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Chapter 1

Introduction

1.1 syllabus
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1.2 Topics covered

This is list of lectures and topics covered in each

Table 1.1: Topics covered

# Date Topics

1 Wed. Sept 4, 2018
1. Infinite series, geometric series.

2. conditions for convergence,

3. harmonic series, alternating series.

4. tests for convergence such as ratio test, integral test.

2 Monday Sept 10, 2018

1. Talked about series solution to (1−𝑥2)𝑦″−2𝑥𝑦′+𝑛(𝑛+1)𝑦 =
0.

2. Binomial series (1 + 𝑥)𝑟 = 1 + 𝑟𝑥 + 𝑟(𝑟−1)𝑥2

2! + …

3. series of 𝑒, sin(𝑥), cos(𝑥).
4. Introducing Bernoulli numbers.

5. Show that alternating series is convergent but not abso-
lutely.

6. Leibniz condition for convergence and its proof.

7. Showed that sum of 1 − 1/2 + 1/3 − 1/4 + … is ln 2.
8. Working with absolutely convergent series.

3 Wed Sept 12, 2018

1. Familiar series, 𝑒, sin 𝑥, cos 𝑥, ln(1 + 𝑥), arctan(𝑥)
2. How to get Bernulli numbers. More on Bernulli numbers

but I really did not understand these well and how to
use them. hopefully they will not be on the exam.

3. Started Complex analysis. Basic introduction. Properties
of complex numbers and mapping.

Continued on next page
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Table 1.1 – continued from previous page

Lecture # Date Topics

4 Monday Sept 17, 2018

1. complex functions 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦)

2. continuity in complex domain.

3. Derivative in complex domain and how direction is im-
portant.

4. Cauchy-Riemman equation to test for analytical function.

5. Harmonic functions. Exponential function in complex
domain.

6. Multivalued functions, such as log 𝑧.
7. How to obtain inverse trig function and solve 𝑤 =

arcsin(𝑧)

5 Wed Sept 19, 2018

1. derivative in complex plane. Definition of analytic func-
tion.

2. log(𝑧) and √(𝑧) in complex plane and multivalued.
Branch points and branch cuts.

3. Integration over contour. Parameterization ∫
𝐶
𝑓(𝑧) 𝑑𝑧 =

∫𝑏
𝑎
𝑓(𝑧(𝑡))𝑧′(𝑡) 𝑑𝑡

4. Cauchy-Goursat theorem: ∮𝑓(𝑧) = 0 for analytical
functions. Proof using Cauchy-Riemman equations and
Green theorem.

5. Cauchy integral formula 2𝜋𝑖𝑓(𝑧0) = ∮
𝑓(𝑧)
𝑧−𝑧0

𝑑𝑧

6. Like in real, in complex domain, Continuity Does Not
Imply Di�erentiability.

7. More on analytic functions and multivalued functions.
Principal value.

8. Power functions 𝑧𝑝 = 𝑒𝑝 ln 𝑧

9. Complex integration.

Continued on next page
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Table 1.1 – continued from previous page

Lecture # Date Topics

6 Monday Sept 24, 2018

1. Proof of Cauchy integral formula.

2. Maximum moduli of analytic functions. If 𝑓(𝑧) is analytic
in 𝐷 and not constant, then it has no maximum value
inside 𝐷. The maximum of 𝑓(𝑧) is on the boundary.

3. Taylor series for complex functions and Laurent series.

7 Wed Sept 26, 2018

1. If number of terms in principal part of Laurent series is
infinite, then it is essential singularity.

2. Proof of Laurent theorem.

3. properties of power series. Uniqueness.

4. Residues, types of singularities. How to find residues and
examples

8 Monday Oct 1, 2018

1. Residue theorem ∮
𝐶
𝑓(𝑧) 𝑑𝑧 = 2𝜋𝑖∑ residues inside C

2. examples using Residue theorem.

3. Analytic continuation. Examples.

4. Γ(𝑧) function. Defined for ℜ(𝑧) > 0. Using analytical con-
tinuation to extend it to negative complex plane. Euler
representation and Weistrass represenation.

Continued on next page
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Table 1.1 – continued from previous page

Lecture # Date Topics

9 Wed Oct 3, 2018

1. More on Euler represenation of Γ(𝑧) and how to use it
for extending definition Γ(𝑧) = ∫

∞

0
𝑒−𝑡𝑡𝑧−1 𝑑𝑡 for negative 𝑧

using Γ(𝑧) = Γ(𝑧+1)
𝑧 for −1 < 𝑧.

2. Euler reflection formula

Γ(𝑥)Γ(1 − 𝑥) = �
∞

0

𝑡𝑥−1

1 + 𝑡
𝑑𝑡 =

𝜋
sin(𝜋𝑥)

3. proof of Euler reflection formula using contour integra-
tion.

4. Some useful formulas for Γ(𝑧)

5. Method for integrations, some tricks to obtain definite
integrations.

10 Monday Oct 8, 2018 No class.

11 Wed Oct 10, 2018 No class.

12 Monday Oct 15, 2018

1. More on method of integration. Starting Contour inte-
gration.

2. How to decide that ∫
𝐶𝑅
𝑓(𝑧) = 0 on the upper half plane.

Using Jordan inquality.

3. More examples of integrals on real line using contour
integration.

13 Wed Oct 17, 2018

1. More contour integrations.

2. Starting approximation expansion of integrals. Example
using error function erf(𝑥) = 2

√𝜋
∫𝑥
0
𝑒−𝑡2 𝑑𝑡 by applying

Taylor series.

3. Large 𝑥 expansion by repeated integration by parts.

4. Starting Asymprtotic series. Definition. Example on find-
ing 𝑆(𝑥) for erf(𝑥) for large 𝑥. When to truncate.

5. Saddle point methods of integration to approximate in-
tegral for large 𝑥.

Continued on next page
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Table 1.1 – continued from previous page

Lecture # Date Topics

14 Monday Oct 22, 2018

1. More saddle point integration.

2. Saddle point methods of integration to approximate in-
tegral for large 𝑥. Method of steepest decsent. Example
to find Γ(𝑥 + 1) = ∫

∞

0
𝑡𝑥𝑒−𝑡 𝑑𝑡 = √2𝜋𝑥𝑥𝑥𝑒−𝑥

3. extend saddle point method to complex plane. Finding
correct angle. Long example.

15 Wed Oct 24, 2018

1. More on saddle point in complex plane. Angles. Example
applied on ∫Γ(1 + 𝑧) = ∫

∞

0
exp−𝑡 + 𝑧 ln 𝑡 𝑑𝑡

2. how to determine coe�cients of asymptotic series expan-
sion.

3. Starting new topic. Fourier series. Definitions.

4. proprties of Fourier series. Examples how to find 𝐴𝑛, 𝐵𝑛.

16 Friday Oct 26, 2018 Make up lecture.

1. More on Fourier series. Examples. Fourier series using
the complex formula.

2. Parseval identity.

3. Fourier Transform derivation.

17 Monday Oct 29, 2018

1. Fourier transform pairs.

2. How to find inverse fourier transform. Generalization to
higher dimensions.

3. Properties of Fourier transform.

4. convolution.

5. Example on driven harmonic oscillator.

6. Statring ODE’s. Order and degree of ODE.

Continued on next page
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Table 1.1 – continued from previous page

Lecture # Date Topics

18 Wed Oct 31, 2018

1. More on first order ODE’s. Separable, exact. How to find
integrating factor.

2. Bernulli ODE 𝑦′ + 𝑓(𝑥)𝑦 = 𝑔(𝑥)𝑦𝑛

3. Homogeneous functions. defintion. order of.

4. isobaric ODE’s.

19 Monday Nov 5, 2018

1. How to find integating factor for exact ODE.

2. Finished example on isobaric first order ODE.

𝑥𝑦2(3𝑦 𝑑𝑥 + 𝑥 𝑑𝑦) − (2𝑦 𝑑𝑥 − 𝑥 𝑑𝑦) = 0

3. Higher order ODE’s. How to solve. How to find partic-
ular solution. Undetermined coe�cients. What to do if
forcing function has same form as one of the solutions
to homogeneous solutions.

4. How to use power series to solve nonlinear ode 𝑦″ = 𝑥−𝑦2

20 Wed Nov 7, 2018 First exam

21 Monday Nov 12, 2018

1. More on higher order ODE’s. Series solutions.

2. ordinary point. Regular singular point. Example Legen-
dre ODE (1 − 𝑥2)𝑦″ − 2𝑥𝑦′ + 𝑛(𝑛 + 1)𝑦 = 0.

3. Example for regular singular point, Bessel ODE 𝑥2𝑦″ +
𝑥𝑦′ + (𝑥2 − 𝑚2)𝑦 = 0 Use 𝑦 = 𝑥2∑∞

𝑛=0 𝑐𝑛𝑥
𝑛

22 Wed Nov 14, 2018

1. Continue Bessel ODE 𝑥2𝑦″ + 𝑥𝑦′ + (𝑥2 − 𝑚2)𝑦 = 0 solving
using 𝑦 = 𝑥2∑∞

𝑛=0 𝑐𝑛𝑥
𝑛. How to find second independent

solution.

Continued on next page
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Table 1.1 – continued from previous page

Lecture # Date Topics

23 Monday Nov 19, 2018

1. Started on Sturm Lioville, Hermetian operators

2. setting Bessel ODE in Sturm Lioville form

3. more on Hermitian operator.

4. Wronskian to check for linear independece of solutions.

24 Wed Nov 21, 2018 Thanks Giving.

25 Monday Nov 26, 2018

1. finding second solution to Bessel ODE for 𝑚 integer us-
ing the Wronskian. 𝑊(𝑥) = 𝐶

𝑝(𝑥) =
−2 sin𝜋𝑚

𝜋

2. Generating functions to find way to generate Besself func-
tions.

26 Wed Nov 28, 2018

1. Using Generating functions

2. Bessel functions of half integer order, spherical Bessel
functions

3. Legendre polynomials, recusrive relations.

4. orthonomalization.

5. physical applications

27 Monday December 3, 2018

1. Second solution to Legendre using Wronskian

2. Spherical harmonics

3. Normalization of eigenfunctions

4. Degenerncy, using Gram-Schmidt to find other L.I. solu-
tions.

5. Expanding function using complete set of basis functions,
example using Fourier series

6. Inhomogeneous problems, starting Green function

Continued on next page
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Table 1.1 – continued from previous page

Lecture # Date Topics

28 Wed December 5, 2018

1. Green function. Solution to the ODE with point source.

2. Example using vibrating string 𝑦″ + 𝑘2𝑦 = 0. Find Green
function. Two Methods. Use second method.

3. Started on PDE.

29 Friday December 7, 2018 (Make up lecture)

1. more PDE’s. Solve wave PDE in 1D

2. separation of variables. Solve Wave PDE in 3D in spher-
ical coordiates.

30 monday December 10, 2018

1. Solving wave PDE in 3D in spherical coordinates. Nor-
mal modes.

2. Solving wave PDE in 3D in cylindrical coordinates.

3. Inhomogeneous B.C. on heat PDE. Break it into 2 parts.

31 Wed December 12, 2018 Last lecture.

1. Finish Inhomogeneous B.C. on heat PDE. Break it into
2 parts. Final solution, using Fourier series.

2. Last problem. INtegral transform method. Solving heat
pde on infinite line using Fourier transform.



Chapter 2

exams

2.1 Practice exam from 2017

2.1.1 Problem 1

i) Find Laurent series for 𝑓 (𝑧) = 1

�𝑧2+1�
3 around isolated singular pole 𝑧 = 𝑖. What is the order

of the pole? ii) Use residues to evaluate the integral ∫
∞

0
𝑑𝑥

�𝑥2+1�
3

solution

𝑧2 + 1 = 0 gives 𝑧 = ±𝑖. Hence there is a pole at 𝑧 = 𝑖 of order 3 and also a pole at 𝑧 = −𝑖
of order 3. Hence 𝑔 (𝑧) = (𝑧 − 𝑖)3 𝑓 (𝑧) is analytic at 𝑧 = 𝑖 and therefore it has a Taylor series
expansion around 𝑧 = 𝑖 given by

𝑔 (𝑧) =
∞
�
𝑛=0

𝑎𝑛 (𝑧 − 𝑖)
𝑛

(𝑧 − 𝑖)3 𝑓 (𝑧) =
∞
�
𝑛=0

𝑎𝑛 (𝑧 − 𝑖)
𝑛 (1)

15
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Where 𝑎𝑛 =
𝑑𝑛
𝑑𝑧𝑛 𝑔(𝑧)

𝑛! �
𝑧=𝑖

. But

𝑔 (𝑧) = (𝑧 − 𝑖)3 𝑓 (𝑧)

= (𝑧 − 𝑖)3
1

�𝑧2 + 1�
3

= (𝑧 − 𝑖)3
1

((𝑧 − 𝑖) (𝑧 + 𝑖))3

= (𝑧 − 𝑖)3
1

(𝑧 − 𝑖)3 (𝑧 + 𝑖)3

=
1

(𝑧 + 𝑖)3

To find 𝑎𝑛 then 𝑎𝑛 =
1
𝑛!

𝑑𝑛

𝑑𝑧𝑛
1

(𝑧+𝑖)3
is evaluated for few 𝑛 terms. Since order is 3, at least 5 terms

are needed to see the residue and the first term in the analytical part of the series (𝑛 > 0).
Starting with 𝑛 = 0

𝑎0 =
1

(𝑧 + 𝑖)3
�
𝑧=𝑖

=
1

(2𝑖)3
=

1
−8𝑖

=
1
8
𝑖

For 𝑛 = 1

𝑎1 =
𝑑
𝑑𝑧

1
(𝑧 + 𝑖)3

�
𝑧=𝑖

=
−3

(𝑧 + 𝑖)4
�
𝑧=𝑖

=
−3
(2𝑖)4

=
−3
16

For 𝑛 = 2

𝑎2 =
1
2
𝑑
𝑑𝑧

−3
(𝑧 + 𝑖)4

�
𝑧=𝑖

=
1
2
−3 (−4)
(𝑧 + 𝑖)5

�
𝑧=𝑖

=
1
2
−3 (−4)
(2𝑖)5

=
1
2
−3 (−4)
25𝑖

=
6
32𝑖

=
3
16𝑖

= −
3𝑖
16

For 𝑛 = 3

𝑎3 =
1
3!

𝑑
𝑑𝑧
−3 (−4)
(𝑧 + 𝑖)5

�
𝑧=𝑖

=
1
6
−3 (−4) (−5)
(𝑧 + 𝑖)6

�
𝑧=𝑖

=
1
6
−3 (−4) (−5)

(2𝑖)6
=
1
6
−3 (−4) (−5)

−26
=
5
32

For 𝑛 = 4

𝑎4 =
1
4!

𝑑
𝑑𝑧
−3 (−4) (−5)
(𝑧 + 𝑖)6

�
𝑧=𝑖

=
1
24

−3 (−4) (−5) (−6)
(𝑧 + 𝑖)7

�
𝑧=𝑖

=
1
24
−3 (−4) (−5) (−6)

(2𝑖)7
=
1
24
3 (4) (5) (6)

−𝑖27
=
15
128

𝑖

Substituting all these back into (1) gives

(𝑧 − 𝑖)3 𝑓 (𝑧) =
∞
�
𝑛=0

𝑎𝑛 (𝑧 − 𝑖)
𝑛

= 𝑎0 + 𝑎1 (𝑧 − 𝑖) + 𝑎2 (𝑧 − 𝑖)
2 + 𝑎3 (𝑧 − 𝑖)

3 + 𝑎4 (𝑧 − 𝑖)
4 +⋯
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Therefore

𝑓 (𝑧) =
1

(𝑧 − 𝑖)3
�𝑎0 + 𝑎1 (𝑧 − 𝑖) + 𝑎2 (𝑧 − 𝑖)

2 + 𝑎3 (𝑧 − 𝑖)
3 + 𝑎4 (𝑧 − 𝑖)

4 +⋯�

=
1

(𝑧 − 𝑖)3
�
1
8
𝑖 +

−3
16
(𝑧 − 𝑖) −

3𝑖
16
(𝑧 − 𝑖)2 +

5
32
(𝑧 − 𝑖)3 +

15
128

𝑖 (𝑧 − 𝑖)4 +⋯�

=
1
8

𝑖
(𝑧 − 𝑖)3

−
3
16

1
(𝑧 − 𝑖)2

−
3
16

𝑖
(𝑧 − 𝑖)

+
5
32
+
15
128

𝑖 (𝑧 − 𝑖) −⋯ (1A)

The residue is the coe�cient of the term with 1
𝑧−𝑖 factor. Hence residue is − 3𝑖

16 . The order is

3 since that is the highest power in 1
𝑧−𝑖 .

The above method always works, but it means having to evaluate derivatives a number of
times. For a pole of high order, it means evaluating the derivative for as many times as the
pole order and more to reach the analytical part. Another method is to expand the function
using binomial expansion

(1 + 𝑥)𝑝 = 1 + 𝑝𝑧 +
𝑝 �𝑝 − 1�

2!
𝑥2 +

𝑝 �𝑝 − 1� �𝑝 − 2�
3!

𝑥3 +⋯ (2)

The above is valid for real 𝑝 , which can be negative or positive, but only for |𝑥| < 1. This is
now applied to expand

𝑓 (𝑧) =
1

�𝑧2 + 1�
3

=
1

(𝑧 − 𝑖)3 (𝑧 + 𝑖)3

Let 𝑧 − 𝑖 = 𝜉, or 𝑧 = 𝜉 + 𝑖 and the above becomes

𝑓 (𝑧) =
1

𝜉3 (𝜉 + 2𝑖)3

=
1
𝜉3

1

(2𝑖)3 �1 + 𝜉
2𝑖
�
3

= �
𝑖
𝜉3
1
8�

1

�1 + 𝜉
2𝑖
�
3 (3)

Now the binomial expansion can be used on 1

�1+ 𝜉
2𝑖 �

3 term above, which is valid for � 𝜉2𝑖 � < 1,
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which gives

1

�1 + 𝜉
2𝑖
�
3 = 1 − (3)

𝜉
2𝑖
+
(−3) (−4)

2! �
𝜉
2𝑖�

2

−
(−3) (−4) (−5)

3! �
𝜉
2𝑖�

3

+
(−3) (−4) (−5) (−6)

4! �
𝜉
2𝑖�

4

+⋯

= 1 +
3
2
𝑖𝜉 + 6

𝜉2

4𝑖2
+ 10

𝜉3

23𝑖3
+ 15

𝜉4

24𝑖4
+⋯

= 1 +
3
2
𝑖𝜉 −

3
2
𝜉2 −

10
8
𝑖𝜉3 +

15
16
𝜉4 +⋯

Therefore (3) becomes

𝑓 (𝑧) =
𝑖
8𝜉3 �

1 +
3
2
𝑖𝜉 −

3
2
𝜉2 −

10
8
𝑖𝜉3 +

15
16
𝜉4 +⋯�

= �
𝑖
8𝜉3

−
3
16

1
𝜉2
−
3
16
𝑖
𝜉
+
10
64
+

15
(16) (8)

𝑖𝜉 +⋯�

But 𝑧 = 𝜉 + 𝑖 or 𝜉 = 𝑧 − 𝑖, and the above becomes

𝑓 (𝑧) = �
𝑖

8 (𝑧 − 𝑖)3
−
3
16

1
(𝑧 − 𝑖)2

−
3
16

𝑖
(𝑧 − 𝑖)

+
5
32
+
15
128

𝑖 (𝑧 − 𝑖) +⋯� (4)

Which is valid for |𝑧 − 𝑖| < 1. In other words, inside a disk of radius 2, centered around 𝑧 = 𝑖.

Comparing (4) with (1A), shows they are the same as expected. Which is the better method?
After working both, I think the second method is faster, but requires careful transformation,
the first method is more direct but requires more computations.

ii) Let ∫
∞

0
𝑑𝑥

�𝑥2+1�
3 = 𝐼, hence, because

1

�𝑥2+1�
3 is even, then

𝐼 =
1
2 �

∞

−∞

𝑑𝑥

�𝑥2 + 1�
3

=
1
2

lim
𝑅→∞

�
𝑅

−𝑅

𝑑𝑥

�𝑥2 + 1�
3

=
1
2

lim
𝑅→∞

⎛
⎜⎜⎜⎜⎜⎜⎝�

𝑅

−𝑅

𝑑𝑥

�𝑥2 + 1�
3 +∮

𝐶

𝑑𝑧

�𝑧2 + 1�
3

⎞
⎟⎟⎟⎟⎟⎟⎠

The above is valid as long as one can show ∮
𝐶

𝑑𝑧

�𝑧2+1�
3 → 0 as 𝑅 → ∞. The contour 𝐶 is from

𝑅 to −𝑅 over semicircle, going anticlock wise. The radius of the circle is 𝑅. Since the above
integration now includes 𝑧 = 𝑖, then by residual theorem, the above is just − 3𝑖

16 . The residue
was found in the first part. In other words
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1
2

2𝜋𝑖�− 3𝑖
16 �

�������������������������������������������������
lim
𝑅→∞

⎛
⎜⎜⎜⎜⎜⎜⎝�

𝑅

−𝑅

𝑑𝑥

�𝑥2 + 1�
3 +∮

𝐶

𝑑𝑧

�𝑧2 + 1�
3

⎞
⎟⎟⎟⎟⎟⎟⎠ =

1
2 �
2𝜋𝑖 �−

3𝑖
16��

Letting 𝑧 = 𝑅 𝑒𝑖𝜃 and taking 𝑅 → ∞, then ∮
𝐶

𝑑𝑧

�𝑧2+1�
3 → 0 and the above simplifies to

1
2

lim
𝑅→∞

�
𝑅

−𝑅

𝑑𝑥

�𝑥2 + 1�
3 =

1
2 �
2𝜋

3
16�

1
2

lim
𝑅→∞

�
𝑅

−𝑅

𝑑𝑥

�𝑥2 + 1�
3 = 𝜋

3
16

lim
𝑅→∞

�
𝑅

0

𝑑𝑥

�𝑥2 + 1�
3 =

3𝜋
16

Therefore

�
∞

0

𝑑𝑥

�𝑥2 + 1�
3 =

3𝜋
16

2.1.2 Problem 2

Expand 𝑓 (𝑥) = 𝑥
𝐿 as Fourier series for 0 < 𝑥 < 𝜋

𝐿 and 𝑓 (𝑥) = − 𝑥𝐿 for −𝜋𝐿 < 𝑥 < 0.

solution:

This function is even. For example, for 𝐿 = 2, it looks like this

Hence the Fourier series will not have sin terms.

𝑓 (𝑥) =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝑛𝜋
𝑇
𝑥� +

∞
�
𝑛=1

𝑏𝑛 sin �
2𝑛𝜋
𝑇
𝑥�

=
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝑛𝜋
𝑇
𝑥�

Where in the above 𝑇 is the period of the function. In this problem 𝑇 = 2𝜋
𝐿 , hence the above
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becomes

𝑓 (𝑥) =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos

⎛
⎜⎜⎜⎜⎜⎝
2𝑛𝜋
2𝜋
𝐿

𝑥

⎞
⎟⎟⎟⎟⎟⎠

=
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝐿𝑥) (1)

Where

𝑎0 =
1
𝑇
2

�
𝑇
2

−𝑇
2

𝑓 (𝑥) 𝑑𝑥 =
2
2𝜋
𝐿

�
𝜋
𝐿

−𝜋
𝐿

𝑓 (𝑥) 𝑑𝑥 =
𝐿
𝜋 �

𝜋
𝐿

−𝜋
𝐿

𝑓 (𝑥) 𝑑𝑥

=
𝐿
𝜋
(2)�

𝜋
𝐿

0

𝑥
𝐿
𝑑𝑥

=
2𝐿
𝜋
1
𝐿 �

𝑥2

2 �

𝜋
𝐿

0

=
1
𝜋 �

𝜋2

𝐿2 �

=
𝜋
𝐿2

And

𝑎𝑛 =
1
𝑇
2

�
𝜋
𝐿

−𝜋
𝐿

𝑓 (𝑥) cos (𝑛𝐿𝑥) 𝑑𝑥

=
2
2𝜋
𝐿

(2)�
𝜋
𝐿

0
𝑓 (𝑥) cos (𝑛𝐿𝑥) 𝑑𝑥

=
2𝐿
𝜋 �

𝜋
𝐿

0

𝑥
𝐿

cos (𝑛𝐿𝑥) 𝑑𝑥

=
2
𝜋 �

𝜋
𝐿

0
𝑥 cos (𝑛𝐿𝑥) 𝑑𝑥

Using integration by parts ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let 𝑢 = 𝑥, 𝑑𝑢 = 1 and let 𝑑𝑣 = cos (𝑛𝐿𝑥) , 𝑣 =
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sin(𝑛𝐿𝑥)
𝑛𝐿 , therefore the above becomes

𝑎𝑛 =
2
𝜋

⎛
⎜⎜⎜⎜⎜⎝�𝑥

sin (𝑛𝐿𝑥)
𝑛𝐿 �

𝜋
𝐿

0
−�

𝜋
𝐿

0

sin (𝑛𝐿𝑥)
𝑛𝐿

𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠

=
2
𝜋

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
𝜋
𝐿

sin �𝑛𝐿𝜋𝐿 �
𝑛𝐿

− 0

⎤
⎥⎥⎥⎥⎥⎦ −

1
𝑛𝐿 �

𝜋
𝐿

0
sin (𝑛𝐿𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠

=
2
𝜋

⎛
⎜⎜⎜⎝−

1
𝑛𝐿 �

𝜋
𝐿

0
sin (𝑛𝐿𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎠

=
−2
𝜋𝑛𝐿

⎛
⎜⎜⎜⎝�

𝜋
𝐿

0
sin (𝑛𝐿𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎠

=
−2
𝜋𝑛𝐿 �

−
cos (𝑛𝐿𝑥)

𝑛𝐿 �

𝜋
𝐿

0

=
2

𝜋𝑛2𝐿2
(cos (𝑛𝐿𝑥))

𝜋
𝐿
0

=
2

𝜋𝑛2𝐿2
�cos �𝑛𝐿𝜋

𝐿
� − 1�

=
2

𝜋𝑛2𝐿2
(cos (𝑛𝜋) − 1)

=
2

𝜋𝑛2𝐿2
�(−1)𝑛 − 1�

=
−2 + 2 (−1)𝑛

𝜋𝑛2𝐿2
Therefore from (1) the Fourier series is

𝑓 (𝑥) =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos (𝑛𝐿𝑥)

=
𝜋
2𝐿2

+
∞
�
𝑛=1

2
𝜋𝑛2𝐿2

�(−1)𝑛 − 1� cos (𝑛𝐿𝑥)

The convergence is of order 𝑛2, so it is fast. Only few terms are needed to obtain very good
approximation.

2.1.3 Problem 3

(i) Solve 𝑥𝑦′ + 3𝑥 + 𝑦 = 0. (ii) Solve 𝑦′′ − 2𝑦′ + 𝑦 = 𝑒𝑥

Solution

(i). This is linear first order ODE.

𝑦′ + 3 +
𝑦
𝑥
= 0 𝑥 ≠ 0

𝑦′ +
𝑦
𝑥
= −3

Integrating factor is 𝜇 = 𝑒∫
1
𝑥𝑑𝑥 = 𝑒ln 𝑥 = 𝑥. Multiplying both sides of the above by 𝜇, the left
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side becomes complete di�erential and it simplifies to
𝑑
𝑑𝑥
�𝜇𝑦� = −3𝜇

𝑑
𝑑𝑥
�𝑥𝑦� = −3𝑥

𝑑 �𝑥𝑦� = −3𝑥𝑑𝑥

Integrating gives

𝑥𝑦 = −
3
2
𝑥2 + 𝐶

Hence the solution is

𝑦 = −32𝑥 +
𝐶
𝑥 𝑥 ≠ 0

(ii) 𝑦′′ − 2𝑦′ + 𝑦 = 𝑒𝑥 is linear second order with constant coe�cients. The solution to the
homogeneous part 𝑦′′−2𝑦′+𝑦 = 0 can be found by first finding the roots of the characteristic
equation 𝑠2 − 2𝑠 + 1 = 0 , hence 𝑠 = −𝑏

2𝑎 ±
1
2𝑎√𝑏

2 − 4𝑎𝑐 or, 𝑠 = 2
2 ±

1
2√4 − 4 = 1. One double root.

Therefore

𝑦ℎ (𝑥) = 𝐶1𝑒𝑥 + 𝐶2𝑥𝑒𝑥

To find the particular solution, the method of undetermined coe�cients is used. Since the
forcing function is 𝑒𝑥, then a guess 𝑦𝑝 = 𝑘𝑒𝑥. But 𝑒𝑥 is a basis solution. Hence 𝑦𝑝 = 𝑘𝑥𝑒𝑥 is now
selected. But also 𝑥𝑒𝑥 is basis solution. Then 𝑦𝑝 = 𝑘𝑥2𝑒𝑥 is finally selected. Substituting this
into the original ODE in order to solve for 𝑘, gives

𝑦′′𝑝 − 2𝑦′𝑝 + 𝑦𝑝 = 𝑒𝑥

But 𝑦′𝑝 = 2𝑘𝑥𝑒𝑥 + 𝑘𝑥2𝑒𝑥 and 𝑦′′𝑝 = 2𝑘𝑒𝑥 + 2𝑘𝑥𝑒𝑥 + 2𝑘𝑥𝑒𝑥 + 𝑘𝑥2𝑒𝑥. Hence the above becomes

�2𝑘𝑒𝑥 + 2𝑘𝑥𝑒𝑥 + 2𝑘𝑥𝑒𝑥 + 𝑘𝑥2𝑒𝑥� − 2 �2𝑘𝑥𝑒𝑥 + 𝑘𝑥2𝑒𝑥� + 𝑘𝑥2𝑒𝑥 = 𝑒𝑥

�2𝑘 + 2𝑘𝑥 + 2𝑘𝑥 + 𝑘𝑥2� − 2 �2𝑘𝑥 + 𝑘𝑥2� + 𝑘𝑥2 = 1
2𝑘 + 4𝑘𝑥 + 𝑘𝑥2 − 4𝑘𝑥 − 2𝑘𝑥2 + 𝑘𝑥2 = 1

2𝑘 = 1

𝑘 =
1
2

Therefore 𝑦𝑝 =
1
2𝑥
2𝑒𝑥, and the complete general solution is

𝑦 (𝑥) = 𝑦ℎ (𝑥) + 𝑦𝑝 (𝑥)

Therefore

𝑦 (𝑥) = 𝐶1𝑒𝑥 + 𝐶2𝑥𝑒𝑥 +
1
2𝑥
2𝑒𝑥
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2.1.4 Problem 4

Figure 2.1: Problem 4 Statement

solution

Part (1)

𝑥2𝑦′′ + 2𝑥𝑦′ + 𝑥2𝑦 = 0

𝑦′′ +
2
𝑥
𝑦′ + 𝑦 = 0

𝑥 is a regular singular point. Becuase lim𝑥→0 (𝑥 − 0)
2
𝑥 = 2. Since limit exist, then regular

singular point.

Part (2)

Let

𝑦 =
∞
�
𝑛=0

𝑎𝑛𝑥𝑛

𝑦′ =
∞
�
𝑛=0

𝑛𝑎𝑛𝑥𝑛−1

𝑦′′ =
∞
�
𝑛=0

𝑛 (𝑛 − 1) 𝑎𝑛𝑥𝑛−2
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The ODE becomes

𝑥2
∞
�
𝑛=0

𝑛 (𝑛 − 1) 𝑎𝑛𝑥𝑛−2 + 2𝑥
∞
�
𝑛=0

𝑛𝑎𝑛𝑥𝑛−1 + 𝑥2
∞
�
𝑛=0

𝑎𝑛𝑥𝑛 = 0

∞
�
𝑛=0

𝑛 (𝑛 − 1) 𝑎𝑛𝑥𝑛 +
∞
�
𝑛=0

2𝑛𝑎𝑛𝑥𝑛 +
∞
�
𝑛=0

𝑎𝑛𝑥𝑛+2 = 0

∞
�
𝑛=0

𝑛 (𝑛 − 1) 𝑎𝑛𝑥𝑛 +
∞
�
𝑛=0

2𝑛𝑎𝑛𝑥𝑛 +
∞
�
𝑛=2

𝑎𝑛−2𝑥𝑛 = 0

Therefore
∞
�
𝑛=0

(𝑛 (𝑛 − 1) + 2𝑛) 𝑎𝑛𝑥𝑛 +
∞
�
𝑛=2

𝑎𝑛−2𝑥𝑛 = 0

We start from 𝑛 = 1 since 𝑛 = 0 is used to find the indicial equation. For 𝑛 = 1

2𝑎1 = 0
𝑎1 = 0

For 𝑛 ≥ 2
(𝑛 (𝑛 − 1) + 2𝑛) 𝑎𝑛 + 𝑎𝑛−2 = 0

𝑎𝑛 (𝑛 (𝑛 − 1) + 2𝑛) = −𝑎𝑛−2

𝑎𝑛 =
−𝑎𝑛−2

𝑛 (𝑛 − 1) + 2𝑛
For 𝑛 = 2

𝑎2 =
−𝑎0

2 (2 − 1) + 4

= −
1
6
𝑎0

For 𝑛 = 3

𝑎3 =
−𝑎1

3 (2) + 6
Since 𝑎1 = 0 then 𝑎3 = 0. All odd terms are therefore zero.

For 𝑛 = 4

𝑎𝑛 =
−𝑎2

(4) (3) + 8
= −

1
20
𝑎2 = −

1
20 �

−
1
6
𝑎0� =

1
120

𝑎0

Therefore

𝑦1 (𝑥) =
∞
�
𝑛=0

𝑎𝑛𝑥𝑛

= 𝑎0 + 𝑎2𝑥2 + 𝑎4𝑥4 +⋯

= 𝑎0 −
1
6
𝑎0𝑥2 +

1
60
𝑎0𝑥4 −⋯

= 𝑎0 �1 −
1
6
𝑥2 +

1
1200

𝑥4 −⋯�
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Part (3)

setting 𝑎0 = 1 as problem says, and since sin 𝑥 = 𝑥 − 𝑥3

6 +
𝑥5

120 −⋯ then the above is

𝑦1 (𝑥) =
sin 𝑥
𝑥

Part (4)

𝑊(𝑥) = �
𝑦1 𝑦2
𝑦′1 𝑦′2

� = �
sin 𝑥
𝑥 𝑦2

𝑥 cos 𝑥−sin 𝑥
𝑥2 𝑦′2

� = 𝑦′2
sin 𝑥
𝑥

− 𝑦2
𝑥 cos 𝑥 − sin 𝑥

𝑥2

But from Abel’s theorem, 𝑊(𝑥) = 𝐶𝑒∫−𝑝(𝑥)𝑑𝑥 where 𝑝 (𝑥) is the coe�cient in the ODE 𝑦′′ +

𝑝 (𝑥) 𝑦′+𝑞 (𝑥) 𝑦 = 0. Since the ODE is 𝑦′′− 2𝑥+𝑦 = 0 then 𝑝 =
−2
𝑥 and𝑊(𝑥) = 𝑒∫

−2
𝑥 𝑑𝑥 = 𝑒−2 ln 𝑥 = 𝑥−2.

Hence

𝑦′2
sin 𝑥
𝑥

− 𝑦2
𝑥 cos 𝑥 − sin 𝑥

𝑥2
=
𝐶
𝑥2

𝑥 sin (𝑥) 𝑦′2 − 𝑦2 (𝑥 cos 𝑥 − sin 𝑥) = 𝐶

𝑦′2 − 𝑦2 �
cos 𝑥
sin 𝑥 −

1
𝑥�
=

𝐶
𝑥 sin 𝑥

Integrating factor is 𝜇 = 𝑒∫−
cos 𝑥
sin 𝑥 +

1
𝑥𝑑𝑥 = 𝑒∫

− 𝑑
𝑑𝑥 (sin 𝑥)

sin 𝑥 𝑑𝑥𝑒∫
1
𝑥𝑑𝑥 = 𝑒∫

−1
sin 𝑥𝑑(sin 𝑥) + 𝑒ln 𝑥 = 𝑒− ln(sin 𝑥)𝑥 = 𝑥

sin 𝑥 .
Multiplying both sides by this integrating factor gives

𝑑
𝑑𝑥
�𝑦2

𝑥
sin 𝑥

� =
𝐶

sin2 𝑥
Integrating gives

𝑦2
𝑥

sin 𝑥 =
𝐶 cos (𝑥)
− sin (𝑥) + 𝐶2

𝑦2 (𝑥) = −𝐶
cos 𝑥
𝑥

+ 𝐶2
sin 𝑥
𝑥

= 𝐶1
cos 𝑥
𝑥

+ 𝐶2
sin 𝑥
𝑥

But 𝐶2 sin 𝑥 is the second solution, so we only keep 𝑦2 (𝑥) = 𝐶1
cos 𝑥
𝑥 . Hence the final solution

is

𝑦 (𝑥) = 𝐶1
cos 𝑥
𝑥

+ 𝐶2
sin 𝑥
𝑥

2.1.5 Problem 5

Find solution to 𝑑2

𝑑𝑥2𝐺 (𝑥, 𝑥0) + 𝑘
2𝐺 (𝑥, 𝑥0) = 𝛿 (𝑥 − 𝑥0) subject to boundary conditions 𝐺 (0, 𝑥0) =

𝐺 (𝐿, 𝑥0) = 0

solution
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First we obtain the solution to the homogeneous ODE 𝑦′′ + 𝑘2𝑦 = 0 with 𝑦 (0) = 0, 𝑦 (𝑏) = 0
which has the two solutions 𝑦1 (𝑥) = cos 𝑘𝑥, 𝑦2 (𝑥) = sin (𝑘𝑥).

Therefore the solution to the Green function is

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1𝑦1 (𝑥) + 𝐴2𝑦2 (𝑥) 0 < 𝑥 < 𝑥0
𝐵1𝑦1 (𝑥) + 𝐵2𝑦2 (𝑥) 𝑥 < 𝑥0 < 𝑏

=

⎧⎪⎪⎨
⎪⎪⎩
𝐴1 cos (𝑘𝑥) + 𝐴2 sin (𝑘𝑥) 0 < 𝑥 < 𝑥0
𝐵1 cos (𝑘𝑥) + 𝐵2 sin (𝑘𝑥) 𝑥 < 𝑥0 < 𝑏

Where 𝐴𝑖, 𝐵𝑖 are constants to be found. From the condition 𝐺 (0, 𝑥0) = 0 then the first solution
above gives 𝐴1 cos (0) = 0 → 𝐴1 = 0. And from 𝐺 (𝐿, 𝑥0) = 0 the second solution above gives
𝐵1 cos (𝑘𝐿) + 𝐵2 sin (𝑘𝐿𝑏) = 0 or 𝐵1 = −

𝐵2 sin(𝑘𝐿)
cos(𝑘𝐿𝑏) , hence the solution now becomes

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐴2 sin (𝑘𝑥) 0 < 𝑥 < 𝑥0
𝐵1 cos (𝑘𝑥) + 𝐵2 sin (𝑘𝑥) 𝑥 < 𝑥0 < 𝐿

=

⎧⎪⎪⎨
⎪⎪⎩

𝐴2 sin (𝑘𝑥) 0 < 𝑥 < 𝑥0
−𝐵2 sin(𝑘𝐿)

cos(𝑘𝐿) cos (𝑘𝑥) + 𝐵2 sin (𝑘𝑥) 𝑥 < 𝑥0 < 𝐿

=

⎧⎪⎪⎨
⎪⎪⎩

𝐴2 sin (𝑘𝑥) 0 < 𝑥 < 𝑥0
𝐵2

cos(𝑘𝐿) (sin (𝑘𝑥) cos (𝑘𝐿) − sin (𝑘𝐿) cos (𝑘𝑥)) 𝑥 < 𝑥0 < 𝐿

Using sin (𝑎 − 𝑏) = sin 𝑎 cos 𝑏−cos 𝑎 sin 𝑏, then sin (𝑘𝑥) cos (𝑘𝐿)−sin (𝑘𝐿) cos (𝑘𝑥) = sin (𝑘𝑥 − 𝑘𝐿) =
sin (𝑘 (𝑥 − 𝐿)) and the above becomes

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐴2 sin (𝑘𝑥) 0 < 𝑥 < 𝑥0
𝐵2

cos(𝑘𝐿) sin (𝑘 (𝑥 − 𝐿)) 𝑥 < 𝑥0 < 𝐿
(1A)

Now from continuity condition 𝐺 (𝑥, 𝑥0)𝑥=𝑥0−𝜀 = 𝐺 (𝑥, 𝑥0)𝑥=𝑥0+𝜀 i.e. at 𝑥 = 𝑥0, then (from now
on, we switch to 𝑥0).

