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Chapter 1

Introduction

1.0.1 syllabus

UWM Math 601-001 Fall 2018 Syllabus
TR 9:30-10:45 am - EMS E170
ADVANCED ENGINEERING MATHEMATICS 1L

[
.

Instructor: Dr. Istvan Lauko

Office number: EMS E441

Office phone: (414) 229-4920

Office hours: TR 10:50-12:10 or by appointment
E-mail address: iglauko@uwm.edu

Recommended Text: E. Kreyszig: Advanced Engineering Mathematics, 10th Edition, John
Wiley and Sons;
Instructor's lecture notes

Material covered:
Selected sections from Text: Chapters 1-4, 6-8, 13-15 & 21.

Important dates:
Last day to drop without a "W' grade: Oct 1.
Last day to drop the course: November |

Prerequisites: JR ST; MATH 234(P) OR ELECENG 234(P); OR GRAD ST.

Grading:

Test 1: 30%

Test 2: 30%

Final exam: 40%

Test dates:

Test 1: October 4.

Test 2: November 8.

Final exam: December 20, 7:30-9:30 am in EMS E170.

All students are expected to take the examinations at the announced time. No make-up test will be
given.

(
.

Homework: Homework will be assigned regularly but not collected.

Syllabus Addenda

To comply with a Higher Learning Commission requirement, the course syllabus will provide
information on the investment of time by an average student to achieve the learning goals of the
course.

The amount of time that an average student should expect to spend on this class is as follows:

34 hours Time in the classroom (face to face instruction)

80 hours Time completing Assignments

30 hours Time for preparation and study for and work on Tests and Exams.
Total number of hours: 144.






Chapter 2

HWs

21 HW1

2.1.1 Problem set

“PROBEEM-SET 13— —

@/(Powers of i) Show that i2 = —1, i3 = —i, i* = 1,
5

P=iccandVi=—i 1/i?= -1, U =i - --.

2. (Rotation) Multiplication by i is geometrically a
counterclockwise rotation through 7r/2 (90°). Verify
this by graphing z and iz and.the angle of rotation for
z2=2+2i,z=-1—-5i,z=4 — 3i.

3. (Division) Verify the calculation in (7).

4. (Multiplication) If the product of two complex numbers
is zero, show that at least one factor must be zero.

5. Show that z = x + iy is pure imaginary if and only
ifz= -z

6. (Laws for conjugates) Verify (9) for z; = 24 + 10i,
Zo = 4 + 6i.

COMPLEX ARITHMETIC
Letz; = 2 + 3i and z; = 4 — 5i. Showing the details
of your work, find (in the form x + iy):

@) 5z + 325)° 8. 7,7

9. Re (1/z;%) . y Re (z5%), (Re z3)?
1. zp/2y 2y/2s, (21/22)

13. (42, — z)?
15. (z; + z)/(z1 — z2)

Let z = x + iy. Find:

16. Im z3, (Im z)3
17. Re (1/2)

18. Im [(1 + )%2?]
19. Re (1/z%)

14. 21/21, 21/21

(Laws of addition and multiplication) Derive the
following laws for complex numbers from the
comresponding laws for real numbers.

21+ 2p =25 + 21, 212 = 22, (Commutative laws)

(1 + 22) T z3 =z + (22 + 23)s
(Associative laws)

(z122)23 = 21(z223)
21(zz + 23) = 2125 + 2123 (Distributive law)
0O+z=z+0=z¢g
z+(—)=(—2+z=0, z'1 =z



]

: 612 CHAP. 13 Complex Numbers and Functions
| -_ﬂ'
| | Poblem s 132 K
. —_— T 2+ 3§ where signy = 1 ify 2 0, 81gny—-—11fy.-,:0lq
! 7. = @ S+ 4 and all square roots of positive numbers are (q, cﬁi’i
with positive sign. Hint: Use (10) in App. A3.] ""’llh?
PRINCIPAL ARGUMENT . FG/ ::'j ol T R
. - c) Find the square roots of 4i, 16 — 3
Determine the principal value of the argument. 9 + 8V/7i by br]nh (18) and (19) and commen(:lo anﬂ:‘
. 2. —1 - 10. —20 + 4, =20 — i work involved. "y
4 + 3 12, — 72 (d) Do some further examples of your own and 3Pply-l
3.7 %7 14. (1 + )2 a method of checking your results. ‘]
15. (9 + 9i)® .
@590 27-30] EQUATIONS #
16-20| CONVERSION TO x + iy Solve and graph all solutions, showing the details: ::j‘l.
Represent in the form x + iy and graph it in the complex 27. 22 — (8 — 5i)z + 40 — 20i = 0 (Use (19))) ﬂ\?
plane. 28. z4 + (5 — 14i)z% — (24 + 10i) = 0 4
16. COS%’IT+ i sin (i%’ﬂ) 17. 3(COS 0.2 + i sin 02) 29 2 = (36 _ 6l)Z +42 —11i=0 ;:-q
Iy 1 oo 1 _ . _ * .j
4(cos 5;" *isingm)  19. cos(=1) +isin(=1) 30. z* + 16 = 0. Then use the solutions to factor z* + 15’%
. 12(cos 37 + i sin3m) into quadratic factors with real coefficients. _ﬂ
21-25| ROOTS 31. CAS PROJECT. Roots of Unity and Their Gmphgﬁ
Find and graph all roots in the complex plane. Write a program for calculating these roots and for:
21. V=i &1 graphing the'rfl as po.ints on the unit circle. Apply lhf‘
23, W1 @ V3T A program to 2" = 1 withn =2,3, - - -, 10. Then extend,
B the program to one for arbitrary roots, using an ldea
25. near the end of the text, and apply the program m
26. TEAM_PROJECT. Square Root. (a) Show (hal CEamplEsioponHERGice. g
W = Vz has the values INEQUALITIES AND AN EQUATION ]
wi=Vr [cos [ oy 8 i| , Verify or prove as indicated.
2 2 32. (Re and Im) Prove |[Re z| = |z], |[Im 2| = [¢].

P 0 33. (Parallelogram equality) Prove
(18) w2=\/; cos(—+1r)+isin(—+ﬂ-):| 2 : ) .
2 2 2y + 22 + |z1 — 2l = 2(|21* + [z,

PRI TR, SNy

= ~wi. Explain the name.
(b) Obtain from (18) the often more practical formula 34. (Triar;gle ilzlequality ) Verify (6) forz; = 4 + 7i,
23 & + 2i.

(19) Ve = %[V} (lz] +x) + Gign»iV3 (2] + )] @,(Triangle inequality) Prove (6).

E PROBEEM-_SET 133—
CURVES AND REGIONS OF 3.0<lz-1]<1 4. —m<Rez<m
PRACTICAL INTEREST Imz? = 2 6. Rez> —1
. . e e y
E;nd and sketch or graph the sets in the complex plane given 7 e+ 1) =l - 1| Arg 7| = im
Lle-3-2=¢ (Nslk-1+4]s5 9 Rez=Inz 10. Re (1/7) < 1

>



1. Using the Cauchy-Riemann equations, show that e* is
entire.

Values of ¢ Compute ¢ in the form » + iv and ég) e

|e*], where z equals:

18-21| Equations. Find all solutions and graph some of
them in the complex plane. }

3z z — _
, eF =4 197e— 2 7}
=0 @e==4—3i |

203 + i 3.1 + 2i 22. TEAM PROJECT. Further Properties of the
N s ) Exponential Function. (a) Analyticity. Show that ¢
4. V2 ‘27” SlmE ) is entire. What about e'/2? ¢? e*(cos ky + i sin ky)?
6. (11 Hm 7. 0.8 — 5i (Use the Cauchy-Riemann equations.) |
8. 92 (b) Special values. Find all z such that (i) e* is real,
) (i) le7*] < 1, Gii) € = &. |
9-12| Real and Imaginary Parts. Find Re and Im of: (¢) Harmonic function. Show that
-2z z3 .
% ezz - e1/z u = e*¥ cos (x2/2 — y2/2) is harmonic and find a
11. e @ € conjugate.
13.17] Polar Form. Write in polar form: (d). Uniqueness. I‘t is interesting that f(z) = e 'is
A 4.1 +i ' uniquely detenmned’ by the two properties
‘-\.Il.e" n‘ ! ) f(x + i0) = e”and f (z) = f(z), where f is assumed
15. Vz (\ 3+ 4 to be entire. Prove this using the Cauchy-Riemann
17. -9 equations.
[ +4
E
= PROBEEM-_SET 136 —
Er‘_ 1. Prove that cosz, sinz, coshz, sinhz are entire 14. sinh (4 — 3i) 15. cosh (4 — 6ri)
[ functions.
I 2. Verify by differentiation that Re cos z and Im sin z are 16. (Real and imaginary parts) Show that
- harmonic. .
. Re tan 2= S x COs X ‘
£ 3-6| FORMULAS FOR HYPERBOLIC FUNCTIONS cos® x + sinh®y ’
Show that sinh y cosh y
) L . Imtanz = —5——— -5 T smhZy
3. cosh'z = coshi'cosy +4isiiitix sin ¥ cosTx T sty
sinh z = sinh x cos y + i coshx siny. 17-21| Equations. Find all solutions of the following
s ' equations.
4. cosh(z; + 2g) = coshz, coshzg + sinhz, il 2 17. coshz =0 18, sinz = 100
T - ! Y .19, cosz = 2i 20. coshz = —1
sinh (z; + 22) = sinh z; cosh 23 + cosh z; sinh z;. 21. sinhz = 0

22. Find all z for which (a) cos z, (b) sin z has real values.

5. cosh®z — sinh%z = 1
6. cosh? z + sinh®z = cosh 2z

23-25| Equations
definitions, prove:

and Inequalities. Using the

7-15
7. cos (1 + iy
9. sin 5i, cos Si

Function Values. Compute (in the form u + iv)

sin (1 + D)

10. cos 3411

cos z is even, cos{(—z) cos z, and sinz is odd,
sin (—z) = —sin z.

24, |sinh y| = |cos z| = cosh y, |sinh y| = |sin 2] = coshy.

11. cosh (—2 + 3i), cos (=3 — 2i) Conclude that the complex cosine and sine are not
12. —i sinh (—m + 2i), sin (2 + 1) bounded in the whole complex plane.
13. cosh 2n + Dwi,n = 1,2, - - 25. sinz, cos z, = isin (z; + z5) + sin (z; — z2)]
= PROBLEEM-SET 37— ——

1-9| Principal Value Ln z. Find Ln z when z equals: 12. Ine 13, ln (—6)

L -10 2.2+ 2i In (4 + 3i) 15. In(—e™%)

32-2 4. -5 0.1i 16. In (%)

5. -3—-4i 6. —100

7. 0.6 + 0.8 ° 8. —ei 17. Show that the set of values of In (iz) differs from the

9.1 set of values of 2 In i.

18. Inz =2 — )7
20. Inz=¢e— wi

Equations. Solve for z:

1nz =03+ 07

21. Inz=2+3im

10-16| All Values of In z. Find all values and graph
some of them in the complex plane.

10. In1 11. In(—1)
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22-28| General Powers. Showing the details of your

work, find the principal value of:

22. {2 (2i)} 3, 43+
24. (1 — )+ 1+
26. (—1)172 27. 12

28. (3 — 43

How can you find the answer to Prob. 24 from the
answer to Prob. 257

30. TEAM PROJECT. Inverse Trigonometric and
Hyperbolic Functions. By definition, the inverse sine
w = arcsin z is the relation such that sin w = z. The
inverse cosine w = arccos z is the relation such that
cos w = z. The inverse tangent, inverse cotangent,
inverse hyperbolic sine, etc., are defined and denoted
in a similar fashion. (Note that all these relations are
multivalued.) Using sinw = (¢ — e¢~*)/(2i) and
similar representations of cos w, etc., show that

21.2 key solution

10

CHAP.13 Complex Numbers and Functions

(a) arccosz = —iln(z + V2 - 1)

(b) arcsinz = —iln (iz + V1 — 2%
(¢) arccoshz=In(z+ V-1
(d) arcsithz =1In(z + V2 + 1)

. -
(e) arctanz = i In l z

i—z

1 1+
(f) arctanhz = — In i

2 1-2z2

(g) Show that w = arcsin z is infinitely many-valued,
and if w; is one of these values, the others are of the
formw, * 2nrand # —w; * 2par, n=0,1,-..
(The principal value of w = u + v = arcsing ig
defined to be the value for which —7/2 = u = #/2
fvz0and — /2 <u < @w2ifv<0.)
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HW 2

Problem set

1-10| SEQUENCES

Are the following sequences 2y, 2, * * * , Zp, * * - bounded?
Convergent? Find their limit points. (Show the details of

your work.) i
Loz, = (-1 + 2" (2 z, = e
iz, = (D™ +i) 4z,=(1+D)"
Bz, =Ln(@ + )Y {6z, = (3 + 4i)"n!
7. z,, = sin (nar/4) + i® 5 z, = | +3)V10]"
9. z,=(09+01)% 10. z, = (5 + 5)™"

11. Tlustrate Theorem 1 by an example of your own.
12. (Uniqueness of limit) Show that if a sequence
/5 ~, Converges, its limit is unique.
! 13. *(Addltlon) If 71, 2o, - - - converges with the limit / and
wﬁ/w/ zi™, Z®, converges with the limit ¥, show that
71t z1%, 29 + 29%, - - - converges with the hmit I+ 1%
14. (Multiplication) Show that under the assumptions of
Prob. 13 the sequence zyz1*, zpzo™, * - - converges
with the limit 11*.
15. (Boundedness) Show that a complex sequence is
bounded if and only if the two corresponding sequences
of the real parts and of the imaginary parts are bounded.

SERIES

Are the following series convergent or divergent? (Give a
reason.)

(10 — 151)"

16. E ———— 17.

—1)"(1 + 2"+t
@n + 1!

18

25. What is the difference between (7) and just stati
lzn+alzal < 12

26. Tlustrate Theorem 2 by an example of your choice.

27. For what n do we obtain the term of greatest absol
value of the series in Example 4? About how big is
First guess, then calculate it by the Stirling formula iz
Sec. 24.4.

28. Give another example showing that Theorem 7 is mor
general than Theorem 8.

29. CAS PROJECT. Sequences and Series. (a) Write
program for graphing complex sequences. Apply it t
sequences of your choice that have interestin
“geometrical” properties (e.g., lying on an ellipse
spiraling toward its limit, etc.).

(b) Write a program for computing and graphin;
numeric values of the first n partial sums of a series
of complex numbers. Use the program to experiment
with the rapidity of convergence of series of your .
choice.

30. TEAM PROJECT. Series. (a) Absolute convergence
Show that if a series converges absolutely, it is !
convergent.

(b) Write a short report on the basic concepts and -
properties of series of numbers, explaining in each case
whether or not they carry over from real series
(discussed in calculus) to &omplex series, with reasons
given.

. 1. (Powers missing) Show that if 3 a,,z™ has radius of 2. -l ®  9loon
convergence R (assumed finite), then = a,,22™ has radius 8 X — &+ 1" 6. > = Z"
of convergence VR. Give examples. Bl mEOL
2. (Convergence behavior) Illustrate the facts shown by v [aY . i
Examples 1-3 by further examples of your own. @20 (;) < 8. Eo 22y ¢
RADIUS OF CONVERGENCE ”~ @ (gn
£ n,n 2)
Find the center and the radius of convergence of the (. j, 2 (n— )" 10. > (2n)!
following power series. (Show the details.) =)
(z+z) =z . f‘”\;“’ (— 1)“+1 n' =) P g
3. 5_‘, 4.3) — @+ 20) SLJ’E 12.3) e (z—5)
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'CHAP.15 Power Series, Taylor Serie

13. S n(n — Dz = 3 + 20

2.2.2 Problem 2, section 15.1

nri

Is sequence z, =¢ 4 bounded? convergent? Find their limit points.
Solution

Sequence is bounded, since each element has modulus 1. It does not converge, since sequence
repeats. 2m = %, hence n = 8. So only 8 elements are unique. Each of these is limit point. These

are roots of V1.

