for (put into x + iy form)

1. log (1 + \/§1)
2. (1 + \/§i)2i

Answer
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Part 1

Let z = x + iy, where here x = 1,y = 3, then |z] = {x2+y2 = V1 +3 = 2 and arg(z) = 0y =

arctan (%) = arctan (?) = g = 60°. The function log (z) is infinitely multi-valued, given by

log (Z) =1In |Z| + 1(60 + 27’17T) n=0,+1,+2,--- (1)

Where 6, is the principal argument, which is 60° in this example, which is when n = 0.
This is done to make log(z) single valued. This makes the argument of z restricted to
-1 < 0y < 1. This makes the negative real axis the branch cut, including the origin. To
find all values, we simply use (1) for all possible n values other than n = 0. Each different n
values gives different branch cut. This gives, where In|z| = In (2) in all cases, the following

log (2) = 1n(2)+i(z) n=0

:ln(2)+i(§+2n) n=1
:1n(2)+i(§—2n) n=-1
:ln(2)+i(g+4n) n=2
:ln(2)+i(g—4n) n=-2

log (z) = 0.693 + 1.047i
= 0.693 + 7.330i
= (0.693 — 5.236i
= (0.693 + 13.614i
= 0.693 — 11.519:

These are in (x + iy) form. There are infinite number of values. Picking a specific branch
cuts (i.e. specific n value), picks one of these values. The principal value is one associated
with n = 0.

Part 2

Letz=1+ i\/§, hence

f@) =22
= exp (2ilog (z))
= exp (2i (In|z| + i (B + 2nm))) n=0,+1,+2,---

Where in this example, as in first part, In|z|] = In(2) = 0.693 and principal argument is
6y = g = 60°. Hence the above becomes

f(z) = exp (Zi (ln 2) + z(g + Zrm)))
, 271
= exp (21 In(2) - (? + 4117'())
) 21
= exp (z In4 - (? + 4nn))
= exp (iIn4) exp (— (2?71 + 4nn))

= e_(%n%m) (cos (In4) + isin (In 4))

= e_(%n%m) cos (In4) + ie_(%n +4m) sin (In 4)
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Which is now in the form of x + iy. First few values are
(5) (5)
f(z)=e \*/cos(In4) +ie \*/sin(In4) n=0

B +4n) cos (In4) + ie ) sin (In 4) n=1

N

T

( (5

) cosuay+ e 5 Gingnay e
( 2
( o

wl’-‘?l)

+8T[)

cos (In4) + ie sin (In 4) n=2

2n
7_871) cos (In4) + ie ?_Sn) sin (In 4) n=-2

f(z) = 0.0226 +i0.121
=7.878 x1078 +i4.222 x 1077
= 6478 + i34713
=2.748 x 10713 + i1.472 x 10712
=1.858 x 10° + i9.954 x 10°

3.2.2 Problem 2

Given that u(x y) = 3x%y — y® find v(x,y) such that f(z) is analytic. Do the same for
v
u(ny) = 7
Solution
Part (1)

u (x, y) = 3x%y — y°. The function f (z) is analytic if it satisfies Cauchy-Riemann equations

Ju dv
ox oy 1)
du Jv
3 = 38 )
Applying the first equation gives
by = Jv
Xy = 7y

Hence, solving for v by integrating, gives
v (x, y) = 3xy? + f () (3)

Is the solution to (3) where f (x) is the constant of integration since it is a partial differential
equation. We now use equation (2) to find f (x). From (2)

dv
(Sx -3y ) >
—3x2 + 3y? = %

But (3) gives % = 3y? + f’ (x), hence the above becomes
—3x2 +3y? = 3y> + f (x)

f/ (x) = =3x% + 3y? - 3y?
= -3x?

Integrating gives
f(x) = f —3x%dx

=-x*+C
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Therefore, (3) becomes

v (x, y) = 3xy? + f (x)
Or

v(x,y) =3xy>—-x>+C

Where C is arbitrary constant. To verify, we apply CR again. Equation (1) now gives

ou_
dx  dy
6xy = 6yx
Verified. Equation (2) gives
_du _dv
dy  dx
—3x% + 3y? = -3x2 + 3y?
Verified.
Part (2)
u (x, y) = xzz 7 The function f (z) is analytic if it satisfies Cauchy-Riemann equations
Ju Jdv
b (1)
du Jv
ST (2)
Applying the first equation gives
2xy  Jdu

_—(xZ A y2)2 - 8_y

Hence, solving for v by integrating, gives

v= —fo(y—zdy

x2 + yz)
X
“Zapt f ) 3)
Is the solution to (3) where f (x) is the constant of integration since it is a partial differential
equation. equation (2) gives

1 N 202 Jv
x2 + 12 (x2 N yz)z dx
But (3) gives % = leTyZ - ﬁ + f’ (x), hence the above becomes
1 2y 1 2x? ,
22 2T 22 5 +f (%)
¥ty (x2+y2) x“+y (x2+y2)
, 2 2 (y2 + xz)
fro=-5_7 2
TV (@)
2 2
=- +
x2 4+ y2 (x2 + yz)
=0
Hence
fx)=C

where C is arbitrary constant. Therefore, (3) becomes

X

v(x,y) = WJFC
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To verify, CR is applied again. Equation (1) now gives

ou_ o
dx  dy
“2xy  “2xy

(2+1?) (@)
Hence verified. Equation (2) gives
Ju dv

_8_]/ ==
1 2y 1 2x?

_x2+y2 + (x2+y2)2 = 2ty - (x2+y2)2

—(x2+y2)+2y2 :x2+y2—2x2

(2+1?) (2+?)
-2 +y* Xty

(2+y2)  (24y2)
Verified.

3.2.3 Problem 3

. . . 1
Evaluate the integral (i) Sg |z dz and (ii) § Z—zdz along two contours. These contours are
C C
1. Line segment with initial point 1 and fixed point i

2. Arc of unit circle with Im (z) > 0 with initial point 1 and final point i

Solution

Part (1)

Figure 3.1: Integration path

First integral We start by finding the parameterization. For line segments that starts at
(xo,yo) and ends at (xl,yl), the parametrization is given by

x(t) =0 -t)xg+txq

y®=QA-Hyo+tn

For 0 <t <1. Hence for z = x + iy, it becomes z (t) = x (t) + iy (t). In this case, xg =1,y =
0,x; =0,y; =1, therefore

x(H)=@1-1t)
y(t)=t



Using these, z (t) is found from
z(t) =x(t)+iy(f)
=1-t)+it
And
Z(t)=-1+1i
Since |z|* = x2 + 12, then in terms of ¢ it becomes
Z®P = (1 -t)? + 1

Hence the line integral now becomes

2 ! 2
dz = "(t)d
J == [ EOF 2 0
1

:f (@—12+ ) (1 +0) dt
0
1
= (=1 +1i 1-1)?%+2d
( +1)f0( P2 + 2t
1
—(1+0) [ 1+2-2t+2d
( +z)j(; +t t+ todt

1
:(—1+i)f 1+2t2 -2t dt
0

1 1 1
=(—1+i)(f dt+f 2t2dt—f 2tdt)

0 0 0

1

1

=(—1+i)[(t)1+2(f) —2(5))
‘ 3 0 2 0

) 2 1
:(—1+1)(1+§—2(§))

L|z|2dz:§(i—1)

Hence

second integral

Using the same parameterization above. But here the integrand is
11
2 ((1-1)+it)

Hence the integral becomes

1 11 ,
fc 7%= fo A-D+in’ (t)dt

. 1 1
- (l_l)fo -1 +it)2dt
=(@{-1)(-1)

Hence

£ledz:1+i

48
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Part (2)

7 xlayl)

0 (20, %0)

Figure 3.2: Integration path

First integral Let z = re'” then Z_Z = rie!’. When z = 1 then 0 = 0. When z = i then 0 = g,

hence we can parameterize the contour integral using 6 and it becomes

24 :fgz %) do
fclzlz Or(rze)

T

= ir fz e9de
0

T
01
€
= 17’3 |-:|
i
0
s
=3 [619]2
0
iz
=7 [e 2 - eo]

=r[i-1]

But r = 1, therefore the above becomes

£|z|2dz=i—1

second integral

Using the same parameterization above. But here the integrand now
1 1

2 120120

1 i1
LZ—Zdz:j; 25720 (rzeZ )d@

Therefore

oy
T

But » =1, hence

£ledz:1+i
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3.2.4 Problem 4

Use the Cauchy integral formula

1 rf(
f o) = 2niJ z —zodz
C
To evaluate
1
f(z+1)(z+2)dz

Where C is the circular contour |z + 1| = R with R < 1. Note that if R > 1 then a different
result is found. Why can’t the Cauchy integral formula above be used for R > 1?

Solution

The disk |z + 1| = R is centered at z = -1 with R < 1. The function
$@ = e
has pole at z = -1 and at z = -2.

YA
N,

Figure 3.3: Showing location of pole

In the Cauchy integral formula, the function f(z) is analytic on C and inside C. Hence,
to use Cauchy integral formula, we need to convert g (z) = —L__ t0 look like Z2 where
(z+1)(z+2) z-2

f (z) is analytic inside C. This is done as follows
1

1 (242
z+1)(z+2) z-(-1)
f @)

T z- (1)

Where now f(z) = (Zi—z)

analytic on and inside C and can be used for the purpose of using Cauchy integral formula,
which now can be written as

This has pole at z = -2. Since this pole is outside C then f (z) is

1

1 _ (2+2)
9§(z+1) 2T ﬁz—(—ndz
C C

_ f@
Pz-cD

= (2mi)  (-1)

Therefore, we just need to evaluate f (1) which is seen as 1. Hence

1 )
§(Z+l)(z+2)dz =27 (1)
C

dz

To verify, we can solve this again using the residue theorem

§g (z)dz = 2mi (sum of residues of g (z) inside C)
C
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But ¢(z) =
becomes

—— has only one pole inside C, which is at z = -1. Therefore the above
(z+1)(z+2)

1 . .
fm =2mi (re51due of g(z) at —1) (2)

To find residue at —1, we can use one of the short cuts to do that. Where we write e

% where @ (z) is analytic at z = -1 and ® (-1) # 0. Therefore we see that ® (z) = 21—2 Hence

residue of D(zg) = o1 Equation (2) becomes

1) z+2) D+2

2mi

1
f(z+1)(z+2) B
Which is same result obtained in (1) by using Cauchy integral formula directly.

To answer last part, when R > 1, then now both poles z = -1 and = -2, are inside C.

Therefore, we can’t split into one part that is analytic (the f(z) in the above), in

1
(z+1)(z+2)
order to obtain expression 19 in order to apply Cauchy integral formula directly. Therefore

iy}

when R > 1 we should use

§g (z)dz = 2mi (sum of residues of g (z) inside C)
C

3.2.5 Problem 5

Evaluate the integral

2(1 1
§€ (Z_Z - Z_S)dz
C

Where he contour is the unit circle around origin (counter clockwise direction).

Solution

2 1 1 2 z—-1
§€Z (Z_z_z_3)dzz,fez (Z—3)dz
@

dz
C (z- 20)3

Where z; = 0 and where
f@)=¢ -1

But f (z) is analytic on C and inside, since ¢ is analytic everywhere and z -1 has no poles.
Hence we can use Cauchy integral formula for pole of higher order given by
27

S g = 2 ) (o)

- (z- zg)"! n!

Where n = 2 in this case. Therefore, since z; = 0 the above reduces to

f(z) 2mi
f?dz =—f"0 1)

Now we just need to find f” (z) and evaluate the result at zy =0
f(z)= 2267 (z-1)+ 7
f"(z) = 267 (z-1)+2z (22622 (z-1)+ ezz) + 2267

Hence
f7(0)=-2
Therefore (1) becomes
220 1
fif%lﬂzdm )
z

C
To verify, we will do the same integration by converting it to line integration using param-
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eterization on 0. Let z(0) = re!, but r = 1, therefore z (0) = ¢!, dz = i¢'9d6. Therefore the
integral becomes

21 i0 _
:if eezle(e .1)516
0 3219

This is a hard integral to solve by hand. Using computer algebra software, it also gave —27i.
This verified the result. Clearly using the Cauchy integral formula to solve this problem
was much simpler that using parameterization.

3.2.6 key solution to HW 2
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3.3 HW 3

3.3.1 Problem 1

Part (a)

Use Cauchy-Riemann equations to determine if |z| analytic function of the complex variable

Z.
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Solution

f(2) =1

Let z = x + iy, then

f@=(2+y?)?

=u+1iv
Hence
v=0
Cauchy-Riemann equations are
Ly )
—‘;—: -2 @
First equation above glves =0 an d ; ;er which shows that — ¢ % Therefore

|z| is not analytic.

Part (b)

Use Cauchy-Riemann equations to determine if Re(z) analytic function of the complex
variable z.

Solution
f(2) =Re(2)
Let z = x + iy, then
f@)=x
=u+iv
Hence
u=x
v=0
Cauchy-Riemann equations are
du Jv
9% = 9y 1)
du Jv
oy " ox (2)

First equation above gives % —0and 2 = 1, which shows that %% % %% Therefore Re (2) is
dy dx dy = dx

not analytic.

Part (c)

Use Cauchy-Riemann equations to determine if gSinz analytic function of the complex
variable z.

Solution

f(z) = M7 is analytic since we can show that exp (z) is analytic by applying Cauchy-
Riemann (C-R), and also show that sin (z) is analytic using C-R. Theory of analytic func-
tions it says that the composition of analytic functions is also an analytic function, which
means €*Z is analytic.