𝐴2 sin (𝑘𝑥0) =
𝐵2

cos (𝑘𝐿) sin (𝑘 (𝑥0 − 𝐿)) (1)

Now we find the derivative of 𝐺 at 𝑥 = 𝑥0 gives

𝑑
𝑑𝑥
𝐺 (𝑥, 𝑥0)�

𝑥=𝑥0
=

⎧⎪⎪⎨
⎪⎪⎩

𝑘𝐴2 cos (𝑘𝑥0) 0 < 𝑥 < 𝑥0
𝑘𝐵2

cos(𝑘𝐿) cos (𝑘 (𝑥0 − 𝐿)) 𝑥 < 𝑥0 < 𝐿

And from jump discontinuty in derivative of 𝐺 at 𝑥 = 𝑥0 would obtain, since 𝐺′𝑥>𝑥0+𝜀−𝐺
′
𝑥<𝑥0−𝜀 =
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−1
𝑝(𝑥) , then

𝑘𝐵2
cos (𝑘𝑏) cos (𝑘 (𝑥0 − 𝐿)) − 𝑘𝐴2 cos (𝑘𝑥0) =

−1
𝑝 (𝑥)

But since the ODE is 𝑦′′ + 𝑘2𝑦 = 0 then in SL form this is − �𝑦′�
′
+ 𝑘2𝑦 = 0, and comparing to

− �𝑝𝑦′�
′
+ 𝑘2𝑦 = 0 we see that 𝑝 = −1. Then above becomes

𝑘𝐵2
cos (𝑘𝐿) cos (𝑘 (𝑥0 − 𝐿)) − 𝑘𝐴2 cos (𝑘𝑥0) = 1 (2)

From (1,2) we solve for 𝐴1, 𝐵2. From (1)

𝐴2 =
𝐵2

cos (𝑘𝑏) sin (𝑘𝑥0)
sin (𝑘 (𝑥0 − 𝐿)) (3)

Substituting into (2) gives

𝑘𝐵2
cos (𝑘𝐿) cos (𝑘 (𝑥0 − 𝐿)) − 𝑘 �

𝐵2
cos (𝑘𝐿) sin (𝑘𝑥0)

sin (𝑘 (𝑥0 − 𝐿))� cos (𝑘𝑥0) = 1

𝑘𝐵2 cos (𝑘 (𝑥0 − 𝐿)) − 𝑘𝐵2 sin (𝑘 (𝑥0 − 𝐿))
cos (𝑘𝑥0)
sin (𝑘𝑥0)

= cos (𝑘𝐿)

𝑘𝐵2 (sin (𝑘𝑥0) cos (𝑘 (𝑥0 − 𝐿)) − sin (𝑘 (𝑥0 − 𝐿)) cos (𝑘𝑥0)) = cos (𝑘𝐿) sin (𝑘𝑥0) (4)

Using sin (𝑎 − 𝑏) = sin 𝑎 cos 𝑏 − cos 𝑎 sin 𝑏, then
sin (𝑘𝑥0) cos (𝑘 (𝑥0 − 𝐿)) − sin (𝑘 (𝑥0 − 𝐿)) cos (𝑘𝑥0) = sin (𝑘𝑥0 − 𝑘 (𝑥0 − 𝐿))

= sin (𝑘𝐿)

Then (3) becomes

𝑘𝐵2 sin (𝑘𝐿) = cos (𝑘𝐿) sin (𝑘𝑥0)

𝐵2 =
cos (𝑘𝐿) sin (𝑘𝑥0)

𝑘 sin (𝑘𝐿)

Substituing the above in (3) gives

𝐴2 =
cos (𝑘𝐿) sin (𝑘𝑥0)

𝑘 sin (𝑘𝐿) cos (𝑘𝐿) sin (𝑘𝑥0)
sin (𝑘 (𝑥0 − 𝐿))

=
sin (𝑘 (𝑥0 − 𝐿))
𝑘 sin (𝑘𝐿)
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Using 𝐴2, 𝐵2 found above in (1A) gives

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

sin(𝑘(𝑥0−𝐿))
𝑘 sin(𝑘𝐿) sin (𝑘𝑥) 0 < 𝑥 < 𝑥0

cos(𝑘𝐿) sin(𝑘𝑥0)
𝑘 sin(𝑘𝐿) cos(𝑘𝑏) sin (𝑘 (𝑥 − 𝐿)) 𝑥 < 𝑥0 < 𝐿

=
1

𝑘 sin (𝑘𝐿)

⎧⎪⎪⎨
⎪⎪⎩

sin (𝑘 (𝑥0 − 𝐿)) sin (𝑘𝑥) 0 < 𝑥 < 𝑥0
sin (𝑘𝑥0) sin (𝑘 (𝑥 − 𝐿)) 𝑥 < 𝑥0 < 𝐿

The following approach seems faster.

second solution

Instead of starting from

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1𝑦1 (𝑥) + 𝐴2𝑦2 (𝑥) 0 < 𝑥 < 𝑥0
𝐵1𝑦1 (𝑥) + 𝐵2𝑦2 (𝑥) 𝑥 < 𝑥0 < 𝑏

We first find the eigenfunction Φ𝑛 (𝑥) that solves 𝑦′′ + 𝑘2𝑦 = 0 which satisfies the boundary
conditions 𝑦 (0) = 0, 𝑦 (𝐿) = 0. Then write

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐴Φ𝑛 (𝑥) 0 < 𝑥 < 𝑥0
𝐵Φ𝑛 (𝑥 − 𝐿) 𝑥 < 𝑥0 < 𝑏

So now we have only 2 unknowns to find, 𝐴,𝐵 using the continutity and jump conditions
on 𝐺. Let see how this works on this same problem. The solution to 𝑦′′ + 𝑘2𝑦 = 0 is
𝑦 (𝑥) = 𝐴 cos 𝑘𝑥 + 𝐵 sin 𝑘𝑥. At 𝑦 (0) = 0 implies 𝐴 = 0, so the solution becomes 𝑦 (𝑥) = 𝐵 sin 𝑘𝑥
and at 𝑥 (𝐿) = 0 this gives 0 = 𝐵 sin (𝑘𝐿), which implies 𝑘𝐿 = 𝑛𝜋 or 𝑘 = 𝑛𝜋

𝐿 . Hence the solution

is Φ𝑛 (𝑥) = sin �𝑛𝜋𝐿 𝑥�. Therefore we set up the Green function as

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐴 sin �𝑛𝜋𝐿 𝑥� 0 < 𝑥 < 𝑥0
𝐵 sin �𝑛𝜋𝐿 (𝑥 − 𝐿)� 𝑥 < 𝑥0 < 𝑏

Or by letting 𝑘𝑛 =
𝑛𝜋
𝐿

𝐺 (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐴 sin (𝑘𝑛𝑥) 0 < 𝑥 < 𝑥0
𝐵 sin (𝑘𝑛 (𝑥 − 𝐿)) 𝑥 < 𝑥0 < 𝐿

(1)
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Now continutity says

𝐴 sin (𝑘𝑛𝑥0) = 𝐵 sin (𝑘𝑛 (𝑥0 − 𝐿)) (2)

Taking derivative of (1) at 𝑥 = 𝑥0 gives

𝐺′ (𝑥, 𝑥0) =

⎧⎪⎪⎨
⎪⎪⎩

𝐴𝑘𝑛 cos (𝑘𝑛𝑥0) 0 < 𝑥 < 𝑥0
𝐵𝑘𝑛 cos (𝑘𝑛 (𝑥0 − 𝐿)) 𝑥 < 𝑥0 < 𝐿

Then jump discontinutiy gives

𝐵𝑘𝑛 cos (𝑘𝑛 (𝑥0 − 𝐿)) − 𝐴𝑘𝑛 cos (𝑘𝑛𝑥0) = 1 (3)

Solving (2,3) for 𝐴,𝐵 gives, as we did earlier

𝐴 =
sin (𝑘 (𝑥0 − 𝐿))
𝑘 sin (𝑘𝐿)

𝐵 =
sin (𝑘𝑥0)
𝑘 sin (𝑘𝐿)

Using these in (1) gives

𝐺 (𝑥, 𝑥0) =
1

𝑘 sin (𝑘𝐿)

⎧⎪⎪⎨
⎪⎪⎩

sin (𝑘 (𝑥0 − 𝐿)) sin (𝑘𝑛𝑥) 0 < 𝑥 < 𝑥0
sin (𝑘𝑥0) sin (𝑘𝑛 (𝑥 − 𝐿)) 𝑥 < 𝑥0 < 𝐿𝑏

Which is the same result obtained earlier.
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2.2 exam 1

2.2.1 exam 1 prep sheet

Preparation sheet for the test: November 7 in class

The test will cover notes and examples on infinite series, complex analysis, and
evaluation of integrals (not including the saddle point integration) and problem
sets 1-4.

1. Things to know without thought:

(a) Sum of a geometric series.
(b) Definitions of convergence and absolute convergences of infinite series.
(c) Ratio test for convergence.
(d) Series expansions for ex, sin x, cos x, and ln(1 + x) (for |x| < 1).
(e) Cauchy-Riemann conditions and definition of analytic functions.
(f) The meaning of log z, Logz, and zc

(g) Cauchy-Goursat Theorem and Cauchy Integral formula.
(h) The form of Taylor and Laurent series.
(i) The meaning of analytic continuation.
(j) The residue theorem.
(k) The definition of Cauchy principle value.
(l) The definition of an asymptotic series.

2.2.2 exam 1 writeup

Problem 1

Using a well known sum, find a closed for expression for the following series

𝑓 (𝑧) = 1 + 2𝑧 + 3𝑧2 + 4𝑧3 + 5𝑧4 +⋯

Using the ratio test, find for what values of 𝑧 this series converges.

Solution

Method 1
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Assume that the closed form is

(1 − 𝑧)𝑎 = 1 + 2𝑧 + 3𝑧2 + 4𝑧3 + 5𝑧4 +⋯

For some unknown 𝑎. Now 𝑎 will be solved for. Using Binomial series definition (1 − 𝑧)𝑎 =
1 − 𝑎𝑧 + (𝑎)(𝑎−1)

2! 𝑧2 − 𝑎(𝑎−1)(𝑎−2)
3! 𝑧3 +⋯. in the LHS above gives

1 − 𝑎𝑧 +
𝑎 (𝑎 − 1)
2!

𝑧2 −
𝑎 (𝑎 − 1) (𝑎 − 2)

3!
𝑧3 +⋯ = 1 + 2𝑧 + 3𝑧2 + 4𝑧3 + 5𝑧4 +⋯

By comparing coe�cients of 𝑧 in the left side and on the right side shows that 𝑎 = −2 from
the coe�cient of 𝑧 term. Verifying this on the coe�cient of 𝑧2 shows it is correct since it
gives (−2)(−3)

2 = 3. Therefore

𝑎 = −2

The closed form is therefore
1

(1 − 𝑧)2
= 1 + 2𝑧 + 3𝑧2 + 4𝑧3 + 5𝑧4 +⋯

Method 2

Starting with Binomial series expansion given by
1

1 − 𝑧
= 1 + 𝑧 + 𝑧2 + 𝑧3 + 𝑧4 +⋯

Taking derivative w.r.t. 𝑧 on both sides of the above results in

𝑑
𝑑𝑧 �

1
1 − 𝑧�

=
𝑑
𝑑𝑧
�1 + 𝑧 + 𝑧2 + 𝑧3 + 𝑧4 +⋯�

− (1 − 𝑧)−2 (−1) = 0 + 1 + 2𝑧 + 3𝑧2 + 4𝑧3 +⋯
1

(1 − 𝑧)2
= 1 + 2𝑧 + 3𝑧2 + 4𝑧3 +⋯

Therefore the closed form expression is
1

(1 − 𝑧)2
= 1 + 2𝑧 + 3𝑧2 + 4𝑧3 +⋯

Which is the same as method 1.

The series general term of the series is

1 + 2𝑧 + 3𝑧2 + 4𝑧3 +⋯ =
∞
�
𝑛=0

(𝑛 + 1) 𝑧𝑛
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Applying the ratio test

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
(𝑛 + 2) 𝑧𝑛+1

(𝑛 + 1) 𝑧𝑛 �

= lim
𝑛→∞

�
(𝑛 + 2) 𝑧
𝑛 + 1

�

= 𝑧 lim
𝑛→∞

�
𝑛 + 2
𝑛 + 1

�

= 𝑧 lim
𝑛→∞

�
�
1 + 2

𝑛

1 + 1
𝑛

�
�

But lim𝑛→∞ �
1+ 2

𝑛

1+ 1
𝑛

� = 1 and the above limit becomes

𝐿 = 𝑧

By the ratio test, the series converges when |𝐿| < 1. Therefore 1+ 2𝑧+ 3𝑧2 +4𝑧3 +⋯ converges
absolutely when |𝑧| < 1. An absolutely convergent series is also a convergent series. Hence
the series converges for |𝑧| < 1.

Problem 2

Find the Laurent series for the function

𝑓 (𝑧) =
1

�𝑧2 + 4�
3

About the isolated singular pole 𝑧 = 2𝑖. What is the order of this pole? What is the residue
at this pole?

Solution

The poles are at 𝑧2 = 4 or 𝑧 = ±2𝑖. The expansion of 𝑓 (𝑧) is around the isolated pole at 𝑧 = 2𝑖.
This pole has order 3. The region where this expansion is valid is inside a disk centered at
2𝑖 (but not including the point 𝑧 = 2𝑖 itself) and up to the nearest pole which is located at
−2𝑖. Therefore the disk will have radius 4.



33

2i

−2i

R = 4

Region where Laurent series
expansion around z = 2i is valid

<z

=z

Let

𝑢 = 𝑧 − 2𝑖
𝑧 = 𝑢 + 2𝑖

Substituting this expression for 𝑧 back in 𝑓 (𝑧) gives

𝑓 (𝑧) =
1

�(𝑢 + 2𝑖)2 + 4�
3

=
1

�𝑢2 − 4 + 4𝑢𝑖 + 4�
3

=
1

�𝑢2 + 4𝑢𝑖�
3

=
1

(𝑢 (𝑢 + 4𝑖))3

=
1
𝑢3

1
(𝑢 + 4𝑖)3

=
1
𝑢3

1

�4𝑖 � 𝑢4𝑖 + 1��
3

=
1
𝑢3

1

(4𝑖)3 � 𝑢4𝑖 + 1�
3

=
1

−𝑖64𝑢3
1

� 𝑢
4𝑖 + 1�

3

= �
𝑖

64𝑢3 �
1

� 𝑢
4𝑖 + 1�

3 (1)
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Expanding the term 1

�1+ 𝑢
4𝑖 �

3 using Binomial series, which is valid for � 𝑢4𝑖 � < 1 or |𝑢| < 4 gives

1

�1 + 𝑢
4𝑖
�
3 = 1 + (−3)

𝑢
4𝑖
+
(−3) (−4)

2!
�
𝑢
4𝑖
�
2
+
(−3) (−4) (−5)

3!
�
𝑢
4𝑖
�
3
+
(−3) (−4) (−5) (−6)

4!
�
𝑢
4𝑖
�
4
+⋯

= 1 − 3
𝑢
4𝑖
+
3 ⋅ 4
2!

𝑢2

16𝑖2
−
3 ⋅ 4 ⋅ 5
3!

𝑢3

64𝑖3
+
3 ⋅ 4 ⋅ 5 ⋅ 6

4!
𝑢4

256𝑖4
+⋯

= 1 + 3𝑖
𝑢
4
−
3 ⋅ 4
2!

𝑢2

16
−
3 ⋅ 4 ⋅ 5
3!

𝑢3

64 (−𝑖)
+
3 ⋅ 4 ⋅ 5 ⋅ 6

4!
𝑢4

256
+⋯

= 1 + 3𝑖
𝑢
4
−
3 ⋅ 4
2!

𝑢2

16
− 𝑖
3 ⋅ 4 ⋅ 5
3!

𝑢3

64
+
3 ⋅ 4 ⋅ 5 ⋅ 6

4!
𝑢4

256
+⋯ (2)

Substituting (2) into (1) and simplifying gives

𝑓 (𝑧) = �
𝑖

64𝑢3 � �
1 + 3𝑖

𝑢
4
−
3 ⋅ 4
2!

𝑢2

16
− 𝑖
3 ⋅ 4 ⋅ 5
3!

𝑢3

64
+
3 ⋅ 4 ⋅ 5 ⋅ 6

4!
𝑢4

256
+⋯�

=
𝑖

64𝑢3
+

𝑖
64𝑢3

�3𝑖
𝑢
4
� −

𝑖
64𝑢3 �

3 ⋅ 4
2!

𝑢2

16�
−

𝑖
64𝑢3 �

𝑖
3 ⋅ 4 ⋅ 5
3!

𝑢3

64�
+

𝑖
64𝑢3 �

3 ⋅ 4 ⋅ 5 ⋅ 6
4!

𝑢4

256�
+⋯

=
𝑖

64𝑢3
−

1
64𝑢2

3
4
−

𝑖
64𝑢 �

3 ⋅ 4
2!

1
16�

+
1
64 �

3 ⋅ 4 ⋅ 5
3!

1
64�

+
𝑖
64 �

3 ⋅ 4 ⋅ 5 ⋅ 6
4!

𝑢
256�

+⋯

=
𝑖

64𝑢3
−

3
256𝑢2

− 𝑖
3
512

1
𝑢
+

5
2048

+ 𝑖
15

16 384
𝑢 +⋯

Replacing 𝑢 back by 𝑧 − 2𝑖 in the above results in

𝑓 (𝑧) =
𝑖
64

1
(𝑧 − 2𝑖)3

−
3
256

1
(𝑧 − 2𝑖)2

−
3𝑖
512

1
(𝑧 − 2𝑖)

+
5

2048
+

15𝑖
16 384

(𝑧 − 2𝑖) +⋯ (3)

This expansion is valid for |𝑧 − 2𝑖| < 4. The above shows that the residue is

− 3𝑖
512

Which is the coe�cient of the 1
(𝑧−2𝑖) term in (3).

Problem 3

Use residues to evaluate the following integral

𝐼 = �
∞

0

𝑑𝑥
𝑥4 + 6𝑥2 + 9

Solution

The integrand is an even function. Therefore the integral ∫
∞

−∞
𝑑𝑥

𝑥4+6𝑥2+9
is evaluated instead

and then the required integral 𝐼 will be half the value obtained. The poles of 1
𝑥4+6𝑥2+9

are

the zeros of the denominator. Factoring the denominator as �𝑥2 + 3� �𝑥2 + 3� = 0, shows the
roots are 𝑥 = ±𝑖√3 from the first factor and 𝑥 = ±𝑖√3 from the second factor.

Since the upper half plane will be used, the pole located there is +𝑖√3 and it is of order two.
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Now that pole locations are known, the following contour is used to evaluate ∫
∞

−∞
𝑑𝑥

𝑥4+6𝑥2+9
as

shown in the plot below

−R +R

R

CR

<z

=z

i
√
3

pole of order 2

∮
𝐶

𝑓 (𝑧) 𝑑𝑧 = lim
𝑅→∞

�
𝐶
𝑓 (𝑧) 𝑑𝑧 + lim

𝑅→∞
�

+𝑅

−𝑅
𝑓 (𝑥) 𝑑𝑥

= lim
𝑅→∞

�
𝐶

𝑑𝑧
𝑧4 + 6𝑧2 + 9

+ lim
𝑅→∞

�
+𝑅

−𝑅

𝑑𝑥
𝑥4 + 6𝑥2 + 9

𝑑𝑥 (2)

Where the integral ∫
+𝑅

−𝑅
is Cauchy principal integral. Since the contour 𝐶 is closed and

because 𝑓 (𝑧) is analytic on and inside 𝐶 except for the isolated singularity inside at 𝑧 = 𝑖√3,
then by Cauchy integral formula ∮

𝐶

𝑓 (𝑧) 𝑑𝑧 = 2𝜋𝑖∑Residue. Where the sum of residues is

over all poles inside 𝐶. Therefore (2) can becomes

�
+∞

−∞

𝑑𝑥
𝑥4 + 6𝑥2 + 9

𝑑𝑥 = 2𝜋𝑖�Residue− lim
𝑅→∞

�
𝐶
𝑓 (𝑧) 𝑑𝑧 (3)

But

��
𝐶
𝑓 (𝑧) 𝑑𝑧�

max
≤ 𝑀𝐿

= �𝑓 (𝑧)�
max

𝜋𝑅 (4)

Using

�𝑓 (𝑧)�
max

≤
1

�𝑧2 + 3�
min

�𝑧2 + 3�
min

By inverse triangle inequality �𝑧2 + 3� ≥ |𝑧|2 − 3. But |𝑧| = 𝑅 on 𝐶, therefore �𝑧2 + 3� ≥ 𝑅2 − 3
and the above can now be written as

�𝑓 (𝑧)�
max

≤
1

�𝑅2 − 3� �𝑅2 − 3�



36

Using the above in (4) gives

��
𝐶
𝑓 (𝑧) 𝑑𝑧�

max
≤

𝜋𝑅
�𝑅2 − 3� �𝑅2 − 3�

=
𝜋𝑅

𝑅4 − 6𝑅2 + 9

=
𝜋
𝑅

𝑅2 − 6 + 9
𝑅2

In the limit as 𝑅 → ∞ then �∫
𝐶
𝑓 (𝑧) 𝑑𝑧�

max
→ 0. Using this result in (3) it simplifies to

�
+∞

−∞

𝑑𝑥
𝑥4 + 6𝑥2 + 9

𝑑𝑥 = 2𝜋𝑖�Residue (5)

What is left now is to determine the residue at pole 𝑧0 = 𝑖√3 which is of order 2. This is
done using

Residue (𝑧0) = lim
𝑧→𝑧0

𝑑
𝑑𝑧
�(𝑧 − 𝑧0)

2 𝑓 (𝑧)�

But 𝑧0 = 𝑖√3 and the above becomes

Residue �𝑖√3� = lim
𝑧→𝑖√3

𝑑
𝑑𝑧

⎛
⎜⎜⎜⎜⎜⎜⎝�𝑧 − 𝑖√3�

2 1

�𝑧 − 𝑖√3�
2
�𝑧 + 𝑖√3�

2

⎞
⎟⎟⎟⎟⎟⎟⎠

= lim
𝑧→𝑖√3

𝑑
𝑑𝑧

1

�𝑧 + 𝑖√3�
2

= lim
𝑧→𝑖√3

−2

�𝑧 + 𝑖√3�
3

=
−2

�𝑖√3 + 𝑖√3�
3

=
−2

�2𝑖√3�
3

=
−2

− (8) (3) 𝑖√3

=
1

12𝑖√3
Using the above value of the residue in (5) gives

�
+∞

−∞

𝑑𝑥
𝑥4 + 6𝑥2 + 9

𝑑𝑥 = 2𝜋𝑖 �
1

12𝑖√3
�

=
𝜋
6√3
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Therefore the integral ∫
∞

0
𝑑𝑥

𝑥4+6𝑥3+9
is half of the above result which is

�
∞

0

𝑑𝑥
𝑥4 + 6𝑥2 + 9

=
𝜋

12√3

Problem 4

Find two approximations for the integral 𝑥 > 0

𝐼 (𝑥) =
1
2𝜋 �

𝜋
2

−𝜋
2

𝑒𝑥 cos2 𝜃𝑑𝜃

One for small 𝑥 (keeping up to linear order in 𝑥) and one for large values of 𝑥 (keeping only
the leading order term).

Solution

The integrand has the form 𝑒𝑧. This has a known Taylor series expansion around zero given
by

𝑒𝑧 = 1 + 𝑧 +
𝑧2

2!
+⋯

Replacing 𝑧 by 𝑥 cos2 𝜃 in the above gives

𝑒𝑥 cos2 𝜃 = 1 + 𝑥 cos2 𝜃 +
�𝑥 cos2 𝜃�

2

2
+⋯

The problem is asking to keep linear terms in 𝑥. Therefore

𝑒𝑥 cos2 𝜃 ≈ 1 + 𝑥 cos2 𝜃
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Replacing the integrand in the original integral by the above approximation gives

𝐼 (𝑥) ≈
1
2𝜋 �

𝜋
2

−𝜋
2

�1 + 𝑥 cos2 𝜃� 𝑑𝜃

≈
1
2𝜋

⎛
⎜⎜⎜⎜⎝�

𝜋
2

−𝜋
2

𝑑𝜃 + 𝑥�
𝜋
2

−𝜋
2

cos2 𝜃𝑑𝜃
⎞
⎟⎟⎟⎟⎠

≈
1
2𝜋

⎛
⎜⎜⎜⎜⎝�

𝜋
2

−𝜋
2

𝑑𝜃 + 𝑥�
𝜋
2

−𝜋
2

1
2
+
1
2

cos 2𝜃𝑑𝜃
⎞
⎟⎟⎟⎟⎠

≈
1
2𝜋

⎛
⎜⎜⎜⎜⎜⎜⎝𝜋 + 𝑥 �

1
2
𝜃 +

1
2

sin 2𝜃
2 �

𝜋
2

−𝜋
2

⎞
⎟⎟⎟⎟⎟⎟⎠

≈
1
2𝜋 �

𝜋 +
𝑥
4
(2𝜃 + sin 2𝜃)

𝜋
2
−𝜋
2
�

≈
1
2𝜋

�𝜋 +
𝑥
4
(2𝜋 + 0)�

≈
1
2𝜋

�𝜋 +
𝑥
2
𝜋�

≈
1
2
�1 +

𝑥
2
�

For large value of 𝑥, The integrand is written as 𝑒𝑓(𝜃) where 𝑓 (𝜃) = 𝑥 cos2 𝜃. The value of 𝜃
where 𝑓 (𝜃) is maximum is first found. Then solving for 𝜃 in

𝑑
𝑑𝜃
𝑥 cos2 𝜃 = 0

−2𝑥 cos𝜃 sin𝜃 = 0
Hence solving for 𝜃 in

cos𝜃 sin𝜃 = 0
There are two solutions to this. Either 𝜃 = 𝜋

2 or 𝜃 = 0. To find which is the correct choice,

the sign of 𝑑2

𝑑𝜃2𝑓 (𝜃) is checked for each choice.

𝑑2

𝑑𝜃2
𝑥 cos2 𝜃 = 𝑑

𝑑𝜃
(−2𝑥 cos𝜃 sin𝜃)

= −2𝑥
𝑑
𝑑𝜃

(cos𝜃 sin𝜃)

= −2𝑥 (− sin𝜃 sin𝜃 + cos𝜃 cos𝜃)
= −2𝑥 �− sin2 𝜃 + cos2 𝜃� (1)

Substituting 𝜃 = 𝜋
2 in (1) and using cos �𝜋2 � = 0 and sin �𝜋2 � = 1 gives

𝑑2

𝑑𝜃2
𝑥 cos2 𝜃�

𝜃=𝜋
2

= −2𝑥 (−1)

= 2𝑥
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Since the problem says that 𝑥 > 0 then 𝑑2

𝑑𝜃2𝑥 cos2 𝜃�
𝜃=𝜋

2

> 0. Therefore this is a minimum.

Using the second choice 𝜃 = 0, then (1) becomes (after using cos (0) = 1 and sin (0) = 0)
𝑑2

𝑑𝜃2
𝑥 cos2 𝜃�

𝜃=0

= −2𝑥

And because 𝑥 > 0 then 𝑑2

𝑑𝜃2𝑥 cos2 𝜃�
𝜃=0

< 0. Therefore the integrand is maximum at

𝜃𝑝𝑒𝑎𝑘 = 0

Now that peak 𝜃 is found, then 𝑓 (𝜃) is expanded in Taylor series around 𝜃𝑝𝑒𝑎𝑘 = 0. Since
𝑓 (𝜃) = 𝑥 cos2 𝜃, then

𝑓 �𝜃𝑝𝑒𝑎𝑘� = 𝑥

And 𝑓′ (𝜃) = −2𝑥 cos𝜃 sin𝜃. At 𝜃𝑝𝑒𝑎𝑘 this becomes 𝑓′ �𝜃𝑝𝑒𝑎𝑘� = 0. The next term is the
quadratic one, given by

𝑓′′ (𝜃) = −2𝑥
𝑑
𝑑𝜃

(cos𝜃 sin𝜃)

= −2𝑥 �− sin2 𝜃 + cos2 𝜃�
Evaluating the above at 𝜃𝑝𝑒𝑎𝑘 = 0 gives

𝑓′′ �𝜃𝑝𝑒𝑎𝑘� = −2𝑥

The problem says to keep leading term, so no need for more terms. Therefore the Taylor
series expansion of 𝑓 (𝜃) = 𝑥 cos2 𝜃 around 𝜃 = 𝜃𝑝𝑒𝑎𝑘 is

𝑥 cos2 𝜃 ≈ 𝑓 �𝜃𝑝𝑒𝑎𝑘� + 𝑓′ �𝜃𝑝𝑒𝑎𝑘� 𝜃 +
1
2!
𝑓′′ �𝜃𝑝𝑒𝑎𝑘� 𝜃2

= 𝑥 + 0 −
2𝑥
2!
𝜃2

= 𝑥 − 𝑥𝜃2

= 𝑥 �1 − 𝜃2�

The integral now becomes

𝐼 (𝑥) =
1
2𝜋 �

𝜋
2

−𝜋
2

𝑒𝑥�1−𝜃
2�𝑑𝜃

≈
1
2𝜋 �

𝜋
2

−𝜋
2

𝑒𝑥𝑒−𝑥𝜃2𝑑𝜃

=
1
2𝜋

⎛
⎜⎜⎜⎜⎝𝑒
𝑥�

𝜋
2

−𝜋
2

𝑒−𝑥𝜃2𝑑𝜃
⎞
⎟⎟⎟⎟⎠

Comparing ∫
𝜋
2

−𝜋
2
𝑒−𝑥𝜃2𝑑𝜃 to the Gaussian integral ∫

∞

−∞
𝑒−𝑎𝜃2𝑑𝜃 = �

𝜋
𝑥 , then the above can be

approximated as

𝐼 (𝑥) =
𝑒𝑥

2𝜋�
𝜋
𝑥
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Summary of result

Small 𝑥 approximation 1
2
�1 + 𝑥

2
�

Large 𝑥 approximation 𝑒𝑥

2𝜋�
𝜋
𝑥

Note that using the computer, the exact solution is

1
2𝜋 �

𝜋
2

−𝜋
2

𝑒𝑥 cos2 𝜃𝑑𝜃 =
1
2
𝑒
𝑥
2 BesselI �0, 𝑥

2
�

Problem 5

Use the Cauchy-Riemann equations to determine where the function

𝑓 (𝑧) = 𝑧 + 𝑧2

Is analytic. Evaluate ∮
𝐶

𝑓 (𝑧) 𝑑𝑧 where contour 𝐶 is on the unit circle |𝑧| = 1 in a counterclock-

wise sense.

Solution

Using 𝑧 = 𝑥 + 𝑖𝑦, the function 𝑓 (𝑧) becomes

𝑓 (𝑧) = 𝑥 + 𝑖𝑦 + �𝑥 + 𝑖𝑦�
2

= 𝑥 + 𝑖𝑦 + �𝑥2 − 𝑦2 + 2𝑖𝑥𝑦�

= 𝑥 + 𝑖𝑦 + �𝑥2 − 𝑦2 − 2𝑖𝑥𝑦�

= �𝑥 + 𝑥2 − 𝑦2� + 𝑖 �𝑦 − 2𝑥𝑦�

Writing 𝑓 (𝑧) = 𝑢 + 𝑖𝑣, and comparing this to the above result shows that

𝑢 = 𝑥 + 𝑥2 − 𝑦2

𝑣 = 𝑦 − 2𝑥𝑦 (1)

Cauchy-Riemann are given by

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

−𝜕𝑢
𝜕𝑦

=
𝜕𝑣
𝜕𝑥

Using result in (1), Cauchy-Riemann are checked to see if they are satisfied or not. The first
equation above results in

𝜕𝑢
𝜕𝑥

= 1 + 2𝑥

𝜕𝑣
𝜕𝑦

= 1 − 2𝑥

Therefore 𝜕𝑢
𝜕𝑥 ≠

𝜕𝑣
𝜕𝑦 . This shows that 𝑓 (𝑧) is not analytic for all 𝑥, 𝑦.
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Since 𝑓 (𝑧) is not analytic, Cauchy integral formula can not be used. Instead this can be
integrated using parameterization. Let 𝑧 = 𝑒𝑖𝜃 (No need to use 𝑟𝑒𝑖𝜃 since 𝑟 = 1 in this case
because it is the unit circle). The function 𝑓 (𝑧) becomes

𝑓 (𝑧) = 𝑒𝑖𝜃 + �𝑒𝑖𝜃�
2

= 𝑒𝑖𝜃 + 𝑒2𝑖𝜃

= 𝑒𝑖𝜃 + 𝑒−2𝑖𝜃

And because 𝑧 = 𝑒𝑖𝜃 then 𝑑𝑧 = 𝑑𝜃𝑒𝑖𝜃. The integral now becomes

∮
𝐶

𝑓 (𝑧) 𝑑𝑧 = �
2𝜋

0
�𝑒𝑖𝜃 + 𝑒−2𝑖𝜃� 𝑒𝑖𝜃𝑑𝜃

= �
2𝜋

0
�𝑒2𝑖𝜃 + 𝑒−𝑖𝜃� 𝑑𝜃

= �
𝑒2𝑖𝜃

2𝑖 �
2𝜋

0
+ �

𝑒−𝑖𝜃

−𝑖 �
2𝜋

0

=
1
2𝑖
[cos 2𝜃 + 𝑖 sin 2𝜃]2𝜋0 + 𝑖 [cos𝜃 − 𝑖 sin𝜃]2𝜋0

=
1
2𝑖
[(cos 4𝜋 + 𝑖 sin 4𝜋) − (cos 0 + 𝑖 sin 0)] + 𝑖 [(cos 2𝜋 − 𝑖 sin 2𝜋) − (cos 0 − 𝑖 sin 0)]

=
1
2𝑖
[1 − 1] + 𝑖 [1 − 1]

Hence

∮
𝐶

𝑓 (𝑧) 𝑑𝑧 = 0
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2.3 �nal exam

2.3.1 exam 1 prep sheet

Preparation sheet for the exam: Dec 19 from 2:45 to 5:15 in class

The exam will cover notes and examples on infinite series, complex analysis, eval-
uation of integrals, integral transforms, ordinary differential equations, eigenvalue
problems, and partial differential equations. The exam will also cover problem sets
1-7. You are allowed to have a 8.5 by 11 sheet of sheet of paper with equations on it.

1. Things to know without thought:

(a) Sum of a geometric series.
(b) Definitions of convergence and absolute convergences of infinite series.
(c) Ratio test for convergence.
(d) Series expansions for ex, sin x, cos x, and ln(1 + x) (for |x| < 1).
(e) Cauchy-Riemann conditions and definition of analytic functions.
(f) The meaning of log z, Logz, and zc

(g) Cauchy-Goursat Theorem and Cauchy Integral formula.
(h) The form of Taylor and Laurent series.
(i) The meaning of analytic continuation.
(j) The residue theorem.
(k) The definition of Cauchy principle value.
(l) The definition of an asymptotic series.
(m) The definition of Fourier series and transform The definition of a separable
first order ODE.
(n) The criterium to check if an ODE is exact.
(o) Solution of linear first order differential equation using an integrating factor.
(q) Definition and solution of a homogeneous ODE.
(q) Use of the method of undetermined coefficients to solve inhomogeneous linear
ODEs.
(r) Ordinary and regular singular points of a linear differential equation (and the
form of the series solutions for these).
(s) Definition of a Hermitian differential operator.
(t) Sturm Lioville differential equation and related orthogonality of eigenfunctions.
(u) Use of the Wronskian to check if two solutions are independent.
(v) The definition of generating functions and how to use these to find recurrence
relations.
(w) The completeness relation.
(x) The definition of the Green function in solving inhomogeneous problems.
(y) The eigenfunction expansion of the Green function.
(z) The form of the wave, Laplace, and diffusion equations in 1,2, and 3 dimen-
sions.
(aa) The solution of the 1D wave equation.
(bb) The use of separation of variables. Specifically in 3D spherical coordinates
and in 2D polar coordinates.
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2.3.2 my �nal exam cheat sheet

Solve for ψ(r, θ, φ, t) where ∂ψ2

∂t2
= c2∇ψ (Wave PDE 3D spherical coordinates)

Let ψ = T (t)X(r, θ, φ). First
seperation gives the following two
equations

T ′′(t) + c2k2T (t) = 0

∇X + k2X = 0

k2 is first
separation constant

T (t) = cos(ωt) + sin(ωt)
solution

Helmholtz eqution

Let X = R(r)Θ(θ)Φ(φ) and apply separation again.

Φ′′ +m2Φ = 0

solve first, m2 is separation constant

Φ (φ) =

{
eimφ

e−imφ

}

(
1− x2

)
Θ′′ − 2xΘ′ +

(
l (l + 1)− m2

1+x2

)
Θ = 0

angular equation.
Second sepration. Use
l(l + 1) as separation
constant.

Associated legendre equation
Note: l is integer and −l ≤ m ≤ l

Θ (x) =

{
Pml (x)
Qml (x)

}associated Legendre
polynomial of first kind

associated Legendre
polynomial of second kind.
not used. blows up x = ±1

x = cos θ

r2R′′ + 2rR′ + (r2k2 − l(l + 1))R = 0

Radial equation
(Bessel like)

Can be converted to standard Bessel ODE
by some transformation (not shown)

R(r) =

{
jl(kr)
yl(kr)

}shperical bessel
function first kind

shperical bessel function
second kind. Not used as it
blows up at r = 0

Final solution is summation of fundamental solution∑
jl (kr)P

m
l (cos(mφ) + sin(mφ)) (cosωt+ sinωt)

⇓

ω = ck

Solve for ψ(r, φ, t) where ∂ψ2

∂t2
= c2∇ψ (Wave PDE in 2D disk, polar coordinates).

Membrane is fixed on edge of disk. Radius a.

Let ψ = T (t)X(r, φ). First
seperation gives the following two
equations

T ′′(t) + c2k2T (t) = 0

∇X + k2X = 0

k2 is first
separation constant

T (t) = cos(ωt) + sin(ωt)
solution

Helmholtz eqution

ω = ckmn

Let X = R(r)Φ(φ) and apply separation again.

Φ′′ +m2Φ = 0

solve first, m2 is separation constant

Φ (φ) =

{
eimφ

e−imφ

}
solution

Due to periodicity, m must be integer.

r2R′′ + rR′ + (r2k2 −m2)R = 0

Radial equation

Bessel ODE

solution
R(r) =

{
Jm(kr)
Ym(kr)

}Bessel function order m

Bessel function second kind.
Not used as blow up at r = 0

Jm(ka) = 0 from boundary conditions. This fixes k. Let Zmn be the nnt zero
of the Bessel Jm function. Therefore kmn = Zmn

a
are allowed values of k.

ψ ∝ Jm(kmnr) (cos(mφ) + sin(mφ)) This gives rise to modal shapes
ψ(r, φ, t) =

∑
Jm(kmnr) (cos(mφ) + sin(mφ)) (cos(ckmnt) + sin(ckmnt))

Nasser M. Abbasi December 14, 2018

wave 1D: ∂ψ2

∂t2 = c2 ∂ψ
2

∂x2

ψ(x, t) = 1
2 (f0(x− ct) + f0(x+ ct)) + 1

2c

∫ x+ct
x−ct g0(s) ds

Where f0(x) is initial position of string and g0(x) is
initial velocity

Laplacian in 2D polar

∇u = ∂u2

∂r2 + 1
r
∂u
∂r + 1

r2
∂u2

∂φ2

Bessel: x2y′′ + xy′ + (x2 −m2)y = 0, W = C
x . When m

not intger, solutions Jm(x), J−m(x). When m integer,
solutions Jm(x), Ym(x)

Legendre: (1− x2)y′′ − 2xy′ + n(n+ 1)y = 0,

W = C
1−x2 . Solutions Pn(x), Qn(x). Where Q blows

at ±1

Sturm-Lioville: (py′)′ − qy + λry = 0, operator
L[y] = −(py′)′ + q. When q = 0, equation becomes
L[y] = λry. Inner product < ui, uj >=

∫
ūiuj dx

Green function. For boundary value problem y′′ + y = f (x) write it as

G (x, x0) =

{
Ay1 (x) 0 < x < x0

By2 (x) x0 < x < L

Where y1 (x) is one of the solutions to y′′ + y = 0 that satisfies left BC and y2 (x) is one which satifies right BC. Then solve for A,B from
contuinity condition Ay1 (x0) = By2 (x0) and jump discontinuty By′2 (x0)−Ay′1 (x0) = −1

p(x)
where p (x) is from SL form. (−1) for the above.

