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Chapter 1

Introduction

1.1

syllabus

Physics 501 Mathematical Models of Physical Problems I Fall, 2018

MW 12:30-1:45 Ken 1130

Prof. Daniel Agterberg
Ken 4063 Office hours: TR 11:00-12:00
Phone: 229-3472

Email: agterber@uwm.edu

Text:  Mathematical Methods for Physics and Engineering, (third cdition) by Riley,
Hobson, and Bence (required).

The text is available at the UWM bookstore. Mathematical Models of Physical Problems
by Anchordoqui and Paul is also a useful reference.

Brief Description

Infinite Series; Complex Analysis; Integral Transforms; Evaluation of Integrals; Ordinary
Differential Equations; Special Functions; Partial Differential Equations.

line algeb™
Prerequisite: Physics 210 and Mathematics 234 = DI Iﬁ é e ,5 A by N

Homework: Sets of homework will be distributed once every one to two weeks
You are free to talk to the other students and me about the problems but you
must write up the solutions yourself.

Grading: Homework: 40 %
Test : 25%
Final: 35%

Makeup exams will be given only if there is a documented need to miss the exam (e.g.,
injury, illness, or on a family death).

Exam is scheduled for Dec 19 from 3:00-5:00 in room Ken 1130. The midterm will be
held in class.

See http://uwm.edu/secu/wp-content/uploads/sites/122/2016/12/Syllabus-Links.pdf for
University Policies.




1.2 Topics covered

This is list of lectures and topics covered in each

Table 1.1: Topics covered

Date

Topics

1 Wed. Sept 4, 2018

Ll O A

Infinite series, geometric series.
conditions for convergence,
harmonic series, alternating series.

tests for convergence such as ratio test, integral test.

2 Monday Sept 10, 2018

AT

Talked about series solution to (1-x?)y” —2xy’ +n(n+1)y =
0.
r(r-1)x2

2!

Binomial series (1 +x)" =1+rx+
series of e, sin(x), cos(x).
Introducing Bernoulli numbers.

Show that alternating series is convergent but not abso-
lutely.

6. Leibniz condition for convergence and its proof.
7. Showed that sum of 1 -1/2+1/3-1/4+ ... is In2.

8. Working with absolutely convergent series.

3 Wed Sept 12, 2018

1. Familiar series, ¢,sinx, cos x, In(1 + x), arctan(x)

How to get Bernulli numbers. More on Bernulli numbers
but I really did not understand these well and how to
use them. hopefully they will not be on the exam.

Started Complex analysis. Basic introduction. Properties
of complex numbers and mapping.

Continued on next page




Table 1.1 — continued from previous page

Lecture #

Date

Topics

4

Monday Sept 17, 2018

1. complex functions u(x,y) + iv(x, y)
2. continuity in complex domain.

3. Derivative in complex domain and how direction is im-
portant.

4. Cauchy-Riemman equation to test for analytical function.

5. Harmonic functions. Exponential function in complex
domain.

6. Multivalued functions, such as logz.

7. How to obtain inverse trig function and solve w =
arcsin(z)

Wed Sept 19, 2018

1. derivative in complex plane. Definition of analytic func-
tion.

2. log(z) and +/(z) in complex plane and multivalued.
Branch points and branch cuts.

3. Integration over contour. Parameterization £ f(z)dz =
b
I Fe@z @

4. Cauchy-Goursat theorem: 9§ f(z) = 0 for analytical
functions. Proof using Cauchy-Riemman equations and
Green theorem.

5. Cauchy integral formula 27if(zy) = 95 19 g4,
Z=Zy

6. Like in real, in complex domain, Continuity Does Not
Imply Differentiability.

7. More on analytic functions and multivalued functions.
Principal value.

8. Power functions z# = ePInz

9. Complex integration.

Continued on next page




Table 1.1 — continued from previous page

Lecture #

Date

Topics

6

Monday Sept 24, 2018

Proof of Cauchy integral formula.

Maximum moduli of analytic functions. If f(z) is analytic
in D and not constant, then it has no maximum value
inside D. The maximum of f(z) is on the boundary.

. Taylor series for complex functions and Laurent series.

Wed Sept 26, 2018

If number of terms in principal part of Laurent series is
infinite, then it is essential singularity.

Proof of Laurent theorem.

3. properties of power series. Uniqueness.

Residues, types of singularities. How to find residues and
examples

Monday Oct 1, 2018

= b

Residue theorem »(ﬁc f(z)dz = 2mi Y residues inside C
examples using Residue theorem.
Analytic continuation. Examples.

I'(z) function. Defined for R(z) > 0. Using analytical con-
tinuation to extend it to negative complex plane. Euler
representation and Weistrass represenation.

Continued on next page
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Table 1.1 — continued from previous page

Lecture # | Date Topics
9 Wed Oct 3, 2018
1. More on Euler represenation of I'(z) and how to use it
for extending definition I'(z) = £ e”'t*71 dt for negative z
using I'(z) = @ for -1 < z.
2. Euler reflection formula
00 tx—l e
rora-o= [ s—dt=
(T =) o 1+t sin(rx)
3. proof of Euler reflection formula using contour integra-
tion.
4. Some useful formulas for I'(z)
5. Method for integrations, some tricks to obtain definite
integrations.
10 Monday Oct 8, 2018 No class.
11 Wed Oct 10, 2018 No class.
12 Monday Oct 15, 2018
1. More on method of integration. Starting Contour inte-
gration.
2. How to decide that L f(z) = 0 on the upper half plane.
R
Using Jordan inquality.
3. More examples of integrals on real line using contour
integration.
13 Wed Oct 17, 2018

1. More contour integrations.
2. Starting approximation expansion of integrals. Example
. . 2 X g2 .
using error function erf(x) = W= £ e”" dt by applying
Taylor series.

3. Large x expansion by repeated integration by parts.

4. Starting Asymprtotic series. Definition. Example on find-
ing S(x) for erf(x) for large x. When to truncate.

5. Saddle point methods of integration to approximate in-
tegral for large x.

Continued on next page
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Table 1.1 — continued from previous page

Lecture #

Date

Topics

14

Monday Oct 22, 2018

More saddle point integration.

Saddle point methods of integration to approximate in-
tegral for large x. Method of steepest decsent. Example
to find I'(x +1) = £ tre~tdt = V2mxx¥e™

extend saddle point method to complex plane. Finding
correct angle. Long example.

15

Wed Oct 24, 2018

More on saddle point in complex plane. Angles. Example
applied on fr(l +2z) = £ exp—t+zlntdt

how to determine coefficients of asymptotic series expan-
sion.

3. Starting new topic. Fourier series. Definitions.

proprties of Fourier series. Examples how to find A, B,,.

16

Friday Oct 26, 2018

Make up lecture.

1.

More on Fourier series. Examples. Fourier series using
the complex formula.

Parseval identity.

3. Fourier Transform derivation.

17

Monday Oct 29, 2018

1. Fourier transform pairs.

N

A Al

How to find inverse fourier transform. Generalization to
higher dimensions.

Properties of Fourier transform.
convolution.
Example on driven harmonic oscillator.

Statring ODE’s. Order and degree of ODE.

Continued on next page
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Table 1.1 — continued from previous page

Lecture #

Date

Topics

18

Wed Oct 31, 2018

More on first order ODE’s. Separable, exact. How to find
integrating factor.

Bernulli ODE y’ + f(x)y = g(x)y"

3. Homogeneous functions. defintion. order of.

isobaric ODE’s.

19

Monday Nov 5, 2018

1. How to find integating factor for exact ODE.

Finished example on isobaric first order ODE.

xy?(By dx + xdy) — ydx — xdy) =0

Higher order ODE’s. How to solve. How to find partic-
ular solution. Undetermined coefficients. What to do if
forcing function has same form as one of the solutions
to homogeneous solutions.

How to use power series to solve nonlinear ode y” = x—y?

20

Wed Nov 7, 2018

First exam

21

Monday Nov 12, 2018

1. More on higher order ODE’s. Series solutions.

ordinary point. Regular singular point. Example Legen-
dre ODE (1 — x?)y” = 2xy’ + n(n + 1)y = 0.

Example for regular singular point, Bessel ODE x?y” +

xy' + (> —m?)y=0Usey=x>Y"  c,x"

22

Wed Nov 14, 2018

Continue Bessel ODE x%y” + xy’ + (x* — m?)y = 0 solving
using y = x> 3° ¢,x". How to find second independent
solution.

Continued on next page
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Table 1.1 — continued from previous page

Lecture # | Date Topics
23 Monday Nov 19, 2018
1. Started on Sturm Lioville, Hermetian operators
2. setting Bessel ODE in Sturm Lioville form
3. more on Hermitian operator.
4. Wronskian to check for linear independece of solutions.
24 Wed Nov 21, 2018 Thanks Giving.
25 Monday Nov 26, 2018
1. finding second solution to Bessel ODE for m integer us-
. . _ C _ —2sinmm
ing the Wronskian. W(x) = el
2. Generating functions to find way to generate Besself func-
tions.
26 Wed Nov 28, 2018
1. Using Generating functions
2. Bessel functions of half integer order, spherical Bessel
functions
3. Legendre polynomials, recusrive relations.
4. orthonomalization.
5. physical applications
27 Monday December 3, 2018

LA

Second solution to Legendre using Wronskian
Spherical harmonics
Normalization of eigenfunctions

Degenerncy, using Gram-Schmidt to find other L.I. solu-
tions.

Expanding function using complete set of basis functions,
example using Fourier series

Inhomogeneous problems, starting Green function

Continued on next page
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Table 1.1 — continued from previous page

Lecture #

Date

Topics

28

Wed December 5, 2018

1. Green function. Solution to the ODE with point source.

2. Example using vibrating string y” + k?y = 0. Find Green
function. Two Methods. Use second method.

3. Started on PDE.

29

Friday December 7, 2018

(Make up lecture)

1. more PDE’s. Solve wave PDE in 1D

2. separation of variables. Solve Wave PDE in 3D in spher-
ical coordiates.

30

monday December 10, 2018

1. Solving wave PDE in 3D in spherical coordinates. Nor-
mal modes.

2. Solving wave PDE in 3D in cylindrical coordinates.

3. Inhomogeneous B.C. on heat PDE. Break it into 2 parts.

31

Wed December 12, 2018

Last lecture.
1. Finish Inhomogeneous B.C. on heat PDE. Break it into
2 parts. Final solution, using Fourier series.

2. Last problem. INtegral transform method. Solving heat
pde on infinite line using Fourier transform.




Chapter 2

exams

2.1 Practice exam from 2017

211 Problem1

i) Find Laurent series for f (z) = ( 21 5 around isolated singular pole z = i. What is the order
ze+1
of the pole? ii) Use residues to evaluate the integral fo o 3
(x2+1)

solution

z2+1 = 0 gives z = +i. Hence there is a pole at z = i of order 3 and also a pole at z = —i
of order 3. Hence g(z) = (z - i)3 f (z) is analytic at z = i and therefore it has a Taylor series
expansion around z = i given by

8@ =D a,(z—0)"
n=0

z-i) f2)= Y a,z-i)" (1)
n=0

15



16

d—ig(z)
Where g, = "’Zn— . But
g@)=G-i)f(2)

1
= (z—i)
(22 + 1)3
o
(z-1) @z +1)°

=(z-i)’

To find a,, then a, = L

nl dz" (z4i)°
are needed to see the residue and the first term in the analytical part of the series (n > 0).
Starting with n =0

is evaluated for few n terms. Since order is 3, at least 5 terms

3 1 1 1 1.
O el @ s E
Forn=1
_d 1 3 -3 -3
"o EWL_ c+ifl, @) 16
Forn=2
1d -3 1 -3(-4) 1-3(-4) 1-3(-4) 6 3 3i
azzzd_z(z+i)4z_i:§(z+i)522i:§ (2i)° T2 25 320 161 16
Forn=3
1 d-3(-4) 1 -3(-4)(-5) 1-3(-4)(-5) 1-3(-4)(-5) 5
BNyl 6 e |6 @ 6 > »
Forn=4
1 d3(AED)] 1 B 136 130 E)6E) 15

TN A (1) T iy 24 7 128

zZ=1

24 (i)
Substituting all these back into (1) gives

=iy f@) =D a,@Ez-i)"
n=0

z=i

:ao+a1(z—i)+a2(z—i)2+a3(z—i)3+a4(z—i)4+~~
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Therefore

f(z):( 1_)3 (ao+a1(z—i)+a2(z—i)2+a3(z—i)3+a4(z—i)4+...)
z—1i

1 (1. -3 3i 5 15

- Nzt o) -+ =)+ i (=)
z-iP \8 16 16 32 128
1 i 3 1 3 i 5 15

e A R I (1A)
8(z-i 16(@z-i) 16(z—i) 32 128

The residue is the coefficient of the term with i factor. Hence residue is —13—2. The order is

3 since that is the highest power in i
zZ—1

The above method always works, but it means having to evaluate derivatives a number of
times. For a pole of high order, it means evaluating the derivative for as many times as the
pole order and more to reach the analytical part. Another method is to expand the function

using binomial expansion
-1 -1)(p-2
(1+x)p=1+pz+p(p2' )x2+P(P 3'(;7 )x3+-~- (2)

The above is valid for real p, which can be negative or positive, but only for |x| < 1. This is
now applied to expand

1
7) =
AT
1 1
T a3
< (1+5)
il 1
B (?é) ey @
Now the binomial expansion can be used on —— term above, which is valid for |§| <1,

G
1+Z)
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which gives

1 (3) LA (6) (DA (6), (B E6) (&)
o 21 3! 2i 4! 2i

3 &2 & &t
—1+§z§+642+10233+15244
3 10 15

=1+ 2 __2__~3 _4
L L L A

™

Therefore (3) becomes

f@)=

3 3 10 15
Y] ( + Eié - 552 - —i§3 + —54 + )

1 31 3 i 10
883 1682 16 5 (16) (8)
Butz=£&+1ior £ =z-1i, and the above becomes

f()_(S(Z )3_E(Z_i)2_1_6(Z_Z.)+3—2+m1(z—1)+...) (4)

Which is valid for |z —i| < 1. In other words, inside a disk of radius 2, centered around z = i.

Comparing (4) with (1A), shows they are the same as expected. Which is the better method?
After working both, I think the second method is faster, but requires careful transformation,
the first method is more direct but requires more computations.

ii) Let L

1,
=1, hence, because ——; is even, then
x2+1 (x2+1)

S Nrve

1 dx
= lim —
2 R—oo J _g <x2 + 1)

zllim fR ax +§ az
A ST

3
X2 +1 zz+1)

x2+1

The above is valid as long as one can show § — 0 as R — oo. The contour C is from

zz+1)
R to —R over semicircle, going anticlock wise. The radius of the circle is R. Since the above

integration now includes z = 7, then by residual theorem, the above is just —f—;. The residue
was found in the first part. In other words
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Zni(—%)
1 lim fR ax +3§ dz = 1|27Ii (—E)]
2koe(Jor (2 1) L (241)) 2 16

Letting z = R ¢ and taking R — co, then 56 % _, 0and the above simplifies to

2 (zz+1)

1 . R dx 1 3
— lim 35 2n1—6
2 R0 J_p (x2 + 1)
1 . R dx 3
— lim 3 =T
2 R—o0 R (xz + 1)

) R dx 37

lim =

R Jo (x2+1)3_E

00 dx _371
fo( y o

x2+1

Therefore

2.1.2 Problem 2

X

Expand f (x) = 7

. . Ve X T
as Fourier series for 0 < x < T and f (x) = -7 for -7 <x<0.

solution:

This function is even. For example, for L = 2, it looks like this

n
8

Hence the Fourier series will not have sin terms.

4 2nn — . [2nm
fx) = > + nz:; a, cos (Tx) + nz:; b, sin (Tx)

a i 2n
= EO + Z]l a, cos (Tnx)

Where in the above T is the period of the function. In this problem T = ZTH, hence the above
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becomes
] 2
f(x):a—0+2ancos gx
2 n=1 T
= a—0+§:a cos (nLx) 1)
2 n=1 "
Where
1 2 %
t=7 [ f@dr=o [* f@dr== [ fax
2 2 T T T
L %x
- 2f o
@ [
C2L1 (2\F
CnL\2
1 (n?
o \12
T
T2
And

1 n
a, = Tfi f (x) cos (nLx) dx
2 L

2 I
- 5@ fo F (%) cos (nLx) dx

L

2L (1
= — fL fcos. (nLx) dx
TC 0 L

7 n
= — fL x cos (nLx) dx
Tt Jo

Using integration by parts f udv = uv - f vdu. Let u = x,du =1 and let dv = cos (nLx),v =
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sin(nLx)

, therefore the above becomes

2 ([ sin(nLx)
ay = — | X

L T sin (nLx) ]
- f —dx
nL 0 nL

» 0
[ . TT i
2 sin (nL— 1 r71
= %%_O]_ELL sin(an)dx]

T

1 —_
-— f " sin (nLx) dx]
nL 0

Tt

-2 T
= — (fL sin (nLx) dx)
mtnL 0

-2 (_ cos (nLx) )%

mtnL nL

SREN

0

2 n
=2 (cos (nLx))§

2 T
T 2L2 (COS (HLE) - 1)

2
= (cos (nm) —1)

2 n
= gz (D" -1)
-2 +2(-1)"

rin2L.2
Therefore from (1) the Fourier series is
fx) = 612_0 + 2 a,, cos (nLx)
n=1

T - 2
=5t 2:1 — 37 ((—1)” - 1) cos (nLx)

The convergence is of order 12, so it is fast. Only few terms are needed to obtain very good
approximation.

2.1.3 Problem 3
(i) Solve xy’ +3x +y = 0. (ii) Solve vy’ -2y’ +y =€*
Solution

(i). This is linear first order ODE.
y+3+%:0 x#0

1
Integrating factor is u = el 3% = gov = . Multiplying both sides of the above by u, the left



side becomes complete differential and it simplifies to

d
— (uy) = -3p
d
= (xy) = -3x
d (xy) = —Bxdx
Integrating gives
xy = —gxz +C

Hence the solution is

3

2 X

y:——x+E x#0

22

(ii) ¥y’ =2y’ +y = €* is linear second order with constant coefficients. The solution to the
homogeneous part y”” -2y’ +y = 0 can be found by first finding the roots of the characteristic

equation s> —2s+1 =0, hence s = ;—ab + Zla\/b2 —4ac or, s = g + %\/4 —4 =1. One double root.

Therefore

Y (x) = Cre* + Coxe*

To find the particular solution, the method of undetermined coefficients is used. Since the
forcing function is %, then a guess y, = ke*. But ¢* is a basis solution. Hence y, = kxe* is now
selected. But also xe* is basis solution. Then y, = kx?" is finally selected. Substituting this

into the original ODE in order to solve for k, gives

Y- 2ptyp=e

But y, = 2kxe* + kx?¢* and y;’ = 2ke* + 2kxe* + 2kxe* + kx*¢*. Hence the above becomes

(Zkex + 2kxe* + 2kxe* + kxzex) -2 (kae" + kxzex) + kx%e* = ¢*

(Zk + 2kx + 2kx + kxz) -2 (2kx + kxz) +kx?=1
2k + 4kx + kx? — 4kx — 2kx? + kx® =1

Therefore y, = %xzex, and the complete general solution is

y(x) =y (x) +y, (1)
Therefore

1
y(x) = Cie* + Coxe* + Exzex

2k =1
1
k=3
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2.1.4 Problem 4

Problem 4:

Consider the following differential equation (where 0 < z < 00)

2d2

2 5Y(5) + 22y (x) + ay(x) = 0 %)

(i) Identify a regular singular point for this equation.

(ii) Consider the series solution y = > om0 @nZ™ (note that a solution of this form exists).
Set ¢o = 1. Find the condition for c1 and then find a recurrence relation for Cm/Cm—2.

(i) Write a closed form expression for the power series solution (the power series should
look familiar).

(iv) Using the Wronskian (note that the differential equation is a Sturm Liouville equa-
tion) and the above closed form solution, find a second solution.

Figure 2.1: Problem 4 Statement

solution

Part (1)
X%y +2xy +x%y =0
2
"y Sy 4y =0
v+ Ty Y

. 2 . Co
x is a regular singular point. Becuase lim, ,o(x—-0) - = 2. Since limit exist, then regular
singular point.

Part (2)
Let
Y= 2 a,x"
n=0

[ee]
y/ — z nanx"‘l
n=0

y’ =Y n(n-1)a,x"?
n=0



The ODE becomes

o0 (o] o0
2y n(n—-1)ax" 2 +2x Y na,x" 1+ 22 Y, a,x" =0
n=0 n=0 n=0

E nn-1)a,x" + 2 2na,x" + Z a,x"*2 =0
n=0 n=0 n=0
E nn-1)a,x" + 2 2na,x" + Z a, x" =0
n=0 n=0 n=2
Therefore
E m(n-1)+2n)a,x" + E a,,x" =0
n=0 =2

We start from n =1 since n = 0 is used to find the indicial equation. For n =1

2!11 =0
a = 0
Forn>2
mmn-1)+2n)a, +a,, =0
a,(n(n-1)+2n) = -a,_,
g = M2
" nm-1)+2n
Forn=2
g = ———————
27 202-1)+4
1
=——a
6%
Forn=3
Ar =
57 302)+6
Since a; = 0 then a3 = 0. All odd terms are therefore zero.
Forn=4
—ay 1 1(1 1
a, = ——————— = —— (= —— | ——1 = —0q
"T4)B3)+8 202 20\ 6° 120
Therefore
y1 () = 3] a,x"
n=0
= ay + ax® + agxt + -
1 1
=dg— gﬂoxz + @ﬂox4 — e

1 1
= 1-- 2+_ 4.
”0( 6" " 1200" )

24
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Part (3)
i bl d since si Ly x hen the above i
setting ap =1 as problem says, and since sinx = x — T i then the above is
sin x
yi(x0) =
Part (4)
vy m v sin x XCOSX —sinx
1 Y2 2 -
W(X) =1, A= xcosyycc—sinx = é — Y >
Y1 Y2 —Q= ¥ X x

But from Abel’s theorem, W (x) = Cel 7% yhere p (x) is the coefficient in the ODE y” +

-2
p (x)y'+q (x)y = 0. Since the ODE is y”—§+y =0thenp = _72 and W(x) = ¢/ 7% = g2l0v = 2,
Hence

,sinx xcosx—sinx C
Y2 Y2 ==
X x2 x2
xsin (x) y5 — yp (xcosx —sinx) = C
, cosx 1 C
— Yo | — - == ;
L sinx x xsin x

—i(sin X)

cosx 1 dx 1 -1 . .
Integrating factor is u = of TSt 2 of T W) 2 2 o RGN | gy o nsinny o X
s x

Multiplying both sides by this integrating factor gives

d( X )_ C
dx \P5inx) © sin? x

Integrating gives

x  Ccos(x) c
Y sinx  —sin (x) 2
COS X sin x
yp(x) =-C +Cy
X X
COS X sin x
= Cl + C2
X X

But C,sinx is the second solution, so we only keep v, (x) = C1%- Hence the final solution
is
COS X sin x

yx) =C . +C

X

2.1.5 Problem 5

2
Find solution to d%G (x, x0) + k%G (x, x9) = 0 (x — xp) subject to boundary conditions G (0, xy) =
G (L, XO) =0

solution
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First we obtain the solution to the homogeneous ODE y”’ + k?y = 0 with y(0) = 0,y (b) = 0
which has the two solutions y; (x) = coskx, y, (x) = sin (kx).