But this problems seems to ask to use C-R equations directly to show this. Therefore we
need to first determine the real and complex parts (#,v) of the function ¢*Z. Since

z—-z"1

sinz = -
2i
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Then
f(Z) = ¢Sinz

)
= exp -

z -1
- P (Z) P2

But z = x + iy and the above expands to

exp (sinz) = exp 1(x+i))ep -

X =exp| 5 Xp| ———
2i Y 2i(x+iy)

B —i N 1

= exp| X + 5| exp

i)
i X =1y
§@+@&-MJ

|
w3l
= exp( S+ 1y p(_y)
|
|

-i 1
=exp|—=x+ SY|exp

S 1 i x iy
=exp|—x+ =y|exp|[= -
*P 2 2]/ *P 2\x2+y2 x2 42

=exp|—=x+ zyl|lexp|=

1 i x 1y
= XD\ X XP Y exXP §x2+y2 =P §x2+y2

Collecting terms gives

) 1 1 y i x i
exp (sinz) = exp Ey + eXp|ls 5 — 5%

2x2+12 2x24+y> 2

1y(1+ x2+y2 1 ]
=exp|; ( x2(+y2 )) exp(%xziyz—2(x21+y2)x(x2+y2)J

1y (1+ (2 + 92 1x(1-(x®+y?
o120 )

1y (1+ (2 + 92 1x(1- (% +1? (11— (2% + P
=exp| ( x2(+y2 )) [COS[E ( x2(+y2 )))+zsm[§ ( x2(+y2 ))H
o y+y(x2+y2) o x—x(x2+y2) +iex y+y(x2+y2) i 1x—x(x2+y2)
e 2(x2+y2) 2(x2+y2) P 2(x2+y2) 2 (x2+y2)

Therefore, since exp (sinz) = u + iv, then we see from above that

1y+y@@+yq]aﬁ[lx_x@2+yaJ

u:exp[i x% + 12 2 x2+y?

1y+y(x2+y2) _ 1x—x(x2+y2)
v=exp 2 2+yr St 2 2+

Now we need to check the Cauchy-Riemann equations on the above u,v functions we
found.

Ju Jdvu
b 1)
Ju B dJv

TR @

|
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Evaluating each partial derivative gives
ou d 1y+y(x2+y2) 1y+y(x2+y2) 1x—x(x2+y2)
—=—|z—————|xXp|z————F——|cos| s —————
dx dx(2 x2+? *P12 x% + 12

2 x2+y2
1y+y(x2+y2)] d cos[lx x(x2+y2)]

+ —
P (2 X2 + 12 dx X2 + 12

_12x (@) - (v +y (P +v) xeXp[gy((xz+y2)+1))COS(1x(1—(x2+y2)))
2 (xz + yz)z 2 X2 + 12 2 x2+y?
1y+y(x2+y2))sm[1x_x(xz+yZ)Ji(x_x(x2+yZ))

—exp (E X2+ 12 2 242 dx| o (x2 i yz)

_ —_xyexp[ly((x2 +1?) +1)]Cos[x(1 - (w2 +y2))]

(x2 " yz)z 2 x2+yP > (x2 + yz)
(y+y(x2+y2)] _ (x—x(x2+y2)] (1—3x2—y2) (x2+y2) - (x—x(x2+y2))2x
—exp| ———F|[sin
2(x2 + y2) 2(x2+y?) 2(x2 + yz)2
BTN ) ) O Ul i)
= (xz N yz)z eXp| 557 7 cos| 5 21y
1y(x2+y2+1) ' x—x(x2+y2) (—x4—2x2y2—x2—y4+y2)
—exp|z—————[sin
(2 2 + y2 ) { 2 (xz + yz) ] ) (x2 +y2)2
The above can be simplified more to become
u_ A y(2+12+1)
CRTE
x—x(x2+y2) W s a4 o x—x(x2+y2)
[nycosw +(—x -2xYy = x" -y +y )SIHW (3)
Now we evaluate g—; to see if it the same as above. Since v = exp %w(igfyzy;)) sin (%x (i(i;y) ))
then
Jv y+y(x +y) o y+y(x2+y2) i x—x(x2+y2)
o"y d}/ 2(x2+y) P 2(x2+y2) 2(x2+y2)
[y+y(x2+y2)] (x—x(x2+y2)] d [x—x(x2+y2)
+ exp CcoS _
2 (xz + yz) 2 (xz + yz) dy| 2 (xz + yz)
~ 1(1+x2+3y2)(x2+y2)—(y+y(x2+y2))2y y+y(x +y) x - x(x +y)
|2 (22 +2)° eXp( 2(x2 +12) ) [ 2(x2 +2) )

(
y+y(x2+y2)]cos(x x (x? +y)][2(2xy)(x2+y) (x- J;(x +17)) (2y )J

2(x2+y?) (2 +?)

44022 4 a2 4t 2 +y (2% + 12 x—x(x? + 12
:[lx +2xX°YS + x4y y]exp(y ]/( y)]sin(l ( y))

2 (xz_,_yz)2 2(x2+y2) 2 2+1P
+exp[y+y(xz+y2)]cos(x_x(xz+y2)] i 2
2(x2+y2) 2(x2+y2) 2(x2+y2)
1t 2+t -y . y"‘y(xz"‘yz) i 1x—x(x2+y2)
B e Tl T

ol e e
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Simplifying the above more gives
oA [y+y(x2+y2)]
dy 5 (x2 n yz)z P 2 (xz + yz)

x—x(x2+y2)+(_x4 x—x(x2+y2)} @
2 (xz + yz) 2 (xz N yz)

Comparing (3) and (4) shows they are the same expressions. Therefore the first equation
is verified.

[ny oS — 222 -2 -yt + yz) sin

Ju _ Jv
ax  dy
Now we verify the second equation —Z—; = ZU Since u = exp(;y Z gix ))cos (%x_(z(;f ;zy)z))
then
ou_d(lyey(@e)) el ey e ()
dy — dy (x2+y2) P 2(x2+_1/2) 2 a2+
y+y(x2+y) 1x-— x(x +y) 1% - xx+y
—exp| —F—— |sin| s ———5—=
[ 2(x+¥7) ) [2 ey X
_(1+x2+3y2)(x2+y2)—(y+y(x2+y2)) (y+y(x +y)] (x x(x +y))
2(x2+y2)2 (x2+y) 2(x +y2)
_exp[w)sm[zx—xz(xzzﬂ]< ) (2 +97) - (x-x (2 + ) 29
2@2+ya 2 x4y 2( )
(x4+2x2y2+x2+y4_y2) [y+y(x +y)) (x x(x +]/)]
= 5 ex
2(x2+y2) 2(x2+y) Z(x )
— exp w Sin[lx_x(xz""yz)]( )(x2+y2) Zyx+22yx(x +y)
2(x2+y2) 2 x2+y2 2(x2+y)
(x4+2x2y2+x2 +]/4—]/2) []/+]/(x2+]/2)) (1x—x(x2+y2)]
- 2 ex cos|z————5—
2(x2+y2) 2(x2 + y?) 2 24y
+exp[stm[lx—x(x2+y2)] yx i
2(x2+12) 2 X+ (2 + 12

The above can simplified more to give

u 1 [y+y(x2+y2))
exp| ——+~

Ay ) 2 (x2 " yz)z 2 (x2 + yz)

x—x(x2+y2)

(x4 +2x%1% + 2 +yt - yz) Cos + 2xy sin

x_x(xzwzw

2(x2+ 1) 2(x2 +y2)
Hence
w1 [y+y (< J))
5 2 & 2 1.2
Yy 2(x2+y2) Z(x +y)
x—x(x2+y2) . x—x(x2+y2)
[— (x4 +2x%1% + 22 +yt - yz) cos W — 2xy sin W (5)
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And s1ncev—exp(“+(ygx+x)) i (” ;i;y )then
dv d y+y(x +y) y+yx+y 1x- xx+y
dx  dx X2 + 12 P x2+y IR
y+y(x2+y2) 1x XX+y 1x xx+y
+exp| —F———
2(x2+y2) x2+y x2+y
1 [ 2xy (x® +v2) = (y + y (x® + v?)) 2x y+y(@+12))  (1x-x(x2+12
12l 2( )z g (12025
(x2+y2) 2(x +y) Y
+exp(y+y(x2+y2)]cos[1x—x(x2+y2)] (1—3x2—y2)(x2+y2)—(x2—x(x2+y2))2x
2(x2 +y2) 2 x4y 2(x2 +112)
_ -Xy exp 1y+y(x +y) X — X(X +y)
(x2+y2)2 2 x2+y (x
+exp(y+y(x2+y2)]cos[x x (x? +y x?y? — x? 2y4+y2
2(x2+y2) x2+y x2+y)
The above can simplified more to give
v 1 y+y(x2+y2)
F 2 X 2.2
2(x2+y2) 2(x +y)
(A 22 .2, 4 2 x—x(x2+y2)_ : x—x(x2+y2)
(x +2X°YyS + X+ Yyt -y )cos EYCIE (x2+y2) 2xy sin EYCIE (x2+y2) (6)
Comparing (5,6) shows they are the same, i.e.
—du _ Jdv
Ty "o

. . . . . . dv dv Jdu d
C-R equations are satisfied, and because it is clear that all partial derivatives a_z’ a—;, a_Z’ a—;l
are continuous functions in x,y as they are made up of exponential and trigonometric

functions which are continuous, then we conclude that f(z) = ¢""? is analytic function

everywhere.

3.3.2 Problem 2
Part (a)

Represent o by its Maclaurin series and give the region of validity for the representation.
z-3 1

Next expand this in powers of - to find a Laurent series. What is the range of validity of

the Laurent series?

Solution

Maclaurin series is expansion of f(z) around z = 0. Since f (z) has simple pole at z = 3,
then the region of validity will be a disk centered at z = 0 up to the nearest pole, which is
at z = 3. Hence [z| < 3 is the region.
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Now we can expand using Binomial to obtain

o= o 3 (5 5 )
3566
(-5 (-3 B - 56
=53 -G -6 -6) -6+

3+z
-3

2

[o¢]

. . .1
To expand in negative powers of z, or in -, then

z+3
z(l—§)

z

_z+3 1
oz |18
z
For |g| <1 or |z| < 3 the above becomes

f(z):Z:?’[l+§+(§)2+(g)3+m]

f2) =

6,18 54
B z z2  Z3

This is valid for |z| > 3. The residue is 6, which can be confirmed using
Residue (3) = lin% (z-3)f(2)
zZ—

z+3
z—3

- lnye-9

=lim(z + 3)
z—3

=6
Summary
12,22 23 2.4 .
f(Z)=ZL3= ! 632189254 ZECE <2
z=3 1 -tttz t+ |Z|>3
z z zZ
Part (b)
Find Laurent series for = 1)2(2_3) in each of the following domains (i) |z| <1 (ii) 1 < |z] < 3
(iii) |z| >3
Solution

The possible region are shown below. Since there is a pole at z = -1 and pole at z = 3, then
there are three different regions. They are named A, B, C in the following diagram



part.

»-
Rz

Region A contains no poles inside.
Disk centered at zero up to the
nearest pole at z = —1. Hence the
series expansion will contain only
an analytical part and no principal
part.

Region B is annulus region
between region which is analytic up
to the next pole at z = 3. Hence
the series expansion will contain
both an analytical part and a
principal part.

Figure 3.4: Laurent series regions
First the expression is expanded using partial fractions

z B A B
z+1)z-3) G+1 -3

-z
(z+1)(z-3)

Hence
z=A(z-3)+B(z+1)
=z(A+B)-3A+B
The above gives two equations
A+B=1
0=-3A+B

Region C is |z| > 3, Hence the
series expansion will contain only a
principal part and no analytical
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(1)

First equation gives A =1 - B. Substituting in the second equation gives 0 = -3(1 - B) + B

or 0 = -3+ 4B, hence B = Z, which implies A =1 - Z = i, therefore (1) becomes

z 11 31
Z+1)(z-3) 4G+1)  43z-3)

I . 11 .
Considering each term in turn. For ~——, we can expand this as
4 (z+1)
1 1 1

A_L(z+1):4_1(1_2+22_23+Z4+m) Izl <1

1 1 1 1 1 (1) (1)2 (1)3 (1)4
- - — =—l1-(=)+(=] = (=] +[=] - - Izl > 1
4(z+1) 4z(1+1) 4z z z z z

And for the term >——, we can expand this as
4 (z-3)

s | e RE R E T R B

3.1 3 1 _3(, (3 (§2 Vo] pss
4(2—3)_42(1_§)_4z +(z)+ z) +(z)+. 2=

(2a)

(2b)

(3a)

(3b)

Now that we expanded all the terms in the two possible ways for each each, we now
consider each region of interest, and look at the above 4 expansions, and simply pick for

each region the expansion which is valid in for that region of interest.

For (i), region A: In this region, we want |z| < 1. From (2,3) we see that (2a) and (3a) are
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valid expansions in |z| < 1. Hence

z 1(1 +22 -2+ + ) ! 1+Z+(Z)2+(Z)3+(Z)4+
_ = = -z 74—z z e ) — — — — — —
z+1)(z-3) 4 4\"737\3) "\3) T\3
1 1 z z2 2z
=-(1-z+22-2+2 - ) - [1+2+=+=+—+-
il -t 4( 379 27781 )
11 1, 1, 1, 1 z 22 22 Z
=|l--—z+-2 -+ttt =+
4 4 4 4 4 4 12 36 108 32
_ 1z 12_3_13 z 14_i_
4 12 4 36 4 108 4 324
1 2, 7., 20,

3 9 27 81
For (ii), region B: This is for 1 < |z| < 3. From equations (2,3) we see that (2b) and (3a) are

valid in this region. Hence

z N AN A AR L2 (2P 2V L (2
Ci)(z-3) 4 _(Z)+(Z) _(Z) (Z) o _Z( +§+(§) +(§) +(§) +)
1 1 1 z 22 2 A
=—1--+=- 1+ - +—+—+—+
42( z z? ) ( 27 81 )

1
4
1 1 1 2 3 A
:(E_EJ“E 1 4z5 ) ( 12736 108 324 " )
principal part analytical part

1 1 1 1 1 1 z z2 Z z4

+—-—+ +
475 4z4 473 472 4z 4 12 36 108 324

The residue is i by looking at the above. The value for the residue can be verified as
follows. Using

1 f@

n - 2ni / (Z _ ZO)—i’l+]

Where in the above zj is the location of the pole and 7 is the coefficient of the zl” is the
principal part. Since we want the residue, then n =1 and the above becomes

1
bﬁ%ff@)dz

In the above, the contour C is circle somewhere inside the annulus 1 < |z| < 3. It does not
matter that the radius is, as long as it is located in this range. For example, choosing radius
2 will work. The above then becomes

1
b= %f(zn) 3" )

However, since f(z) is analytic in this region, then § f(z)dz = 2mi), (residues inside).