Then flipe the x, x0 roles and then do y (x) =
∫ x

0
G (x0, x) f (x0) dx0 +

∫ L
x
G (x0, x) f (x0) dx0

Variation of parameters yp (x) = −y1 (x)
∫ y2(x)f(x)

W (x)
dx+ y2 (x)

∫ y1(x)f(x)
W (x)

dx

Fourier series f (x) = A0

2 +
∑∞
n=0An cos

(
2π
T nx

)
+B2 sin

(
2π
T nx

)
where An = 2

T

∫ T
2

−T2
f (x) cos

(
2π
T nx

)
and

Bn = 2
T

∫ T
2

−T2
f (x) sin

(
2π
T nx

)
. Complex form is f (x) =

∑∞
n=−∞ Cne

i 2πT nx, Cn =
∫ T

2

−T2
f (x) e−i

2π
T nxdx.

Fourier transform f (x) = 1
2π

∫∞
−∞ F (ω) eiωxdω and F (ω) =

∫∞
−∞ f (x) e−iωxdx. Parsvales:

∫∞
−∞ |f (x)|2 dx = 1

2π

∫∞
−∞ |F (ω)|2 dω

Wronskian W (x) = det[[y1, y2], [y′1, y
′
2]] =

Ce−
∫
p(x) dx Where p is from

y′′ + py′ + qy = 0

Bernuli y′ + f (x) y = g (x) yn, where n 6= 0, 1. Divide
by yn → 1

yn y
′ + f (x) y1−n = g (x) and let

v = y1−n → v′ = (1− n) y−ny′. converts ODE to
separable in v (x)
isobaric given y weight m and x weight 1. each term must
have the same weight if we can find m. Then let y = vxm.
Find dy

dx
. sub into ODE to get rid of y. Separable in v.

solve.
Exact Write ode as Mdx+Ndx = 0 then check if
∂M
∂y

= ∂N
∂x

. If so then set up 2 equations ∂Φ
∂x

= M, ∂Φ
∂y

= N .

Integrate the first to get Φ =
∫
Mdx+ f (y), differentiate

this w.r.t y, and compare to ∂Φ
∂y

= N and solve for f (y).
Solution is Φ (x, y) = c

Sturm-Liouville To convert ay′′ + by′ + (c+ λd)y = 0 to(
p (x) dy

dx

)′ − q (x) y (x) + λr (x) y (x) = 0 use:

p (x) = e
∫ b(x)
a(x)

dx
and q (x) = −p (x) c(x)

a(x)
and r (x) = p(x)

a(x)
d

generating functions. Bessel g (x.t) = e
x
2 (t− 1

t ), then write
g (x, t) =

∑∞
n=−∞ Jn (x) tn. Find

An (x) = 1
2πi

∮
e
x
2 (t− 1

t )
tn+1 dt = 1

π

∫ π
0

cos (nθ − x sin θ) dθ. To

find recusive relations, do ∂g
∂t
, ∂g
∂x

add/subtract we get
J ′n (x) = Jn−1 (x)− n

x
Jn (x) and

J ′n (x) = n
x
Jn (x)− Jn−1 (x) For Legendre use

g (x, t) = 1√
1−2xt−t2

=
∑∞
n=0 Pn (x) tn. Do ∂g

∂t
, ∂g
∂x

add/subtract we getP ′n+1 (x) = (n+ 1)Pn (x) + xP ′n (x)
and P ′n−1 (x) = −nPn (x) + xP ′n (x)
Pn (x) = 1

2nn!
dn

dxn

(
x2 − 1

)n
. Special values,

P0 (x) = 1, P1 (x) = x, P2 (x) = 1
2

(
3x2 − 1

)
Laplace PDE on disk:
y (x) = A0 +

∑
rn (Cn cosnθ + kn sinnθ) where

A0 = 1
2π

∫ 2π

0
f (θ) dθ and

Cna
n = 1

π

∫ 2π

0
f (θ) cosnθdθ and

kna
n = 1

π

∫ 2π

0
f (θ) sinnθdθ where a is radius and

f (θ) is boundary condition.

log (z) = ln |z|+ i (θ0 + 2nπ)

Euler ode r2y′′+ ry′+ y = 0, let y = rα

Polynomial ODE. y′ (x) = f (ax+ by + c). Let
V = ax+ by+ c, then dV = adx+ bdy, converts it to

separable dy
dv = f(v)

a+bf(v)
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Eigenfunction expansion. Startting from L [y]− ky = f (x), assuming y (x) =
∑
n CnΦn (x) where Φn (x) eigenfunctions found by solving

L [y]− λy = 0 with homogenous B.C. Then f (x) =
∑
n dnΦn (x). Subtituting in the ode and use that L [y] = λy results in∑

n (λn − k)CnΦn (x) =
∑
n dnΦn (x). But dn = 〈Φn (x) , f (x)〉 = 2

L

∫ L
0

Φn (x) f (x) dx. The 2
L due to normalization. This gives

Cn = dn
λn−k . Now that Cn is found the solution is y (x) =

∑
n

dn
λn−kΦn (x) =

∑ 〈Φn(x),f(x)〉
λn−k Φn (x) or y (x) =

∑ Φn(x)
λn−k

∫
Φn (x′) f (x′) dx′

or y (x) =
∫ ∑ Φn(x′)Φn(x′)

λn−k f (x′) dx′. Compare to y (x) =
∫ x

G (x, x′) f (x′) dx′ shows that G (x, x′) =
∑ Φn(x′)Φn(x′)

λn−k . This is called
Green function eigenfunction expansion. This assumes Φn are normalized so weight is 1.

completeness relation
∫
ūiujr (x) dx = δij . f =

∑
CnΦn (x) and r (x′)

∑
n Φn (x) Φn (x′) = δ (x− x′). If f (x) = δ (x− x′), then

L [G (x, x′)]− kG (x, x′) = δ (x− x′) Operator is Hermite if
∫
ūL [v] dx =

∫
v̄L [u] dx

Asymptotic series S (z) = c0 + c1
z + c2

z2 + · · · is series expansion of f (z) gives good approximation for large z. we truncate S (z) before

it becomes divergent. n is the number of terms in Sn (z). It is optimally truncated when n ≈ |z|2. S (x) has the following two
important properties

1. lim|z|→∞ zn (f (z)− Sn (z)) = 0 for fixed n.

2. limn→∞ zn (f (z)− Sn (z)) =∞ for fixed z.

S (z) ∼ f (z) when S (z) is the asymptotic series expansion of f (z) for large z. common method to find S (z) is by integration by parts

Cauchy theoreom. Cauchy-Goursat: If f (z) is analytic on and inside closed contour C then

∮
C

f (z) dz = 0. But remember that if∮
C

f (z) dz = 0 then this does not necessarily imply f (z). If f (z) is analytic on and inside C then and z0 is a point in C then

2πif (z0) =

∮
C

f(z)
z−z0 dz and 2πif ′ (z0) =

∮
C

f(z)

(z−z0)2
dz and 2πi

n! f
(n) (z0) =

∮
C

f(z)

(z−z0)n+1 dz

Laurent series f (z) =
∑∞
n=0 an (z − z0)

n
+
∑∞
n=1

bn
(z−z0)n where an = 1

2πi

∮
f(z)

(z−z0)n+1 dz and bn = 1
2πi

∮
f(z)

(z−z0)−n+1 dz. Power series of

f (z) around z0 is
∑∞

0 an (z − z0)
n

where an = 1
n! f

(n) (z)
∣∣
z=z0

For Laurent series, lets say singularity is at z = 0 and z = 1. To expand

about z = 0, get f (z) to look like 1
1−z and use geometric series for |z| < 1. To expand about z = 1, there are two choices, to the inside

and to the outside. For the outside, i.e. |z| > 1, get f (z) to have 1
1− 1

z

form, this now valid for |z| > 1.

Euler Gamma function
Γ (z) =

∫∞
0
tz−1e−tdt Re (z) > 0 To

extend Γ (z) to the left half plane, i.e. for
negative values. Let us define, using the
above recursive formula
Γ̄ (z) = Γ(z+1)

z
Re (z) > −1

Γ (z) = (z − 1) Γ (z − 1) Re (z) > 1

Γ (1) = 1

Γ (n) = (n− 1)!

Γ (n+ 1) = n!

Γ

(
1

2

)
=
√
π

Γ (z + 1) = zΓ (z) recursive formula

Γ (z̄) = Γ (z)

Γ

(
n+

1

2

)
=

1 · 3 · 5 · · · (2n− 1)

2n
√
π

Γ (x) Γ (1− x) =

∫ ∞
0

tx−1

1 + t
dt 0 < x < 1

=
π

sin (πx)

If f (z) satisfies CR
everywhere in that region
then it is analytic. Let
f (z) = u (x, y) + iv (x, y),
then these two equations
in Cartesian coordinates
are ∂u

∂x
= ∂v

∂y
and

− ∂u
∂y

= ∂v
∂x

Sometimes it is
easier to use the polar
form of these. Let
f (z) = r cos θ + i sin θ,
then the equations become
∂u
∂r

= 1
r
∂v
∂θ

and − 1
r
∂u
∂θ

= ∂v
∂r

Green’s Theorem says∫
C Pdx+Qdy =

∫
D

(
∂Q
∂x
− ∂P

∂y

)
dA

To
∫
C f (z) dz where C is some open

path, i.e. not closed, such as a straight
line or a half circle arc. Use
parameterization. This converts the
integral to line integration. If C is
straight line, use standard t
parameterization,
x (t) = (1− t)x0 + tx1 and
y (t) = (1− t) y0 + ty1 where (x0, y0)
in the line initial point and (x1, y1) is
the line end point. This works for
straight lines. Use the above and
rewrite z = x+ iy as
z (t) = x (t) + iy (t) and plug-in in this
z (t) in f (z) to obtain f (t), then the
integral becomes∫

C
f (z) dz =

∫ t=1

t=0
f (t) z′ (t) dt

Now evaluate this integral.

If pole of order n. to find residue, use

Residue (z0) = lim
z→z0

dn−1

dzn
(z − z0)n

(n− 1)!
f (z)

residue, use
R (z0) = limz→z0 (z − z0) f (z)

ex = 1 + x+
x2

2!
+
x3

3!
+ · · ·

ln (1 + x) = x− x2

2
+
x3

3
− x4

4
+ · · · |x| < 1

1

2
ln

(
1 + x

1− x

)
= x+

x3

3
+
x5

5
+
x7

7
− · · · |x| < 1

sinx = x− x3

3!
+ · · ·

cosx = 1− x2

2
+
x4

4!
+ · · ·

∫
x cos ax =

cos ax

a2
+
x sin ax

a∫
x sin ax =

sin ax

a2

x cos ax

a∫
sin2 ax =

x

2
−

sin 2ax

4a∫
cos2 ax =

x

2
+

sin 2ax

4a∫
sin ax cos ax =

sin2 ax

2a∫
1

ax+ b
=

1

a
ln (ax+ b)∫

x

ax+ b
=
x

a
−

b

a2
ln (ax+ b)∫

1
√

1− x2
= arcsin (x)∫ −1

√
1− x2

= arccos (x)∫
1

1 + x2
= arctan (x)

sinx =
1

2

eix − e−ix

2i

cosx =
1

2

eix + e−ix

2

sin (A±B) = sinA cosB ± cosA sinB

cos (A±B) = cosA cosB ∓ sinA sinB

sin 2A = 2 sinA cosA

cos 2A = cos2 A− sin2 A = 1− 2 sin2 A

sinA sinB =
1

2
(cos (A−B)− cos (A+B))

cosA cosB =
1

2
(cos (A+B) + cos (A+B))

sinA cosB =
1

2
(sin (A−B) + sin (A+B))

F.S. (period 2L).∫ L
0 sin2

(
π
L
x
)
dx = L

2
and∫ L

−L sin2
(
π
L
x
)
dx = L

∫
xeax =

eax

a

(
x− 1

a

)
∫
x2eax =

eax

a

(
x2 − 2

a
x+

2

a2

)
∫

sin bxeax =
eax

(a2 + b2)
(a sin bx− b cos bx)∫

lnx = x lnx− x

Geometric series:∑N
n=0 r

n = 1 + r + r2 + r3 + · · ·+ rN = 1−rN−1

1−r and∑∞
n=0 r

n = 1 + r + r2 + r3 + · · · = 1
1−r |r| < 1 and∑∞

n=0 (−1)n rn = 1− r + r2 − r3 + · · · = 1
1+r

|r| < 1

Binomial series: (x+ y)n =

xn +nxn−1y+
n(n−1)

2!
xn−2y2 +

n(n−1)(n−2)
3!

xn−3y3 + · · ·
From this can generate all other special cases. For

1

(1 + x)
= 1− x+ x2 − x3 + · · · |x| < 1

1

(1− x)
= 1 + x+ x2 + x3 + · · · |x| < 1

z = rei(θ+2nπ), hence

z
1
2 = r

1
2 e

iθ
2 e2nπ for

n = 0, 1. Hence 2
roots. n = 0 gives
principle part

log(z) =
ln |z|+ i(θ0 + 2nπ)
n = 0 principle partzc = ec ln z

∫ ∞
0

e−ax cosλx =
a

a2 + λ2∫ ∞
0

e−ax sinλx =
λ

a2 + λ2

if e−y ≤ 1 does not work, use Jordan inquality
and use e−y ≤ π

R
for contour integration

sin θ =
z − z−1

2i

cos θ =
z + z−1

2

Gaussian
∫∞
−∞ e−ax

2
dx =

√
π
x



Chapter 3

HWs

3.1 HW 1

3.1.1 Problem 1

Part a

For what values of 𝑥 does the following series converge. 𝑓 (𝑥) = 1 + 9
𝑥2 +

81
𝑥2 +

729
𝑥3 +⋯

answer

The general term of the series is

𝑓 (𝑥) =
∞
�
𝑛=0

�
3
𝑥�

2𝑛

The ratio test can be used to determine convergence. Since all the terms are positive (powers
are even), then the absolute value is not needed.
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𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

𝑎𝑛+1
𝑎𝑛

= lim
𝑛→∞

�3
𝑥
�
2(𝑛+1)

�3
𝑥
�
2𝑛

= lim
𝑛→∞

�3
𝑥
�
2𝑛

�3
𝑥
�
2𝑛 �

3
𝑥�

2

= lim
𝑛→∞

32

𝑥2

=
9
𝑥2

The series converges when 𝐿 < 1, which means 9
𝑥2 < 1 or 𝑥

2 > 9. Therefore it convergence for

|𝑥| > 3

Part b

Does the following series converges or diverges? ∑∞
𝑛=1 ln �1 + 1

𝑛
�

answer

The terms are {ln (2) , ln �2 + 1
2
� , ln �2 + 1

3
� , ln �2 + 1

4
� ,⋯}.

Since the terms become monotonically decreasing after some 𝑛 (after the second term in
this case), the integral test could be used. Let

𝐼 = � ln �1 +
1
𝑥�
𝑑𝑥

The above indefinite integral is first evaluated. Since ln �1 + 1
𝑥
� = ln �1+𝑥𝑥 � = ln (1 + 𝑥) − ln (𝑥),

the above can be written as

𝐼 = � ln (1 + 𝑥) 𝑑𝑥 −� ln (𝑥) 𝑑𝑥 (1)

To evaluate the first integral in (2) ∫ ln (1 + 𝑥) 𝑑𝑥, let 𝑢 = 1 + 𝑥, then 𝑑𝑢 = 𝑑𝑥, therefore

� ln (1 + 𝑥) 𝑑𝑥 = � ln (𝑢) 𝑑𝑢

= 𝑢 ln (𝑢) − 𝑢
Hence

� ln (1 + 𝑥) 𝑑𝑥 = (1 + 𝑥) ln (1 + 𝑥) − (1 + 𝑥) (2)
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The second integral in (1) is

� ln (𝑥) 𝑑𝑥 = 𝑥 ln (𝑥) − 𝑥 (3)

Using (2,3) back into (1) gives

𝐼 = ((1 + 𝑥) ln (1 + 𝑥) − (1 + 𝑥)) − (𝑥 ln (𝑥) − 𝑥)
= (1 + 𝑥) ln (1 + 𝑥) − 1 − 𝑥 − 𝑥 ln (𝑥) + 𝑥
= (1 + 𝑥) ln (1 + 𝑥) − 𝑥 ln (𝑥) − 1 (4)

Now that the indefinite integral is evaluated, the limit is taken using

𝑅 = lim
𝑁→∞

�
𝑁

ln �1 +
1
𝑥�
𝑑𝑥

Only upper limit is used following the book method1. Using the result found in (4), the
above becomes

𝑅 = lim
𝑁→∞

[(1 + 𝑥) ln (1 + 𝑥) − 𝑥 ln (𝑥) − 1]𝑁

The above becomes

𝑅 = lim
𝑁→∞

[(1 + 𝑥) ln (1 + 𝑥) − 𝑥 ln (𝑥) − 1]𝑁

= lim
𝑁→∞

[(1 + 𝑁) ln (1 + 𝑁) − 𝑁 ln (𝑁) − 1]

= lim
𝑁→∞

[ln (1 + 𝑁) + 𝑁 ln (1 + 𝑁) − 𝑁 ln (𝑁) − 1]

= lim
𝑁→∞

�ln (1 + 𝑁) + 𝑁 ln �
1 + 𝑁
𝑁 � − 1�

= lim
𝑁→∞

ln (1 + 𝑁) + lim
𝑁→∞

𝑁 ln �
1 + 𝑁
𝑁 � − 1 (5)

But

lim
𝑁→∞

𝑁 ln �
1 + 𝑁
𝑁 � = lim

𝑁→∞

ln �1+𝑁𝑁 �
1
𝑁

This gives indeterminate form 1/0. So using L’Hospital’s rule, by taking derivatives of nu-
merator and denominator gives

lim
𝑁→∞

ln �1+𝑁𝑁 �
1
𝑁

= lim
𝑁→∞

�1− 1+𝑁
𝑁 �

1+𝑁

− 1
𝑁2

= lim
𝑁→∞

−
�1 − 1+𝑁

𝑁
�𝑁2

1 + 𝑁
= lim
𝑁→∞

−
(𝑁 − 1 − 𝑁)𝑁

1 + 𝑁
= lim
𝑁→∞

𝑁
1 + 𝑁

= 1

1See page 131, second edition. Mathematical methods for physics and engineering. Riley, Hobson and
Bence.
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Therefore lim𝑁→∞𝑁 ln �1+𝑁𝑁 � = 1. Using this result in (5) results in

𝑅 = lim
𝑁→∞

ln (1 + 𝑁) + 1 − 1

= lim
𝑁→∞

ln (1 + 𝑁)

= ∞

Therefore, by the integral test the series diverges.

3.1.2 Problem 2

Find closed form for the series 𝑓 (𝑥) = ∑∞
𝑛=0 𝑛

2𝑥2𝑛 by taking derivatives of variant of 1
1−𝑥 . For

what values of 𝑥 does the series converge?

answer

𝑓 (𝑥) = 𝑥2 + 4𝑥4 + 9𝑥6 + 16𝑥8 + 25𝑥10 +⋯

Observing that

𝑛2𝑥2𝑛 =
𝑥
2
𝑑
𝑑𝑥
�𝑛𝑥2𝑛�

Therefore the sum can be written as

𝑓 (𝑥) =
𝑥
2

∞
�
𝑛=0

𝑑
𝑑𝑥
�𝑛𝑥2𝑛�

=
𝑥
2
𝑑
𝑑𝑥

∞
�
𝑛=0

𝑛𝑥2𝑛

=
𝑥
2
𝑑
𝑑𝑥
�𝑥2 + 2𝑥4 + 3𝑥6 + 4𝑥8 + 5𝑥10 +⋯�

=
𝑥
2
𝑑
𝑑𝑥
�𝑥2 �1 + 2𝑥2 + 3𝑥4 + 4𝑥6 + 5𝑥8 +⋯�� (1)

To find what 1 + 2𝑥2 + 3𝑥4 + 4𝑥6 +⋯ sums to, we compare it to the binomial series

(1 + 𝑧)𝛼 = 1 + 𝛼𝑧 +
𝛼 (𝛼 − 1) 𝑧2

2!
+
𝛼 (𝛼 − 1) (𝛼 − 2) 𝑧3

3!
+⋯ = 1 + 2𝑥2 + 3𝑥4 + 4𝑥6 + 5𝑥8 +⋯

Hence, by setting

𝑧 = −𝑥2

𝛼 = −2

shows they are the same. Therefore

�1 − 𝑥2�
−2
= 1 + (−2) �−𝑥2� +

(−2) (−3) �−𝑥2�
2

2!
+
(−2) (−3) (−4) �−𝑥2�

3

3!
+⋯

= 1 + 2𝑥2 + 3𝑥2 + 3𝑥4 +⋯
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The above is valid for |𝑧| < 1 which implies 𝑥2 < 1 or |𝑥| < 1. Hence

1 + 2𝑥2 + 3𝑥4 + 4𝑥6 +⋯ = �1 − 𝑥2�
−2

Using the above result in (1) gives

𝑓 (𝑥) =
𝑥
2
𝑑
𝑑𝑥

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑥2

�1 − 𝑥2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
𝑥
2

⎛
⎜⎜⎜⎜⎜⎜⎝

4𝑥3

�1 − 𝑥2�
3 +

2𝑥

�1 − 𝑥2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
2𝑥4

�1 − 𝑥2�
3 +

𝑥2

�1 − 𝑥2�
2

=
2𝑥4 + 𝑥2 �1 − 𝑥2�

�1 − 𝑥2�
3

=
2𝑥4 + 𝑥2 − 𝑥4

�1 − 𝑥2�
3

=
𝑥4 + 𝑥2

�1 − 𝑥2�
3

Therefore

𝑓 (𝑥) =
𝑥2�𝑥2+1�

�1−𝑥2�
3

Where the above converges for |𝑥| < 1, from above, where we used Binomial expansion which
is valid for |𝑥| < 1. This result could also be obtained by using the ratio test.

lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

� = lim
𝑛→∞

�
(𝑛 + 1)2 𝑥2(𝑛+1)

𝑛2𝑥2𝑛 �

Since all powers are even, the absolute value is not needed. The above becomes

lim
𝑛→∞

𝑎𝑛+1
𝑎𝑛

= lim
𝑛→∞

(𝑛 + 1)2 𝑥2

𝑛2

= 𝑥2 lim
𝑛→∞

(𝑛 + 1)2

𝑛2
= 𝑥2

Therefore for the series to converge, we know that 𝑎𝑛+1
𝑎𝑛

must be less than 1. Hence 𝑥2 < 1 or
|𝑥| < 1, which is the same result as above.
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3.1.3 Problem 3

Part a

Find the sum of 1 + 1
4 −

1
16 −

1
64 +

1
256 +

1
1024 −⋯

solution

We would like to combine each two consecutive negative terms and combine each two
consecutive positive terms in the series in order to obtain an alternating series which is
easier to work with. but to do that, we first need to check that the series is absolutely
convergent. The |𝑎𝑛| term is 1

4𝑛 , therefore

𝐿 = lim
𝑛→∞

�
𝑎𝑛+1
𝑎𝑛

�

= lim
𝑛→∞

�
�

1
4𝑛+1
1
4𝑛

�
�

= lim
𝑛→∞

�
4𝑛

4𝑛+1
�

= �
1
4
�

Since |𝐿| < 1 then the series is absolutely convergent so we are allowed now to group (or
rearrange) terms as follows

𝑆 = �1 +
1
4�
− �

1
16
+
1
64�

+ �
1
256

+
1

1024�
− �

1
4096

+
1

16384�
+⋯

=
5
4
−
5
64
+

5
1024

−
5

16 384
+⋯

=
5
4 �
1 −

1
16
+

1
256

−
1

4096
+⋯�

=
5
4

∞
�
𝑛=0

(−1)𝑛

42𝑛

=
5
4

∞
�
𝑛=0

(−1)𝑛 �
1
16�

𝑛

(1)

But ∑∞
𝑛=0 (−1)

𝑛 � 1
16
�
𝑛
has the form ∑∞

𝑛=0 (−1)
𝑛 𝑟𝑛 where 𝑟 = 1

16 and since |𝑟| < 1 then by the

binomial series
∞
�
𝑛=0

(−1)𝑛 𝑟𝑛 = 1 − 𝑟 + 𝑟2 − 𝑟3 +⋯

=
1

1 + 𝑟
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Therefore the sum in (1) becomes, using 𝑟 = 1
16

𝑆 =
5
4

⎛
⎜⎜⎜⎜⎜⎝

1
1 + 1

16

⎞
⎟⎟⎟⎟⎟⎠

=
5
4 �
16
17�

Hence

𝑆 = 20
17

Or

𝑆 ≈ 1.176

Part b

Find the sum of 1
1! +

8
2! +

16
3! +

64
4! +⋯

solution

The sum can be written as

𝑆 =
∞
�
𝑛=1

𝑛3

𝑛!

=
∞
�
𝑛=1

𝑛𝑛2

𝑛!

But 𝑛
𝑛! =

𝑛
(𝑛−1)!𝑛 =

1
(𝑛−1)! and the above reduces to

𝑆 =
∞
�
𝑛=1

𝑛2

(𝑛 − 1)!
Let 𝑛 − 1 = 𝑚 or 𝑛 = 𝑚 + 1. The above becomes

𝑆 =
∞
�
𝑚=0

(𝑚 + 1)2

𝑚!

=
∞
�
𝑛=0

(𝑛 + 1)2

𝑛!

=
∞
�
𝑛=0

𝑛2 + 1 + 2𝑛
𝑛!

=
∞
�
𝑛=0

𝑛2

𝑛!
+

∞
�
𝑛=0

1
𝑛!
+ 2

∞
�
𝑛=0

𝑛
𝑛!

(1)
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Considering the first term ∑∞
𝑛=0

𝑛2

𝑛! which can be written as
∞
�
𝑛=0

𝑛2

𝑛!
=

∞
�
𝑛=1

𝑛2

𝑛!

=
∞
�
𝑛=1

𝑛
(𝑛 − 1)!

(2)

Again, letting Let 𝑛 − 1 = 𝑚 then ∑∞
𝑛=1

𝑛
(𝑛−1)! becomes ∑∞

𝑚=0
𝑚+1
𝑚! . Hence (2) becomes

∞
�
𝑛=0

𝑛2

𝑛!
=

∞
�
𝑚=0

𝑚 + 1
𝑚!

=
∞
�
𝑛=0

𝑛 + 1
𝑛!

=
∞
�
𝑛=0

𝑛
𝑛!
+

∞
�
𝑛=0

1
𝑛!

=
∞
�
𝑛=1

𝑛
𝑛!
+

∞
�
𝑛=0

1
𝑛!

But ∑∞
𝑛=1

𝑛
𝑛! = ∑∞

𝑛=1
1

(𝑛−1)! . Letting 𝑛 − 1 = 𝑚, this becomes ∑∞
𝑚=0

1
𝑚! = ∑∞

𝑛=0
1
𝑛!and the above

reduces to
∞
�
𝑛=0

𝑛2

𝑛!
=

∞
�
𝑛=0

1
𝑛!
+

∞
�
𝑛=0

1
𝑛!

= 𝑒 + 𝑒
= 2𝑒 (3)

The above takes care of the first term in (1). Therefore (1) can now be written as

𝑆 =
∞
�
𝑛=0

𝑛2

𝑛!
+

∞
�
𝑛=0

1
𝑛!
+ 2

∞
�
𝑛=0

𝑛
𝑛!

= 2𝑒 + 𝑒 + 2
∞
�
𝑛=0

𝑛
𝑛!

= 3𝑒 + 2
∞
�
𝑛=0

𝑛
𝑛!

But ∑∞
𝑛=0

𝑛
𝑛! = ∑∞

𝑛=1
𝑛
𝑛! and ∑∞

𝑛=1
𝑛
𝑛! was calculated above. It can be written as ∑∞

𝑛=0
1
𝑛! . The

above now becomes

𝑆 = 3𝑒 + 2 �
∞
�
𝑛=0

1
𝑛!�

= 3𝑒 + 2𝑒

Therefore

𝑆 = 5𝑒

or

𝑆 ≈ 13.5914
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3.1.4 key solution to HW 1
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3.2 HW 2

3.2.1 Problem 1

Find all possible values for (put into 𝑥 + 𝑖𝑦 form)

1. log �1 + √3𝑖�

2. �1 + √3𝑖�
2𝑖

Answer

Part 1

Let 𝑧 = 𝑥 + 𝑖𝑦, where here 𝑥 = 1, 𝑦 = 3, then |𝑧| = �𝑥2 + 𝑦2 = √1 + 3 = 2 and arg (𝑧) = 𝜃0 =

arctan �𝑦𝑥� = arctan �√31 � =
𝜋
6 = 60

0. The function log (𝑧) is infinitely multi-valued, given by

log (𝑧) = ln |𝑧| + 𝑖 (𝜃0 + 2𝑛𝜋) 𝑛 = 0, ±1, ±2,⋯ (1)

Where 𝜃0 is the principal argument, which is 600 in this example, which is when 𝑛 = 0. This
is done to make log (𝑧) single valued. This makes the argument of 𝑧 restricted to −𝜋 < 𝜃0 < 𝜋.
This makes the negative real axis the branch cut, including the origin. To find all values,
we simply use (1) for all possible 𝑛 values other than 𝑛 = 0. Each di�erent 𝑛 values gives
di�erent branch cut. This gives, where ln |𝑧| = ln (2) in all cases, the following

log (𝑧) = ln (2) + 𝑖 �𝜋
3
� 𝑛 = 0

= ln (2) + 𝑖 �𝜋
3
+ 2𝜋� 𝑛 = 1

= ln (2) + 𝑖 �𝜋
3
− 2𝜋� 𝑛 = −1

= ln (2) + 𝑖 �𝜋
3
+ 4𝜋� 𝑛 = 2

= ln (2) + 𝑖 �𝜋
3
− 4𝜋� 𝑛 = −2

⋮

Or

log (𝑧) = 0.693 + 1.047𝑖
= 0.693 + 7.330𝑖
= 0.693 − 5.236𝑖
= 0.693 + 13.614𝑖
= 0.693 − 11.519𝑖
⋮

These are in �𝑥 + 𝑖𝑦� form. There are infinite number of values. Picking a specific branch
cuts (i.e. specific 𝑛 value), picks one of these values. The principal value is one associated
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with 𝑛 = 0.

Part 2

Let 𝑧 = 1 + 𝑖√3, hence

𝑓 (𝑧) = 𝑧2𝑖

= exp (2𝑖 log (𝑧))
= exp (2𝑖 (ln |𝑧| + 𝑖 (𝜃0 + 2𝑛𝜋))) 𝑛 = 0, ±1, ±2,⋯

Where in this example, as in first part, ln |𝑧| = ln (2) = 0.693 and principal argument is
𝜃0 =

𝜋
3 = 60

0. Hence the above becomes

𝑓 (𝑧) = exp �2𝑖 �ln (2) + 𝑖 �𝜋
3
+ 2𝑛𝜋���

= exp �2𝑖 ln (2) − �
2𝜋
3
+ 4𝑛𝜋��

= exp �𝑖 ln 4 − �
2𝜋
3
+ 4𝑛𝜋��

= exp (𝑖 ln 4) exp �− �
2𝜋
3
+ 4𝑛𝜋��

= 𝑒
−� 2𝜋3 +4𝑛𝜋� (cos (ln 4) + 𝑖 sin (ln 4))

= 𝑒
−� 2𝜋3 +4𝑛𝜋� cos (ln 4) + 𝑖𝑒−�

2𝜋
3 +4𝑛𝜋� sin (ln 4)

Which is now in the form of 𝑥 + 𝑖𝑦. First few values are

𝑓 (𝑧) = 𝑒
−� 2𝜋3 � cos (ln 4) + 𝑖𝑒−�

2𝜋
3 � sin (ln 4) 𝑛 = 0

= 𝑒
−� 2𝜋3 +4𝜋� cos (ln 4) + 𝑖𝑒−�

2𝜋
3 +4𝜋� sin (ln 4) 𝑛 = 1

= 𝑒
−� 2𝜋3 −4𝜋� cos (ln 4) + 𝑖𝑒−�

2𝜋
3 −4𝜋� sin (ln 4) 𝑛 = −1

= 𝑒
−� 2𝜋3 +8𝜋� cos (ln 4) + 𝑖𝑒−�

2𝜋
3 +8𝜋� sin (ln 4) 𝑛 = 2

= 𝑒
−� 2𝜋3 −8𝜋� cos (ln 4) + 𝑖𝑒−�

2𝜋
3 −8𝜋� sin (ln 4) 𝑛 = −2

⋮

Or

𝑓 (𝑧) = 0.0226 + 𝑖0.121
= 7.878 × 10−8 + 𝑖4.222 × 10−7

= 6478 + 𝑖34713
= 2.748 × 10−13 + 𝑖1.472 × 10−12

= 1.858 × 109 + 𝑖9.954 × 109

⋮
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3.2.2 Problem 2

Given that 𝑢 �𝑥, 𝑦� = 3𝑥2𝑦−𝑦3 find 𝑣 �𝑥, 𝑦� such that 𝑓 (𝑧) is analytic. Do the same for 𝑢 �𝑥, 𝑦� =
𝑦

𝑥2+𝑦2

Solution

Part (1)

𝑢 �𝑥, 𝑦� = 3𝑥2𝑦 − 𝑦3. The function 𝑓 (𝑧) is analytic if it satisfies Cauchy-Riemann equations

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

(1)

−
𝜕𝑢
𝜕𝑦

=
𝜕𝑣
𝜕𝑥

(2)

Applying the first equation gives

6𝑥𝑦 =
𝜕𝑣
𝜕𝑦

Hence, solving for 𝑣 by integrating, gives

𝑣 �𝑥, 𝑦� = 3𝑥𝑦2 + 𝑓 (𝑥) (3)

Is the solution to (3) where 𝑓 (𝑥) is the constant of integration since it is a partial di�erential
equation. We now use equation (2) to find 𝑓 (𝑥). From (2)

− �3𝑥2 − 3𝑦2� =
𝜕𝑣
𝜕𝑥

−3𝑥2 + 3𝑦2 =
𝜕𝑣
𝜕𝑥

But (3) gives 𝜕𝑣
𝜕𝑥 = 3𝑦

2 + 𝑓′ (𝑥), hence the above becomes

−3𝑥2 + 3𝑦2 = 3𝑦2 + 𝑓′ (𝑥)
𝑓′ (𝑥) = −3𝑥2 + 3𝑦2 − 3𝑦2

= −3𝑥2

Integrating gives

𝑓 (𝑥) = �−3𝑥2𝑑𝑥

= −𝑥3 + 𝐶

Therefore, (3) becomes

𝑣 �𝑥, 𝑦� = 3𝑥𝑦2 + 𝑓 (𝑥)

Or

𝑣 �𝑥, 𝑦� = 3𝑥𝑦2 − 𝑥3 + 𝐶
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Where 𝐶 is arbitrary constant. To verify, we apply CR again. Equation (1) now gives

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

6𝑥𝑦 = 6𝑦𝑥

Verified. Equation (2) gives

−
𝜕𝑢
𝜕𝑦

=
𝜕𝑣
𝜕𝑥

−3𝑥2 + 3𝑦2 = −3𝑥2 + 3𝑦2

Verified.

Part (2)

𝑢 �𝑥, 𝑦� = 𝑦
𝑥2+𝑦2 . The function 𝑓 (𝑧) is analytic if it satisfies Cauchy-Riemann equations

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

(1)

−
𝜕𝑢
𝜕𝑦

=
𝜕𝑣
𝜕𝑥

(2)

Applying the first equation gives

−
2𝑥𝑦

�𝑥2 + 𝑦2�
2 =

𝜕𝑣
𝜕𝑦

Hence, solving for 𝑣 by integrating, gives

𝑣 = −2𝑥�
𝑦

�𝑥2 + 𝑦2�
2𝑑𝑦

=
𝑥

𝑥2 + 𝑦2
+ 𝑓 (𝑥) (3)

Is the solution to (3) where 𝑓 (𝑥) is the constant of integration since it is a partial di�erential
equation. equation (2) gives

−
1

𝑥2 + 𝑦2
+

2𝑦2

�𝑥2 + 𝑦2�
2 =

𝜕𝑣
𝜕𝑥
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But (3) gives 𝜕𝑣
𝜕𝑥 =

1
𝑥2+𝑦2 −

2𝑥2

�𝑥2+𝑦2�
2 + 𝑓′ (𝑥), hence the above becomes

−
1

𝑥2 + 𝑦2
+

2𝑦2

�𝑥2 + 𝑦2�
2 =

1
𝑥2 + 𝑦2

−
2𝑥2

�𝑥2 + 𝑦2�
2 + 𝑓

′ (𝑥)

𝑓′ (𝑥) = −
2

𝑥2 + 𝑦2
+
2 �𝑦2 + 𝑥2�

�𝑥2 + 𝑦2�
2

= −
2

𝑥2 + 𝑦2
+

2
�𝑥2 + 𝑦2�

= 0

Hence

𝑓 (𝑥) = 𝐶

where 𝐶 is arbitrary constant. Therefore, (3) becomes

𝑣 �𝑥, 𝑦� = 𝑥
𝑥2+𝑦2 + 𝐶

To verify, CR is applied again. Equation (1) now gives

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

−2𝑥𝑦

�𝑥2 + 𝑦2�
2 =

−2𝑥𝑦

�𝑥2 + 𝑦2�
2

Hence verified. Equation (2) gives

−
𝜕𝑢
𝜕𝑦

=
𝜕𝑣
𝜕𝑥

−
1

𝑥2 + 𝑦2
+

2𝑦2

�𝑥2 + 𝑦2�
2 =

1
𝑥2 + 𝑦2

−
2𝑥2

�𝑥2 + 𝑦2�
2

− �𝑥2 + 𝑦2� + 2𝑦2

�𝑥2 + 𝑦2�
2 =

𝑥2 + 𝑦2 − 2𝑥2

�𝑥2 + 𝑦2�
2

−𝑥2 + 𝑦2

�𝑥2 + 𝑦2�
2 =

−𝑥2 + 𝑦2

�𝑥2 + 𝑦2�
2

Verified.