Therefore the solution to the Green function is

G(x X ): Alyl (X)+A2y2(X) 0<x<x0
70 Biy1 () + Boyp (x) x<xg<b

] Agcos(kx) + Apsin (kx) 0 <x < xp

B By cos (kx) + Bysin(kx) x<xg<b
Where A;, B; are constants to be found. From the condition G (0, xy) = 0 then the first solution
above gives Aj cos(0) =0 — A; = 0. And from G (L, xy) = 0 the second solution above gives

B cos (kL) + B, sin (kLb) = 0 or By = _B2sin®l) ' once the solution now becomes

cos(kLb) ’
G (x, xo) Ay sin (kx) 0 <x<x
X, Xg) =
’ Bl COS (kX) + BZ sin (kX) X <Xxg < L
Aj sin (kx) 0<x<xg
By sin(kL) v B sin (k )
~eostey 008 (kx) + By sin (kx)  x <xq <
{ A sin (kx) 0<x<x
= B2 . ‘
osD) (sin (kx) cos (kL) — sin (kL) cos (kx)) x <xg <L

Using sin (a — b) = sina cos b—cos asinb, then sin (kx) cos (kL) —sin (kL) cos (kx) = sin (kx — kL) =
sin (k (x — L)) and the above becomes

A, sin (kx) 0<x<x (1A)

msin(k(x—L)) x<xy<L

G (x,xp) = { B,

Now from continuity condition G (x, xo)x:xO_g = G (x, xp) i.e. at x = x(, then (from now

X=xg9+¢&
on, we switch to xp).

B
Ay sin (kxg) = — sz) sin (k (xo — L)) 1)

Now we find the derivative of G at x = xy gives

kB,
cos(kL) cos(k(xg—-L)) x<x<L

d kA, cos (kx O<x<x
LS _{ 2 cos (kxp) 0
dx x=xp

And from jump discontinuty in derivative of G at x = x; would obtain, since G}y 4. ~Glexy—c =
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-1

0’ then

kB -1
— (ib) cos (k (xg — L)) — kA, cos (kxg) = pTo%

But since the ODE is y”” + k?y = 0 then in SL form this is - (y’)/ +k?y = 0, and comparing to
- (py’)l + k?y = 0 we see that p = —1. Then above becomes

kB
cos (IiL) cos (k (xo — L)) — kA, cos (kxo) =1 )

From (1,2) we solve for Ay, B,. From (1)

_ B ~
A2 = cos (kb) sin (kx) sin (k%o L) ©)
Substituting into (2) gives
kB, B, , )
cos (kD) cos (k(xg— L)) —k (cos (kD) sin (cxg) sin (k (xg — L))) cos (kxg) =1
kB, cos (k (xg — L)) — kB sin (k (x — L)) ZTS E’gg’; = cos (kL)

kB, (sin (kxg) cos (k (xo — L)) — sin (k (xg — L)) cos (kxg)) = cos (kL) sin (kxy)  (4)

Using sin (a —b) = sinacosb — cosasinb, then
sin (kxg) cos (k (xg — L)) — sin (k (xq — L)) cos (kxg) = sin (kxg — k (xg — L))
= sin (kL)

Then (3) becomes

kB, sin (kL) = cos (kL) sin (kxg)

_cos (kL) sin (kxp)
27 ksin (kL)
Substituing the above in (3) gives
cos (kL) sin (kxg)

Az = k sin (kL) cos (kL) sin (kxg) sin (k (xo = 1))

_ sin(k(xo— L))
"~ ksin(kL)
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Using A,, B, found above in (1A) gives

sin(k(xp—-L))

ksin(kL
G (x/ xO) = { cos(kL) sisrlll(lk(xo))
k sin(kL) cos(kb)

sin (kx) 0<x<x

sin(k(x—L)) x<xg<L

3 1 sin (k (xg — L)) sin (kx) 0 < x < x
~ ksin(kL) | sin(kxp)sin(k(x—L)) x<xo <L

The following approach seems faster.

second solution

Instead of starting from

Alyl (X) + Azyz (X) O<x< Xo

G (x,xp) =
(x XO) { Blyl (X) + Bzyz (X) X < xO < b

We first find the eigenfunction @, (x) that solves y”” + k?y = 0 which satisfies the boundary
conditions y (0) = 0,y (L) = 0. Then write

AD, (x) 0O0<x<xg

G (x,xg) =
(%, %0) {B(Dn(x—L) x<x<b

So now we have only 2 unknowns to find, A, B using the continutity and jump conditions
on G. Let see how this works on this same problem. The solution to y” + k*y = 0 is
y(x) = Acoskx + Bsinkx. At y(0) = 0 implies A = 0, so the solution becomes y (x) = Bsin kx
and at x (L) = 0 this gives 0 = Bsin (kL), which implies kL = n7mt or k = 1% Hence the solution

is @, (x) = sin (n%x) Therefore we set up the Green function as

. nrt
G (x,xo) = 4311?n(fx) 0<x<x
Bsm(f(x—L)) X<xy<b
Or by letting k, = %

Asin (k,x) 0<x<xg

. 1)
Bsin(k,(x—L)) x<xy<L

G(x,xg) = {
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Now continutity says
Asin (k,x9) = Bsin (k, (xg — L)) (2)

Taking derivative of (1) at x = xq gives

Ak, cos (k,xg) 0<x<x

G’ (x,xq) =
(¥, %) {Bkncos(kn(xO—L)) x<xy<L

Then jump discontinutiy gives

Bk, cos (k, (xog — L)) — Ak, cos (k,x9) =1 (3)

Solving (2,3) for A, B gives, as we did earlier

_ sin(k(xg— L))
~ ksin(kL)

_ sin (kxp)

~ ksin (kL)

Using these in (1) gives

G (x,x9) = 1 { sin (k (xg — L)) sin (k,x) 0 <x < xg

ksin (kL) | sin (kxp)sin(k,(x—L)) x <xg<Lb

Which is the same result obtained earlier.
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2.2 exam 1

2.2.1 exam 1 prep sheet

Preparation sheet for the test: November 7 in class

The test will cover notes and examples on infinite series, complex analysis, and
evaluation of integrals (not including the saddle point integration) and problem
sets 1-4.

1. Things to know without thought:

a) Sum of a geometric series.

b) Definitions of convergence and absolute convergences of infinite series.
c¢) Ratio test for convergence.

d) Series expansions for e”, sinx, cosz, and In(1 + z) (for |z| < 1).
e) Cauchy-Riemann conditions and definition of analytic functions.
f) The meaning of log z, Logz, and z°

g) Cauchy-Goursat Theorem and Cauchy Integral formula.

h) The form of Taylor and Laurent series.

i) The meaning of analytic continuation.

j) The residue theorem.

k) The definition of Cauchy principle value.

1) The definition of an asymptotic series.

(
(
(
(
(
(
(
(
(
(
(
(

2.2.2 exam 1 writeup

Problem 1

Using a well known sum, find a closed for expression for the following series
f(z)=1+2z+322 +423 + 524 + -+

Using the ratio test, find for what values of z this series converges.

Solution

Method 1
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Assume that the closed form is
(1-2)"=1+22z+322+42>+524 + ...
For some unknown 4. Now a will be solved for. Using Binomial series definition (1 —z)" =

1-az+ QU2 D@2 5, . in the LHS above gives

2 3l
-1 -1)(@-2
1—az+a(a2| )Zz—a(u 33.(& )Z3+---:1+2z+3zz+4z3+5z4+---

By comparing coefficients of z in the left side and on the right side shows that 2 = -2 from
the coefficient of z term. Verifying this on the coefficient of z? shows it is correct since it
. (2)(=3) _
gives — — = 3. Therefore
a=-2
The closed form is therefore

=1+2z+322+423 +5z4 + -

(1-2)°
Method 2

Starting with Binomial series expansion given by

1
—— =1l+z+22+2+24+
1-z
Taking derivative w.r.t. z on both sides of the above results in
d (1 d
_ 2., .3, 4
E(E)—E(1+Z+Z +z°+z +)
—1-2)2(-1)=0+1+22+322+42% + ---

5 =1+2z+4322+42% + -

(1-2)
Therefore the closed form expression is

7 =1+2z+32%2+423 + -
-z

Which is the same as method 1.

The series general term of the series is

[o¢]

1+2z+322+42% + - = Y (n+1)z"

n=0
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Applying the ratio test

a
L= lim |22
n—eo | q,
o |m+2) 21
= lim [————
n—eo| (n+1)z"
o |n+2)z
= lim
n=eo| 1+ 1
. n+?2
=z lim
oo |+ 1
1+2
=z lim —’11
n—0o0 1+_
n

2
1+=
—+| =1 and the above limit becomes

But lim,,_,,
1+

L=z

By the ratio test, the series converges when |L| < 1. Therefore 1+ 2z + 322 + 42> + --- converges
absolutely when |z| <1. An absolutely convergent series is also a convergent series. Hence
the series converges for |z| < 1.

Problem 2

Find the Laurent series for the function

flo)= —

3
(zz + 4)
About the isolated singular pole z = 2i. What is the order of this pole? What is the residue
at this pole?
Solution

The poles are at z> = 4 or z = £2i. The expansion of f (z) is around the isolated pole at z = 2i.
This pole has order 3. The region where this expansion is valid is inside a disk centered at
2i (but not including the point z = 2i itself) and up to the nearest pole which is located at
—2i. Therefore the disk will have radius 4.



Region where Laurent series
expansion around z = 27 is valid

23

33

»

Let
u=z-2i
zZ=u+2i

Substituting this expression for z back in f (z) give
1
f2) =

1

S

(u+2i)2+43
( )

(u2—4-+4ub+4f

1
(uz + 4ui)3
1

T (w(u+40)

1 1

T8 (u + 4i)

1

1

g
%

1

4i
1

u3[‘1i(—3

? (aiy? (

1

)]
)3

+1

1

—i6413
164u (

|

u
4i

13)(

u

64u
4i

—+1)3

+ 1)3

(1)
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Expanding the term 5 using Binomial series, which is valid for |£| <1 or |u] < 4 gives

=

L R e 11k

5 =1+ (- 3)

u
(1+5)
u 3-4u* 3-4-5u 3-4:5-6 u
-+ > = =t i
4i 2! 1612 3! 643 4! 256
u 3-4u> 3-4.5 u>  3-4:5-6u
— - ~ + —+
4 216 3! 64(-i) 4! 256
u 3-4u> 3-4-5u> 3-4-5-6 ut
=1+3i—-- ——i 1t (2)
4 216 31 64 4! 256
Substituting (2) into (1) and simplifying gives

() = j a3 3-4u?> 3-4-5u° 3-4-5-6 ut s
l_— __Z — —— oo
fZ 64u 6413 4 2! 16 3! 64 4! 256

i i u i (3-4u? i (3-4-5u8 i (3-4-5-6 u*
=_+_(3l_)_ L FLib bl L
64 64u3\"4) 643\ 20 16] 6418 31 64 64ud 41 256

i 1 3 i (3-41 +1 3-4-51 +i 3-4-5-6 u N
C64ud 64u?4 64u\ 2! 16) 64 31 64) 64 4! 256

i 3 ,31 5 . 15

= +i u+
6413 25612 512 u 2048 16384
Replacing u back by z - 2i in the above results in

0 i1 3 1 5 15 15i
Z)= —————= — — - =5
i 256 (z—2i2 512(z—2i) 2048 " 16384

This expansion is valid for |z - 2i| < 4. The above shows that the residue is

(z—2i)+ - (3)

3i

512

Which is the coefficient of the —) term in (3).

Problem 3

Use residues to evaluate the following integral

I—foo dx
S Jy A +ex2+9

The integrand is an even function. Therefore the integral f * % is evaluated instead

and then the required integral I will be half the value obtained. The poles of

Solution

-5 are
x4 6x2+9
the zeros of the denominator. Factoring the denominator as (x + 3) (x + 3) = 0, shows the

roots are x = ii\/§ from the first factor and x = ii\/§ from the second factor.

Since the upper half plane will be used, the pole located there is +iV3 and it is of order two.
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dx

Now that pole locations are known, the following contour is used to evaluate f ” T 88
—00

shown in the plot below

&
R

pole of order 2

Rz

+R
3§f(z)dz: lim ff(z)dz+ lim f £ () dx
- R—>o0 C R—>o0 R
dz +R dx
=1 —— + 1 f - 2
Rbeo Cz4+622+9+R1—r>Iolo R x4+6x2+9dx @
Where the integral f_ ;R is Cauchy principal integral. Since the contour C is closed and

because f (z) is analytic on and inside C except for the isolated singularity inside at z = iV/3,
then by Cauchy integral formula § f (z)dz = 2mi ), Residue. Where the sum of residues is

C
over all poles inside C. Therefore (2) can becomes

+00 d . . :
j:oo md;{ =27 E Residue —1%1_{1010 f;f(z) dz (3)
But
f f@d <ML
C max
=|f@| 7R (4)
Using
1
L T =TT

By inverse triangle inequality |22 + 3| > zI* - 3. But |z| = R on C, therefore |22 +3| > R2-3
and the above can now be written as

£ @) !

max = (R2—3) (R2-3)




36

Using the above in (4) gives

TR
ff(z)dz <
c max  (R2-3)(R2-3)
B 7R
~ RY-6R2+9
n
_ R
R2—6+ =

In the limit as R — co then | £ f(z)dz

— 0. Using this result in (3) it simplifies to

max

[ 2 = 2ni Y] Resid (5)
. x4+6x2+9x_ Tl esiaue

What is left now is to determine the residue at pole z; = i\/§ which is of order 2. This is
done using

d
Residue (z) = lim — ((z - )" f (2)

But zy = iV3 and the above becomes

d 2 1
Residue (iV3) = lim — |(z - iV3
R R e e

= lim i !

=iV8 42 (3 4 iyB)
= lim 2 3

i3 (z+z 3)
2

(iV3+iv3)
_ -2

V)
2

-(8)(3)iV3

1

- 12i/3

Using the above value of the residue in (5) gives

f+°° dx P i 1
——dx=2mi
o X2+ 6X2+9 & 12iv/3
Tt

6V3
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dx

——— is half of the above result which is
x4+6x3+9

Therefore the integral 1;00

f"" dx o
0 ¥*+6x2+9 1243
Problem 4
Find two approximations for the integral x > 0

1 I

I(x) = _fz ercos? 0,40

2n -z
One for small x (keeping up to linear order in x) and one for large values of x (keeping only
the leading order term).
Solution

The integrand has the form ¢*. This has a known Taylor series expansion around zero given

by

22
e=14+z+—+--
2!
Replacing z by x cos? 6 in the above gives
2
) (x cos? 6)
e 50 =14 xcos? 0 + ——— + -

2
The problem is asking to keep linear terms in x. Therefore

2
e* 5" 0 % 1+ xcos? 0
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Replacing the integrand in the original integral by the above approximation gives

1 2 )
I(x)zﬂf (1+xcos Q)dQ

1
~ — f d6+xf2 CoS 6d6]
27 T

1
z—f d9+xf —+—c0826d6]
27

e 16+1sin282
T LA R S S

1 s
E( +;—C(26+Sin26)_2§)
~ ( +x(2 +O))

¥ on el

~ 5= (37
P \rTom
1 X
~3(+3)
2

For large value of x, The integrand is written as e/(?) where f (0) = x cos? 0. The value of 6

where f(6) is maximum is first found. Then solving for 6 in

d
%x cos?0 =0

—2xcosOsinf =0
Hence solving for 0 in
cosBsinf =0
There are two solutions to this. Either 6 = g or 9 = 0. To find which is the correct choice,
2
the sign of d% f(0) is checked for each choice.
d2

dgzxcosz = —( —2x cos 6sin )

= -2x d (cos O'sin )

= g (cosOsin

= —2x(—sin @sin 6 + cos 6 cos O)

= -2x (— sin? 6 + cos? 6) (1)
Substituting 0 = g in (1) and using cos (g) = 0 and sin (g) =1 gives
42
d_sz cos? 0 =-2x(-1)

T
0=3

=2x
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2
Since the problem says that x > 0 then d%x cos? 6| > 0. Therefore this is a minimum
=L

Using the second choice 6 = 0, then (1) becomes (aftezr using cos (0) =1 and sin (0) = 0)

d2

——xcos? 6

162 e

0=0

2
And because x > 0 then d%x cos? 6| < 0. Therefore the integrand is maximum at
0=0

Qpeak =0

Now that peak 6 is found, then f (6) is expanded in Taylor series around 6,5 = 0. Since
f(60) = xcos? 0, then

f (Gpeak) =x
And f'(0) = -2xcosOsin6. At O, this becomes f’ (mek) = 0. The next term is the
quadratic one, given by
d
() = —Zx% (cos O sin 0)

= -2x (— sin® 0 + cos? 6)
Evaluating the above at 6., = 0 gives

i (Gpeak) =-2x

The problem says to keep leading term, so no need for more terms. Therefore the Taylor
series expansion of f(6) = xcos? 6 around 6 = Opeak 18

000 % £ (Ops)  (Op) 0+ " (0y)
—xr0- Do
B 2

= x — x6?
=x (1 —~ 62)
The integral now becomes

) = - f 2 41-0%) 49

2nJ_~©
2
~ 1 f z e 0% 4
2t J_

I
2

1 T
= (e" fz e‘xedeJ

2

Comparing f 2 040 to the Gaussian integral f " 040 = \/E, then the above can be
L —00 X

2
approximated as
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Summary of result

Small x approximation | - (1 + J—()

Large x approximation =

Note that using the computer, the exact solution is

T

1 > 1=
fz excosz 040 = E(32 Bessell (0, 3—26)

2n

_I
2

Problem 5
Use the Cauchy-Riemann equations to determine where the function
f@@)=z+ 2

Is analytic. Evaluate ff; f (z) dz where contour C is on the unit circle |z| =1 in a counterclock-

C
wise sense.

Solution

Using z = x + iy, the function f (z) becomes

2
f(z):x+iy+(x+iy)

=x+iy+ (xz—y2+2ixy)
=x+iy+ (xz—yz—Zixy)
= (x+x2—y2) +i(y—2xy)
Writing f (z) = u + iv, and comparing this to the above result shows that

u=x+x*-y>

v=y-2xy (1)
Cauchy-Riemann are given by
Ju Jdu
Ix dy
—du _ dv
2y = o

Using result in (1), Cauchy-Riemann are checked to see if they are satisfied or not. The first
equation above results in

A
dx

80_
0.)—y—1—2x

du , dv . . .
Therefore — # e This shows that f (z) is not analytic for all x, y.
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Since f(z) is not analytic, Cauchy integral formula can not be used. Instead this can be
integrated using parameterization. Let z = ¢’ (No need to use r¢'¥ since r = 1 in this case
because it is the unit circle). The function f (z) becomes

. N2
f(z)=¢"+ (619)
— o0 4 p2i0
_ oi0 4 p2i0
And because z = ¢ then dz = dO¢'’. The integral now becomes
270
0

§ f(z)dz = f (6’9 + 720 ) e'9do
C
= fzn (eZiG + e‘ie) do
0

Q20 PP [ pi0 T
2i
0 0

—i
1 ol 2n . .. 2n
=5 [cos26 +isin260] " +i[cos O —isin O],

1
=5 [(cos4m +isin4m) — (cos0 +isin 0)] + i[(cos 2w —isin 27) — (cos 0 — isin 0)]

1 ,
:Z[l—l]+z[1—1]

Hence

ff(z)dz=0
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2.3 final exam
2.3.1 exam 1 prep sheet

Preparation sheet for the exam: Dec 19 from 2:45 to 5:15 in class

The exam will cover notes and examples on infinite series, complex analysis, eval-
uation of integrals, integral transforms, ordinary differential equations, eigenvalue
problems, and partial differential equations. The exam will also cover problem sets
1-7. You are allowed to have a 8.5 by 11 sheet of sheet of paper with equations on it.

1. Things to know without thought:

a) Sum of a geometric series.
b) Definitions of convergence and absolute convergences of infinite series.
c) Ratio test for convergence.
d) Series expansions for e”, sinz, cosz, and In(1 + z) (for |z| < 1).
e) Cauchy-Riemann conditions and definition of analytic functions.
f) The meaning of log z, Logz, and z¢
g) Cauchy-Goursat Theorem and Cauchy Integral formula.
h) The form of Taylor and Laurent series.
i) The meaning of analytic continuation.

j) The residue theorem.
(k) The definition of Cauchy principle value.
(1) The definition of an asymptotic series.

m) The definition of Fourier series and transform The definition of a separable
t order ODE.

The criterium to check if an ODE is exact.

(r) Ordinary and regular singular points of a linear differential equation (and the
form of the series solutions for these).

) Definition of a Hermitian differential operator.
t) Sturm Lioville differential equation and related orthogonality of eigenfunctions.
u) Use of the Wronskian to check if two solutions are independent.
V) The definition of generating functions and how to use these to find recurrence

(s
(
(
(
r
(w) The completeness relation.

(x) The definition of the Green function in solving inhomogeneous problems.

(y) The eigenfunction expansion of the Green function.

(z) The form of the wave, Laplace, and diffusion equations in 1,2, and 3 dimen-
sions.

(aa) The solution of the 1D wave equation.

(bb) The use of separation of variables. Specifically in 3D spherical coordinates
and in 2D polar coordinates.