C
There is only one pole now inside C, which is at z = 1. So all what we have to do is find
the residue at z = 1.

Residue (-1) = 111{1 (z+1)f(2)

z
= hm (Z + 1) m
= lim —~
z—-1 (Z - 3)
-1
~(-1-3)
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Using this in (5) gives

b = 1 ) 1
V" oni m4

Which agrees with what we found in (4) above.

For (iii), region C: This is for |z] > 3. From (2,3) we see that (2b) and (3b) are valid
expansions in z > 3, Hence

z 1 AW AY 3 3\ (3\ . (3)
————=—1-(= )+ (=] == +|=] =+ =1+ +|=]| +|=) +
z+1D(z-3) 4z z z z z 4z z z z

(1 1+1 1+1 +31+3+9+27+
C\dz 422 473 474 45 4z z 22 Z8
1 1 1 1 1 3 9 27 8l
==t =+t =-S5+t =+ =+
4z 422 478 42t 42D
_L L2 7 2
B ¢ 3 22z
This is as expected contains only a principal part and no analytical part. The residue is 1.
This above value for the residue can be verified as follows. Using

RO (C)

27—(1 J (Z _ Zo)_n+l

dz

Where in the above zj is the location of the pole and 7 is the coefficient of the zi" is the
principal part. Since we want the residue, then n =1 and the above becomes

1
by = z—m,;ff(z)dz

In the above, the contour C is circle somewhere in |z| > 3. It does not matter that the radius
is. The above integral then becomes

1 z
b= Z_m',f(z+l) ROk 7

However, since f (z) is analytic in |z| > 3, then 56 f(z)dz = 2mi )] (residues inside). There
C

are now two poles inside C, one at z = -1 and one at z = 3. So all what we have to do is
find the residues at each. We found earlier that Residue (-1) = i. Now

Residue (3) = lir131 (z=3)f(2)

. Z
=lmG-3) nes
=l
_3
4

Therefore the sum of residues is 1. Using this result in (7) gives

b L, (1.3
L i VT

=1
Which agrees with what result from (6) above.

Summary of results

2.9 7 3,204
R + _ —_— + —_ R <
32T 9% T F 81° Izl <1
f(z) _ Z _ n 1 1 1 1 n 1 1 z 22 23 z4 1 < |Z| <3
(z+1)(z-3) %5 ;Lz‘l 2423 1 42 4z 4 12 36 108 324
=4+ =+ S+ - >
A4 B 2 |zl >3
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3.3.3 Problem 3

Part (a)

—2z
. e . . o . o
Use residue theorem to evaluate § Z—zdz on contour C which is circle |z| = 1 in positive

C
Sense.

Solution

For f (z) which is analytic on and inside C, the Cauchy integral formula says
fﬁf(Z) dz = 2mi Z Residue (z = Z].) (1)
C j

—2z
Where the sum is over all residues located inside C. for f (z) = ez—z there is a simple pole at

z = 0 of order 2. To find the residue, we use the formula for pole or order m given by

' _d™ (z—zp)"
Residue (zg) = 211_)12) g1 (m—_l)uf (2)

Hence for m =2 and z; = 0 the above becomes

. .d,
Residue (0) = £1_1)% £z f(2)
d ze—ZZ

=lim —z
z—0 dz 22

=lim —e %
2z—0 dz

-y (2

=2

Therefore (1) becomes

72

6_22
9§ dz = 27i (<2)
C

= -4

Part (b)

1
Use residue theorem to evaluate 56 zezdz on contour C which is circle |z| = 1 in positive

C
sense.

Solution

The singularity is at z = 0, but we can not use the simple pole residue finding method here,
1

since this is an essential singularity now due to the ez term. To find the residue, we expand
f (z) around z = 0 in Laurent series and look for the coefficient of % term.

f(z):ze%
1 11 11
:Z(1+Z+§z_2+§;+m)
11 11

=z4+1l4+=--4+—==+-
AT PR

1 1
ngezalz = 2711(5)
C

=T

. L1
Hence residue is > Therefore



Part (c)
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. z+2 . . . . "
Use residue theorem to evaluate § ——zdz on contour C which is circle |z| =1 in positive

C 2

sense.

Solution

z+2

z
2 _Z

2
z+2

. . _ . _1
Hence there is a simple pole at z = 0 and simple pole at z = 7

Residue (0) = il_r)% () f (2)

f2) =

. z+2
:lméz
Zz—>
(=-3)
. z+2
:hr% :
Z—>
[-3)
2
-1
2
=-4
And
. 1 . 1
Residue| =z | =lim|z- = | f(2)
2 21 2
) ( 1) z+42
=lim|z-=
1 2 1
=
o z+2
= lim
z—>% z
1
_3*t?
-1
2
=5
Therefore

+2
5622 —dz =2mi (5 -4)
c? 2

=27
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3.4 HW 4

3.41 Problem1

1-x

1+x d_x
X

. . . . 1
Using series expansion evaluate the integral I = £ In (—

Solution
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We first need to find the Taylor series for ln( ) expanded around x = 0. Since

ln(it;{) =1In ((1 +x)(1%x))
=In(1 +x)+ln(i)
1-x
=In(l1+x)-In(1-x) (1)

Looking at In(1 +x), where now f(x) = In(1 +x), then we see that f’'(x) = %x,f” (x) =

" 4) = — .
o )z,f (x) = )3,f (x) IIANE therefore
’ x? 7 X " 4)
In(1+x)=f(0)+xf (0)+?f (0)+§f (0)+—f ) + -
¥ B A

—0+X—E+§—Z+"' (2)
Similarly for In(1-x), where now f’'(x) = —, f”( x) = » 2,f’”( x) = )S,f(‘*) (x) =
- 234,-- , therefore
(1-x)

x? X3 x4
1n(1—x):f(0)+xf/(0)+zf"(0)+5f~’(0)+zf<4>(0)+---
S S e (3)
Using (2,3) in (1) gives the series expansion for In ( - ) as

1+x 2 X3« 2 P
In =(x-—+—=-+- |- x-=—-——=-——+---

1-x 2 3 4 2 3 4

2

2 2
:2x+§x3+5x5+§x7+--- (4')

Using (4) in the integral given results in

1 2, 2. 2, dx
I:f 2+ =X+ =x" + =x’ + - | —
0 3 5 7 x

1 2 2 2
= 24+ =%+ =xt+=x0 4+ - |d
j(;( LRt )x

32 2x7 ]1
0

Which simplifies to

1 1 1 1
=21+ s+ +5+5+

=2y —— 5
Z%) @n +1)? ©)
The following are two methods to obtain closed form sum for ;° . The first method

=0 (2412
is based on writing

ZM E g (6)

n=1 (2 ) n=0 (21’1 + 1)
Where the sum on the left is broken into odd and even terms on the right, as in

1 1 1 1 (1 1 ) (1 1 1 )

l+s+s+5+5+ v =|lg+5+ |+ |l5+5+5+
22 42

But, from lecture Sept. 12, 2018, we showed in class that

Y s=c@="% (7)

2
n=1 n
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(This is called the Basel problem, and the above closed form sum was first given by Euler
in 1734). Now using (7) into (6) results in

ad 1 1 <1
;:%(Znﬂ)z Eﬁ_zlw

-1 11
=X U
3(w 1
(25
3 (m?
3
72
)
Another way to obtained closed form sum for Y ; is to use Fourier series. Consid-

n=0
(@n+1)?
ering the Fourier series for the following periodic function

—X -n<x<0

0<x<mn
Using
f(x) = 70 + E A, cos (nx) + Z B,, sin (nx)
Therefore
1 (0 1(2\" -1, ,0 -1 1
_ _ _ AN 2\ _
ao= [ e 7(?)_ﬂ =5 ) = g ) =g
And
-1 0 1+ (-1)"!
A, = —f x cos (nx)dx = (—2)
nJ_, n
-1 0 -1 n+1
B, = —f xsin(nx)dx:( ) T
nJ_, n
Hence the Fourier series for f (x) is
L 1 00 1+(_1)1’l+1 1 00 ( 1)7l+1 '
f(x):z—; TC os (nx) — nz 7 (sin nx)
n=1 n=0
1 00 1+ _1 n+1 (o] _1 n+1
n=1 n=0

Evaluating the above at x = 0 then all the sin terms vanish and we obtain

4 n4 n?

T 21 1 1+1+
T4 07 32 57
____,§(2n+1)

Therefore
n=0 (271 + 1)
had 1
Sen+1? 8

T
_z] =7
72

Now that we found closed form sum for ;" ;)2, we can find the value of the integral.

n0(2
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Since [ =23 ﬁ, then

3.4.2 Problem 2

Let I(x) = l;oo e fOdt with f(t) =t - e;t, find a large x approximation for this integral.

Solution

= foo exp (xt - et) dt
0
- fo " exp (F () dt (1)

Where F (t) = xt — ¢!. We need to find saddle point where F (t) is maximum. Hence

d
—F(t) =
LEH=0

x—e =0
el = x
to = In (x)

Where t; is location of t where F(t) is maximum. We called this in class t,.,. We now
expand F (t) around £, using Taylor series

F() = F(tg)+ P/ (1) (= 10) + 5P (i) ¢ = £+ -~ @
But
F(ty) = xIn (x) — e™¥
=xlnx—-x

And F’ (t) = x — ¢!, hence as expected F’ (t;) = 0. And F” () = —¢, therefore F” (t;) = —e** =
—x. We see also that F” (t;) < 0, which means the saddle point was a maximum and not a
minimum (since x is positive). Using these in (2) gives

F() ~ (xInx—x) + % (—x) (t - Inx)?

1
=xlnx-x- Ex(t—lnx)2

Substituting the above into (1) gives
o0 1
I= f exp (xlnx— x—=x(t- lnx)z) dt
0 2
= f exp (xIn x) exp (—x) exp (—Ex(t —Inx) )dt
0
00 1
= exp (xInx) exp (—x) f exp (—Ex (t-In x)z) dt
0

(o) 1 2
=y fo ¢~ gy 3)

Now, since the peak value where F () occurs is on the positive real axis, because ¢, = In (x),
therefore x > 1 to have a maximum, and assuming a narrow peak, then all the contribution

oo _Lotnx)?
to the integral comes from x close to the peak location, so we can change £ e X gy
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o _ Lot 1n )2
to f e 27" 31 without affecting the final result. Therefore (3) becomes

00 1 2
I =x%™ f e 2" gy (4)

—00

oo _Ly 2 00 2
Now comparing f e 2" 4t to the Gaussian integral f e =gt = \/g, shows that

X
a=3 for our case. Hence
L )2 27
f o2t gy /_
o X

Therefore (4) becomes

For large x.

3.4.3 Problem 3

Evaluate the following integrals with aid of residue theorem a > 0. (a) Lw ﬁdx (b)
00 cos(ax)
£ dx

x¥2+1

Part (a)

Since the integrand is even, then

1~ 1
1=—f d
2J w1

Now we consider the following contour

Cr

Figure 3.5: contour used for problem 3

Therefore
0 R
ff(z)dz:(ggo _Rf(x)dx+1%i_r>r:oj; f(x)dx)+g§0fCRf(z)dz

Using Cauchy principal value the integral above can be written as

ff(z)dz:I%Erolof_if(x)dx+1%i_r£o£1?f(z)d
= 2mi E Residue

Where Y] Residue is sum of residues of ﬁ for poles that are inside the contour C. Therefore
the above becomes

R
lim f f(x)dx =2mi Z Residue —I%im f(z)dz
R —00 CR

R—o0

© 1 . ) .
f_ . dx = 27 Z Residue — 1%1_{1010

1
xt+1 az (1)

CRZ4+1
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Now we will show that limg_,, L dz = 0. Since
1
f Tz < ML
Cr zx+1
=|f@)| (R (2)
But
1

SNCEIEY)

Hence, and since z = R ¢ then

1
|f @)

|22 + z|

max_|

|m1n min

But but inverse triangle inequality |22 - i| > |z| +1 and |z + i| > |z|2 -1, and since |z| =
then the above becomes

s = )

Therefore (2) becomes

f 1 3ol < R
z
CRZ4+1 T R-1

Then it is clear that as R — co the above goes to zero since limg_,o 27—

s
nR e
- ].lmR_)oo 1—1 =

R4

I = 0. Then (1) now simplifies to

© 1
j:oo rn dx = 2mi Z Residue (2A)
We just now need to find the residues of -— located in upper half plane. The zeros of
1
the denominator z* +1 = 0 are at z = —1% = (em)4 then the first zero is at ¢ 4 and the

ST T (3 e (5
second zero at el(ZJrf) = el(4n) and the third zero at el(4n+2) = el(4n) and the fourth zero at

(5 T 7
il 4+ i‘n
e\* 2/ =¢4". Hence poles are at

zZ1=¢+4
ién
22234
i§n
Zz=¢€+4
i‘n
Zy=¢€4

Out of these only the first two are in upper half plane z; and z;. Hence
Residue (z;) = Zhnzl (z—2z1) f(2)
—Z1