2.2.3 Problem 6, section 15.1

Is sequence z, = (3:%1') bounded? convergent? Find their limit points.
Solution
(re)"
Zy =
n!

But r =5 and 6, = arctan (%) The above becomes
5nein90
Z, =

5n

n!
einQO
n!
Since modulus of ¢"% =1, then we just need to look at % to see if it is bounded or not. lim,,_,, % =0.

.. . . 57 .
So it is bounded. Since n' term goes to zero as n — oo it converges. The terms are o (cosnBy + isinnf).
N !

. . 5
It converges to zero, since lim,,_, i 0.

2.2.4 Problem 13, section 15.1

If z;, 25, - converges to L, and zy,Z,, --- converges to L, show that z; + 21,2, + 2y, - converges to L+L

Solution
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This problem seems to be based on the idea that if sequence is convergent to L, then for any ¢ no
matter how small we can find an #n, such that |z, — L| < . So let us pick

|z, — L| < %s
_ 1
|Zn—L| < EE

Where in the above, we did the same for the other sequence. Now by triangle inequality |A + B| <
|A] + |B|, where now we treat A as (z, — L) and B as (Zn - E), we have

(zn—L)+(zn—E)|slzn—L|+|zn—L|

(z, +z,) - (L+L)| < 1£+1.€
2 2
The above is |(zn +Zz,) - (L + l)l < &. But this is the definition of a limit. It says that (z, + z,,) has
limit L + L, which is what we are asked to show.

2.2.5 Problem 18, section 15.1

0 i

Are the following series convergent or divergent? Give a reason. ), ", -

Solution

(o)

. 1 .
. = rges and since
n=0 22 Since —; converg

The numerator has modulus 1. So we just need to consider ),

. . 1 1 .
|n2 - 21| > n? (vectors, Argand diagram), then R <3 therefore it converges. We could also use

the ratio test, but this is simpler.

2.2.6 Problem 19, section 15.1

00 1

n=1 \/_ﬁ

Are the following series convergent or divergent? Give a reason. ),
Solution

Since terms are nl—a where |a| < 1, since a = % here. Then we know it is divergent. It series becomes
convergent for @ > 1. To show this, we can try the ratio test. But this gives the limit of 1, so ratio
test is inconclusive. Using the integral test is best here. (notice that only upper limit is needed
in this test, no need to use lower limit). We can use the integral test because the terms \/% are
monotonically decreasing.

. N 1 ) N
lim —dx = lim (2\/&)
x2 N—-oo

N—ooo
= lim 2\/ITI

N—-oo

=

Hence diverges.

2.2.7 Problem 24, section 15.1

A\
Are the following series convergent or divergent? Give a reason. Y;° 1 (—)

Solution
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Trying ratio test gives

; n+1
lim iy lim (n+1)2 (5)
- 2 N
n—oo| g, n—0o0 n i
3
1+l
1
+1)? (')
= lim (n 2) 3. -
n—-oo n 1
(5
A\ n+1
5
= lim 3‘

Since limit is smaller than 1, then converges.

2.2.8 Problem 7, section 15.2

. . . a\"
Find center and radius of convergence of series E:’:O (;) z"

Solution

For these type of problem, always compare it to standard form ¥ A, (z - z)". Where z is the
center of disk. So we see that here z, is the origin. Now to find R (the radius of convergence), it is

Apt1
Ay

given by the inverse of L = lim,,_,, . Therefore we start by finding L

a\n+1
=[O
(5)

an+lbn
= lim

n—ooo | ghp+l

. la
= lim |5
i
b

b
Hence R = |;|

2.2.9 Problem 9, section 15.2
Find center and radius of convergence of series E‘:’:O (n—-i)"z"
Solution

The center is zy = 0 by comparing to E:’:O A, (z-zp)". To find L
_ i)n+1

(n-i)"

Hence R =1.

2.210 Problem 11, section 15.2

(71)n+1
n

n

Find center and radius of convergence of series ¥, | z

Solution



The center is zy = 0 by comparing to 220:0 A, (z-1zp)". To find L

L=1lim

n—o0

= lim

n—oo

= lim
1n—00

=1
Hence R =1.

2.2.11 Problem 12, section 15.2

Find center and radius of convergence of series ),

Solution

(71)n+2
n+2
(_1)n+1
n
(_1)n+2 n
(1) (n+2)
n
(n+2)

n=1 (1+i)"

The center is zy = 5 by comparing to ¥™ | A, (z—z)". To find L

L= lim

n—oo

= lim

n—oo

= lim

n—oo

= lim

n—oo

n—oo
= lim
n—00

Hence

2.2.12 Problem 18, section 15.2

Find center and radius of convergence of series Y

Solution

4n+1

A

1+i)"
4m+1(1 4+ 4)"
4n (1 + )"
4(1+9)"
a+i"?

4

1+
4

1+ 1]

2

n=1 pn(ut

© (-5

22



The center is zy = —7i by comparing to ,°" | A, (z - 2p)". To find L

(4(n+1)!
e | 20D ey
L= lim | =
2n(ny*
, (4(n +1))12" (n))*
= lim 1
= | (417)1201+1) (1 + 1)1)

1. |@®m+1) @)
2 e | (4n)! ((n + 1)1)*
(dn + 4)! (n))*
=% | (4n)! ((n + 1)
(4n + 4) (4n + 3) (4n + 2) (4n + 1) (4n)! (n!)*
@n)! (n +1)*
(4n + 4) (4n + 3) (4n + 2) (4n + 1) (n))*
((n+ 1))
(4n + 4) (4n + 3) (4n + 2) (4n + 1) (n))*
(n+1) n!)4
dn+4)dn+3)dAn+2)(4n+1)
(n+ 1)4
256n* + 6401° + 56012 + 200n + 24|

l
8

S —
=
8

T:
=

l
8

S —
=
8

S —
=
=

l
8

NI= NI~ NI~ NI~ NP N=

S —
=
=

!
8

nt+4n3 + 6n2 +4n +1

Hence

256 + 640~ + 560~ + 200~ + 2
n n n n

1 1 1 1
1+4-+65+4—5+—
n n n n

L= im
(o]

N =
S
l

1
= —(256
> (256)
=128

Hence

R=18
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2.3.1 Problem set
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i #
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H ¢ i
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b o= ,sﬁ‘mi‘t*g/
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2.3.2 Problem 1

Consider the power series below. Given the center and find radius of convergence for each.

[ee)

1. ngln (z + z'\/i)”
2. f] (3) @-in)"

Solution



1) Comparing to form Zan (z-zy)" then center is —iV2. Now,

n=1
L= lim |22
n—-eo | q,
. (n+ 1)|
= lim
n—0o0 n
=1
Hence R=1
2) Comparing to form Ean (z-zp)" then center is it. Now,
n=1
L = lim |2+
n—-eo | q,
a\n+1
e
- nglolo a\n
;)
. a
=l (5
_a
b
b
Hence R = -

a

3) Comparing E%z” to Z”n (z—zp)" then center is 0. Now
n=0 n:

n=1

T
L = lim [Z=
n—eo| a,

B(n+1))!

s |2 @rny?
= lim | =%
21y

| G+t )’
= lim 3
e | (3n)128+1 ((n + 1)!)
1. | Gn+3)m)y
2150 | 3n)! ((n + 11>
1 Gn+1)(3n +2) 3n +1) 3n)! (n!)°
2 e @m)! ((n+1))°
1 Gn+1)(3n +2)3n +1) (1)°
2 neo (1 +1))°
1 Gn+1)(3n +2)3n +1) (1)’
2 1 (1 + 1)1y’
1 Gn+1)GBn+2)Gn+1) (n!)°
2
1
2
1
2

- (n+1)% (1)
BGn+1)Bn+2)Bn+1)
o (n+1y°
BGn+1)Bn+2)Bn+1)
- (n+1)°

Hence the above becomes

2713 + 3612 + 151 + 2
nd+3n2+3n+1

1 1 2
1 274360 +15 +

T .1 1
2n=eof ] 43- 43— 4 —
n n n

26



2;
IIeIl e R = .

4) Comparing Eﬁ (z-(-2+10)" to Zan (z - z0)" shows that center is zyg = =2 + i. Now
n=0

n=1

. Ap+1
L= lim |—
n—oo | g,

_r

~H+1

= lim —(1+11)
n—o0

1+i)"

. 1 +q)"
= hm PN
n=eo | (1 + q)

1
= lim -
e | (L4 1)
1
1+19)

1
V2
Hence R = \/E

2.3.3 Problem 2

Find radius of convergence using both 1) R = % where L = lim,_, fnil

and 2) the termwise

n
differentiation/integration properties of power series. Do this for

o 6 .
Lo¥7, —(z-i)

oo  3'"(n+1)n on
2. Y %

Solution

1) First method. The center is i. And

. (6n+1)n

= lim

n—co | 6" (1 + 1)

i 6n
= I
=6l n
=6
=6

1
Hence R = 5

Second method: Taking termwise differentiation gives

o n

F@=Y e

n=1

=63,6"(z-i)""
n=1

Changing the indexing gives

f@)=66"(z-i"
n=0

=6, (6(=-1)"
n=0
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. R, N L1 . .
Comparing to Binomial series Zr”, the above is 6;— where r = 6 (z - i). Hence this converges for
n=0
‘ N1 . Gl q o . .
"l <lor|6(z-1i)|<1or|z-1i)< : and diverges for |z — 1] > : Since termwise differentiated series

. 1 .
has same radius of convergence, then R = - as using first method.

3M(n+1)n

n (o) .
= (zz) to X, au (z = 20)" then center is zero. And

2) First method. Comparing 3.
TODO

2.3.4 Problem 3
Show that ﬁ = E:;o (n+1)z", using (a) the Cauchy product. (b) By differentiating a suitable
series.

Solution (a)

11 1
1-z°% (@(1-2(1-2)
=(1+z+zz+z3+---)(1 +z+zz+z3+--~)

=(1+z+zz+23+---)+z(1 +z+z2+z3+--~)+zz(1+z+zz+z3+---)+-~~
=(1+z+zz+23+---)+(z+zz+z3+~~-)+(zz++z3+z4+~--)+---

=1+2z4+32%2+4z4+ - Iz <1

But 3 (n+1)2" =1+2z+32* + 4z* + ---. Hence the same.

Solution (b) Observing that

d
n+1)z" = —z"*1
dz

Then

(o)

ngo(n+1)z” = E EZ’“

n=0

_ d 3 1
_Enz::‘)zvﬁ
d [ee)
:Englzn

= %(z+zz+z3+---)
= £(2(1+z+22+---))

_E(L)
T dz\1-2z

d A A’B-AB’
&) _ , hence the above becomes, where A=z,B=1-z2

ut ———

dz B(z) = B?
R (1-2)-z(-1)
Nz =—2 >~

nzzo(n+ )z (1_2)2
_1—z+z
S a-z2?
B 1
(-2

2.3.5 Problem 4

If f(z) is an even function, where f (z) = ZZO:O a,z", show that a, = 0 when 7 is odd. And if f (z) is
odd function, show that a,, = 0 when 7 is even.

Solution

If f(z) is even, then f(-z) = f (z). Therefore
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(o] (]
N, (-2)" =), a,2"
n=0 n=0

2 — a7 v agzt — o = ag + ayz + ay2% + a3 + agzt +

ag — Az + ayz

Since power series is unique, then we must have a; = —a; which means a4, = 0, the same for a3 = —a3,
which gives a3 = 0 and so on for all odd a,,.

If f (z) is odd, then f(-z) = —f (z). Therefore

(o] (o)
D, (=2)" ==Y, a,z"
n=0 n=0

ap —alz+a222—a3z3 +IZ4Z4— e = —([10 +alz+ﬂ2Z2 +H3Z3 +a4z4 + )

= —ay — Mz — Ay2% — a32° — auzt + -

Since power series is unique, then we must have gy = -4y which means a4y = 0, the same for a, = —a,,
which gives a, = 0 and so on for all even a,,.

2.3.6 Problem 5

Develop the functions below in Maclaurin’s series and determine the radius of convergence R for
each. (a) cos (222), (b) 22

1-22
Solution (a)

2 X4 X6

cos(x):1—5+z—a+

Replacing x = 222 gives

), () @2

COS(ZZZ)Zl— TR TR
2224‘1 2428 . 26212 ‘
ST T T e
L 4zt 478 43512
B TH TR
~ i( 1)n 4nZZn
o (2n)!



Hence

Apv1
ay

(4zz)n+1
Q(n+1))!

(+22)’

(2n)!

(422)”+1 2n)!
(422)" @(n + D).
422 (2n)!
(2n +2)!

472 (2n)!

2n+2)(2n+1)(2n)!

30

472
s |20 +2) (21 +1)
472

e |2 v e+ 2

1
HenceR:—:oo

(b) = ] z2 Apply partial fractions. Obtain two binomial series and combine.

2.3.7 Problem 6

Develop (a) f(z) = - in Taylor series around z; = i. (b) g(z) = ¢* around zy = 4. What is radius of
convergence?

Solution (a)

E-)f7G)  @-i) f” )
T 3l *

f@=fO+E-0)f @+

, 1 17 2 73 2)3
But f’(z) = _z_Z’f (2) = 2_3/f (z) = _Li)r

-, hence the above becomes

(z - i) 2 (z—i)3 2(3)
f@= "(Z_l)_ o B al (_ i4)+
~2
- it (z-i)+2iC 2) —2(3)(‘2_1)
=i+ @-)+iz—i)—(z—i)] +--
_n=0 in+1 (Z_l)

Hence this convergence for |z —i| < 1.

Solution (b)

(z-a)’g”(a) (z-0a)’g"” (a)
21 * 3l *

§@)=g@+(z-a)g (a)+

But ¢’ (z) = ¢%,8” (z) = €%,¢" (z) = €%, --+, hence the above becomes



@) =e"+(z—a)e” +

=e”(1+(z—a)+

(o]
-3
n=0 n!

In+1

Where L = lim,,_,,

= lim,

1
R =+ = co. Converges everywhere.

2.3.8 Problem 7

Show that ¥°" o)

Solution:

(z-a)

1
(n+1)!
1
nt

(z— u)z e (z- u)3 e
2! 3!
2 3
zZ—a zZ—a
( )+( )+m)
2! 3!
= lillln—»oo __El__ = 1My, e ___j___ =1
(14n)! n!(1+n)

2
n! . .
) z" converges uniformly in |z| <3

31

1
My oo T = 0. Hence

To find if it converges uniformly for |z| < 3, we need to find R, the radius of converges using normal
method, then it R > 3, then it will converge uniformly for |z| < 3.

L= lim

Hence Radius of convergence R = 4. Since 3 < 4, then it converges uniformly for R < 3.

2.3.9 Problem 8

n—oo

= lim

n—oo

= lim

n—oo

= lim

n—oo

= lim

n—oo

= lim

n—oo

= lim

n—o0

= lim

n—oo

= lim

n—oo

A+l
ay
((n+l)!)2
2(n+1))!

2n)!