2.3.2 my final exam cheat sheet

Solve for ¢ (r, 0, ¢,t) where %‘;’2 = ¢?Vi) (Wave PDE 3D spherical coordinates)
Let v = T(t)X(r,0,¢). First W
seperation gives the following two

A k2 is first
equations

separation constant

w=ck
solution

VX + k?X =0 +— Helmholtz eqution

Let X = R(r)©(0)®(¢) and apply separation again.

angular equation.
Second sepration. Use
(1 4+ 1) as|separation
constant.

solve first, m? is separation constant cimo
4 m2p=0 —» P (@> = { e—ime }
associated Legendre
polynomial of first kind

(1-2%) 0" — 220 + (z (i+1)- $) O=0—=+0(r)= { gllgf;

x = cosf Associated legendre equation

Note: [ is integer and —l < m <1

associated Legendre
polynomial of second kind.
not used. blows up x = +1
Radial eguation shperical bessel
(Besgel like) function first kind ———
ji(kr
R+ 2rR + (rk? = 1(1+1))R=0 —> R(r) = fll((,”%
Yt
Can be converted to standard Bessel ODE
by some transformation (not shown) shperical bessel function
| second kind. Not used as it
blows up at r =0
Final solution is summation of fundamental solution

> g (kr) P™ (cos(mg) + sin(me)) (cos wt + sinwt)

wave 1D: ‘:;f = 2002
,t) =3 (fo
Where fo(z) is initial position of string and go(z) i s
initial velocity

Bessel: 22y” + zy’ +
T"(t) + Pk*T(t) = 0 ——=clution___ T(t) = cos(wt) + sin(wt) not intger, solutions
solutions Jy, (z), Yo (z

Oz
—ct) + fo(z +ct)) + 5 f‘ﬂl

ot go(s

2,11

(22 — )J_O W = % ‘When m
Jm (), J_m(x). When m integer,

)

LegendrE' (1 —z2)y"
W =
at il
Sturm-Lioville: (py’)’ — qy + Ary = 0, operator

Lly] = —(py’)" + ¢. When ¢ = 0, equation becomes
L[y] = Ary. Inner product < u;,u; >= [ @u; dx
Bernuli ¢’ + f( Yy = g (z)y™, where n # 0,1. Divide
by y" — - m/ + f(2)y'™" = g (z) and let

v=y!"" 5 = (1-n)y "y converts ODE to
separable in v (z)

isobaric given y weight m and = weight 1. each term must
have the same weight if we can find m. Then let y = va™
Find %4 sub into ODE to get rid of y. Separable in v.

solve.

Exact Write ode as Mdx + Ndx = 0 then check if
Y

é)t,l X y
IntcgrdtL the first to get ® = [ Mdx + f (y), differentiate
this w.r.t y, and compare to g—,‘: = N and solve for f (y).
Solution is ® (z,y) = ¢

—2zy +n(n+ 1)y =0,
. Solutions P, (z), @, (z). Where Q blows

= 81\ . If so then set up 2 equations 22 = M, 22 = N

Sturm-Liouville To convert ay” + by’ + (¢ + Ad)y = 0 to

(@) %) — (@) y (@) + Ar () y (2) = 0 use:

Solve for 1 (r, ¢, t) where a'/ = ¢?Vi) (Wave PDE in 2D disk, polar coordinates).
Membrane is fixed on edge oi disk. Radius a.

Let v = T()X(r,¢). First
seperation gives the following two
equations

Laplacian in 2D polar
_ou® | 19u 1 9u?
Vu= 5+ 550 + 2042

k? is first

A w = ckmn
separation constant

(t) + Czk’zT(t) =0 solution
VX + kX

T(t) = cos(wt) + sin(wt)
= (0 = Helmholtz eqution
Let X = R(r)®(¢) and apply separation again.
solve first, m? is separation constant ime
"+ m2® =0 , <I>(¢):{ ‘
solution e

Due to periodicity, m must be integer.

—ime
Radial [equation

Bessel function order m

R +rR + (r2k;2 — 7n2)R =0 solution. R(’I") = { i{:gi:’; }
Bessel ODE

Bessel function second kind.
Not used as blow up at r =0

Jm(ka) = 0 from boundary conditions. This fixes k. Let Z, be the n™ zero

of the Bessel J,, function. Therefore kpmn = Z’(;’" are allowed values of k.

14‘) o< Jm(km,,'r) (cos md)) + sin(mg)) This gives rise to modal shapes

=3 Jm(kmnr) (cos(mg) + sin(me)) (cos(ckmnt) + sin(ckmnt))

) 4 (a p(a
p(z) = e/ % and q(x)=—p(x) (—)) and 7 (z) = ggrgd

a@

generating functions. Bessel g (z.t) = e%(‘f%), then write

gz, t)=>0"_  Jn(x)t". Find
Ay (z) = 2’171?{ (E,“ )dt L[5 cos (n — xsin6) df. To
find recusive relations, do %, % add/subtract we get

T2 (8) = Jus (@) — 2 (2) and

o (x) = 2Jn ( ) = Jn—1 (z) For Legendre use
g(z,t) = m 27. o Pn (x)t". Do g?* glz]
add/subtract we getP, 1 (z) = (n+ 1) P, (z) + 2P}, (z)
and P,,_; ( ) = —nPy (z) + zP; ()

P, (z) = 32 ddq = (2% —1)". Special values,
Py(z)=1,P (z) =z, P (x) = % (3.’1;2 — 1)

Laplace PDE on disk:
y(z) = Ag + > r™ (C,, cosnb + ky, sinnf) where

Ao = 2= [27 £(8)d6 and
Cha™ 02" £ () cosnfd6 and

kpa = %joh f(0) sinnfdf where a is radius and
£ (0) is boundary condition.

Euler ode r%y” +ry’ +y =0, let y = 7 ‘

Polynomial ODE. ¢/ (z) = f (axz + by + ¢). Let
V = ax + by + ¢, then dV = adzx + bdy, converts it to

separable % = 7@4{5;20)

Green function. For boundary value problem y” + y = f (x) write it as

oy A (@)
G(z,zo)—{ BZz (@)

‘log (2) =In|z| 4+ i (6o + 2nm) ‘

Where y; (z) is one of the solutions to y” + y = 0 that satisfies left BC and y» (x) is one which satifies right BC. Then solve for A, B from
Ayt (w0) = ﬁ where p () is from SL form. (—1) for the above.
f (@o) dxo + f" G (xo, ) f (w0) dxo

contuinity condition Ay (zo) = By2 (xu) and jump discontinuty Byj (zo) —

Then flipe the , ¢ roles and then do y fo (wo, )
1/2 f(l)dl + 2 (@

Variation of parameters y, (z) dx

= —yi( ) [ et

0<z<umo
zo<x <L

Wronskian W (x) = det[[y1, y2], [y1, v5]] =
CeJP@) de Where p is from
y' +py +ay=0

Fourier series f (z) = 42 + 37 | A, cos (¥&nz) + Bysin (Znz) where A, = 2 j f )cos (%nz) and
)sin (Zn. ) Complex form is f (z) = Zn—foc Cpei e O, = j
z) =

- oo
e~ wrdy, Parsvalea. f_

B.=%J% f@

Fourier transform f ( 27{ j_ e“?dw and F (w f f(z

E—L FNT ]

I @ de = [

|F (@) du

bbasi D. ber 14,20
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Eigenfunction expansion. Startting from L [y] — ky = f (), assuming y (x

=3, Cn®, (z) where @, () eigenfunctions found by solving

Ly] — Ay = 0 with homogenous B.C. Then f (z) =, dn®, (). Subtltutlng in the ode and use that L [y] = Ay results in

> (A k) Cn®, (z) =3, dn®y, (). But d,, = (D, (), f (:r)) = % /'OL D, (z) f (z) dx. The % due to normalization This gives

Cp, = )\ . Now thdt C,, is found the solution is y (L) e g P (z) =32 @"(T) f ®, (x) or y(x) = "(1) L [P ( (2') da’
ory(z f Z o (x )f (2')dz’. Compare to y(z) = [* G (z,2') f (¢') dz’ shows that G (z,2') = W This is called
Green functlon elgenfunctlon expansion. This assumes <I> are normalized so weight is 1.

completeness relation f ur (x)de = 0i5. f =3 Cpn®y (z) and r (a) Y, By (2) Py (') =6 (@ — '), If f(x) =6 (x — '), then

LG (z,2")] — kG (z,2") = (z — l/) Operator is Hermite if [ aL [v]dz = [ 0L [u] dx

Asymptotic series S (z) =co + < + % +-

important properties

(f(2) -

2. lim,, o 2™

1. im0 2™ (f (2) — S (2)) = 0 for fixed n.
Sy (2)) = oo for fixed z.

it becomes divergent. n is the number of terms in S, (z). It is optimally truncated when n ~

- is series expansion of f (z) gives good approximation for large z. we truncate S (z) before

|z]%. S

1
™

F(z)F(l—z):/O

00 t.z‘—l

sin (wx

(z) has the following two

dt 0<z<1

+t

)

If pole of order n. to find residue, use

Residue (z0) = lim

a7 (2 — 2)"

FE e A

z—2Q

S (z) ~ f(z) when S (z) is the asymptotic series expansion of f (z) for large

z. common method to find S (z) is by integration by parts

j{f (z) dz = 0 then this does not necessarily imply f (z). If f ()

Gaussian [

Cauchy theoreom. Cauchy-Goursat: If f (z) is analytic on and inside closed contour C' then f (z) dz = 0._But remember that if

™

—az de =

residue, use
R (z0) = limz—2, (2 — 20) f (2)

is analytic on and inside C' then and zg is a point in C then
) 0

Green’s Theorem says

[ (z) around zo is Yo" ay, (2
about z = 0, get f (2) to look like 1

—z

— 20)" where a, = ”i, Fim (z)|2:zO For Laurent series, lets say singularity is at z = 0 and z = 1. To expand

c
. z z T n z = 2Q _ op
2mif (z0) = j{zf(zl dz and 2mif’ (z0) = j{<zf(z E dz and ZEf() (z) = f#dz Jo Pdz+Qdy = [, ( ay) A
c c c
Laurent series f (z) = Yoo g an (2 — 20)" + Yoy (szizg)” where a,, = ﬁ]{ﬁdz and b, = 5= Wﬁ%dz. Power series of

and use geometric series for \z\ <1 To expand about z = 1, there are two choices, to the inside

and to the outside. For the out51de ie |z| > 1, get f( |z > 1.

if e7? <1 does not work, use Jordan inquality
and use e”¥ < % for contour integration

Euler Gamma functlon

If f (z) satisfies CR
everywhere in that region
then it is analytic. Let

line or a half circle arc. Use

To [ f (2)dz where C is some open
path, i.e. not closed, such as a straight

cosaxr
2

xsinax

/xcosam =
/zsinaz =

a
sin ax x cos ax

r (z) _ fnoc *~le~tdt Re (Z) >0 To ! (z) o (z y) v (x y) Parameberizfmtiop. This‘converts Phe a? ) a
extend I' (2) to the left half plane, i.e. for ’ 7 integral to line integration. If C' is gin? qp = & _ Sin2az
G i Let us defi i th then these two equations |straight line, use standard ¢ S =3 1a
negative values. Let us delmne, using the in Cartesian coordinates | parameterization, | z  sinZ2az
above ch(gff};’c formula are ({))1: — %Z and z (t) = (1 —t) zo + tz1 and /Cos2 aw = ™
I(z)==5— Re(z)>-1 _0u _ v gomotimes it is y (t) = (1 —t) yo + ty1 where (xo,y0) -
Toy ~ o in the line initial point and (z1,y1) is Sin aE cos ar = sm” ax
T'(z)y=(-1)T'(—1) Re(z)>1 easler to use the polar the line end point. This works for T 2a
ra=1 form of these. Let straight lines. Use the above and G| 1
- f(z) =rcosf +isinb, rewrite z = x + iy as /az+b:;1n(a1+b)
I'(n)=(n—1)! / e~ cos Az = ——f— ||then the equations become | # (t) = (#) + iy (¢) and plug-in in this » s b
D(n+1)=n! 0 a2 H A2 Qu _ 10v g _10u _ 8v z(t) in f () to obtain f (¢), then the / :———2111(az+b)
! /Oo TN A ar 80 T 90 7 |integral becomes ax + b a a
e”Wsin\x = ———
T 1 =7 0 ! a? H A2 || F.S. (period 2L). rt=1 / = arcsin (z)
2 fOLSmZ(l )dz—Land /cj(z)dz:/ ()2 (t)dt \/1—1
t=0
I'(z4+1)=2I'(2 recursive formula L = =
( + ) ( ) Iz L sin ( )dx Now evaluate this integral. / V1= 22 arccos (x)
I'(z)=T(2) Geometric series: N1 1 arctan (z)
r 1 71-3~5---(2n—1)f Nt =1+4r+r2 48 4. N = 1510 anq T2 ¢
nty )= V7T gt =1+r+ri4rd4. = | <land ) o
i .
T - Azing—n"‘r":I—TWLM»»-:H, r<1| gy =t-etat-ateo i<t
sine = — - sinf = - Binomial series: (z +y)" =
2o % @ pngn—ly 4 Mol n—2y2 4 noD0=2) n-3,5 L R T P
iz —iz -1
cosx = %e +2€ cosf = ztz From this can generate all other specnl cases. For (1-=)
2 z? 2t
sin (A & B) = sin Acos B & cos Asin B 2 = rei(0+207) hence e =1+z+ or Tt
cos (A £ B) = cos Acos B Fsin Asin B /zeaa: _ e (:v _ l) 2% =r3e'se2nT for 2 B ot
sin2A = 2sin Acos A a a n=0,1 Henc'eQ 1n(1+1):5”7?+?7?+" [z| <1
cos2A = (‘os‘.2 A—sin?A=1-2sin’A4 2 aw e 2 2 2 rO-OtS: n =0 gives T 3 ] 7
= = £ e’ = x® — Zx + = )| principle part 1 1 1+z) T T x
a a? En -z —$+§+€+7— lz] <1
sin Asin B = 5 (cos (A—B)—cos(A+ B)) eaw 5
sinbre"” = ———— (asinbx — bcos bz) . T
1 / a? + b2 log(z) = sing =2 — = +
cos Acos B = 5 (cos (A+ B) + cos (A + B)) (a® +0%) In|z| + i(6o + 2n7) 321 .
_ eclnz inei
1 Inz=zlnz—=x 2¢ =e° n = 0 principle part o T T
sinAcosB:E(Sin(A—B)+sin(A+B)) COSL—I—?-Q—E-&--




Chapter 3

HWs

31 HW1

3.11 Problem 1

Part a

. . 9 81 729
For what values of x does the following series converge. f(x)=1+ 5+ 5+ = + -
X X X

answer
The general term of the series is
2n
w (3
n=0 \*

The ratio test can be used to determine convergence. Since all the terms are positive (powers
are even), then the absolute value is not needed.

45
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Il
5

Il
é.

. . 9 .
The series converges when L < 1, which means Z <lor x? > 9. Therefore it convergence for

x| >3

Part b

. . . o 1
Does the following series converges or diverges? >, _ In (1 + Z)

answer
The terms are {In(2),In (2 + %) ,In (2 + %) ,1n (2 + 411) o)

Since the terms become monotonically decreasing after some n (after the second term in

this case), the integral test could be used. Let

1
I:fln(1+—)dx
X

The above indefinite integral is first evaluated. Since In (1 + j—c) = ln(

i) —In( +x) —In(x),

X
the above can be written as

I:fln(1+x)dx—fln(x)dx 1)
To evaluate the first integral in (2) f In(1+ x)dx, let u =1+ x, then du = dx, therefore
fln(l + x)dx = fln(u)du
=uln(u)-u

Hence

fln(1+x)dx:(1+x)ln(1+x)—(1+x) )
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The second integral in (1) is
fln () dx = xIn (x) - x 3)
Using (2,3) back into (1) gives
I=(Q+x)In(1+x)-1+x)) - (xIn(x) —x)

=1+x)lnI+x)-1-x-xIn(x) +x

=1+x)Inl+x)—xIn(x)-1 (4)
Now that the indefinite integral is evaluated, the limit is taken using

N
R = lim ln(l+1)dx
N—oo X

Only upper limit is used following the book methodﬂ Using the result found in (4), the
above becomes

R:I\lji_r)rio[(l+x)ln(1+x)—xln(x)—1]N
The above becomes
R=lim [0+ +2)-xln@)-1]"
= lim [(1+N)In(1+N) - NIn(N) - 1]
= lim [In(1+N)+ NIn(1+N)-Nln(N) -1]

: 1+N
:1\1]1_1&[111(1+N)+N1n( N )—1]

. ) 1+N
—1\1]1_r>rgoln(l+N)+l\1I1_r)rioNln( N )—1 (5)
But
. 1+N .
I\III—IEONIH(T)_ lim ——~

This gives indeterminate form 1/0. So using L'Hospital’s rule, by taking derivatives of nu-
merator and denominator gives

1 1+N (1—%) 1- 1+N N2
: S ol TN _ s ~N)T . (N-1-NN L N
Nom 1T TN _iz T N 1+N  Now 1+N TR TEN
N N

1See page 131, second edition. Mathematical methods for physics and engineering. Riley, Hobson and
Bence.
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1+N

Therefore limy_,,, NIn (T) =1. Using this result in (5) results in

R:I\%irn Inl+N)+1-1
= lim In(1 + N)
N—>oo
= 0

Therefore, by the integral test the series diverges.

3.1.2 Problem 2

Find closed form for the series f (x) = 2:):0

. - . 1
n*x*" by taking derivatives of variant of —. For
what values of x does the series converge?

answer

F(x) = 2% + 4x* + 9x5 + 1638 + 25x10 + ..

Observing that

(x2 (1 +2x% 4+ 3x* + 4x0 + 528 + )) (1)

To find what 1 + 2x2 + 3x* + 4x° + --- sums to, we compare it to the binomial series
a(a—1)z2 ~1)(a-2)2
(a-1)z +a(a D(a-2)z N
2! 3!

1+2)=1+az+ o =14 2x% + 30 +4x0 + 5x8 + -

Hence, by setting

shows they are the same. Therefore

vy (a2Y oy (A (A [ a2)
(1—x2)_2:1+(—2)(—x2)+( 2( 2( 2) +( 2)( 3);!4)( x?) s

=1+2x% +3x% +3x* + -




49

The above is valid for |z| <1 which implies x? <1 or |x| <1. Hence

)
1+2x2 +3x* +4x0 + -+ = (1—x2)

Using the above result in (1) gives

x d X2
X)=z—|—7—
flx 2dx (1_x2)2
x| 4x3 2x
= E 3 —+
[(1—x2) (1—x2)
24 x?
= +

Therefore

xz(x2+1)

(1-22)°

fx)=

Where the above converges for [x| < 1, from above, where we used Binomial expansion which
is valid for |x| < 1. This result could also be obtained by using the ratio test.

(n +1)% x20+D)
n2x2n

Ayl
ai’l

lim

n—00

= lim

n—00

Since all powers are even, the absolute value is not needed. The above becomes

g1 (n +1)*x2
lim = lim ————

n—oeo q, n—oo nz
2
) n+1
= 2 fim D
n—00 n
= x2
Therefore for the series to converge, we know that “**X must be less than 1. Hence x? <1 or

n

|x| < 1, which is the same result as above.



3.1.3 Problem 3

Part a

. 1 1 1 1 1
F1ndthesum0f1+z—g—a

256

1024
solution

50

We would like to combine each two consecutive negative terms and combine each two
consecutive positive terms in the series in order to obtain an alternating series which is
easier to work with. but to do that, we first need to check that the series is absolutely

convergent. The |a,| term 1s , therefore

lim

n—00

lim

n—00

lim
n—o0

1

4

A1

gn+1

471
41’1
4n+1

Since |L| < 1 then the series is absolutely convergent so we are allowed now to group (or

rearrange) terms as follows
)|
— |+

1
— +
) (16 64

5 5

1024 16 384
1 1

16 256 4096

o ()

5

64
1

¢

5

5
4
5
T4
5
T4
5

4«

1

— +
256

1
1024

1
16384

)_(40196+ )+

(1)

n
But Z:;o (-1)" (11—6) has the form E:’:O (-1)" " where r = 11—6 and since |r| < 1 then by the

binomial series

(o]

E(—l)"r“zl—r+rz—r3+---

n=0

1

1+r



Therefore the sum in (1) becomes, using r = L

16
5 1
S = Z( 1
1+ 1_6
_5(16
T 4\17
Hence
20
S=3
Or
S =1.176
Part b
Fmdthesumof—+§+;—?+i—%+
solution
The sum can be written as
S= —
n=1 n!
& nn?
B = n!
n
But = = o = oD and the above reduces to

2 (n D!

Letn—1=m or n =m+1. The above becomes
— (m+ 1)
m!

Nk

m=0

> (n+1)°
E n!

241+ 2n

=
1l
[}

I I
NgE M8
.3_|=
ﬁMg =

=

1l

o
N

=
1l
o

1 < 7
2 2

51

1)



52

2
Considering the first term Y™ % which can be written as

N

Mg
2|3
[
Mg
2|3

N

3
Il
o
B
Il
—_

(2)

=
Il
—_

Il
Ng
<

| [ =
=

Again, letting Let n -1 = m then ) )' becomes Z —+'1 Hence (2) becomes

nl( -1

& P 5’: m+1
=0 n! = m!
3 i n+1
=0 n!
a7 R |
=Dt
Hnl =l
>n &1
=2t U
n=1""" n=0 """
But Zn 1 i E;O 10 1), Letting n — 1 = m, this becomes Z o = Z:’O —'and the above
reduces to

N

DM
23
[
Ngk
A
i
Mg
2|~

=
I
o
i
+ o
x
=
I
o

Il
N
[y

(3)
The above takes care of the first term in (1) Therefore (1) can now be written as
— 7
S= E —+2 ) =
n= 0 n: n=0
=2e+e+2 Z s
- n=0 n!