= lim (z - zl)

z—7q -1
Applying I’Hopitals
1
Residue (z;) = h_)lrgl1 3
1
BEIETE
4 eZZ)
1
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Similarly for the other residue
Residue (z) = lim (z - z5) f (2)
z—2Zp

1
= lim (z — zz)
zZ—2Z1 1

Applying I’Hopitals

1
Resid lim —
esidue (zy) = 1_)r£12 e

1

i3n
64)

S

Hence (2A) becomes

1

1
2 i ——dx, therefore

1 2
f dxzin
0

xt+1 4

But £ —dx—

Part (b)

Since the integrand is even, then

f cos (ax)
T2 X2 + 1
We will evaluate f dx and at the end take the real part of the answer. Considering

the following contour

> > » Rz

Figure 3.6: contour used for part b
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Then
i [ 1 ! dx| + 1 d
P el .
ff@)z &ggj;f&)x+£$)Of&)xyngglgf@)z

Using Cauchy principal value the integral above can be written as

.ff@nh=g§&jifuy&+gg&i¥f@nz
= 2mi Z Residue

el az

Where ¥, Residue is sum of residues of —— for poles that are inside the contour C. Therefore
the above becomes

R
lim f(x)dx =2mi Z Residue — lim f(z)dz
R—oo0J _p R—00 Cr

00 eiax eiaz
_ . . i 1
j: e 1dx 271 Z Residue Lim = 1dz (1)

Now we will show that limR_ML ;?dz = 0. Since
R

eiuz
f —an 1dz <ML
Cr

=|f@)| (R 2)

But
i
TO=5e
eia(x+iy)
T G-i)z+i)
piax-ay
T Ge-)z+i)
Jax -y
T G-zt
Hence

| eiaz| le= |
_ max max
max lZ N ilmin |Z + i|min

le™|

If @)

— max
(R+1)(R-1)

e

O R2-1

Since a > 0 and since in upper half y > 0 then |e™| = le = 1. Jordan inequality

—aRl
. . . max . . .
was not needed here, since there is no extra x in the numerator of the integrand in this

problem. The above now reduces to

1
|f (Z)|maX = R2 -1

Equation (2) becomes

elaz R
f s—dz| < —
x2+1 | T RE-1
us
. , R _ .. R _0 .
R — oo the above goes to zero since limg_,, % = limg_,o =+ = 7 = 0. Equation (1) now
_ L

simplifies to

00 eiax
f e 1dx =27 Z Residue

We just now need to find the residues of ZL that are located in upper half plane. The
ze+1



zeros of the denominator z? + 1 = 0 are at z = +i, hence poles are at
z1 =1
Zy = —1
Only z; is in upper half plane. Therefore
Residue (z;) = Zh_)r?l (z-21) f(2)
inz

=lim(z-2z) ————

e e e
eiaz

= lim
z—z1 (z — 22)
eia(i)

(i +1)
e—ﬂ

T2

Since f_ * xijdx = 27i Y, Residue then

00 eiax et
dx =2mi| —
f_mx4+1 * m(zi)

a

= Te”

00 eiax 1 0o X
d :—f d
fo Al 2 dr
:Ee_a

2

Therefore

But real part of the above is

f cos (ux)dx _ Ee—u
0

x4 +1 2

3.4.4 Problem 4

. . 271 1
Using residues evaluate(a) £ rE—

Part (a)

Using contour which is anti-clockwise over the unit circle

Sz
A

(A » Rz

Figure 3.7: contour used for problem 4

do for |a| <1 (b) Ln (cos (0))*" d6 for n integer.

80

. . -1
Let z = ¢/, hence dz = d0ie’” = d0iz. Using cos 0 = % then the integral can be written in
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complex domain as
1 1

-dz
oz
.§ 1
C 2+a (Z + ;)
2 dz
iJ 2z4+az2 +a

N

o[ &
N

AN

Il
=N

C
2 dz

4 2
arJ 22+ Zz+1
C a

2 dz
:Ef@—axbag

Where z;, z, are roots of z2 + gz +1 = 0 which are found to be (using the quadratic formula)
as

1-Vi-a2

Z1 =
a
-1+ V1-4?
Zp= —————8—
a

Since |a| <1 then only z; will be inside the unit disk for all a values. Therefore
%f(z—zjﬁ = (i) 27ti Residue (z;)
= %n Residue (z,) (1)
Now we will find the Residue (z;) where in this case f (z) = — 1 Hence

(z-21)(z—2) "

Residue (zy) = Zh_gl (z—2) f(2)

1
- Zh—glz (- 2) (z-21)(z—2)
— 1' 1
B zl—glz (z-29)
1

a a

()

a

2V1 — a2

Using the above result in (1) gives

21 1 4 a
—dO=|-n| —
o l+acos@ a ) o\1—a2
271
= a#1l

V1 - a2

Using Maple, verified that the above result is correct.

> restart;
integrand:=1/(l+a*cos (x)) :
int (integrand,x=0..2*Pi) assuming -1<a and a<l;

f 2
J=a+1

Figure 3.8: Verification using Maple

Part (b)

Since integrand is even, then Ln (cos (8))2" do = % LG (cos (6))2" d0. Using same contour as

, , -1
in part (a), and letting z = ¢/, hence dz = d6ie’ = dOiz and using cos 0 = % then the



82

integral can be written in complex domain as

f " (cos (6))" dO =
0

4nq 21

C
2
1 (zz + 1) "
= AE§ T
C
(2 1)211 .
Considering f (z) = ~—;;7—, this has a pole at z = 0 of order m = 2n +1. Therefore
2
1 p(2+1)” 1\
Efﬁ ZZanz = (E) 27i Residue (z = 0) (1)
C

So we now need to find residue of f(z) at z = 0 but for pole of order m = 2n + 1. Using the
formula for finding residue for pole of order m gives

. d" 1 (z-z9)" f (2)
Residue (zg = 0) = zh_{% Az (m—1)!

But m = 2n +1, and z; = 0, hence the above becomes

g2 y2n+l (ZZ + 1)2n

dZZ” (271)' Z2n+1

1 d2n 2n
_ : 2
= ol (dZZn (+1) )

Residue (0) = hm

Equation (1) becomes
2n

21 " 1 1 .. d 2n
fo (cos (0))*" d6 = ( )271((2”)' Lo( T (1) ))

n 11 1 P2 2
J; (cos (0))*" dO = 5 (4—n)2n ((Zn)' i_r)% (dzZ” (22 + 1) ))

1 = . dZn > 2n
~ 47 (2n)! ll—{%(dzzn (z i 1) )

Will now try to obtained closed form solution. Trying for different n values in order to see
the pattern. From few lectures ago, we learned also that

Now will generate a table to see the pattern

Therefore
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2n

1 . d . 1
n E% lim,_, (d 5 (z + 1) ) result of integral | T (n + 5)
1m,. 2 e 1) \r
1 Zzlmz_)()dz(z +1 7 r(1+5)—7
17, 4 3n 1\ _ 3vn
2| gyl Hodéx( +1) 0 r(2+5)‘T
17, d (5 57 1\ _ 15yn
3 4—3511mz_,0d—6(z +1) I r(3+z) =3
48 35m 1\ _ 105w
4 448,11mH0d8(z +1) = r(4+5)_ -
1 7. d'0 631 1\ _ 945yn
5 4—5ﬁ11mz_)odz—w(z +1) 56 F(5+E) =
ﬁl’(rﬁ—)
Based on the above, we see that I = R which is verified as follows
1 \/Er(n+%)
n | result of integral | T (n + —) E—
2 n!
v
1]z r(1+1)=2 i)
2 2] 2 1 2"
3Vn
h | 3¢ 2+ 1)=3 ﬁ(T) =2
8 2) 7 4 2 8"
15vn
5 | 5m r3+1_15ﬁ \/E(s) 150 _ 15m _ 3
16 2] 8 3! T (68 48 67
1051
R g4 1) 2 105vm \/E( To ) _ yr(105vR) 105w 35
128 t2)T 6 41 = Taae) 384 128"
945+/nt
5 631 I 5+1 _945+m ﬁ( 32 ) 945m  _ 945m _ 63
256 2) 7 3 5! T (120)(32) 3840 256
Therefore

f " (cos (0))2" dO = w

Tried to do pole/zero cancellation on the integrand of § dz in order to find a simpler

2n+1

method than the above but was not able to. The above result was verified using the
computer

Assuming[Element[n, Integers] &&n > @, Integr‘ate[Cos[x]Z“, {x, @, 7}]];

TraditionalForm[%]

\/;I“(n+i)

n!

Figure 3.9: Verification using Mathematica
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3.5.1 Problem 1

Expand the following functions, which are periodic in zfn, in Fourier series (i) f(x) =1- %

—L L .o _ X __L E
for;gxsz. (if) f(x) =e* for T Sx< 2
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Part 1

The following is a plot of the function f (x) =1 - Ii—l In the plot below L =1 was used for
illustration.

Plot of function for one period

-0.4 -0.2 0.0 0.2 0.4
X

Figure 3.10: Function plot

L=1;
f[x ] :=1-Abs[x] /L;

p = Plot[f[x], {x, -L/2, L/2},
AxesOrigin -» {0, 0}, Frame - True,
FrameLabel » {{"f(x)", None}, {"x", "Plot of function for one period"}},
BaseStyle - 14,
GridLines - Automatic, GridLinesStyle - LightGray,
PlotStyle - Red]

Export["../images/pl plot_ 1.pdf", p]

Figure 3.11: Code used

The Fourier series of f (x) = is given by
— 2 2
fx) = % + 7;1 a, cos (Tnnx) + b, sin (Tnnx) (1)
Where L is the period.

2 (3
a0=zf_£f(x)dx

I

up of the lower rectangle of area %L and a triangle whose area is (%L) (%) Therefore the

f (x)dx is the area under the curve. Looking at the plot above shows the area is made

N =N

total area is %L + }LL = ZL. Hence

And
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Since f (x) is an even function, the above simplifies to

L
4 3 2
—Zﬁzf(x)cos(fnnx)dx
L
4 3 2
:_fz (1—E)cos(—nnx)dx
LJ, L L
L

2 27 27
j(; COS (Tnx) dx — —f X COS (Tnx) dx)

=1~

L

4[.(271 )]z 1f% (2n )d
= —||sin|—nx|| —— | xcos|—nx|dx

L L)), Lo L

41 . (2n (L 0 1 fé 21 p
=—||sin|—n|=|-0]|-+ —

Al Tadb Loxcos [ dx

0 L

4 ﬁ 1 2 27 J
=7 | [sinmn] =+ * xcos | dx

4 £
=-= fzxcos (—nx)dx

12 Jq

2n sin(zfn”x) L 2n
Usingintegrationbyparts:Letu:x,dvzcos(fnx) thendu =1,0v= = :m—nsin(fnx.

L
The above integral becomes

Il
—_
|~
—_
| o~
~————
—_
|I\.)
3
=
| =
~——
|
(@]
~————
|
—~
|
(@)
@}
wn
—_
=]
=
=
~———
N

2 ) + 12 2n (L))
= —SsInn — | COS|—n| — -
4mn T yen? L2

L2
= 2R (cos (mtn) — 1)

Therefore
4 L2
a, = Iz (W (cos (mtn) — 1))
1
= —— (1 - cos(nn))
n?n?
The above is zero for even n and ——; for odd n. Therefore the above simplifies to
2
ﬂn:W Tl:1,3,5,"‘

Because f (x) is an even function, then b, = 0 for all n. The Fourier series from (1) now
becomes

3 - 2 2n
fO=3r 3 g (%
To verify the above result, the Fourier series approximation given above was plotted for
increasing n against the original f(x) function in order to see how the approximation
improves as n increases. Using L = 2, the result is given below.

The original function is in the red color. The plot shows that the convergence is fast (due

to the % term). The convergence is uniform. After only 4 terms, the error between f (x)
and its Fourier series approximation becomes very small. As expected, the error is largest
at the top and at the lower corners where the original function changes more rapidly and
therefore more terms would be needed in those regions compared to the straight edges
regions of the function f (x) to get a better approximation.
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approximation for n=1 approximation for n=3

X

X
approximation for n=7

approximation for n=5

Figure 3.12: Fourier series approximation, part 1

ClearAll[L, x, n, a]
L=2;
a[n_] :=2/ (Pi*2n"2);

fApprox[x _, nTerms_] :=3/4 +Sum[a[n] Cos[2Pi/Lnx], {n, 1, nTerms, 2}]

p = Table[
Plot [ {f[x], fApprox[x, i1}, {x, -L/2, L/ 2},

Frame - True,
FrameLabel » {{"f (x)", None}, {"x", Row[{"approximation for n=", i}]}},
GridLines - Automatic, GridLinesStyle - LightGray,
PlotStyle » {Red, Blue},
ImageSize - 400,
BaseStyle - 16],
{i,1,7, 2}

15

p = Grid [Partition[p, 2]]
Export["../images/pl plot 2.pdf", p]

Figure 3.13: Code used

Part 2
The following is a plot of the function f (x) = e*. In this plot, L =1 was used.