((n + D> (2n)!
(% (2 (n +1))!
((n +1)n!)* 2n)!
)2 (1 +1))!
(n +1)* (2n)!
2n +2)!
(n +1)* 2n)!
2n+2)(2n+1)(2n)!
(n+1)
2n+2)2n+1)

n?+2n+1
4n? + 6n +2

2 1
1+-+5
n n

2

6
4+ ) + )

n
+2 .
Where does 3| ( . ) z" converges uniformly?

5n-3
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Solution We first find R. Since the series of the form Z:’:l A"Z" then it is easier to use

1

L=lim %|A"
n—oo
1
= lim #/|A"|

n—oo

= lim

n—oo

= lim

n—oo

Hence R = 5. Therefore it converges uniformly for |z| <r <5
2.3.10 key solution
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2.42 Problem 1
part a

Yy =—cosx+2ax+b
Yy’ =sinx +2a

Yy =cosx

Substituting into the ODE y"”” = cos x shows it satsifies it. Hence this is true for any a,b,c.

part b

sin(x+c)

Since tan (x +c¢) = st

y’:1+tan2(x+c)

Substituting this into the ode y’ =1+ y? gives

1+tan®(x+¢) =1+ tan®(x + ¢)
Which is true for any ¢

2.4.3 Problem 2
see Key.

24.4 Problem 3
see Key

2.45 Problem 4
(a) Find all solutions to yy’ +25x =0 (b) ¥’ = ky? (c) xy’ =x+y
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Part a

Hence

For real solution, we want C; > 25x2.

Part b

Part c

d_y:1+y x#0
dx X

d
or y = ux. Hence % = u’x + u and the above ODE becomes

_y
Let u = -

X

wx+u=1+u

1
du = —dx
X
u=Inlx|+C
Hence

y=x(nlx+C)

2.4.6 Problem 5

(a) Solve the IVP i’ (x) =1 + 4y? with y (0) = 0. (b) ¥’ = —i with y (1) = V3 (c) ey’ = 2 (x +1)y? with
y(0) = ¢

Part a
Y (x) =1+ 4y
d
y__ dx
1+ 4y?

1
3 arctan (Zy) =x+C

arctan (Zy) =2x+C;
_ tan(2x + Cy)
S

Applying IC gives



Hence C; = 0. Therefore the solution is

Partb

Applying IC gives

Hence solution is

For real solution 4 — x% > 0.

Part c

Hence

Applying IC gives

Hence solution is

1

OZEtan(Cl)

= 7 tan (2
y =5 tan(2x

—

/ Yy
ydy = —xdx
1o_ 1,
7Y =—5% +C

3=-1+C
C1 :4
v =-x>+4
y=+V4-x?

ey =2(x+1)y?

3—2=2(x+1)e"‘

y2dy =2(x+1)e™
1
—— = f2(x+1)e‘xdx
y

=2x+2)e*+C

1
Y6+ + G
_ 1
C2xe X +4e ¥ + C
11
6 4+C
4+C1 =6
C1:2
1
y

- 2xe™* +4e™* + 2

43
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2.4.7 Key solution
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2.5.1 problems description
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2.5.2 problem 1

part a
The ODE to solve is
d
V@) +4y() =20
with initial conditions y (0) = 2.
Trying separable ODE.

In canonical form, the ODE is written as

Yy =F(x,y)
=—4y+20

The ODE % = —4y + 20, is separable. It can be written as

dy 3
T f)gy)
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Where f(x) =1 and g(y) = —4y + 20. Therefore

% =-4y+20
Hence
(~4y + 20)_1 dy = dx
f(—4y +20)  dy = fdx
-12In@@)-1/4In(ly-5) =x+C
Solving for y gives

y=-1/4e4¥4C1 45

The solution above can be written as

y=-1/4Cie™** +5 (2.1)

Initial conditions are now used to solve for C;. Substituting x = 0 and y = 2 in the above solution
gives an equation to solve for the constant of integration.

2=-1/4C1e+5

=-1/4C; +5
Hence
=12 ()
Which is simplified to
C;=12

Substituting C; found above back in the solution gives

y(x) = —3e**+5

part b
The ODE to solve is
%y(x) + 3y (x) =sin(x)
with initial conditions y (7/2) = 3/10.
Trying Linear ODE.
In canonical form, the ODE is written as
Yy =F(x,y)
= -3y +sin(x)
The ODE is linear in y and has the form
Y =yf(x) +8()
Where f(x) = -3 and g(x) = sin (x).
Writing the ODE as
y - (—3 y) = sin (x)
Y +3y =sin(x)
Therefore the integrating factor yu is
u = ef:)’dx = 3%
The ode becomes
d .
L=k (sin (x))
d (ye3x) = sin (x) e3¥

dx

d (ye3") = (Sin (x) e3") dx
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Integrating both sides gives

ye3¥ = —1/10 cos (x) €3~ + 3/10 sin (x) €3 + C;
Dividing both sides by the integrating factor u = ** results in
_ —1/10 cos (x) €* + 3/10 sin (x) €3* . C,

e3x eBx

Simplifying the solution gives

y = 3/10 sin (x) —1/10 cos (x) + C;e~3%

Initial conditions are now used to solve for C;. Substituting x = /2 and y = 3/10 in the above
solution gives an equation to solve for the constant of integration.

3/10 = 3/10 sin (1/2) — 1/10 cos (71/2) + C1e~327
= 3/10 + Cye %27

Hence
3 sin (1/2) — cos (1t/2) - 3
C, =-1/10 pcr 2
Which is simplified to
Cl = O

Substituting C; found above back in the solution gives

y (x) = 3/10 sin (x) —1/10 cos (x)

part c
The ODE to solve is
%y(x) -y (x) (1 +3x‘1) =x+2
with initial conditions y (1) = e -1.
Trying Linear ODE.
In canonical form, the ODE is written as

¥ =F(x,y)
B x?+xy+2x+3y
x

The ODE is linear in y and has the form
Y =yf(0) +gw)
xX2+2x

Where f(x) = = and g(x) =
Writing the ODE as

X .

, [((x+3)y X2 42x
Y X T x
_(x+3)y_x2+2x

/

X X
Therefore the integrating factor y is
U= ef—% dx _ X3 In(x)
The ode becomes
d  (x®+2x
dx [’Ly =y x
2 —x-3 In(x)
i (ye‘x‘3 ln(x)) _ (x + Zx)e x x
dx X
2 —x-3 In(x)
d (ye—x—3 ln(x)) — ((x +2 x)xe ) dx

Integrating both sides gives

ye—x—3 In(x) — _e—x—S 1n(x)x + Cl
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Dividing both sides by the integrating factor u = e™*3 2™ results in

G

y=-x+ e—x-3 In(x)

Simplifying the solution gives

y = —x+ Cix3e”

Initial conditions are now used to solve for C;. Substituting x =1 and y = e—1 in the above solution
gives an equation to solve for the constant of integration.

e-1=-1+Cqe
Hence
C =1
Substituting C; found above back in the solution gives

yx) =-x+ x3ex

2.5.3 problem 2
The ODE to solve is

d 4
TV +1By @ =1/3 (1 -2%) (y @)

Trying Bernoulli ODE.
In canonical form, the ODE is written as
¥y =Fxy)
=—y/3-2By*x +1/3y*

This is a Bernoulli ODE. Comparing the ODE to solve
v =-y/3-2/3y*x +1/3y*
With Bernoulli ODE standard form
Y = fo@y + fr(x)y"
Shows that fo(x) = -1/3 and f;(x) = -2/3x+1/3 and n = 4.
Dividing the ODE by y* gives

vy =-13y3+-23x+1/3 (1)
Let
o=y (2)
Taking derivative of (2) w.r.t x gives
v = -3y Yy
= 3)

Substituting (3) into (1) gives

,UI

(-3)
v =(-3)(-1/3)v + (-3) (-2/3x + 1/3)
=v+2x-1

=(-1/3)v+-2/3x+1/3

The above now is a linear ODE in v(x) which can be easily solved using an integrating factor.
In canonical form, the ODE is written as
v’ = F(x,v)
=v+2x-1
The ODE is linear in v and has the form

o' = 0f(x) + g(¥)
Where f(x) =1 and g(x) =2x-1.



Writing the ODE as
v—-()=2x-1
vV-v=2x-1
Therefore the integrating factor yu is
U= o) Ldx _ x
The ode becomes
%uv =p@2x-1)
4 (ve™)=R2x-1)e™
dx
dwe™)=(2x-1)e™)dx
Integrating both sides gives
ve*=-Q2x+1)e*+C;

Dividing both sides by the integrating factor y = e™ results in

G
v=-2x-14+—
e—X

Simplifying the solution gives

v=-2x-1+Cqe"

Replacing v in the above by = from equation (2), gives the final solution.

y 2 =-2x-1+Cee"

Solving for y gives
1

O o S Y

1 i24/3

y=-1/2

+
J2x-T+Cef 2x-1+Cie*

1 i24/3

y=-1

2.5.4 problem 3
The ODE to solve is
d
m—uv(x) =w—-B-kv(x)
dx
with initial conditions v (0) = 0.
Trying separable ODE.

In canonical form, the ODE is written as

v = F(x,v)
kv+B-w
m

kv+B-w

The ODE % = , is separable. It can be written as

do
5 = f@g)
—kv-B+w

Where f(x) =1 and g(v) = E— Therefore

dv_ —kv-B+w
dx m

2 —
/ V-2x-1+Cie¥ -2x-1+Cqe*

52
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Hence

m
(—kv—B+w)dv_dx

ST ao= [ o

In (kv + B -
_m n (| vk+ w)) C x4 G

Solving for v gives

1 _k(x+C1)
v=gle -B+w

Initial conditions are now used to solve for C;. Substituting x = 0 and v = 0 in the above solution
gives an equation to solve for the constant of integration.

1( &
O:£(—e " —B+w)

Hence
_m In(-B + w)
k

Substituting C; found above back in the solution gives

v(x) = % (—e_'}:’(x_mn("mw}) ~-B+ w)

C1=

1 _k(x_ mln(—B+w))
The solution = (—e " k -B+ w) can be simplified to

1 m In(-B+w)—xk
v(x) = % (—e m -B+ w) (2.2)

2.5.5 problem 4
The ODE to solve is

d 2y
ay(x) =x° (y(x)—x) =

Trying Riccati ODE.
In canonical form, the ODE is written as

Yy =F(x,y)
B x6 -2y + 42 +y

X

This is a Riccati ODE. Comparing the ODE to solve
y

Yy =x0 - 2x%y + x5y + "
With Riccati ODE standard form
v = fox) + f1(0y + fo(x)y?

—2x9+1

Shows that fo(x) = 2%, f1(x) = ——— and f,(x) = °.
Let
Y fau
_u,
- M

Using the above substitution in the given ODE results (after some simplification) in a second order
ODKE to solve for u(x) which is

fau" () = (f5 + frfz) ' () + f3fou(x) =0 (2)



But
fr=3x
fifz = (—2x5 +1)x2
fifo=x"

Substituting the above terms back in (2) gives

d? d
x3@u (x) - (3x2 + (—2x5 + 1)x2) =" () +xMu(x)=0

Solving the above ODE gives

ux) = e 15 (x5C2 + Cl)
The above shows that
W (x) = —xte 5% (x5C2 +C,-5 Cz)
Hence, using the above in (1) gives the solution
x(x°Co+ C; =5C,)
x°Cy+ Cq

y(x) =

54

Dividing both numerator and denominator by C, gives, after renaming the constant % = Cy the
2

following

x(x5+C0—5)

y(X) - x5+ CO




2.5.6 Key solution
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Chapter 3

exams

3.1 first exam

3.11 Problem1

Consider the complex exponential function f (z) = ¢* = e* (cosy +isin y), where x = Re(z),y = Im ().
Use the Cauchy-Riemann equations to show that f (z) is analytic in the whole complex plane C,
and using the definition of the derivative, show that f’(z) = f (z).

Solution
f(z) =¢e*cosy +ie*siny
Comparing the above to f (z) = u + iv, shows that
u=e‘cosy
v=e¢'siny

Cauchy-Riemann equations in Cartesian coordinates are given by

du Jdvu
ox oy 1)
du Jdvu
oz 2
dy dx @
Since g—z =e“cosy and g—; = e*cosy, then (1) is satisfied. Looking at (2), since Z—: = —e*siny and
% = ¢*siny, then (2) is also satisfied.

In addition, since all these partial derivatives are continuous everywhere because the elementary cos, sin, exp
are all continuous everywhere, then f (z) = ¢* is entire, or in other words, analytic everywhere.

To show that f’ (z) = f (z), by the definition of derivative, which is

o flztA)-f@)
fr@ =l ==

And since Az=Ax+iAyand f(z) =u (x, y) +iv (x, y) then the above becomes

(u (x + Ax,y + Ay) +iv (x + Ax,y + Ay)) - (u (x,y) + v (x,y))
Ax + iAy

= fim
Ay—0
_ lim u(x+Ax,y+Ay)—u(x,y) +iv(x+Ax,y+Ay)—v(x,y)

Ax—0 Ax +iAy Ax +iAy
Ay—0

Since ¢ is analytic, then the limit does not depend on the direction, so we can pick any direction
to approach z. Let us choose a direction such that the approach is on the x axis only keeping y
fixed in order to simplify the above. This implies that now Ay = 0. The above simplifies to

u(x+Ax,y) —u(x,y) .v(x+Ax,y) —v(x,y)

"(z) = lim +1i
f ( ) Ax—0 Ax Ax
+Axy)-u(x, +Ax,y)-v|x,
But limp,_,q W = % and W = %, then the above reduces to
du dv
"(2)= —+i—
f@ dx  Jdx
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From the first part we obtained that % =¢*cosy and % = ¢*siny. Using these in the above gives
f'(z) = e*cosy +ie“siny
=e* (cosy + isiny)
= ¢¥elY
— oY
=é
Therefore f’(z) = f (z). QED.

3.1.2 Problem 2

Determine the domain D of the z values on the complex plane where the complex function, given
by the following series
r 1 1 1
F(z) =23 +27 4+z11 4215 + ...
is well defined. What is the set of values z € C, for which it holds that
12 16 1 20 1 14
’ =—28 + =27 +—z11 4+ —z15 4 ...
F'(z) 32 +7z +1lz +152 +

Solution

z can be either zero or not zero. When z = 0, then clearly F(z)|,_, = 0 from the expression given
for F (z) above. So F (z) is defined at z.

When z # 0, then each term in the series will now become multivalued since the terms are of the
1

form z» for integer n. So we need to first make F (z) single valued before considering the sum. We
need to decide on which branch cut to use. Writing

1

1 ] 1
zn = (re’(9+2”k))” k=0,1,2,--,n-1

1 .(9 Zﬁk)
Lil=+=—
=yrne\" "

1( (6 an) . (9 an))
=rn|cos|—+—|+isin|{—+ —
non non

1
In order to make the multivalued z» function single valued, we select k = 0 and limit principal
argument 6 to
-n<O<m

1
with z # 0 for each term. Hence zsimplifies to

11 0 0
zn =rgn (cos (—) + isin (—))
n n

Where r = |z is the modulus of z. Now that each term is single valued, we can now look at the sum.
Writing F (z) as

0 1
F(z) = E Z4n+3
n=0
o] 1 (.)0
= E 17 4n+3 o 4n+3
n=0

We start with the preliminarily test to check if the above sum could be converging or not. Since

the magnitude of the complex exponential is unity, we only need to check the modulus. Hence let
1
a, = 7an+3
Now we check if lim,_,,, 4, = 0 or not. This is a a necessary condition for convergence but not a

sufficient condition.
1

lim g, = lim r4+3
n—-oo n—00

=1

We see that the limit is not zero. Therefore when z # 0, then F (z) does not converge. Which means

F(z) is defined only at z =0

To answer that last part. Since we showed that F(z) only defined at one point z = 0, then its
derivative is not defined. Because a derivative requires a small neighborhood region around any
point where the derivative to be evaluated due to using the limit as Az — 0 in the definition of
derivative. Since there is no such neighborhood around z = 0, then it follows immediately that
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F’ (z) is not defined anywhere

3.1.3 Problem 3

Consider the real function defined by the power series

o @)\
f(x)—rgw(g)

Use the results on complex power series to determine the largest open interval on which f (x) is
defined. For what values of a < b does f (x) converges uniformly on [a, b]?