3.2.3 Problem 3

Evaluate the integral (i) ∮
𝐶

|𝑧|2 𝑑𝑧 and (ii) ∮
𝐶

1
𝑧2𝑑𝑧 along two contours. These contours are

1. Line segment with initial point 1 and fixed point 𝑖
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2. Arc of unit circle with Im (𝑧) ≥ 0 with initial point 1 and final point 𝑖

Solution

Part (1)

y

x

C

1

i

(x0, y0)

(x1, y1)

Figure 3.1: Integration path

First integral We start by finding the parameterization. For line segments that starts at

�𝑥0, 𝑦0� and ends at �𝑥1, 𝑦1�, the parametrization is given by

𝑥 (𝑡) = (1 − 𝑡) 𝑥0 + 𝑡𝑥1
𝑦 (𝑡) = (1 − 𝑡) 𝑦0 + 𝑡𝑦1

For 0 ≤ 𝑡 ≤ 1. Hence for 𝑧 = 𝑥 + 𝑖𝑦, it becomes 𝑧 (𝑡) = 𝑥 (𝑡) + 𝑖𝑦 (𝑡). In this case, 𝑥0 = 1, 𝑦0 =
0, 𝑥1 = 0, 𝑦1 = 1, therefore

𝑥 (𝑡) = (1 − 𝑡)
𝑦 (𝑡) = 𝑡

Using these, 𝑧 (𝑡) is found from

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑖𝑦 (𝑡)
= (1 − 𝑡) + 𝑖𝑡

And

𝑧′ (𝑡) = −1 + 𝑖

Since |𝑧|2 = 𝑥2 + 𝑦2, then in terms of 𝑡 it becomes

|𝑧 (𝑡)|2 = (1 − 𝑡)2 + 𝑡2



62

Hence the line integral now becomes

�
𝐶
|𝑧|2 𝑑𝑧 = �

1

0
|𝑧 (𝑡)|2 𝑧′ (𝑡) 𝑑𝑡

= �
1

0
�(1 − 𝑡)2 + 𝑡2� (−1 + 𝑖) 𝑑𝑡

= (−1 + 𝑖)�
1

0
(1 − 𝑡)2 + 𝑡2𝑑𝑡

= (−1 + 𝑖)�
1

0
1 + 𝑡2 − 2𝑡 + 𝑡2𝑑𝑡

= (−1 + 𝑖)�
1

0
1 + 2𝑡2 − 2𝑡 𝑑𝑡

= (−1 + 𝑖) ��
1

0
𝑑𝑡 +�

1

0
2𝑡2𝑑𝑡 −�

1

0
2𝑡 𝑑𝑡�

= (−1 + 𝑖)
⎛
⎜⎜⎜⎜⎝(𝑡)

1
0 + 2 �

𝑡3

3 �
1

0
− 2 �

𝑡2

2 �
1

0

⎞
⎟⎟⎟⎟⎠

= (−1 + 𝑖) �1 +
2
3
− 2 �

1
2��

Hence

∫
𝐶
|𝑧|2 𝑑𝑧 = 2

3
(𝑖 − 1)

second integral

Using the same parameterization above. But here the integrand is
1
𝑧2
=

1
((1 − 𝑡) + 𝑖𝑡)2

Hence the integral becomes

�
𝐶

1
𝑧2
𝑑𝑧 = �

1

0

1
((1 − 𝑡) + 𝑖𝑡)2

𝑧′ (𝑡) 𝑑𝑡

= (𝑖 − 1)�
1

0

1
((1 − 𝑡) + 𝑖𝑡)2

𝑑𝑡

= (𝑖 − 1) (−𝑖)

Hence

∫
𝐶
1
𝑧2𝑑𝑧 = 1 + 𝑖
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Part (2)

y

x
1

i

r
θ (x0, y0)

(x1, y1)

Figure 3.2: Integration path

First integral Let 𝑧 = 𝑟𝑒𝑖𝜃 then 𝑑𝑧
𝑑𝜃 = 𝑟𝑖𝑒𝑖𝜃. When 𝑧 = 1 then 𝜃 = 0. When 𝑧 = 𝑖 then 𝜃 = 𝜋

2 ,
hence we can parameterize the contour integral using 𝜃 and it becomes

�
𝐶
|𝑧|2 𝑑𝑧 = �

𝜋
2

0
𝑟2 �𝑟𝑖𝑒𝑖𝜃� 𝑑𝜃

= 𝑖𝑟3�
𝜋
2

0
𝑒𝑖𝜃𝑑𝜃

= 𝑖𝑟3 �
𝑒𝑖𝜃

𝑖 �

𝜋
2

0

= 𝑟3 �𝑒𝑖𝜃�
𝜋
2

0

= 𝑟3 �𝑒𝑖
𝜋
2 − 𝑒0�

= 𝑟3 [𝑖 − 1]

But 𝑟 = 1, therefore the above becomes

∫
𝐶
|𝑧|2 𝑑𝑧 = 𝑖 − 1

second integral

Using the same parameterization above. But here the integrand now
1
𝑧2
=

1
𝑟2𝑒𝑖2𝜃
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Therefore

�
𝐶

1
𝑧2
𝑑𝑧 = �

𝜋
2

0

1
𝑟2𝑒𝑖2𝜃

�𝑟𝑖𝑒𝑖𝜃� 𝑑𝜃

=
𝑖
𝑟 �

𝜋
2

0
𝑒−𝑖𝜃𝑑𝜃

=
𝑖
𝑟 �
𝑒−𝑖𝜃

−𝑖 �

𝜋
2

0

=
−1
𝑟
�𝑒−𝑖𝜃�

𝜋
2

0

=
−1
𝑟
�𝑒−𝑖

𝜋
2 − 1�

=
−1
𝑟
(−𝑖 − 1)

But 𝑟 = 1, hence

∫
𝐶
1
𝑧2𝑑𝑧 = 1 + 𝑖

3.2.4 Problem 4

Use the Cauchy integral formula

𝑓 (𝑧0) =
1
2𝜋𝑖∮

𝐶

𝑓 (𝑧)
𝑧 − 𝑧0

𝑑𝑧

To evaluate

∮
𝐶

1
(𝑧 + 1) (𝑧 + 2)

𝑑𝑧

Where 𝐶 is the circular contour |𝑧 + 1| = 𝑅 with 𝑅 < 1. Note that if 𝑅 > 1 then a di�erent
result is found. Why can’t the Cauchy integral formula above be used for 𝑅 > 1?

Solution

The disk |𝑧 + 1| = 𝑅 is centered at 𝑧 = −1 with 𝑅 < 1. The function

𝑔 (𝑧) =
1

(𝑧 + 1) (𝑧 + 2)
has pole at 𝑧 = −1 and at 𝑧 = −2.
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R

x

y

−1
−2

C

Figure 3.3: Showing location of pole

In the Cauchy integral formula, the function 𝑓 (𝑧) is analytic on 𝐶 and inside 𝐶. Hence, to
use Cauchy integral formula, we need to convert 𝑔 (𝑧) = 1

(𝑧+1)(𝑧+2) to look like 𝑓(𝑧)
𝑧−𝑧0

where 𝑓 (𝑧)
is analytic inside 𝐶. This is done as follows

1
(𝑧 + 1) (𝑧 + 2)

=
1

(𝑧+2)

𝑧 − (−1)

=
𝑓 (𝑧)

𝑧 − (−1)

Where now 𝑓 (𝑧) = 1
(𝑧+2) . This has pole at 𝑧 = −2. Since this pole is outside 𝐶 then 𝑓 (𝑧) is

analytic on and inside 𝐶 and can be used for the purpose of using Cauchy integral formula,
which now can be written as

∮
𝐶

1
(𝑧 + 1) (𝑧 + 2)

𝑑𝑧 = ∮
𝐶

1
(𝑧+2)

𝑧 − (−1)
𝑑𝑧

= ∮
𝐶

𝑓 (𝑧)
𝑧 − (−1)

𝑑𝑧

= (2𝜋𝑖) 𝑓 (−1)

Therefore, we just need to evaluate 𝑓 (−1) which is seen as 1. Hence

∮
𝐶

1
(𝑧+1)(𝑧+2)𝑑𝑧 = 2𝜋𝑖 (1)

To verify, we can solve this again using the residue theorem

∮
𝐶

𝑔 (𝑧) 𝑑𝑧 = 2𝜋𝑖 �sum of residues of 𝑔 (𝑧) inside 𝐶�

But 𝑔 (𝑧) = 1
(𝑧+1)(𝑧+2) has only one pole inside 𝐶, which is at 𝑧 = −1. Therefore the above
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becomes

∮
𝐶

1
(𝑧 + 1) (𝑧 + 2)

= 2𝜋𝑖 �residue of 𝑔 (𝑧) at − 1� (2)

To find residue at −1, we can use one of the short cuts to do that. Where we write 1
(𝑧+1)(𝑧+2) =

Φ(𝑧)
𝑧+1 where Φ (𝑧) is analytic at 𝑧 = −1 and Φ (−1) ≠ 0. Therefore we see that Φ (𝑧) = 1

𝑧+2 . Hence

residue of 1
(𝑧+1)(𝑧+2) = Φ (𝑧0) =

1
(−1)+2 = 1. Equation (2) becomes

∮
𝐶

1
(𝑧 + 1) (𝑧 + 2)

= 2𝜋𝑖

Which is same result obtained in (1) by using Cauchy integral formula directly.

To answer last part, when 𝑅 > 1, then now both poles 𝑧 = −1 and = −2, are inside 𝐶.
Therefore, we can’t split 1

(𝑧+1)(𝑧+2) into one part that is analytic (the 𝑓 (𝑧) in the above), in

order to obtain expression 𝑓(𝑧)
𝑧−𝑧0

in order to apply Cauchy integral formula directly. Therefore
when 𝑅 > 1 we should use

∮
𝐶

𝑔 (𝑧) 𝑑𝑧 = 2𝜋𝑖 �sum of residues of 𝑔 (𝑧) inside 𝐶�

3.2.5 Problem 5

Evaluate the integral

∮
𝐶

𝑒𝑧2 �
1
𝑧2
−
1
𝑧3 �

𝑑𝑧

Where he contour is the unit circle around origin (counter clockwise direction).

Solution

∮
𝐶

𝑒𝑧2 �
1
𝑧2
−
1
𝑧3 �

𝑑𝑧 = ∮
𝐶

𝑒𝑧2 �
𝑧 − 1
𝑧3 � 𝑑𝑧

= ∮
𝐶

𝑓 (𝑧)
(𝑧 − 𝑧0)

3𝑑𝑧

Where 𝑧0 = 0 and where

𝑓 (𝑧) = 𝑒𝑧2 (𝑧 − 1)

But 𝑓 (𝑧) is analytic on 𝐶 and inside, since 𝑒𝑧2 is analytic everywhere and 𝑧 − 1 has no poles.
Hence we can use Cauchy integral formula for pole of higher order given by

∮
𝐶

𝑓 (𝑧)
(𝑧 − 𝑧0)

𝑛+1𝑑𝑧 =
2𝜋𝑖
𝑛!
𝑓(𝑛) (𝑧0)
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Where 𝑛 = 2 in this case. Therefore, since 𝑧0 = 0 the above reduces to

∮
𝐶

𝑓 (𝑧)
𝑧3

𝑑𝑧 =
2𝜋𝑖
2
𝑓′′ (0) (1)

Now we just need to find 𝑓′′ (𝑧) and evaluate the result at 𝑧0 = 0

𝑓′ (𝑧) = 2𝑧𝑒𝑧2 (𝑧 − 1) + 𝑒𝑧2

𝑓′′ (𝑧) = 2𝑒𝑧2 (𝑧 − 1) + 2𝑧 �2𝑧𝑒𝑧2 (𝑧 − 1) + 𝑒𝑧2� + 2𝑧𝑒𝑧2

Hence

𝑓′′ (0) = −2

Therefore (1) becomes

∮
𝐶

𝑒𝑧2 (𝑧 − 1)
𝑧3

𝑑𝑧 = −2𝜋𝑖 (2)

To verify, we will do the same integration by converting it to line integration using param-
eterization on 𝜃. Let 𝑧 (𝜃) = 𝑟𝑒𝑖𝜃, but 𝑟 = 1, therefore 𝑧 (𝜃) = 𝑒𝑖𝜃, 𝑑𝑧 = 𝑖𝑒𝑖𝜃𝑑𝜃. Therefore the
integral becomes

∮
𝐶

𝑒𝑧2 �
𝑧 − 1
𝑧3 � 𝑑𝑧 = �

2𝜋

0
𝑒𝑒2𝑖𝜃 �

𝑒𝑖𝜃 − 1
𝑒3𝑖𝜃 � 𝑖𝑒𝑖𝜃𝑑𝜃

= 𝑖�
2𝜋

0
𝑒𝑒2𝑖𝜃 �

𝑒𝑖𝜃 − 1
𝑒2𝑖𝜃 � 𝑑𝜃

This is a hard integral to solve by hand. Using computer algebra software, it also gave −2𝜋𝑖.
This verified the result. Clearly using the Cauchy integral formula to solve this problem was
much simpler that using parameterization.
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3.2.6 key solution to HW 2
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3.3 HW 3

3.3.1 Problem 1

Part (a)

Use Cauchy-Riemann equations to determine if |𝑧| analytic function of the complex variable
𝑧.

Solution

𝑓 (𝑧) = |𝑧|

Let 𝑧 = 𝑥 + 𝑖𝑦, then

𝑓 (𝑧) = �𝑥2 + 𝑦2�
1
2

= 𝑢 + 𝑖𝑣

Hence

𝑢 = �𝑥
2 + 𝑦2

𝑣 = 0

Cauchy-Riemann equations are

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

(1)

−
𝜕𝑢
𝜕𝑦

=
𝜕𝑣
𝜕𝑥

(2)

First equation above gives 𝜕𝑣
𝜕𝑦 = 0 and

𝜕𝑢
𝜕𝑥 =

1
2

2𝑥

�𝑥2+𝑦2
, which shows that 𝜕𝑣

𝜕𝑦 ≠
𝜕𝑢
𝜕𝑥 . Therefore |𝑧|

is not analytic.

Part (b)

Use Cauchy-Riemann equations to determine if Re (𝑧) analytic function of the complex
variable 𝑧.

Solution

𝑓 (𝑧) = Re (𝑧)
Let 𝑧 = 𝑥 + 𝑖𝑦, then

𝑓 (𝑧) = 𝑥
= 𝑢 + 𝑖𝑣

Hence

𝑢 = 𝑥
𝑣 = 0
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Cauchy-Riemann equations are

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

(1)

−
𝜕𝑢
𝜕𝑦

=
𝜕𝑣
𝜕𝑥

(2)

First equation above gives 𝜕𝑣
𝜕𝑦 = 0 and

𝜕𝑢
𝜕𝑥 = 1, which shows that 𝜕𝑣

𝜕𝑦 ≠
𝜕𝑢
𝜕𝑥 . Therefore Re (𝑧) is

not analytic.

Part (c)

Use Cauchy-Riemann equations to determine if 𝑒sin 𝑧 analytic function of the complex variable
𝑧.

Solution

𝑓 (𝑧) = 𝑒sin 𝑧 is analytic since we can show that exp (𝑧) is analytic by applying Cauchy-Riemann
(C-R), and also show that sin (𝑧) is analytic using C-R. Theory of analytic functions it says
that the composition of analytic functions is also an analytic function, which means 𝑒sin 𝑧 is
analytic.

But this problems seems to ask to use C-R equations directly to show this. Therefore we
need to first determine the real and complex parts (𝑢, 𝑣) of the function 𝑒sin 𝑧. Since

sin 𝑧 = 𝑧 − 𝑧−1

2𝑖
Then

𝑓 (𝑧) = 𝑒sin 𝑧

= exp �
𝑧 − 𝑧−1

2𝑖 �

= exp � 𝑧
2𝑖
� exp �

−1
2𝑖𝑧�
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But 𝑧 = 𝑥 + 𝑖𝑦 and the above expands to

exp (sin 𝑧) = exp �
1
2𝑖
�𝑥 + 𝑖𝑦�� exp

⎛
⎜⎜⎜⎜⎝

−1
2𝑖 �𝑥 + 𝑖𝑦�

⎞
⎟⎟⎟⎟⎠

= exp �
−𝑖
2
𝑥 +

1
2
𝑦� exp

⎛
⎜⎜⎜⎜⎝
𝑖
2

1
�𝑥 + 𝑖𝑦�

⎞
⎟⎟⎟⎟⎠

= exp �
−𝑖
2
𝑥 +

1
2
𝑦� exp

⎛
⎜⎜⎜⎜⎝
𝑖
2

𝑥 − 𝑖𝑦
�𝑥 + 𝑖𝑦� �𝑥 − 𝑖𝑦�

⎞
⎟⎟⎟⎟⎠

= exp �
−𝑖
2
𝑥 +

1
2
𝑦� exp �

𝑖
2
𝑥 − 𝑖𝑦
𝑥2 + 𝑦2 �

= exp �
−𝑖
2
𝑥 +

1
2
𝑦� exp �

𝑖
2 �

𝑥
𝑥2 + 𝑦2

−
𝑖𝑦

𝑥2 + 𝑦2 ��

= exp �
−𝑖
2
𝑥 +

1
2
𝑦� exp �

𝑖
2

𝑥
𝑥2 + 𝑦2

+
1
2

𝑦
𝑥2 + 𝑦2 �

= exp �
−𝑖
2
𝑥� exp �

1
2
𝑦� exp �

𝑖
2

𝑥
𝑥2 + 𝑦2 �

exp �
1
2

𝑦
𝑥2 + 𝑦2 �

Collecting terms gives

exp (sin 𝑧) = exp �
1
2
𝑦 +

1
2

𝑦
𝑥2 + 𝑦2 �

exp �
𝑖
2

𝑥
𝑥2 + 𝑦2

−
𝑖
2
𝑥�

= exp
⎛
⎜⎜⎜⎜⎝
1
2
𝑦 �1 + �𝑥2 + 𝑦2��

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎜⎝
𝑖
2

𝑥
𝑥2 + 𝑦2

−
𝑖

2 �𝑥2 + 𝑦2�
𝑥 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

= exp
⎛
⎜⎜⎜⎜⎝
1
2
𝑦 �1 + �𝑥2 + 𝑦2��

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎜⎝𝑖
1
2
𝑥 �1 − �𝑥2 + 𝑦2��

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

= exp
⎛
⎜⎜⎜⎜⎝
1
2
𝑦 �1 + �𝑥2 + 𝑦2��

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣cos

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 �1 − �𝑥2 + 𝑦2��

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ + 𝑖 sin

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 �1 − �𝑥2 + 𝑦2��

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

= exp
⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ + 𝑖 exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

�𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

Therefore, since exp (sin 𝑧) = 𝑢 + 𝑖𝑣, then we see from above that

𝑢 = exp
⎛
⎜⎜⎜⎜⎝
1
2
𝑦 + 𝑦 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

𝑣 = exp
⎛
⎜⎜⎜⎜⎝
1
2
𝑦 + 𝑦 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠
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Now we need to check the Cauchy-Riemann equations on the above 𝑢, 𝑣 functions we found.
𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦

(1)

−
𝜕𝑢
𝜕𝑦

=
𝜕𝑣
𝜕𝑥

(2)

Evaluating each partial derivative gives

𝜕𝑢
𝜕𝑥

=
𝑑
𝑑𝑥

⎛
⎜⎜⎜⎜⎝
1
2
𝑦 + 𝑦 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎜⎝
1
2
𝑦 + 𝑦 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

+ exp
⎛
⎜⎜⎜⎜⎝
1
2
𝑦 + 𝑦 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠
𝑑
𝑑𝑥

cos
⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

=
1
2
2𝑦𝑥 �𝑥2 + 𝑦2� − �𝑦 + 𝑦 �𝑥2 + 𝑦2�� 2𝑥

�𝑥2 + 𝑦2�
2 exp

⎛
⎜⎜⎜⎜⎝
1
2
𝑦 ��𝑥2 + 𝑦2� + 1�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 �1 − �𝑥2 + 𝑦2��

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

− exp
⎛
⎜⎜⎜⎜⎝
1
2
𝑦 + 𝑦 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠
𝑑
𝑑𝑥

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

=
−𝑥𝑦

�𝑥2 + 𝑦2�
2 exp

⎛
⎜⎜⎜⎜⎝
1
2
𝑦 ��𝑥2 + 𝑦2� + 1�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
𝑥 �1 − �𝑥2 + 𝑦2��

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

− exp
⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
�1 − 3𝑥2 − 𝑦2� �𝑥2 + 𝑦2� − �𝑥 − 𝑥 �𝑥2 + 𝑦2�� 2𝑥

2 �𝑥2 + 𝑦2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
−𝑥𝑦

�𝑥2 + 𝑦2�
2 exp

⎛
⎜⎜⎜⎜⎝
1
2
𝑦 �𝑥2 + 𝑦2 + 1�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 �1 − �𝑥2 + 𝑦2��

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

− exp
⎛
⎜⎜⎜⎜⎝
1
2
𝑦 �𝑥2 + 𝑦2 + 1�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
�−𝑥4 − 2𝑥2𝑦2 − 𝑥2 − 𝑦4 + 𝑦2�

2 �𝑥2 + 𝑦2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠

The above can be simplified more to become

𝜕𝑢
𝜕𝑥

=
−1

2 �𝑥2 + 𝑦2�
2 exp

⎛
⎜⎜⎜⎜⎝
𝑦 �𝑥2 + 𝑦2 + 1�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣2𝑥𝑦 cos

𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�
+ �−𝑥4 − 2𝑥2𝑦2 − 𝑥2 − 𝑦4 + 𝑦2� sin

𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎤
⎥⎥⎥⎥⎦ (3)

Now we evaluate 𝜕𝑣
𝜕𝑦 to see if it the same as above. Since 𝑣 = exp �

1
2
𝑦+𝑦�𝑥2+𝑦2�

�𝑥2+𝑦2� � sin �
1
2
𝑥−𝑥�𝑥2+𝑦2�

�𝑥2+𝑦2� �
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then

𝜕𝑣
𝜕𝑦

=
𝑑
𝑑𝑦

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

+ exp
⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠
𝑑
𝑑𝑦

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝
1
2
�1 + 𝑥2 + 3𝑦2� �𝑥2 + 𝑦2� − �𝑦 + 𝑦 �𝑥2 + 𝑦2�� 2𝑦

�𝑥2 + 𝑦2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

+ exp
⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
1
2
�−2𝑥𝑦� �𝑥2 + 𝑦2� − �𝑥 − 𝑥 �𝑥2 + 𝑦2�� �2𝑦�

�𝑥2 + 𝑦2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝
1
2
𝑥4 + 2𝑥2𝑦2 + 𝑥2 + 𝑦4 − 𝑦2

�𝑥2 + 𝑦2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

+ exp
⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
1
2

−2𝑥𝑦

�𝑥2 + 𝑦2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝
1
2
𝑥4 + 2𝑥2𝑦2 + 𝑥2 + 𝑦4 − 𝑦2

�𝑥2 + 𝑦2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

− exp
⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑥𝑦

�𝑥2 + 𝑦2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠

Simplifying the above more gives

𝜕𝑣
𝜕𝑦

=
−1

2 �𝑥2 + 𝑦2�
2 exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣2𝑥𝑦 cos

𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�
+ �−𝑥4 − 2𝑥2𝑦2 − 𝑥2 − 𝑦4 + 𝑦2� sin

𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎤
⎥⎥⎥⎥⎦ (4)

Comparing (3) and (4) shows they are the same expressions. Therefore the first equation is
verified.

𝜕𝑢
𝜕𝑥

=
𝜕𝑣
𝜕𝑦
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Now we verify the second equation −𝜕𝑢𝜕𝑦 =
𝜕𝑣
𝜕𝑥 . Since 𝑢 = exp �

1
2
𝑦+𝑦�𝑥2+𝑦2�

�𝑥2+𝑦2� � cos �
1
2
𝑥−𝑥�𝑥2+𝑦2�

�𝑥2+𝑦2� � then

𝜕𝑢
𝜕𝑦

=
𝑑
𝑑𝑦

⎛
⎜⎜⎜⎜⎝
1
2
𝑦 + 𝑦 �𝑥2 + 𝑦2�

�𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

− exp
⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠
𝑑
𝑑𝑦

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

=
�1 + 𝑥2 + 3𝑦2� �𝑥2 + 𝑦2� − �𝑦 + 𝑦 �𝑥2 + 𝑦2�� 2𝑦

2 �𝑥2 + 𝑦2�
2 exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

− exp
⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠
�−2𝑦� �𝑥2 + 𝑦2� − �𝑥 − 𝑥 �𝑥2 + 𝑦2�� 2𝑦

2 �𝑥2 + 𝑦2�
2

=
�𝑥4 + 2𝑥2𝑦2 + 𝑥2 + 𝑦4 − 𝑦2�

2 �𝑥2 + 𝑦2�
2 exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

− exp
⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠
�−2𝑦� �𝑥2 + 𝑦2� − 2𝑦𝑥 + 2𝑦𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�
2

=
�𝑥4 + 2𝑥2𝑦2 + 𝑥2 + 𝑦4 − 𝑦2�

2 �𝑥2 + 𝑦2�
2 exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

+ exp
⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

𝑦𝑥

�𝑥2 + 𝑦2�
2

The above can simplified more to give

𝜕𝑢
𝜕𝑦

=
1

2 �𝑥2 + 𝑦2�
2 exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣�𝑥

4 + 2𝑥2𝑦2 + 𝑥2 + 𝑦4 − 𝑦2� cos
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�
+ 2𝑥𝑦 sin

𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎤
⎥⎥⎥⎥⎦

Hence

−𝜕𝑢
𝜕𝑦

=
1

2 �𝑥2 + 𝑦2�
2 exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣− �𝑥

4 + 2𝑥2𝑦2 + 𝑥2 + 𝑦4 − 𝑦2� cos
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�
− 2𝑥𝑦 sin

𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎤
⎥⎥⎥⎥⎦ (5)
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And since 𝑣 = exp �
1
2
𝑦+𝑦�𝑥2+𝑦2�

�𝑥2+𝑦2� � sin �
1
2
𝑥−𝑥�𝑥2+𝑦2�

�𝑥2+𝑦2� � then

𝜕𝑣
𝜕𝑥

=
𝑑
𝑑𝑥

⎛
⎜⎜⎜⎜⎝
1
2
𝑦 + 𝑦 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

+ exp
⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠
𝑑
𝑑𝑥

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

=
1
2

⎛
⎜⎜⎜⎜⎜⎜⎝
2𝑥𝑦 �𝑥2 + 𝑦2� − �𝑦 + 𝑦 �𝑥2 + 𝑦2�� 2𝑥

�𝑥2 + 𝑦2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠ exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

+ exp
⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
1
2
𝑥 − 𝑥 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
�1 − 3𝑥2 − 𝑦2� �𝑥2 + 𝑦2� − �𝑥 − 𝑥 �𝑥2 + 𝑦2�� 2𝑥

2 �𝑥2 + 𝑦2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠

=
−𝑥𝑦

�𝑥2 + 𝑦2�
2 exp

⎛
⎜⎜⎜⎜⎝
1
2
𝑦 + 𝑦 �𝑥2 + 𝑦2�

𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠ sin

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

+ exp
⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠ cos

⎛
⎜⎜⎜⎜⎝
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝
−𝑥4 − 2𝑥2𝑦2 − 𝑥2 − 𝑦4 + 𝑦2

2 �𝑥2 + 𝑦2�
2

⎞
⎟⎟⎟⎟⎟⎟⎠

The above can simplified more to give

𝜕𝑣
𝜕𝑥

=
1

2 �𝑥2 + 𝑦2�
2 exp

⎛
⎜⎜⎜⎜⎝
𝑦 + 𝑦 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣− �𝑥

4 + 2𝑥2𝑦2 + 𝑥2 + 𝑦4 − 𝑦2� cos
𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�
− 2𝑥𝑦 sin

𝑥 − 𝑥 �𝑥2 + 𝑦2�

2 �𝑥2 + 𝑦2�

⎤
⎥⎥⎥⎥⎦ (6)

Comparing (5,6) shows they are the same, i.e.

−𝜕𝑢
𝜕𝑦

=
𝜕𝑣
𝜕𝑥

C-R equations are satisfied, and because it is clear that all partial derivatives 𝜕𝑣
𝜕𝑥 ,

𝜕𝑣
𝜕𝑦 ,

𝜕𝑢
𝜕𝑥 ,

𝜕𝑢
𝜕𝑦 are

continuous functions in 𝑥, 𝑦 as they are made up of exponential and trigonometric functions
which are continuous, then we conclude that 𝑓 (𝑧) = 𝑒sin 𝑧 is analytic function everywhere.

3.3.2 Problem 2

Part (a)

Represent 𝑧+3
𝑧−3 by its Maclaurin series and give the region of validity for the representation.

Next expand this in powers of 1
𝑧 to find a Laurent series. What is the range of validity of

the Laurent series?

Solution
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Maclaurin series is expansion of 𝑓 (𝑧) around 𝑧 = 0. Since 𝑓 (𝑧) has simple pole at 𝑧 = 3, then
the region of validity will be a disk centered at 𝑧 = 0 up to the nearest pole, which is at 𝑧 = 3.
Hence |𝑧| < 3 is the region.

𝑓 (𝑧) =
𝑧 + 3
𝑧 − 3

=
𝑧 + 3

−3 �1 − 𝑧
3
�

=
𝑧 + 3
−3

⎛
⎜⎜⎜⎜⎝

1
1 − 𝑧

3

⎞
⎟⎟⎟⎟⎠

Now we can expand using Binomial to obtain

𝑓 (𝑧) =
3 + 𝑧
−3 �1 +

𝑧
3
+ �

𝑧
3
�
2
+ �

𝑧
3
�
3
+⋯�

= �−1 −
𝑧
3
� �1 +

𝑧
3
+ �

𝑧
3
�
2
+ �

𝑧
3
�
3
+⋯�

= �−1 −
𝑧
3
� + �−1 −

𝑧
3
� �
𝑧
3
� + �−1 −

𝑧
3
� �
𝑧
3
�
2
+ �−1 −

𝑧
3
� �
𝑧
3
�
3
+⋯

= −1 −
𝑧
3
−
𝑧
3
− �

𝑧
3
�
2
− �

𝑧
3
�
2
− �

𝑧
3
�
3
− �

𝑧
3
�
3
− �

𝑧
3
�
4
+⋯

= −1 −
2
3
𝑧 −

2
9
𝑧2 −

2
27
𝑧3 −

2
81
𝑧4 −⋯

Or

𝑓 (𝑧) = −1 −
∞
�
𝑛=1

2
3𝑛
𝑧𝑛

To expand in negative powers of 𝑧, or in 1
𝑧 , then

𝑓 (𝑧) =
𝑧 + 3

𝑧 �1 − 3
𝑧
�

=
𝑧 + 3
𝑧

⎛
⎜⎜⎜⎜⎜⎝

1
1 − 3

𝑧

⎞
⎟⎟⎟⎟⎟⎠
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For �3𝑧 � < 1 or |𝑧| < 3 the above becomes

𝑓 (𝑧) =
𝑧 + 3
𝑧

⎛
⎜⎜⎜⎜⎝1 +

3
𝑧
+ �

3
𝑧�

2

+ �
3
𝑧�

3

+⋯
⎞
⎟⎟⎟⎟⎠

= �1 +
3
𝑧�

⎛
⎜⎜⎜⎜⎝1 +

3
𝑧
+ �

3
𝑧�

2

+ �
3
𝑧�

3

+⋯
⎞
⎟⎟⎟⎟⎠

= �1 +
3
𝑧�
+ �1 +

3
𝑧�
3
𝑧
+ �1 +

3
𝑧� �

3
𝑧 �

2

+ �1 +
3
𝑧� �

3
𝑧 �

3

+⋯

= 1 +
3
𝑧
+
3
𝑧
+ �

3
𝑧�

2

+ �
3
𝑧�

2

+ �
3
𝑧�

3

+ �
3
𝑧�

3

+ �
3
𝑧�

4

+⋯

= 1 +
6
𝑧
+
18
𝑧2
+
54
𝑧3
+⋯

This is valid for |𝑧| > 3. The residue is 6, which can be confirmed using

Residue (3) = lim
𝑧→3

(𝑧 − 3) 𝑓 (𝑧)

= lim
𝑧→3

(𝑧 − 3)
𝑧 + 3
𝑧 − 3

= lim
𝑧→3

(𝑧 + 3)

= 6

Summary

𝑓 (𝑧) = 𝑧+3
𝑧−3 =

⎧⎪⎪⎨
⎪⎪⎩
−1 − 2

3𝑧 −
2
9𝑧
2 − 2

27𝑧
3 − 2

81𝑧
4 −⋯ |𝑧| < 3

1 + 6
𝑧 +

18
𝑧2 +

54
𝑧3 +⋯ |𝑧| > 3

Part (b)

Find Laurent series for 𝑧
(𝑧+1)(𝑧−3) in each of the following domains (i) |𝑧| < 1 (ii) 1 < |𝑧| < 3

(iii) |𝑧| > 3

Solution

The possible region are shown below. Since there is a pole at 𝑧 = −1 and pole at 𝑧 = 3, then
there are three di�erent regions. They are named 𝐴,𝐵, 𝐶 in the following diagram
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−1 3
A

B

C

Region A contains no poles inside.
Disk centered at zero up to the
nearest pole at z = −1. Hence the
series expansion will contain only
an analytical part and no principal
part.

Region B is annulus region
between region which is analytic up
to the next pole at z = 3. Hence
the series expansion will contain
both an analytical part and a
principal part.

Region C is |z| > 3, Hence the
series expansion will contain only a
principal part and no analytical
part.

<z

=z

Figure 3.4: Laurent series regions

First the expression 𝑧
(𝑧+1)(𝑧−3) is expanded using partial fractions

𝑧
(𝑧 + 1) (𝑧 − 3)

=
𝐴

(𝑧 + 1)
+

𝐵
(𝑧 − 3)

(1)

Hence

𝑧 = 𝐴 (𝑧 − 3) + 𝐵 (𝑧 + 1)
= 𝑧 (𝐴 + 𝐵) − 3𝐴 + 𝐵

The above gives two equations

𝐴 + 𝐵 = 1
0 = −3𝐴 + 𝐵

First equation gives 𝐴 = 1 − 𝐵. Substituting in the second equation gives 0 = −3 (1 − 𝐵) + 𝐵 or
0 = −3 + 4𝐵, hence 𝐵 = 3

4 , which implies 𝐴 = 1 − 3
4 =

1
4 , therefore (1) becomes

𝑧
(𝑧 + 1) (𝑧 − 3)

=
1
4

1
(𝑧 + 1)

+
3
4

1
(𝑧 − 3)

Considering each term in turn. For 1
4

1
(𝑧+1) , we can expand this as

1
4

1
(𝑧 + 1)

=
1
4
�1 − 𝑧 + 𝑧2 − 𝑧3 + 𝑧4 +⋯� |𝑧| < 1 (2a)

1
4

1
(𝑧 + 1)

=
1
4𝑧

1

�1 + 1
𝑧
�
=
1
4𝑧

⎛
⎜⎜⎜⎜⎝1 − �

1
𝑧�
+ �

1
𝑧�

2

− �
1
𝑧�

3

+ �
1
𝑧�

4

−⋯
⎞
⎟⎟⎟⎟⎠ |𝑧| > 1 (2b)
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And for the term 3
4

1
(𝑧−3) , we can expand this as

3
4

1
(𝑧 − 3)

= −
1
4

1
�1 − 𝑧

3
�
= −

1
4 �
1 +

𝑧
3
+ �

𝑧
3
�
2
+ �

𝑧
3
�
3
+ �

𝑧
3
�
4
+⋯� |𝑧| < 3 (3a)

3
4

1
(𝑧 − 3)

=
3
4𝑧

1

�1 − 3
𝑧
�
=
3
4𝑧

⎛
⎜⎜⎜⎜⎝1 + �

3
𝑧�
+ �

3
𝑧�

2

+ �
3
𝑧�

3

+⋯
⎞
⎟⎟⎟⎟⎠ |𝑧| > 3 (3b)

Now that we expanded all the terms in the two possible ways for each each, we now consider
each region of interest, and look at the above 4 expansions, and simply pick for each region
the expansion which is valid in for that region of interest.

For (i), region 𝐴: In this region, we want |𝑧| < 1. From (2,3) we see that (2a) and (3a) are
valid expansions in |𝑧| < 1. Hence

𝑧
(𝑧 + 1) (𝑧 − 3)

=
1
4
�1 − 𝑧 + 𝑧2 − 𝑧3 + 𝑧4 +⋯� −

1
4 �
1 +

𝑧
3
+ �

𝑧
3
�
2
+ �

𝑧
3
�
3
+ �

𝑧
3
�
4
+⋯�

=
1
4
�1 − 𝑧 + 𝑧2 − 𝑧3 + 𝑧4 −⋯� −

1
4 �
1 +

𝑧
3
+
𝑧2

9
+
𝑧3

27
+
𝑧4

81
+⋯�

= �
1
4
−
1
4
𝑧 +

1
4
𝑧2 −

1
4
𝑧3 +

1
4
𝑧4 −⋯� − �

1
4
+
𝑧
12
+
𝑧2

36
+
𝑧3

108
+
𝑧4

324
+⋯�

= −
1
4
𝑧 −

𝑧
12
+
1
4
𝑧2 −

𝑧2

36
−
1
4
𝑧3 −

𝑧3

108
+
1
4
𝑧4 −

𝑧4

324
−⋯

−
1
3
𝑧 +

2
9
𝑧2 −

7
27
𝑧3 +

20
81
𝑧4 −⋯

For (ii), region 𝐵: This is for 1 < |𝑧| < 3. From equations (2,3) we see that (2b) and (3a) are
valid in this region. Hence

𝑧
(𝑧 + 1) (𝑧 − 3)

=
1
4𝑧

⎛
⎜⎜⎜⎜⎝1 − �

1
𝑧�
+ �

1
𝑧�

2

− �
1
𝑧�

3

+ �
1
𝑧�

4

−⋯
⎞
⎟⎟⎟⎟⎠ −

1
4 �
1 +

𝑧
3
+ �

𝑧
3
�
2
+ �

𝑧
3
�
3
+ �

𝑧
3
�
4
+⋯�

=
1
4𝑧 �

1 −
1
𝑧
+
1
𝑧2
−
1
𝑧3
+
1
𝑧4
−⋯� −

1
4 �
1 +

𝑧
3
+
𝑧2

9
+
𝑧3

27
+
𝑧4

81
+⋯�

= �
1
4𝑧
−

1
4𝑧2

+
1
4𝑧3

−
1
4𝑧4

+
1
4𝑧5

−⋯� − �
1
4
+
𝑧
12
+
𝑧2

36
+
𝑧3

108
+
𝑧4

324
+⋯�

=

principal part

�����������������������������������������������
⋯ +

1
4𝑧5

−
1
4𝑧4

+
1
4𝑧3

−
1
4𝑧2

+
1
4𝑧
−

analytical part

�����������������������������������������1
4
−
𝑧
12
−
𝑧2

36
−
𝑧3

108
−
𝑧4

324
−⋯

The residue is 1
4 by looking at the above. The value for the residue can be verified as follows.

Using

𝑏𝑛 =
1
2𝜋𝑖∮

𝐶

𝑓 (𝑧)
(𝑧 − 𝑧0)

−𝑛+1𝑑𝑧

Where in the above 𝑧0 is the location of the pole and 𝑛 is the coe�cient of the 1
𝑧𝑛 is the
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principal part. Since we want the residue, then 𝑛 = 1 and the above becomes

𝑏1 =
1
2𝜋𝑖∮

𝐶

𝑓 (𝑧) 𝑑𝑧

In the above, the contour 𝐶 is circle somewhere inside the annulus 1 < |𝑧| < 3. It does not
matter that the radius is, as long as it is located in this range. For example, choosing radius
2 will work. The above then becomes

𝑏1 =
1
2𝜋𝑖∮

𝐶

𝑧
(𝑧 + 1) (𝑧 − 3)

𝑑𝑧 (5)

However, since 𝑓 (𝑧) is analytic in this region, then∮
𝐶

𝑓 (𝑧) 𝑑𝑧 = 2𝜋𝑖∑ (residues inside). There

is only one pole now inside 𝐶, which is at 𝑧 = −1. So all what we have to do is find the residue
at 𝑧 = −1.

Residue (−1) = lim
𝑧→−1

(𝑧 + 1) 𝑓 (𝑧)

= lim
𝑧→−1

(𝑧 + 1)
𝑧

(𝑧 + 1) (𝑧 − 3)

= lim
𝑧→−1

𝑧
(𝑧 − 3)

=
−1

(−1 − 3)

=
1
4

Using this in (5) gives

𝑏1 =
1
2𝜋𝑖 �

2𝜋𝑖
1
4�

=
1
4

Which agrees with what we found in (4) above.