Plot of function for one period

/

f(x)

/

X

Figure 3.14: Function plot part 2
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L=1;
flx_1 := Exp[x];
p = Plot[f[x], {x, -L/2, L/2}, AxesOrigin - {0, 0},
Frame - True,
FrameLabel » {{"f(x)", None}, {"x", "Plot of function for one period"}},

Export["../images/pl plot 3.pdf", p]

BaseStyle - 14, GridLines - Automatic, GridLinesStyle - LightGray, PlotStyle - Red]

Figure 3.15: Code used

The Fourier series of f (x) = is given by

— 2 2

(x) = % + Y, a,cos —nnx + b, sin —nnx

2 L L
n=1

Where L is the period and

2 2
Elo_z Lf(x)dx
2

2 2
=7 _Eexdx
2
2 L
:_[ex]z
Ll
21t _L
:Z[gz—e 2]
L L
_4 e2 —¢ 2
L 2
4 L
= —gsinh | =
L 2

And
L
2 2 27
a, = Zf_éf(x) cos (fnx) dx
2 (3 2
2 i
= I f—% ¥ cos (Tnx) dx

: . _ eos(Z _ 2w (2
Integration by parts: Let u = cos( - nx),du = -7 sm( T nx) and let dv

e’ v

(1A)
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therefore

L
3 2

I= fz ¥ cos (—nnx) dx
_L L

2

T2
(Lo (2w L\ L (om (L +2nnf§ (2
=l|e2cosS|—n—-|—e COS|—n|——= —_— S —nxjl|eax
» L2 L'\ "2 LT

2
sin (—nnx) eXdx
L

[ L _L 2mn
= |e2 cos(mn) —e 2 cos (nn)] + f

L
L L 2 2 2
= cos (tn) (ez —e z) + —7Lm sz sin (—nx) e*dx
2
L\ 2mn (5 (2
= 2 cos (ntn) sinh (E) + I f—% sin (—nx) e*dx

Integration by parts again, let u = sin (annx) Jdu = 22 cos (Z—Rnx) and dv = e%,v = ¢*. The

above becomes

L
L\ 2 2 2 72 2
I =2cos(nn)sinh | = | + il e*sin —nnx —fz ECOS —nnx e*dx
2 L L L -+ L

N

The term [e" sin (Tnnx)] | goes to zero since it gives sin (nm) and n is integer. The above

simplifies to

2

L\ 47 (5 (2
:2cos(nn)sinh(—)— T sz cos(_nnx)exdx

L
. L 2nn | 2mn (2 2m .
I = 2 cos (1tn) sinh (E) + T (_T fL cos (Tnx)e dx)

2 12 L L

L
Since f% cos (zfnnx) e*dx = I the above reduces to
2

47122

LZI

L
I = 2 cos (nn) sinh (E) -

4m’n? L
1(1+ . ):2cos(nn)sinh(§)

I2
2 cos (mtn) sinh (%)
I= 472n2
12
Using the above in (1) gives
5 2 cos (rtn) sinh (%)
an = 7 22
L 4mn
1+ 3
B 72 2 cos (ntn) sinh (g)
L [2+4mPn?

4L ——
= 12 + 4702112 COS (7(11) S11 >
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Next, b,, is found:

L
2 (2 . (27
b, = Zj:éf(x) sm(fnx) dx

L
2 2 . [2n
= zj:g e* sin (Tnx) dx (2)

Integration by parts: Let u = sin (zfnnx) ,du = 2% sin (zfnnx) and let dv = e*,v = ¢¥, therefore

L

2 2
I= fz ¥ sin (—nnx) dx
L L

L L
2 2 3 2 2
= |¢¥sin —nnx —fZ Ecos —nnx eXdx
L L _L L L

-3 )

N~

But [ex sin (zfnnx)] , goes to zero as sin (rn) = 0 for integer 7 and the above simplifies to

2

L
2nn (2 27
I= < J. cos (Tnx) erdx

i in: - cos X = 2 n (% —eX p=¢
Integration by parts again: let u = cos( T nx) i =—= sm( T nx) and dv = e*,v = ¢*. The

above becomes

L L
2 2 2 7 2 2
I= _%n [ex coS (Tnnx)]_E - f_; _%n sin (Tnnx) e*dx
L
2 L 2 2 2
= _%n 2 cos (mtn) sinh (E) + %n j:zg sin (Tnnx) exdx)
z 2
But f 2 §in (Tnnx) e¢*dx = I and the above reduces to
2
I 27m2 ( )_hL+2nn1
= - 11 by ——
3 cos (mn) s > i
4 L 4 2,2
I= ——Zn cos (rtn) sinh (E) - ann I
Il+4n2n2 _ 4mn ( )’hL
0 cos (mtn) sin 5
4 cos (7tn) sinh (E)
[=—- :
- 472n2
12
—4nnL cos (1tn) sinh (%)
- L2 + 471°n?

Using the above in (2) gives

o —4mnL cos (rn) sinh (%)

b, =—-
"L L2 + 47°n?
—8mn ) L
= m COS (nn) sinh (E)
Therefore, from (1A) the Fourier series is
2 . L & 41, ) L 271 8mtn . L\  [2n
fx) = I sinh (E) + ,12:1 [y cos (1tn) sinh (E) cos (Tnx) T cos (7tn) sinh (E) sin (Tnx)

(3)
To verify the result, the above was plotted for increasing n against the original f (x) function
to see how the approximation improves as n increases. Using L = 2, the result is displayed
below. The original function is in the red color.
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Compared to part (1), more terms are needed here to get good approximation. Since the
original function is piecewise continuous when extending over multiple periods, the conver-
gence is no longer a uniform convergence. At the point of discontinuity, the approximation
converges to the average value of the original function at that point. At about 20 terms
the approximation started to give good results. Due to Gibbs phenomena, at the points of
discontinuities, the error is largest. Here is a plot showing one period

approximation for n=1 approximation for n=3

y
X
1\

S

X

x

approximation for n=5 approximation for n=7

c
>
\

A

X

x

approximation for n=9 approximation for n=11

.
A
\

\

X

x

approximation for n=13 approximation for n=15

.
I
\

\

X

x

approximation for n=17 approximation for n=19

.
i
\

\

x
x

Figure 3.16: Fourier series approximation, showing one period



96

ClearAll[L, x, n, a]

flx_] := Exp[x];
a[n_] :=4L/ (L"2+4Pi*2n"2) Cos[Pin] Sinh[L/2] ;

b[n_] :=-8Pin/ (L"2+4Pi”2n"2) Cos[Pin] Sinh[L/2] ;
fApprox[x_, nTerms_] :=2/LSinh[L/2] +Sum[a[n] Cos[2Pi/Lnx] + b[n] Sin[2Pi/Lnx], {n, 1, nTerms, 1}]
p = Table[

Plot [ {f[x], fApprox[x, i]}, {x, -L/2, L/ 2},
Frame - True,
FrameLabel » {{"f(x)", None}, {"x", Row[{"approximation for n=", i}]1}},
GridLines - Automatic, GridLinesStyle - LightGray,
PlotStyle -» {Red, Blue}, ImageSize - 400, BaseStyle - 16],
{i, 1, 20, 2}
15
p = Grid [Partition[p, 2]]
Export["../images/pl_plot_4.pdf", p]

Figure 3.17: Code used

In the following plot, 3 periods are shown to make it easier to see the effect of discontinuities
and the Gibbs phenomena
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ClearAll[L, x, n, a]

L=Z;

f[x_] :=Piecewise[{
{Exp[x+L], -3/2L<x<-L/2},
{Exp[x], -L/2<x<L/2},
{Exp[x-L],L/2<x<3/2L}}

15
a[n_] :=4L/ (L"2+4Pi*2n"2) Cos[Pin] Sinh[L/2] ;
b[n_] :=-8Pin/ (L*2+4Pi”2n"2) Cos[Pin] Sinh[L/2] ;

fApprox[x_, nTerms_] :=2/LSinh[L/2] + Sum[a[n] Cos[2Pi/Lnx] + b[n] Sin[2Pi/Lnx], {n, 1, nTerms, 1}1;

p = Table [
Plot [ {f[x], fApprox[x, i1}, {x, -3/2L,3/2L},
Frame - True, FrameLabel » {{"f(x)", None}, {"x", Row[{"approximation for n=", i}]1}},
GridLines - Automatic, GridLinesStyle - LightGray,
PlotStyle » {Red, Blue},
ImageSize -» 400, BaseStyle - 16],
{i, 1, 10, 1}
15
p = Grid [Partition[p, 2]]
Export["../images/pl plot 5.pdf", p]

Figure 3.19: Code used

3.5.2 Problem 2

Find the general solution of

1. 2% =1+ /1 +4x%y

2. ¢“siny - 2ysinx + (y? + e cosy + 2cosy)y’ =0
, 1.
3.y +ycosx = 5 sinx
Solution

part 1

This ODE is not separable and it is also not exact (It was checked for exactness and failed
the test). The ODE is next checked to see if it is isobaric. An ODE y’ = f (x, y) is isobaric
(which is a generalization of a homogeneous ODE) if the substitution

y @) =ov(x)x"
Changes the ODE to be a separable one in v (x). To determine if it isobaric, a weight m is
assigned to y and to dy, and a weight of 1 is assigned to x and to dx, then if an m could be
found such that each term in the ODE will have the same weight, then the ODE is isobaric
and it can be made separable using the above substitution. Writing the above ODE as

2x3dy = (1 +4/1+ 4x2y) dx

—_—

2x3dy — dx — 1 + 4x2ydx = 0

Adding the weights of the first term above gives 2x>dy — 3 + m. The next term weight is
dx — 1. The next term weight is /1 + 4x?ydx — % R+m)+1=2+ % Therefore the weights
of each term are
m
{3+m,1,2+ E}

Each term weight can be made the same by selecting m = —2. This value makes each term
have weight 1 and the above becomes
{1,1,1)
Therefore the ODE is isobaric. Using this value of m the substitution y = % is now used
to make the original ODE separable
dy 1dv v

dx x%2dx i3
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The original ODE now becomes (where each y is replaced by x%) separable as follows

2L 2 =14 14422
Bl =— - = x2—
x2 dx x2

dov
2x——4v:1+\/1+4v

dx
do
ZXE =1+Vl+4v+4v
Solving this ODE for v (x)

dv 1

= X
1+VI+4v+40 2x

f dv L+ c )
==In
1+Vi+4o+40 2
du 1 4 2
u

Integrating both sides gives

The integral above is solved by substitution. Let V1 +4v = u, hence — = - wavel

dv = Eudu. Squaring both sides of V1 +4v = u (and assuming 1 + 4v > 0) gives 1 + 4v = u?

or

2_
orov= %. Therefore the LHS integral in (2) becomes

1
f f du
1+ 1+4v+4v "2 1+u +4( )

=— u
2 u+u2

2 1+ u
=— ln 1+ ul
Using this result in (2) gives the following (the absolute values are removed because the
constant of integration absorbs the sign).
1 1
Eln(l +u) = Elnx+c
In(Q+u)=Inx+2c
Let 2c = Cy be a new constant. The above becomes

In(l+u)=Inx+Cy
eln(1+u) — elnx+C0

Cox

l+u=e
14+u==Cx
Where C = ¢%0 is a new constant. Therefore the solution is
ux)=Cx-1
Since u (x) = V1 + 4o then the above becomes
V1+40=Cx-1
1+ 40 = (Cx - 1)
(Cx-1)%-1
4
But y = % therefore the above gives the final solution as

v(x) =

(Cx-1%-1

) = 4x?

Where C is the constant of integration.

Part 2

e¥siny —2ysinx + (yz +excosy+2(:osx)y’ =0
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The first step is to write the ODE in standard form to check if it is an exact ODE
M(x,y)dx + N(x,y)dy =0
Hence
M(x,y) = e*siny —2ysinx
N(x,y) = y* + e* cosy + 2 cosx

Next, the ODE is determined if it is exact or not. The ODE is exact if the following
condition is satisfied

M JN
dy  dx
Applying the above on the given ODE results in

oM .
—— =e¢e‘cosy—2sinx
Iy
ON | 5 &
—— =¢e*cosy -2 sinx
Ix 4

Because oM _ N
dy — Ix’

the function ¢ (x, y)

then the ODE is exact. The following equations are used to solve for

i_)—f:M:exsiny—Zysinx (3)

g—i):N:y2+excosy+2 cosx (4)
Integrating (3) w.r.t x gives

g—fdx = fex siny — 2y sin xdx

q/)(x,y):e"siny+2ycosx+f(y) (5)

Where f(y) is used as the constant of integration because ¢ (x, y) is a function of both x
and y. Taking derivative of (5) w.r.t y gives

c;_ji; =e‘cosy+2cosx+ f'(y) (6)

But (4) says that (;—(5 = y? + ¢* cosy + 2 cos x. Therefore by equating (4) and (6) then f’ (y)
can be solved for:
y? +e¥cosy +2 cosx = eXcosy +2 cosx + f'(y) (7)

Solving the above for f’'(y) gives
fo =y

[ ray= [ yay
1
fu) =3+

Where C; is constant of integration. Substituting the value of f(y) back into (5) gives ¢ (x, y)

Integrating w.r.t y gives f (y)

1
¢ =esiny +2ycosx + 5}/3 +Cy

But since ¢ itself is a constant function, say ¢ = Cy, where C; is new constant, then by
combining C; and C, constants into a new constant C;, the above gives the solution

1
Ci=e"siny(x) + 2y (x)cosx + gya (x)

The above is left in implicit form for simplicity.

Part 3

1
Yy +ycosx = > sin (2x)
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This ODE is linear in y. It is solved using an integrating factor y = o cosmdx  gsinx,
Multiplying both sides of the ODE by y makes the left side an exact differential

1
d (yy) =Sk sin (2) xdx
Integrating both sides gives

1
yu = Efysin(Zx)dx+C
. 1 .
yest = > fesmx sin (2x) dx + C 1)
The above integral can be solved as follows. Since sin (2x) = 2sinx cos x therefore then
1 . .
I= 5 f e ¥ sin (2x) dx = f ™ sin x cos xdx

Using the substitution z = sinx, then dz = dx cos x and the above becomes

I= f e*zdz

Integrating the above by parts: fudv = Uv - fvdu. Letu=zdv=¢ —du=1,0=¢, and
the above becomes
I =ze* - f e*dz

= ze* — ¢*

=e*(z-1)
Since z = sin x the above reduces to

I = ¢S (sin (x) — 1)
Substituting this back in (1) results in
yeSin¥ = ¢S (sin (x) 1) + C
Therefore the final solution is
y(x) = sin (x) =1 + Ce™sin*

Where C is the constant of integration.