Solution

Using the ratio test

Ap+1
a}’l
(4(n+1))! (f)n+1

e (et N6
—,}590 (4n)! (x)”

L= lim

n—o0

n)*

6
Which simplifies to
@+ (n)* 2
(@n)! (n+1)1)*
(4 (n +1)! (n)*
(@n)! (n +1))*
But ((n + 1)!)4 =(n+ 1)11!)4 =n+ 1)4 (n!)4 and the above simplifies to
(4(n+1))
@n)! (n +1)*
But (4(n+1))! = 4n +4)! = ((4n +4) (4n + 3) (4n + 2) (4n + 1) (4n)!) and the above simplifies to

L=1lim

n—oo

X
= |— lim

6

n—oo

L=|— lim

n—o0

X dn+4)dn+3)(dn+2)(4n +1)(@4n)!
L= |— lim 7

61n—co @n)!(n+1)
X n+4)dn+3)dAn+2)(dn+1)

= |— lim 1
6l (n+1)

Expanding gives
L |x y 256n* + 6401° + 56012 + 2001 + 24
~lelims nt +4nd + 6n? +4n +1

Dividing numerator and denominator by n* gives

L:|fl
6

256 + 640= + 560 + 200 + =
: n n n n
nlE; 1 1 1 1
1+4=-+65+45+
n n2 nd  nt

Now we can take the limit which gives 256. Hence
L=—|x|
6

For convergence, we want |L| < 1, which implies

256
— x| <1
6

Therefore f (x) is defined and absolutely converges for % <x< %. Therefore by using theorem

1, page 699 in the textbook, we conclude that for uniform convergence we need

M <l < —
- 128

3 3
> - < -
x>a> 128andx_l7<128
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Hence the series converges uniformly on [a, b] where
3

a>—@

3
< _—
128

3.1.4 Problem 5
Let f (z) be given as

f@= E n(n1+ 1) \4 (Z)nH

(a) Find the domain D on which f(%) is analytic. (b) For what z values does g (z) defined by the
Laurent series

> 1 1\ X

- Smmle) L

n=1 n=1 n'
Converge?
Solution
part (a)
First we find where f (z) converges.

1 z n+1
fle= = 1n(n+1)( )
o) z n+2
z:‘) (n+1)(n+2) ( )

(AZI) (n+1)(n+2)(z)n

z 1 "
- (Z) Z i DmryE ¢

n=0

f (z) converges in a disk centered at zy = 0 if the series Y} z" converges there. Using the

n=0 (n+1)(n+2)6"
ratio test to find L gives
i1

L= lim
n—oo| g,

1
n+1
- lim (n+2)(n+3)4"+

n—0c0 1

(n+1)(n+2)4"
. n+1)(n+2)4"
= lim
n—oo | (n + 2) (n + 3)4"+1
1 n2+3n+2

= - lim | ———
4n-c0|n?2+5n+6

1 1+3—+2—
- lim [———*
4 noeo 1+5 +—

Since L = i then the radius of convergence R = % or R = 4. This means f (z) converges inside disk

centered at zero of radius R = 4. Therefore f (%) converges everywhere outside this disk. Since there

. e N 1 o 1 (1) - .
are no other singularities in the function given by f (2) =X D) (E) outside disk of radius
4 then it is analytic there everywhere (it is differentiable everywhere outside this disk). Therefore,

we conclude this part by saying that

1 & 1 1\""!
2)-Z e (z)

is analytic outside disk of radius 4.



87

Part (b)

x© 1\"" &
g(z)zzn(rz+1)(£) +E%z”

n=1
The first series in the right side above, we found from part (a) where it converges, which is for
|z| > 4. Now we need to find where the second series converges.

a
L = lim [
n—oo| g,

(n+1)!
_ hm (n+1)n+1

n—oo n!

nn
. (n+1)n"
= lim | ————
= nl(n+1)

. (n+1)nn"
= lim [—F—5
= lpl(n+1)

. m+1)n"
= lim [———
=l (n+1)

. n+1)n"
= lim |[——————
n—oo |(n+1)(n +1)"
n?l

= lim =
n—oo [ (n +1)

. . 1 . . n!
Hence the radius of convergence is R = - = ¢ = 2.718. This means the second series P s

convergence for |z| < e, or inside disk of radius R = e. But the first series converges outside disk of
radius 4. Therefore, there is no common annulus where both series converge. Therefore

There are no z values where g (z) converges

3.1.5 Problem 6

Determine the MacLaurin series for the following special functions for z € R. The resulting series
defines the functions for complex numbers as well. Give the radius of convergence of the resulting
series. Determine whether any of them is even f (-z) = f (z) or odd f(-z) = f (2).

@ erf@ = = [(edt (b) Si@) = [ Za
solution
Part (a)

. . . . x" P R g2 . .
Starting with MacLaurin series for ¢* = 2:10—0 —=l+4x+5+5++ - hencee ¥ series expansion
around zero becomes

A i I s N

+ + + .-
2! 3! 43!
) i‘4 t6 t8
=1-t +i—§+a—'”

Therefore

2 Z
erf(z) = = f dt
0
2 (% oo 8
== [ [1-P+=-+——|at
\/Efo( HETRETIT )

Since exp (x) is analytic everywhere, we can integrate the above term by term, which gives

2 1, 16 1¢ 1¢ :
erf(z) = —=[t-=BP+=-——-c—+=-——--.
ya\ 3 521 731 94l o

2( 1, 122 17 12 )
= Z—§Z+ .

520 731 9l
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To find its radius of convergence, we need to first find closed form for the above. The general term

is seen to be
erf(z) =

Hence

erf(z) = izz
\r
2
SV A

Now let z2 = 5. We now find the radius of convergence R for )}

"
n=0 n‘(2n+1)Z

(-1)"
n=0 n!(2n+1)
does not affect the result, hence

radius of convergence for )} 2n

Applying the ratio test to X"

L= lim

n—oo

= lim

n—oo

= lim
n—oo

= lim

n—oo

= lim

n—oo

= lim

n—oo

= lim

o Nlo

Therefore R = co. Hence

2 = co. But y/oo =

( 1)” 2n+1

E 4 n!(2n+1)

("2
n!'(2n+1)

(1"
n!'2n+1)

> ()

D"
n=0 n!(2n+1)

s" and then find \/_ R to find

s" to find its L. Since we are using absolute values, the (-1)"

A+l
ap

1
(n+1)!(2n+2)
1
n!(2n+1)

n!'(2n+1)
nm+1D!'2n+2)
n!2n+1)
n+1)n!'(2n+2)
2n+1)
n+1)(2n +2)
2n+1

2n2 +4n +2

2 1
n2

n
i 2

2+;+ﬁ

erf(z) is analytic on the whole complex plane

Now, to find if it is even or odd. Using the above series definition

erf(z) =
Lets check if it odd. i.e. if f(-z) =
erf(-z) =
But (—z)*" = 22
erf(-z) =

Now lets find —f (z). From the definition
—erf(z) =

Since (1) and (2) are the same, then

( 1)” 2n
n!'(2n+1)

Z

—f (z). From above

—( )Z

since the exponent is even, and the above simplifies to

(-1)" (2)™"
n!2n+1)

(1) z2"

_Z E n!'2n+1) 1)
(-1)" 2"

_Z Z n!2n+1) (2)

erf(z) is odd

Part (b)
Starting with MacLaurin series for
. S D', P S A
= o u——— = —_ 4 — - — —_
sin () Z% @n+1)" 35 7ol
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sin(x)

Hence becomes
sin(x) 1 x3 . ¥ X X
x x\" 35 7009
_1 X2t X6 A8
I
Hence
z t2 t4 t6 tS
Si :f y R S
0=, ( 31 579l )
4 6 x8
Since 1- — + % - % + = —--- is analytic everywhere, we can integrate the above term by term, which
gives

33! 551 77! 99!
123 1z5 127 1z9
33! 55' 77! 99'

18 18 1¢ 18 z
Si(z):(t— )
0

In closed form, this can be written as

Si) = E( )(2n+1)(2n+1)'zzn+1

- ZZ( b (2n+1)(2n+1)'22n

_ZZ( b’ (2n+1)(2n+1)' ()

So we need to find radius of convergence R for > s" and then find \/E as we did

o V' Gt
in part (a).

T
L = lim [~
n—eo| g,

1
— lim (2n+2)(2n+2)!

n—co 1

(2n+1)(2n+1)!
o l@n+1)2n+1)!
= lim
n—eo [(2n + 2) (2n + 2)!
. 2n+1)2n +1)! |
= lim
n—oo|(2n +2) (2n +2) (2n + 1)!
I 2n+1)
= lim [ ————
n—oo|(2n + 2) (2n + 2)
. 2n+1
= lim |[—————
n=co |4n? + 8n + 4
2 1
n w2
8 4
+ —_
n

= lim
n—oo 4

+

n2

S o

1
Hence R = 7 = co. But /oo = co. Hence

Si(z) is analytic on the whole complex plane

Now, to find if it is even or odd. Using the above series definition

1
SI(Z)—ZE( ) mz

Lets check if it odd. i.e. f (-z) = —f (2). From above

Si(-z) = —zz( 1)"

2n

1

2n
oD P

2 . .
But (-z)™" = z%" since the exponent is even, so the above becomes

1

Si(-z) = —ZE( " m 2" (1)



Now lets find what —f (z) gives

o~ 1
— Qi - _ i\ - 2n
SiG) an:‘g( UV @nann”
Comparing (1,2) we see they are the same. Hence

Si(z) is odd
3.1.6 Problem 7

(a) Determine the Laurent series of the function

In the annulus 1 <z <5 and in |z| > 5.

(b) Determine the Taylor series representation of the function

22
g(z) —e 2
with center zy = 0. What is the radius of convergence?

Solution

Part (a)

22+ 6
f(z)_zz—6z+5
22+ 6

T zZ-5@E-1)

A N B
(z-5) (z-1)
Hence

2z+6=A(z-1)+B(z-5)
=z(A+B)-A-5B
Solving the above two equations for A, B gives

2=A+B
6=-A-5B
First equations gives A =2 - B. Second equation becomes

6=-(2-B)-5B
6=-2-4B

Hence A = 4. Therefore (1) becomes

4 2
f&=25 "

shows these three different regions

We now see there is a pole at z =5 and at z = 1. So there are three regions. The following diagram

2)

90

2)
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P <

Three region f(z) can be expanded in.

h

4

2 .
St Looking at first part

For region B, which is annulus 1 < z < 5, we need to expand f (z) =
4 4
(z-5) 5-z
4

This can be expanded for |§| <1 or |z] < 5. Using Binomial series it gives

-4 -4 z z\2  (z\3
55 6) )+ )
5(1-3)
s 20
EE (3)
5 nz:;) 5
We now consider the second term in (2), which is (il)
2 2
(z-1) 1-z

This can be expanded only when |z| < 1. But we want |z| > 1, therefore we need to convert it to
negative power. We write

2 -2
0
2 1

“(-3)
z
Now —— can be expanded for |§| <1 or z > 1, which puts in region B. Hence the second term can

=

now be expanded as

(z- 1)_

=
[1+(§+§ (_)+]

“E(

NIN

N

[ee)

=2 Zm (4)

Therefore (3,4) gives us the expansion of f (z) valid in region B. Substituting results from (3,4) into




(2) gives
4 2
fw:c 5 G0
2

= E( ) sz—l

-4 z Z2 1 1 1
=—1l4+=4+=+|-2|-+5+=5+-
5 5 52 z z2 73

_44z4z2+ (22 2
S\ 5 2 5 z z2 28

The above shows that residue is —2, which is the coefficient for the ; term.

For region C

This is for |z| > 5 .For the first term in (2), which is (4—5) we write it as

4 4 1
c—w‘E@_g

z

We can expand this for |§| <1 or |z| > 5 which is what we want. Hence it becomes

g(ﬁg) =§[l*(§)+(§)z*(§)3+“J

=4
n+1
0 Z

For the second in (2), which is %,

|z| > 1, hence also valid for |z| > 5 as well. which is L =y 2

(z- n=0 gn+l-
Therefore, in region C, the expansion is
4 2
f&==5 &

« Y w2
n= n=

(4)(5") -2

E Zh+1

n=0
2 N 18 98 498
z 22 B 4

The residue is 2.

Part (b)
2
g@)=e 2
Taylor series for g (z) expanded around z; is given by
§@) =g(@) +g @)z +g" (ZO) : ;8" (20) 2 1 +8% @0 —4 +-
But

8(z) =g(0) =1

22

z _Z
4 = - — 2
g’ (zo) 5 ¢
z=29=0

=0

92

we can use the expansion found earlier since it is valid for



93

And
d 2
&)= o (—ze )
zZ=zp
22 Z2
= (—e_z —225_2)
z=20=0
=1
And
d 2 2
9" (zg) = - (—e 2 —z% 2 )
zZ=Z)
Z2 ZZ Z2
= (ze_Z — 27z 7 — z3e_2)
z=20=0
=0
And

d 22 22 22
7 —Dzp 7 —30 2
@ (zg) = ze ze z’e
zZ=z)
2 2 2 2 2 2
=2 —2% "7 —2e72 +22% 2 —3z% 2 +z% 2
z=z¢=0

And so on. We can see the sequence pattern as
22 z z*
8(2) = g(z0) + & (20) 2 + 8" (20) P 8" (20) 31 +8% (z0) u
2 4 26

z
=1+0-—=+0+—=+0—-—+---
2 4! 6!
22zt 20
=l-=4+—=-—=++
2 4! 6!
00 2n

To find radius of convergence, we write the above as

§@) = 2( " (Zn),( 2)’

- 2 A ! M
And find R for s then take VR. Hence for (1)

. Ap41
L= lim |[Z2=
n—eo| a,

1
_ i |20

n—c0 1

2n)!

|2
n—oo|(2(n +1))!

— lim ﬂ|
n—oco | (2n + 2)!

= lim @n)! |
n—oo | (2n + 2) (2n + 1) (2n)!

, 1
=@y

li !
= lim |————
n—oo |4n2 + 6m + 2

=0

Hence R = % = co. Therefore VR = 0. The expansion is valid in the whole complex plane.
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3.1.7 Problem 8

Evaluate the integral below on the curve C = C; UC, where C; :z () =¢™,0<t<1and C, : z(t) =
2t-1,0<t<1.