For (iii), region 𝐶: This is for |𝑧| > 3. From (2,3) we see that (2b) and (3b) are valid expan-
sions in 𝑧 > 3, Hence

𝑧
(𝑧 + 1) (𝑧 − 3)

=
1
4𝑧

⎛
⎜⎜⎜⎜⎝1 − �

1
𝑧�
+ �

1
𝑧�

2

− �
1
𝑧�

3

+ �
1
𝑧�

4

−⋯
⎞
⎟⎟⎟⎟⎠ +

3
4𝑧

⎛
⎜⎜⎜⎜⎝1 + �

3
𝑧�
+ �

3
𝑧�

2

+ �
3
𝑧�

3

+⋯
⎞
⎟⎟⎟⎟⎠

= �
1
4𝑧
−

1
4𝑧2

+
1
4𝑧3

−
1
4𝑧4

+
1
4𝑧5

−⋯� +
3
4𝑧 �

1 +
3
𝑧
+
9
𝑧2
+
27
𝑧3
+⋯�

= �
1
4𝑧
−

1
4𝑧2

+
1
4𝑧3

−
1
4𝑧4

+
1
4𝑧5

−⋯� + �
3
4𝑧
+

9
4𝑧2

+
27
4𝑧3

+
81
4𝑧4

+⋯�

= ⋯+
20
𝑧4
+
7
𝑧3
+
2
𝑧2
+
1
𝑧

This is as expected contains only a principal part and no analytical part. The residue is 1.
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This above value for the residue can be verified as follows. Using

𝑏𝑛 =
1
2𝜋𝑖∮

𝐶

𝑓 (𝑧)
(𝑧 − 𝑧0)

−𝑛+1𝑑𝑧

Where in the above 𝑧0 is the location of the pole and 𝑛 is the coe�cient of the 1
𝑧𝑛 is the

principal part. Since we want the residue, then 𝑛 = 1 and the above becomes

𝑏1 =
1
2𝜋𝑖∮

𝐶

𝑓 (𝑧) 𝑑𝑧

In the above, the contour 𝐶 is circle somewhere in |𝑧| > 3. It does not matter that the radius
is. The above integral then becomes

𝑏1 =
1
2𝜋𝑖∮

𝐶

𝑧
(𝑧 + 1) (𝑧 − 3)

𝑑𝑧 (7)

However, since 𝑓 (𝑧) is analytic in |𝑧| > 3, then ∮
𝐶

𝑓 (𝑧) 𝑑𝑧 = 2𝜋𝑖∑ (residues inside). There are

now two poles inside 𝐶, one at 𝑧 = −1 and one at 𝑧 = 3. So all what we have to do is find the
residues at each. We found earlier that Residue (−1) = 1

4 . Now

Residue (3) = lim
𝑧→3

(𝑧 − 3) 𝑓 (𝑧)

= lim
𝑧→3

(𝑧 − 3)
𝑧

(𝑧 + 1) (𝑧 − 3)

= lim
𝑧→3

𝑧
(𝑧 + 1)

=
3
4

Therefore the sum of residues is 1. Using this result in (7) gives

𝑏1 =
1
2𝜋𝑖 �

2𝜋𝑖 �
1
4
+
3
4��

= 1

Which agrees with what result from (6) above.

Summary of results

𝑓 (𝑧) = 𝑧
(𝑧+1)(𝑧−3) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−13𝑧 +
2
9𝑧
2 − 7

27𝑧
3 + 20

81𝑧
4 −⋯ |𝑧| < 1

⋯ + 1
4𝑧5 −

1
4𝑧4

+ 1
4𝑧3 −

1
4𝑧2 +

1
4𝑧 −

1
4 −

𝑧
12 −

𝑧2

36 −
𝑧3

108 −
𝑧4

324 −⋯ 1 < |𝑧| < 3
⋯ + 20

𝑧4
+ 7

𝑧3 +
2
𝑧2 +

1
𝑧 |𝑧| > 3
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3.3.3 Problem 3

Part (a)

Use residue theorem to evaluate∮
𝐶

𝑒−2𝑧

𝑧2 𝑑𝑧 on contour 𝐶 which is circle |𝑧| = 1 in positive sense.

Solution

For 𝑓 (𝑧) which is analytic on and inside 𝐶, the Cauchy integral formula says

∮
𝐶

𝑓 (𝑧) 𝑑𝑧 = 2𝜋𝑖�
𝑗

Residue �𝑧 = 𝑧𝑗� (1)

Where the sum is over all residues located inside 𝐶. for 𝑓 (𝑧) = 𝑒−2𝑧

𝑧2 there is a simple pole at
𝑧 = 0 of order 2. To find the residue, we use the formula for pole or order 𝑚 given by

Residue (𝑧0) = lim
𝑧→𝑧0

𝑑𝑚−1

𝑑𝑧𝑚−1
(𝑧 − 𝑧0)

𝑚

(𝑚 − 1)!
𝑓 (𝑧)

Hence for 𝑚 = 2 and 𝑧0 = 0 the above becomes

Residue (0) = lim
𝑧→0

𝑑
𝑑𝑧
𝑧2𝑓 (𝑧)

= lim
𝑧→0

𝑑
𝑑𝑧
𝑧2
𝑒−2𝑧

𝑧2

= lim
𝑧→0

𝑑
𝑑𝑧
𝑒−2𝑧

= lim
𝑧→0

�−2𝑒−2𝑧�

= −2

Therefore (1) becomes

∮
𝐶

𝑒−2𝑧

𝑧2
𝑑𝑧 = 2𝜋𝑖 (−2)

= −4𝜋𝑖

Part (b)

Use residue theorem to evaluate∮
𝐶

𝑧𝑒
1
𝑧 𝑑𝑧 on contour 𝐶 which is circle |𝑧| = 1 in positive sense.

Solution

The singularity is at 𝑧 = 0, but we can not use the simple pole residue finding method here,

since this is an essential singularity now due to the 𝑒
1
𝑧 term. To find the residue, we expand
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𝑓 (𝑧) around 𝑧 = 0 in Laurent series and look for the coe�cient of 1
𝑧 term.

𝑓 (𝑧) = 𝑧𝑒
1
𝑧

= 𝑧 �1 +
1
𝑧
+
1
2
1
𝑧2
+
1
3!
1
𝑧3
+⋯�

= 𝑧 + 1 +
1
2
1
𝑧
+
1
3!
1
𝑧2
+⋯

Hence residue is 1
2 . Therefore

∮
𝐶

𝑧𝑒
1
𝑧 𝑑𝑧 = 2𝜋𝑖 �

1
2�

= 𝜋𝑖

Part (c)

Use residue theorem to evaluate ∮
𝐶

𝑧+2
𝑧2− 𝑧

2
𝑑𝑧 on contour 𝐶 which is circle |𝑧| = 1 in positive

sense.

Solution

𝑓 (𝑧) =
𝑧 + 2
𝑧2 − 𝑧

2

=
𝑧 + 2

𝑧 �𝑧 − 1
2
�

Hence there is a simple pole at 𝑧 = 0 and simple pole at 𝑧 = 1
2

Residue (0) = lim
𝑧→0

(𝑧) 𝑓 (𝑧)

= lim
𝑧→0

𝑧
𝑧 + 2

𝑧 �𝑧 − 1
2
�

= lim
𝑧→0

𝑧 + 2

�𝑧 − 1
2
�

=
2
−12

= −4
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And

Residue �
1
2�
= lim
𝑧→ 1

2

�𝑧 −
1
2�
𝑓 (𝑧)

= lim
𝑧→ 1

2

�𝑧 −
1
2�

𝑧 + 2

𝑧 �𝑧 − 1
2
�

= lim
𝑧→ 1

2

𝑧 + 2
𝑧

=
1
2 + 2
1
2

= 5

Therefore

∮
𝐶

𝑧 + 2
𝑧2 − 𝑧

2

𝑑𝑧 = 2𝜋𝑖 (5 − 4)

= 2𝜋𝑖
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3.3.4 key solution to HW 3
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3.4 HW 4

3.4.1 Problem 1

Using series expansion evaluate the integral 𝐼 = ∫
1

0
ln �1+𝑥1−𝑥

� 𝑑𝑥
𝑥

Solution

We first need to find the Taylor series for ln �1+𝑥1−𝑥
� expanded around 𝑥 = 0. Since

ln �
1 + 𝑥
1 − 𝑥�

= ln �(1 + 𝑥) �
1

1 − 𝑥��

= ln (1 + 𝑥) + ln �
1

1 − 𝑥�

= ln (1 + 𝑥) − ln (1 − 𝑥) (1)

Looking at ln (1 + 𝑥), where now 𝑓 (𝑥) = ln (1 + 𝑥), then we see that 𝑓′ (𝑥) = 1
1+𝑥 , 𝑓

′′ (𝑥) =
−1

(1+𝑥)2
, 𝑓′′′ (𝑥) = 2

(1+𝑥)3
, 𝑓(4) (𝑥) = − 2⋅3

(1+𝑥)4
,⋯, therefore

ln (1 + 𝑥) = 𝑓 (0) + 𝑥𝑓′ (0) + 𝑥
2

2
𝑓′′ (0) +

𝑥3

3!
𝑓′′′ (0) +

𝑥4

4!
𝑓(4) (0) +⋯

= 0 + 𝑥 −
𝑥2

2
+
𝑥3

3
−
𝑥4

4
+⋯ (2)

Similarly for ln (1 − 𝑥), where now 𝑓′ (𝑥) = −1
1−𝑥 , 𝑓

′′ (𝑥) = −1
(1−𝑥)2

, 𝑓′′′ (𝑥) = −2
(1−𝑥)3

, 𝑓(4) (𝑥) = − 2⋅3
(1−𝑥)4

,⋯,

therefore

ln (1 − 𝑥) = 𝑓 (0) + 𝑥𝑓′ (0) + 𝑥
2

2
𝑓′′ (0) +

𝑥3

3!
𝑓′′′ (0) +

𝑥4

4!
𝑓(4) (0) +⋯

= 0 − 𝑥 −
𝑥2

2
−
𝑥3

3
−
𝑥4

4
+⋯ (3)

Using (2,3) in (1) gives the series expansion for ln �1+𝑥1−𝑥
� as

ln �
1 + 𝑥
1 − 𝑥�

= �𝑥 −
𝑥2

2
+
𝑥3

3
−
𝑥4

4
+⋯� − �−𝑥 −

𝑥2

2
−
𝑥3

3
−
𝑥4

4
+⋯�

= 2𝑥 +
2
3
𝑥3 +

2
5
𝑥5 +

2
7
𝑥7 +⋯ (4)

Using (4) in the integral given results in

𝐼 = �
1

0
�2𝑥 +

2
3
𝑥3 +

2
5
𝑥5 +

2
7
𝑥7 +⋯�

𝑑𝑥
𝑥

= �
1

0
�2 +

2
3
𝑥2 +

2
5
𝑥4 +

2
7
𝑥6 +⋯�𝑑𝑥

= �2𝑥 +
2
3
𝑥3

3
+
2
5
𝑥5

5
+
2
7
𝑥7

7
+⋯�

1

0
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Which simplifies to

𝐼 = 2 +
2
3
1
3
+
2
5
1
5
+
2
7
1
7
+⋯

= 2 +
2
32
+
2
52
+
2
72
+
2
92
+⋯

= 2 �1 +
1
32
+
1
52
+
1
72
+
1
92
+⋯�

= 2
∞
�
𝑛=0

1
(2𝑛 + 1)2

(5)

The following are two methods to obtain closed form sum for ∑∞
𝑛=0

1
(2𝑛+1)2

. The first method

is based on writing
∞
�
𝑛=1

1
𝑛2

=
∞
�
𝑛=1

1
(2𝑛)2

+
∞
�
𝑛=0

1
(2𝑛 + 1)2

(6)

Where the sum on the left is broken into odd and even terms on the right, as in

1 +
1
22
+
1
32
+
1
42
+
1
52
+⋯ = �

1
22
+
1
42
+⋯� + �

1
12
+
1
32
+
1
52
+⋯�

But, from lecture Sept. 12, 2018, we showed in class that
∞
�
𝑛=1

1
𝑛2

= 𝜁 (2) =
𝜋2

6
(7)

(This is called the Basel problem, and the above closed form sum was first given by Euler
in 1734). Now using (7) into (6) results in

∞
�
𝑛=0

1
(2𝑛 + 1)2

=
∞
�
𝑛=1

1
𝑛2
−

∞
�
𝑛=1

1
(2𝑛)2

=
∞
�
𝑛=1

1
𝑛2
−
1
4

∞
�
𝑛=1

1
𝑛2

=
3
4 �

∞
�
𝑛=1

1
𝑛2 �

=
3
4 �
𝜋2

6 �

=
𝜋2

8
Another way to obtained closed form sum for∑∞

𝑛=0
1

(2𝑛+1)2
is to use Fourier series. Considering

the Fourier series for the following periodic function

𝑓 (𝑥) =

⎧⎪⎪⎨
⎪⎪⎩
−𝑥 −𝜋 < 𝑥 < 0
0 0 ≤ 𝑥 ≤ 𝜋

Using

𝑓 (𝑥) =
𝐴0
2
+

∞
�
𝑛=1

𝐴𝑛 cos (𝑛𝑥) +
∞
�
𝑛=1

𝐵𝑛 sin (𝑛𝑥)
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Therefore

𝐴0 =
1
𝜋 �

0

−𝜋
−𝑥𝑑𝑥 =

−1
𝜋 �

𝑥2

2 �
0

−𝜋
=
−1
2𝜋

�𝑥2�
0

−𝜋
=
−1
2𝜋

�−𝜋2� =
1
2
𝜋

And

𝐴𝑛 =
−1
𝜋 �

0

−𝜋
𝑥 cos (𝑛𝑥) 𝑑𝑥 = 1 + (−1)𝑛+1

𝑛2

𝐵𝑛 =
−1
𝜋 �

0

−𝜋
𝑥 sin (𝑛𝑥) 𝑑𝑥 =

(−1)𝑛+1

𝑛
𝜋

Hence the Fourier series for 𝑓 (𝑥) is

𝑓 (𝑥) =
𝜋
4
−
1
𝜋

∞
�
𝑛=1

1 + (−1)𝑛+1

𝑛2
cos (𝑛𝑥) − 1

𝜋

∞
�
𝑛=0

(−1)𝑛+1

𝑛
𝜋 (sin 𝑛𝑥)

=
𝜋
4
−
1
𝜋

∞
�
𝑛=1

1 + (−1)𝑛+1

𝑛2
cos (𝑛𝑥) −

∞
�
𝑛=0

(−1)𝑛+1

𝑛
sin (𝑛𝑥)

Evaluating the above at 𝑥 = 0 then all the sin terms vanish and we obtain

0 =
𝜋
4
−
1
𝜋

∞
�
𝑛=1

1 + (−1)𝑛+1

𝑛2

=
𝜋
4
−
2
𝜋 �

1 +
1
32
+
1
52
+
1
72
+⋯�

=
𝜋
4
−
2
𝜋

∞
�
𝑛=0

1
(2𝑛 + 1)2

Therefore
2
𝜋

∞
�
𝑛=0

1
(2𝑛 + 1)2

=
𝜋
4

∞
�
𝑛=0

1
(2𝑛 + 1)2

=
𝜋2

8

Now that we found closed form sum for ∑∞
𝑛=0

1
(2𝑛+1)2

, we can find the value of the integral.

Since 𝐼 = 2∑∞
𝑛=0

1
(2𝑛+1)2

, then

�
1

0
ln �

1 + 𝑥
1 − 𝑥�

𝑑𝑥
𝑥
= 2 �

𝜋2

8 �

=
𝜋2

4

3.4.2 Problem 2

Let 𝐼 (𝑥) = ∫
∞

0
𝑒𝑥𝑓(𝑡)𝑑𝑡 with 𝑓 (𝑡) = 𝑡 − 𝑒𝑡

𝑥 , find a large 𝑥 approximation for this integral.

Solution
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𝐼 = �
∞

0
exp �𝑥𝑓 (𝑡)� 𝑑𝑡

= �
∞

0
exp �𝑥 �𝑡 −

𝑒𝑡

𝑥 ��
𝑑𝑡

= �
∞

0
exp �𝑥𝑡 − 𝑒𝑡� 𝑑𝑡

= �
∞

0
exp (𝐹 (𝑡)) 𝑑𝑡 (1)

Where 𝐹 (𝑡) = 𝑥𝑡 − 𝑒𝑡. We need to find saddle point where 𝐹 (𝑡) is maximum. Hence
𝑑
𝑑𝑡
𝐹 (𝑡) = 0

𝑥 − 𝑒𝑡 = 0
𝑒𝑡 = 𝑥
𝑡0 = ln (𝑥)

Where 𝑡0 is location of 𝑡 where 𝐹 (𝑡) is maximum. We called this in class 𝑡𝑝𝑒𝑎𝑘. We now expand
𝐹 (𝑡) around 𝑡0 using Taylor series

𝐹 (𝑡) = 𝐹 (𝑡0) + 𝐹′ (𝑡0) (𝑡 − 𝑡0) +
1
2
𝐹′′ (𝑡0) (𝑡 − 𝑡0)

2 +⋯ (2)

But

𝐹 (𝑡0) = 𝑥 ln (𝑥) − 𝑒ln 𝑥

= 𝑥 ln 𝑥 − 𝑥
And 𝐹′ (𝑡) = 𝑥−𝑒𝑡, hence as expected 𝐹′ (𝑡0) = 0. And 𝐹′′ (𝑡) = −𝑒𝑡, therefore 𝐹′′ (𝑡0) = −𝑒ln 𝑥 = −𝑥.
We see also that 𝐹′′ (𝑡0) < 0, which means the saddle point was a maximum and not a
minimum (since 𝑥 is positive). Using these in (2) gives

𝐹 (𝑡) ≈ (𝑥 ln 𝑥 − 𝑥) + 1
2
(−𝑥) (𝑡 − ln 𝑥)2

= 𝑥 ln 𝑥 − 𝑥 − 1
2
𝑥 (𝑡 − ln 𝑥)2

Substituting the above into (1) gives

𝐼 = �
∞

0
exp �𝑥 ln 𝑥 − 𝑥 − 1

2
𝑥 (𝑡 − ln 𝑥)2� 𝑑𝑡

= �
∞

0
exp (𝑥 ln 𝑥) exp (−𝑥) exp �−

1
2
𝑥 (𝑡 − ln 𝑥)2� 𝑑𝑡

= exp (𝑥 ln 𝑥) exp (−𝑥)�
∞

0
exp �−

1
2
𝑥 (𝑡 − ln 𝑥)2� 𝑑𝑡

= 𝑥𝑥𝑒−𝑥�
∞

0
𝑒−

1
2𝑥(𝑡−ln 𝑥)2𝑑𝑡 (3)

Now, since the peak value where 𝐹 (𝑡) occurs is on the positive real axis, because 𝑡0 = ln (𝑥),
therefore 𝑥 > 1 to have a maximum, and assuming a narrow peak, then all the contribution
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to the integral comes from 𝑥 close to the peak location, so we can change ∫
∞

0
𝑒−

1
2𝑥(𝑡−ln 𝑥)2𝑑𝑡 to

∫∞
−∞
𝑒−

1
2𝑥(𝑡−ln 𝑥)2𝑑𝑡 without a�ecting the final result. Therefore (3) becomes

𝐼 = 𝑥𝑥𝑒−𝑥�
∞

−∞
𝑒−

1
2𝑥(𝑡−ln 𝑥)2𝑑𝑡 (4)

Now comparing ∫∞
−∞
𝑒−

1
2𝑥(𝑡−ln 𝑥)2𝑑𝑡 to the Gaussian integral ∫

∞

−∞
𝑒−𝑎(𝑡−𝑏)

2
𝑑𝑡 = �

𝜋
𝑎 , shows that

𝑎 = 𝑥
2 for our case. Hence

�
∞

−∞
𝑒−

1
2𝑥(𝑡−ln 𝑥)2𝑑𝑡 =

�
2𝜋
𝑥

Therefore (4) becomes

𝐼 ≈ 𝑥𝑥𝑒−𝑥
�
2𝜋
𝑥

For large 𝑥.

3.4.3 Problem 3

Evaluate the following integrals with aid of residue theorem 𝑎 ≥ 0. (a) ∫
∞

0
1

𝑥4+1
𝑑𝑥 (b)

∫∞
0

cos(𝑎𝑥)
𝑥2+1 𝑑𝑥

Part (a)

Since the integrand is even, then

𝐼 =
1
2 �

∞

−∞

1
𝑥4 + 1

𝑑𝑥

Now we consider the following contour

−R +R

R

CR

<z

=z

Figure 3.5: contour used for problem 3
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Therefore

∮
𝐶

𝑓 (𝑧) 𝑑𝑧 = � lim
𝑅→∞

�
0

−𝑅
𝑓 (𝑥) 𝑑𝑥 + lim

𝑅̃→∞
�

𝑅̃

0
𝑓 (𝑥) 𝑑𝑥� + lim

𝑅→∞
�
𝐶𝑅
𝑓 (𝑧) 𝑑𝑧

Using Cauchy principal value the integral above can be written as

∮
𝐶

𝑓 (𝑧) 𝑑𝑧 = lim
𝑅→∞

�
𝑅

−𝑅
𝑓 (𝑥) 𝑑𝑥 + lim

𝑅→∞
�
𝐶𝑅
𝑓 (𝑧) 𝑑

= 2𝜋𝑖�Residue

Where ∑Residue is sum of residues of 1
𝑧4+1

for poles that are inside the contour 𝐶. Therefore
the above becomes

lim
𝑅→∞

�
𝑅

−𝑅
𝑓 (𝑥) 𝑑𝑥 = 2𝜋𝑖�Residue− lim

𝑅→∞
�
𝐶𝑅
𝑓 (𝑧) 𝑑𝑧

�
∞

−∞

1
𝑥4 + 1

𝑑𝑥 = 2𝜋𝑖�Residue− lim
𝑅→∞

�
𝐶𝑅

1
𝑧4 + 1

𝑑𝑧 (1)

Now we will show that lim𝑅→∞∫𝐶𝑅
1

𝑧4+1
𝑑𝑧 = 0. Since

��
𝐶𝑅

1
𝑧4 + 1

𝑑𝑧� ≤ 𝑀𝐿

= �𝑓 (𝑧)�
max

(𝜋𝑅) (2)

But

𝑓 (𝑧) =
1

�𝑧2 − 𝑖� �𝑧2 + 𝑖�

Hence, and since 𝑧 = 𝑅 𝑒𝑖𝜃 then

�𝑓 (𝑧)�
max

≤
1

�𝑧2 − 𝑖�
min

�𝑧2 + 𝑖�
min

But but inverse triangle inequality �𝑧2 − 𝑖� ≥ |𝑧|2 + 1 and �𝑧2 + 𝑖� ≥ |𝑧|2 − 1, and since |𝑧| = 𝑅 then
the above becomes

�𝑓 (𝑧)�
max

≤
1

�𝑅2 + 1� �𝑅2 − 1�

=
1

𝑅4 − 1
Therefore (2) becomes

��
𝐶𝑅

1
𝑧4 + 1

𝑑𝑧� ≤
𝜋𝑅
𝑅4 − 1

Then it is clear that as 𝑅 → ∞ the above goes to zero since lim𝑅→∞
𝜋𝑅
𝑅4−1

= lim𝑅→∞

𝜋
𝑅3

1− 1
𝑅4

=
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0
1 = 0. Then (1) now simplifies to

�
∞

−∞

1
𝑥4 + 1

𝑑𝑥 = 2𝜋𝑖�Residue (2A)

We just now need to find the residues of 1
𝑧4+1

located in upper half plane. The zeros of the

denominator 𝑧4+1 = 0 are at 𝑧 = −1
1
4 = �𝑒𝑖𝜋�

1
4 , then the first zero is at 𝑒𝑖

𝜋
4 , and the second zero

at 𝑒𝑖�
𝜋
4 +

𝜋
2 � = 𝑒

𝑖� 34𝜋� and the third zero at 𝑒
𝑖� 34𝜋+

𝜋
2 � = 𝑒

𝑖� 54𝜋� and the fourth zero at 𝑒
𝑖� 54𝜋+

𝜋
2 � = 𝑒𝑖

7
4𝜋.

Hence poles are at

𝑧1 = 𝑒
𝑖𝜋4

𝑧2 = 𝑒
𝑖 34𝜋

𝑧3 = 𝑒
𝑖 54𝜋

𝑧4 = 𝑒
𝑖 74𝜋

Out of these only the first two are in upper half plane 𝑧1 and 𝑧1. Hence

Residue (𝑧1) = lim
𝑧→𝑧1

(𝑧 − 𝑧1) 𝑓 (𝑧)

= lim
𝑧→𝑧1

(𝑧 − 𝑧1)
1

𝑧4 − 1
Applying L’Hopitals

Residue (𝑧1) = lim
𝑧→𝑧1

1
4𝑧3

=
1

4 �𝑒𝑖
𝜋
4 �
3

=
1

4𝑒𝑖
3𝜋
4

Similarly for the other residue

Residue (𝑧2) = lim
𝑧→𝑧2

(𝑧 − 𝑧2) 𝑓 (𝑧)

= lim
𝑧→𝑧1

(𝑧 − 𝑧2)
1

𝑧4 − 1
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Applying L’Hopitals

Residue (𝑧2) = lim
𝑧→𝑧2

1
4𝑧3

=
1

4 �𝑒𝑖
3
4𝜋�

3

=
1

4𝑒𝑖
9𝜋
4

=
1

4𝑒𝑖
𝜋
4

Hence (2A) becomes

�
∞

−∞

1
𝑥4 + 1

𝑑𝑥 = 2𝜋𝑖
⎛
⎜⎜⎜⎜⎝
1

4𝑒𝑖
3𝜋
4

+
1

4𝑒𝑖
𝜋
4

⎞
⎟⎟⎟⎟⎠

= 2𝜋𝑖
⎛
⎜⎜⎜⎜⎝
√2
4𝑖

⎞
⎟⎟⎟⎟⎠

=
1
2√

2𝜋

But ∫
∞

0
1

𝑥4+1
𝑑𝑥 = 1

2
∫∞
−∞

1
𝑥4+1

𝑑𝑥, therefore

�
∞

0

1
𝑥4 + 1

𝑑𝑥 = √2
4
𝜋

=
2
4√2

𝜋

=
𝜋
2√2

Part (b)

Since the integrand is even, then

𝐼 =
1
2 �

∞

−∞

cos (𝑎𝑥)
𝑥2 + 1

𝑑𝑥

We will evaluate ∫
∞

−∞
𝑒𝑖𝑎𝑧

𝑥2+1𝑑𝑥 and at the end take the real part of the answer. Considering the
following contour
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−R +R

R

CR

<z

=z

Figure 3.6: contour used for part b

Then

∮
𝐶

𝑓 (𝑧) 𝑑𝑧 = � lim
𝑅→∞

�
0

−𝑅
𝑓 (𝑥) 𝑑𝑥 + lim

𝑅̃→∞
�

𝑅̃

0
𝑓 (𝑥) 𝑑𝑥� + lim

𝑅→∞
�
𝐶𝑅
𝑓 (𝑧) 𝑑𝑧

Using Cauchy principal value the integral above can be written as

∮
𝐶

𝑓 (𝑧) 𝑑𝑧 = lim
𝑅→∞

�
𝑅

−𝑅
𝑓 (𝑥) 𝑑𝑥 + lim

𝑅→∞
�
𝐶𝑅
𝑓 (𝑧) 𝑑

= 2𝜋𝑖�Residue

Where ∑Residue is sum of residues of 𝑒𝑖𝑎𝑧

𝑥2+1 for poles that are inside the contour 𝐶. Therefore
the above becomes

lim
𝑅→∞

�
𝑅

−𝑅
𝑓 (𝑥) 𝑑𝑥 = 2𝜋𝑖�Residue− lim

𝑅→∞
�
𝐶𝑅
𝑓 (𝑧) 𝑑𝑧

�
∞

−∞

𝑒𝑖𝑎𝑥

𝑥2 + 1
𝑑𝑥 = 2𝜋𝑖�Residue− lim

𝑅→∞
�
𝐶𝑅

𝑒𝑖𝑎𝑧

𝑧2 + 1
𝑑𝑧 (1)

Now we will show that lim𝑅→∞∫𝐶𝑅
𝑒𝑖𝑎𝑧

𝑧2+1𝑑𝑧 = 0. Since

��
𝐶𝑅

𝑒𝑖𝑎𝑧

𝑧2 + 1
𝑑𝑧� ≤ 𝑀𝐿

= �𝑓 (𝑧)�
max

(𝜋𝑅) (2)
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But

𝑓 (𝑧) =
𝑒𝑖𝑎𝑧

(𝑧 − 𝑖) (𝑧 + 𝑖)

=
𝑒𝑖𝑎�𝑥+𝑖𝑦�

(𝑧 − 𝑖) (𝑧 + 𝑖)

=
𝑒𝑖𝑎𝑥−𝑎𝑦

(𝑧 − 𝑖) (𝑧 + 𝑖)

=
𝑒𝑖𝑎𝑥𝑒−𝑎𝑦

(𝑧 − 𝑖) (𝑧 + 𝑖)
Hence

�𝑓 (𝑧)�
max

=
�𝑒𝑖𝑎𝑧�

max
|𝑒−𝑎𝑦|max

|𝑧 − 𝑖|min |𝑧 + 𝑖|min

=
|𝑒−𝑎𝑦|max

(𝑅 + 1) (𝑅 − 1)

=
|𝑒−𝑎𝑦|max
𝑅2 − 1

Since 𝑎 > 0 and since in upper half 𝑦 > 0 then |𝑒−𝑎𝑦|max = �𝑒
−𝑎𝑅�

max
= 1. Jordan inequality was

not needed here, since there is no extra 𝑥 in the numerator of the integrand in this problem.
The above now reduces to

�𝑓 (𝑧)�
max

=
1

𝑅2 − 1
Equation (2) becomes

��
𝐶𝑅

𝑒𝑖𝑎𝑧

𝑧2 + 1
𝑑𝑧� ≤

𝜋𝑅
𝑅2 − 1

𝑅 → ∞ the above goes to zero since lim𝑅→∞
𝜋𝑅
𝑅2−1 = lim𝑅→∞

𝜋
𝑅2

1− 1
𝑅2

= 0
1 = 0. Equation (1) now

simplifies to

�
∞

−∞

𝑒𝑖𝑎𝑥

𝑥4 + 1
𝑑𝑥 = 2𝜋𝑖�Residue

We just now need to find the residues of 1
𝑧2+1 that are located in upper half plane. The zeros

of the denominator 𝑧2 + 1 = 0 are at 𝑧 = ±𝑖, hence poles are at

𝑧1 = 𝑖
𝑧2 = −𝑖
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Only 𝑧1 is in upper half plane. Therefore

Residue (𝑧1) = lim
𝑧→𝑧1

(𝑧 − 𝑧1) 𝑓 (𝑧)

= lim
𝑧→𝑧1

(𝑧 − 𝑧1)
𝑒𝑖𝑎𝑧

(𝑧 − 𝑧1) (𝑧 − 𝑧2)

= lim
𝑧→𝑧1

𝑒𝑖𝑎𝑧

(𝑧 − 𝑧2)

=
𝑒𝑖𝑎(𝑖)

(𝑖 + 𝑖)

=
𝑒−𝑎

2𝑖
Since ∫

∞

−∞
𝑒𝑎𝑥

𝑥4+1
𝑑𝑥 = 2𝜋𝑖∑Residue then

�
∞

−∞

𝑒𝑖𝑎𝑥

𝑥4 + 1
𝑑𝑥 = 2𝜋𝑖 �

𝑒−𝑎

2𝑖 �

= 𝜋𝑒−𝑎

Therefore

�
∞

0

𝑒𝑖𝑎𝑥

𝑥4 + 1
𝑑𝑥 =

1
2 �

∞

−∞

𝑒𝑎𝑥

𝑥4 + 1
𝑑𝑥

=
𝜋
2
𝑒−𝑎

But real part of the above is

�
∞

0

cos (𝑎𝑥)
𝑥4 + 1

𝑑𝑥 =
𝜋
2
𝑒−𝑎

3.4.4 Problem 4

Using residues evaluate(a) ∫
2𝜋

0
1

1+𝑎 cos𝜃𝑑𝜃 for |𝑎| < 1 (b) ∫
𝜋

0
(cos (𝜃))2𝑛 𝑑𝜃 for 𝑛 integer.

Part (a)

Using contour which is anti-clockwise over the unit circle
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<z

=z

C

z = eiθ

θ

Figure 3.7: contour used for problem 4

Let 𝑧 = 𝑒𝑖𝜃, hence 𝑑𝑧 = 𝑑𝜃𝑖𝑒𝑖𝜃 = 𝑑𝜃𝑖𝑧. Using cos𝜃 = 𝑧+𝑧−1

2 then the integral can be written in
complex domain as

∮
𝐶

1
𝑖𝑧𝑑𝑧

1 + 𝑎 𝑧+𝑧
−1

2

=
2
𝑖∮
𝐶

1
𝑧𝑑𝑧

2 + 𝑎 �𝑧 + 1
𝑧
�

=
2
𝑖∮
𝐶

𝑑𝑧
2𝑧 + 𝑎𝑧2 + 𝑎

=
2
𝑎𝑖∮

𝐶

𝑑𝑧
𝑧2 + 2

𝑎𝑧 + 1

=
2
𝑎𝑖∮

𝐶

𝑑𝑧
(𝑧 − 𝑧1) (𝑧 − 𝑧2)

Where 𝑧1, 𝑧2 are roots of 𝑧2 +
2
𝑎𝑧 + 1 = 0 which are found to be (using the quadratic formula)

as

𝑧1 =
−1 − √1 − 𝑎2

𝑎

𝑧2 =
−1 + √1 − 𝑎2

𝑎
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Since |𝑎| < 1 then only 𝑧2 will be inside the unit disk for all 𝑎 values. Therefore
2
𝑎𝑖∮

𝐶

𝑑𝑧
(𝑧 − 𝑧1) (𝑧 − 𝑧2)

= �
2
𝑎𝑖�

2𝜋𝑖Residue (𝑧2)

=
4
𝑎
𝜋Residue (𝑧2) (1)

Now we will find the Residue (𝑧2) where in this case 𝑓 (𝑧) = 1
(𝑧−𝑧1)(𝑧−𝑧2)

. Hence

Residue (𝑧2) = lim
𝑧→𝑧2

(𝑧 − 𝑧2) 𝑓 (𝑧)

= lim
𝑧→𝑧2

(𝑧 − 𝑧2)
1

(𝑧 − 𝑧1) (𝑧 − 𝑧2)

= lim
𝑧→𝑧2

1
(𝑧 − 𝑧1)

=
1

�
−1+√1−𝑎2

𝑎 � − �
−1−√1−𝑎2

𝑎 �

=
𝑎

2√1 − 𝑎2
Using the above result in (1) gives

�
2𝜋

0

1
1 + 𝑎 cos𝜃𝑑𝜃 = �

4
𝑎
𝜋�

𝑎
2√1 − 𝑎2

=
2𝜋

√1 − 𝑎2
𝑎 ≠ 1

Using Maple, verified that the above result is correct.

Figure 3.8: Verification using Maple

Part (b)

Since integrand is even, then ∫
𝜋

0
(cos (𝜃))2𝑛 𝑑𝜃 = 1

2
∫2𝜋
0

(cos (𝜃))2𝑛 𝑑𝜃. Using same contour as

in part (a), and letting 𝑧 = 𝑒𝑖𝜃, hence 𝑑𝑧 = 𝑑𝜃𝑖𝑒𝑖𝜃 = 𝑑𝜃𝑖𝑧 and using cos𝜃 = 𝑧+𝑧−1

2 then the
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integral can be written in complex domain as

�
2𝜋

0
(cos (𝜃))2𝑛 𝑑𝜃 = ∮

𝐶

⎛
⎜⎜⎜⎜⎜⎝
𝑧 + 1

𝑧
2

⎞
⎟⎟⎟⎟⎟⎠

2𝑛
𝑑𝑧
𝑖𝑧

=
1
𝑖∮
𝐶

�𝑧 + 1
𝑧
�
2𝑛

22𝑛
𝑑𝑧
𝑧

=
1
4𝑛𝑖∮

𝐶
�𝑧 +

1
𝑧�

2𝑛 𝑑𝑧
𝑧

=
1
4𝑛𝑖∮

𝐶
�
𝑧2 + 1
𝑧 �

2𝑛 𝑑𝑧
𝑧

=
1
4𝑛𝑖∮

𝐶

�𝑧2 + 1�
2𝑛

𝑧2𝑛
𝑑𝑧
𝑧

=
1
4𝑛𝑖∮

𝐶

�𝑧2 + 1�
2𝑛

𝑧2𝑛+1
𝑑𝑧

Considering 𝑓 (𝑧) =
�𝑧2+1�

2𝑛

𝑧2𝑛+1
, this has a pole at 𝑧 = 0 of order 𝑚 = 2𝑛 + 1. Therefore

1
4𝑛𝑖∮

𝐶

�𝑧2 + 1�
2𝑛

𝑧2𝑛+1
𝑑𝑧 = �

1
4𝑛𝑖�

2𝜋𝑖Residue (𝑧 = 0) (1)

So we now need to find residue of 𝑓 (𝑧) at 𝑧 = 0 but for pole of order 𝑚 = 2𝑛 + 1. Using the
formula for finding residue for pole of order 𝑚 gives

Residue (𝑧0 = 0) = lim
𝑧→𝑧0

𝑑𝑚−1

𝑑𝑧𝑚−1
(𝑧 − 𝑧0)

𝑚 𝑓 (𝑧)
(𝑚 − 1)!

But 𝑚 = 2𝑛 + 1, and 𝑧0 = 0, hence the above becomes

Residue (0) = lim
𝑧→0

𝑑2𝑛

𝑑𝑧2𝑛
𝑧2𝑛+1

(2𝑛)!
�𝑧2 + 1�

2𝑛

𝑧2𝑛+1

=
1

(2𝑛)!
lim
𝑧→0

�
𝑑2𝑛

𝑑𝑧2𝑛
�𝑧2 + 1�

2𝑛
�

Equation (1) becomes

�
2𝜋

0
(cos (𝜃))2𝑛 𝑑𝜃 = �

1
4𝑛 �

2𝜋 �
1

(2𝑛)!
lim
𝑧→0

�
𝑑2𝑛

𝑑𝑧2𝑛
�𝑧2 + 1�

2𝑛
��



108

Therefore

�
𝜋

0
(cos (𝜃))2𝑛 𝑑𝜃 = 1

2 �
1
4𝑛 �

2𝜋 �
1

(2𝑛)!
lim
𝑧→0

�
𝑑2𝑛

𝑑𝑧2𝑛
�𝑧2 + 1�

2𝑛
��

=
1
4𝑛

𝜋
(2𝑛)!

lim
𝑧→0

�
𝑑2𝑛

𝑑𝑧2𝑛
�𝑧2 + 1�

2𝑛
�

Will now try to obtained closed form solution. Trying for di�erent 𝑛 values in order to see
the pattern. From few lectures ago, we learned also that

Γ �𝑛 +
1
2�
=
1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2𝑛 − 1)

2𝑛 √𝜋

Now will generate a table to see the pattern

𝑛 1
4𝑛

𝜋
(2𝑛)! lim𝑧→0 �

𝑑2𝑛

𝑑𝑧2𝑛
�𝑧2 + 1�

2𝑛
� result of integral Γ �𝑛 + 1

2
�

1 1
4
𝜋
2! lim𝑧→0

𝑑2

𝑑𝑧2
�𝑧2 + 1�

2 𝜋
2 Γ �1 + 1

2
� = √𝜋

2

2 1
42
𝜋
4! lim𝑧→0

𝑑4

𝑑𝑧4
�𝑧2 + 1�

4 3𝜋
8 Γ �2 + 1

2
� = 3√𝜋

4

3 1
43
𝜋
6! lim𝑧→0

𝑑6

𝑑𝑧6
�𝑧2 + 1�

6 5𝜋
16 Γ �3 + 1

2
� = 15√𝜋

8

4 1
44
𝜋
8! lim𝑧→0

𝑑8

𝑑𝑧8
�𝑧2 + 1�

8 35𝜋
128 Γ �4 + 1

2
� = 105√𝜋

16

5 1
45

𝜋
10! lim𝑧→0

𝑑10

𝑑𝑧10
�𝑧2 + 1�

10 63𝜋
256 Γ �5 + 1

2
� = 945√𝜋

32

⋮ ⋮ ⋮ ⋮

Based on the above, we see that 𝐼 =
√𝜋Γ�𝑛+

1
2 �

𝑛! , which is verified as follows

𝑛 result of integral Γ �𝑛 + 1
2
�

√𝜋Γ�𝑛+
1
2 �

𝑛!