3.5.3 Problem 3

Find general solution of

1. v -4y” -4y’ +16 = 8sinx

9. a2y12 — (1 + y12)3

Solution

Part 1

y" —4y” -4y =8sinx-16

This is linear nonhomogeneous ODE with constant coefficients. Solving first the homo-
geneous ODE y” — 4y” — 4y’ = 0. Since the term y is missing from the ODE then the
substitution y” = u reduces the ODE to a second order ODE

u' —4u —4u=0 (1)
Let u = ¢!*. Substituting this into the above and simplifying gives the characteristic equation

A2—41-4=0
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The Roots are A = —% + %Vbz — 4ac or

4 1
A=5 + —+/16 — 4 (-4)

2
:21%%5
=2+2V2
=2 (1 + \5)
Hence the solution to (1) is given by linear combinations of ¢}1%,e2* as

1+v2)x V2

uh(x):ce( +ce(

But since y’ = u, then y is found by integrating the above
yp = f 2(14V2)x +cye 2(1-V2)x g,
A1+V2)x p(2-2V2)x

=C +C +C3

201+v2) 2(1-42)

C1 _
2(1+v2) C1,

To simplify the above, let = C,, where Cy,C, are new constants. The

C2
2(1-2)
above simplifies to

yp = C 20V 4 0 22V2)

The above solution is homogeneous solution to the original ODE. Next, the particular
solution is found. Since the RHS of the original ODE is sinx - 16 then choosing y, to have
the form

Yp = Asinx + Bcosx + kx
Therefore
Yp =k+ Acosx—Bsinx
Y, = —Asinx - Bcosx
Yy’ =—-Acosx + Bsinx
Substituting these back into the original ODE y"”” — 4y — 4y’ = 8sinx - 16 gives
(~Acosx + Bsinx) —4(-Asinx — Bcosx) —4(k+ Acosx — Bsinx) = 8sinx — 16
—Acosx + Bsinx +4Asinx + 4B cosx —4Acosx +4Bsinx — 4k = 8sinx - 16
cosx(—A+4B —-4A) +sinx (B +4A +4B) — 4k = 8sinx - 16
cosx (-5A + 4B) + sinx (5B + 4A) — 4k = 8sinx — 16

Comparing coefficients gives the following equations to solve for the unknowns A, B, k

-4k = -16
-5A+4B=0
5B+4A =8

The second equation gives B = ZA. Using this in the third equation gives 5 (ZA) +4A =8,

. . 32 _5(32)_ 40 . . _
solving gives A = -. Hence B = (41) = 57+ The first equation gives k = 4. Therefore the

particular solution is

Yp = Asinx + Bcosx + kx

32 . 40
= Esmx+ Ecosx+4x
Now that y;, and y, are found, the general solution is found as
Y=YntYp
= Cqe 2(1+42)x + G, e(z 2V2)q +C3 + %smx+ %COSX+4X

Where C;, C, are the two constants of integration.



Part 2

3
azy/z — (1 + y/Z)
Let y' = A, the above becomes

a2 A? = (1 + AZ)3

=1+3A% +

3!
—1+3A2+3A4+A6

Hence the polynomial is

AP +3AY+ A2(3-a%)+1=0
Let A% = B and the above becomes

B*+3B2+B(3-a?)+1=0
With the help of the computer, the cubic roots of the above are

(3) (2) L)

1 A1, 1. 1. 1
B, = —i\3 S e B - -
2 21\/_\/ VR A S \/V 7"
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Jﬁ

1 a?

6,
1 Lo _1lp
1 27 2

Therefore A; = /By, A, = ++/B,, A3 = ++/B; or, since i’ (x) = A, then there are 6 solutions,

each is a solution for one root.

W VB

dx
Y2 - VB

dys _

But the roots +B; are constants. Therefore each of the above can be solved by direct

integration. The final solution which gives the solutions

y1 = VBix+C

~VBix+ G,
Y3 = VBox + C3
ys = —VByx +C4

ys = vBax + Cs
—\/B—3X+C6

Where the constants B; are given above.
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3.5.4 key solution to HW 5
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3.6 HW 6

3.6.1 Problem 1

Consider the equation xy” + (c — x)y’ — ay = 0. Identify a regular singular point and find
two series solutions around this point. Test the solutions for convergence.

Solution
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Writing the ODE as
V' +Ax)y +Bx)y=0
Where

The above shows that x;, = 0 is a singularity point for both A (x) and B (x). Examining A (x)
and B (x) to determine what type of singular point it is

(c-x)

=lim(c—-x)=c¢

x—0

lim (x — xg) A (x) = limx
X=X x—0
Because the limit exists, then xy = 0 is regular singular point for A (x).
lim (x — x0)% B (x) = lim x2 (—_a) =lim (-ax) = 0
X—XQ x—0 X x—0
Because the limit exists, then xy = 0 is also regular singular point for B (x).

Therefore xy = 0 is a regular singular point for the ODE.

Assuming the solution is Frobenius series gives

y(x):x’ECn(x—xo)n Co#0
n=0
=x E C,x"
n=0

[o¢]

— 2 C,x™t
n=0

Therefore

Yy = Z (n+7)Cyxtr-1
n=0

o

Y’ =Y, (n+7)(n+r—1)Cx""2
n=0

Substituting the above in the original ODE xy” + (c — x)y’ — ay = 0 gives

XD+ m+r=1)Cx™ 24 (c—x) Y, (n+7) Cx™ 1= Y, C,x™ =0

n=0 n=0 n=0
N n+r)n+r-1c,x 1+ (n+1)Cx™ 1 =x D (n+1)Cpx™ 1= aC,x"" =0
n=0 n=0 n=0 n=0
M+ m+r-1)Cx™ 14+ c(n+7r)Cpx™ 1= (n+71)Cx™" = Y aC,x™" =0
n=0 n=0 n=0 n=0
2 (n+r)(n+r-1)+cm+r)Cua"1 - 2 (m+7r)+a)Cx"" =0
n=0 n=0

Since all powers of x have to be the same, adjusting indices and exponents gives (where
in the second sum above, the outside index 7 is increased by 1 and 7 inside the sum is
decreased by 1)

N(m+rm+r-D)+cm+n)Cx"" 1= (n-1+7r+a)Cpqx"" 1 =0 1)
n=0 n=1
Setting n = 0 gives the indicial equation, which only comes from the first sum above as the
second sum starts from n = 1.

(N@F-1)+cr)Cy=0
Since Cy # 0 then
N@F-1)+cr=0
r—r+cr=0
rr+c-1)=0
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The roots are
r = 1- C
7’2 = 0

Assuming that r, — r{ is not an integer, in other words, assuming 1 - ¢ is not an integer
(problem did not say), then In this case, two linearly independent solutions can be con-
structed directly. The first is associated with r; =1 —c and the second is associated with
r, = 0. These solutions are

vy (x) = 2 C,xmtl—c Co#0
n=0

Y (x) = 2 D, x" Dy #0
n=0

The coefficients are not the same in each solution. For the first one C, is used and for the
second D,, is used.

The solution y; (x) associated with r; =1 - c is now found. From (1), and replacing r by
1-c gives

E((n+1—c)(n+1—C—l)+c(n+1—c))Cnx”+1_C_1—2((11—1+1—c)+a)Cn_1x”+1‘C‘1 =0

n=0 n=1
i((n+l —o)(n-c)+cm+1-c))C,x"° - i (n—c)+a)C, 1x" € =0
n=0 n=1
i n(mn—c+1)Cpx"* - i (n—c)+a)C,.1x" =0
n=0 n=1

For n > 0 the above gives the recursive relation (n = 0 is not used, since it was used to find
r). For n > 0 the last equation above gives
nm-c+1)C,-(n-c)+a)C,_.1 =0
(n—=c)+a)
Few terms are generated to see the pattern. For n =1
_ (A-c+a) . (I-c+a)

C1_1(1—(:+1) 07 "2-¢ 0
Forn=2
_ (@2-c+a)
C2_2(2—c+1) !
R-c+a)(d-c+a)
= CO
283-¢) (2-0)
Forn=3
_ (B-c+a)
=3 e

B-c+a)2-c+a)(l-c+a)
T 3@d-0 2B-0 (-0
And so on. The pattern for general term is
((mn—rc)+a) B-c+a) R-c+a) A-c+a)
" Wi-c+1)  3B-c+1)2Q-c+D1d-c+1) O
L ((m-c)+a
S URLEY)

mm-c+1)

m=1

Therefore the solution associated with r; =1 —c is

y1(x) = ), Cpx™
n=0

()
_ E C. x"+1-c
= n

n=0

= Coxl_c + Clxz_c + C2x3_c + .-
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Using results found above, and looking at few terms gives the first solution as

1-c+a) +1(2—c+u)(1—c+a)2 1B@-c+a)2-c+a)(l-c+a) ,
X+ = X“+ = X
2-0) 2 (B-0) 2-0) 6 (4-o0) B-0) 2-¢)
The second solution associated with 7, = 0 is now found. As above, using (1) but with D,
instead of C, for coefficients and replacing r by zero gives

Y1 (x) = Cox=¢ (1 +

i (n(n-1)+cn) D"t - i (n-1)+a)D, x"1=0
n=0 =1

For n > 0 the above gives the recursive relation for the second solution

mn-1)+cn)D,-((n-1)+a)D,.1 =0

_ n-1+a
T am-1)+en "
n-1+a

S m-n+n2 "
Few terms are now generated to see the pattern. For n =1

1

D, =%p
1—2 0
Forn=2
B 1+a
D2 =55l
3 1+a a
T 2@c+1)c
Forn=3
3-1+a
D3 = 337922
3 2+a 1+4a a
_3(c+2)2(c+1)ED°

And so on. Hence the solution y; (x) is

Yo (x) = Y Dyx"
n=0
:D0+D1x+D2x2+---
Using result found above gives the second solution as
a 11+a)a la@l+a)2+a)
=Dg(1+ x4+ x24T 534
y2 (%) 0( T 2ce+)T Teclc+ e+

The final solution is therefore the sum of the two solutions

y(x) = Cox!™® (1 +

2-0 T2 G-0 -0 S T6 (-0 G-9 @-o
(2)

a 11+a)a lal+a)2+a)
+Df’(1+2x+§c((:+1)xz AT )

Where Cy, Dy are the two constant of integration.

Testing for convergence. For y; (x) solution, the general term from above was

_((n-co)+a)
Tnm-c+1) ™!

n

C,x"

)

I-c+a) 1Q2-c+a)(l-c+a) 2_i_1(3—c+a)(2—c+a)(1—c+a)x3_i_m
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Hence by ratio test

C,x"

n—oo |C,_1x"
((n—c)+a) . n
T n(n—c+1) "

B 7}1—I>rolo Cn_lx”—l

y (n—c)+a)x
= lim |————
n—co|(n(n—c+1))
. n—-c+a
= |x| lim -
n—-coln? —nc+n
1 _c_. 2
= |x| lim %{12
n— oo 1_£+_
n n
ME
= |X||—
1
=0

Therefore the series y; (x) converges for all x.

Testing for convergence. For y, (x) solution, the general term is

" n-1+a "
Dyx"= ———=D,1x
ctnm-n+n
Hence by ratio test
) D, x"
L= lim L —
n—eo | Dy 41X
n-1+a n
= lim cn—-n+n? n-1%

. n-1+a
= lim 5 X
n—ooo|cn—n+n
. n-1+a
= |x| lim 5
nooo|cn—n+n
1 1 a
. P )
= | lim [
el - — =41
n n
||0
= |X||—
1
=0

Therefore the series v, (x) also converges for all x. This means the solution y (x) = y; (x) +
Y (x) found in (2) above also converges for all x.

3.6.2 Problem 2
The Sturm Liouville equation can be expressed as

L{u ()] = Ap (x) u(x)

Where L is given as in class. Show L is Hermitian on the domain a < x < b with boundary
conditions u (a) = u (b) = 0. Find the orthogonality condition.

Solution

L= i +’d
~VPae TP
The operator L is Hermitian if

sz‘JL[u]dx:fbaL[v]dx

Where in the above u,v are any two functions defined over the domain that satisfy the
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boundary conditions given. Starting from the left integral to show it will result in the right

integral. Replacing L [u] by — (p% + p’di - )u in the LHS of the above gives

bo( 4> d b dPu du
—fuv(p@+pa— )udx:—f (pdxz pd——qu)dx
by du
:—j; vpﬁ+vpa—qvudx

—_—
b du
- f p@ﬁdx - f —dx + f qou dx (1)
a
Looking at the first integral above, which is I; = f (pv) (d H) dx. The idea is to integrate
this twice to move the second derivative from u to 7. Applying f AdB = AB - f BdA, where

A=po
d?u
dB =
dx?

Hence

B du
dx
Therefore the integral I; in (1) becomes
b 42
I =
1 pvdxz

W) B R
_pvdxa adxpdx po)dx

But 7(a) = 0 and 7 (b) = 0, hence the boundary terms above vanish and simplifies to

1—_fb dudo g2y

! apdxdx PO
b dudv

__ whuv - 2
dxdxx fpv ax 2)

Before integrating by parts a second tlme, putting the result of I; back into (1) first simplifies
the result. Substituting (2) into (1) gives

b b dy b
fz‘JL[u]dxz—I]—f Z‘Jp’d—dx+f qou dx

b dudv
( Eax fpv—dx) f —dx+fqvudx
b dudv

wem x+f pv—dx f —dx+f qou dx

The second and third terms above cancel and the result becomes

o du do b
va dx—f —u—vdx+f qou dx (3)
a

Now integration by parts is applied on the first integral above. Let I, = f ’ du( dﬁ)d

pdx \F dx
Applying [ AdB = AB - [ BdA, where
A — d_’z_)
=Pix
dB = du
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Hence
a2 do
dA=p— T2 +p — T

B=u

Therefore the integral I, becomes
I, = d@uh fb d2+ dvdx
2_pdxa . P2 de
But u (a) = 0,u (b) = 0, hence the boundary term vanishes and the above simplifies to
L fb d277+ 40\ |
N Wiz TP )

Substituting the above back into (3) gives

b b o Ao b
favL[u]dx——f (pd2+pd )dx+fu qou dx

__fb d2+dv 4
- . pdxz p d qv x

But - (p— + p qv) L[?] by definition, and the above becomes

a2
sz‘;L[u]dxszuL[z‘z]dx

But f ’ uL [0]dx = f ’ 7L [v] dx, and the above becomes

sz‘JL[u]dx:fbﬁ(L[v])dx

a

Therefore L is Hermitian.