35 Re () dz
C

Solution

The diagram below shows the curves

08f
06f
04f
02f

Curve C2

S

-1.0 -0.5

9§Re(z)dz: f Re (z () 2/ (£) dt + f Re (z () 2/ () dt 1)
2 Cy C

But on Cy, z(f) = e™ = cos (ntt) + isin (nt), then Re (z (f)) = cos (ntt) and 2’ (t) = ine'™, therefore the
integral on C; becomes

1 1
f cos (rit) ime™dt = in f cos (tt) e dt
0 0
= inl (2)

1 ‘ ‘
Where I = L cos (rit) e™dt. We now evaluate 1. Since ¢ = cos (rt) + i sin (1tt), then

1 1
I= dt+i i d 3
](; cos (1tt) cos (mt) t+1j(; cos (7tt) sin (7et) dt (3)

But first integral in above is

1 1
f cos (rit) cos (rt) dt = f cos? (rit) dt
0 0

11 1
= -+ ECOS (2met) dt

0 2
= 2+ (sin2nt),
=5+ 5 (sin@2nh),
1
2
And for second integral in (3), and using sin Acos A = %sin (2A), it becomes

1

1 1
f cos (7tt) sin (7et) dt = f 3 sin (27tt) dt
0

0
1 [cos (2mtt) ]1
o

N

B 27

| —

[cos (Znt)]é
e

= [cos (2m) — 1]

B

=0

Therefore integral on C; from (2) becomes

1
f cos (rit) ime'™dt = inl
0



Now the second integral on C, is found, where z (t) = 2t -1, and z’ (t) = 2. Hence

1 1

f Re(z(t))z’(t)dt:f @t -1)2 dt

0 0
:2(t2—t)

=0

1
0

Therefore contribution comes only from the integration over C; which is

17T
fRe (@)dz=7

3.1.8 Optional choice Problem 4

4. We refer to an open connected set D C C as a domain of the complex plane, and if
F(z) is an analytic function on D we call the set

F(D)={F(z):z€ D}

the analytic transformation of D by F. (E.g.: if the open unit disk centered at 1 is
given as

Ul={zeC:|z—-1] <1},

and F(z) = z +1, H(z) = iz, then the analytic transformations F'(U') and H(U")
are a shift by i of U', and a counterclockwise rotation by 90 degrees — or 7/2 radian
— around the origin of U, respectively.)

a)

Consider

U'={zeC:|z| <1},

and fi(z) = . Show that fi(z) is a 1-1 (and analytic) function on U°, and
argue that f; , also referred to as a Mobius transformation, transforms U° to
the right half plane, i.e. f1(U%) ={z€ C: Rez > 0}.

Write the function

foy = el

as a composite of 6 analytic functions f(z) = fso fs0 fro f3o foo fi(z) and
show that f transforms U° into an annulus f(U). [Hint: Determine in order

f1(U?), fao fi(U°),..., fso fso fao fso fro fi(U°)]

//'r//h'//v rmalion
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¢) (Eztra credit/fun:) If you have access to a software performing complex arith-
metic (e.g. Matlab), compute the transformation of the “transformation” text
shaped domain 7' given inside the unit disk (as black text) on the adjacent
image.

Solution

Part (a)

1
=1 @
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The domain U° is the unit disk centered at origin. To show f; (z) is 1-1 on U° means to show that if

f1(z1) = f1(z2) (2)
The this implies that

Z1 =12y

Applying (1,2) to both points gives

f1(z1) = f1(z2)

zZ1 + 1 _ Zy + 1

1- Z1 - 1- Zy

(xl + iyl) +1 (xz + iyz) +1
1- (xl + iyl) - (x2 + iyz)
(G +ivn) +2) (1= (2 + i) = (L= (1 + i) (32 + i) +1)
(xl + 1y +1) (1 —Xp — iyz) = (1 -x1 - iyl) (xz + iy +1)
Xy = X1Xp = iXyYp + iy —WaXo + Y1y + 1 =X — iy = Xp + 1Yy + 1 = X9Xp —iYoXy — Xy — iY1Xp + Y1Y2 — 1Y

Collecting real and imaginary parts

(x1 - XX+ Y12 +1- xz) + i(—xlyz tY1—Yixo — yz) = (xz +1-xx0—x + }/13/2) +1i (3/2 —Y2X1 —Y1Xp = 3/1)
)
If two complex numbers are equal, then the real part and the imaginary part must be equal. Hence

in equation (3), equating real parts gives

X1 - XX+ +1-x =x+1 -0 — X1 + Y12
X1 —Xp =Xp — X1
le = 2X2

X1 =X (4‘)

And equating imaginary parts in (3) gives

—X1Y2 T Y1~ Y1Xo — Y2 = Y2 — YoX1 —Y1X2 — Y1

Yi—V2=Y2— W1
2y =2y,
Y=Y (%)

From (4,5) we see that z; = x; + iy, is the same point as z, = x, + iy,. This shows that

f1(z)is 1-1 on U°

To show that f; (z) is analytic, we see that there is a pole at z = 1. But this is outside the disk |z] < 1.

So there is no singularity inside the disk. And since g is differentiable as many times as we wish,
then it is analytic. We can also apply Cauchy Riemann equations also to verify this, but it is not
needed for this simple function.

The last part is to show that f; is a Mobius transformation.

Range of fi(z) is R(z) >0

Domain of f(z) —

/ 2

To show this, we apply f;(z) to an arbitrary point in the domain |z| < 1 and see if the real part
of f1(z) comes out to be always positive or not. Let z, be any point inside the disk |z| < 1 where

\
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z = x + iy. Hence
f1@) = %
(x + iy) +1
C1- (x + iy)
(D +iy
(1-x)-iy
Multiplying the numerator and denominator by the complex conjugate of the denominator gives
((x +1) + iy) ((1 -Xx)+ iy)
(@ -x)—iy) (1 -2) +iy)
B (x+1)(1—x)+iy(x+1)+iy(1—x)—y2
) (L2 +y2
e+ D) (A= x) +iyx + iy + iy — iyx — i
- (1—x)* + 12
(1 - xz) +2iy — 12
1 —x)* + 12
_0=2)- o
- (1 —x)* + 12 +Z(l—x)2+y2

=u+1iv

f1(z0) =

Hence

u (X,y) —(1 - XZ) v

B 1 -x)7%+1?

_ 1—(x2+y2)
(1-x) +12

11—z
(1—x)2+y2

We now need to show that u (x, y) is always positive. Now, Since |z| <1, then |x| <1 and also |y| <1.
This shows that the denominator is always positive and can not be zero even when x = 0,y =0 in
which case the denominator is 1. The only problem comes when x =1 and y = 0 in which case
the mapping goes to infinity. More on this below. But this point is on the boundary itself, and not
inside the disk.

Now, for the numerator, since |z| <1 then 1 - |z|2 is always positive. Only when |z| =1 (boundary
points), then will u (x, y) = 0. Therefore we conclude that

Each point inside the disk maps to right side of the complex plane

For example, the center of the disk, x = 0,y = 0, maps to the right side complex plane, since
s
Ay = e Yo
1-x)"+y 1-x)"+y
f1(0,0)=1+0i

What about points on the boundary of the disk where |z| =17 Lets pick the point x =1,y = 0, then
we see that

(x + Zy) +1 1+x
lim =
y—>01—(x+1'y) 1-x
Hence as x — 1 it will blow up and it goes to infinity. How about the point x = 0,y = 1, then this
point maps to
1-1 0
0,1)= —+i——
NOD= g

=0+i0
So it maps to origin in the complex plane. The point x = -1, = 0 maps to
f1(=1,0) =0+1i0

All other points on the boundary of disk |z| = 1 map to the origin of the complex plane, except for the point
x =1,y = 0 which maps to infinity.
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This point maps to co S(z)
A

Domain of f(z) i

£(2)

» R(z2)

all points on the boundary
of the disk map to origin
of the complex plane

z+1
11—z

Transformation given by

Part (b)

F) =V

Since f(z) = %, where from part(a), we know it maps all points inside disk |z| <1 to the right
side of the complex plane. Then the above can be written as

f (Z) — e—iln Vif1(z)
Now let

f2(2) = if1(2)

The effect of this is to rotate each point in the right half plane clockwise by 90°. This can be seen
by considering an arbitrary point z; = re'’, then

izg = eig (reia )
= rei(9+%)
Hence the result of applying f; (z) = if; (z) is to rotate the right side plane to the upper half plane

as shown below

fa(f1(2))
f

The next step is to apply the square root function. This means

f3@ =f2(f12)

1
What does applying a square root to a point z, in the complex plane do? Since z2 =

where here we used the principal argument of z, therefore

e%(ln\zlﬂ' Arg(z))

z% B e%(lnr+i9)

i

N

1
r2e

Hence the effect is to take the square root of the module and to reduce the argument by half. Points
inside a unit circle will increase their module and move closer to the inner edge of the unit circle,
and points outside the unit circle will decrease their modulus and move closer to the outside edge
of the unit circle. Points on the unit circle will not change their modulus. But all points will have
their argument halved. The result of this is all points will move and end up in the first quadrant of
the complex plane



99

v

The next step is to apply the In function on the resulting points. Hence

f1@) =In(f3 ()
Now we ask, what does In (z) do to a point z? Let z = re’” then
In(z) =In (reig)
=Inr+1Ine?
=Inr+i6
This gives a complex variable whose real part is In|z| and whose imaginary part is the argument
of z. Since In [z] is negative for |z| <1, then all points inside the unit circle will have their real part
move to the negative half plane, and all points outside the unit circle will have their real part in
the right half plane. And all points on the unit circle will have their real part be zero. So all point

on the unit circle will move to the imaginary axis. For example, the point (1,0) will move to (0, 0)
and the point (0,1) will move to (0, %)

As a point is closer to the origin, it will map closer to —co in negative half plane, since lim, ,;In (r)

is —oo.

The imaginary part of each point be the argument of the point z. Since all points now reside in the
first quadrant as seen in the above diagram, then the imaginary part will extend from 0--- g The
following diagram just shows the transformation by f, (z) for selected points

Ja(f3(f2(f1(2))))

>
»

p

The next step is to apply —i to each point. Hence
f5(2) = —if4(2)
=¢'2f,(2)
i0 _

Let z = re'” = f4(z) and the above becomes

T,
f5(z) = e '2rel?
= rei(gfg)

So the effect of multiplying by —i is rotate each point clockwise by 90°. Hence the whole strip shown
above (f4(z)), will now rotate by 90° clockwise. The arguments of each new point location will now
be in the range g e — g as shown below
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fs(fa(f3(f2(f1(2))))) A

NIE

T

IMK

The final step is to apply exp(z) to each point in generated by applying f5(z). Let a point be
z = x + iy, then

fo(2) = ¥
= ety
=e* (cosy +isin y)
=e‘cosy +ie*siny
Hence the real part of each new point become ¢* cosy and imaginary part become ¢*siny.

All points on imaginary line, with x = 0 will map to cosy + isiny. All point on the x axis, where
y = 0 will map to e* + 0i.

All points on the vertical line (g,y) will map to ez cosy +ie2 siny. To better see the mapping, I
wrote a small program to plot the above transformation. The function samples points from x = 0
tox = g and samples points from y = -5 to y = 5. For each such point (x,y) it transforms it to

(ex cosy,e* sin y).

The result shows that all points map to concentric rings outside the unit circle as shown in the plot
below

..4:—~ .. .

Result of applying fg(z). annulus outside unit circle.

Hence the final mapping is to an annulus outside disk on radius 1. The following shows all the
transformation applied on the same diagram.

fa2) fs(2)

P BN R

“
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Part (c)

Using Matlab, the code provided was run after applying the function f¢ ( fs ( fa ( f3 ( fa ( f1 (z)))))) on
it.

close all

load 'TransPoints.mat';

TR=exp(-1i.*log( sqrt( 1i*((COMPLD+1)./(1-COMPLD) ))));
IMtr=imag(TR);

REtr=real(TR);

plot(REtr,IMtr,'k.")

axis equal

title('Math 601, problem 4 result. Nasser M. Abbasi')

grid

The following shows the original image, and the transformed image below it.

Math 601, problem 4 result. Nasser M. Abbasi

N

351

15

3.2 second exam

3.21 Problem1

Find the equilibria of the following differential equation y’ = 1 —? and determine their stability.
Derive the explicit solution for the initial value problem

y’(t):l—yz
y(0)=-2

Find the finite time interval for which the solution exists.
solution

Before solving the problem, the domain of the solution is determined. The RHS of the ODE

is f (t, y) =1 -2 This is a continuous and real function for all y. Now Z—jy( = -2y shows it is also

continuous and real for all y. Combining these results shows that there exists a solution and is
unique in some subset of the domain

—0 <Y <o
The problem is now solved. Since
v () =f(y)

Then the equilibrium points are the solution to f (y) =0 or 1 - y? = 0. Therefore there are two
equilibrium points given by

y=+1
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The stability type is determined by taking the second derivative and evaluating it at at each
equilibrium point. If the second derivative is negative, then the point is stable equilibrium. If the
second derivative is positive then the point is unstable equilibrium. If the second derivative is zero,
it is a saddle point. Since

’7

y'=-2y
Then at y =1, y” < 0 which implies y =1 is stable. Aty = -1, y”” > 0 which implies y = -1 is unstable

equilibrium.

The above result was verified by generating the direction field plot for the ODE. It shows that
solution lines are moving away from line y = —1, which means it is unstable (A solution that starts
near y = -1 will move away from its initial position). The plot also shows solutions that start near
vy =1 moving towards y = 1. Hence y = 1 is stable equilibrium. The line in red is the particular
solution trajectory for the initial condition given in the problem.

Direction field plot showing the solution trajectory in red
y(t)

2‘\\\\\ NN N NN
-\\\\\ A N R W N VR N
S e e A

flt_, y_1 :=1 - y°2;

p = StreamPlot[{1, f[t, yl}, {t, 0, 3}, {y, -3, 2},

Frame -> False,

Axes -> True,

AxesLabel -> {"t", "y(t)"},

BaseStyle -> 14,

StreamPoints -> {{{{0, -2}, Red}, Automatic}},

ImageSize -> 400,

PlotLabel -> Style[Text[ "Direction field plot showing the solution trajectory in red"], 12]
]

The ODE is now solved.

dy )
Y
d
Yo —ar
1-y2
Since it is separable, then Integrating both sides results in
d
el K
1-12

arctanh (y) =t+c
Hence the solution is

y(t) = tanh (t +¢)
But

e —e?
tanh (z) = =
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Therefore the solution can be written as

y) =

1)

Ce! + et
Using the initial conditions y (0) = -2 the above gives the value of C
c-1
T C+1
-2C-2=C-1
-3C=1
-1
c=73
Substituting the constant C value found above into solution (1) gives

-1 _
—et et

y(t) = 2——
S +et
—et — 3¢t
et + 3¢t
et — 3et

By factoring e™f the above becomes

3+
v =2
To find when the solution stops, means to find the time when solution becomes undefined. This
occurs when the denominator becomes zero (the solution reaches a pole). The denominator of the
solution above becomes zero when

-3+e*=0
2t=1In3
1
t251n3

Numerically, this is approximately t = 0.549 seconds. Here is a plot of the solution showing what
happens when it reaches close to the above t value starting from ¢ = 0. The plot shows that the
solution diverges to —co as the pole is approached from the left and the solution becomes undefined.

Showing when solution becomes undefined

-40¢

-80°F

-100+

0.0 0.1 0.2 0.3 04 0.5
t (sec)
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sol = (3 + Expl[2 t]1)/(-3 + Expl[2 t]);

p = Plot[sol, {t, O, 0.54}, PlotRange -> All,

Frame -> True,

GridLines -> Automatic, GridLinesStyle -> LightGray,
PlotStyle -> Red,

FrameLabel -> {{"y(t)", None}%

, {"t (sec)", "Showing when solution becomes undefined"}},

BaseStyle -> 14]

3.2.2 Problem 2

2. Consider the initial value problem

Determine the k-values for which the above equation has

(a) two real solutions,
(b) infinitely many real solutions,
(¢) no real solutions.