[o¢]

=Se+22%

n=0

But Zn o o= Zn 12' and E i. was calculated above. It can be written as En 0 —, The
above now becomes. "

S=3€+2(§:%)

n=0
=3e+ 2e

Therefore

S =be

or

S = 13.5914
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3.1.4 key solution to HW 1
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3.2 HW 2

3.2.1 Problem 1

Find all possible values for (put into x + iy form)

1. log (1 + \/51)
2. (1+3i)"

Answer

Part 1

Let z = x + iy, where here x = 1,y = 3, then |z| = yx2 +42 = V1 +3 = 2 and arg(z) = 0, =
arctan (%) = arctan (\/TE) = g = 60°. The function log (z) is infinitely multi-valued, given by
log (z) = In|z| + i (6 + 2nm) n=0,%1,+2, - (1)
Where 0 is the principal argument, which is 60° in this example, which is when n = 0. This
is done to make log (z) single valued. This makes the argument of z restricted to - < 6y < m.
This makes the negative real axis the branch cut, including the origin. To find all values,
we simply use (1) for all possible n values other than n = 0. Each different n values gives

different branch cut. This gives, where In |z| = In (2) in all cases, the following

log (z) = ln(2)+i(z) n=0

log (z) = 0.693 + 1.047i
= 0.693 + 7.330i
= 0.693 — 5.236i
= 0.693 + 13.614i
= 0.693 — 11.519i

These are in (x + iy) form. There are infinite number of values. Picking a specific branch
cuts (i.e. specific n value), picks one of these values. The principal value is one associated
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with n = 0.

Part 2

Letz=1+ i\/§, hence

f(Z) — ZZi
= exp (2ilog (z))
= exp (2i (In|z| + i (B + 2nm))) n=0,+1,+2,---

Where in this example, as in first part, In|z| = In(2) = 0.693 and principal argument is
0, = = = 60°. Hence the above becomes

f(z) =exp (21' (ln 2) + z(g + 2nn)))
= exp (21' In(2) - (2?71 + 4n7'())

_ 27
= exp (z In4 - (? + 4117'())

= exp (iIn4) exp (— (2?7{ + 4nn))

= e_(%n%m) (cos (In4) + isin (In 4))

= e_(z?n%m) cos (In4) + ie_(%n +4m) sin (In 4)

Which is now in the form of x + iy. First few values are

f(z) = e_(%n) cos (In4) + ie_(%n) sin (In 4) n=20

=e ( )cos(ln4) + ie ( )sin(ln4) n=1
=e (%n )cos (In4) + ie (%ﬂ_ )sm (In4) n=-1
(%n+8n) (2—n+8n)
=e cos(In4) +ie \3 sin (In 4) n=2
{5 {55
=e cos(In4) +ie \3 sin (In 4) n=-2

f(z) = 0.0226 + i0.121
=7.878 x 1078 + i4.222 x 1077
= 6478 + 34713
=2.748 x 10713 + i1.472 x 10712
=1.858 x 10° + i9.954 x 10°
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3.2.2 Problem 2

Given that u (x, y) = 3x?y-y° find v (x, y) such that f (z) is analytic. Do the same for u (x, y) =
Y

Solution

Part (1)

u (x, y) = 3x%y — y°. The function f (z) is analytic if it satisfies Cauchy-Riemann equations

du Jv
b 1)
du Jv
"% = 5 (@)
Applying the first equation gives
by = Jv
Xy = 3y

Hence, solving for v by integrating, gives

v (x, y) = 3xy? + f () (3)
Is the solution to (3) where f (x) is the constant of integration since it is a partial differential
equation. We now use equation (2) to find f (x). From (2)

dv

— (32 — 32\ =
(3x 3y) e
dv

3,2 2 _
3x° + 3y e

But (3) gives % = 3y? + f’ (x), hence the above becomes
—3x2 +3y? = 3> + f (x)
f/(x) = =3x% + 3y? - 3y?
=322
Integrating gives
Fo) = f _3x2dx
=-x3+C
Therefore, (3) becomes

v (x, y) = 3xy? + f ()
Or

v(x,y) =3xy>—x*+C
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Where C is arbitrary constant. To verify, we apply CR again. Equation (1) now gives

ou_ v
dx dy
6xy = 6yx
Verified. Equation (2) gives
Ju Jdv
3 =5
—3x% + 3y? = -3x2 + 3y?
Verified.
Part (2)

u (x, y) = xzi 7 The function f (z) is analytic if it satisfies Cauchy-Riemann equations

Ju Jdvu

ox oy 1)
du Jv
3 = 38 @)
Applying the first equation gives
2wy dv
(x2+ yz)z Iy
Hence, solving for v by integrating, gives
v =-2x f dey
(2 +?)
=W 3)
R fx

Is the solution to (3) where f (x) is the constant of integration since it is a partial differential
equation. equation (2) gives
1 N 202 Jv
x2 + 12 )2 ~ Jx

(x2 + 12
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dv 1 2x2 ,
— = — —— + f’ (x), hence the above becomes
dx  x2+y? (xzﬂ,z)2

But (3) gives
1 2y? 1 2x?

_x2+y2+ ) 22_x2+y2_ e

(x +y) (x +y)

2 1 42
2 +2(y +x)

5 +f (%)

"(x) = —
f (%) Iy (x2+y2)2
2 2
=2 2T
X +y (x2+y2)
=0
Hence

f=C

where C is arbitrary constant. Therefore, (3) becomes

v(x,y) = xszyz-i_C

To verify, CR is applied again. Equation (1) now gives

ou_ o
dx  dy
-2xy  —2xy

(e ()
Hence verified. Equation (2) gives
Ju _Ju
TR
B 1 N 212 _ 1 B 2x?
T e T (g
- (x2 -+ yz) +2° x4+ y2 - 222
(v +2) (2 +2)
—2 4P 2+ P

(2+y2)  (24y2)
Verified.

3.2.3 Problem 3

. . . 1
Evaluate the integral (i) 55 |z dz and (ii) § Z—zdz along two contours. These contours are
C C
1. Line segment with initial point 1 and fixed point i
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2. Arc of unit circle with Im (z) > 0 with initial point 1 and final point i

Solution

Part (1)

Yy
A (21, y)

(%0, Y0)

T

Figure 3.1: Integration path

First integral We start by finding the parameterization. For line segments that starts at
(xo, yo) and ends at (xl,yl), the parametrization is given by

x(t)=A—-t)xg+txg

yO=0-Dyo+ty

For 0 <t < 1. Hence for z = x + iy, it becomes z () = x (t) + iy (t). In this case, xg =1,y =
0,x, =0,y; =1, therefore

x(H=01-¢)
y() =t
Using these, z (t) is found from
z(t) = x(t) + iy (t)
=1-t)+it
And
Z(H)=-1+1
Since |z/> = x2 + 12, then in terms of ¢ it becomes
Z(OF = 1 -t +
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Hence the line integral now becomes

2 ! 2
dz = "(t)d
J == [ i o
1

:f (@0 +2) (-1 +i) dt
0
1
=(-1+i) | A-0*+¢d
( +z)f0( B + 24t
1
—(1+d) [ 142 -2+
( +z)f0 + 12— 2t + 124t

1
:(—1+i)f 14212 — 2t dt
0

1 1 1
:(—1+i)(f dt+f 2t2dt—f tht)

0 0 0

1 1

—(—1+i)[(t)1+2(f) —2(5))
0 3 0 2 0

:(—1+i)(l+§—2(%))

[refdz=3G-1)

Hence

second integral

Using the same parameterization above. But here the integrand is
1 1
22 (A -f) +it)?

Hence the integral becomes

1 1 1 )
fc 2% = fo -1+ z‘t)ZZ ndt

. 1 1
- (Z_l)fo (1 —t)+it)2dt
= (i-1)(-1)

Hence

Lzlzdz:1+i




63

Part (2)
Y
A
i (z1,91)
r
0 1(95073/0) >

Figure 3.2: Integration path

5—2 = 7i¢'®. When z = 1 then 6 = 0. When z = i then 6 = g’

hence we can parameterize the contour integral using 6 and it becomes

s

f |z dz = fi 72 (rieie) de
c 0

us

ir f z e%do
0

I
2

0
A€
irs [—]
i
0

First integral Let z = re’¥ then

_ 3[,i6]2
Plee);
=7 [eig —~ eo]
=r3[i-1]
But r = 1, therefore the above becomes
[lefdz=i-1

second integral

Using the same parameterization above. But here the integrand now

1 1
22 7 y20i20
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Therefore

r 0
-1 -z
2y
r
-1
=—(-i-1)
But » =1, hence
—dz =1+
3.2.4 Problem 4
Use the Cauchy integral formula
_ 1 rf@
f(zo) = P zodz
C
To evaluate
1
—d
f@+nc+mz

Where C is the circular contour |z + 1] = R with R < 1. Note that if R > 1 then a different
result is found. Why can’t the Cauchy integral formula above be used for R > 1?

Solution

The disk |z +1| = R is centered at z = -1 with R < 1. The function

8@ = e

has pole at z = -1 and at z = -2.
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\_/

Figure 3.3: Showing location of pole

In the Cauchy integral formula, the function f (z) is analytic on C and inside C. Hence, to

use Cauchy integral formula, we need to convert g (z) = to look like £2 where f(2)
Z=2(

(z+1)(z+2)
is analytic inside C. This is done as follows

1

1 @)
z+1)(z+2) z-(-1)
_ f@@
Cz—(-1)

Where now f (z) = ﬁ

analytic on and inside C and can be used for the purpose of using Cauchy integral formula,
which now can be written as

This has pole at z = -2. Since this pole is outside C then f (z) is

1
1 =
56(z+1)(,z+2)dz‘SEZ—(—D”Z‘Z
C C
_ f0
] z—(-1)
= 2ni) f (-1)

Therefore, we just need to evaluate f (1) which is seen as 1. Hence

dz

(z+1)(z+2)

3§ L gz = omi 1)
C

To verify, we can solve this again using the residue theorem

§g (z)dz = 2mi (sum of residues of ¢ (z) inside C)
C

But g(z) =

—_ has only one pole inside C, which is at z = —1. Therefore the above
(z+1)(z+2)
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becomes
fm =27 (residue of g(z) at —1) (2)

To find residue at —1, we can use one of the short cuts to do that. Where we write ml)lm =
% where @ (z) is analytic at z = -1 and ® (-1) # 0. Therefore we see that ® (z) = ﬁ Hence
residue of e - D (zg) = (_11)+2 =1. Equation (2) becomes

§ ; =2mi

J z+1D)(z+2)
Which is same result obtained in (1) by using Cauchy integral formula directly.
To answer last part, when R > 1, then now both poles z = -1 and = -2, are inside C.
Therefore, we can’t split DeTD) into one part that is analytic (the f (z) in the above), in
order to obtain expression Zf_(—'z) in order to apply Cauchy integral formula directly. Therefore

when R > 1 we should use

§g (z)dz = 2mi (sum of residues of g (z) inside C)
C

3.2.5 Problem 5

Evaluate the integral

21 1
fe (Z—Z—Z—s)dz
C

Where he contour is the unit circle around origin (counter clockwise direction).

Solution

C
= § f(Z) 3dZ
C (z - z9)
Where z; = 0 and where

f@=¢"@z-1)

But f (z) is analytic on C and inside, since e is analytic everywhere and z —1 has no poles.

Hence we can use Cauchy integral formula for pole of higher order given by
i
L)nﬂdz = T ()
2 (z-z2) n!
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Where n = 2 in this case. Therefore, since z; = 0 the above reduces to

f@) . 2mi
f?dz =— "0 1)

Now we just need to find f” (z) and evaluate the result at zy =0
f(z)= 2267 (z-1)+ s
" (z) = 267 (z-1)+2z (22622 (z-1)+ ezz) + 2267
Hence
=2
Therefore (1) becomes

fﬁfgﬂﬂzqm )
Z
C

To verify, we will do the same integration by converting it to line integration using param-
eterization on 6. Let z(0) = re'?, but r = 1, therefore z(0) = ¢%,dz = i¢’?d0. Therefore the

integral becomes
-1 27 ; 6 _1 ]
§€ZZ (2—3) dz = f a (e =5 )ielGdQ
z 0 e’

C
27T ; ei@ -1
lf 6626 (z—e)de
0 et

This is a hard integral to solve by hand. Using computer algebra software, it also gave —27i.
This verified the result. Clearly using the Cauchy integral formula to solve this problem was
much simpler that using parameterization.




3.2.6 key solution to HW 2

Proom O an Salran

E Resciie \ £

A leq O RY - wew V=TT S Fe’

N (T 2w
o \«J3¢= e N
e i e Ei v \
— . < ( ) R e
0o« W
=) \VoqQ=diy 7 82 fLCRT Y
(_"{(‘\—'1\4\'“\

M. i
) (R g el

5 % Y‘\\,ﬁ- Sl ]
D . \1‘- < G
= (widn N
= WIS S -
L e & AN o uwl
© <
\\h‘-(\/& é
Py \»(
Az [ cen Qi) ©
_ C\ «—CS":\
E."FU‘ wine

3_:? :>X GK"‘/
PR Y
2
B“ = "B,\./ = gxl’37
Yy PRY S
o W gy, TV 27 )
) »h DV n otz (33
=l NV 3y |
D‘f — )(3¥L [‘C‘R\n M"' LCO'X

=D %\u\:-'gf - §°

3
K . ks -
= verp: 2 7FCR S [F@ i) ]

68



69



E+e,cu yad

N
C\

NGRS RV alery o
=) 7* (% = d'f’ -,

W

© _ O
. S(_u\m U'”*“’*\) \
2
gt o)
L %
\ Sdf \_w“‘ o *11 A L3 o
= (-
G"\\a
P! (&
gh:\"”‘;\k whett ~r
¥
[
1S A?::':Cib &
= gtfﬁ'*"fm\ A}’ Wty t‘ - £
Ca “\2._' 1'“(1__ = o
'ff!)_ B\ 2 B o Q‘;e’ l - e \
F 6 2 - =
> 5 U Py o
1
o ¢
\ ¢+ LGN ) n
\ S = (\J‘ S tf.-\~t.(,\"‘f'\-k ° Lcl-t\**-bl
\
\
= ¢=\ \§ A = L’j Ma"‘
Sy - % - {
C_‘\'\. . Lﬁ*-}:;\ 8 \d (E++_11
ST SO T T (R S
- R} (‘_)_“_,H }_, - 3-__ C\#L-(a—\\\ -7._:2__, _.'),(.\fa
ETATR T e 1\ - T -t R
B e (T
3 - _‘b\ * - AL Ry
Jphe = Jrdfoe o T T S e e
‘2 © /;.)el('

\ T A alevg C1 @iy
cebile 1 was nd awifie whilon s s Vg

ad 1A fave L),o‘%cumwl ANS Ly ss WL“-,{, %2 Jace ~h\£_ Sam2 s ay




71

Eovroibe L

@ Gun\(;m

flas O Sl b § Fff—\ de
72| 220

own

R S N

[t
'.Z(}
a3 Tb-stde <

=D § dt,}_fFC’Z\ § GL? ,F(},\ ;'ZTch:(—-l\ .‘:'2"{'({
. -

2 ko —-\\

- ¥ g 3x =T <

c (Fr\ D

_'F'o( Q—Il ( QM \3:\:2( o o Yo [o“ff«i‘ LQ\/(.

( . _
= aw\,(*\\o @VU.{w\*U( lksTUp ‘“\e Cou{‘ow C)

5k
'P O&‘ﬂ Ci(yoH

b ¢ Ciiinng

A ‘l(-’ Ml #‘M& ‘



E*c(o{*@ E

g e?:" (—%:_ya %}\A-} =T

C

L wub cFtd ¢ ghot "‘\‘V‘“"

6o
+ '
| 2t { %
‘(‘(’.‘-a a = —
k'}o h\.

72



73

3.3 HW 3

3.3.1 Problem 1

Part (a)

Use Cauchy-Riemann equations to determine if |z| analytic function of the complex variable
z.

Solution

f(2) =1

Let z = x + iy, then

f(z)= (x2 -+ }/2)E

=u+iv

U =[x +1?

v=0

Hence

Cauchy-Riemann equations are
Ju _ Jv
dx Jy
Ju Jdv

3= 7 @)

(1)

. . . Jdv du 1 2x
First equation above gives 7y = Oand >- =~ el

which shows that g—; # Z—Z. Therefore |z|

is not analytic.

Part (b)

Use Cauchy-Riemann equations to determine if Re(z) analytic function of the complex
variable z.

Solution
f (@) =Re(z)
Let z = x + iy, then
f@@)=x
=u+iv
Hence
u =
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Cauchy-Riemann equations are

du Jv
= M
dx dy
du Jv
~5, = 92 (2)
y dx
First equation above gives g—; =0and % =1, which shows that Z—; # %. Therefore Re (z) is

not analytic.

Part (c)

Use Cauchy-Riemann equations to determine if ¢ % analytic function of the complex variable
z.

Solution

f (z) = e'"% is analytic since we can show that exp (z) is analytic by applying Cauchy-Riemann
(C-R), and also show that sin (z) is analytic using C-R. Theory of analytic functions it says
that the composition of analytic functions is also an analytic function, which means ¢""? is
analytic.

But this problems seems to ask to use C-R equations directly to show this. Therefore we
need to first determine the real and complex parts (#,v) of the function ¢*Z. Since
1

. z—2z

sinz = -

2i

Then
f(Z) = pSinz
z—z"1
= ex
Pl ™

z -1
= exp (2—1) exXp E
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But z = x + iy and the above expands to

@+wnwptﬁihﬁ)

i 1

exp (sinz) = exp %

= exp

= exp

]

= exp

= exp

)
+§ﬂiﬁ)

1 vy
wrp) o bty

= exp

= exp

Collecting terms gives

. 1 1 vy i X i
exp (sinz) = exp §y+§x2Ty2 exp ExZTyZ_Ex

1y(1+ x2+y2 i ;
~ 2 ( x2(+3/2 . exp(%xziyz_2(x21+y2)x(x2+y2))
1y (1+ (2% +y? 1x(1- (2 +y?
o[ (a2
B 1y(1+(x2+y2)) 1x(1—(x2+y2)) o 1x(1—(x2+y2))
=exp|5 21y cos| 5 21y +isin| > ey
~ y+y(x2+y2) x—x(x2+y2) . y+y(x2+y2) . 1x—x(x2+y2)
= exp —2(x2+y2) )COS(—Z(x2+y2) ]+zex [—2(x2+y2) )Sm[i—(x2+y2) ]

Therefore, since exp (sinz) = u + iv, then we see from above that

1y+y(x2+y2) 1x—x(x2+y2)
U = exp (EW] cos [EW)

1y+y(x2+y2) ' 1x—x(x2+y2)
v =exp (EW] Sm(EW]
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Now we need to check the Cauchy-Riemann equations on the above u, v functions we found.

Ju Jvu
dx  dy @)
Ju Jv

TR @

Evaluating each partial derivative gives

Ju _d 1y+y(x2+y2) 1y+y(x2+y2) 1x—x(x2+y2)
dx dx|2 X2 +12 P13 x% + 12 2 x% + 12

(1y+y(x2+y2)] d (1x—x(x2+y2)]
+exp| 5 [ 0S| 55—

2 X2+ 2 2+
_ 12yx(x2+y2)—(y+y(x2+y2))2x 1y((x2+y2)+1) 1x(1—(x2+y2))
T2 2 P13 x2 + 12 €53 x2 4 12
(xz + yz) y y
1y+y(x2+y2) _ 1x—x(x2+y2) d x—x(x2+y2)
B P 4 i y? dx| 2 (x2 + yz)
(@A) (-2 )
(xz n yz)z Pl 2+ y? 2 (x2 + yz)
o y+y(x2 +y2) i x—x(x2 +y2) (1 - 3x? —yz) (xz +y2) -~ (x—x(x2 +y2))2x
P 2 (x2 + yz) 2 (x2 + yz) ) (xz " yz)z
-y 1y(x2+y2+1) 1x(1—(x2+y2))
= (x2+y22exp EW cos | 5 257
e ly(xz +1? +1) i x—x(x2 +y2) (—x4—2x2y2 —x% -yt +y2)
R 2 +7) 2242
The above can be simplified more to become
u_ A y (2 +12+1)
P o) 26
x—x(x2+y2) . sy a4 o x—x(x2+y2)
[nycosw + (—x - 22Xy  —x" -y +y )SIHW (3)

2,2
d op s . 1 y+y\x=+y .
Now we evaluate = to see if it the same as above. Since v = exp —¥ sin
Ay 2 (x2+y2)

) x_x(xz+y2))

2 (2+?)
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then
Jv dy+yx+y y+y x+y xxx+y
% dy[ 2x2+y pr[ x2+y ) [ x2+y J
y+yx+y xxx+y xxx+y
+ exp
[ x2+y ] ( 2x2+y ]d ( 2x2+y ]
_ 1(1+x +3y)(x +y) (y+y( y)) p(y+y(x +y)J [x x(x +y))
2 (x2+y) 2(x2+y) Z(x )
2 2 _ 2 2 -2 2 2
+exp[y;(ygx +2}/)]COS(X x(zx +2y)][%( ) (¥ +y°) - (x - ’;(x +17)) (2y ))
x +y) Z(x +y) (x2+y)
4 202 22 A4 2 2 2 (2 g2
_ %x +2x%y? + x J;y y exp(y+y(2x +2y)]sm(%x ;(i J;y))
(xz+yz) Z(x +y) y
+exp[y+y(x2+y2))cos(x—x(x2+y2)]1 21y
2(x2+y2) 2(x2+y2) 2(x2+y2)2
4 2.2 22 A2 2 42 (2 g2
()
(2 + ) (2 +1?) y
_exp(y+y(x2+y2)]cos(x—x(x2+y2)) xy
2(x2+y2) 2(x2+y2) (xz+yz)2
Simplifying the above more gives
do_ . (yry(Ery)
ay_z(xz_|_yz)2 P 2(x2+y2)

x—x(x2+y2) W o a4 o\ x—x(x2+y2)
W+(—x —2xy X" -y +y>San

Comparing (3) and (4) shows they are the same expressions. Therefore the first equation is
verified.