1 𝜋
2 Γ �1 + 1

2
� = √𝜋

2

√𝜋�√
𝜋
2 �

1 = 1
2𝜋

2 3𝜋
8 Γ �2 + 1

2
� = 3√𝜋

4

√𝜋�
3√𝜋
4 �

2! = 3
8𝜋

3 5𝜋
16 Γ �3 + 1

2
� = 15√𝜋

8

√𝜋�
15√𝜋
8 �

3! = 15𝜋
(6)(8) =

15𝜋
48 = 3

16𝜋

4 35𝜋
128 Γ �4 + 1

2
� = 105√𝜋

16

√𝜋�
105√𝜋
16 �

4! = √𝜋�105√𝜋�
(24)(16) = 105𝜋

384 = 35
128𝜋

5 63𝜋
256 Γ �5 + 1

2
� = 945√𝜋

32

√𝜋�
945√𝜋
32 �

5! = 945𝜋
(120)(32) =

945𝜋
3840 =

63
256𝜋

⋮ ⋮ ⋮ ⋮

Therefore

�
𝜋

0
(cos (𝜃))2𝑛 𝑑𝜃 =

√𝜋Γ �𝑛 +
1
2
�

𝑛!
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Tried to do pole/zero cancellation on the integrand of ∮
𝐶

�𝑧2+1�
2𝑛

𝑧2𝑛+1
𝑑𝑧 in order to find a simpler

method than the above but was not able to. The above result was verified using the computer

In[ ]:= AssumingElement[n, Integers] && n > 0, IntegrateCos[x]2 n, {x, 0, π};

TraditionalForm[%]

Out[ ]//TraditionalForm=

π Γn + 1

2


n !

Figure 3.9: Verification using Mathematica
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3.4.5 key solution to HW 4
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3.5 HW 5

3.5.1 Problem 1

Expand the following functions, which are periodic in 2𝜋
𝐿 , in Fourier series (i) 𝑓 (𝑥) = 1 − |𝑥|

𝐿
for −𝐿

2 ≤ 𝑥 ≤ 𝐿
2 . (ii) 𝑓 (𝑥) = 𝑒

𝑥 for −𝐿
2 ≤ 𝑥 ≤ 𝐿

2

Solution

Part 1

The following is a plot of the function 𝑓 (𝑥) = 1 − |𝑥|
𝐿 . In the plot below 𝐿 = 1 was used for

illustration.

-0.4 -0.2 0.0 0.2 0.4

0.0

0.2

0.4

0.6

0.8

1.0

x

f(
x)

Plot of function for one period

Figure 3.10: Function plot

L = 1;

f[x_] := 1 - Abs[x]/ L;

p = Plot[f[x], {x, -L/ 2, L/ 2},

AxesOrigin → {0, 0}, Frame → True,

FrameLabel → {{"f(x)", None}, {"x", "Plot of function for one period"}},

BaseStyle → 14,

GridLines → Automatic, GridLinesStyle → LightGray,

PlotStyle → Red]

Export["../images/p1_plot_1.pdf", p]

Figure 3.11: Code used
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The Fourier series of 𝑓 (𝑥) = is given by

𝑓 (𝑥) =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝐿
𝑛𝑥� + 𝑏𝑛 sin �

2𝜋
𝐿
𝑛𝑥� (1)

Where 𝐿 is the period.

𝑎0 =
2
𝐿 �

𝐿
2

− 𝐿
2

𝑓 (𝑥) 𝑑𝑥

∫
𝐿
2

− 𝐿
2
𝑓 (𝑥) 𝑑𝑥 is the area under the curve. Looking at the plot above shows the area is made up

of the lower rectangle of area 1
2𝐿 and a triangle whose area is �12𝐿� �

1
2
�. Therefore the total

area is 1
2𝐿 +

1
4𝐿 =

3
4𝐿. Hence

𝑎0 =
2
𝐿 �

3
4
𝐿�

=
3
2

And

𝑎𝑛 =
2
𝐿 �

𝐿
2

− 𝐿
2

𝑓 (𝑥) cos �
2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

Since 𝑓 (𝑥) is an even function, the above simplifies to

𝑎𝑛 =
4
𝐿 �

𝐿
2

0
𝑓 (𝑥) cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

=
4
𝐿 �

𝐿
2

0
�1 −

𝑥
𝐿
� cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

=
4
𝐿

⎛
⎜⎜⎜⎜⎝�

𝐿
2

0
cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥 −

1
𝐿 �

𝐿
2

0
𝑥 cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

=
4
𝐿

⎛
⎜⎜⎜⎜⎜⎜⎝�sin �

2𝜋
𝐿
𝑛𝑥��

𝐿
2

0
−
1
𝐿 �

𝐿
2

0
𝑥 cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎠

=
4
𝐿

⎛
⎜⎜⎜⎜⎝�sin �

2𝜋
𝐿
𝑛 �
𝐿
2�
− 0�� −

1
𝐿 �

𝐿
2

0
𝑥 cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

=
4
𝐿

⎛
⎜⎜⎜⎜⎜⎝

0

���������[sin𝜋𝑛] − 1
𝐿 �

𝐿
2

0
𝑥 cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎠

= −
4
𝐿2 �

𝐿
2

0
𝑥 cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

Using integration by parts: Let 𝑢 = 𝑥, 𝑑𝑣 = cos �2𝜋𝐿 𝑛𝑥� then 𝑑𝑢 = 1, 𝑣 =
sin� 2𝜋𝐿 𝑛𝑥�

2𝜋
𝐿 𝑛

= 𝐿
2𝜋𝑛 sin �2𝜋𝐿 𝑛𝑥�.
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The above integral becomes

�
𝐿
2

0
𝑥 cos �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥 = �

𝐿
2𝜋𝑛

𝑥 sin �
2𝜋
𝐿
𝑛𝑥��

𝐿
2

0
−

𝐿
2𝜋𝑛 �

𝐿
2

0
sin �

2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

= �
𝐿
2𝜋𝑛 �

𝐿
2�

sin �
2𝜋
𝐿
𝑛
𝐿
2�
− 0� −

𝐿
2𝜋𝑛

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝
−

cos �2𝜋𝐿 𝑛𝑥�
2𝜋
𝐿 𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐿
2

0

=
𝐿2

4𝜋𝑛
sin (𝑛𝜋) + 𝐿2

4𝜋2𝑛2 �
cos �

2𝜋
𝐿
𝑛 �
𝐿
2��

− 1�

=
𝐿2

4𝜋2𝑛2
(cos (𝜋𝑛) − 1)

Therefore

𝑎𝑛 = −
4
𝐿2 �

𝐿2

4𝜋2𝑛2
(cos (𝜋𝑛) − 1)�

=
1

𝜋2𝑛2
(1 − cos (𝜋𝑛))

The above is zero for even 𝑛 and 2𝐿2

4𝜋2𝑛2 for odd 𝑛. Therefore the above simplifies to

𝑎𝑛 =
2

𝜋2𝑛2
𝑛 = 1, 3, 5,⋯

Because 𝑓 (𝑥) is an even function, then 𝑏𝑛 = 0 for all 𝑛. The Fourier series from (1) now
becomes

𝑓 (𝑥) =
3
4
+

∞
�

𝑛=1,3,5,⋯

2
𝜋2𝑛2

cos �
2𝜋
𝐿
𝑛𝑥�

To verify the above result, the Fourier series approximation given above was plotted for
increasing 𝑛 against the original 𝑓 (𝑥) function in order to see how the approximation
improves as 𝑛 increases. Using 𝐿 = 2, the result is given below.

The original function is in the red color. The plot shows that the convergence is fast (due
to the 1

𝑛2 term). The convergence is uniform. After only 4 terms, the error between 𝑓 (𝑥) and
its Fourier series approximation becomes very small. As expected, the error is largest at the
top and at the lower corners where the original function changes more rapidly and therefore
more terms would be needed in those regions compared to the straight edges regions of the
function 𝑓 (𝑥) to get a better approximation.
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x

f(
x)

approximation for n=1

x

f(
x)

approximation for n=3

x

f(
x)

approximation for n=5

x

f(
x)

approximation for n=7

Figure 3.12: Fourier series approximation, part 1
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ClearAll[L, x, n, a]

L = 2;

a[n_] := 2/(Pi^2 n^2);

fApprox[x_, nTerms_] := 3/ 4 + Sum[a[n] Cos[2 Pi/ L n x], {n, 1, nTerms, 2}]

p = Table[

Plot[{f[x], fApprox[x, i]}, {x, -L/ 2, L/ 2},

Frame → True,

FrameLabel → {{"f(x)", None}, {"x", Row[{"approximation for n=", i}]}},

GridLines → Automatic, GridLinesStyle → LightGray,

PlotStyle → {Red, Blue},

ImageSize → 400,

BaseStyle → 16],

{i, 1, 7, 2}

];

p = Grid[Partition[p, 2]]

Export["../images/p1_plot_2.pdf", p]

Figure 3.13: Code used

Part 2

The following is a plot of the function 𝑓 (𝑥) = 𝑒𝑥. In this plot, 𝐿 = 1 was used.

x

f(
x)

Plot of function for one period

Figure 3.14: Function plot part 2



120

L = 1;

f[x_] := Exp[x];

p = Plot[f[x], {x, -L/ 2, L/ 2}, AxesOrigin → {0, 0},

Frame → True,

FrameLabel → {{"f(x)", None}, {"x", "Plot of function for one period"}},

BaseStyle → 14, GridLines → Automatic, GridLinesStyle → LightGray, PlotStyle → Red]

Export["../images/p1_plot_3.pdf", p]

Figure 3.15: Code used

The Fourier series of 𝑓 (𝑥) = is given by

𝑓 (𝑥) =
𝑎0
2
+

∞
�
𝑛=1

𝑎𝑛 cos �
2𝜋
𝐿
𝑛𝑥� + 𝑏𝑛 sin �

2𝜋
𝐿
𝑛𝑥� (1A)

Where 𝐿 is the period and

𝑎0 =
2
𝐿 �

𝐿
2

− 𝐿
2

𝑓 (𝑥) 𝑑𝑥

=
2
𝐿 �

𝐿
2

− 𝐿
2

𝑒𝑥𝑑𝑥

=
2
𝐿
[𝑒𝑥]

𝐿
2
− 𝐿
2

=
2
𝐿 �
𝑒
𝐿
2 − 𝑒−

𝐿
2 �

=
4
𝐿

⎡
⎢⎢⎢⎢⎢⎣
𝑒
𝐿
2 − 𝑒−

𝐿
2

2

⎤
⎥⎥⎥⎥⎥⎦

=
4
𝐿

sinh �
𝐿
2�

And

𝑎𝑛 =
2
𝐿 �

𝐿
2

− 𝐿
2

𝑓 (𝑥) cos �
2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

=
2
𝐿 �

𝐿
2

− 𝐿
2

𝑒𝑥 cos �
2𝜋
𝐿
𝑛𝑥� 𝑑𝑥 (1)
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Integration by parts: Let 𝑢 = cos �2𝜋𝐿 𝑛𝑥� , 𝑑𝑢 = −
2𝜋𝑛
𝐿 sin �2𝜋𝐿 𝑛𝑥� and let 𝑑𝑣 = 𝑒𝑥, 𝑣 = 𝑒𝑥, therefore

𝐼 = �
𝐿
2

− 𝐿
2

𝑒𝑥 cos �
2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

= �𝑒𝑥 cos �
2𝜋
𝐿
𝑛𝑥��

𝐿
2

− 𝐿
2

−�
𝐿
2

− 𝐿
2

−
2𝜋𝑛
𝐿

sin �
2𝜋
𝐿
𝑛𝑥� 𝑒𝑥𝑑𝑥

= �𝑒
𝐿
2 cos �

2𝜋
𝐿
𝑛
𝐿
2�
− 𝑒−

𝐿
2 cos �

2𝜋
𝐿
𝑛 �−

𝐿
2���

+
2𝜋𝑛
𝐿 �

𝐿
2

− 𝐿
2

sin �
2𝜋
𝐿
𝑛𝑥� 𝑒𝑥𝑑𝑥

= �𝑒
𝐿
2 cos (𝜋𝑛) − 𝑒−

𝐿
2 cos (𝜋𝑛)� +

2𝜋𝑛
𝐿 �

𝐿
2

− 𝐿
2

sin �
2𝜋
𝐿
𝑛𝑥� 𝑒𝑥𝑑𝑥

= cos (𝜋𝑛) �𝑒
𝐿
2 − 𝑒−

𝐿
2 � +

2𝜋𝑛
𝐿 �

𝐿
2

− 𝐿
2

sin �
2𝜋
𝐿
𝑛𝑥� 𝑒𝑥𝑑𝑥

= 2 cos (𝜋𝑛) sinh �
𝐿
2�
+
2𝜋𝑛
𝐿 �

𝐿
2

− 𝐿
2

sin �
2𝜋
𝐿
𝑛𝑥� 𝑒𝑥𝑑𝑥

Integration by parts again, let 𝑢 = sin �2𝜋𝐿 𝑛𝑥� , 𝑑𝑢 =
2𝜋𝑛
𝐿 cos �2𝜋𝐿 𝑛𝑥� and 𝑑𝑣 = 𝑒𝑥, 𝑣 = 𝑒𝑥. The

above becomes

𝐼 = 2 cos (𝜋𝑛) sinh �
𝐿
2�
+
2𝜋𝑛
𝐿

⎛
⎜⎜⎜⎜⎜⎜⎝�𝑒

𝑥 sin �
2𝜋
𝐿
𝑛𝑥��

𝐿
2

− 𝐿
2

−�
𝐿
2

− 𝐿
2

2𝜋𝑛
𝐿

cos �
2𝜋
𝐿
𝑛𝑥� 𝑒𝑥𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎠

The term �𝑒𝑥 sin �2𝜋𝐿 𝑛𝑥��
𝐿
2

− 𝐿
2

goes to zero since it gives sin (𝑛𝜋) and 𝑛 is integer. The above

simplifies to

𝐼 = 2 cos (𝜋𝑛) sinh �
𝐿
2�
+
2𝜋𝑛
𝐿

⎛
⎜⎜⎜⎜⎝−
2𝜋𝑛
𝐿 �

𝐿
2

− 𝐿
2

cos �
2𝜋
𝐿
𝑛𝑥� 𝑒𝑥𝑑𝑥

⎞
⎟⎟⎟⎟⎠

= 2 cos (𝜋𝑛) sinh �
𝐿
2�
−
4𝜋2𝑛2

𝐿2 �
𝐿
2

− 𝐿
2

cos �
2𝜋
𝐿
𝑛𝑥� 𝑒𝑥𝑑𝑥

Since ∫
𝐿
2

− 𝐿
2

cos �2𝜋𝐿 𝑛𝑥� 𝑒
𝑥𝑑𝑥 = 𝐼 the above reduces to

𝐼 = 2 cos (𝜋𝑛) sinh �
𝐿
2�
−
4𝜋2𝑛2

𝐿2
𝐼

𝐼 �1 +
4𝜋2𝑛2

𝐿2 � = 2 cos (𝜋𝑛) sinh �
𝐿
2�

𝐼 =
2 cos (𝜋𝑛) sinh �𝐿2�

1 + 4𝜋2𝑛2

𝐿2
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Using the above in (1) gives

𝑎𝑛 =
2
𝐿

2 cos (𝜋𝑛) sinh �𝐿2�

1 + 4𝜋2𝑛2

𝐿2

=
2𝐿2

𝐿

2 cos (𝜋𝑛) sinh �𝐿2�

𝐿2 + 4𝜋2𝑛2

=
4𝐿

𝐿2 + 4𝜋2𝑛2
cos (𝜋𝑛) sinh �

𝐿
2�

Next, 𝑏𝑛 is found:

𝑏𝑛 =
2
𝐿 �

𝐿
2

− 𝐿
2

𝑓 (𝑥) sin �
2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

=
2
𝐿 �

𝐿
2

− 𝐿
2

𝑒𝑥 sin �
2𝜋
𝐿
𝑛𝑥� 𝑑𝑥 (2)

Integration by parts: Let 𝑢 = sin �2𝜋𝐿 𝑛𝑥� , 𝑑𝑢 =
2𝜋𝑛
𝐿 sin �2𝜋𝐿 𝑛𝑥� and let 𝑑𝑣 = 𝑒𝑥, 𝑣 = 𝑒𝑥, therefore

𝐼 = �
𝐿
2

− 𝐿
2

𝑒𝑥 sin �
2𝜋
𝐿
𝑛𝑥� 𝑑𝑥

= �𝑒𝑥 sin �
2𝜋
𝐿
𝑛𝑥��

𝐿
2

− 𝐿
2

−�
𝐿
2

− 𝐿
2

2𝜋𝑛
𝐿

cos �
2𝜋
𝐿
𝑛𝑥� 𝑒𝑥𝑑𝑥

But �𝑒𝑥 sin �2𝜋𝐿 𝑛𝑥��
𝐿
2

− 𝐿
2

goes to zero as sin (𝜋𝑛) = 0 for integer 𝑛 and the above simplifies to

𝐼 = −
2𝜋𝑛
𝐿 �

𝐿
2

− 𝐿
2

cos �
2𝜋
𝐿
𝑛𝑥� 𝑒𝑥𝑑𝑥

Integration by parts again: let 𝑢 = cos �2𝜋𝐿 𝑛𝑥� , 𝑑𝑢 = −
2𝜋𝑛
𝐿 sin �2𝜋𝐿 𝑛𝑥� and 𝑑𝑣 = 𝑒

𝑥, 𝑣 = 𝑒𝑥. The
above becomes

𝐼 = −
2𝜋𝑛
𝐿

⎛
⎜⎜⎜⎜⎜⎜⎝�𝑒

𝑥 cos �
2𝜋
𝐿
𝑛𝑥��

𝐿
2

− 𝐿
2

−�
𝐿
2

− 𝐿
2

−
2𝜋𝑛
𝐿

sin �
2𝜋
𝐿
𝑛𝑥� 𝑒𝑥𝑑𝑥

⎞
⎟⎟⎟⎟⎟⎟⎠

= −
2𝜋𝑛
𝐿

⎛
⎜⎜⎜⎜⎝2 cos (𝜋𝑛) sinh �

𝐿
2�
+
2𝜋𝑛
𝐿 �

𝐿
2

− 𝐿
2

sin �
2𝜋
𝐿
𝑛𝑥� 𝑒𝑥𝑑𝑥

⎞
⎟⎟⎟⎟⎠
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But ∫
𝐿
2

− 𝐿
2

sin �2𝜋𝐿 𝑛𝑥� 𝑒
𝑥𝑑𝑥 = 𝐼 and the above reduces to

𝐼 = −
2𝜋𝑛
𝐿 �2 cos (𝜋𝑛) sinh �

𝐿
2�
+
2𝜋𝑛
𝐿
𝐼�

𝐼 = −
4𝜋𝑛
𝐿

cos (𝜋𝑛) sinh �
𝐿
2�
−
4𝜋2𝑛2

𝐿2
𝐼

𝐼 �1 +
4𝜋2𝑛2

𝐿2 � = −
4𝜋𝑛
𝐿

cos (𝜋𝑛) sinh �
𝐿
2�

𝐼 =
−4𝜋𝑛𝐿 cos (𝜋𝑛) sinh �𝐿2�

1 + 4𝜋2𝑛2

𝐿2

=
−4𝜋𝑛𝐿 cos (𝜋𝑛) sinh �𝐿2�

𝐿2 + 4𝜋2𝑛2
Using the above in (2) gives

𝑏𝑛 =
2
𝐿

−4𝜋𝑛𝐿 cos (𝜋𝑛) sinh �𝐿2�

𝐿2 + 4𝜋2𝑛2

=
−8𝜋𝑛

𝐿2 + 4𝜋2𝑛2
cos (𝜋𝑛) sinh �

𝐿
2�

Therefore, from (1A) the Fourier series is

𝑓 (𝑥) =
2
𝐿

sinh �
𝐿
2�
+

∞
�
𝑛=1

4𝐿
𝐿2 + 4𝜋2𝑛2

cos (𝜋𝑛) sinh �
𝐿
2�

cos �
2𝜋
𝐿
𝑛𝑥� −

8𝜋𝑛
𝐿2 + 4𝜋2𝑛2

cos (𝜋𝑛) sinh �
𝐿
2�

sin �
2𝜋
𝐿
𝑛𝑥�

(3)

To verify the result, the above was plotted for increasing 𝑛 against the original 𝑓 (𝑥) function
to see how the approximation improves as 𝑛 increases. Using 𝐿 = 2, the result is displayed
below. The original function is in the red color.

Compared to part (1), more terms are needed here to get good approximation. Since the
original function is piecewise continuous when extending over multiple periods, the conver-
gence is no longer a uniform convergence. At the point of discontinuity, the approximation
converges to the average value of the original function at that point. At about 20 terms
the approximation started to give good results. Due to Gibbs phenomena, at the points of
discontinuities, the error is largest. Here is a plot showing one period
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Figure 3.16: Fourier series approximation, showing one period
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ClearAll[L, x, n, a]

L = 2;

f[x_] := Exp[x];

a[n_] := 4 L/(L^2 + 4 Pi^2 n^2) Cos[Pi n] Sinh[L/ 2] ;

b[n_] := -8 Pi n/(L^2 + 4 Pi^2 n^2) Cos[Pi n] Sinh[L/ 2] ;

fApprox[x_, nTerms_] := 2/ L Sinh[L/ 2] + Sum[a[n] Cos[2 Pi/ L n x] + b[n] Sin[2 Pi/ L n x], {n, 1, nTerms, 1}]

p = Table[

Plot[{f[x], fApprox[x, i]}, {x, -L/ 2, L/ 2},

Frame → True,

FrameLabel → {{"f(x)", None}, {"x", Row[{"approximation for n=", i}]}},

GridLines → Automatic, GridLinesStyle → LightGray,

PlotStyle → {Red, Blue}, ImageSize → 400, BaseStyle → 16],

{i, 1, 20, 2}

];

p = Grid[Partition[p, 2]]

Export["../images/p1_plot_4.pdf", p]

Figure 3.17: Code used

In the following plot, 3 periods are shown to make it easier to see the e�ect of discontinuities
and the Gibbs phenomena



126

x

f(
x)

approximation for n=1

x

f(
x)

approximation for n=2

x

f(
x)

approximation for n=3

x

f(
x)

approximation for n=4

x

f(
x)

approximation for n=5

x

f(
x)

approximation for n=6

x

f(
x)

approximation for n=7

x

f(
x)

approximation for n=8

x

f(
x)

approximation for n=9

x

f(
x)

approximation for n=10

Figure 3.18: Fourier series approximation, showing 3 periods
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ClearAll[L, x, n, a]

L = 2;

f[x_] := Piecewise[{

{Exp[x + L], -3/ 2 L < x < -L/ 2},

{Exp[x], -L/ 2 < x < L/ 2},

{Exp[x - L], L/ 2 < x < 3/ 2 L}}

];

a[n_] := 4 L/(L^2 + 4 Pi^2 n^2) Cos[Pi n] Sinh[L/ 2] ;

b[n_] := -8 Pi n/(L^2 + 4 Pi^2 n^2) Cos[Pi n] Sinh[L/ 2] ;

fApprox[x_, nTerms_] := 2/ L Sinh[L/ 2] + Sum[a[n] Cos[2 Pi/ L n x] + b[n] Sin[2 Pi/ L n x], {n, 1, nTerms, 1}];

p = Table[

Plot[{f[x], fApprox[x, i]}, {x, -3/ 2 L, 3/ 2 L},

Frame → True, FrameLabel → {{"f(x)", None}, {"x", Row[{"approximation for n=", i}]}},

GridLines → Automatic, GridLinesStyle → LightGray,

PlotStyle → {Red, Blue},

ImageSize → 400, BaseStyle → 16],

{i, 1, 10, 1}

];

p = Grid[Partition[p, 2]]

Export["../images/p1_plot_5.pdf", p]

Figure 3.19: Code used

3.5.2 Problem 2

Find the general solution of

1. 2𝑥3𝑦′ = 1 + �1 + 4𝑥2𝑦

2. 𝑒𝑥 sin 𝑦 − 2𝑦 sin 𝑥 + �𝑦2 + 𝑒𝑥 cos 𝑦 + 2 cos 𝑦� 𝑦′ = 0

3. 𝑦′ + 𝑦 cos 𝑥 = 1
2 sin 𝑥

Solution

part 1

This ODE is not separable and it is also not exact (It was checked for exactness and failed
the test). The ODE is next checked to see if it is isobaric. An ODE 𝑦′ = 𝑓 �𝑥, 𝑦� is isobaric
(which is a generalization of a homogeneous ODE) if the substitution

𝑦 (𝑥) = 𝑣 (𝑥) 𝑥𝑚

Changes the ODE to be a separable one in 𝑣 (𝑥). To determine if it isobaric, a weight 𝑚 is
assigned to 𝑦 and to 𝑑𝑦, and a weight of 1 is assigned to 𝑥 and to 𝑑𝑥, then if an 𝑚 could be
found such that each term in the ODE will have the same weight, then the ODE is isobaric
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and it can be made separable using the above substitution. Writing the above ODE as

2𝑥3𝑑𝑦 = �1 + �1 + 4𝑥
2𝑦� 𝑑𝑥

�2𝑥3𝑑𝑦 −⏞𝑑𝑥−
���������������
�1 + 4𝑥

2𝑦𝑑𝑥 = 0

Adding the weights of the first term above gives 2𝑥3𝑑𝑦 → 3 + 𝑚. The next term weight is
𝑑𝑥 → 1. The next term weight is �1 + 4𝑥2𝑦𝑑𝑥 →

1
2
(2 + 𝑚) + 1 = 2 + 𝑚

2 . Therefore the weights
of each term are

{3 + 𝑚, 1, 2 +
𝑚
2
}

Each term weight can be made the same by selecting 𝑚 = −2. This value makes each term
have weight 1 and the above becomes

{1, 1, 1}

Therefore the ODE is isobaric. Using this value of 𝑚 the substitution 𝑦 = 𝑣
𝑥2 is now used to

make the original ODE separable
𝑑𝑦
𝑑𝑥

=
1
𝑥2
𝑑𝑣
𝑑𝑥
− 2

𝑣
𝑥3

The original ODE now becomes (where each 𝑦 is replaced by 𝑣
𝑥2 ) separable as follows

2𝑥3 �
1
𝑥2
𝑑𝑣
𝑑𝑥
− 2

𝑣
𝑥3 �

= 1 +
�
1 + 4𝑥2

𝑣
𝑥2

2𝑥
𝑑𝑣
𝑑𝑥
− 4𝑣 = 1 + √1 + 4𝑣

2𝑥
𝑑𝑣
𝑑𝑥

= 1 + √1 + 4𝑣 + 4𝑣

Solving this ODE for 𝑣 (𝑥)
𝑑𝑣

1 + √1 + 4𝑣 + 4𝑣
=
1
2𝑥
𝑑𝑥

Integrating both sides gives

�
𝑑𝑣

1 + √1 + 4𝑣 + 4𝑣
=
1
2

ln |𝑥| + 𝑐 (2)

The integral above is solved by substitution. Let √1 + 4𝑣 = 𝑢, hence 𝑑𝑢
𝑑𝑣 =

1
2

4

√1+4𝑣
= 2

𝑢 or

𝑑𝑣 = 1
2𝑢𝑑𝑢. Squaring both sides of √1 + 4𝑣 = 𝑢 (and assuming 1 + 4𝑣 > 0) gives 1 + 4𝑣 = 𝑢2 or
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𝑣 = 𝑢2−1
4 . Therefore the LHS integral in (2) becomes

�
1

1 + √1 + 4𝑣 + 4𝑣
𝑑𝑣 =

1
2 �

𝑢

1 + 𝑢 + 4 �𝑢
2−1
4
�
𝑑𝑢

=
1
2 �

𝑢
𝑢 + 𝑢2

𝑑𝑢

=
1
2 �

1
1 + 𝑢

𝑑𝑢

=
1
2

ln |1 + 𝑢|

Using this result in (2) gives the following (the absolute values are removed because the
constant of integration absorbs the sign).

1
2

ln (1 + 𝑢) = 1
2

ln 𝑥 + 𝑐

ln (1 + 𝑢) = ln 𝑥 + 2𝑐
Let 2𝑐 = 𝐶0 be a new constant. The above becomes

ln (1 + 𝑢) = ln 𝑥 + 𝐶0
𝑒ln(1+𝑢) = 𝑒ln 𝑥+𝐶0

1 + 𝑢 = 𝑒𝐶0𝑥
1 + 𝑢 = 𝐶𝑥

Where 𝐶 = 𝑒𝐶0 is a new constant. Therefore the solution is

𝑢 (𝑥) = 𝐶𝑥 − 1

Since 𝑢 (𝑥) = √1 + 4𝑣 then the above becomes

√1 + 4𝑣 = 𝐶𝑥 − 1

1 + 4𝑣 = (𝐶𝑥 − 1)2

𝑣 (𝑥) =
(𝐶𝑥 − 1)2 − 1

4
But 𝑦 = 𝑣

𝑥2 therefore the above gives the final solution as

𝑦 (𝑥) =
(𝐶𝑥 − 1)2 − 1

4𝑥2
Where 𝐶 is the constant of integration.

Part 2

𝑒𝑥 sin 𝑦 − 2𝑦 sin 𝑥 + �𝑦2 + 𝑒𝑥 cos 𝑦 + 2 cos 𝑥� 𝑦′ = 0
The first step is to write the ODE in standard form to check if it is an exact ODE

𝑀(𝑥, 𝑦)𝑑𝑥 + 𝑁(𝑥, 𝑦)𝑑𝑦 = 0
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Hence

𝑀(𝑥, 𝑦) = 𝑒𝑥 sin 𝑦 − 2 𝑦 sin 𝑥
𝑁(𝑥, 𝑦) = 𝑦2 + 𝑒𝑥 cos 𝑦 + 2 cos 𝑥

Next, the ODE is determined if it is exact or not. The ODE is exact if the following condition
is satisfied

𝜕𝑀
𝜕𝑦

=
𝜕𝑁
𝜕𝑥

Applying the above on the given ODE results in

𝜕𝑀
𝜕𝑦

= 𝑒𝑥 cos 𝑦 − 2 sin 𝑥

𝜕𝑁
𝜕𝑥

= 𝑒𝑥 cos 𝑦 − 2 sin 𝑥

Because 𝜕𝑀
𝜕𝑦 =

𝜕𝑁
𝜕𝑥 , then the ODE is exact. The following equations are used to solve for the

function 𝜙 �𝑥, 𝑦�

𝜕𝜙
𝜕𝑥

= 𝑀 = 𝑒𝑥 sin 𝑦 − 2 𝑦 sin 𝑥 (3)

𝜕𝜙
𝜕𝑦

= 𝑁 = 𝑦2 + 𝑒𝑥 cos 𝑦 + 2 cos 𝑥 (4)

Integrating (3) w.r.t 𝑥 gives

�
𝜕𝜙
𝜕𝑥
𝑑𝑥 = �𝑒𝑥 sin 𝑦 − 2 𝑦 sin 𝑥𝑑𝑥

𝜙 �𝑥, 𝑦� = 𝑒𝑥 sin 𝑦 + 2 𝑦 cos 𝑥 + 𝑓(𝑦) (5)

Where 𝑓(𝑦) is used as the constant of integration because 𝜙 �𝑥, 𝑦� is a function of both 𝑥 and
𝑦. Taking derivative of (5) w.r.t 𝑦 gives

𝜕𝜙
𝜕𝑦

= 𝑒𝑥 cos 𝑦 + 2 cos 𝑥 + 𝑓′(𝑦) (6)

But (4) says that
𝜕𝜙
𝜕𝑦 = 𝑦2 + 𝑒𝑥 cos 𝑦 + 2 cos 𝑥. Therefore by equating (4) and (6) then 𝑓′ �𝑦�

can be solved for:

𝑦2 + 𝑒𝑥 cos 𝑦 + 2 cos 𝑥 = 𝑒𝑥 cos 𝑦 + 2 cos 𝑥 + 𝑓′(𝑦) (7)

Solving the above for 𝑓′(𝑦) gives

𝑓′(𝑦) = 𝑦2

Integrating w.r.t 𝑦 gives 𝑓 �𝑦�

�𝑓′𝑑𝑦 = �𝑦2𝑑𝑦

𝑓(𝑦) =
1
3
𝑦3 + 𝐶1
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Where 𝐶1 is constant of integration. Substituting the value of 𝑓(𝑦) back into (5) gives 𝜙 �𝑥, 𝑦�

𝜙 = 𝑒𝑥 sin 𝑦 + 2 𝑦 cos 𝑥 + 1
3
𝑦3 + 𝐶1

But since 𝜙 itself is a constant function, say 𝜙 = 𝐶0 where 𝐶0 is new constant, then by
combining 𝐶1 and 𝐶0 constants into a new constant 𝐶1, the above gives the solution

𝐶1 = 𝑒𝑥 sin 𝑦 (𝑥) + 2 𝑦 (𝑥) cos 𝑥 + 1
3
𝑦3 (𝑥)

The above is left in implicit form for simplicity.

Part 3

𝑦′ + 𝑦 cos 𝑥 = 1
2

sin (2𝑥)

This ODE is linear in 𝑦. It is solved using an integrating factor 𝜇 = 𝑒∫ cos 𝑥𝑑𝑥 = 𝑒sin 𝑥.
Multiplying both sides of the ODE by 𝜇 makes the left side an exact di�erential

𝑑 �𝑦𝜇� =
1
2
𝜇 sin (2) 𝑥𝑑𝑥

Integrating both sides gives

𝑦𝜇 =
1
2 �

𝜇 sin (2𝑥) 𝑑𝑥 + 𝐶

𝑦𝑒sin 𝑥 =
1
2 �

𝑒sin 𝑥 sin (2𝑥) 𝑑𝑥 + 𝐶 (1)

The above integral can be solved as follows. Since sin (2𝑥) = 2 sin 𝑥 cos 𝑥 therefore then

𝐼 =
1
2 �

𝑒sin 𝑥 sin (2𝑥) 𝑑𝑥 = �𝑒sin 𝑥 sin 𝑥 cos 𝑥𝑑𝑥

Using the substitution 𝑧 = sin 𝑥, then 𝑑𝑧 = 𝑑𝑥 cos 𝑥 and the above becomes

𝐼 = �𝑒𝑧𝑧𝑑𝑧

Integrating the above by parts: ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let 𝑢 = 𝑧, 𝑑𝑣 = 𝑒𝑧 → 𝑑𝑢 = 1, 𝑣 = 𝑒𝑧, and
the above becomes

𝐼 = 𝑧𝑒𝑧 −�𝑒𝑧𝑑𝑧

= 𝑧𝑒𝑧 − 𝑒𝑧

= 𝑒𝑧 (𝑧 − 1)

Since 𝑧 = sin 𝑥 the above reduces to
𝐼 = 𝑒sin 𝑥 (sin (𝑥) − 1)

Substituting this back in (1) results in

𝑦𝑒sin 𝑥 = 𝑒sin 𝑥 (sin (𝑥) − 1) + 𝐶
Therefore the final solution is

𝑦 (𝑥) = sin (𝑥) − 1 + 𝐶𝑒− sin 𝑥
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Where 𝐶 is the constant of integration.

3.5.3 Problem 3

Find general solution of

1. 𝑦′′′ − 4𝑦′′ − 4𝑦′ + 16 = 8 sin 𝑥

2. 𝑎2𝑦′2 = �1 + 𝑦′2�
3

Solution

Part 1

𝑦′′′ − 4𝑦′′ − 4𝑦′ = 8 sin 𝑥 − 16
This is linear nonhomogeneous ODE with constant coe�cients. Solving first the homoge-
neous ODE 𝑦′′′−4𝑦′′−4𝑦′ = 0. Since the term 𝑦 is missing from the ODE then the substitution
𝑦′ = 𝑢 reduces the ODE to a second order ODE

𝑢′′ − 4𝑢′ − 4𝑢 = 0 (1)

Let 𝑢 = 𝑒𝜆𝑥. Substituting this into the above and simplifying gives the characteristic equation

𝜆2 − 4𝜆 − 4 = 0

The Roots are 𝜆 = − 𝑏
2𝑎 ±

1
2𝑎√𝑏

2 − 4𝑎𝑐 or

𝜆 =
4
2
±
1
2�

16 − 4 (−4)

= 2 ±
1
2√

32

= 2 ± 2√2

= 2 �1 ± √2�

Hence the solution to (1) is given by linear combinations of 𝑒𝜆1𝑥, 𝑒𝜆2𝑥 as

𝑢ℎ (𝑥) = 𝑐1𝑒
2�1+√2�𝑥 + 𝑐2𝑒

2�1−√2�𝑥

But since 𝑦′ = 𝑢, then 𝑦 is found by integrating the above

𝑦ℎ = �𝑐1𝑒
2�1+√2�𝑥 + 𝑐2𝑒

2�1−√2�𝑥𝑑𝑥

= 𝑐1
𝑒2�1+√2�𝑥

2 �1 + √2�
+ 𝑐2

𝑒�2−2√2�𝑥

2 �1 − √2�
+ 𝐶3

To simplify the above, let 𝑐1
2�1+√2�

= 𝐶1,
𝑐2

2�1−√2�
= 𝐶2, where 𝐶1, 𝐶2 are new constants. The

above simplifies to

𝑦ℎ = 𝐶1𝑒
2�1+√2�𝑥 + 𝐶2𝑒

�2−2√2�𝑥 + 𝐶3
The above solution is homogeneous solution to the original ODE. Next, the particular
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solution is found. Since the RHS of the original ODE is sin 𝑥 − 16 then choosing 𝑦𝑝 to have
the form

𝑦𝑝 = 𝐴 sin 𝑥 + 𝐵 cos 𝑥 + 𝑘𝑥
Therefore

𝑦′𝑝 = 𝑘 + 𝐴 cos 𝑥 − 𝐵 sin 𝑥
𝑦′′𝑝 = −𝐴 sin 𝑥 − 𝐵 cos 𝑥
𝑦′′′𝑝 = −𝐴 cos 𝑥 + 𝐵 sin 𝑥

Substituting these back into the original ODE 𝑦′′′ − 4𝑦′′ − 4𝑦′ = 8 sin 𝑥 − 16 gives
(−𝐴 cos 𝑥 + 𝐵 sin 𝑥) − 4 (−𝐴 sin 𝑥 − 𝐵 cos 𝑥) − 4 (𝑘 + 𝐴 cos 𝑥 − 𝐵 sin 𝑥) = 8 sin 𝑥 − 16
−𝐴 cos 𝑥 + 𝐵 sin 𝑥 + 4𝐴 sin 𝑥 + 4𝐵 cos 𝑥 − 4𝐴 cos 𝑥 + 4𝐵 sin 𝑥 − 4𝑘 = 8 sin 𝑥 − 16

cos 𝑥 (−𝐴 + 4𝐵 − 4𝐴) + sin 𝑥 (𝐵 + 4𝐴 + 4𝐵) − 4𝑘 = 8 sin 𝑥 − 16
cos 𝑥 (−5𝐴 + 4𝐵) + sin 𝑥 (5𝐵 + 4𝐴) − 4𝑘 = 8 sin 𝑥 − 16

Comparing coe�cients gives the following equations to solve for the unknowns 𝐴,𝐵, 𝑘

−4𝑘 = −16
−5𝐴 + 4𝐵 = 0
5𝐵 + 4𝐴 = 8

The second equation gives 𝐵 = 5
4𝐴. Using this in the third equation gives 5 �54𝐴� + 4𝐴 = 8,

solving gives 𝐴 = 32
41 . Hence 𝐵 = 5

4
�32
41
� = 40

41 . The first equation gives 𝑘 = 4. Therefore the

particular solution is

𝑦𝑝 = 𝐴 sin 𝑥 + 𝐵 cos 𝑥 + 𝑘𝑥

=
32
41

sin 𝑥 + 40
41

cos 𝑥 + 4𝑥

Now that 𝑦ℎ and 𝑦𝑝 are found, the general solution is found as

𝑦 = 𝑦ℎ + 𝑦𝑝

= 𝐶1𝑒
2�1+√2�𝑥 + 𝐶2𝑒

�2−2√2�𝑥 + 𝐶3 +
32
41

sin 𝑥 + 40
41

cos 𝑥 + 4𝑥

Where 𝐶1, 𝐶2 are the two constants of integration.

Part 2

𝑎2𝑦′2 = �1 + 𝑦′2�
3

Let 𝑦′ = 𝐴, the above becomes

𝑎2𝐴2 = �1 + 𝐴2�
3

= 1 + 3𝐴2 +
(3) (2)
2!