(d) Is there a k-value for which f(t,y) = t\/y is Lipschitz continuous on the
rectangular domain 0.5 <¢< 1.5, 09< y<1.17

solution
dy
L —¢
dt vy

The domain of the solution is first found. Since f (t, y) = t/y then this function is real and continuous

for all t and for y > 0. Since Z—J; = ﬁy then this is continuous for all ¢ and for y # 0 (to avoid a pole).
Combining these two results shows a solution exists and unique in some subset of the domain
—00 <t <00

y>0

The direction field for the above ode is given in the plot below

Direction field plot for problem 2
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flt_, y_1 := t Sqrtlyl;

p = StreamPlot[{1, f[t, yIl}, {t, 0, 3}, {y, 0, 2},

Frame -> False,

Axes -> True,

AxesLabel -> {"t", "y(t)"},

BaseStyle -> 14,

ImageSize -> 400,

PlotLabel -> Style[Text["Direction field plot for problem 2"], 12]
]

The ODE is now solved.

This is separable. Integrating both sides gives

1
fy‘édy:ftdt

t2
ZW:E-FC
? ¢

W=gt;
Applying initial conditions y (1) = k the above becomes

1 ¢
\/%—Z+—

2

1
C —-2\[-— 5

Hence
)
12 1
:ZJ“W"Z 2)
Or
2 1\
y(t)—(z‘*' k—z)
il o 1y g 1
_k+2\/ﬁt 8t+16t 2\/E+16 (3)
part (a)

Looking at solutions in (3) shows that k > 0 is needed to obtain two real solutions.

part (b)
When k = 0 then y (1) = 0. But from earlier the domain of the unique solution was found to be
-0 <t <00
y>0

Therefore the initial condition point where y = 0 is outside the above domain. Therefore k = 0 will
generate infinite number of solutions because it the initial condition is outside the domain where
the solution have to satisfy in order to be unique.

part (c)

No real solution can be obtained when k < 0. This is because when k is negative then vk = ikl
and the solution becomes complex.

part (d)

f(ty) =ty

Let k = 1. This implies the initial conditions is y (1) = 1. This means the initial conditions point
is inside the domain given. Therefore when k =1 then f (t, yl) becomes, using y; () solution from
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above, the following

F(w) =t

t 1
= —\/t4—t2+8t2+1+16—4

/ 49
= - 44712 4 Z
If(tyr)

The above shows that f (t, yl) is continuous and real over the range 0.5 <t < 1.5. And o

IS

= =

becomes

af (t/yl)
i
Using k =1 in the solution y, (t) the above becomes
f(ty) 1
&yl h 2

t

Vi

1
2

t

1 |u 2, ¥
4t‘+7t+4

2t

,/t4+7t2+%

Over the range 0.5 < t < 1.5 the denominator above is never zero. Hence there is no pole and

8f(t,y1)
gyl . . o . o . .
continuous inside a rectangular around initial conditions given for the value k = 1.

therefore is also continuous and real in the range given. This shows that f (t, y) is Lipschitz

This is not the only k value that could be selected. However the problem is asking for one such k
value.

3.2.3 Problem 3

3. If a,b and c are positive constants, show that all solutions of ay’ +by' +cy =0

approach zero as t — oco. If b is set to zero is there any solution with this property;
are there any solutions that are not bounded?

Solution

ay” +by’ +cy=0

Because the coefficients of the ODE are constants, the solution is found by solving for the roots of
the characteristic equation

aA> +bA+c=0
The roots are
-b 1
A=—+—Vb?-4ac
2a  2a
Hence the solution is given by linear combination of each solution e'1!,¢!? as
y(t) = ceMt + cpet?!t
-b, Vb2-dac -b, —Vb2-dac
2y 2y t
= Cleth e 2a +C132a e 2a
;bt Vb2—4act —‘/b2—4//1c1L
=e2u (cle 2 4 1)

b
The above shows that since b > 0 and a > 0 then ez will go to zero as t — oco. This shows that all

solutions will eventually go to zero.

When b = 0, the solution given by (1) reduces to

\/—4act —\/—41/1clL
y()=cie 22 " +cpe =

But because a2 > 0 and ¢ > 0 then —4ac is negative and the discriminant v-4ac becomes complex
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and the above solution becomes

21'\/Et 721‘\/@
y()=cre 22 " +cpe 2

. [c . [c
o
=c1e vV +cre a

= Cy cos (\/Et) + C, sin (\/Et]
a a

The above shows that the solution never goes to zero as t — oo as the solution continues to oscillate.
This happened because the damping term b was set to zero, so there is no loss of energy in the
system as it moves and therefore once the system is set in motion (by some initial condition away
from rest), the system will continue to vibrate for all time.

To obtain unbounded solution, b must be negative while keeping a > 0. In this case the solution in

(1) becomes

Mt Vb2—4act —Vb2—4act
y(t)=e2 |cie 20 " +cpe 2

-b b]
The above shows that since b < 0 then e2' = ez and this will cause the solution to blow up as t

increases. Negative damping means there is energy being added to the system as it time increases
instead of the normal case where damping causes energy to be lost from the system with time.
This is why the solution becomes unbounded when b < 0. In Physical systems the damping term is
always positive.

3.2.4 Problem 4

4. Assume that four bugs moving around the floor with their positions given as

Yi (t)

They are chasing each other in the following fashion: bug No.1. chasing bug No. 2.,
No. 2. chasing No. 3., No. 3. chasing No. 4., No. 4. c}iasing No. 1. At any instant
each bug travels at its top speed heading staight towards its target (for simplicity
assume that the top speed of each is the same: unit speed). Write a vector equation
for each bug describing its (vector) velocity in terms of the position of the four bugs.
Give an initial value problem for an 8-dimensional nonlinear system of ODEs that
describes the dynamics of the chase when the initial positions are

wO= o], wo=[3]. wo-[3]. wo-=[1]

respectively

wi(t) = [”i@)} . i=1,2,3.4,

solution

Analysis of motion

The following diagram shows the initial positions of the four bugs and what happens after At has
elapsed.
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Initial conditions at ¢ = 0. Position after some At time
|
|
| |
2 5 3 |
[ ) L
\
| 3
|
|
|
Lo __ _ ___
|
|
A l
! 1 -
| 4
1 L—<—yg :
| |
0,00 (1,0) ‘
Nasser M. Abbasi. ant_l.ipe. 11/11/2018

The four bugs initially are located at the corners of the rectangle. The width is # = 1 and the
height is L = 2. Because each bug moves with the same speed toward the bug adjacent to it (in
clockwise direction), then by symmetry, the four bugs will remain on the corners of a rectangle as
time increases, but the rectangle shrinks and rotates clockwise in time as the bugs spiral towards the
center of the original rectangle where they collide. The following diagram illustrates such motion
after some At has elapsed.

Y axis
1
(0.2) ; 2
|
bug 3
Vs
2
%
ug 1
» 1 axis
(0,0) (1,0)

Showing locations of bugs after some At.
Rectangle is rotating clockwise and rotating in
time. (drawing not to scale)

Nasser M. Abbasi. ant_0.ipe. 11/12/2018

The above shows that at each instance of time, each bug remains at the corner of a scaled down
version of the original rectangle that is rotating. Each bug’s velocity vector is always pointing
straight towards the bug it is chasing. This means that bug’s 1 motion is always at 90° to the path
of bug 2. And bug’s 2 motion is at 90° to the path of bug 3 and so on.

Equations of motion

To obtain the equation of motion for each bug, each bug’s position is considered relative to the
bug it is chasing. Starting with bug’s 1 relative position to bug 2. This is done with the help of the
following diagram
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Yy axis

1
bug 3

bug 4.

» 1 axis

Showing relative locations of bug 1 and 2 after some At

ant_2.ipe. 11/11/2018

Nasser M. Abbasi

_ dry (t)

-

The position vector of bug 1 is 7; () and the position vector of bug 2 is 7, (). Therefore

EET
= |61 1A"

Where 7 is unit vector in the direction from bug 1 to bug 2. Hence the above can be written as
72 () =71 (D)

i (t)
=Pl 0707

dt
Because |5’1| =1 meter per seconds, then the above simplifies to
di (1) (i +yaf) = (vai + 1)
dt || (xaf + o) = (af + f) |
(l%lf %f): X2 — X1 2“_ Y2~ ZA
\/(xz—xl)z +(v2- ) \/(xz —x1)* + (2 - 1)

Where x;,y; are the coordinates of bug 1 and x,,y, are the coordinates of bug 2. The above gives
the equation of motion for bug 1. Let x| = ‘%1 and y] = dditl for bug 1 then the following are the two
equations of motion for bug 1 as function of its position and the position of bug 2

, X2~ X
\/(Xz —x1) + (2 - 1)
)

Yo— 1

/

n= 5 >
\/(xz —x)"+ (yz - ]/1)

The same analysis is now carried out to obtain x5 (f) and 5 (t) expressions similar to (3) above for

bug 2.
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Yy axis
1
(w2, Z/z)
bug 2 = \
. 5o "~-_  bug3
2 = U2 7»,3,772 T~a &
73 =2l ~ - e (73{y3)
5
2 Z
T3
*bug 1
bug 4
[ ]

» 1 axis
Showing relative location of bugs 2 and 3 after some At

Nasser M. Abbasi. ant_3.ipe. 11/11/2018

The position vector of bug 2 is 7, (t) and the position vector of bug 3 is 7 (t). Therefore 7, = Y
[0,| # where 7 is unit vector in the direction from bug 2 to bug 3. Hence

drp (t) 73 (£) =7 (£)

—5#
dt ﬂHm@—w@H

Since |52| =1 meter per seconds then

dry () _ (ol +af) - (vsl + )
dt | (x3f+ yzj) - (x3f+ yzj) I
dxy - dyp ) X3 — X2 A Y3~ Y2 A
(El + E]) 1+ ]

B 2 2
\/(Xa —x)* + (y3 - o) \/(x3 —x2)" + (3 - 2)
Where x,, 1, are the coordinates of bug 2 and x3,y; are the coordinates of bug 3. The above gives

the two equations of motion for bug 2. Using x; = L%Z and y; = ‘%2 for bug 2, then the following
gives the two equations of motion for bug 2 as function of its position and the position of bug 3

, X3 =X
\/(xa - %) + (v3 - 12)
y:/z — y3_y2 (3)

2 2
\/(Xa -2+ (y3 - v2)
The same analysis is carried out for bug 3 and bug 4, which results in similar equations. Therefore
the final equations of motions in vector form are

X' = f (%)
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Or
X () = ==
(x27x1)2+(y27y1)2
yi () = Y2~ Y1
(X2—x1)2+(y2—y1)2
x5 (t) = 2
(x3—x2)2+(y3—y2)2
yé (t) = Y3~Y2
(X3—xz)2+(y3—yz)2
x5 () = L
(X4—X3)2+(y4—y3)2
]/é (t) — Y4~Y3
(x4—x3)2+(y4—y3)2
X, () = S
(xl—x4)2+(y1—y4)2
yfl () = Y17Y4
(X1—X4)2+(y1—y4)2

With the initial conditions

x1 (0)
y1(0)
x3 (0)
Y2 (0)
= x|
y3(0)
x4 (0)
Y4(0)

The above system of equation can not written as x’ = Ax because the equations of motion are
not linear. These ODE’s have to solved numerically. The following is the result of running the
numerical solution for 1.5 seconds. The code used is listed below. This shows the bugs spiraling
down to the center of the original rectangle as expected.

S P, N P N O O O

Solution to the 4 bugs on corner problem

201 l

> 1.0r / m

0.5r |

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0
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odel =x1'[t] == (x2[t] - x1[t])/Sqrt[(x2[t] - x1[t])~2 + (y2[t] - y1[t])~2];
ode2 =y1'[t]== (y2[t] - y1[tl)/Sqrtl[(x2[t] - x1[t])~2 + (y2[t] - y1[t]l)~2];
ode3 =x2'[t] == (x3[t] - x2[t])/Sqrt[(x3[t] - x2[t])~2 + (y3[t] - y2[t])~2];
ode4 =y2'[t] == (y3[t] - y2[t])/Sart[(x3[t] - x2[t])~2 + (y3[t] - y2[t])~2];
odeb =x3'[t]== (x4[t] - x3[t])/Sqrt[(x4[t] - x3[t])~2 + (y4[t] - y3[t])~2];
ode6 =y3'[t]l== (y4[t] - y3[t])/Sqrtl(x4[t] - x3[t]1)~2 + (y4l[t] - y3[t])~2];
ode7 =x4'[t]== (x1[t] - x4[t])/Sqrtl[(x1[t] - x4[t])~2 + (yi1[t] - y4[t])~2];
ode8 =y4'[t] == (y1[t] - y4[t])/Sqrtl(x1[t] - x4[t]1)~2 + (y1[t] - y4[tl)~2];
sol = NDSolve[{odel, ode2, ode3, oded4, ode5, ode6, ode7, ode8, x1[0] == 0,
y1[0] == 0, x2[0] == 0, y2[0] == 2, x3[0] == 1, y3[0] == 2, x4[0] == 1,
y4[0] == 0},

{x1(t], yi1lt], x2[t], y2[t], x3[t], y3[t]l, x4[t], y4l[tl}, {t, 0, 1.5}];

p = ParametricPlot[{x1[t], yil[t], x2[t], y2[t], x3[t], y3[t]l, x4[t], y4[tl}
/. sol,

{t, 0, 1.5}, AxesOrigin -> {0, 0},

GridLines -> Automatic, GridLinesStyle -> LightGray, Frame -> True,
FrameLabel -> {{"y", None}, {"x", "Solution to problem 4"}},

ImageSize -> 350]

This problem was also solved for a square instead of a rectangle. The only change needed was to
modify the initial conditions so as to locate the bugs at corners of unit square as shown below. No
changes are needed in the equations of motion.

x1 (0)
y1(0)
x2 (0)
(0) = y2O)f _
x3(0)
y3(0)
x4 (0)
y4(0)) \0
The time needed to reach the center in this case is one second. The following plot shows the path
generated for the bugs at the corners of the square.

[ e = =)

Solution to the 4 bugs on corner problem (square version)
T T T T T T

1.0F l
0.8 l

0.6 l

0.2 l

0.0 l

3.2.5 Problem 5

5. Determine the long term behavior of the solution (z(t),y(t)) of the following initial
value problem

:13/:—2:17-—y x(l):z
y=2z—y y(l)=4

by determining the limits lim, o, z(t) and limy o, y(t)

solution



113

The system can be written using x’ = Ax as

X)) (-2 -1)(x(®)
v <t>) . [ 2 —1](;/ <t>]
x(@)] (2

[y <1>J i [4]

Where A = 1], The eigenvalues of A are found using det (A — AI) = 0 which gives
-2-1 -1 |
2 a-Al
(2-A)(-1-A)+2=0
A2 +31+4=0

The roots of the above characteristic equation are

-b 1
A=— =+ —Vb —4ac

2a  2a
-3 1
7i§\/9—4(4)
-3 1

—+ =-V-7

2 "2

-3 i
— + =V7

7 23V7

2

Therefore the roots are

2 2
3.7
Az——§+17

The above shows that the solution will go to zero for large  since the eigenvalues have negative real part.

The system is asymptotically stable. The complex conjugate parts of the eigenvalues give solutions

that will oscillate with frequency g rad/sec. To obtain the actual solution the eigenvectors are now
found for each eigenvalue. Since the eigenvalues are unique, then there is one eigenvector for each
eigenvalue.