3.6.3 Problem 3

l+a
1. For the equation y” + 1 y = 0 show that two solutions are y; (x) = apx 2 and

1-a

Yo (x) = apx 2

2. For a = 0, the two solutions are not independent. Find a second solution y,, by
solving W' =0 (W is the Wronskian).

3. Show that the second solution found in (2) is a limiting case of the two solutions
from part (1). That is

Y17 Y2
= lim L2
Yoo = L
Solution
Part 1
The point xy = 0 is a regular singular point. This is shown as follows.
,1-a? 1-a?
— lim 12
fi (0 S =l
_1-a?
= lim
x—0 4
1-a?
4

Since the limit exist, then x; = 0 is a regular singular point. Assuming the solution is a

Frobenius series given by

y(x) = E c, X"t co#0
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Therefore

o]

Y (x) =), (n+7r)c,x"
n=0

Y’ (x) = E (n+71)(n+r—-1)c,x""2
n=0
Substituting the above 2 expressions back into the original ODE gives

4x? (i m+ry(n+r-1) Cnxn+r—2) + (1 _ az) (i Cnxn+r) ~0
n=0

n=0
i dn+r)(n+r—-1)c,x"" + (1 - az) (i cnx””) =0 (1)
n=0 n=0

Looking at n = 0 first, in order to obtain the indicial equation gives
4(r)(r-1)co + (1 —az)co =0
co(4r-4r+(1-a2))=0
But ¢y # 0, therefore

) (1—0(2):0

-1+
re—r 1
_ 1-a?
The roots arerzz—zJ_r%\/bz—élac, butazl,b:—l,c:ﬂ, hence the roots are
1 1
Y Y Y
r_2i2 1 (1 a)
1 1
= — 4+ — 2
2_2\/07
_1+1
“2%2°

Hence r; = %(1 +a) and r, = %(1 —a). Each one of these roots gives a solution. The
difference is

1 1
7’2—1’125(14'6\{)—5(1—&)
=a

Therefore, to use the same solution form v, (x) = EZOZO c, X" and y, (x) = E:’:O d,x"*"2 for
each, it is assumed that « is not an integer. In this case, the recursive relation for y; (x) is

found from (1) by using r = % (1 + a) which results in

< 1 1 n+1(l+a) 2 - n+1(1+a) _
2;)4(n+§(1+a))(n+§(1+a)—1)cnx 2 +(1—a) nz_%cnx 2 =0

For n > 0 the above becomes

4(n+%(1+a))(n+%(1+a)—1)cn+(1—a2)cn:0

(4(n+%(1+a))(n+%(l+a)—1)+(l—a2))cn:0
dnn+a)c, =0

The above can be true for all n > 0 only when ¢, = 0 for n > 0. Therefore the solution is
only the term with cg

- 1
! (x) = E Cnx”*"l = Coxrl - c0x§(1+11)
n=0
To find the second solution y, (x), the above is repeated but with

Yo () = Y dx"2
n=0

Where the constants are not the same and by replacing r in (1) by r, = %(1 —a). This
results in

[S¢] 1 1 1 — [o¢] l a
§4(n+5(1—a))(n+E(1—a)—1)dnx”+z<1 )+(1—a2)(n§)dnxn+2(1 )):0



118

For n>0

(4(n+%(1—0())(n+%(l—a)—1)+(1—a2))dn:0

dnn-a)d, =0

The above is true for all n > 0 only when ¢, = 0 for n > 0. Therefore the solution is just the
term with d,

00 1
Yo () = D dyx"™2 = dox'2 = doxz7)
n=0
Therefore the two solutions are

y1(¥) =co x4

2 () = dy ™
Part 2
When a = 0 then the ODE becomes
4%y +y =0
And the two solutions found in part (1) simplify to
y1 (%) = covx
Yo (x) = dovx

Therefore the two solutions are not linearly independent. Let y,, (x) be the second solution.
The Wronskian is
Y1 Y20

W(x) = = Y1¥20 — Y20Y1 (1)

Y1 Y
Using Abel’s theorem which says that for ODE of form y"’+p (x) y’+4q (x) y = 0, the Wronskian

is W(x) = CeJPx, Applying this to the given ODE above and since p(x) = 0 then the
above becomes

W(x) =

Where C is constant. For v, to be linearly independent from y; W (x) # 0. Using W (x) =
in (1) results in the following equation (here it is also assumed that y; # 0, or x # 0, because
the equation is divided by y;)

Y1Ya0 — Yooy =C

n_¢
Voo = Yo'y, B
Since y; = v/x and ¥} = ‘/_ the above simplifies to

11

2yx  C

—Y20—F— \/} \/}
1

Y0 — Y2052 oy % (2)

But the above is linear first order ODE of the form Y’ + pY = g, therefore the standard
integrating factor to use is [ = e/ P4 \hich results in

-1
I= ef =
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Multiplying both sides of (2) by this integrating factor, makes the left side of (2) an exact
differential

A, L)_¢
dx:VZO\/E—x

Integrating both sides gives

1/20% = ij—cdx+ Cq
yzo% =2Clnx+ (4
Yoo = 2C Inxvx + C1/x
Or
y20 = C1 Inxy/x + Covx (3)
The above is the second solution. Therefore the final solution is
y (x) = Coyy (x) + Cayzo (%)

Substituting y; = +/x and v,y found above and combining the common term /x and
renaming constants gives

y(x) = C1vx + Co Inxv/x
Another method to find the second solution

This method is called the reduction of order method. It does not require finding W (x) first.
Let the second solution be

Yo=Y =0(®)y; (%) (4)

Where v (x) is unknown function to be determined, and y; (x) = 4/x which is the first solution
that is already known. Therefore

Y' =0y + oy
Y =v"y; + 0’y + 'y + oy
=0"y; +20'y; + vy
Since Y is a solution to the ODE 4x?y” + y = 0, then substituting the above equations back
into the ODE 4x2y” + y = 0 gives
4 (v”y1 +20'yq + vyi’) +oy; =0

0
v’ (4x2y )+v’ (8x2 ’) [4 2y ]— 0
1 Y1) T oY1+

But 4x%y} + y; = 0 because v, is a solution. The above simplifies to
v (4x2y1) +0/ (8x2yi) =0

1 1 22
— r_ 2 . .
But y; = x2, hence y; = x2 and the above simplifies to

1 -1
v (4x2x5) + 0 (4x2x7) =0
5 3
x20” +v'x2 =0
xv” +0v =0

1
v+ -0 =0
x

This ODE is now easy to solve because the v (x) term is missing. Let w = v" and the above

1
first order ODE w’ + %w = 0. This is linear in w. Hence using integrating factor I = el 3% = X,
this ODE becomes

R
—~~
g
=
N
Il

g &
T
RO O <
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Where C is constant of integration. Since v" = w, then v = % Now v (x) is found by
integrating both sides

v=C;lnx+Cy
Therefore the second solution from (4) becomes
Y20 = C1Inxy; + Gy
= C;\VxInx + Co/x (5)
Comparing the above to (3), shows it is the same solution. Both methods can be used, but

reduction of order method is a more common method and it does not require finding the
Wronskian first, although it is not hard to find by using Abel’s theorem.

Part 3

The solutions we found in part (1) are

1
Y (x) = a2
1

yp (x) = Cpr2™

Therefore

1 1
~(1+a) ~(1-a)
. y1i—Y . Cx2 T - Cpx2
lim == = lim
0(1—>0 o a1—>0 o

Applying I’Hopital’s

d ( fasa d ( ra-w
()it

o Yi—lY . da
1 Jz _ 1
zlxlgcl) a EL% 1 (1)
But
d 1(1+0¢)) d l(1+oc)lnx
R 2 = —p2
da (x dae
_ ie(%lnxﬂtlnx)
da
—1n xe(%lnx+alnx)
And
d 1(1—0¢)) d l(1—0¢)lnx
PR 2 = —p2
da (x dae
d (—lnx—alnx)
= @6
_ _lnxe(zlnx alnx)

Therefore (1) becomes

lim 2~ Y2 — i Cylnxe
a—0 a a—0

1 1
. ~Inx+aln x) (— Inx—a lnx)
=Ilnx (11m Cle(2 + Cpe'\?
a—0

1 1
(E Inx+aln x) 3 Inx—aIn x)

+CyIn xe(

1 1
=1Inx (Clei Inx + Czei lnx)

= lnx (Cl\/; + Cz\/;)
= C/xInx
The above is the same as (3) found in part (2). Hence
i—Y2

Yoo () = iy ===

Which is what the problem asked to show.
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3.7 HW7

3.7.1 Problem 1

Exercise 1: Consider Hermite’s differential equation valid for (—oo < z < 00):

y" = 2zy +2ny =0 (1)

i) Assume the existence of a generating function g(x,t) = Y% H,(x)t" /n!. Differen-
tiate g(x,t) with respect to = and use the recurrence relation H](z) = 2nH,_1(x)to
develop a first order differential equation for g(z,t).

il) Integrate this equation with respect to x holding ¢ fixed.

iii) Use the relationships Hz,(0) = (—1)"(2n)!/n! and Ha,11(0) = 0 to evaluate g(0,t)
and show g(z,t) = exp(—t2 + 2tz).

iv) Use the generating function to find the recurrence relation H,.1(x) = 2zH,(z) —
2nHy_1(x).

v) By integrating the product e“gCQg(x, s)g(x,t) over all x, show

/_oo e_‘EQHm(x)Hn(m)dx = 2"pl/ T0n. (2)

Figure 3.20: Problem statement
Solution
v’ =2xy' +2ny =0 —00 <X <00
Part 1

0 tn
g =Y H,@—
n=0 n
Differentiating w.r.t x, and assuming term by term differentiation is allowed, gives

8g(x,t) _iH/( )_

Using Hj, (x) = 2nH,,_1 (x) in the above results in

dg(x, ) = t"
o - Z:Oann—l (x) o

But for n = 0, the first term is zero, so the sum can start from 1 and give the same result

a¢(x, 1)
BED =Y ot 00

n=1
Now, decreasing the summation index by 1 and increasing the n inside the sum by 1 gives

Igx,t) s
e =Y, 2(n+1)H, (x)( Y

n= O
n+1

22(n+1)H (x)( T

nO

E 2H, (x)

n= O
ti’l
= Z 2t (H (x) E)
n=0 :
() tn
=2t ZOH (x) =
n=

n+1
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But E:;O H, (x)tn—n! = g(x,t) and the above reduces to

g (x,t)
Ix
The problem says it is supposed to be a first order differential equation and not a first order
partial differential equation. Therefore, by assuming x to be a fixed parameter instead of
another independent variable, the above can now be written as

= 2tg(x, 1)

d
Eg (x, 1) —2tg (x,t) =0

Part 2
From the solution found in part (1)
d
-8 (1) _
g(x,1)
d
geoh) 2tdx
g(xf)

Integrating both sides gives

[BED_ [,

g(x, 1)

In |g (x, t)| =2tx+C
g (x,t) = p2tx+C
g(x/ t) = Cleth

Where C; = ¢* a new constant. Let ¢ (0,t) = g, then the above shows that C; = g; and the
above can now be written as

g(x, 1) =g(0,t) e
Part 3

t
n

Using the given definition of g (x,t) = E:;O H, (x) —n' and when x = 0 then
&) m
g(0,8)= D Hy (0)
n=0 .

(o) tn
= Ho(0) + Hy (0)+ 2, Hy (0) o5
But Hy (x) =1, hence Hy (0) =1 and H; (x) = 2x, hence H; (0) = 0 and the above becomes

00 tn
g(0,) =1+ H,(0)
n=2 ’

For the remaining series, it can be written as sum of even and odd terms

o0 tn [o'e) tn
gO,H=1+ Y H, (0) — + D H,(0)
n=24,6,-- : n=35,7, .

Or, equivalently

> $2n 00 p2n+1
0,t) =1+ H,, (0) —— + H 0) ———
809 nzl,zz,:@... 2O nzllzz;&,_, 21 (0) 3y,
But using the hint given that H,,,; (0) = 0 and H,, (0) = _(—1)115271)! the above simplifies to

S (D" @) 2

0,)=1+
g0 n:1,zz:,3,... . 2n)
00 tZI’l
=1+ ) (D'
n=1,23, - n:

2n
But since (-1)" tﬂ—. =1 when n = 0, then the above sum can be made to start as zero and it
simplifies to '

00 ; th
g(O,t) = ,E)(_l) ?
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Therefore the solution ¢ (x,f) = ¢(0,t) ¢ found in part (2) becomes
00 tZI’l
gt = (Z 1" m) 2 M

2n #
Now the sum 2:10:0 (-1)" tn—' =1-t+ TR + - and comparing this sum to standard series

2 73 . 2
ofe*=1+2z+ TIRETIR then this shows that when z = —#? and series for e becomes

PRI = =

+ +
2! 3! 4!
) 4 t6 t8
=1-t +5_§+I”.