𝐴4 +
(3) (2) (1)

3!
𝐴6

= 1 + 3𝐴2 + 3𝐴4 + 𝐴6
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Hence the polynomial is

𝐴6 + 3𝐴4 + 𝐴2 �3 − 𝑎2� + 1 = 0

Let 𝐴2 = 𝐵 and the above becomes

𝐵3 + 3𝐵2 + 𝐵 �3 − 𝑎2� + 1 = 0

With the help of the computer, the cubic roots of the above are

𝐵1 =
3

��
1
4
𝑎4 −

1
27
𝑎6 −

1
2
𝑎2 +

1
3

𝑎2

3

��
1
4
𝑎4 − 1

27
𝑎6 − 1

2
𝑎2
− 1

𝐵2 =
1
2
𝑖√3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

��
1
4
𝑎4 −

1
27
𝑎6 −

1
2
𝑎2 −

1
3

𝑎2

3

��
1
4
𝑎4 − 1

27
𝑎6 − 1

2
𝑎2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−
1
2

3

��
1
4
𝑎4 −

1
27
𝑎6 −

1
2
𝑎2 −

1
6

𝑎2

3

��
1
4
𝑎4 − 1

27
𝑎6 − 1

2
𝑎2
− 1

𝐵3 = −
1
2

3

��
1
4
𝑎4 −

1
27
𝑎6 −

1
2
𝑎2 −

1
2
𝑖√3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

��
1
4
𝑎4 −

1
27
𝑎6 −

1
2
𝑎2 −

1
3

𝑎2

3

��
1
4
𝑎4 − 1

27
𝑎6 − 1

2
𝑎2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−
1
6

𝑎2

3

��
1
4
𝑎4 − 1

27
𝑎6 − 1

2
𝑎2
− 1

Therefore 𝐴1 = ±√𝐵1, 𝐴2 = ±√𝐵2, 𝐴3 = ±√𝐵3 or, since 𝑦′ (𝑥) = 𝐴 , then there are 6 solutions,
each is a solution for one root.

𝑑𝑦1
𝑑𝑥

= +√𝐵1
𝑑𝑦2
𝑑𝑥

= −√𝐵1
𝑑𝑦3
𝑑𝑥

= +√𝐵2
𝑑𝑦4
𝑑𝑥

= −√𝐵2
𝑑𝑦5
𝑑𝑥

= +�𝐵3
𝑑𝑦6
𝑑𝑥

= −�𝐵3

But the roots ±𝐵𝑖 are constants. Therefore each of the above can be solved by direct inte-
gration. The final solution which gives the solutions

𝑦1 = √𝐵1𝑥 + 𝐶1
𝑦2 = −√𝐵1𝑥 + 𝐶2
𝑦3 = √𝐵2𝑥 + 𝐶3
𝑦4 = −√𝐵2𝑥 + 𝐶4
𝑦5 = �𝐵3𝑥 + 𝐶5
𝑦6 = −�𝐵3𝑥 + 𝐶6

Where the constants 𝐵𝑖 are given above.
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3.5.4 key solution to HW 5
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3.6 HW 6

3.6.1 Problem 1

Consider the equation 𝑥𝑦′′ + (𝑐 − 𝑥) 𝑦′ − 𝑎𝑦 = 0. Identify a regular singular point and find two
series solutions around this point. Test the solutions for convergence.

Solution

Writing the ODE as

𝑦′′ + 𝐴 (𝑥) 𝑦′ + 𝐵 (𝑥) 𝑦 = 0

Where

𝐴 (𝑥) =
(𝑐 − 𝑥)
𝑥

𝐵 (𝑥) =
−𝑎
𝑥

The above shows that 𝑥0 = 0 is a singularity point for both 𝐴 (𝑥) and 𝐵 (𝑥). Examining 𝐴 (𝑥)
and 𝐵 (𝑥) to determine what type of singular point it is

lim
𝑥→𝑥0

(𝑥 − 𝑥0) 𝐴 (𝑥) = lim
𝑥→0

𝑥
(𝑐 − 𝑥)
𝑥

= lim
𝑥→0

(𝑐 − 𝑥) = 𝑐

Because the limit exists, then 𝑥0 = 0 is regular singular point for 𝐴 (𝑥) .

lim
𝑥→𝑥0

(𝑥 − 𝑥0)
2 𝐵 (𝑥) = lim

𝑥→0
𝑥2 �

−𝑎
𝑥
� = lim

𝑥→0
(−𝑎𝑥) = 0

Because the limit exists, then 𝑥0 = 0 is also regular singular point for 𝐵 (𝑥).

Therefore 𝑥0 = 0 is a regular singular point for the ODE.

Assuming the solution is Frobenius series gives

𝑦 (𝑥) = 𝑥𝑟
∞
�
𝑛=0

𝐶𝑛 (𝑥 − 𝑥0)
𝑛 𝐶0 ≠ 0

= 𝑥𝑟
∞
�
𝑛=0

𝐶𝑛𝑥𝑛

=
∞
�
𝑛=0

𝐶𝑛𝑥𝑛+𝑟

Therefore

𝑦′ =
∞
�
𝑛=0

(𝑛 + 𝑟) 𝐶𝑛𝑥𝑛+𝑟−1

𝑦′′ =
∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝐶𝑛𝑥𝑛+𝑟−2
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Substituting the above in the original ODE 𝑥𝑦′′ + (𝑐 − 𝑥) 𝑦′ − 𝑎𝑦 = 0 gives

𝑥
∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝐶𝑛𝑥𝑛+𝑟−2 + (𝑐 − 𝑥)
∞
�
𝑛=0

(𝑛 + 𝑟) 𝐶𝑛𝑥𝑛+𝑟−1 − 𝑎
∞
�
𝑛=0

𝐶𝑛𝑥𝑛+𝑟 = 0

∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛𝑥𝑛+𝑟−1 + 𝑐
∞
�
𝑛=0

(𝑛 + 𝑟) 𝐶𝑛𝑥𝑛+𝑟−1 − 𝑥
∞
�
𝑛=0

(𝑛 + 𝑟) 𝐶𝑛𝑥𝑛+𝑟−1 −
∞
�
𝑛=0

𝑎𝐶𝑛𝑥𝑛+𝑟 = 0

∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝐶𝑛𝑥𝑛+𝑟−1 +
∞
�
𝑛=0

𝑐 (𝑛 + 𝑟) 𝐶𝑛𝑥𝑛+𝑟−1 −
∞
�
𝑛=0

(𝑛 + 𝑟) 𝐶𝑛𝑥𝑛+𝑟 −
∞
�
𝑛=0

𝑎𝐶𝑛𝑥𝑛+𝑟 = 0

∞
�
𝑛=0

((𝑛 + 𝑟) (𝑛 + 𝑟 − 1) + 𝑐 (𝑛 + 𝑟)) 𝐶𝑛𝑥𝑛+𝑟−1 −
∞
�
𝑛=0

((𝑛 + 𝑟) + 𝑎) 𝐶𝑛𝑥𝑛+𝑟 = 0

Since all powers of 𝑥 have to be the same, adjusting indices and exponents gives (where
in the second sum above, the outside index 𝑛 is increased by 1 and 𝑛 inside the sum is
decreased by 1)

∞
�
𝑛=0

((𝑛 + 𝑟) (𝑛 + 𝑟 − 1) + 𝑐 (𝑛 + 𝑟)) 𝐶𝑛𝑥𝑛+𝑟−1 −
∞
�
𝑛=1

((𝑛 − 1 + 𝑟) + 𝑎) 𝐶𝑛−1𝑥𝑛+𝑟−1 = 0 (1)

Setting 𝑛 = 0 gives the indicial equation, which only comes from the first sum above as the
second sum starts from 𝑛 = 1.

((𝑟) (𝑟 − 1) + 𝑐𝑟) 𝐶0 = 0

Since 𝐶0 ≠ 0 then
(𝑟) (𝑟 − 1) + 𝑐𝑟 = 0

𝑟2 − 𝑟 + 𝑐𝑟 = 0
𝑟 (𝑟 + 𝑐 − 1) = 0

The roots are

𝑟1 = 1 − 𝑐
𝑟2 = 0

Assuming that 𝑟2−𝑟1 is not an integer, in other words, assuming 1−𝑐 is not an integer (problem
did not say), then In this case, two linearly independent solutions can be constructed directly.
The first is associated with 𝑟1 = 1−𝑐 and the second is associated with 𝑟2 = 0. These solutions
are

𝑦1 (𝑥) =
∞
�
𝑛=0

𝐶𝑛𝑥𝑛+1−𝑐 𝐶0 ≠ 0

𝑦2 (𝑥) =
∞
�
𝑛=0

𝐷𝑛𝑥𝑛 𝐷0 ≠ 0

The coe�cients are not the same in each solution. For the first one 𝐶𝑛 is used and for the
second 𝐷𝑛 is used.

The solution 𝑦1 (𝑥) associated with 𝑟1 = 1 − 𝑐 is now found. From (1), and replacing 𝑟 by 1 − 𝑐



144

gives
∞
�
𝑛=0

((𝑛 + 1 − 𝑐) (𝑛 + 1 − 𝑐 − 1) + 𝑐 (𝑛 + 1 − 𝑐)) 𝐶𝑛𝑥𝑛+1−𝑐−1 −
∞
�
𝑛=1

((𝑛 − 1 + 1 − 𝑐) + 𝑎) 𝐶𝑛−1𝑥𝑛+1−𝑐−1 = 0

∞
�
𝑛=0

((𝑛 + 1 − 𝑐) (𝑛 − 𝑐) + 𝑐 (𝑛 + 1 − 𝑐)) 𝐶𝑛𝑥𝑛−𝑐 −
∞
�
𝑛=1

((𝑛 − 𝑐) + 𝑎) 𝐶𝑛−1𝑥𝑛−𝑐 = 0

∞
�
𝑛=0

𝑛 (𝑛 − 𝑐 + 1) 𝐶𝑛𝑥𝑛−𝑐 −
∞
�
𝑛=1

((𝑛 − 𝑐) + 𝑎) 𝐶𝑛−1𝑥𝑛−𝑐 = 0

For 𝑛 > 0 the above gives the recursive relation (𝑛 = 0 is not used, since it was used to find
𝑟). For 𝑛 > 0 the last equation above gives

𝑛 (𝑛 − 𝑐 + 1) 𝐶𝑛 − ((𝑛 − 𝑐) + 𝑎) 𝐶𝑛−1 = 0

𝐶𝑛 =
((𝑛 − 𝑐) + 𝑎)
𝑛 (𝑛 − 𝑐 + 1)

𝐶𝑛−1

Few terms are generated to see the pattern. For 𝑛 = 1

𝐶1 =
(1 − 𝑐 + 𝑎)
1 (1 − 𝑐 + 1)

𝐶0 =
(1 − 𝑐 + 𝑎)
(2 − 𝑐)

𝐶0

For 𝑛 = 2

𝐶2 =
(2 − 𝑐 + 𝑎)
2 (2 − 𝑐 + 1)

𝐶1

=
(2 − 𝑐 + 𝑎)
2 (3 − 𝑐)

(1 − 𝑐 + 𝑎)
(2 − 𝑐)

𝐶0

For 𝑛 = 3

𝐶3 =
(3 − 𝑐 + 𝑎)
3 (3 − 𝑐 + 1)

𝐶2

=
(3 − 𝑐 + 𝑎)
3 (4 − 𝑐)

(2 − 𝑐 + 𝑎)
2 (3 − 𝑐)

(1 − 𝑐 + 𝑎)
(2 − 𝑐)

𝐶0

And so on. The pattern for general term is

𝐶𝑛 =
((𝑛 − 𝑐) + 𝑎)
𝑛 (𝑛 − 𝑐 + 1)

⋅ ⋅ ⋅
(3 − 𝑐 + 𝑎)
3 (3 − 𝑐 + 1)

(2 − 𝑐 + 𝑎)
2 (2 − 𝑐 + 1)

(1 − 𝑐 + 𝑎)
1 (1 − 𝑐 + 1)

𝐶0

=
𝑛
�
𝑚=1

((𝑚 − 𝑐) + 𝑎)
𝑚 (𝑛 − 𝑐 + 1)

Therefore the solution associated with 𝑟1 = 1 − 𝑐 is

𝑦1 (𝑥) =
∞
�
𝑛=0

𝐶𝑛𝑥𝑛+𝑟

=
∞
�
𝑛=0

𝐶𝑛𝑥𝑛+1−𝑐

= 𝐶0𝑥1−𝑐 + 𝐶1𝑥2−𝑐 + 𝐶2𝑥3−𝑐 +⋯

Using results found above, and looking at few terms gives the first solution as

𝑦1 (𝑥) = 𝐶0𝑥1−𝑐 �1 +
(1 − 𝑐 + 𝑎)
(2 − 𝑐)

𝑥 +
1
2
(2 − 𝑐 + 𝑎)
(3 − 𝑐)

(1 − 𝑐 + 𝑎)
(2 − 𝑐)

𝑥2 +
1
6
(3 − 𝑐 + 𝑎)
(4 − 𝑐)

(2 − 𝑐 + 𝑎)
(3 − 𝑐)

(1 − 𝑐 + 𝑎)
(2 − 𝑐)

𝑥3 +⋯�
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The second solution associated with 𝑟2 = 0 is now found. As above, using (1) but with 𝐷𝑛
instead of 𝐶𝑛 for coe�cients and replacing 𝑟 by zero gives

∞
�
𝑛=0

(𝑛 (𝑛 − 1) + 𝑐𝑛)𝐷𝑛𝑥𝑛−1 −
∞
�
𝑛=1

((𝑛 − 1) + 𝑎)𝐷𝑛−1𝑥𝑛−1 = 0

For 𝑛 > 0 the above gives the recursive relation for the second solution

(𝑛 (𝑛 − 1) + 𝑐𝑛)𝐷𝑛 − ((𝑛 − 1) + 𝑎)𝐷𝑛−1 = 0

𝐷𝑛 =
𝑛 − 1 + 𝑎

𝑛 (𝑛 − 1) + 𝑐𝑛
𝐷𝑛−1

=
𝑛 − 1 + 𝑎
𝑐𝑛 − 𝑛 + 𝑛2

𝐷𝑛−1

Few terms are now generated to see the pattern. For 𝑛 = 1

𝐷1 =
𝑎
𝑐
𝐷0

For 𝑛 = 2

𝐷2 =
1 + 𝑎

2𝑐 − 2 + 4
𝐷1

=
1 + 𝑎
2 (𝑐 + 1)

𝑎
𝑐
𝐷0

For 𝑛 = 3

𝐷3 =
3 − 1 + 𝑎
3𝑐 − 3 + 9

𝐷2

=
2 + 𝑎
3 (𝑐 + 2)

1 + 𝑎
2 (𝑐 + 1)

𝑎
𝑐
𝐷0

And so on. Hence the solution 𝑦2 (𝑥) is

𝑦2 (𝑥) =
∞
�
𝑛=0

𝐷𝑛𝑥𝑛

= 𝐷0 + 𝐷1𝑥 + 𝐷2𝑥2 +⋯

Using result found above gives the second solution as

𝑦2 (𝑥) = 𝐷0 �1 +
𝑎
𝑐
𝑥 +

1
2
(1 + 𝑎) 𝑎
𝑐 (𝑐 + 1)

𝑥2 +
1
6
𝑎 (1 + 𝑎) (2 + 𝑎)
𝑐 (𝑐 + 2) (𝑐 + 1)

𝑥3 +⋯�

The final solution is therefore the sum of the two solutions

𝑦 (𝑥) = 𝐶0𝑥1−𝑐 �1 +
(1 − 𝑐 + 𝑎)
(2 − 𝑐)

𝑥 +
1
2
(2 − 𝑐 + 𝑎)
(3 − 𝑐)

(1 − 𝑐 + 𝑎)
(2 − 𝑐)

𝑥2 +
1
6
(3 − 𝑐 + 𝑎)
(4 − 𝑐)

(2 − 𝑐 + 𝑎)
(3 − 𝑐)

(1 − 𝑐 + 𝑎)
(2 − 𝑐)

𝑥3 +⋯�

(2)

+ 𝐷0 �1 +
𝑎
𝑐
𝑥 +

1
2
(1 + 𝑎) 𝑎
𝑐 (𝑐 + 1)

𝑥2 +
1
6
𝑎 (1 + 𝑎) (2 + 𝑎)
𝑐 (𝑐 + 2) (𝑐 + 1)

𝑥3 +⋯�

Where 𝐶0, 𝐷0 are the two constant of integration.

Testing for convergence. For 𝑦1 (𝑥) solution, the general term from above was

𝐶𝑛𝑥𝑛 =
((𝑛 − 𝑐) + 𝑎)
𝑛 (𝑛 − 𝑐 + 1)

𝐶𝑛−1𝑥𝑛
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Hence by ratio test

𝐿 = lim
𝑛→∞

�
𝐶𝑛𝑥𝑛

𝐶𝑛−1𝑥𝑛−1
�

= lim
𝑛→∞

�
�

((𝑛−𝑐)+𝑎)
𝑛(𝑛−𝑐+1)𝐶𝑛−1𝑥

𝑛

𝐶𝑛−1𝑥𝑛−1
�
�

= lim
𝑛→∞

�
((𝑛 − 𝑐) + 𝑎) 𝑥
(𝑛 (𝑛 − 𝑐 + 1))

�

= |𝑥| lim
𝑛→∞

�
𝑛 − 𝑐 + 𝑎
𝑛2 − 𝑛𝑐 + 𝑛

�

= |𝑥| lim
𝑛→∞

�
�

1
𝑛 −

𝑐
𝑛2 +

𝑎
𝑛2

1 − 𝑐
𝑛 +

1
𝑛

�
�

= |𝑥| �
0
1
�

= 0

Therefore the series 𝑦1 (𝑥) converges for all 𝑥.

Testing for convergence. For 𝑦2 (𝑥) solution, the general term is

𝐷𝑛𝑥𝑛 =
𝑛 − 1 + 𝑎
𝑐𝑛 − 𝑛 + 𝑛2

𝐷𝑛−1𝑥𝑛

Hence by ratio test

𝐿 = lim
𝑛→∞

�
𝐷𝑛𝑥𝑛

𝐷𝑛−1𝑥𝑛−1
�

= lim
𝑛→∞

�
�

𝑛−1+𝑎
𝑐𝑛−𝑛+𝑛2𝐷𝑛−1𝑥𝑛

𝐷𝑛−1𝑥𝑛−1
�
�

= lim
𝑛→∞

�
𝑛 − 1 + 𝑎
𝑐𝑛 − 𝑛 + 𝑛2

𝑥�

= |𝑥| lim
𝑛→∞

�
𝑛 − 1 + 𝑎
𝑐𝑛 − 𝑛 + 𝑛2

�

= |𝑥| lim
𝑛→∞

�
�

1
𝑛 −

1
𝑛2 +

𝑎
𝑛2

𝑐
𝑛 −

1
𝑛 + 1

�
�

= |𝑥| �
0
1
�

= 0

Therefore the series 𝑦2 (𝑥) also converges for all 𝑥. This means the solution 𝑦 (𝑥) = 𝑦1 (𝑥)+𝑦2 (𝑥)
found in (2) above also converges for all 𝑥.
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3.6.2 Problem 2

The Sturm Liouville equation can be expressed as

𝐿 [𝑢 (𝑥)] = 𝜆𝜌 (𝑥) 𝑢 (𝑥)

Where 𝐿 is given as in class. Show 𝐿 is Hermitian on the domain 𝑎 ≤ 𝑥 ≤ 𝑏 with boundary
conditions 𝑢 (𝑎) = 𝑢 (𝑏) = 0. Find the orthogonality condition.

Solution

𝐿 = − �𝑝
𝑑2

𝑑𝑥2
+ 𝑝′

𝑑
𝑑𝑥
− 𝑞�

The operator 𝐿 is Hermitian if

�
𝑏

𝑎
𝑣̄𝐿 [𝑢] 𝑑𝑥 = �

𝑏

𝑎
𝑢̄𝐿 [𝑣] 𝑑𝑥

Where in the above 𝑢, 𝑣 are any two functions defined over the domain that satisfy the
boundary conditions given. Starting from the left integral to show it will result in the right

integral. Replacing 𝐿 [𝑢] by − �𝑝 𝑑2

𝑑𝑥2 + 𝑝
′ 𝑑
𝑑𝑥 − 𝑞� 𝑢 in the LHS of the above gives

−�
𝑏

𝑎
𝑣̄ �𝑝

𝑑2

𝑑𝑥2
+ 𝑝′

𝑑
𝑑𝑥
− 𝑞� 𝑢 𝑑𝑥 = −�

𝑏

𝑎
𝑣̄ �𝑝

𝑑2𝑢
𝑑𝑥2

+ 𝑝′
𝑑𝑢
𝑑𝑥

− 𝑞𝑢� 𝑑𝑥

= −�
𝑏

𝑎
𝑣̄𝑝
𝑑2𝑢
𝑑𝑥2

+ 𝑣̄𝑝′
𝑑𝑢
𝑑𝑥

− 𝑞𝑣̄𝑢 𝑑𝑥

= −

𝐼1
���������������
�

𝑏

𝑎
𝑝𝑣̄
𝑑2𝑢
𝑑𝑥2

𝑑𝑥 −�
𝑏

𝑎
𝑣̄𝑝′

𝑑𝑢
𝑑𝑥
𝑑𝑥 +�

𝑏

𝑎
𝑞𝑣̄𝑢 𝑑𝑥 (1)

Looking at the first integral above, which is 𝐼1 = ∫𝑏
𝑎
�𝑝𝑣̄� �𝑑

2𝑢
𝑑𝑥2
� 𝑑𝑥. The idea is to integrate

this twice to move the second derivative from 𝑢 to 𝑣̄. Applying ∫𝐴𝑑𝐵 = 𝐴𝐵 − ∫𝐵𝑑𝐴, where

𝐴 ≡ 𝑝𝑣̄

𝑑𝐵 ≡
𝑑2𝑢
𝑑𝑥2

Hence

𝑑𝐴 = 𝑝
𝑑𝑣̄
𝑑𝑥
+ 𝑝′𝑣̄

𝐵 =
𝑑𝑢
𝑑𝑥
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Therefore the integral 𝐼1 in (1) becomes

𝐼1 = �
𝑏

𝑎
𝑝𝑣̄

𝑑2

𝑑𝑥2
𝑢

= �𝑝𝑣̄
𝑑𝑢
𝑑𝑥 �

𝑏

𝑎
−�

𝑏

𝑎

𝑑𝑢
𝑑𝑥 �

𝑝
𝑑𝑣̄
𝑑𝑥
+ 𝑝′𝑣̄� 𝑑𝑥

But 𝑣̄ (𝑎) = 0 and 𝑣̄ (𝑏) = 0, hence the boundary terms above vanish and simplifies to

𝐼1 = −�
𝑏

𝑎
𝑝
𝑑𝑢
𝑑𝑥
𝑑𝑣̄
𝑑𝑥
+ 𝑝′𝑣̄

𝑑𝑢
𝑑𝑥
𝑑𝑥

= −�
𝑏

𝑎
𝑝
𝑑𝑢
𝑑𝑥
𝑑𝑣̄
𝑑𝑥
𝑑𝑥 −�

𝑏

𝑎
𝑝′𝑣̄

𝑑𝑢
𝑑𝑥
𝑑𝑥 (2)

Before integrating by parts a second time, putting the result of 𝐼1 back into (1) first simplifies
the result. Substituting (2) into (1) gives

�
𝑏

𝑎
𝑣̄𝐿 [𝑢] 𝑑𝑥 = −𝐼1 −�

𝑏

𝑎
𝑣̄𝑝′

𝑑𝑢
𝑑𝑥
𝑑𝑥 +�

𝑏

𝑎
𝑞𝑣̄𝑢 𝑑𝑥

= −

𝐼1
���������������������������������������������
�−�

𝑏

𝑎
𝑝
𝑑𝑢
𝑑𝑥
𝑑𝑣̄
𝑑𝑥
𝑑𝑥 −�

𝑏

𝑎
𝑝′𝑣̄

𝑑𝑢
𝑑𝑥
𝑑𝑥� −�

𝑏

𝑎
𝑣̄𝑝′

𝑑𝑢
𝑑𝑥
𝑑𝑥 +�

𝑏

𝑎
𝑞𝑣̄𝑢 𝑑𝑥

= �
𝑏

𝑎
𝑝
𝑑𝑢
𝑑𝑥
𝑑𝑣̄
𝑑𝑥
𝑑𝑥 +�

𝑏

𝑎
𝑝′𝑣̄

𝑑𝑢
𝑑𝑥
𝑑𝑥 −�

𝑏

𝑎
𝑣̄𝑝′

𝑑𝑢
𝑑𝑥
𝑑𝑥 +�

𝑏

𝑎
𝑞𝑣̄𝑢 𝑑𝑥

The second and third terms above cancel and the result becomes

�
𝑏

𝑎
𝑣̄𝐿 [𝑢] 𝑑𝑥 =

𝐼2
�����������������
�

𝑏

𝑎
𝑝
𝑑𝑢
𝑑𝑥
𝑑𝑣̄
𝑑𝑥
𝑑𝑥 +�

𝑏

𝑎
𝑞𝑣̄𝑢 𝑑𝑥 (3)

Now integration by parts is applied on the first integral above. Let 𝐼2 = ∫𝑏
𝑎

𝑑𝑢
𝑑𝑥
�𝑝𝑑𝑣̄𝑑𝑥� 𝑑𝑥.

Applying ∫𝐴𝑑𝐵 = 𝐴𝐵 − ∫𝐵𝑑𝐴, where

𝐴 ≡ 𝑝
𝑑𝑣̄
𝑑𝑥

𝑑𝐵 ≡
𝑑𝑢
𝑑𝑥

Hence

𝑑𝐴 = 𝑝
𝑑2𝑣̄
𝑑𝑥2

+ 𝑝′
𝑑𝑣̄
𝑑𝑥

𝐵 = 𝑢

Therefore the integral 𝐼2 becomes

𝐼2 = �𝑝
𝑑𝑣̄
𝑑𝑥
𝑢�
𝑏

𝑎
−�

𝑏

𝑎
𝑢 �𝑝

𝑑2𝑣̄
𝑑𝑥2

+ 𝑝′
𝑑𝑣̄
𝑑𝑥�

𝑑𝑥
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But 𝑢 (𝑎) = 0, 𝑢 (𝑏) = 0, hence the boundary term vanishes and the above simplifies to

𝐼2 = −�
𝑏

𝑎
𝑢 �𝑝

𝑑2𝑣̄
𝑑𝑥2

+ 𝑝′
𝑑𝑣̄
𝑑𝑥�

𝑑𝑥

Substituting the above back into (3) gives

�
𝑏

𝑎
𝑣̄𝐿 [𝑢] 𝑑𝑥 = −�

𝑏

𝑎
𝑢 �𝑝

𝑑2𝑣̄
𝑑𝑥2

+ 𝑝′
𝑑𝑣̄
𝑑𝑥�

𝑑𝑥 +�
𝑏

𝑎
𝑞𝑣̄𝑢 𝑑𝑥

= −�
𝑏

𝑎
𝑢 �𝑝

𝑑2𝑣̄
𝑑𝑥2

+ 𝑝′
𝑑𝑣̄
𝑑𝑥
− 𝑞𝑣̄� 𝑑𝑥

But − �𝑝𝑑
2𝑣̄
𝑑𝑥2 + 𝑝

′ 𝑑𝑣̄
𝑑𝑥 − 𝑞𝑣̄� = 𝐿 [𝑣̄] by definition, and the above becomes

�
𝑏

𝑎
𝑣̄𝐿 [𝑢] 𝑑𝑥 = �

𝑏

𝑎
𝑢𝐿 [𝑣̄] 𝑑𝑥

But ∫
𝑏

𝑎
𝑢𝐿 [𝑣̄] 𝑑𝑥 = ∫

𝑏

𝑎
𝑢̄𝐿 [𝑣] 𝑑𝑥, and the above becomes

�
𝑏

𝑎
𝑣̄𝐿 [𝑢] 𝑑𝑥 = �

𝑏

𝑎
𝑢̄ (𝐿 [𝑣]) 𝑑𝑥

Therefore 𝐿 is Hermitian.

3.6.3 Problem 3

1. For the equation 𝑦′′ + 1−𝛼2

4𝑥2 𝑦 = 0 show that two solutions are 𝑦1 (𝑥) = 𝑎0𝑥
1+𝛼
2 and 𝑦2 (𝑥) =

𝑎0𝑥
1−𝛼
2

2. For 𝛼 = 0, the two solutions are not independent. Find a second solution 𝑦20 by solving
𝑊′ = 0 (𝑊 is the Wronskian).

3. Show that the second solution found in (2) is a limiting case of the two solutions from
part (1). That is

𝑦20 = lim
𝛼→0

𝑦1 − 𝑦2
𝛼

Solution

Part 1

The point 𝑥0 = 0 is a regular singular point. This is shown as follows.

lim
𝑥→𝑥0

(𝑥 − 𝑥0)
2 1 − 𝛼2

4𝑥2
= lim
𝑥→0

𝑥2
1 − 𝛼2

4𝑥2

= lim
𝑥→0

1 − 𝛼2

4

=
1 − 𝛼2

4
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Since the limit exist, then 𝑥0 = 0 is a regular singular point. Assuming the solution is a
Frobenius series given by

𝑦 (𝑥) =
∞
�
𝑛=0

𝑐𝑛𝑥𝑛+𝑟 𝑐0 ≠ 0

Therefore

𝑦′ (𝑥) =
∞
�
𝑛=0

(𝑛 + 𝑟) 𝑐𝑛𝑥𝑛+𝑟−1

𝑦′′ (𝑥) =
∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛𝑥𝑛+𝑟−2

Substituting the above 2 expressions back into the original ODE gives

4𝑥2 �
∞
�
𝑛=0

(𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛𝑥𝑛+𝑟−2� + �1 − 𝛼2� �
∞
�
𝑛=0

𝑐𝑛𝑥𝑛+𝑟� = 0

∞
�
𝑛=0

4 (𝑛 + 𝑟) (𝑛 + 𝑟 − 1) 𝑐𝑛𝑥𝑛+𝑟 + �1 − 𝛼2� �
∞
�
𝑛=0

𝑐𝑛𝑥𝑛+𝑟� = 0 (1)

Looking at 𝑛 = 0 first, in order to obtain the indicial equation gives

4 (𝑟) (𝑟 − 1) 𝑐0 + �1 − 𝛼2� 𝑐0 = 0

𝑐0 �4𝑟2 − 4𝑟 + �1 − 𝛼2�� = 0

But 𝑐0 ≠ 0, therefore

𝑟2 − 𝑟 +
�1 − 𝛼2�

4
= 0

The roots are 𝑟 = −𝑏
2𝑎 ±

1
2𝑎√𝑏

2 − 4𝑎𝑐, but 𝑎 = 1, 𝑏 = −1, 𝑐 =
�1−𝛼2�

4 , hence the roots are

𝑟 =
1
2
±
1
2�

1 − �1 − 𝛼2�

=
1
2
±
1
2
√𝛼2

=
1
2
±
1
2
𝛼

Hence 𝑟1 =
1
2
(1 + 𝛼) and 𝑟2 =

1
2
(1 − 𝛼). Each one of these roots gives a solution. The di�erence

is

𝑟2 − 𝑟1 =
1
2
(1 + 𝛼) −

1
2
(1 − 𝛼)

= 𝛼

Therefore, to use the same solution form 𝑦1 (𝑥) = ∑∞
𝑛=0 𝑐𝑛𝑥

𝑛+𝑟1 and 𝑦2 (𝑥) = ∑∞
𝑛=0 𝑑𝑛𝑥

𝑛+𝑟2 for
each, it is assumed that 𝛼 is not an integer. In this case, the recursive relation for 𝑦1 (𝑥) is

found from (1) by using 𝑟 = 1
2
(1 + 𝛼) which results in

∞
�
𝑛=0

4 �𝑛 +
1
2
(1 + 𝛼)� �𝑛 +

1
2
(1 + 𝛼) − 1� 𝑐𝑛𝑥

𝑛+ 1
2 (1+𝛼) + �1 − 𝛼2� �

∞
�
𝑛=0

𝑐𝑛𝑥
𝑛+ 1

2 (1+𝛼)� = 0
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For 𝑛 > 0 the above becomes

4 �𝑛 +
1
2
(1 + 𝛼)� �𝑛 +

1
2
(1 + 𝛼) − 1� 𝑐𝑛 + �1 − 𝛼2� 𝑐𝑛 = 0

�4 �𝑛 +
1
2
(1 + 𝛼)� �𝑛 +

1
2
(1 + 𝛼) − 1� + �1 − 𝛼2�� 𝑐𝑛 = 0

4𝑛 (𝑛 + 𝛼) 𝑐𝑛 = 0

The above can be true for all 𝑛 > 0 only when 𝑐𝑛 = 0 for 𝑛 > 0. Therefore the solution is only
the term with 𝑐0

𝑦1 (𝑥) =
∞
�
𝑛=0

𝑐𝑛𝑥𝑛+𝑟1 = 𝑐0𝑥𝑟1 = 𝑐0𝑥
1
2 (1+𝛼)

To find the second solution 𝑦2 (𝑥), the above is repeated but with

𝑦2 (𝑥) =
∞
�
𝑛=0

𝑑𝑛𝑥𝑛+𝑟2

Where the constants are not the same and by replacing 𝑟 in (1) by 𝑟2 =
1
2
(1 − 𝛼). This results

in
∞
�
𝑛=0

4 �𝑛 +
1
2
(1 − 𝛼)� �𝑛 +

1
2
(1 − 𝛼) − 1� 𝑑𝑛𝑥

𝑛+ 1
2 (1−𝛼) + �1 − 𝛼2� �

∞
�
𝑛=0

𝑑𝑛𝑥
𝑛+ 1

2 (1−𝛼)� = 0

For 𝑛 > 0

�4 �𝑛 +
1
2
(1 − 𝛼)� �𝑛 +

1
2
(1 − 𝛼) − 1� + �1 − 𝛼2�� 𝑑𝑛 = 0

4𝑛 (𝑛 − 𝛼) 𝑑𝑛 = 0

The above is true for all 𝑛 > 0 only when 𝑐𝑛 = 0 for 𝑛 > 0. Therefore the solution is just the
term with 𝑑0

𝑦2 (𝑥) =
∞
�
𝑛=0

𝑑𝑛𝑥𝑛+𝑟2 = 𝑑0𝑥𝑟2 = 𝑑0𝑥
1
2 (1−𝛼)

Therefore the two solutions are

𝑦1 (𝑥) = 𝑐0𝑥
1
2 (1+𝛼)

𝑦2 (𝑥) = 𝑑0𝑥
1
2 (1−𝛼)

Part 2

When 𝛼 = 0 then the ODE becomes

4𝑥2𝑦′′ + 𝑦 = 0

And the two solutions found in part (1) simplify to

𝑦1 (𝑥) = 𝑐0√𝑥
𝑦2 (𝑥) = 𝑑0√𝑥
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Therefore the two solutions are not linearly independent. Let 𝑦20 (𝑥) be the second solution.
The Wronskian is

𝑊(𝑥) = �
𝑦1 𝑦20
𝑦′1 𝑦′20

� = 𝑦1𝑦′20 − 𝑦20𝑦′1 (1)

Using Abel’s theorem which says that for ODE of form 𝑦′′+𝑝 (𝑥) 𝑦′+𝑞 (𝑥) 𝑦 = 0, the Wronskian
is 𝑊(𝑥) = 𝐶𝑒−∫𝑝(𝑥)𝑑𝑥. Applying this to the given ODE above and since 𝑝 (𝑥) = 0 then the
above becomes

𝑊(𝑥) = 𝐶

Where 𝐶 is constant. For 𝑦20 to be linearly independent from 𝑦1 𝑊(𝑥) ≠ 0. Using 𝑊(𝑥) = 𝐶
in (1) results in the following equation (here it is also assumed that 𝑦1 ≠ 0, or 𝑥 ≠ 0, because
the equation is divided by 𝑦1)

𝑦1𝑦′20 − 𝑦20𝑦′1 = 𝐶

𝑦′20 − 𝑦20
𝑦′1
𝑦1
=
𝐶
𝑦1

Since 𝑦1 = √𝑥 and 𝑦′1 =
1
2
1

√𝑥
the above simplifies to

𝑦′20 − 𝑦20

1
2
1

√𝑥

√𝑥
=

𝐶

√𝑥

𝑦′20 − 𝑦20
1
2𝑥

=
𝐶

√𝑥
(2)

But the above is linear first order ODE of the form 𝑌′ + 𝑝𝑌 = 𝑞, therefore the standard
integrating factor to use is 𝐼 = 𝑒∫𝑝(𝑥)𝑑𝑥 which results in

𝐼 = 𝑒∫
−1
2𝑥 𝑑𝑥

= 𝑒−
1
2 ∫

1
𝑥𝑑𝑥

= 𝑒−
1
2 ln 𝑥

=
1

√𝑥
Multiplying both sides of (2) by this integrating factor, makes the left side of (2) an exact
di�erential

𝑑
𝑑𝑥 �

𝑦20
1

√𝑥
� =

𝐶
𝑥

Integrating both sides gives

𝑦20
1

√𝑥
= 𝐶�

1
𝑥
𝑑𝑥 + 𝐶1

𝑦20
1

√𝑥
= 2𝐶 ln 𝑥 + 𝐶1

𝑦20 = 2𝐶 ln 𝑥√𝑥 + 𝐶1√𝑥
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Or

𝑦20 = 𝐶1 ln 𝑥√𝑥 + 𝐶2√𝑥 (3)

The above is the second solution. Therefore the final solution is

𝑦 (𝑥) = 𝐶0𝑦1 (𝑥) + 𝐶3𝑦20 (𝑥)

Substituting 𝑦1 = √𝑥 and 𝑦20 found above and combining the common term √𝑥 and renaming
constants gives

𝑦 (𝑥) = 𝐶1√𝑥 + 𝐶2 ln 𝑥√𝑥
Another method to find the second solution

This method is called the reduction of order method. It does not require finding 𝑊(𝑥) first.
Let the second solution be

𝑦20 = 𝑌 = 𝑣 (𝑥) 𝑦1 (𝑥) (4)

Where 𝑣 (𝑥) is unknown function to be determined, and 𝑦1 (𝑥) = √𝑥 which is the first solution
that is already known. Therefore

𝑌′ = 𝑣′𝑦1 + 𝑣𝑦′1
𝑌′′ = 𝑣′′𝑦1 + 𝑣′𝑦′1 + 𝑣′𝑦′1 + 𝑣𝑦′′1

= 𝑣′′𝑦1 + 2𝑣′𝑦′1 + 𝑣𝑦′′1
Since 𝑌 is a solution to the ODE 4𝑥2𝑦′′ + 𝑦 = 0, then substituting the above equations back
into the ODE 4𝑥2𝑦′′ + 𝑦 = 0 gives

4𝑥2 �𝑣′′𝑦1 + 2𝑣′𝑦′1 + 𝑣𝑦′′1 � + 𝑣𝑦1 = 0

𝑣′′ �4𝑥2𝑦1� + 𝑣′ �8𝑥2𝑦′1� + 𝑣

⎛
⎜⎜⎜⎜⎜⎜⎝

0

�������������4𝑥2𝑦′′1 + 𝑦1

⎞
⎟⎟⎟⎟⎟⎟⎠ = 0

But 4𝑥2𝑦′′1 + 𝑦1 = 0 because 𝑦1 is a solution. The above simplifies to

𝑣′′ �4𝑥2𝑦1� + 𝑣′ �8𝑥2𝑦′1� = 0

But 𝑦1 = 𝑥
1
2 , hence 𝑦′1 =

1
2𝑥

−1
2 and the above simplifies to

𝑣′′ �4𝑥2𝑥
1
2 � + 𝑣′ �4𝑥2𝑥

−1
2 � = 0

𝑥
5
2𝑣′′ + 𝑣′𝑥

3
2 = 0

𝑥𝑣′′ + 𝑣′ = 0

𝑣′′ +
1
𝑥
𝑣′ = 0

This ODE is now easy to solve because the 𝑣 (𝑥) term is missing. Let 𝑤 = 𝑣′ and the above

first order ODE 𝑤′+ 1
𝑥𝑤 = 0. This is linear in 𝑤. Hence using integrating factor 𝐼 = 𝑒∫

1
𝑥𝑑𝑧 = 𝑥,
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this ODE becomes
𝑑
𝑥
(𝑤𝑥) = 0

𝑤𝑥 = 𝐶

𝑤 =
𝐶
𝑥

Where 𝐶 is constant of integration. Since 𝑣′ = 𝑤, then 𝑣′ = 𝐶1
𝑥 . Now 𝑣 (𝑥) is found by

integrating both sides

𝑣 = 𝐶1 ln 𝑥 + 𝐶2
Therefore the second solution from (4) becomes

𝑦20 = 𝐶1 ln 𝑥𝑦1 + 𝐶2𝑦1
= 𝐶1√𝑥 ln 𝑥 + 𝐶2√𝑥 (5)

Comparing the above to (3), shows it is the same solution. Both methods can be used, but
reduction of order method is a more common method and it does not require finding the
Wronskian first, although it is not hard to find by using Abel’s theorem.