For Ay = - - iﬁ
2
(A - All) V1 = 0
3 A7
3 \ﬁ - 0
2 a2l
Let v, = 1. The first equation gives -2 ( 2 i\ﬁ)v 1=0o0ruv = ! L =
2 = L 2|yt )un-Ll = 1= =
2 "2 _2_(_%_1.?) 17-1
-1. 1 -1. 1
iy7-1 2iy7-t
— 211 2 =2 12 2 = —i% - }1. Hence the first eigenvector is
(z1v7-2)(37-3)
W71
vy =| "% T
1
3 .7
For Az = _E + 17
(A=A)vy =0
3.7
3, V7 “lo
2 _1_(_§+17) U2
V7 1 1 %i 7—%

. . 3 A7
Let v, = 1. The first equation gives -2 - (—5 + 17) v—-1=0o0rv; =
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1. 1 . .
71V7 — 7 . Hence the second eigenvector is

A7 1
1

Using the above two linearly independent eigenvectors, the two basis solutions are

X1 = VleAlt

Xy = V2€A1t
The solution is a linear combination of the above solutions
X =0X1 + C1X3p

The solution is converted to real solution by taking the real and imaginary part of one of the basis
solution above. Therefore

x3 = Re(x)
Xy = Im(xp)

The solution becomes

X = (3X3 + (4X4 1)
But
Re(x;) = Re »[‘i% B i]ehf}
T i
[ )
T
_r —1—62 (COS[f—lSln[t)——@Z (COS[f—lSlnft)
- ez (cosft—zsm[t)
_r \/je7 ( zcos[t—sm[t)——e (cosft—zsmft)
- ez (cosft—zsmft)
_R eTt( \/751n\/7t——cos\/7t)+162 ( \/Zcos\/Zt+isin\/§t)
- ez cos[t—zez sm\/7t
_ e;f(_\/gii?\/?—;cos\/?) @
e?2 cos\/;t
And

-3
eTt(—\/ism\/’t— COS[t)+Z€2 ( \/Zcos\/zt+}1sin\/2t)
62 cosft—lez sm\/rt
( \/7008\/7t+—sm\/7t)
(3)
—-e2 5111\/;15

Using (2,3) in (1) gives the solution

Im (x7) = Im

X =C3 Re (Xl) +Cy Im (Xl)

[x(t)] . 7 ( fsmft —cos[t) e? ( fcosfﬂ—smft)
0 e7" cos \[Zt —e7'sin 2t
[x(t)) cse? ( \/7““\%“‘3%(%))”4“ (- COS(?) + gsin (@))

y(t) ce? cos( )—c4ezt51n(\ft)
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Therefore
0wt [ Y7 (V7)1 (V7 2 V7 (V7)1 (VT
X()—C3€ —TS 2 _ZCOS T + cq€ —TCOS T +ZSIH T
y(t)—c362 cos —cge 2 sin| —
2 2
Or

_ 2 V7 (V7)1 (V7 V7 (V7)1 (V7
x(f)=e (03 [_T SIH[T] T CoS [T)J + 4 [_T cos [T] + 1 SIH(TJ]]
y@) = e;f (cs cos[@] —Cy4 sin[?]]

Let C; = ¢3 and C, = —c3, and the above becomes

x(t)Z—EIe;t[Cl\ﬁsin \/_t]+Clcos(\/_t] \/_Czcos(ﬁt]+Czsm(\/_t]]

2

yt)=ez (Cl cos(\/_t +Cy sm(\/z_tJ) (4)

2

Initial conditions are now used to find C;,C,. At t =1 the above becomes

12 (V7 V7 V7 (V7
2=—162(C1\/§s1n 2]+C1COS( ] \/_Czcos[ ]+Czsm[7J]

0.05475 0.21631

)
_ [—0.156 76 -0. 01786] [E ]

C
Solving for { !
C

) by elimination gives
2

Ci| [-15.307
C,] | 22367
Using these constants in the the solution (4) results in

x(t) = —}Le% [(_15.307) V7sin [@] ~15.307 cos (@] ~ V7 (22.367) cos [‘ft] +22.367 si n(\/_t]]
y(t) = ¢! [—15.307 cos(\/jt] +22.367 s1n(\/2_t))

Or

-3
x(f) = —1€7t —40.499 sin ﬁ —15.307 cos @ —59.178 cos ﬁ + 22.367 sin ﬁ
4 2 2 2 2
,3 7
y(H)=e2' [—15.307 oS (\/Z_t] +22.367s n[\/—t]]

Simplifying the above using trigonometric relations gives

x(h) = —}Le;*(—74.485 cos[\/;t] 18. 13251n(\/2_ t]]
y(t) = e [_15.307 cos [?] 422367 sin (@D
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x(t) = ezt [18.621 cos{g] +4.533 sin(@]]

-3 7 7t
y(H)=ez' [—15.307 Cos [Q] +22.367 sin [\/_T)] (5)
The above shows that due to the exponentially decaying term in the solution, then
o x (@) 0
lim -
t—o00 y (t) 0

The following is a plot of x(t) and y () for ¢ from 1 to 5 seconds showing both solutions go to zero

-3
quickly due to the e term.

Solution x(t) Solution y(t)
2.r 4.+
15 35
' 3.
1.r 25
e £ 2
* 05F >
1.5
0. 1.r
0.51
-0.5F+
0_,
.15 2. 25 3 35 4 45 5 1. 15 2. 25 3. 35 4. 45 5
tsec tsec

ClearAll[t];

myXSol=Exp[-3/2 t](18.621 Cos[Sqrt[7] t/2]1+4.533 Sin[Sqrt[7] t/21);
myYSol=Exp[-3/2 t](-15.307 Cos[Sqrt[7] t/2]1+22.367 Sin[Sqrt([7] t/2]);
pl=Plot [myXSol,{t,1,5},PlotRange->All,Frame->True,
FrameLabel->{{"x(t)",None},{"t sec","Solution x(t)"}},
PlotStyle->Red,

GridLines->Automatic,GridLinesStyle->LightGray,
BaseStyle->14,ImageSize->400,

FrameTicks->{{Range[-1,2,.5] ,None},{Range[0,5,.5] ,None}}];

p2=Plot [myYSol,{t,1,5},PlotRange->All,Frame->True,
FrameLabel->{{"y(t)",None},{"t sec","Solution y(t)"}},
PlotStyle->Red,GridLines->Automatic,GridLinesStyle->LightGray,
BaseStyle->14,ImageSize->400,
FrameTicks->{{Range[-1,4,.5],None},{Range[0,5,.5] ,None}}];

p=Grid [{{p1,p2}}]

3.2.6 Problem 6

6. Find the general solution of the homogeneous linear second order differential equa-
tion
Mty +ty +y=0

(Hint: look for solution as a t—power).

Solution
32y +ty +y =0
Since the powers on the f coefficients match the order of the derivatives in each term of the ODE,
then this is called the Euler ODE. Its solution can be found by assuming solution has this form
(Using the hint given)
y() =t 1)

Therefore
yl — atd*l
y/r —a (a _ 1) ta—Z
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Substituting these in the original ODE gives the characteristic equation to solve for a
3a(a-1)t*2 +tat* 1+ =0
Ba(a-Dt*+at*+t* =0
Ba@-1)+a+1)=0

Since t* # 0 (else this will result in a trivial solution), the characteristic equation is 3a (@ —1)+a+1 =0
or

302 -2a+1=0
Using the quadratic formula, the roots of the above characteristic equation are
1 1
a == +-iV2
17373
1 1
m=t-Lia
273 3
The solution is a linear combination of the basis solutions t#1, t*2, Hence

y () = cqt1 4 ¢t ™2

1 1. 1 1.
= Clt(§+§l\/§) + Czt(g_gn/i)
1 1. 1 1.
= cltgtélﬁ + cztﬁt‘élﬁ
1 1. 1.
=13 (clté’\/E + czt‘é“ﬁ) 2)
But
1.
,,\/5]
1. In|t3
tgl\/i = n(
_ e%i\/ﬁlnt
And
-1.
_—11' 5 1n[t?nﬁ]
ts3 =e
- e%lix/ilnt

Using the above two equations in (2) then the solution (2) becomes
y(t) — f% (Cle%i\/zlnt " Cze%li\ﬁlnt)

Using Euler relation the above solution is written using sin and cos to become

y() = t% (C1 Cos(ﬁ;nt) +C, Sin(\/ilnt))

3.2.7 Problem 7

7. Compute the general solution of the following linear constant coefficient system of

ODEs
Y1 =3y1 +2y2 + s
Yy = —y1 + 3yp + 23
Ys = 41 — 3y2 — 243
Solution

Y1 =3y + 2y, + 3
Yo = Y1+ 3y + 2y3
Y3 =y1 -3y —2y3
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The system is written using y’ = Ay as

vi®) (3 2 1){n®
vO=(-1 3 2|y
y3 () T -3 =2){ys ()

3 2 1
Where A=|-1 3 2 |. The eigenvalues are found by solving det (A — IA) = 0 which gives
1 -3 -2
3-14 2 1
-1 3-4 2 [=0
1 -3 -2-A

A*—4A2 441 =0
(A2-41+4)1=0
A=-2)(A-2)A=0
Hence the eigenvalues are
A=0
Ay =2

Where A, has algebraic multiplicity 2. The eigenvector associated with A; = 0 is now found and
then an additional two two linearly independent eigenvectors are needed that are associated with
the second eigenvalue A,. The eigenvector v; is found as normally done by solving

(A-AMDv=0
3-M4 2 1 (% 0
-1 3-XA 2 vy [ =10
1 -3 2-A)\v; 0
3 2 1| 0
-1 3 2]1]v|=]0
1 -3 -2J\o; 0

This gives three equations
301+ 20, +v3=0
-1+ 30, + 203 =0
v1— 30, - 203 =0
Let v; =1, then the above becomes

202 + 03 = -3

37)2 + 2’03 =1
—3’02 — 2U3 =-1
The first equation above gives v, = s Substituting this in the second equation gives 3 (_3:]3) +
2v3 =1, or v3 = 11. Hence v, = 3 -7.

2
Therefore the eigenvector associated with A; =0 is

1

For the eigenvalue A, = 2, which has algebraic multiplicity 2, it is first checked if it is defective
eigenvalue or a complete one. A complete eigenvalue is one with an algebraic multiplicity m and an
geometric multiplicity m as well. When this is the case, then m linearly independent eigenvectors
associated with the eigenvalue can be found.

However, if the eigenvalue is defective, which means its geometric multiplicity is less than m, then
it is not possible to find m linearly independent eigenvectors from the eigenvalue. In this case the
defective eigenvalue algorithm is used to find the remaining linearly independent eigenvectors. Note
that geometric multiplicity can not be larger than the algebraic multiplicity.

Now a check is made to determine if the eigenvalue A, = 2 is defective or complete. The geometric
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multiplicity of an eigenvalue is the dimension of the null-space of the matrix A - A,I given by

3-1, 2 1
A-Ah=| -1 3-1, 2
1 3 —2-2,

1 2 1

=l-1 1 2

1 -3 -4

The null space of the above matrix is now found. By the Rank nullity theorem of linear algebra,
which says

column rank (A) + nullity (A) = dimension (A)

Then the column rank needs to be found as well. This is done by converting the matrix to reduced
row echelon form as follows

1 2 1 1 2 1 1 2 1

1 S VT ) R B TV T

1 -3 -4 1 -3 -4 0 -5 -5
Rochst R, 1 21 Rzzi 1 21
-> o 33 = [o1 2
000 00 0

The above is in reduced row echelon form. The number of columns with 1 on the diagonal is the
column rank. The above shows the column rank is 2. Using the rank nullity the dimension of the
null space is now found as follows
nullity (A) = dimension (A) — column rank (A)
=3-2
=1
Therefore the geometric multiplicity is 1 which is less than the algebraic multiplicity 2. This means

only one eigenvector can be obtained directly from A, since this eigenvalue is defective.

The defective eigenvalue method is used next to find the second eigenvector associated with A,. In
this method the first eigenvector from A, is first found as is done normally by solving

(A-ADvy =0
3-4, 2 1 (% 0
-1 3-A, 2 v =10
1 -3 2-A)lvs 0
1 2 1])|n 0
-1 1 2]|lo|=]0
1 -3 —4)\v; 0

This gives the three equations
U1+ 20, +03=0
-1+ 0y +203=0
U1 — 30y —4v3 =0
Let v; =1, then the above becomes

2?]2 + U3 = -1

Uy + 21)3 =1
—3?)2 - 47)3 =-1
From the first equation v, = 1% and from the second equation _1;;3 + 203 =1, or v3 = 1. Hence
Uy = % = —1. Therefore the first eigenvector associated with A, is
01 1
Vo =|vp|=]-1
U3 1

The second eigenvector associated with A, is given by

V3=1tVvy+D
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Where p is the solution to

The above gives the equations
p1+2p2+ps=1
~p1+p2t+2p3=-1
p1-3p2—4ps =1

Let p; =1, and the above becomes

2p, +p3=0
P2 +2p3 =2
—-3p, —4p3 =0

The first equation gives p, = 7;—3. Hence the second equation becomes % + 2p3 = 0. Therefore p; =0
and therefore p, = 0. Which results in

1
p=]|0
0
Therefore the third eigenvector is found from
V3 =1tV + D
1 1
=t{-1]+]0
1 0
The three eigenvectors are the following
1 1 1 1
vi=|-7|,vo=|-1|,v3=¢]|-1]+]|0
11 1 1 0

The solution can now be written as

Aot

y (t) = cleAltvl + e vy + C3€/\2tV3

Since A; =0 and A, = 2 then the above becomes

iy (1) 1 1 1) (1
o ()| = o1 | =7 [+ coe® [ -1 [+ c3e® |t[-1]|+]0
Y5 () 11 1 1) o

Which can be simplified to
Y1 (t) = 1 + e + cze? (¢ +1)
y2 () = =7c1 = cpé?
y3 (t) = ey + cpe? + cate? 1)

t_ C3t€2t

To plot these solutions, the following arbitrary initial conditions y; (0) = 0,, (0) = 0,y3(0) =1 are
used

1 (0) 0 C1+C+C3
w0 |=10[=[ -7¢1 -
y3(0) 1 11c; + ¢,

Solving, this gives c¢; = }L’CZ = —Z,cg = g Therefore the above solution (1) becomes
1 70,3 2
vy (B i %e 7+ 5e 3(1f+1)
| 7,72 3,0
AU y +74€ gte
Y3 (t) o ZEZt + Et€2t

The following is a plot of the solution for these initial conditions. The solutions are not stable,
since they grow in time.
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solutions to problem 7

60 F
40+
— y1(t)
201 y2(t)
st y3(t)
2.0
_20 L

ClearAll[t,yl,y2,y3];

myyl=1/4-7/4 Exp[2 t1+3/2 Exp[2 t](t+1);

myy2=-7/4+7/4 Exp[2 t]1-3/2 t Expl[2 t];

myy3=11/4-7/4 Exp[2 t]1+3/2 t Exp[2 t];

Plot [{myy1l,myy2,myy3},{t,0,2},GridLines->Automatic,GridLinesStyle->LightGray,
ImageSize->300,

AxesLabel->{"t","solutions to problem 7"},
PlotLegends->{"y1(t)","y2(t)","y3(t)"}]

3.2.8 Problem 8

8. Explain why y(t) = cos ¢+ sin 2¢ cannot be a solution to a constant coefficient ODE
of the form y” + ay’ 4 by = 0, with a,b € R. Find an ODE with real coefficients of
order greater than 2 that y(¢) does satisfy.

Solution

y(t) = cost + sin 2t can not be a solution to y” + ay’ + by = 0, because both basis solutions (these
are the linearly independent solutions sin and cos) must oscillate with the same frequency. The
frequency of oscillation of a second order system with no forcing function is called the natural
frequency of the system. There is one unique natural frequency for a second order system.