[ny cos (4)

ou_ o
dx  dy
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Now we verify the second equation —g—; = a_ Since u = exp (1 VZEJ: x )) cos ( % x-(?;(;f;y)z)) then
du_d(1y+y(@+))  (v+y(@+R))  (1x-x(2+p)
&y dy (x2+y )— exp —2 (x2+y2) COoS §—x2+y2
y+y(@+R)) . (1x-x(@+R)) d (1x-x(2+0P)
—exp|————“|sin| =————~ ——7
2(x2+y2) [2 X2 +y? ]dy[ X2+ y? J
(1+x2+3y2)(x2+y2)—(y+y(x2+y2)) y [y+y(x2+y2)] (x x(x +y))
— > exp COS
2(x2+y2) 2(x2+y2) 2(x2+y2)
_ eXp[_y ry (e yz))sm[z X xz(x2 ’ yz)] (20) (2 + %) = (x = x (2 + 7)) 2
2(x2+y2) 2 xt+y 2(x2+y)
(x4+2x2y2+x2+y4—y2) [y+y(x2+y)) (x (x +y)]
= 5 exp| ———~
2(x2+y2) 2(x2+y2) 2(x2+y)
_exp[y+y(x2+y) s1n[1x x(x +y )](—2y)(x2+y2)—2yx+2yx(x2+y2)
2(x2+3/2) 2 24y 2(x2+y2)2
(x4+2x2y2+x2+y4—y2) y+y(x2+y2) 1x—x(x2+y2)
= > exX [T)COS(EW]
2(x2+y2) Z(x +y) Y
L )
2(x2+y2) 2 x4y (x2+y2)2

The above can simplified more to give

ou_ 1 (yry(@+r)
8‘V_z(xz_%yz)z P 2(x2+y2)

x—x(x2+y2)

(x4 +2x%1% + 22 +yt - yz) Cos

x_x(xuyzw

+ 2xy sin

2(x2+ ) 2(x2+y?)
Hence
_ou 1 [y+y(x2+y2))
5 2 & 242
y 2(x2+y2) 2(x +y)
x—x(x2+y2) . x—x(x2+]/2)
—(X4+2x2y2 +x2+y4—y2)cosW—2xy5mW} (5)
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X X— 2 2
And since v = exp (1 ryey )) sin (1 ey )) then

(x2+1) 2 (a+y?)
oo d y+y(x +y) y+y(x2+y2) (1x- xx +y
dx  dx x2 + 12 e (xz + yz) 2T v
y+y(x2+y2) 1x—x(x2+y2) d(1x- xx +y
T exp 2(x2 +y2) 12 x2 + 12 dx |2 22+p2
1 2xy(x2+y2)— (y+y(x2+y2))2x y+y(x +y ) _ 1x—x(x2+y2)
= E 5 exp T] SIH[ET]
(x2+y2) 2(x +y) y
+oxp (y +y (xz + yz)]cos [1x - xz(x2 -I;yz)] (1 —-3x? - yz) (x2 + yz) - (xz— X (x2 + yz)) 2x
2@ +y7) ) N2y 2(2 +?)
_ -Xxy ~exp 1y+y2(x +y) X - x(x +y)
(x2 +y2) 2 x2+y? (x
+exp(y+y(x2+y2)]cos[x * +y x2—2y4+y2
2(x2+y2) x2+y x2+y)
The above can simplified more to give
v 1 y+y(¥?+ yz)
Ix 2 X 2 4.2
2(x2+y2) 2(x +y)
[ (x +2x°y" + x4y y)cos 2(x2+y2) 2xy sin 2(x2+y2) (6)
Comparing (5,6) shows they are the same, i.e.
—du _ Jdv
oy " ox
C-R equations are satisfied, and because it is clear that all partial derivatives o Jo O O e

ax’ dy’ Ix’ dy
continuous functions in x, y as they are made up of exponential and trigonometric functions
which are continuous, then we conclude that f (z) = ¢¥"# is analytic function everywhere.

3.3.2 Problem 2
Part (a)

Represent = by its Maclaurin series and give the region of validity for the representation.
z-3

Next expand this in powers of % to find a Laurent series. What is the range of validity of
the Laurent series?

Solution
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Maclaurin series is expansion of f (z) around z = 0. Since f (z) has simple pole at z = 3, then
the region of validity will be a disk centered at z = 0 up to the nearest pole, which is at z = 3.
Hence [z] < 3 is the region.

Now we can expand using Binomial to obtain

o= 3 (5 )
3566
(-5 (-3 b6 - 56
=556 -6 -6 -6 -

2

3+2z
-3

[o¢]

. . .1
To expand in negative powers of z, or in -, then

z+3

z(1—§)

_z+3| 1
oz 128
z

f2) =
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For |§| <1 or |z| < 3 the above becomes

2 3
f(z)=z+3{1+§+(§) +(§) +]
z z z z

3

This is valid for |z| > 3. The residue is 6, which can be confirmed using
Residue (3) = lin% (z=3)f(2)
Z—>

z+3
= lim (z -
zl—l;%(z 3)2—3
=lim(z + 3)
z—3
=6
Summary
243 1—%2—522 23723 82124— lz| < 3
f(Z)=T3: 6~ 18 54
z 1+;+Z—2+Z—3+--- |z| >3
Part (b)

Find Laurent series for (ZH)ZW in each of the following domains (i) |z| <1 (ii) 1 < |z] < 3
(iii) |z| > 3

Solution

The possible region are shown below. Since there is a pole at z = -1 and pole at z = 3, then
there are three different regions. They are named A, B, C in the following diagram
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Region C'is |z| > 3, Hence the
series expansion will contain only a
principal part and no analytical
part.

-
Rz

Region A contains no poles inside.
Disk centered at zero up to the
nearest pole at z = —1. Hence the
series expansion will contain only
an analytical part and no principal
part.

Region B is annulus region
between region which is analytic up
to the next pole at z = 3. Hence
the series expansion will contain
both an analytical part and a
principal part.

Figure 3.4: Laurent series regions
First the expression is expanded using partial fractions

z B A B
(z+1)(z-3) (z+1)+(z—3)

_z
(z+1)(z-3)

1)
Hence
z=A(z-3)+B(z+1)
=z(A+B)-3A+B

The above gives two equations

A+B=1
0=-3A+B
First equation gives A =1 - B. Substituting in the second equation gives 0 = -3(1 - B) + B or
0 =-3+4B, hence B = Z, which implies A =1 - Z = i, therefore (1) becomes
z 1 1 3 1

Z+1)(z=3) 4@+1)  4@z-3)

Considering each term in turn. For 11 we can expand this as
4 (z+1)
1 1 1
- =-(1-z+22-22+z4+ - zl <1 2a
s ) o 2

1 1 11 1 (1) (1Y (1 1\
Z@+1):ZZG+1)2121_(9*«;)_(;)+(;)—“' lz| > 1 (2b)
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31
And for the term - 10’

L1 HC NC BC % O

3 1 3 1 3 3\ (3\% (3)’
4(Z 3) 42(1 5)25[14_(;)4-(;) +(g) +] lz| >3 (3b)

Now that we expanded all the terms in the two possible ways for each each, we now consider
each region of interest, and look at the above 4 expansions, and simply pick for each region
the expansion which is valid in for that region of interest.

we can expand this as

For (i), region A: In this region, we want |z| < 1. From (2,3) we see that (2a) and (3a) are

valid expansions in |z| < 1. Hence

z 1(1 +22-P+4 4+ ) 1 1+Z+(Z)2+(Z)3+(Z)él
B — 7475 -7z z oo ) — — — — — —
z+1)(z-3) 4 2" 737\3) T\3) "3

1 1 2
:—(1—z+z2 S )——1+E+—+—+—+
4 4 3 9 27 81
(11, 13_’_14 1+z z2 Z3 z4
T\aTFTE Ty 1 2" 3% 08 "
1 z 1, z2 1, z3 1 4
=z — -2 — =P — =2 - — -
4 12 4 36 4 108 4 324
1 2, 7., 2,
——z4 =z — =2+ —2* -

For (ii), region B: This is for 1 < |z| < 3. From equations (2,3) we see that (2b) and (3a) are
valid in this region. Hence

z 1 1\ (1) (1 [1\° 1({ =z z
R NN RSSO RER O
(z+1)(z-3) 4z z z z z 4 3 3

-1 1 ! + ! L 1+Z+Zz + + +
T4z\ oz 2 4 27 81
1 1 1 z2 z4
=l—--—+-—- +—+
4z 472 473 424 12 36 108 324
principal part analytical part

1 1 1 1 1 1 =z 22 22 2z
t—=-——+t-—=-=+—
4z5 4z% 423 422 4z 4 12 36 108 324
The residue is i by looking at the above. The value for the residue can be verified as follows.
Using
14 f@

n 27—(1 ] (Z _ Zo)_n+l

Where in the above z; is the location of the pole and # is the coefficient of the 217 is the
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principal part. Since we want the residue, then n =1 and the above becomes

1
bf%ggf(z)dz

In the above, the contour C is circle somewhere inside the annulus 1 < |z| < 3. It does not
matter that the radius is, as long as it is located in this range. For example, choosing radius
2 will work. The above then becomes

by ()

1 99‘ z s
- ?_m'C (z+1)(z-3)
However, since f (z) is analytic in this region, then § f(z)dz = 2mi Y] (residues inside). There
C
is only one pole now inside C, which is at z = -1. So all what we have to do is find the residue
at z = -1.
Residue (-1) = lim1 (z+1)f(2)

A y4
= lim (z+1) z+1)(z-3)
- zligll (2—3)

Using this in (5) gives

Which agrees with what we found in (4) above.

For (iii), region C: This is for |z| > 3. From (2,3) we see that (2b) and (3b) are valid expan-

sions in z > 3, Hence

; = l(l_(1)+(1)2_(1)3+(1)4_]+i(1+(§)+(§)2+(§)3+J
(z+1)(z-3) 4z z z z z 4z z z z
1 1 1 1 1 3 3 9 27
:(4_z_4_z2+E_4_z4+4_z5_'")+4_z(1+2+z_2+z_3+"')

1T 1 1 1 1 3 9 27 81

@‘@+@‘@+@‘»+@+@+@+@+J
20 7 2 1

St atatet:

This is as expected contains only a principal part and no analytical part. The residue is 1.
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This above value for the residue can be verified as follows. Using

_ 1 f0

= dz
n . T+l
2mi S (z ~ zp) "

. . . . . 1.
Where in the above z is the location of the pole and 1 is the coefficient of the = is the
principal part. Since we want the residue, then n =1 and the above becomes

1
blzﬁff(z)dz

In the above, the contour C is circle somewhere in |z| > 3. It does not matter that the radius
is. The above integral then becomes

1 z
by = %.f(z +1) (z—3)dZ )

However, since f (z) is analytic in |z| > 3, then § f (z)dz = 2mi )] (residues inside). There are

C
now two poles inside C, one at z = -1 and one at z = 3. So all what we have to do is find the
residues at each. We found earlier that Residue (-1) = i. Now

Residue (3) = lir% (z-3)f(2)

z
=lmGE-3) neEos
=lim z

=3 (z+1)
_3
T4

Therefore the sum of residues is 1. Using this result in (7) gives
1 (1 3
bl = E (27’(1 (Z + 1))
=1
Which agrees with what result from (6) above.

Summary of results

1 2 7 20
—SZ+§ZZ—2—723+EZ4—"‘ lz] <1
f@)=——x-= L, 1,11 =2 2 2 2 1<zl<3
(z+1)(z-3) 465 474 2423 1 42 4z 4 12 36 108 324
=4+ s+ S5+ - z| >
A B 2z Izl >3
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3.3.3 Problem 3

Part (a)

2z
. e . . . . oy
Use residue theorem to evaluate § —dz on contour C which is circle |z| =1 in positive sense.
C
Solution

For f (z) which is analytic on and inside C, the Cauchy integral formula says
§f(Z) dz = 2mi Z Residue (z = z].) 1)
C j

-2z
Where the sum is over all residues located inside C. for f (z) = ez—z there is a simple pole at

z =0 of order 2. To find the residue, we use the formula for pole or order m given by

. A (- z)"
Residue (zp) = Zh_gt dzm1 (m —(i)' @

Hence for m =2 and z; = 0 the above becomes

d
. _ . 2
Residue (0) = il_r)% _dzz f(z)

d e—Zz
= lim —22—2
z—0 dz 4
=lim —e %
z—0 dz
= lim (—Ze‘zz)
z—0
=-2

Therefore (1) becomes

Part (b)

1
Use residue theorem to evaluate f zezdz on contour C which is circle |z| =1 in positive sense.

C
Solution
The singularity is at z = 0, but we can not use the simple pole residue finding method here,
1

since this is an essential singularity now due to the e term. To find the residue, we expand
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f (z) around z = 0 in Laurent series and look for the coefficient of % term.

11+11+
z 2z2 3173

. L1
Hence residue is > Therefore

Part (c)

Use residue theorem to evaluate fﬁ Z;Zdz on contour C which is circle |z| = 1 in positive
c 2

sense.

Solution

. . 3 . _1
Hence there is a simple pole at z = 0 and simple pole at z = 7

Residue (0) = lin% () f (2)
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And
Residue (%) = lim (z - %)f(z)

Therefore

+2
§2—2d2 = 271 (5 — 4)
2_Z
C 2

=27
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3.4 HW 14

3.4.1 Problem 1

1+x) dx

1
Using series expansion evaluate the integral I = £ In (E

X

Solution

We first need to find the Taylor series for In (g) expanded around x = 0. Since

(1) =m0 (1)

=In(1 +x)+ln(1i)

=ln(l+x)-In(1-x) (1)

Looking at In(1 + x), where now f(x) = In(1 +x), then we see that f'(x) = ﬁ,f” (x) =

-1 2 2-3
1 — (4) —
(1+x)2 ! f (X) f (X) +x

3/ , -+, therefore
(1+x) 1

)4
x2 X x4
In(I+x)=f(0)+xf"(0)+ Ef”(0)+ af"’(0)+ Zf(4)(0)+

2 3 Kt

— Ty T 4 9
0+x > + 7 "1 + (2)
T _ ’ — 1y — -1 1" — -2 4) - _ 23 .
Similarly for In (1 — x), where now f” (x) T (%) L £ (x) p—C & (x) T
therefore
x? x3 x
In(1-x)=f(0)+xf"(0)+ Ef” 0) + gf”’ 0) + Ef(‘” )+ ---
x> a8 it
0y 2 o 3
0-x > "3 + (3)
Using (2,3) in (1) gives the series expansion for In (g) as
| 1+x x2+x3 x4+ x> X3 x4+
n =|x-— _— — il |- — - — — —
1-x 2 3 4 2 3 4
2 2 2
_ £33, %5, %7, ..
—2x+3x +5x +7x+ (4)

Using (4) in the integral given results in

1 2., 2. 2, dx
I:f 2x+ =X+ =x"+ =x" + - | —
0 3 5 7 X
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Which simplifies to

=2Y —— (5)

The following are two methods to obtain closed form sum for ¥ T . The first method
n+

is based on writing
1 — 1
) — (6)
;Z Ea> %a+n
Where the sum on the left is broken into odd and even terms on the right, as in

1 1 1 1 1 1 1 1 1
1+?+§+E+§+---: ?+E+--- + 1—2+3—2+§+--~

But, from lecture Sept. 12, 2018, we showed in class that

) 2
Yo=l@=" 7)
n=1

(This is called the Basel problem, and the above closed form sum was first given by Euler
in 1734). Now using (7) into (6) results in

> 1 > 1 o001
g@wﬁ_;?_g@ﬁ
> 1 181
=X U,
3/ 1
=ﬂ§ﬁ
_37’(2
3
7.(2

ol

Another way to obtained closed form sum for };".  —— is to use Fourier series. Considering

1=0 (25
the Fourier series for the following periodic functlon

-X -n<x<0
f= { 0 O0<x<m
Using
fx) = ?0 Z A, cos (nx) + 2 B,, sin (nx)
n=1

n=1



Therefore
1 (0 o N T R | 1
A:—f—d:—— :—2 :——2:—
L 71(2)_7Z 7 (), = 57 (0) = 3
And
_ 0 1+ (-1 n+1
An:—f xcos(nx)dx:(—z)
nJ_, n
_1 0 _1 n+1
an—f xsin(nx)dx:( ) T
nJ_, n
Hence the Fourier series for f (x) is
1+ 1 n+1 -1 n+1
f(x)=%—;2 ( ) cos (nx) — nz( ) 7 (sin nx)
n=0
1+ 1 i & (1)
= % - — ( ) ———— cos (nx) — 2 ) sin (nx)
77 n=0

96

o1 i1+( -1y
4 Tt n=1
2 1
- E -—11 + 4+ .-
4 7 72
2 i":
4 7T+ 1)
Therefore
< E _r
T 0 (Zn +1)° 4
i 1 3 72
iS@en+1? 8
Now that we found closed form sum for En 0 G L el we can find the value of the integral.
Since [ = ZEn 0 then
1 (1 + x) (n )
f In —
0 1-x 8
72
s

3.4.2 Problem 2

Let I(x) = LOO e fOdt with f(t) =t - e;t, find a large x approximation for this integral.

Solution
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I:fowexp(xf(t))dt
:foooexp(x(t—%t))dt
:foooexp(xt—et)dt

- f exp (F (b)) dt 1)
0
Where F (t) = xt — ¢!. We need to find saddle point where F (f) is maximum. Hence

d

—F({t) =0

7 (t)

x—e =0

el =x
tO =1In (.X')

Where £, is location of t where F (t) is maximum. We called this in class #,,,;. We now expand
F (t) around f; using Taylor series

1
F(0) = F(to) + F (to) (= to) + S F" (t) (£ = tg) + (2)
But
F(t) = xIn (x) — e?*
=xlnx-x
And F’ (t) = x—¢!, hence as expected F’ (t;) = 0. And F” (t) = —¢', therefore F” (t,) = —e!"* = —x.
We see also that F”’(f;) < 0, which means the saddle point was a maximum and not a
minimum (since x is positive). Using these in (2) gives
1
F(t) ~ (xInx =) + > (~2) (t - In x)*
1
=xlnx—x-— Ex(t—lnx)2

Substituting the above into (1) gives
o0 1
I:f exp(xlnx—x——x(t—lnx)z)dt
0 2
= f exp (xIn x) exp (—x) exp (——x (t-Inx) )dt
0 2
00 1
= exp (xInx) exp (—x) f exp (—Ex (t-In x)z) dt
0

00 1 2
= xex f o2’ gy 3)
0

Now, since the peak value where F () occurs is on the positive real axis, because t; = In (x),
therefore x > 1 to have a maximum, and assuming a narrow peak, then all the contribution
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oo _ Lo il )?
to the integral comes from x close to the peak location, so we can change 1; e 2T gt 1o

oo _LyiCinx)?
[ e 210" 44 without affecting the final result. Therefore (3) becomes

00 1 2
I=x%* f e 2 ¥t gy (4)

—00

Now comparing [ e 2"t to the Gaussian integral [ DGt = \/g, shows that

foo e—%x(t—lnx)zdt — 2_77
o V x

27
x*e [ —
X

x
a= 5 for our case. Hence

Therefore (4) becomes

I

Q

For large x.

3.4.3 Problem 3

Evaluate the following integrals with aid of residue theorem a > 0. (a) fo ﬁdx (b)
00 cos(ax)
L dx

x2+1

Part (a)

Since the integrand is even, then

1 >~ 1
Iz—f —
2 _oox4+1x

Now we consider the following contour

> > » Rz

Figure 3.5: contour used for problem 3
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Therefore
0 R
§f(z)dz: (lim f F()dx + lim f(x)dx)+ lim f F(2)dz
R— o0 R R—ooJg R—o Cr
C
Using Cauchy principal value the integral above can be written as
R
ng(z)dz: limf Fodx+ limf F(2)d
2 R—o R R—oo Cr

=27 Z Residue

Where Y Residue is sum of residues of ﬁ for poles that are inside the contour C. Therefore
the above becomes

. R . . .
I%l_r)lgoj: f (x)dx =2mi 2 Residue - hm fCRf(z) dz

00 1
f x4+1dx—2mER681due—1%1_r>rgo . Z4+1dz (1)
Now we will show that limg_,, L dz = 0. Since
dz| < ML
fCR 217
=|f (Z)|max (1R) (2)
But
1
@) =r—F——
A EY
Hence, and since z = R ¢ then
1
z
= N =Ey
min min

But but inverse triangle inequality |22 - i| > |z| +1 and |z + i| > |z|2 —1, and since |z| = R then
the above becomes

1
<
s = )
1
CR4-1
Therefore (2) becomes
1 iR
fcR A1 SR

nR

Then it is clear that as R — oo the above goes to zero since limg_,, ™= limg o =5 =
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9~ 0. Then (1) now simplifies to

D=
© 1 . .
foo rn 1dx = 27i E Residue (2A)

We just now need to find the residues of % located in upper half plane. The zeros of the
z*+1

1 X 1 .7
denominator z*+1 =0 areatz = 17 = (em)‘l, then the first zero is at ¢'7, and the second zero
5 b4

T, .7
s I
4 2 — 6147-(.

53— ) and the tid sre a /773) 59 {
ate'\st 2/ =¢ and the third zero at e =e and the fourth zero at e

Hence poles are at

N N
N —_
Il Il
. . N x
VRN B TR N N
A

B

A

N
W
Il

x

N
N
Il
mN

Out of these only the first two are in upper half plane z; and z;. Hence

Residue (z1) = zh_)r? (z-2z1) f(2)

e
Applying I'Hopitals

1
Residue (z;) = lim —

Similarly for the other residue

Residue (zp) = Zh_)r? (z=20) f(2)

~lig G om) o
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Applying I’Hopitals
1

Resid = lim —
esidue (z,) 1_}1le2 e

—_

Hence (2A) becomes

1
= Ex/in
But l; —dx = % f_ xl 1dx, therefore

[
R L

2

=—m

42

m
2v2

Part (b)

Since the integrand is even, then

f‘x’ coS (ax)
"2 x% + 1
We will evaluate f dx and at the end take the real part of the answer. Considering the

following contour



> > » Rz
R +R

Figure 3.6: contour used for part b

Then

ff(z)dz:(gi_r)lgo _Zf(x)dx+fg;f()Rf(x)dx)+g§0fCRf(z)dz

Using Cauchy principal value the integral above can be written as

éﬁf(z)dz:ggof_if(x)dx+g§ofCRf(z)d
=2mi 2 Residue

102

Where }; Residue is sum of residues of ;2? for poles that are inside the contour C. Therefore

the above becomes

R
lim f f (x)dx = 27i Y} Residue - lim f F(2)dz
R —00 CR

R—oo

00 eiax eiaz
f 5 dx = 2mi E Residue — lim 5 dz
o Xt +1 RoeoJc, 25 +1

elLIZ

Now we will show that limR_mOL ﬁdz = 0. Since
R

eiuz
f 5 dz
Cr z¢+1

<ML

=|f@)| (R

(1)

(2)
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But
elllZ
TO= e
eia(x+iy)
- (z—1)(z+1)
plax—ay
T G-+
ere~
T Gz-i)(z+i)
Hence

iaz —a
[
max max

Z =
|f( )|max |Z - ilmin |Z + i|min

_ |e_ay|max
R+ (R-1)
e
— max
R2-1
Since a > 0 and since in upper half y > 0 then [e™| = |e‘“R|maX = 1. Jordan inequality was
not needed here, since there is no extra x in the numerator of the integrand in this problem.