Hence

Z( 1) t21’l

Substituting this into (1) gives

g(x,t) = et
= ptx—t

Part 4
Since g (x,t) = 2 from part (3), then

J _ 2tx—12
ﬁg (x,t) = (2x —2t)e
=(2x-2t)g(x, 1)

But g (x,t) = 2:’20 H, (x) ;—n!, therefore the above can be written as
2 = —2t>iH o
&tg x,t) = (2x (X

_2x2H (x)——ZtZH (x)

nO nO
—ZxEH (x)——ZZH (x) e
nO nO
—ZxZH (x)——zan 1 () ——
nO ( 1)'

1’l
nmn-1)!
ad " ad "
= 2x %H () — =2 21 nH,q () — 1)
n= n=

=2x Z H, (x) —' -2 E nH,_q (x)
n=0 n: n=1

On the other hand,

Jd J & "
Eg(x,t) = Eran (x) o

n-1

Since at n = 0 the sum is zero, then it can be started from n = 1 without changing the result
= 1

d
ﬁg(x,t) ZnH (x)

= Z (n+1)H,pq (x) ———

nO

= Z (n+1)Hypq (x) ———

n=0

0 tn
= 20H1 () — (2)

(n +1)'

1’l

n+1)n!
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Equating (1) and (2) gives

[e¢] tn [o¢] tn [o¢] tn
2 it (0) — =20 Y3 Hy () — =2 Dy () —
n=0 : n=0 . n=1 :

But ¥ nH,_; (x) % =2 nHy (x)% because at n = 0 it is zero, so it does not affect the

result to start the sum from zero, and now the above can be written as
00 tn [ tn ) tn
EOHM (x) — =2x E;)H (x) — =2 2;)an_1 () —
n= n=, n=

Now since all the sums start from n = 0 then the above means the same as
" " "
Hy i1 (x) i 2xH,, (x) prie 2nH, 1 (x) o
Canceling t—n' from each term gives
n:
H,4q (x) = 2xH,, (x) - 2nH,,_; (x)

Which is the result required to show.

Part 5

The problem is asking to show that

0 2 0 n+m
e¥H, (x)H, (x)dx =
j:w (0 By () {Z”n!ﬁ n=m

The first part below will show the case for n # m and the second part part will show the
case for n =m

case n # m This is shown by using the differential equation directly. I found this method
easier and more direct. Before starting, the ODE y” - 2xy’ + 2ny = 0 is rewritten as

e"Z% (e‘xzy’) +2ny =0 (1)
The above form is exactly the same as the original ODE as can be seen by expanding
it. Now, Let H, (x) be one solution to (1) and let H,, (x) be another solution to (1) which
results in the following two ODE’s

d
exZE (e=°Hy) +2nH, = 0 (1A)
d
exzﬂ (e=°Hy,) +2mH,, = 0 (2A)

Multiplying (1A) by H,, and (2A) by H,, and subtracting gives

H, (exZ% (e*Hy) + 2an) ~H, (eXZ% (e*Hy,) + 2mHm) =0

d d
H,e”— (e H;) + 2nH,H,, | - (Hue — (e°H},) + 2mH,H,, | = 0
dx dx

2

Hye? 2 (eH;) = e 2 (e°H,) 200 - m) Hy 1, =0

dx
Hm% (e=*Hy) - H,% (e°Hy,) +2(n—m) H,H,,e™ = (3)
But
T (e*Hy) = 4 (e=*HyH,,) - e~ HyHj
mdx n dx n m n m
And
T (e=°Hy,) = 4 (e=*Hy,H,) - e Hy,H;
ndx m dx m n m n
Therefore
T (e*H;)-H 4 (e°Hy,) = (i (e=*HyH,,) — e HyH, ) - (i (e=°Hy,H,) - e H, H)
mdx n ndx m dx n m n m dx m n m n
= — (e=*HyH,,) - % (e=°Hy,H,)

d
d
d
dx

(e (H}H,, - H;,H,,))
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Substituting the above relation back into (3) gives

d

- (e=* (H}H,y, — HpyHy)) +2 (n = m) HyHye ™ =0
Integrating gives

00 d 00
[ (e (HyHy, — HyH,)) dx + [ 2m-mH,H,e =0

f d (e (HyH,, — H},H,)) +2 (1 - m) f H,H,edx = 0

[ (3, - HyH)] +200-m) f " HH, e Pdx = 0
But lim,_, e = 0 so the first term above vanishes and the above becomes
2(n—m) foo HnHme‘xzdx =0
Since this is the case where n # m then t};e above shows that

f HnHme"‘zdx =0 n+m

Now the case n = m is proofed. When H,, = H,, then the integral becomes f_oo Hane‘xzdx.
Using the known Rodrigues formula for Hermite polynomials, given by

2

an
Hn (X) = (_1)71 €x2@€_x

Then applying the above the above to one of the H,, (x) in the integral f_ > Hane‘xzdx, gives

f H,H,e™ dx—f (( 1)" e "Z)Hne‘xzdx
= (-1)" f (dn xz)Hndx

Now integration by parts is carried out. f udv = uv - f vdu. Let u = H,, and let dv =
n-1
therefore du = H}, (x) = 2nH,_; (x) and v = ,ch—l

i e_xz
dx" ’

A2
e, therefore
n-1

00 g1 o SN
f_ N H,H,edx = (—1)”[[Hn (x) dxme"‘z] - f_ . (We_xz)Zan-l (x) dx]

nl
dxn-1

But [H (x) 2] — 0 as x — +oo because each derivative of —¢ produces a

dnl

term with ¢ which vanishes at both ends of the real line. Hence the above integral now

becomes
00 2 " 00 dn—l 2
j:oo Hane dx = (—1) -2n ,[:00 WE H}’l—l (.X) dx

Now the process is repeated, doing one more integration by parts. This results in

f H,H, e dx = (<1)" ( Zn( 2(n - 1)f (d e Z)Hn_z(x)dx))
And again

f H,Hye?dx = (-1)" ( 2n(—2(n 1)( 2(n- Z)f (dn3 2)Hn_3(x)dx)))

This process continues n times. After n integrations by parts, the above becomes

foo Hane‘xzdx = (-1)" (—Zn (—2 (n-1) (—2 (n-2) ( (foo e‘szo (x) dx)))))

= (-1)" (-2)" n! f " e H, (x) dx

:Z”n!f e‘szO (x)dx

But H (x) =1, therefore the above becomes

f H,H,e™~dx = 2"n! f e dx
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But
foo e‘xz = Zfooe‘xz
—00 0
_, V7
2
= ﬁ
Therefore

f Hane‘xzdx =2"nl\n

This completes the case for n = m. Hence

0 2 0 n+m
e H, (x)H, (x)dx =
j:oo n (0 By () 2'nl\m n=m

Which is what the problem asked to show.

3.7.2 Problem 2

Exercise 2: a) Consider the differential equation for 0 < r < oo

(ﬁi+1£ N ) =0
dr? " rdr ﬁ)y(T) B (3)

where n = 0,1,2,3, ... Find two independent solutions, one which vanishes as r — 0 and
the other that vanishes as r — oco. Hint let z = Inr.
b) Given the result of part a), find the solution to the differential equation

@ 1d n? 1 ;
(G2 + 77— 55y = ~s(r — 1" (4)

with the boundary condition that the solution vanishes as 7 — 0 and r — oo.

Figure 3.21: Problem statement

Solution
Part (a)
04l -y =0  0<r<
—_ —_— = 0
Y (r ry 7 rzyr 7
Or
Py (r) + 1y (1) = n’y (1) = 0
casen =0

The ode becomes r%y” (r) + ry’ (r) = 0. Let z = i’ and it becomes 12z’ (r) + rz(r) = 0 or
1
z'(r) + %z (r) = 0. This is linear in z (r). Integrating factor is I = ef P =y, Multiplying the

ode by I it becomes exact differential %(zr) =0 or d(zr) = 0, hence z = 671 where c; is

constant of integration. Therefore
Integrating again gives

Since lim,_,; the solution is bounded, then c¢; must be zero. Therefore 0 = ¢, and this
implies c, = 0 also. Therefore when n = 0 the solution is

y(r) =0
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Since powers of r is the same as order of derivative in each term, this is an Euler ODE. It
is solved by assuming y = r*. Hence y’ = ar*!,y” = a (@ — 1) r*2. Substituting these into

the above ODE gives
rPa(@-1)r"2 +rar* —n?r* =0
ala-Dr*+ar*—n*r*=0
r“(a(a—1)+a—n2) =0
Assuming non-trivial solution * # 0, then the indicial equation is

al@-1+a-n*=0

a? =n?
a=+n
Hence one solution is
yp(r)=1"
And second solution is
yp(r)=7rT"

And the general solution is linear combination of these solutions
y(r) =cyr' +cor™”

The above shows that lim,_,qy; (r) = 0 and lim,_,,, v, (r) = 0.

Part (b)

Short version of the solution

To simplify the notations, r; is used instead of 7’ in all the following.
1 n? 1
y”(r)+;y’(r)—r—2y(r):;6(r—r0) 0<r<o

Multiplying both sides by r the above becomes
2
n
ry" (N +y (1) = —y () =0(r-1o)

(1)

2
But the two solution to the homogeneous ODE ry” (r) + v (r) - nTy (r) = 0 were found in

part (a). These are

yi(r) =1" (1A)
Yy (r) =1
The Green function is the solution to
2
G (1,70) + G (r,10) = G (1,70) = 6 (r = 10) (1B)
lir%G (r,r9) =0
lim G(r,ry) =0
Which is given by (Using class notes, Lecture December 5, 2018) as
1 0
G(r 7o) = = y1 (1 y2 (r0) <Tr<Ty )
yi(r)y2(r) 1 <r<oo
1 -1 . . Y
Note, I used % and not — as in class notes, since I am using L = —((py) —qy) as the

operator and not L = + ((py’), + qy). Now C is given by

C = p (ro) (v1 (ro) ¥4 (ro) — ¥ (ro) y2 (ro))

2All the following is for n # 0, since for n = 0, only trivial solution exist
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Where from (1A) we see that
y1(ro) =g
y5 (rg) = —nrg"!

Y4 (ro) = nrg™!

Y2 (ro) = 1"
Therefore C becomes
C=p(ry) (—nrg”‘lrg - nrg‘lr(‘)”)
= 2nry'p (ro)

We just need now to find p (ry). This comes from Sturm Liouville form. We need to convert
the ODE r2y” (r) + ry’ (r) — n?y (r) = 0 to Sturm Liouville. Writing this ODE as ay” + by’ +
(c+A)y =0 where a =1?,b=r,c=0,A=-n? therefore

b r
= ef Edr = efr—zd}’ =

p r
S0

q= Pa—
_p_r_1
p_a_rz_r

Hence the SL form is (py’)l —qy + Apy = 0. Hence the SL form is (py’), -qy+Apy =0 or

(') - 2y =0 (24)

Hence the operator is L [y] = - (% (rd%)) [y] and in standard form it becomes L [y]+ %nzy =0.

The above shows that p (ry) = rg. Therefore
C=2n
Hence Green function is now found from (2) as, for n # 0

G(r,rg) = —

1] ry" 0<r<r
2n

rort rg<r<o
Since f(r) in the original ODE is zero, there is nothing to convolve with. i.e. y(r) =

f)o G (r,1g) f (rg) dry here is not needed since there is no f (r). Therefore the above is the
final solution.

Extended solution

This solution shows derivation of (2) above. It can be considered as an appendix. The

Green function is the solution to
2
G (r,70) + G (r,10) = =G (1,70) = 6 (r = 10) (1B)

liI%G (r,r9) =0
lim G(r,ry) =0
r—00

In (1B), ry is the location of the impulse and r is the location of the observed response due
to this impulse. The solution to the above ODE is now broken to two regions

Aqyy (r) + Ay, (1) O<r<r

G(r,r) = { (2)

Biy1 () + Biya (r) rg<r<oo

Where y; (1), y, () are the solution to ry” (r) + v’ (r) - "—rzy (r) = 0 and these were found in
part (a) to be y; (r) = 1",y (r) = " and A, A,, By, B, needs to be determined. Hence (2)
becomes

(3)

Apr't+ Ar ™ O<r<r
G(T, 1’0) = n —n
Blr + Bz?’ Tp <r<oo

The left boundary condition lim, ,y G(r,7y) = 0 implies A, = 0 and the right boundary
condition lim,_,., G(r,rg) = 0 implies By = 0. This is needed to keep the solution bounded.



134

Hence (3) simplifies to

Alf’n O<r< ) (4)

Byr™" To <1 <00

G(r,ry) = {

To determine the remaining two constants A;, B,, two additional conditions are needed.
The first is that G (r,ry) is continuous at r = ry which implies

Alrg = Bz?ﬁn (5)
The second condition is the jump in the derivative of G (r, ) given by
d d -1
—G(r,r) ——G(V,T’) =
dr ° >10 dr ° r<ro p (rO)

Where p (r)) comes from the Sturm Liouville form of the homogeneous ODE. This was
found above as p(ry) = ry. Hence the above condition becomes

d d -1
—G (rl 7/‘0) -G (1’, 7/‘O) -
dr o AT 0
0 r<rp
: 4 - _ —n-1 4 — n-1 :
Equation (4) shows that —G (r, 7)) T nByry" " and that —G(r, 1) T nAry . Using
these in the above gives the second equation needed
-1
—nByrg" = nAit = — (6)
To
Solving (5,6) for Ay, By: From (5) A; = B,ry?". Substituting this in (6) gives
-1
—n-1 -2n) -1 _
-nByry" T - n(Bzro ”) M= E
—n-1 —n-1 -1
—nByr™ " —nByr =—
o
—2nB2r5”‘1 = —r(‘)l
-1
—r
B, = 0
27 oprgtl
1
_ _—.n
2nr0
But since A; = B,r5?", then
1,
Al = %1’81’02”
- 1 —n
“2n°

Therefore the solution (4), which is the Green function, becomes, for n # 0

1 —Nn. n
— 0
G (7o) ={ 20" SrETo (7)

o rg<r<oo
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3.7.3 key solution to HW 7
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