Part 3

The solutions we found in part (1) are

𝑦1 (𝑥) = 𝐶1𝑥
1
2 (1+𝛼)

𝑦2 (𝑥) = 𝐶2𝑥
1
2 (1−𝛼)

Therefore

lim
𝛼→0

𝑦1 − 𝑦2
𝛼

= lim
𝛼→0

𝐶1𝑥
1
2 (1+𝛼) − 𝐶2𝑥

1
2 (1−𝛼)

𝛼
Applying L’Hopital’s

lim
𝛼→0

𝑦1 − 𝑦2
𝛼

= lim
𝛼→0

𝐶1
𝑑
𝑑𝛼
�𝑥

1
2 (1+𝛼)� − 𝐶2

𝑑
𝑑𝛼
�𝑥

1
2 (1−𝛼)�

1
(1)

But
𝑑
𝑑𝛼

�𝑥
1
2 (1+𝛼)� =

𝑑
𝑑𝛼
𝑒
1
2 (1+𝛼) ln 𝑥

=
𝑑
𝑑𝛼
𝑒
� 12 ln 𝑥+𝛼 ln 𝑥�

= ln 𝑥𝑒�
1
2 ln 𝑥+𝛼 ln 𝑥�
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And
𝑑
𝑑𝛼

�𝑥
1
2 (1−𝛼)� =

𝑑
𝑑𝛼
𝑒
1
2 (1−𝛼) ln 𝑥

=
𝑑
𝑑𝛼
𝑒
� 12 ln 𝑥−𝛼 ln 𝑥�

= − ln 𝑥𝑒�
1
2 ln 𝑥−𝛼 ln 𝑥�

Therefore (1) becomes

lim
𝛼→0

𝑦1 − 𝑦2
𝛼

= lim
𝛼→0

𝐶1 ln 𝑥𝑒�
1
2 ln 𝑥+𝛼 ln 𝑥�

+ 𝐶2 ln 𝑥𝑒�
1
2 ln 𝑥−𝛼 ln 𝑥�

= ln 𝑥 �lim
𝛼→0

𝐶1𝑒
� 12 ln 𝑥+𝛼 ln 𝑥�

+ 𝐶2𝑒
� 12 ln 𝑥−𝛼 ln 𝑥�

�

= ln 𝑥 �𝐶1𝑒
1
2 ln 𝑥 + 𝐶2𝑒

1
2 ln 𝑥�

= ln 𝑥 �𝐶1√𝑥 + 𝐶2√𝑥�
= 𝐶√𝑥 ln 𝑥

The above is the same as (3) found in part (2). Hence

𝑦20 (𝑥) = lim
𝛼→0

𝑦1 − 𝑦2
𝛼

Which is what the problem asked to show.
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3.6.4 key solution to HW 6
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3.7 HW 7

3.7.1 Problem 1

Figure 3.20: Problem statement

Solution

𝑦′′ − 2𝑥𝑦′ + 2𝑛𝑦 = 0 − ∞ < 𝑥 < ∞

Part 1

𝑔 (𝑥, 𝑡) =
∞
�
𝑛=0

𝐻𝑛 (𝑥)
𝑡𝑛

𝑛!
Di�erentiating w.r.t 𝑥, and assuming term by term di�erentiation is allowed, gives

𝜕𝑔 (𝑥, 𝑡)
𝜕𝑥

=
∞
�
𝑛=0

𝐻′
𝑛 (𝑥)

𝑡𝑛

𝑛!
Using 𝐻′

𝑛 (𝑥) = 2𝑛𝐻𝑛−1 (𝑥) in the above results in

𝜕𝑔 (𝑥, 𝑡)
𝜕𝑥

=
∞
�
𝑛=0

2𝑛𝐻𝑛−1 (𝑥)
𝑡𝑛

𝑛!
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But for 𝑛 = 0, the first term is zero, so the sum can start from 1 and give the same result

𝜕𝑔 (𝑥, 𝑡)
𝜕𝑥

=
∞
�
𝑛=1

2𝑛𝐻𝑛−1 (𝑥)
𝑡𝑛

𝑛!
Now, decreasing the summation index by 1 and increasing the 𝑛 inside the sum by 1 gives

𝜕𝑔 (𝑥, 𝑡)
𝜕𝑥

=
∞
�
𝑛=0

2 (𝑛 + 1)𝐻𝑛 (𝑥)
𝑡𝑛+1

(𝑛 + 1)!

=
∞
�
𝑛=0

2 (𝑛 + 1)𝐻𝑛 (𝑥)
𝑡𝑛+1

(𝑛 + 1) 𝑛!

=
∞
�
𝑛=0

2𝐻𝑛 (𝑥)
𝑡𝑛+1

𝑛!

=
∞
�
𝑛=0

2𝑡 �𝐻𝑛 (𝑥)
𝑡𝑛

𝑛!�

= 2𝑡
∞
�
𝑛=0

𝐻𝑛 (𝑥)
𝑡𝑛

𝑛!

But ∑∞
𝑛=0𝐻𝑛 (𝑥)

𝑡𝑛

𝑛! = 𝑔 (𝑥, 𝑡) and the above reduces to

𝜕𝑔 (𝑥, 𝑡)
𝜕𝑥

= 2𝑡𝑔 (𝑥, 𝑡)

The problem says it is supposed to be a first order di�erential equation and not a first order
partial di�erential equation. Therefore, by assuming 𝑥 to be a fixed parameter instead of
another independent variable, the above can now be written as

𝑑
𝑑𝑥
𝑔 (𝑥, 𝑡) − 2𝑡𝑔 (𝑥, 𝑡) = 0

Part 2

From the solution found in part (1)
𝑑
𝑑𝑥𝑔 (𝑥, 𝑡)
𝑔 (𝑥, 𝑡)

= 2𝑡

𝑑𝑔 (𝑥, 𝑡)
𝑔 (𝑥, 𝑡)

= 2𝑡𝑑𝑥

Integrating both sides gives

�
𝑑𝑔 (𝑥, 𝑡)
𝑔 (𝑥, 𝑡)

= �2𝑡𝑑𝑥

ln �𝑔 (𝑥, 𝑡)� = 2𝑡𝑥 + 𝐶
𝑔 (𝑥, 𝑡) = 𝑒2𝑡𝑥+𝐶

𝑔 (𝑥, 𝑡) = 𝐶1𝑒2𝑡𝑥

Where 𝐶1 = 𝑒𝐶 a new constant. Let 𝑔 (0, 𝑡) = 𝑔0 then the above shows that 𝐶1 = 𝑔0 and the
above can now be written as

𝑔 (𝑥, 𝑡) = 𝑔 (0, 𝑡) 𝑒2𝑡𝑥
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Part 3

Using the given definition of 𝑔 (𝑥, 𝑡) = ∑∞
𝑛=0𝐻𝑛 (𝑥)

𝑡𝑛

𝑛! and when 𝑥 = 0 then

𝑔 (0, 𝑡) =
∞
�
𝑛=0

𝐻𝑛 (0)
𝑡𝑛

𝑛!

= 𝐻0 (0) + 𝐻1 (0) +
∞
�
𝑛=2

𝐻𝑛 (0)
𝑡𝑛

𝑛!
But 𝐻0 (𝑥) = 1, hence 𝐻0 (0) = 1 and 𝐻1 (𝑥) = 2𝑥, hence 𝐻1 (0) = 0 and the above becomes

𝑔 (0, 𝑡) = 1 +
∞
�
𝑛=2

𝐻𝑛 (0)
𝑡𝑛

𝑛!
For the remaining series, it can be written as sum of even and odd terms

𝑔 (0, 𝑡) = 1 +
∞
�

𝑛=2,4,6,⋯
𝐻𝑛 (0)

𝑡𝑛

𝑛!
+

∞
�

𝑛=3,5,7,⋯
𝐻𝑛 (0)

𝑡𝑛

𝑛!

Or, equivalently

𝑔 (0, 𝑡) = 1 +
∞
�

𝑛=1,2,3,⋯
𝐻2𝑛 (0)

𝑡2𝑛

(2𝑛)!
+

∞
�

𝑛=1,2,3,⋯
𝐻2𝑛+1 (0)

𝑡2𝑛+1

(2𝑛 + 1)!

But using the hint given that 𝐻2𝑛+1 (0) = 0 and 𝐻2𝑛 (0) =
(−1)𝑛(2𝑛)!

𝑛! the above simplifies to

𝑔 (0, 𝑡) = 1 +
∞
�

𝑛=1,2,3,⋯

(−1)𝑛 (2𝑛)!
𝑛!

𝑡2𝑛

(2𝑛)!

= 1 +
∞
�

𝑛=1,2,3,⋯
(−1)𝑛

𝑡2𝑛

𝑛!

But since (−1)𝑛 𝑡
2𝑛

𝑛! = 1 when 𝑛 = 0, then the above sum can be made to start as zero and it
simplifies to

𝑔 (0, 𝑡) =
∞
�
𝑛=0

(−1)𝑛
𝑡2𝑛

𝑛!

Therefore the solution 𝑔 (𝑥, 𝑡) = 𝑔 (0, 𝑡) 𝑒𝑡𝑥 found in part (2) becomes

𝑔 (𝑥, 𝑡) = �
∞
�
𝑛=0

(−1)𝑛
𝑡2𝑛

𝑛! �
𝑒2𝑡𝑥 (1)

Now the sum ∑∞
𝑛=0 (−1)

𝑛 𝑡2𝑛

𝑛! = 1 − 𝑡
2 + 𝑡4

2! −
𝑡6

3! +⋯ and comparing this sum to standard series

of 𝑒𝑧 = 1 + 𝑧 + 𝑧2

2! +
𝑧3

3! +⋯, then this shows that when 𝑧 = −𝑡2 and series for 𝑒−𝑡2 becomes

𝑒−𝑡2 = 1 + �−𝑡2� +
�−𝑡2�

2

2!
+
�−𝑡2�

3

3!
+
�−𝑡2�

4

4!
⋯

= 1 − 𝑡2 +
𝑡4

2!
−
𝑡6

3!
+
𝑡8

4!
⋯
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Hence
∞
�
𝑛=0

(−1)𝑛
𝑡2𝑛

𝑛!
= 𝑒−𝑡2

Substituting this into (1) gives

𝑔 (𝑥, 𝑡) = 𝑒−𝑡2𝑒2𝑡𝑥

= 𝑒2𝑡𝑥−𝑡2

Part 4

Since 𝑔 (𝑥, 𝑡) = 𝑒2𝑡𝑥−𝑡2 from part (3), then

𝜕
𝜕𝑡
𝑔 (𝑥, 𝑡) = (2𝑥 − 2𝑡) 𝑒2𝑡𝑥−𝑡2

= (2𝑥 − 2𝑡) 𝑔 (𝑥, 𝑡)

But 𝑔 (𝑥, 𝑡) = ∑∞
𝑛=0𝐻𝑛 (𝑥)

𝑡𝑛

𝑛! , therefore the above can be written as

𝜕
𝜕𝑡
𝑔 (𝑥, 𝑡) = (2𝑥 − 2𝑡)

∞
�
𝑛=0

𝐻𝑛 (𝑥)
𝑡𝑛

𝑛!

= 2𝑥
∞
�
𝑛=0

𝐻𝑛 (𝑥)
𝑡𝑛

𝑛!
− 2𝑡

∞
�
𝑛=0

𝐻𝑛 (𝑥)
𝑡𝑛

𝑛!

= 2𝑥
∞
�
𝑛=0

𝐻𝑛 (𝑥)
𝑡𝑛

𝑛!
− 2

∞
�
𝑛=0

𝐻𝑛 (𝑥)
𝑡𝑛+1

𝑛!

= 2𝑥
∞
�
𝑛=0

𝐻𝑛 (𝑥)
𝑡𝑛

𝑛!
− 2

∞
�
𝑛=1

𝐻𝑛−1 (𝑥)
𝑡𝑛

(𝑛 − 1)!

= 2𝑥
∞
�
𝑛=0

𝐻𝑛 (𝑥)
𝑡𝑛

𝑛!
− 2

∞
�
𝑛=1

𝑛𝐻𝑛−1 (𝑥)
𝑡𝑛

𝑛 (𝑛 − 1)!

= 2𝑥
∞
�
𝑛=0

𝐻𝑛 (𝑥)
𝑡𝑛

𝑛!
− 2

∞
�
𝑛=1

𝑛𝐻𝑛−1 (𝑥)
𝑡𝑛

𝑛!
(1)

On the other hand,
𝜕
𝜕𝑡
𝑔 (𝑥, 𝑡) =

𝜕
𝜕𝑡

∞
�
𝑛=0

𝐻𝑛 (𝑥)
𝑡𝑛

𝑛!

=
∞
�
𝑛=0

𝑛𝐻𝑛 (𝑥)
𝑡𝑛−1

𝑛!
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Since at 𝑛 = 0 the sum is zero, then it can be started from 𝑛 = 1 without changing the result

𝜕
𝜕𝑡
𝑔 (𝑥, 𝑡) =

∞
�
𝑛=1

𝑛𝐻𝑛 (𝑥)
𝑡𝑛−1

𝑛!

=
∞
�
𝑛=0

(𝑛 + 1)𝐻𝑛+1 (𝑥)
𝑡𝑛

(𝑛 + 1)!

=
∞
�
𝑛=0

(𝑛 + 1)𝐻𝑛+1 (𝑥)
𝑡𝑛

(𝑛 + 1) 𝑛!

=
∞
�
𝑛=0

𝐻𝑛+1 (𝑥)
𝑡𝑛

𝑛!
(2)

Equating (1) and (2) gives
∞
�
𝑛=0

𝐻𝑛+1 (𝑥)
𝑡𝑛

𝑛!
= 2𝑥

∞
�
𝑛=0

𝐻𝑛 (𝑥)
𝑡𝑛

𝑛!
− 2

∞
�
𝑛=1

𝑛𝐻𝑛−1 (𝑥)
𝑡𝑛

𝑛!

But ∑∞
𝑛=1 𝑛𝐻𝑛−1 (𝑥)

𝑡𝑛

𝑛! = ∑
∞
𝑛=0 𝑛𝐻𝑛−1 (𝑥)

𝑡𝑛

𝑛! because at 𝑛 = 0 it is zero, so it does not a�ect the
result to start the sum from zero, and now the above can be written as

∞
�
𝑛=0

𝐻𝑛+1 (𝑥)
𝑡𝑛

𝑛!
= 2𝑥

∞
�
𝑛=0

𝐻𝑛 (𝑥)
𝑡𝑛

𝑛!
− 2

∞
�
𝑛=0

𝑛𝐻𝑛−1 (𝑥)
𝑡𝑛

𝑛!
Now since all the sums start from 𝑛 = 0 then the above means the same as

𝐻𝑛+1 (𝑥)
𝑡𝑛

𝑛!
= 2𝑥𝐻𝑛 (𝑥)

𝑡𝑛

𝑛!
− 2𝑛𝐻𝑛−1 (𝑥)

𝑡𝑛

𝑛!
Canceling 𝑡𝑛

𝑛! from each term gives

𝐻𝑛+1 (𝑥) = 2𝑥𝐻𝑛 (𝑥) − 2𝑛𝐻𝑛−1 (𝑥)

Which is the result required to show.

Part 5

The problem is asking to show that

�
∞

−∞
𝑒−𝑥2𝐻𝑚 (𝑥)𝐻𝑛 (𝑥) 𝑑𝑥 =

⎧⎪⎪⎨
⎪⎪⎩

0 𝑛 ≠ 𝑚
2𝑛𝑛!√𝜋 𝑛 = 𝑚

The first part below will show the case for 𝑛 ≠ 𝑚 and the second part part will show the
case for 𝑛 = 𝑚

case 𝑛 ≠ 𝑚 This is shown by using the di�erential equation directly. I found this method
easier and more direct. Before starting, the ODE 𝑦′′ − 2𝑥𝑦′ + 2𝑛𝑦 = 0 is rewritten as

𝑒𝑥2
𝑑
𝑑𝑥
�𝑒−𝑥2𝑦′� + 2𝑛𝑦 = 0 (1)

The above form is exactly the same as the original ODE as can be seen by expanding it.
Now, Let 𝐻𝑛 (𝑥) be one solution to (1) and let 𝐻𝑚 (𝑥) be another solution to (1) which results



166

in the following two ODE’s

𝑒𝑥2
𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑛� + 2𝑛𝐻𝑛 = 0 (1A)

𝑒𝑥2
𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑚� + 2𝑚𝐻𝑚 = 0 (2A)

Multiplying (1A) by 𝐻𝑚 and (2A) by 𝐻𝑛 and subtracting gives

𝐻𝑚 �𝑒𝑥
2 𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑛� + 2𝑛𝐻𝑛� − 𝐻𝑛 �𝑒𝑥
2 𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑚� + 2𝑚𝐻𝑚� = 0

�𝐻𝑚𝑒𝑥
2 𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑛� + 2𝑛𝐻𝑛𝐻𝑚� − �𝐻𝑛𝑒𝑥
2 𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑚� + 2𝑚𝐻𝑛𝐻𝑚� = 0

𝐻𝑚𝑒𝑥
2 𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑛� − 𝐻𝑛𝑒𝑥
2 𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑚� + 2 (𝑛 − 𝑚)𝐻𝑛𝐻𝑚 = 0

𝐻𝑚
𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑛� − 𝐻𝑛
𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑚� + 2 (𝑛 − 𝑚)𝐻𝑛𝐻𝑚𝑒−𝑥
2 = 0 (3)

But

𝐻𝑚
𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑛� =
𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑛𝐻𝑚� − 𝑒−𝑥
2𝐻′

𝑛𝐻′
𝑚

And

𝐻𝑛
𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑚� =
𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑚𝐻𝑛� − 𝑒−𝑥
2𝐻′

𝑚𝐻′
𝑛

Therefore

𝐻𝑚
𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑛� − 𝐻𝑛
𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑚� = �
𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑛𝐻𝑚� − 𝑒−𝑥
2𝐻′

𝑛𝐻′
𝑚� − �

𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑚𝐻𝑛� − 𝑒−𝑥
2𝐻′

𝑚𝐻′
𝑛�

=
𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑛𝐻𝑚� −
𝑑
𝑑𝑥
�𝑒−𝑥2𝐻′

𝑚𝐻𝑛�

=
𝑑
𝑑𝑥
�𝑒−𝑥2 (𝐻′

𝑛𝐻𝑚 − 𝐻′
𝑚𝐻𝑛)�

Substituting the above relation back into (3) gives
𝑑
𝑑𝑥
�𝑒−𝑥2 (𝐻′

𝑛𝐻𝑚 − 𝐻′
𝑚𝐻𝑛)� + 2 (𝑛 − 𝑚)𝐻𝑛𝐻𝑚𝑒−𝑥

2 = 0

Integrating gives

�
∞

−∞

𝑑
𝑑𝑥
�𝑒−𝑥2 (𝐻′

𝑛𝐻𝑚 − 𝐻′
𝑚𝐻𝑛)� 𝑑𝑥 +�

∞

−∞
2 (𝑛 − 𝑚)𝐻𝑛𝐻𝑚𝑒−𝑥

2𝑑𝑥 = 0

�
∞

−∞
𝑑 �𝑒−𝑥2 (𝐻′

𝑛𝐻𝑚 − 𝐻′
𝑚𝐻𝑛)� + 2 (𝑛 − 𝑚)�

∞

−∞
𝐻𝑛𝐻𝑚𝑒−𝑥

2𝑑𝑥 = 0

�𝑒−𝑥2 (𝐻′
𝑛𝐻𝑚 − 𝐻′

𝑚𝐻𝑛)�
∞

−∞
+ 2 (𝑛 − 𝑚)�

∞

−∞
𝐻𝑛𝐻𝑚𝑒−𝑥

2𝑑𝑥 = 0

But lim𝑥→±∞ 𝑒−𝑥
2 → 0 so the first term above vanishes and the above becomes

2 (𝑛 − 𝑚)�
∞

−∞
𝐻𝑛𝐻𝑚𝑒−𝑥

2𝑑𝑥 = 0
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Since this is the case where 𝑛 ≠ 𝑚 then the above shows that

�
∞

−∞
𝐻𝑛𝐻𝑚𝑒−𝑥

2𝑑𝑥 = 0 𝑛 ≠ 𝑚

Now the case 𝑛 = 𝑚 is proofed. When 𝐻𝑛 = 𝐻𝑚 then the integral becomes ∫
∞

−∞
𝐻𝑛𝐻𝑛𝑒−𝑥

2𝑑𝑥.
Using the known Rodrigues formula for Hermite polynomials, given by

𝐻𝑛 (𝑥) = (−1)
𝑛 𝑒𝑥2

𝑑𝑛

𝑑𝑥𝑛
𝑒−𝑥2

Then applying the above the above to one of the 𝐻𝑛 (𝑥) in the integral ∫
∞

−∞
𝐻𝑛𝐻𝑛𝑒−𝑥

2𝑑𝑥, gives

�
∞

−∞
𝐻𝑛𝐻𝑛𝑒−𝑥

2𝑑𝑥 = �
∞

−∞
�(−1)𝑛 𝑒𝑥

2 𝑑𝑛

𝑑𝑥𝑛
𝑒−𝑥2�𝐻𝑛𝑒−𝑥

2𝑑𝑥

= (−1)𝑛�
∞

−∞
�
𝑑𝑛

𝑑𝑥𝑛
𝑒−𝑥2�𝐻𝑛𝑑𝑥

Now integration by parts is carried out. ∫𝑢𝑑𝑣 = 𝑢𝑣 − ∫𝑣𝑑𝑢. Let 𝑢 = 𝐻𝑛 and let 𝑑𝑣 = 𝑑𝑛

𝑑𝑥𝑛 𝑒
−𝑥2,

therefore 𝑑𝑢 = 𝐻′
𝑛 (𝑥) = 2𝑛𝐻𝑛−1 (𝑥) and 𝑣 =

𝑑𝑛−1

𝑑𝑥𝑛−1
𝑒−𝑥2, therefore

�
∞

−∞
𝐻𝑛𝐻𝑛𝑒−𝑥

2𝑑𝑥 = (−1)𝑛
⎛
⎜⎜⎜⎜⎝�𝐻𝑛 (𝑥)

𝑑𝑛−1

𝑑𝑥𝑛−1
𝑒−𝑥2�

∞

−∞
−�

∞

−∞
�
𝑑𝑛−1

𝑑𝑥𝑛−1
𝑒−𝑥2� 2𝑛𝐻𝑛−1 (𝑥) 𝑑𝑥

⎞
⎟⎟⎟⎟⎠

But �𝐻𝑛 (𝑥)
𝑑𝑛−1

𝑑𝑥𝑛−1
𝑒−𝑥2�

∞

−∞
→ 0 as 𝑥 → ±∞ because each derivative of 𝑑𝑛−1

𝑑𝑥𝑛−1
𝑒−𝑥2 produces a term

with 𝑒−𝑥2 which vanishes at both ends of the real line. Hence the above integral now becomes

�
∞

−∞
𝐻𝑛𝐻𝑛𝑒−𝑥

2𝑑𝑥 = (−1)𝑛 �−2𝑛�
∞

−∞
�
𝑑𝑛−1

𝑑𝑥𝑛−1
𝑒−𝑥2�𝐻𝑛−1 (𝑥) 𝑑𝑥�

Now the process is repeated, doing one more integration by parts. This results in

�
∞

−∞
𝐻𝑛𝐻𝑛𝑒−𝑥

2𝑑𝑥 = (−1)𝑛 �−2𝑛 �−2 (𝑛 − 1)�
∞

−∞
�
𝑑𝑛−2

𝑑𝑥𝑛−2
𝑒−𝑥2�𝐻𝑛−2 (𝑥) 𝑑𝑥��

And again

�
∞

−∞
𝐻𝑛𝐻𝑛𝑒−𝑥

2𝑑𝑥 = (−1)𝑛 �−2𝑛 �−2 (𝑛 − 1) �−2 (𝑛 − 2)�
∞

−∞
�
𝑑𝑛−3

𝑑𝑥𝑛−3
𝑒−𝑥2�𝐻𝑛−3 (𝑥) 𝑑𝑥���

This process continues 𝑛 times. After 𝑛 integrations by parts, the above becomes

�
∞

−∞
𝐻𝑛𝐻𝑛𝑒−𝑥

2𝑑𝑥 = (−1)𝑛 �−2𝑛 �−2 (𝑛 − 1) �−2 (𝑛 − 2) �⋯��
∞

−∞
𝑒−𝑥2𝐻0 (𝑥) 𝑑𝑥�����

= (−1)𝑛 (−2)𝑛 𝑛!�
∞

−∞
𝑒−𝑥2𝐻0 (𝑥) 𝑑𝑥

= 2𝑛𝑛!�
∞

−∞
𝑒−𝑥2𝐻0 (𝑥) 𝑑𝑥

But 𝐻0 (𝑥) = 1, therefore the above becomes

�
∞

−∞
𝐻𝑛𝐻𝑛𝑒−𝑥

2𝑑𝑥 = 2𝑛𝑛!�
∞

−∞
𝑒−𝑥2𝑑𝑥
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But

�
∞

−∞
𝑒−𝑥2 = 2�

∞

0
𝑒−𝑥2

= 2√
𝜋
2

= √𝜋

Therefore

�
∞

−∞
𝐻𝑛𝐻𝑛𝑒−𝑥

2𝑑𝑥 = 2𝑛𝑛!√𝜋

This completes the case for 𝑛 = 𝑚. Hence

�
∞

−∞
𝑒−𝑥2𝐻𝑚 (𝑥)𝐻𝑛 (𝑥) 𝑑𝑥 =

⎧⎪⎪⎨
⎪⎪⎩

0 𝑛 ≠ 𝑚
2𝑛𝑛!√𝜋 𝑛 = 𝑚

Which is what the problem asked to show.

3.7.2 Problem 2

Figure 3.21: Problem statement

Solution

Part (a)

𝑦′′ (𝑟) +
1
𝑟
𝑦′ (𝑟) −

𝑛2

𝑟2
𝑦 (𝑟) = 0 0 < 𝑟 < ∞

Or

𝑟2𝑦′′ (𝑟) + 𝑟𝑦′ (𝑟) − 𝑛2𝑦 (𝑟) = 0
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case 𝑛 = 0

The ode becomes 𝑟2𝑦′′ (𝑟) + 𝑟𝑦′ (𝑟) = 0. Let 𝑧 = 𝑦′ and it becomes 𝑟2𝑧′ (𝑟) + 𝑟𝑧 (𝑟) = 0 or

𝑧′ (𝑟) + 1
𝑟 𝑧 (𝑟) = 0. This is linear in 𝑧 (𝑟). Integrating factor is 𝐼 = 𝑒∫

1
𝑟 𝑑𝑟 = 𝑟. Multiplying the ode

by 𝐼 it becomes exact di�erential 𝑑
𝑑𝑟
(𝑧𝑟) = 0 or 𝑑 (𝑧𝑟) = 0, hence 𝑧 = 𝑐1

𝑟 where 𝑐1 is constant of
integration. Therefore

𝑦′ (𝑟) =
𝑐1
𝑟

Integrating again gives

𝑦 (𝑟) =
𝑐1

ln 𝑟 + 𝑐2
Since lim𝑟→0 the solution is bounded, then 𝑐1 must be zero. Therefore 0 = 𝑐2 and this implies
𝑐2 = 0 also. Therefore when 𝑛 = 0 the solution is

𝑦 (𝑟) = 0

Case 𝑛 ≠ 0

Since powers of 𝑟 is the same as order of derivative in each term, this is an Euler ODE. It
is solved by assuming 𝑦 = 𝑟𝛼. Hence 𝑦′ = 𝛼𝑟𝛼−1, 𝑦′′ = 𝛼 (𝛼 − 1) 𝑟𝛼−2. Substituting these into the
above ODE gives

𝑟2𝛼 (𝛼 − 1) 𝑟𝛼−2 + 𝑟𝛼𝑟𝛼−1 − 𝑛2𝑟𝛼 = 0
𝛼 (𝛼 − 1) 𝑟𝛼 + 𝛼𝑟𝛼 − 𝑛2𝑟𝛼 = 0

𝑟𝛼 �𝛼 (𝛼 − 1) + 𝛼 − 𝑛2� = 0

Assuming non-trivial solution 𝑟𝛼 ≠ 0, then the indicial equation is

𝛼 (𝛼 − 1) + 𝛼 − 𝑛2 = 0
𝛼2 = 𝑛2

𝛼 = ±𝑛

Hence one solution is

𝑦1 (𝑟) = 𝑟𝑛

And second solution is

𝑦2 (𝑟) = 𝑟−𝑛

And the general solution is linear combination of these solutions

𝑦 (𝑟) = 𝑐1𝑟𝑛 + 𝑐2𝑟−𝑛

The above shows that lim𝑟→0 𝑦1 (𝑟) = 0 and lim𝑟→∞ 𝑦2 (𝑟) = 0.

Part (b)

Short version of the solution
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To simplify the notations, 𝑟0 is used instead of 𝑟′ in all the following.

𝑦′′ (𝑟) +
1
𝑟
𝑦′ (𝑟) −

𝑛2

𝑟2
𝑦 (𝑟) =

1
𝑟
𝛿 (𝑟 − 𝑟0) 0 < 𝑟 < ∞

Multiplying both sides by 𝑟 the above becomes

𝑟𝑦′′ (𝑟) + 𝑦′ (𝑟) −
𝑛2

𝑟
𝑦 (𝑟) = 𝛿 (𝑟 − 𝑟0) (1)

But the two solutions2 to the homogeneous ODE 𝑟𝑦′′ (𝑟) + 𝑦′ (𝑟) − 𝑛2

𝑟 𝑦 (𝑟) = 0 were found in
part (a). These are

𝑦1 (𝑟) = 𝑟𝑛 (1A)

𝑦2 (𝑟) = 𝑟−𝑛

The Green function is the solution to

𝑟𝐺 (𝑟, 𝑟0) + 𝐺 (𝑟, 𝑟0) −
𝑛2

𝑟
𝐺 (𝑟, 𝑟0) = 𝛿 (𝑟 − 𝑟0) (1B)

lim
𝑟→0

𝐺 (𝑟, 𝑟0) = 0

lim
𝑟→∞

𝐺 (𝑟, 𝑟0) = 0

Which is given by (Using class notes, Lecture December 5, 2018) as

𝐺 (𝑟, 𝑟0) =
1
𝐶

⎧⎪⎪⎨
⎪⎪⎩
𝑦1 (𝑟) 𝑦2 (𝑟0) 0 < 𝑟 < 𝑟0
𝑦1 (𝑟0) 𝑦2 (𝑟) 𝑟0 < 𝑟 < ∞

(2)

Note, I used +1
𝐶 and not −1

𝐶 as in class notes, since I am using 𝐿 = − ��𝑝𝑦′�
′
− 𝑞𝑦� as the

operator and not 𝐿 = + ��𝑝𝑦′�
′
+ 𝑞𝑦�. Now 𝐶 is given by

𝐶 = 𝑝 (𝑟0) �𝑦1 (𝑟0) 𝑦′2 (𝑟0) − 𝑦′1 (𝑟0) 𝑦2 (𝑟0)�

Where from (1A) we see that

𝑦1 (𝑟0) = 𝑟𝑛0
𝑦′2 (𝑟0) = −𝑛𝑟−𝑛−10

𝑦′1 (𝑟0) = 𝑛𝑟𝑛−10

𝑦2 (𝑟0) = 𝑟−𝑛0
Therefore 𝐶 becomes

𝐶 = 𝑝 (𝑟0) �−𝑛𝑟−𝑛−10 𝑟𝑛0 − 𝑛𝑟𝑛−10 𝑟−𝑛0 �

= 2𝑛𝑟−10 𝑝 (𝑟0)

We just need now to find 𝑝 (𝑟0). This comes from Sturm Liouville form. We need to convert the
ODE 𝑟2𝑦′′ (𝑟)+𝑟𝑦′ (𝑟)−𝑛2𝑦 (𝑟) = 0 to Sturm Liouville. Writing this ODE as 𝑎𝑦′′+𝑏𝑦′+(𝑐 + 𝜆) 𝑦 = 0

2All the following is for 𝑛 ≠ 0, since for 𝑛 = 0, only trivial solution exist
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where 𝑎 = 𝑟2, 𝑏 = 𝑟, 𝑐 = 0, 𝜆 = −𝑛2, therefore

𝑝 = 𝑒∫
𝑏
𝑎𝑑𝑟 = 𝑒

∫ 𝑟
𝑟2
𝑑𝑟 = 𝑟

𝑞 = −𝑝
𝑐
𝑎
= 0

𝜌 =
𝑝
𝑎
=
𝑟
𝑟2
=
1
𝑟

Hence the SL form is �𝑝𝑦′�
′
− 𝑞𝑦 + 𝜆𝜌𝑦 = 0. Hence the SL form is �𝑝𝑦′�

′
− 𝑞𝑦 + 𝜆𝜌𝑦 = 0 or

�𝑟𝑦′�
′
−
1
𝑟
𝑛2𝑦 = 0 (2A)

Hence the operator is 𝐿 �𝑦� = − � 𝑑𝑑𝑟 �𝑟
𝑑
𝑑𝑟
�� �𝑦� and in standard form it becomes 𝐿 �𝑦�+ 1

𝑟𝑛
2𝑦 = 0.

The above shows that 𝑝 (𝑟0) = 𝑟0. Therefore

𝐶 = 2𝑛

Hence Green function is now found from (2) as, for 𝑛 ≠ 0

𝐺 (𝑟, 𝑟0) =
1
2𝑛

⎧⎪⎪⎨
⎪⎪⎩
𝑟𝑛𝑟−𝑛0 0 < 𝑟 < 𝑟0
𝑟𝑛0𝑟−𝑛 𝑟0 < 𝑟 < ∞

Since 𝑓 (𝑟) in the original ODE is zero, there is nothing to convolve with. i.e. 𝑦 (𝑟) =
∫∞
0
𝐺 (𝑟, 𝑟0) 𝑓 (𝑟0) 𝑑𝑟0 here is not needed since there is no 𝑓 (𝑟). Therefore the above is the

final solution.

Extended solution

This solution shows derivation of (2) above. It can be considered as an appendix. The Green
function is the solution to

𝑟𝐺 (𝑟, 𝑟0) + 𝐺 (𝑟, 𝑟0) −
𝑛2

𝑟
𝐺 (𝑟, 𝑟0) = 𝛿 (𝑟 − 𝑟0) (1B)

lim
𝑟→0

𝐺 (𝑟, 𝑟0) = 0

lim
𝑟→∞

𝐺 (𝑟, 𝑟0) = 0

In (1B), 𝑟0 is the location of the impulse and 𝑟 is the location of the observed response due
to this impulse. The solution to the above ODE is now broken to two regions

𝐺 (𝑟, 𝑟0) =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1𝑦1 (𝑟) + 𝐴2𝑦2 (𝑟) 0 < 𝑟 < 𝑟0
𝐵1𝑦1 (𝑟) + 𝐵1𝑦2 (𝑟) 𝑟0 < 𝑟 < ∞

(2)

Where 𝑦1 (𝑟) , 𝑦2 (𝑟) are the solution to 𝑟𝑦′′ (𝑟) + 𝑦′ (𝑟) − 𝑛2

𝑟 𝑦 (𝑟) = 0 and these were found in part
(a) to be 𝑦1 (𝑟) = 𝑟𝑛, 𝑦2 (𝑟) = 𝑟−𝑛 and 𝐴1, 𝐴2, 𝐵1, 𝐵2 needs to be determined. Hence (2) becomes

𝐺 (𝑟, 𝑟0) =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1𝑟𝑛 + 𝐴2𝑟−𝑛 0 < 𝑟 < 𝑟0
𝐵1𝑟𝑛 + 𝐵2𝑟−𝑛 𝑟0 < 𝑟 < ∞

(3)

The left boundary condition lim𝑟→0 𝐺 (𝑟, 𝑟0) = 0 implies 𝐴2 = 0 and the right boundary
condition lim𝑟→∞ 𝐺 (𝑟, 𝑟0) = 0 implies 𝐵1 = 0. This is needed to keep the solution bounded.
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Hence (3) simplifies to

𝐺 (𝑟, 𝑟0) =

⎧⎪⎪⎨
⎪⎪⎩
𝐴1𝑟𝑛 0 < 𝑟 < 𝑟0
𝐵2𝑟−𝑛 𝑟0 < 𝑟 < ∞

(4)

To determine the remaining two constants 𝐴1, 𝐵2, two additional conditions are needed. The
first is that 𝐺 (𝑟, 𝑟0) is continuous at 𝑟 = 𝑟0 which implies

𝐴1𝑟𝑛0 = 𝐵2𝑟−𝑛0 (5)

The second condition is the jump in the derivative of 𝐺 (𝑟, 𝑟0) given by
𝑑
𝑑𝑟
𝐺 (𝑟, 𝑟0)�

𝑟>𝑟0
−
𝑑
𝑑𝑟
𝐺 (𝑟, 𝑟0)�

𝑟<𝑟0
=

−1
𝑝 (𝑟0)

Where 𝑝 (𝑟0) comes from the Sturm Liouville form of the homogeneous ODE. This was found
above as 𝑝 (𝑟0) = 𝑟0. Hence the above condition becomes

𝑑
𝑑𝑟
𝐺 (𝑟, 𝑟0)�

𝑟>𝑟0
−
𝑑
𝑑𝑟
𝐺 (𝑟, 𝑟0)�

𝑟<𝑟0
=
−1
𝑟0

Equation (4) shows that 𝑑
𝑑𝑟𝐺 (𝑟, 𝑟0)�𝑟>𝑟0

= −𝑛𝐵2𝑟−𝑛−10 and that 𝑑
𝑑𝑟𝐺 (𝑟, 𝑟0)�𝑟<𝑟0

= 𝑛𝐴1𝑟𝑛−10 . Using

these in the above gives the second equation needed

−𝑛𝐵2𝑟−𝑛−10 − 𝑛𝐴1𝑟𝑛−10 =
−1
𝑟0

(6)

Solving (5,6) for 𝐴1, 𝐵1: From (5) 𝐴1 = 𝐵2𝑟−2𝑛0 . Substituting this in (6) gives

−𝑛𝐵2𝑟−𝑛−10 − 𝑛 �𝐵2𝑟−2𝑛0 � 𝑟𝑛−1 =
−1
𝑟0

−𝑛𝐵2𝑟−𝑛−1 − 𝑛𝐵2𝑟−𝑛−1 =
−1
𝑟0

−2𝑛𝐵2𝑟−𝑛−10 = −𝑟−10

𝐵2 =
−𝑟−10

−2𝑛𝑟−𝑛−10

=
1
2𝑛
𝑟𝑛0

But since 𝐴1 = 𝐵2𝑟−2𝑛0 , then

𝐴1 =
1
2𝑛
𝑟𝑛0𝑟−2𝑛0

=
1
2𝑛
𝑟−𝑛0

Therefore the solution (4), which is the Green function, becomes, for 𝑛 ≠ 0

𝐺 (𝑟, 𝑟0) =

⎧⎪⎪⎨
⎪⎪⎩

1
2𝑛𝑟

−𝑛
0 𝑟𝑛 0 < 𝑟 < 𝑟0

1
2𝑛𝑟

𝑛
0𝑟−𝑛 𝑟0 < 𝑟 < ∞

(7)
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3.7.3 key solution to HW 7
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