The above now reduces to
1
|f (Z)|max - R2 -1

Equation (2) becomes

ez’az R
f s—dz| < —
cp 25 +1 R% -1
R — oo the above goes to zero since limg_,, Z—I_{l = limg_, R—i = (T) = 0. Equation (1) now

simplifies to

00 eiax
f e 1dx =27 E Residue

We just now need to find the residues of ﬁ that are located in upper half plane. The zeros
of the denominator z2 +1 = 0 are at z = +i, hence poles are at

lei

Zzz—i
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Only z; is in upper half plane. Therefore
Residue (z9) = lim (z - z7) f (2)
z—2z1
iz

= e e e

iaz
e

= lim
271 (2 — Zp)

eia(i)
T (i+i)

e—ﬂ
T

Since f a xdex = 27i Y, Residue then

00 eiux et
dx =2mi| —
f_mx4+1 * m(Zi)

a

= Te”

00 ez’ax 1 00 X
dx = —f —dx
j; xt+1 2J o xt+1
= Ee_u

2

Therefore

But real part of the above is

21 T

f‘x’ cos (ax)d 3 ne‘“

3.4.4 Problem 4

1
1+acos@

Using residues evaluate(a) fn do for |a| <1 (b) l;n (cos (6))% do for n integer.

Part (a)

Using contour which is anti-clockwise over the unit circle
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> &

Figure 3.7: contour used for problem 4

. . -1
Let z = ¢/, hence dz = die® = d0iz. Using cos 0 = % then the integral can be written in

complex domain as
1 1
§ ;dz _ g§ ;dZ
-1 .
C1+az+§ b 2+a(z+§)

2 dz

iJ 2z4+az2 +a
C
2 dz

4 2
ard 22+ Zz+1
C a

2 dz
- Ef(z—zo(z—.z-z)

Where zj,z, are roots of z2 + %z +1 = 0 which are found to be (using the quadratic formula)

as
1-Vi-a2
=
-1+ V1-4?

a

27

Zy =



Since |a| <1 then only z, will be inside the unit disk for all a values. Therefore
2 d 2
—_ﬁ—z = | — | 2mi Residue (z;)
ai J (z—21)(z—2p) ai

4
= ;71 Residue (z5)

Now we will find the Residue (z;) where in this case f (z) = (Z_Zl)szz) Hence

Residue (zy) = Zh_)nzl (z-20) f(2)

1
—lim@Gz-2z) —
L Y S
) 1
= lim
L
1

()

a a

Using the above result in (1) gives

27 1 4 a
[ o= n) =
o l+acosO a ) o\1—a2
27
= a+l

V1 - 42

Using Maple, verified that the above result is correct.

> restart;
integrand:=1/(l+a*cos(x)) :
int(integrand, x=0..2*Pi) assuming -1<a and a<l;

Figure 3.8: Verification using Maple

Part (b)
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(1)

Since integrand is even, then Lﬂ (Cos(@))z'1 do = % ﬁn (cos (6))2" d6. Using same contour as

. . -1
in part (a), and letting z = ¢/, hence dz = d0ie’® = dOiz and using cos 60 = Z% then the
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integral can be written in complex domain as

f " (cos (6))" d6 =
0

4nq z
C
1 (Z2 + 1) dz
- AE§ 2z
C
2
1 (zz + 1) !
= AE§ T
C
(2 1)211 .
Considering f (z) = ~—;;7—, this has a pole at z = 0 of order m = 2n +1. Therefore
2
1 (22 +1) " 1 o
Efﬁ ZZanz = (E) 27i Residue (z = 0) (1)
C

So we now need to find residue of f (z) at z = 0 but for pole of order m = 2n + 1. Using the
formula for finding residue for pole of order m gives

_ d"1 (z-z9)" f (2)
Residue (zg = 0) = zh_{% Az (m—1)!

But m = 2n +1, and z; = 0, hence the above becomes

g2 y2n+l (ZZ + 1)2n

dZZ” (271)' Z2n+1

1 d2n 2n
_ : 2
= ool (dZZn (+1) )

Residue (0) = hm

Equation (1) becomes

27T d2n "
J; (cos (6))2" do = ( 1 )Zn ((2}1), 2_)0( dz2n (z2 + 1)2 ))
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Therefore
2n

m . 11 1 (d 2
fo (cos (6))? d@:i(ﬂ)zn(@%( T (1) ))

_ ]. TC . dzn ( 2 " 1)21’1

= VETS
Will now try to obtained closed form solution. Trying for different n values in order to see
the pattern. From few lectures ago, we learned also that

r(n+%):1’3'5'";1'(2”_1)\/%

2
Now will generate a table to see the pattern

1 . d2n 2n . 1
n Eﬁ lim,_, (dzm ( 2+ 1) ) result of integral | T (n + E)
1m,. a2 2 2 i 1) N
1 Zihmz_)()@(z +1) 7 r(1+5)—7
17, d* (5 4 3n 1\ _ 3yn
2 EIIIH&_,Q@(Z +1) ry F(2+5)—T
17, d° (5 6 57 1\ _ 15vn
3 Eahmzﬁog(z +1) R r(3+5) =3
17, a5 8 35m 1)\ _ 105ym
4 Eghmz_)()@(Z +1) E F(4+5)— 6
1 7. 0, 10 631 1\ _ 945\n
5 El—mhmzﬁom(z +1) ﬁ r(5+5) =
\nl n+%)
Based on the above, we see that [ = — which is verified as follows
. 1 ﬁr(’”%)
n | result of integral | T (n + —) —_—
2 n!
\/E
1|z rhat)o )
2 2] 7 2 1 T2
3y
p | 3 2+ 1) =3 ﬁ(T) =2
8 2] 4 2! =37
15+/n
3 51 r3+1_15ﬁ ﬁ(s)_lSn_l'i_n_i
16 2] 8 3! T 6)®8) ~ 48 16
105y7
g | Br g4 1) = 105vm \E( 16)_ﬁ(105\/5)_@_£
128 2] 7 16 4 T (@16 384 287"
945+/1t
5 637 r5+1_945ﬁ \E(sz)_ 945m  _ 945m _ 63
256 2] 7 32 5! T (120)(32) ~ 3840 256
Therefore

1
fo " (cos (0))2" d6 = w
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(2+1)"
22”+1

Tried to do pole/zero cancellation on the integrand of 56‘ dz in order to find a simpler

C
method than the above but was not able to. The above result was verified using the computer

Assuming[Element[n, Integers] &n > @, Integrate[Cos[x]?", {x, @, n}]];

TraditionalForm[%]

\/;F(n+§)

n!

Figure 3.9: Verification using Mathematica
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3.5 HWS)5

3.5.1 Problem 1

Expand the following functions, which are periodic in ZTH, in Fourier series (i) f (x) =1 - lel

-L L .. . L L
- =z = Z<x<=
forZstz.(u)f(x) eforz_x

=2
Solution
Part 1
The following is a plot of the function f(x) =1 - IiLI In the plot below L =1 was used for
illustration.
Plot of function for one period
1.0f
0.8f
o8}
= o4
0.2
0of \ \ \
-0.4 -0.2 0.0 0.2 0.4
X
Figure 3.10: Function plot
L=1;

f[x ] :=1-Abs[x]/L;

p = Plot[f[x], {x, -L/2, L/2},
AxesOrigin -» {0, 0}, Frame - True,
FrameLabel -» {{"f(x)", None}, {"x", "Plot of function for one period"}},
BaseStyle - 14,
GridLines - Automatic, GridLinesStyle - LightGray,
PlotStyle - Red]

Export["../images/pl_plot_1.pdf", p]

Figure 3.11: Code used
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The Fourier series of f (x) = is given by

U 2n in (22
fx) = 2+n§::1ancos(Lnx)+bnsm(Lnx) (1)
Where L is the period.
L
2 M
3o
2

L
f ? f (x)dx is the area under the curve. Looking at the plot above shows the area is made up
2

of the lower rectangle of area %L and a triangle whose area is (%L) (%) Therefore the total

.1 1 3
area is EL + ZL = ZL' Hence

And

= %fif(x) cos (%nx) dx

Since f (x) is an even function, the above simplifies to

L
4 r3 2
= —fzf(x) cos (—nnx) dx
LJ, L
L
4 r3 X 21
_Zj(; (1—Z)cos(fnx)dx
L L
2 271 1 32 27
f cos | —nx dx——f xcos | —nx|dx
0 L LJ, L
L L
(27 2 1 J‘E 27 p
sin|—nx|| - = xcos | —nx|dx
L LJ, L

0
2
X COS (—nnx) dx]
L

=~

1~

Il
=~
)
=
)
|
=,
|
I
(@] )
N
=
(@)
@}
wn
—_
N
A
S
=
~——
[
=
N —

2n

—

L
3 4 E 27’(
B L2 L
( sin

m Tnx) L . (2=
Using integration by parts: Let u = x,dv = cos —nx ) thendu=1,v = ZT“n = 5—sin (—nx).
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The above integral becomes

L

L
5 o L (2n W\ L (i . (2¢
f xcos|—mnx|dx = | —xsin| —nx ——f sin | —nx | dx
0 L 2mn L 0 2nin Jy L

(o (5o 22 0] cos(Fmr)

2mn \ 2 L 2 27n =,
L

2 . 12 2n (L))
= —=S n COS|—n|— —
drn DTV T o L2

2

N

(cos(mn) —1)

4 A212 n2

Therefore
4 L2
a, = 12 (m (cos (rtn) — 1))

=— (1 — cos (1tn))

The above is zero for even n and ——; for odd n. Therefore the above simplifies to
2
ﬂnzm n:1,3,5,~-~

Because f (x) is an even function, then b, = 0 for all n. The Fourier series from (1) now
becomes
3 — 2 27
f@=7+ n:l,za,:a-.. — 5 Cos (Tnx)
To verify the above result, the Fourier series approximation given above was plotted for
increasing n against the original f(x) function in order to see how the approximation
improves as n increases. Using L = 2, the result is given below.

The original function is in the red color. The plot shows that the convergence is fast (due

to the % term). The convergence is uniform. After only 4 terms, the error between f (x) and
its Fourier series approximation becomes very small. As expected, the error is largest at the
top and at the lower corners where the original function changes more rapidly and therefore
more terms would be needed in those regions compared to the straight edges regions of the
function f (x) to get a better approximation.



approximation for n=1

approximation for n=3

f(x)

f(x)

3
=
X X
approximation for n=5 approximation for n=7
=
Y-

Figure 3.12: Fourier series approximation, part 1
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ClearAll[L, x, n, a]
L=2;
a[n_] :=2/ (Pi*2n"2);

fApprox[x_, nTerms_] :=3/4 +Sum[a[n] Cos[2Pi/Lnx], {n, 1, nTerms, 2}]

p = Table[
Plot [ {f[x], fApprox[x, i]}, {x, -L/2, L/ 2},
Frame - True,
FrameLabel » {{"f (x)", None}, {"x", Row[ {"approximation for n=", i}]1}},
GridLines - Automatic, GridLinesStyle - LightGray,
PlotStyle -» {Red, Blue},
ImageSize - 400,
BaseStyle - 16],
{i, 1, 7, 2}
15

p = Grid [Partition[p, 2]]
Export["../images/pl_plot_2.pdf", p]

Figure 3.13: Code used

Part 2
The following is a plot of the function f (x) = e*. In this plot, L =1 was used.

Plot of function for one period

f(x)

/

X

Figure 3.14: Function plot part 2
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L=1;
f[x_] := Exp[x];
p = Plot[f[x], {x, -L/2, L/2}, AxesOrigin - {0, 0},
Frame - True,
FrameLabel » {{"f(x)", None}, {"x", "Plot of function for one period"}},
BaseStyle - 14, GridLines - Automatic, GridLinesStyle - LightGray, PlotStyle - Red]
Export["../images/pl plot 3.pdf", p]

Figure 3.15: Code used

The Fourier series of f (x) = is given by

fx)= % + Z a, cos (Tnnx) + b, sin (Tnnx) (1A)
n=1

Where L is the period and

,—,
N
TR
|
cbl
NI =

[

And

L
2 2 2
a, = Zfif(x) cos (Tnnx) dx
2

L
2 2 2
= —fZ e* cos —nnx dx 1)
L _% L
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Integration by parts: Let u = cos (annx) ,du = —ZnTn sin (zfnnx) and let dv = e*,v = ¢*, therefore
: 2
T
I= fz e* cos (—nx) dx
_L L
2
[ 2 2 2 2mn
= |e* cos (—nnx)] - 2 __n sin (—nx) e*dx
| L L
[ (am Lo (2 (LW, 2mn 0z (2m )
= he COS T?’l— —e 2cos T —E TﬁéSIH fnx eax
L
[ L 2nn (2 2
=|e2 cos(nn) —e 2 cos (nn)]+ sz sin —nnx e*dx
L % L
Loy 2mn o5 (2
L L T Tt
= cos(nn)(e2 —e 2)+ Tf_zgsm T x)e"dx
L

L 2
=2cos(nn)sinh | = | + kil
2 L

N N
n
. .
=
—— —_——
N
~| 5
Iy
=
N —
3N
=
[
=

. . (2 2 2
Integration by parts again, let u = sm(fnnx),du === cos( 7Tnx) and dv = ¢*,v = ¢*. The

above becomes

L 2 2 2 2 2
I = 2cos(mtn) sinh (E) + ? [e" sin (Tnnx)] T j:zé % coS (Tnnx) e“dx

2
L
2
The term [ex sin(zrnnx)] | 8oes to zero since it gives sin (n7) and # is integer. The above

simplifies to

L
) L 2nin | 2mn 27 .
I = 2 cos (ntn) sinh (E) + I (_T f cos (Tnx) e dx)

2
L 472 2
:Zcos(nn)sinh(z) e’ f cos( 7znx)e"alx
2

L

Since f% cos (annx) e*dx = I the above reduces to
2

L
I = 2 cos (nin) sinh (E) -
41°n? . (L
I(l + 2 ) = 2 cos (nn) sinh (E)

2 cos (1tn) sinh (g)

4m2n2
12

I=
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Using the above in (1) gives

2 2 cos (rtn) sinh (%)
a, = —

L 4m2n?
1+ 7

22 cos(mn) sinh (%)

L L2 +4m2n2
4L . L
= m COS (7'[7’1) sinh (E)

Next, b,, is found:

L
2 r . (21
b, = I j:éf(x) sm(fnx) dx

L
2 2 2
= f_ 25 & sin(fnnx) dx )
2
Integration by parts: Let u = sin (annx) ,du = 2%” sin (annx) and let dv = e*,v = ¢*, therefore

2
I= fz ¥ sin (—nnx) dx
L L
2

L L
27 2 7 21N 27
— X a1 _ _ - _ X
—[e sm(Lnx)]L fL T cos(Lnx)edx
2

|
|
N

But [ex sin (zfnnx)] , goes to zero as sin (nn) = 0 for integer n and the above simplifies to

2

L
2 2 2
I= —% _1 cos (Tnnx) e*dx
‘ in: - 2 L - -
Integration by parts again: let u = cos( - nx) = —-= sm( - nx) and dv = ¢*,v = ¢*. The

above becomes

I 2nn . 27 2 j‘z 2nin . (27 .
=——||e*cos| —nx - ———sin | —mnx|e¥dx
L L L _g L L

2 L 2 2
= _%n 2 cos (mtn) sinh (5) + %nf sin(fnnx) exdx)

N NIE
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L
But f% sin (%nnx) e¢*dx = I and the above reduces to
2

I 2nn2 ( )'hL+27mI
i cos(mtn) s > T

41%°n?

LZ

4 L
I= —% cos (7tn) sinh (—) -

I
2

47°n? 4mn L
I ) =- 7Lz cos (1tn) sinh (E)
4nn . L

—— cos (mtn) sinh (5)

472pn2

12
—4nnL cos (1tn) sinh (%)

L2 + 472n?
Using the above in (2) gives
o —4mnL cos (mn) sinh (%)
L L2 + 4m%n?

B —-8mn (ren) sinh L
= a2 cos (1tn) sin >

Therefore, from (1A) the Fourier series is
2 L - 4L L 27 8mn L 27
_ 2 (L 4L = 2\ 8mm ot [ sin (275
f(x) I sin (2) + ;::1 25427 cos (1tn) sin (2) cos( T nx) 75 a2 cos (1tn) sin (2) sm( T nx)
(3)

To verify the result, the above was plotted for increasing n against the original f (x) function
to see how the approximation improves as n increases. Using L = 2, the result is displayed
below. The original function is in the red color.

b, =

Compared to part (1), more terms are needed here to get good approximation. Since the
original function is piecewise continuous when extending over multiple periods, the conver-
gence is no longer a uniform convergence. At the point of discontinuity, the approximation
converges to the average value of the original function at that point. At about 20 terms
the approximation started to give good results. Due to Gibbs phenomena, at the points of
discontinuities, the error is largest. Here is a plot showing one period
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Figure 3.16: Fourier series approximation, showing one period
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ClearAll[L, x, n, a]

L=2;

fx_1 := Exp[x];

a[n_] :=4L/ (L*"2+4Pi”2n"2) Cos[Pin] Sinh[L/2] ;

b[n ] :=-8Pin/ (LA2+4Pi”r2n~2) Cos[Pin] Sinh[L/2] ;

fApprox[x_, nTerms_] :=2/LSinh[L/2] + Sum[a[n] Cos[2Pi/Lnx] + b[n] Sin[2Pi/Lnx], {n, 1, nTerms, 1}]
p = Table[

Plot [{f[x], FApprox[x, i1}, {x, -L/2, L/2},
Frame - True,
FrameLabel » {{"f(x)", None}, {"x", Row[ {"approximation for n=", i}1}},
GridLines - Automatic, GridLinesStyle - LightGray,
PlotStyle » {Red, Blue}, ImageSize - 400, BaseStyle - 16],
{i, 1, 20, 2}
15
p = Grid [Partition[p, 2]]
Export["../images/pl_plot_4.pdf", p]

Figure 3.17: Code used

In the following plot, 3 periods are shown to make it easier to see the effect of discontinuities
and the Gibbs phenomena
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ClearAll|[L, x, n, a]
L=2;
f[x_] := Piecewise[{
{Exp[x+L], -3/2L<x<-L/2},
{Exp[x], -L/2<x<L/2},
{Exp[x-L],L/2<x<3/2L}}
15
a[n_] :=4L/ (L*2+4Pi”"2n"2) Cos[Pin] Sinh[L/2] ;
b[n_] :=-8Pin/ (L*"2+4Pi*2n"2) Cos[Pin] Sinh[L/2] ;

fApprox[x_, nTerms_] :=2/LSinh[L/2] +Sum[a[n] Cos[2Pi/Lnx] + b[n] Sin[2Pi/Lnx], {n, 1, nTerms, 1}];

p = Table[
Plot[{f[x], fApprox[x, i1}, {x, -3/2L, 3/2L},
Frame -» True, FrameLabel » { {"f (x)", None}, {"x", Row[{"approximation for n=", i}1}},
GridLines - Automatic, GridLinesStyle - LightGray,
PlotStyle » {Red, Blue},
ImageSize - 400, BaseStyle - 16],
{i, 1, 10, 1}
15
p = Grid [Partition[p, 2]]
Export["../images/pl plot 5.pdf", p]

Figure 3.19: Code used

3.5.2 Problem 2

Find the general solution of

1. 23y =1+ /1 +4x%y

2. e*siny —2ysinx + (yz +e"cosy+2¢osy)y’ =0

3. 1 + coslesinx
y y 2

Solution

part 1

This ODE is not separable and it is also not exact (It was checked for exactness and failed
the test). The ODE is next checked to see if it is isobaric. An ODE i’ = f(x, y) is isobaric
(which is a generalization of a homogeneous ODE) if the substitution

y(x) = o (x) ™
Changes the ODE to be a separable one in v (x). To determine if it isobaric, a weight m is

assigned to y and to dy, and a weight of 1 is assigned to x and to dx, then if an m could be
found such that each term in the ODE will have the same weight, then the ODE is isobaric
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and it can be made separable using the above substitution. Writing the above ODE as

2x3dy = (1 +4/1+ 4x2y) dx

—_—

—_—
2x3dy —dx — /1 + 4x2ydx = 0

Adding the weights of the first term above gives 2x°dy — 3 + m. The next term weight is
dx — 1. The next term weight is /1 + 4x?ydx — % R+my+1=2+ % Therefore the weights
of each term are

m
B8+m,1,2+ —}
2
Each term weight can be made the same by selecting m = —2. This value makes each term
have weight 1 and the above becomes
{1,1,1}

Therefore the ODE is isobaric. Using this value of m the substitution y = é is now used to
make the original ODE separable

dy 1dv _v

23 (L8 50 Jqp sl
x2dx Ta8) x2
d
2 —do=1+VI+40
d
2 =1+ I+ 40 +40
Solving this ODE for v (x)
dv 1
= —dx
1+V1+4o+40 2¢
Integrating both sides gives
dv 1
==Inlx|+c¢ (2)
f1+\/1+4v+4v 2
The integral above is solved by substitution. Let V1 + 4v = u, hence Z—Z = %\/im = S or

dv = %udu. Squaring both sides of V1 +4v = u (and assuming 1 + 40 > 0) gives 1+ 40 = u? or
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us—
v= ) becomes

1
f f du
1+ 1+4v+4v “2J L +4( )

== u
2 u+u2

2 1+ u
== ln 1+ ul
Using this result in (2) gives the following (the absolute values are removed because the
constant of integration absorbs the sign).
1 1
—In(l+u)==-Inx+c
2 2
In(1+u)=Inx+2c

Let 2c = Cy be a new constant. The above becomes

Inl+u)=Inx+C,
eln(1+u) — elnx+C0

1+ u = etox
1+u==Cx
Where C = ¢%0 is a new constant. Therefore the solution is
ux)=Cx-1
Since u (x) = V1 + 4o then the above becomes
V1+4v=Cx-1
1+ 40 = (Cx-1)?

2
o(x) = (Cx —i) -1

But y = é therefore the above gives the final solution as

(Cx-1%-1
4x2

y(x) =

Where C is the constant of integration.

Part 2

e*siny — 2y sinx + (y2 +e¥cosy + Zcosx)y' =0
The first step is to write the ODE in standard form to check if it is an exact ODE
M(x,y)dx + N(x,y)dy = 0
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Hence
M(x,y) = e*siny —2ysinx
N(x,y) = y* + e* cosy + 2 cosx

Next, the ODE is determined if it is exact or not. The ODE is exact if the following condition
is satisfied

M JN
dy  dx
Applying the above on the given ODE results in
oM ,
&—y =eé*cosy—2sinx
ON | ,
o, =€ cosy—2sinx
Because 2—1\; = i—f, then the ODE is exact. The following equations are used to solve for the
function ¢ (x, y)
d
a—f:M:e"siny—Zysinx (3)
d
8—(5:N:yz+excosy+2 cos x (4)
Integrating (3) w.r.t x gives
d
&—fdx = fex siny — 2y sin xdx
qJ(x,y):exsiny+2ycosx+f(y) (5)

Where f(y) is used as the constant of integration because ¢ (x, y) is a function of both x and
y. Taking derivative of (5) w.r.t y gives

(;_qyb =e‘cosy+2cosx+ f'(y) (6)

But (4) says that f;—q; = y? + ¢* cosy + 2 cosx. Therefore by equating (4) and (6) then f’ (y)
can be solved for:
y? +e¥cosy +2 cosx = e*cosy +2 cosx + f'(y) (7)

Solving the above for f’(y) gives
Fo=y

[ray= [ yay

1
ﬂw:§ﬁ+q

Integrating w.r.t y gives f (y)
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Where C; is constant of integration. Substituting the value of f(y) back into (5) gives ¢ (x, y)

1
¢ =e'siny+2ycosx+ 53/3 +C

But since ¢ itself is a constant function, say ¢ = C;, where C; is new constant, then by

combining C; and Cj constants into a new constant C;, the above gives the solution

1
Ci=e"siny(x) + 2y (x)cosx + §y3 (%)

The above is left in implicit form for simplicity.

Part 3

1
Yy +ycosx = > sin (2x)

This ODE is linear in y. It is solved using an integrating factor y = o cosxix

Multiplying both sides of the ODE by p makes the left side an exact differential

1
d (yy) =Sk sin (2) xdx
Integrating both sides gives

1
yu = Efysin(Zx)dx+C

. 1 .
st = > f eSM*sin 2x)dx + C

The above integral can be solved as follows. Since sin (2x) = 2sinx cos x therefore then

1 : ;
I= > f e sin (2x) dx = f eS™M¥ gin x cos xdx

Using the substitution z = sinx, then dz = dx cos x and the above becomes

I = f e“zdz

_ sinx
= ¢ .

(1)

Integrating the above by parts: fudv = uv — fvdu. Let u =z,dv=¢ - du=1,0 =¢* and

the above becomes
[ = ze* - f e*dz

= ze* — ¢*

=e*(z-1)
Since z = sin x the above reduces to

I = ¢8% (sin (x) — 1)
Substituting this back in (1) results in
yeSin¥ = S0 (sin (x) = 1) + C

Therefore the final solution is

y(x) = sin (x) — 1 + Ce™sin¥
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Where C is the constant of integration.

3.5.3 Problem 3

Find general solution of
1. v -4y” -4y’ +16 = 8sinx

9. aZy/Z — (1 + ]/’2)3

Solution

Part 1

y" —4y” -4y’ =8sinx-16

This is linear nonhomogeneous ODE with constant coefficients. Solving first the homoge-
neous ODE y"”” -4y” -4y’ = 0. Since the term y is missing from the ODE then the substitution
y" = u reduces the ODE to a second order ODE

u’ —4u -4u=0 (1)
Let u = ¢!*. Substituting this into the above and simplifying gives the characteristic equation
A2-41-4=0

The Roots are A = —% + %m or
A= s i6- ()
:Zi%%ﬁ
=2+2V2
:2(1ix/§)

Hence the solution to (1) is given by linear combinations of e!1%,¢12* as

uy, (x) = cq€ 2(1+v2)x + cyf 2(1-2)qx

But since ¥’ = u, then y is found by integrating the above
yp = f 2(14V2)x +Cpe 2(1-V2)x g,

A1+V2)x .. p(2-22)x

2(1+v2)  2(1-+2)

= Cl/

+C3

= C,, where C{,C, are new constants. The

Y _a 2
To simplify the above, let 2(1+v) 212

above simplifies to

y, = Cee 2(1+V2)x +C, (2-2V2)x |

The above solution is homogeneous solution to the original ODE. Next, the particular
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solution is found. Since the RHS of the original ODE is sinx — 16 then choosing y, to have
the form

Y, = Asinx + Bcosx + kx
Therefore
Yp =k+ Acosx—Bsinx
yy = —Asinx - Bcosx
Yy’ =—-Acosx + Bsinx
Substituting these back into the original ODE y"”” — 4y — 4y’ = 8sinx - 16 gives
(-Acosx +Bsinx) —4(—Asinx —Bcosx) —4(k+ Acosx —Bsinx) = 8sinx — 16
—Acosx + Bsinx +4Asinx +4Bcosx —4Acosx +4Bsinx —4k = 8sinx - 16
cosx(—A+4B—-4A)+sinx (B +4A +4B) — 4k = 8sinx - 16
cosx (—BA +4B) +sinx (5B + 4A) — 4k = 8sinx - 16

Comparing coefficients gives the following equations to solve for the unknowns A, B, k

—4k = -16
-5A+4B=0
5B+4A =8

. . 5 . - . . . 5 3
The second equation gives B = 7A. Using this in the third equation gives 5 (ZA) +4A =8,

. . 32 5(32) _ 40 . .
solving gives A = -. Hence B = 7 (H) = ;- The first equation gives k = 4. Therefore the
particular solution is

Yp = Asinx + Bcosx + kx

32 . 40
= Esmx+ Ecosx+4x
Now that y;, and y, are found, the general solution is found as
Y=YntYp
= C1€2(1+\/§)x + Cze(z_z‘/z)x +Csy+ % sin x + % cos x + 4x

Where Cy, C, are the two constants of integration.
Part 2

3
a2y12 — (1 + yrz)
Let y’ = A, the above becomes
3
A2 = (1+ A?)

3)(2) 3)(2)(@)
o AT A
=1+3A% +3A%* + A®

=1+3A%+
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Hence the polynomial is
AP +3AY+ A2(3-a?)+1=0
Let A? = B and the above becomes
B*+3B2+B(3-a?)+1=0
With the help of the computer, the cubic roots of the above are

1. 1, 1 2
By = \|\| 0% — —=ab — a2 + = -1
! \/ VA 3i/1 —
a4——ﬂ6 az
4 27 2
11, 1. 1, 1 1 a2
B Y RV e - -1
2 21\/_\/ " T T2 s \/ 1

13 /1 1 1 1 1 1 1 1 2 1

B3 =—-= ) I L —l\/g gt — —ab - —g2 - = ? - =
2\Va" " 27" 2" T2 Vao 270 2 3T | 6+,
ZQ—ZIZ—EQ le

Therefore A; = /By, A, = /B, A3 = ++/B; or, since ¥’ (x) = A, then there are 6 solutions,
each is a solution for one root.

d
Wi - By

dx:

dy,
272 _ _\/B
. VB,
dx

dy4_
VB
d

dye

76 _ _\/B

2 =—VB;
But the roots +B; are constants. Therefore each of the above can be solved by direct inte-
gration. The final solution which gives the solutions

y1 = VBix + Cy
Y2 = —VBix + C;
y3 = VBox +C3

—\/B_2x+C4
ys = VB3x + Cs

—vBsx + Cg

Where the constants B; are given above.
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3.6 HW 6

3.6.1 Problem 1

Consider the equation xy” + (c — x) ¥’ —ay = 0. Identify a regular singular point and find two
series solutions around this point. Test the solutions for convergence.

Solution

Writing the ODE as
y'+ Ay +Bx)y=0

Where
Ax) =

(c—x)
X

B(x)=—

The above shows that x; = 0 is a singularity point for both A (x) and B (x). Examining A (x)
and B (x) to determine what type of singular point it is

(c—x)

=lim(c—-x)=c

lim (x —xg) A(x) = limx
X—=XQ x—0 x—0

Because the limit exists, then x; = 0 is regular singular point for A (x).
-a
lim (x — x0)* B (x) = lim x2 (—) = lim (-ax) =0
X—XQ x—0 X x—0
Because the limit exists, then x; = 0 is also regular singular point for B (x).

Therefore x;, = 0 is a regular singular point for the ODE.

Assuming the solution is Frobenius series gives

y () = 2" Y, C, (x = xp)" Co#0
n=0

o0
— Al n
=X ECnx
n=0

[o0]

— Z Cn X+
n=0
Therefore

]/I — Z (1’1 + 1,) Cnxn+r—1
n=0

Yy’ = 2 (n+7)(n+r-1)C,x""2
n=0
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Substituting the above in the original ODE xy” + (c — x)y’ — ay = 0 gives

X E n+7r)(n+r-1)Cx""2 + (c - x) Z (n+r)C,x""1—q Z C,x"™" =0

n=0 n=0 n=0
N n+r)n+r-1cx™ 1D (n+1)Cx™ L =x D (n+1)Cpx™ 1= 3 aC,x"" =0
n=0 n=0 n=0 n=0
M+ m+r-1)Cx™ 14D c(n+7r)Cpx™ 1= Y (n+1)Cx™" = Y aC,x™" =0
n=0 n=0 n=0 n=0
M+ m+r-1)+cm+n)Cx™" =Y (n+r)+a)Cx™" =0
n=0 n=0

Since all powers of x have to be the same, adjusting indices and exponents gives (where
in the second sum above, the outside index 7 is increased by 1 and n inside the sum is
decreased by 1)

M+ m+r-1)+cm+n)Cx"™" 1= (n-1+7r+a)Cpqx"" 1 =0 (1)
n=0 n=1
Setting n = 0 gives the indicial equation, which only comes from the first sum above as the
second sum starts from n = 1.

(N@F-1)+cr)Cy=0
Since Cy # 0 then
N@r-1)+cr=0

P—r+cr=0

rr+c-1)=0
The roots are

rn=1-c

=0

Assuming that ,—r; is not an integer, in other words, assuming 1-c is not an integer (problem
did not say), then In this case, two linearly independent solutions can be constructed directly.
The first is associated with r; =1-c and the second is associated with r, = 0. These solutions
are

y1(x) = ), Cxie Co#0
n=0

Y (x) = E D, x" Dy #0
n=0

The coeflicients are not the same in each solution. For the first one C,, is used and for the
second D,, is used.

The solution y, (x) associated with r; =1 —c is now found. From (1), and replacing r by 1 -¢
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gives

2((n+1—c)(n+1—c—l)+c(n+1—c))Cnx”+1‘C‘1—Z((n—l+1—c)+a)Cn_1x"+1‘C‘1:O

n=0 e
i((n+1 —c)n-c)+cm+1-c)Cux"* - i (n=c)+a)C,1x"° =0
n=0 n=1

i nn-—c+1)C,x"°¢ - i (n=c)+a)C,_1x" =0
n=0 n=1

For n > 0 the above gives the recursive relation (n = 0 is not used, since it was used to find
r). For n > 0 the last equation above gives

nn-c+1)C,-(n-c)+a)C,_.1 =0
(n—=c)+a)
Few terms are generated to see the pattern. For n =1
_ (-c+a) . (-c+a)

Cl_1(1—c+1) 07 "2-¢
Forn=2
_ (@2-c+a)
Cz_z(z—c+1) !
_@2-c+a)(-c+a)
T 2B3-¢ (-0
Forn=3
_ B-c+a)
C3_3(3—c+1) 2

_B-c+a)2-c+a)(l-c+a)
T 3(@4-0 2B-¢ (-0 °
And so on. The pattern for general term is
_((n-c)+a) B3-c+a) 2-c+a) 1-c+a)
" wm-c+1)  3B-c+1)2Q-c+D1(1-c+1)°
1 -0)+
S URLEY)

mm—c+1)

m=1

Therefore the solution associated with r{ =1 —-c is

y1(x) = ), Cx™
n=0

[s¢]
— E C. x+l-c
n
n=0

= Cox! ™+ Cy¥ ¢ + Cpx3= + -+
Using results found above, and looking at few terms gives the first solution as
1-c+a) 12-c+a)(l-c+a) , 1@B-c+a)R-c+a)(l-c+a) ,
2-0 273609 (-9 Y6 @-09 G-9 -9 ' F

Yy (x) = Cox1™° (1 +

v )
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The second solution associated with r, = 0 is now found. As above, using (1) but with D,
instead of C, for coefficients and replacing r by zero gives

i (n(n—=1)+cn) Dyx"! - i (n-1)+a)D,_1x" 1 =0
n=0 n=1

For n > 0 the above gives the recursive relation for the second solution

mn-1)+cn)D,—((n-1)+a)D,_1 =0

D = n-1+a
T am-1)+cen "
n-1+a

T n-n+n2 1
Few terms are now generated to see the pattern. For n =1

D, =%p
1= o
Forn=2
1+a
Dy=—D,
2c-2+4
B 1+a a
T 2(c+1)c 0
Forn=3
3-1+a

Dy=——D
57 3c-3+9 2
24+a 1+a a

= “D
3(c+2)2(c+1)c °
And so on. Hence the solution y; (x) is

Y2 (x) = ), D,x"
n=0

= DO +D1X+D2x2 + .-

Using result found above gives the second solution as
a 11+a)a la@l+a)(2+a)
=D.l1+2 Z 2, 7" 34
y2 ) O( +cx+2c(c+1)x +6c(c+2)(c+1)x
The final solution is therefore the sum of the two solutions
B 1-c+a) 12-c+a)(d-c+a) 1B3-c+a)2-c+a)(l-c+a)
— 1-c (1 Z 24 34 ...
y@) = Cox (+ 2-0 "2 36-0 -0 "6 G4t-09 G-o9 -0

(2)

a 11+a)a lal+a)2+a)
+D0(1+EX+EC(C+1)x2+gmx3+“‘)

Where Cy, Dy are the two constant of integration.

Testing for convergence. For y; (x) solution, the general term from above was

_((n-o)+a)
T nm-c+1) n-1

n

C,x"
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Hence by ratio test

C,x"

n—oo |C,_1x"
((n—c)+a) . n
T n(n—c+1) "

B 7}1—I>rolo Cn_lx”—l

y (n—c)+a)x
= lim |————
n—eo [(n(n—c+1))
. n—-c+a
= |x| lim -
n—-coln? —nc+n
1 _c_. 2
= |x| lim %{12
n— oo 1_£+_
n n
ME
= |X||—
1
=0

Therefore the series y; (x) converges for all x.

Testing for convergence. For y, (x) solution, the general term is

n-1+a

Dx'=—— D, x"
" cn-n+n2 "
Hence by ratio test
) D, x"
L= lim 1 —
n—eo | Dy 41X
n-1+a n
cn—n+n? n-1%

) n-1+a
= lim 5
n—oo|cn—n+n
. n-1+a
= |x| lim 5
n—oo|cn—n+n
1 1 a
. 1 o2 T2
= |x| lim |—5F—+
e e |
n n
||0
= |X||—
1
=0

Therefore the series y, (x) also converges for all x. This means the solution y (x) = y; (x)+y, (x)
found in (2) above also converges for all x.
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3.6.2 Problem 2
The Sturm Liouville equation can be expressed as
L{u()] = Ap (x)u(x)

Where L is given as in class. Show L is Hermitian on the domain 4 < x < b with boundary
conditions u (a) = u (b) = 0. Find the orthogonality condition.

Solution
L —_ d_z + ’i _
=\ dx? P dx q

sz‘)L[u]dx:fbﬂL[v]dx

Where in the above u,v are any two functions defined over the domain that satisfy the
boundary conditions given. Starting from the left integral to show it will result in the right

The operator L is Hermitian if

2
integral. Replacing L [u] by - (p% + p’% - )u in the LHS of the above gives

b 42 d b dPu du
‘fﬁ(*’@*%‘)m:‘f (dez Pd—‘q”) dx
by du
:—fa vpﬁ+vpd—x—qvudx

/—{;
b d2y
:—f p@ﬁdx—f —dx+f qou dx 1)
a

Looking at the first integral above, which is I; = f (pv)( )dx The idea is to integrate
this twice to move the second derivative from u to 9. Applying f AdB = AB - f BdA, where
A=po

Hence
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Therefore the integral I; in (1) becomes
L = f pv@u

[ du _fbdu ) dr
_pvdxu . dx de po

But 9(a) =0 and o (b) = 0, hence the boundary terms above vanish and simplifies to

I =- ’ d_udv+ vd—udx
1= pdxdx v
” dudv
fpdx fpv—dx (2)

Before integrating by parts a second time, putting the result of I; back into (1) first simplifies
the result. Substituting (2) into (1) gives

b
f @L[u]dx:—ll—f —dx+f qou dx
a

b du do b du b
( fpa—dx fpv—dx) fvp d—dx+f qou dx
b

fp;lzd_v x+fpv—dx f p—dx+fqvudx

The second and third terms above cancel and the result becomes

LUL uldx = fp——dx+f qou dx (3)

Now integration by parts is applied on the first integral above. Let I, = f L du (pd—@) dx.
Applying fAdB = AB - deA, where

_ 4o

=Pix dx

du

dB = —

dx

Hence
o do
AA=pTz *V o
B=u
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But u (a) = 0,u (b) = 0, hence the boundary term vanishes and the above simplifies to

b d%  dp
Izz—f pd2+pd dx

Substituting the above back into (3) gives

b_ b d%o do
LUL[u]dx:—f (pd2+pd )dx+f qou dx

__fb d%o . ,do 4
- pdxz pd qv x

But - (PZZTZ + p’g—i - qz‘;) = L[?] by definition, and the above becomes

fb@L[u]dx:fbuL[z‘J]dx

But f ’ uL [0]dx = f ’ 7L [v] dx, and the above becomes
a a

sz‘;L[u]dx:fba(L[v])dx

a a

Therefore L is Hermitian.

3.6.3 Problem 3

I+a
1. For the equation y” . y 0 show that two solutions are y; (x) = apx 2 and y, (x) =
1-a

apXx 2

2. For a = 0, the two solutions are not independent. Find a second solution 1,4 by solving
W’ =0 (W is the Wronskian).

3. Show that the second solution found in (2) is a limiting case of the two solutions from
part (1). That is

Yoo = lim 2272 Yi—W2

a—0 0%

Solution

Part 1

The point xy = 0 is a regular singular point. This is shown as follows.

1-a? 1-a?
. _ 2 — 1 2
xh—gflo (= xo) 4x? }cl—r%x 4x?
C1-a?
= lim
x—0 4
1-a?
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Since the limit exist, then x, = 0 is a regular singular point. Assuming the solution is a

Frobenius series given by
y(x) = Z X" co#0
n=0

Therefore

Y (x) =), (n+r)c,x
n=0

[oe]

y" (X) = E (ﬂ + }’) (1’1 +7 - 1) Cnxn+r—2
n=0

Substituting the above 2 expressions back into the original ODE gives

4x? (i m+ry(n+r-1) Cnxn+r—2) + (1 _ az) (i Cnxn+r) ~0
n=0

n=0
i dn+r)(n+r—-1)c,x"" + (1 - az) (i cnx””) =0 (1)
n=0 n=0

Looking at n = 0 first, in order to obtain the indicial equation gives
40 (r-1)co+ (1-a?)
co (4r2—4r+ (1 -

N
~ O
~— O

But ¢y # 0, therefore

P —r+ (1—a2) =0

1—a2)
4

The roots are r = ;—: + %Vbz —4ac,buta=1,b=-1,c= ( , hence the roots are

I+

1-(1-0a2)

ﬁ
Il

=

I+

+

NN =

Q

NI=DNIEN =

Hencer; = % 1+a)andr, = % (1 — ). Each one of these roots gives a solution. The difference
is

1
7’2—1"1:5(14'&)—5(1—&)
=

Therefore, to use the same solution form y; (x) = ¥°  ¢,x"™ and y, (x) = X d,x"*"2 for
. . . . . n_O . . n_O .
each, it is assumed that a is not an integer. In this case, the recursive relation for v, (x) is

found from (1) by using r = % (1 + a) which results in

\ 1 1 n+1(1+a) 2 . n+1(1+a)
Z4(n+§(1+a))(n+§(1+a)—l)cnx 2 +(1—a) n}:%cnx 2 =0

n=0
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For n > 0 the above becomes

4(n+%(1+a))(n+%(1+a)—1)cn+(1—a2)cn:0

(4(n+%(1+a))(n+%(l+a)—1)+(l—a2))cn:0
dnn+a)c, =0

The above can be true for all n > 0 only when ¢, = 0 for n > 0. Therefore the solution is only
the term with ¢,

(o]

1
Y1 (1) = Y 0™ = et = coxz Y
n=0
To find the second solution y; (x), the above is repeated but with

Yo (x) = Y, d,x"*72
n=0

Where the constants are not the same and by replacing 7 in (1) by r, = % (1 — ). This results
in

3 1 1 Lo ™ Lo
24(” +5 @ —a)) (n t5 (1-a) —1) d, "2 (1 — az) (nz:%danZG a)) =0

n=0
For n>0

1 1
2 _
(4(n+ 5(1—05))(;” 5(1—01)—1)+ (1-a ))dn =0
dnn—-a)d, =0
The above is true for all n > 0 only when ¢, = 0 for n > 0. Therefore the solution is just the

term with d

0 1
Yo (1) = 3 dpx™72 = dox' = dgx2" ™
n=0

Therefore the two solutions are
1

y1(x) = Coxz(lm)

a)

1
Yp (x) = dox2!”

Part 2

When a = 0 then the ODE becomes
4%y +y =0

And the two solutions found in part (1) simplify to
y1(0) = coVx
Yo (¥) = dovx
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Therefore the two solutions are not linearly independent. Let 1,y (x) be the second solution.
The Wronskian is

W(x) =

iy , ,
} 30 = Y1Y20 — Y20Y1 1)

Y1 Yo

Using Abel’s theorem which says that for ODE of form y"’ +p (x) y’ +q (x) y = 0, the Wronskian

is W(x) = CeJpix, Applying this to the given ODE above and since p(x) = 0 then the
above becomes

W(x)=C

Where C is constant. For y,, to be linearly independent from y; W (x) # 0. Using W(x) = C
in (1) results in the following equation (here it is also assumed that y; # 0, or x # 0, because
the equation is divided by y;)

Y120 — Ya0y1 = C
PR G
Y20 yzoy1 n
Since y; = v/x and ¥} = %% the above simplifies to
11
2 C
Y20 — Y20 \/; \/}
, 1 C
Y20 ~ Y05 = NG (2)

But the above is linear first order ODE of the form Y’ + pY = g, therefore the standard
integrating factor to use is [ = e/ PO \hich results in

-1
I= ef zH

Multiplying both sides of (2) by this integrating factor, makes the left side of (2) an exact
differential

4, L)y_¢C
dxyzo\/g_x

Integrating both sides gives

1 1
Yoo—F = Cf—dx + C1
X X

\/—

1
=2Clnx+C,

Y20 %

Yoo = 2C IIIX\/;+ Cl\/;
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Or
y20 = C1Inxvx + Covx (3)
The above is the second solution. Therefore the final solution is
¥ (x) = Coyy (x) + Caypo (¥)

Substituting y; = v/x and y,, found above and combining the common term +/x and renaming
constants gives

y(x) = CiVx + Gy Inxv/x

Another method to find the second solution

This method is called the reduction of order method. It does not require finding W (x) first.
Let the second solution be

Yoo =Y =0 )y (x) (4)

Where v (x) is unknown function to be determined, and y; (x) = y/x which is the first solution
that is already known. Therefore

Y =v'y+ oy

Y =v"y; + 0’y + 'y + oy

=0"y; +20'y; + oYy
Since Y is a solution to the ODE 4x%y” + y = 0, then substituting the above equations back
into the ODE 4x2y” +y = 0 gives
4 (v”y1 +20'yq + vyi’) +oy; =0

0
v”(4x2y)+v’(8x2 ’)+ [42 7+ ]—0
1 1) To13xXYr v

But 4x%y} + y; = 0 because v, is a solution. The above simplifies to
v (4x2y1) +0 (szyi) =0

1 1 2L
— r_ 1 . .
But y; = x2, hence y; = x2 and the above simplifies to

1 -1

v (4x2xi) +v (4x2x7) =0
5 3

x20” +v'x2 =0
xv"" +v =0

1
v +-v"=0

X

This ODE is now easy to solve because the v (x) term is missing. Let w = v’ and the above

1
first order ODE w’ + j—cw = 0. This is linear in w. Hence using integrating factor I = ef FL- X,
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this ODE becomes

Where C is constant of integration. Since v" = w, then v/ = % Now v (x) is found by
integrating both sides

v=C;lnx+Cy
Therefore the second solution from (4) becomes
Y20 = C1Inxy; + Gy
= Clx/Elnx + Cz\/; (5)

Comparing the above to (3), shows it is the same solution. Both methods can be used, but
reduction of order method is a more common method and it does not require finding the
Wronskian first, although it is not hard to find by using Abel’s theorem.

Part 3
The solutions we found in part (1) are
l(1+0¢)
y1(x) = Cyx2

1
Y (x) = Cpr2™

Therefore
1 1
~(1+a) ~(1-a)
- Cqx2 —Cox2
lim Nn-¥ = lim d 2X
a—0 o a—0 o
Applying I’Hopital’s
d ( tasa d ( ra-w
o ) et ()
lim 2292 _ gy & 1 1)
a—0 o a—0 1
But
i(x%(lﬂv)) _ ie%(lﬂv)lnx
o da
_ die(%lnxﬂzlnx)
o

(llnx+alnx)
= In xe\?



155

And
d 1(1—0¢)) d l(1—0¢)lnx
- 2 = —p2
da (x dae

d (imx-alnx
= @6(2 )

(hnx—alnx)
= —Inxe'\?

Therefore (1) becomes

Yi—Y2

lim =—= = 1lim C; In xe
a—0

a—0 o
(l In x+a lnx) (1 Inx—a lnx)
=Ilnx (hm Cqe\? + Cpe'\2 )
a—0

1 1
(E Inx+a 1nx) (E Inx—a lnx)

+ Cylnxe

1 1
=1 =1
=Inx (C1€2 nx + Czez nx)

= lnx (Cl\/; + Cz\/;)
= C/xInx
The above is the same as (3) found in part (2). Hence
i-Y2

Yo (x) = g{lg(l) —a

Which is what the problem asked to show.
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3.6.4 key solution to HW 6
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3.7 HW7

3.7.1 Problem 1

Exercise 1: Consider Hermite’s differential equation valid for (—oo < x < 00):

Y’ —2zy +2ny =0 (1)

i) Assume the existence of a generating function g(z,t) = Y%, Hy,(2)t"/n!. Differen-
tiate g(z,t) with respect to = and use the recurrence relation H!(z) = 2nH,_1(x)to
develop a first order differential equation for g(z,t).

ii) Integrate this equation with respect to = holding ¢ fixed.

iii) Use the relationships Hy,(0) = (—1)"(2n)!/n! and Ha,+1(0) = 0 to evaluate g(0, 1)
and show g(z,t) = exp(—t2 + 2tz).

iv) Use the generating function to find the recurrence relation H,1(z) = 2zH,(z) —
20y 3 (D),

v) By integrating the product e‘””Zg(x, s)g(z,t) over all z, show

/OO e_mQHm(x)Hn(m)d:E = 2"n\\/T6nm. (2)

-

Figure 3.20: Problem statement
Solution

y'=2xy +2ny =0 —00<x <00

Part 1

00 tn
366 = L H 0

Differentiating w.r.t x, and assuming term by term differentiation is allowed, gives
dg(x,t) i": t"
YW
dx o n!
Using Hj, (x) = 2nH,,_1 (x) in the above results in

dg(x, ) & t"
- :é%mqwl

n
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But for n = 0, the first term is zero, so the sum can start from 1 and give the same result

B S ok, )
n=1

Now, decreasing the summation index by 1 and increasing the n inside the sum by 1 gives

9852” gz(nH)H ) o n:),
:§Z(n+1)Hn(x)(n:—+11)m
. n+1
:Z%ZHn () —
= gzt (Hn (x) f;n,)

00 tn
=2t %Hn (x) =
n=

But E:’zo H, (x)% = g(x,t) and the above reduces to

dg (x, 1)

- 2tg (x, t)

The problem says it is supposed to be a first order differential equation and not a first order
partial differential equation. Therefore, by assuming x to be a fixed parameter instead of

another independent variable, the above can now be written as

d
- ) —
8 (x,t) = 2tg(x,t) =0

Part 2
From the solution found in part (1)
d
Eg (X, t) _
g (x, 1)
d
g0l o
g (x, f)

Integrating both sides gives

f ag ) _ thdx

g (1)

In |g(x, t)| =2tx+C
g(x’ i') = e2tx+C
g(x/ t) = C1€2tx

Where C; = ¢ a new constant. Let g (0,t) = g, then the above shows that C;
above can now be written as

g(x,t)=g(0,t) e

= go and the



Part 3

Using the given definition of g (x,t) = Z o Hu (x) and when x = 0 then
g0t = ZHn (0) ~

= Hy (0) + H; (0) + EH (0)
n=2
But Hy (x) =1, hence Hy (0) =1 and H; (x) = 2x, hence H1 (0) = 0 and the above becomes

g (0, t)—1+ZH (0)
n=2

For the remaining series, it can be written as sum of even and odd terms

g(0,6) =1+ Z H(O)—+ 2 H(O)

n=2,4,6, Ry
Or, equivalently

0 2n+1
0,t)=1+ H,, (0 + Hj,.1 (0
g( ) n1§2:3 2()(2 ) nlzzla 2+1()(2 +1)!

But using the hint given that Hj,,; (0) = 0 and H,, (0) = (2">

= ()" 2n)! tZ"

O,nH=1+
§ 122:3 . @n)
t2}’l

(1)—

the above simplifies to

=1+

»
w

\Mg\

n=1

2n
But since (-1)" tn—' =1 when n = 0, then the above sum can be made to start as zero an
simplifies to '
th

g, t)—Z( " —

Therefore the solution g (x,t) = ¢(0,t) ™ found in part (2) becomes

163

d it

0 tZI’l
_ 1\ ) J2tx
g(x»)—(nZO( 1 n!)e M
2n 4 6
Now the sum Y (-1)" E =1-£2+L-L 4 .. and comparing this sum to standard series
n=0 n! 21 3! paring

2 3 . . 2
of #=1+z+ % + % + ---, then this shows that when z = —t? and series for ¢™*" becomes

2 3 4
21y (—tz) + (_tz) + (_tz) + (_tz)
2! 3! 4!
ttoto 8
=1-P+ ==+
21 31 4l
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Hence
00 t21’l 2
D) —=et
=0 n!
Substituting this into (1) gives
g(x,t) = et
= p2tx—t

Part 4
Since g (x,t) = ¢ from part (3), then
0 2
—_ - _ 2tx—t
é’tg (x,t) = (2x —2t)e
=(2x-2t)g(x, 1)

But g(x,t) = E:):o H, (x) %, therefore the above can be written as

0 ) n
Sgh=x-20 Y H, ()

=0
had ' " ad "
= 2szn(x)ﬁ —ZtZHn(x)ﬁ
n=0 : n=0 :
00 I 00 tl’l+1
:2xZHn(x)E—22Hn(x)7
n=0 : n=0 .
(o) tn (o] tn
=2x Y H,(x) = -2 ) H, ;1 (x) ——
,12;1) ! ,;1 = = 1)
o0 tn o0 tn
=2 H — =2 H,_ —_—
(o) tn (o) tn
= 2xn§_]0Hn () — - 2§an_1 () — 1)

On the other hand,

Jd Jd & "
ﬁg(xlt) = E}Z%Hn (x) ]

tl/ll

n!

= Y nH, ()
n=0
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Since at n = 0 the sum is zero, then it can be started from n =1 without changing the result
-1

d
ﬁg(x,t) ZnH (x)

Z(”+1)Hn+1 () ——;
= ( )

Z (n+1)Hypy () ———

(n +1)n'
S e 0 (2)
n!
n=0 :
Equating (1) and (2) gives
3 Ht (0 1 = 20 S H, 00 =2 Y 9

n=0

But Z 1 Hy (x) Zn o 1Hu 1 (x) " because at 1 = 0 it is zero, so it does not affect the
result to start the sum from zero, and now the above can be written as

3 Hypn () ; — 2 Y H, () ﬁ 23, () ﬁ
n=0 : n=0 : n=0

Now since all the sums start from n = 0 then the above means the same as
n n n

t t t
Hyy (x) = = 2xH, (x) — = 2nH,; (x) —
n! n! n
Canceling ;—n' from each term gives

H 11 (x) = 2xH,, (x) — 2nH, 1 (x)
Which is the result required to show.

Part 5
The problem is asking to show that
fooe-sz OH,Wde=] O mFEM
—oo " " | 2 n=m

The first part below will show the case for n # m and the second part part will show the
case for n =m

case n # m This is shown by using the differential equation directly. I found this method
easier and more direct. Before starting, the ODE y"" — 2xy’ + 2ny = 0 is rewritten as

d
exza (e‘xzy’) +2ny =0 (1)

The above form is exactly the same as the original ODE as can be seen by expanding it.
Now, Let H,, (x) be one solution to (1) and let H,, (x) be another solution to (1) which results
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in the following two ODE’s

d
¢” — (¢°Hy) +2nH, = 0 (1A)
dx
d
exza (e*H;,) +2mH,, = 0 (2A)

Multiplying (1A) by H,, and (2A) by H,, and subtracting gives

d d
H,, (exza (e=°Hy) + 2an) ~H, (exza (e=*Hy,) + ZmHm) -0

od ;2 od ;o
(Hmex - (eHy) + ZanHm) - (Hnex - (e*Hy,) + 2mHnHm) -0

d d
Hmesz (e*Hy) - Hnexza (e*Hy,) +2(n - m)H,H,, =0
Hm% (e*Hy) - Hn% (e=°Hy,) +2(n—m) H,H,,e™ =0 (3)
But
d d
Hyr (e*Hy) = - (e*H;H,,) - e H}Hy,
And
Hn% (e°Hy,) = ;—x (e*H;,H,) - e Hy,H;,
Therefore

d d d d
Hy— (eH;) - Hy— (e H},) = (£ (e*H;H,,) - e‘sz,QH,’n) - (E (e**HyH,) - e—sz;nH,;)
d d
= (H;Hy) - - (e H,H,)

(e (H,H,, - H},H,))

d
dx
Substituting the above relation back into (3) gives

d
- (e (H}H,y, — HiyH,)) +2 (n = m) H,Hye ™ =0

Integrating gives

(o] d 00
f (e (HiH, — HyH,)) dx + f 2 (n = m) H,H,edx = 0
f 4 (e (HH,y, — HyH,) +2 (1 - m) f H,H,edx = 0
[ (H;H,, - H;Hn)]i, +2(n—m) f H,H,e*dx =0

But lim,_,, e = 0 so the first term above vanishes and the above becomes

2(n—m) f HnHme‘xzdx =0
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Since this is the case where n # m then the above shows that
f HnHme‘xzdx =0 n+m

Now the case n = m is proofed. When H,, = H,, then the integral becomes f_oo Hane‘xzdx.
Using the known Rodrigues formula for Hermite polynomials, given by

2

di’l
2 _
H,(x) = (-1)" ¢ s x

Then applying the above the above to one of the H,, (x) in the integral f_ * Hane‘xzdx, gives

fHHe‘xdx—f ((1)”9‘;: )He dx
= (-1)" f (dn xz)Hndx

Now integration by parts is carried out. fudz) =uv - fvdu. Let u = H,, and let dv =

n-1
therefore du = H;, (x) = 2nH,_; (x) and v = ddxn—le

00 n-1 o0 00 -1
f H,H, e dx = (—1)”[[}1 () d—e-xz] - f (dn e‘xz)ZnH (x) dx]
e T T dxn1 oo \dx1 -l

n-1

(o)
2 I d
] — 0 as x — oo because each derivative of ——

2

d_” e_x
dx ’

A2
¥ therefore

42
e™™ produces a term

But [H () & e

—00

with ¢ which vanishes at both ends of the real line. Hence the above integral now becomes

00 00 di’l—l
f Hane‘xzdx = (—1)n (—21’1 f (We_xz) H,_1 (x) dX)

Now the process is repeated, doing one more integration by parts. This results in

f HHexdx—(l)(Zn(Z(n 1)f (dnz Z)Hn_z(x)dx))

00 ) 00 dn—3 )
f H,H,e™*dx = (-1)" (—Zn (—2 (n-1) (—2 (n— 2)f (dx”—3e_x )Hn—3 (x) dx)))

This process continues n times. After n integrations by parts, the above becomes

foo Hane‘xzdx = (-1)" (—2n (—2 (n-1) (—2 (n-2) ( (fw e‘szO (%) dx)))))

= (1 2" [ " P Hy (x) dx

And again

:Z”n!f e‘x2H0 (x)dx

But H (x) =1, therefore the above becomes

f Hane‘xzdx=2”n!f e dx
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But
[ = 2f
= 2
2
- Vr
Therefore

f Hane‘xzdx = 2"nl\n

This completes the case for n = m. Hence

0 0 n+m
f e‘szm (x)H,, (x)dx =

_ 2'l\m n=m

Which is what the problem asked to show.

3.7.2 Problem 2

Exercise 2: a) Consider the differential equation for 0 < r < oo

> 1d n?
(G + g = 7)) =0 3

where n = 0,1,2,3,... Find two independent solutions, one which vanishes as r — 0 and
the other that vanishes as r — oco. Hint let z = lnr.
b) Given the result of part a), find the solution to the differential equation

2 7’?/2
(55 + 7o = 2 )ur) = 2otr - v @

with the boundary condition that the solution vanishes as 7 — 0 and r — oo.

Figure 3.21: Problem statement

Solution

Part (a)

12
y”(r)+ y (r) - y(r) O<r<o

ry” (1) + 1y (r) = n?y (r) =
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casen =0

The ode becomes r?y” (r) + ry’ (r) = 0. Let z = v’ and it becomes %z’ (r) + rz(r) = 0 or
1

z'(r)+ %z (r) = 0. This is linear in z (7). Integrating factor is I = el 7 =, Multiplying the ode

by I it becomes exact differential % (zr) =0 or d(zr) =0, hence z = 671 where ¢; is constant of

integration. Therefore
' “
r)=—
y ==

Integrating again gives

_a
y(r)_1117’+cz

Since lim,_,, the solution is bounded, then ¢; must be zero. Therefore 0 = ¢, and this implies
¢, = 0 also. Therefore when n = 0 the solution is

y(r) =0

Casen#0

Since powers of r is the same as order of derivative in each term, this is an Euler ODE. It
is solved by assuming y = r*. Hence ' = ar*™!,y”” = a (a — 1) ¥*~2. Substituting these into the
above ODE gives

Pa(a-1)r"2 +rar" ! —n?r* =0
ala-1)r*+ar*—n?>r* =0
r“(a(a—1)+a—n2) =0
Assuming non-trivial solution r* # 0, then the indicial equation is

al@a-1)+a-n*=0

a2 = n2
a==+n
Hence one solution is
yp(r)=7r"
And second solution is
Yo (r)=1r7"

And the general solution is linear combination of these solutions
y(r) =cyr" +cpr™”

The above shows that lim, ,qy; (¥) = 0 and lim,_,, v, (1) = 0.

Part (b)

Short version of the solution
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To simplify the notations, ry is used instead of 7 in all the following.
1 n? 1
y”(r)+;y’(r)—r—2y(r)=;6(1’—1’0) O0<r<oo

Multiplying both sides by r the above becomes

n2
WO+ 0= Sy =6(r=ro) ®

2
But the two solution to the homogeneous ODE ry” (r) + v’ (r) - %y(r) = 0 were found in
part (a). These are

yi(r)=1" (1A)
yp(r)=rT"
The Green function is the solution to
2
G (r,70) + G (r, 1) = =G (1, 70) = 6 (r = 10) (1B)

lir%G (r,r9) =0
lim G(r,ry) =0

Which is given by (Using class notes, Lecture December 5, 2018) as

1 (r)yy (o) O<r<r
G(r,r) = = Y1) y2(ro 0 )
Clun@dy() ro<r<oo
1 -1 . . Y
Note, I used % and not = as in class notes, since I am using L = —((py) —qy) as the

operator and not L = + ((py’)l + qy). Now C is given by

C = p (ro) (1 (r0) 5 (r0) — ¥ (r0) ¥2 (o))
Where from (1A) we see that
y1(ro) =19
yh (rg) = —nrg™™
yi (ro) = nrg™!

Y2 (ro) = 1"
Therefore C becomes
C=p(ry) (—nrg”‘lrg - nrg‘lr(j”)
= 2nry"p (1)

We just need now to find p (rg). This comes from Sturm Liouville form. We need to convert the
ODE r2y” (r)+ry’ (r)-n?y (r) = 0 to Sturm Liouville. Writing this ODE as ay” +by’+(c + )y =0

2All the following is for n # 0, since for n = 0, only trivial solution exist
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where a =2, b =r,c = 0,A = —n?, therefore

b r
p:efﬁdr:efr_zdr:r

— C_O
GI——P;—
p_T_
- =

72

_ !
p= r

Hence the SL form is (py’), —-qy + Apy = 0. Hence the SL form is (py’), -qy+ Apy =0 or

(ry’)’ - }nzy =0 (2A)

d

- (rdir)) [y] and in standard form it becomes L [y] + %nzy =0.

Hence the operator is L [y] =- (
The above shows that p (ry) = ry. Therefore

C=2n
Hence Green function is now found from (2) as, for n # 0

1) O0<r<r
G(rro)=5-3 .,
2n | rjr rg <7 <00

Since f(r) in the original ODE is zero, there is nothing to convolve with. i.e. y(r) =
Loo G(r,rg) f (r9)drg here is not needed since there is no f(r). Therefore the above is the
final solution.

Extended solution

This solution shows derivation of (2) above. It can be considered as an appendix. The Green

function is the solution to
2
G (r,70) + G (r, 1) = =G (1,70) = 6 (r = 10) (aB)

limG(r,r) =0
r—0
lim G(r,r) =0
r—o00

In (1B), ry is the location of the impulse and r is the location of the observed response due
to this impulse. The solution to the above ODE is now broken to two regions

Ay (1) + Ay, (1) O<r<r

G(r,r) = { (2)

Blyl (7’) + BlyZ (1’) rp <r<oo

Where y; (r), y, (r) are the solution to ry” (r) + v’ (r) - n—:y (r) = 0 and these were found in part
(a) tobeyy (r) =1",y,(r) =r" and Ay, Ay, B1, B, needs to be determined. Hence (2) becomes

At + Ayr ™ 0<r<ry

G(r,r) = { 3)

Bir" + Bor™" Tg <1 <o0

The left boundary condition lim, ,y G(r,7y) = 0 implies A, = 0 and the right boundary
condition lim,_,,, G(r,7y) = 0 implies B; = 0. This is needed to keep the solution bounded.
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Hence (3) simplifies to

Alf’n 0<1"<1’0

G(r,ro) = { (4)

Byr™" To <1 <00

To determine the remaining two constants Aj, By, two additional conditions are needed. The
first is that G (r,rg) is continuous at r = ry which implies

Alrg = Bz?ﬁn (5)
The second condition is the jump in the derivative of G (r, ) given by
d d -1
—G(r,r) ——G(V,T’) =
dr ° >10 dr ° r<ro p (rO)

Where p (ry) comes from the Sturm Liouville form of the homogeneous ODE. This was found
above as p(ry) = ryp. Hence the above condition becomes

d d -1
—G (rl 7/‘0) -G (1’, 7’0) -
dr o dr 0
0 r<rp
. d - d _ .
Equation (4) shows that —G (r, o) . = —nB,ry" ! and that =G (r, 1) o = nA;riL. Using
these in the above gives the second equation needed
-1
—nByrg" = At = — (6)
o
Solving (5,6) for Ay, By: From (5) A; = B,ry?". Substituting this in (6) gives
-1
—n-1 21\ -1 _
-nByry" T - n(Bzro ”) T = P
—n-1 —-n-1 -1
—nByr™ 7 —nByr = —
To
—2nB2r5”‘1 = —r(‘)l
-1
B2 = —2nry"
1
—
2nr0
But since A; = B,r5?", then
1,
Al = %1’81’02”
1
]
2n o

Therefore the solution (4), which is the Green function, becomes, for n # 0

1
=" 0<r<ry
G(rr) =14 . (7)
—ryr rg <t < oo
2n
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3.7.3 key solution to HW 7
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