This frequency comes from finding the value of the discriminant of the characteristic equation of
the ODE (since it is constant coefficient). To illustrate, the general solution of the second order
ODE is found to show that the proposed solution is not possible. The general solution of the above
ODE is

y () = crettt + cpete!t

Where A, are the two roots of the corresponding characteristic equation A% + ad + b = 0. These
roots are

Therefore the roots are

A :—§+\/a2—4b
Azz—g— a2 — 4b

The general solution to the given ODE is linear combination of two linearly independent solutions
eMt 2t one for each root, which results in

(—%—\/@)t

—2 i Na2-ab)t
y(t)=cle( 2" ) + cpe

a
—=f 2_, _\g2—
- (cle‘/“ bt 4 ooV 4bt)

a
. o o . . . -5t
c1,¢, are determined from initial conditions. Since the proposed solution given does not have ¢ 2

in it, then this implies that a = 0 (this is the damping term), and since ¢ 2' =1 then the solution
reduces to

y(@t) = 1Vt 4 cpem V4t
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Since the proposed solution is made up of trigonometric functions, it must be that b > 0 in order
to make —4b negative and obtain a pair of conjugate complex roots. The solution now becomes

]/(t) — Clezi\/l;t + Cze—Zi\/Et
Expressing this in terms of trigonometric functions using Euler relation results in

y(t) = cq cos (\/l;t) + ¢y sin (\/Et)

The above shows that the solution can not be y (f) = cost + sin 2t since Vb can not equal 1 and 2 at
the same time.

Another way to show that y (t) = cost+sin 2t is not be a solution, is to simply substitute this solution
into the ODE and obtain a contradiction as shown below.

Since y’ = —sint + 2cos 2t and y”” = —cost - 4sin 2¢, the ODE now becomes
(—cost—4sin2t)+a(—sint +2cos2t) + b(cost +sin2t) =0
(-1 +D)cost—asint+ (-4 +b)sin2t =0

Because the RHS is zero, this implies that

-1+b=0
-4+b=0
-a=0

The first equation gives b =1 and the second equation gives b = —4 which is not possible.

To obtain an ODE with such a solution, the ODE has to be of order 4. This is to obtain two differ-
ent natural frequencies (A 4" order ODE can be written as two separate second order ODE’s). Let
the ODE be

y"" (t) + Ay () + By” () + Cy' (t) + Dy () = 0 1)
Given that
Yy =cost+sin2t
Yy = —sint+2cos2t

y

y//l
Yy’ =cost +16sin2t

/

/= —cost—4sin2t

=sint—8cos2t

Substituting the above into (1) gives
(cost +16sin2t) + A (sint — 8 cos2t) + B(—cost —4sin2t) + C(—sint + 2cos2t) + D (cost + sin2t) =0
Collecting terms based on the trigonometric function gives

(I1-B+D)cost+(A-C)sint+ (16 —-4B + D)sin2t + (-8A + 2C) cos2t =0

A solution is obtained by setting all the coefficients above to zero which results in the following
four equations to solve for A,B,C,D

1-B+D=0
A-C=0
16-4B+D =0
-8A+2C=0

These are solved by elimination. From the second equation A = C. The fourth equation gives
-8C +2C =0 or C =0. Hence A = 0. From first equation B =1 + D, hence the third equation gives
16-4(1+ D)+ D =0, or D =4 and therefore B = 5. The solution is therefore

O N0 w >
I
= O g O

Using these in (1) gives

Yy () +5y" (t) +4y(t) =0 2)
The proposed solution y () = cos t +sin 2t now satisfies the above ODE. There will be four constants

of integrations (since this is a 4" order ODE), and therefore two of these constants must be set to
zero using the appropriate initial conditions. To find which constants are needed to set to zero, the
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above ODE is first solved. The characteristic equation of (2) is
AM+502+4=0
(12+1) (A2 +4)
The roots are A; = +i, A, = +2i. Therefore solution to (2) becomes
y () = crett + cpe™™ + c3e?t + cye?it
Using Euler relation the above is written in trigonometric functions as
y(#) = cpcost+cysint + c3 cos2t + ¢4 5in 2t 3)

To obtain the proposed solution y(f) = cost + sin 2t implies that the constants must have these
values

cp=1
=0
c3=0
=1

The initial conditions which would lead to these constants having these specific values are now
found as follows. From (3)

y(0)=c1+c3
Since y’ (t) = —cy sint + ¢, cost — 2c3 sin 2t + 2¢4 cos 2t then
¥ (0) = ca +2¢c4
And since y"’ () = —c1 cost — ¢; sin f — 4¢3 cos 2t — 4cy sin 2t, then
¥’ (0) = —c1 —4c3

and finally since y"”’

(t) = ¢y sint — ¢cp cost + 8¢z sin 2t — 8¢y cos 2t then
Yy (0) =—cp — 8¢y

Since ¢; =1,¢c, =0,¢3 = 0,¢c4 =1, then the above initial conditions become

y(0)=1
y(0)=2
vy’ (0) =-1
y"(0)=-8

The above initial conditions will now give the solution
y(t) = cost +sin2t
For the ODE
vy +5" ) +4y(#) =0
The following is a plot of the solution

Problem 8 solution

y(t)

+ + - + + a + + + + t(sec)
VAR AVARTIAVAE:

-15F
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Plot[Cos[t] + Sin[2 t], {t, 0, 20}, PlotStyle -> Red,
GridLines -> Automatic, GridLinesStyle -> LightGray,
AxesLabel -> {"t (sec)", "y(t)"},
PlotLabel -> "Problem 8 solution"]

3.3 Third exam

3.3.1 Problem 1

1. Let z(t) and y(t) denote the population sizes of two biological species. If the two
species are not competing for resources (occupy different biological niches) then a
simple logistic model could be feasible to describe the dynamics of their coexistence.

t' = a1z — bix®

y' = a2y — b2y2.

If however the two species are direct competitors, then their access to resources and
their population growth rate could be reduced by a quantity that is proportional
to the size of the competing species’ population, leading to a competition system
model

T = ax — bz — ey

y' = a2y — bzy2 — CTY.

Assume that in a competition system (with appropriate units) the coefficients are
given as '

a1 =60, a;=42, b=3, b=3, ca=4" c=2,
and determine all equilibria of the system as well as their corresponding stability
properties. Give a short interpretation of your results in terms of the long term
species dynamics (as t — 00).

Figure 3.1: Problem 1 Statement

Solution
X' = ayx — byx? — cyxy
Yy =ay - b2y2 — XY

Using the values given in the problem, the above equations become

x" = 60x — 3x% — 4xy (1A)
y' =42y - 3y* — 2xy (1B)
Or
X =f (x, y)
y =g(xy)

Equilibrium points are found by setting f (x, y) =0and g (x, y). This results in the following two
equations to solve for x,y

60x — 3x% — 4xy = 0 (1)
42y - 3y? - 2xy =0 (2)
The first equation (1A) becomes x (60 -3x- 4y) = 0 which then gives one solution as
x=0 (3)
And 60 - 3x — 4y = 0 gives another solution as

60 — 4
x=

. @)
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The second equation (1B) becomes y (42 -3y - Zx) = 0 which gives one solution as

y=0 ()
And 42 - 3y — 2x = 0 gives another solution as
42 - 2x
y="3 (6)
2 604y 42‘2(603&) 8 2
When x = 0 then (6) results in y = 5= 14. When x = 3 Y then (6) results in y=——7F—"=5V+3
or y = 6. Hence in this case x = 60_T4(6) =12.
Similarly, when y = 0 then from (4) x = 8040 _ 0. The above shows that there are 4 equilibrium
points. These are
x=0,y=0
x=0,y=14
x=12,y=6
x=20,y=0

To determine the type of stability of each equilibrium point, and since this is a nonlinear system,
we must first linearize the system around each equilibrium point in order to determine the Jacobian
matrix.

Once the system is linearized, then the eigenvalues of the Jacobian matrix are found in each case.
From the values of eigenvalues we can then determine if the system is stable or not at each one of
the above four equilibrium points.

The first step is then to linearize f (x, y) and g(x, y) around each of the equilibrium points. If we

assume the equilibrium point is given by xg, v then expanding f (x, y) in Taylor series around this
point gives

If vy If (v y

f(xo + Ax, yo + Ay) = f(xofyo) + ;x ) (Ax + Ay) + gy )

X0.Y0 Xo/Y0

(Ax+Ay) + -

But f (xo,yo) = 0 since it is what defines an equilibrium point, the above becomes, after ignoring
higher order terms since we are assuming small Ax, Ay

f (xo + Ax, yo + Ay) = w (Ax + Ay) + &f(gj; y) (Ax + Ay)
X0,Y0 X0,40
Similarly for g (x, y) we obtain the following
g (xo + Ax,yg + Ay) = @ (Ax + Ay) + 8g§3;, y) (Ax + Ay)
X040 *o-Yo

Therefore a linearized f, g functions at the equilibrium point become

of of
( f (xo + Ax,yo + Ay)J | oo Iy oo (Ax + Ay)
| % Ig
glxo+Avy+ay)) |2 A ax+ay
X0,40 X040

Replacing the original nonlinear f (x, y) .8 (x, y) by the above linearized (approximation), the system
can now be written as

o o
Where [gg ggJ is called the the Jacobian | matrix. Hence the system now can be written as

9x  ox
¥ =[x
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Now ] is determined. From

d d )
== a(60x—3x — 4dxy) = 60 - 6x — 4y
d d
adq_2 (60x - 3x2 - 4xy) = —4x
dy Iy
Jdg d 5 3
il (42y 3y° - ny) = -2y
Jdg d 5 3
" 9y (42y - 3y? - 2xy) = 42 - 6y - 2x
The Jacobian matrix becomes
_ |60 - 6x -4y —4x
2 42 — 6y — 2x
X=X0,y=Yo
And the linearized system is
x"| |60 —6x -4y —4x x
y - -2y 42 - 6y — 2x y
*=Xo0/Y=Yo

Now each equilibrium point is examined using the above linearized system to determine the type
of stability a that point.

case xo = 0,19 =0

I 60— 6(0) — 4(0) ~4(0) (60 0
- ~2(0) 42-60)-20)) |0 42

Hence the linearized system at this specific equilibrium point is
x| (60 0 |[x
Y 0 42)\y
Since J is a diagonal matrix, its eigenvalues are the values on the diagonal. Therefore A, = 60,1, = 42.

Since the eigenvalues are positive, then this equilibrium point is not stable.

case xg = 0,y9 =14

_[60-6(0)—4(14) -4(0) (4 0
- —2(14) 42-6(14)-2(0)) (-28 -42
Therefore linearized system at this specific equilibrium point is
x| |4 0 |fx
y) |-28 -42)ly
. . A=A 0
The eigenvalues can be found by solving T 0 to be A; = 4,1, = —42. Because one of

the eigenvalues is positive, then this equilibrium point is not stable.

case xp =12, =6

_(60-6(12) - 4(6) ~4(12) (36 -48
B -2(6) 2-66)-2312)) |-12 -18

The linearized system at this specific equilibrium point is

x| [-36 -48|(x
y) |-12 -18)ly
The eigenvalues can be found to be A; = -52.632,4, = -1.368. Since both eigenvalues are now

negative, then this equilibrium point is stable.

case xo =20,y =0

_ (60 -6(20) - 4(0) ~4(20) _(-60 -80
- -2(0) 2-60)-220)) Lo 2

The linearized system at this specific equilibrium point is

VR
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The eigenvalues are A; = 2,1, = —60. Since one of the eigenvalues is positive, then this equilibrium

point is not stable.

Summary of results obtained so far

equilibrium point | eigenvalues type of stability
x=0,y=0 AL =60,1, =42 not stable (nodal source)
x=0y=14 A =4,1,=-42 not stable (Saddle point)
x=12,y=6 A = -52.632, A, = —1.368 | stable (Nodal sink)
x=20,y=0 A =2,A, = -60 not stable (Saddle point)

To verify the above result, the phase plot for the original nonlinear system was plotted on the

computer and the equilibrium points locations highlighted. The plot below agrees with the above
result when looking at direction of arrows around each point. We see that the direction field arrows
are all moving toward the stable point from any location near it. The stable equilibrium point was
colored as green while the unstable ones colored in red.

ClearAll[x, y];
fl=60x-3x"2-4xy;
f2=42y-3y"2-2xy;
StreamPlot[ {f1, f2}, {x, -5, 25}, {y, -5, 20},
Epilog - { {Red, PointSize[@.03], Point[{{©, 0}, {0, 14}, {20, 0}}1},
{Green, PointSize[.035], Point[{{12, 6}}1}},

PlotLabel -» Column[{"Phase plot for problem 1", "Showing location of all equilibrium points"},

Alignment - Center],
BaseStyle » 12,
ImageSize - 400]

Phase plot for problem 1
Showing location of all equilibrium points

sl
INIE

J /
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| NQ] /////é@;igzﬁ:

25

Figure 3.2: Phase plot for problem 1

Interpretation of results Since the solution of the linearized system can be written as linear com-

bination of solutions made up of terms that look like c;e* where c; are constants of integration
and A; are the eigenvalues found above, then this implies when the real part of the eigenvalue is
positive the solution will increase with time, moving away from the equilibrium point. Similarly, if
the eigenvalue has a negative real part, it means it is a stable solution because solution will decay
with time when perturbed slightly from the equilibrium.

Since this is second order system, there are two eigenvalues. Even if one eigenvalue is stable (i.e.
negative), if the other eigenvalue is positive, then the system is unstable since one part of the
solution will keep growing with time.

In terms of the dynamics of species, it means if the populations x = 12 and population y = 6, (this
is the stable equilibrium) then these population will remain the same in long term even when one
population becomes a little more or less than the other population. But for all other equilibrium
populations sizes, such as x = 20,y = 0, then if the population y were to change slightly to become
say y = 1 (may be by external influence) then this will cause both population to start changing,
moving it away from x = 20,y = 0 as time increases, hence x = 20,y = 0 is not stable population

size.

This seems to be sensitive to the parameters a;,b;, ¢; given in the problem. It is not easy to give a
more physical reasoning as why some population values is stable while other are not, other than to
also note that all the unstable ones had at least one population at zero.
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det if 0 <t <2
" / =
y ”59+6y'{ 0 if t>2

y(0)=1, ¢'(0)=-2

- 2. Use Laplace transform to solve the following initial value problem for y(t) :

Figure 3.3: Problem 2 Statement

Solution
The ODE can be written as
Yy’ =5y + 6y =4e (U -U(t-2))
=4(c'U(t) - U (t-2))

Where U (t) is the unit step function. In the following solutions, these Laplace transform relations

obtained from table are used

U(t)@)1
s

1
-1 e -

1
MU & —
s+a
@

$2 + w?
s

$2 + w?

sin (wt) ©
cos (wt) &
Assuming & [y (t)] =Y (s), and using the above relations of Laplace transform we find

Zletu®]= 5%1
Zletu-2)]= 6;2(_5_11)

Now, taking the Laplace transform of the ODE results in

1 6_2(5_1)
(SZY(S) -sy(0) -y’ (0)) -5 (SY(s) —y(O)) +6Y(s) = 4(: e )
Using y (0) =1,y (0) = -2 the above simplifies to

4 4 —2(s-1)
(SZY(S)—S+2)—5(5Y(S)_1)+6y(s):;_ es_l

4 4e~2(s-1)
szY(s)—s+2—55Y(s)+5+6Y(s)=;_ es—l

4 4 —2(s-1)
YO (2= 5546) =547 = 5 ==

4 4 —2(s-1)

Y(S)(52—5S+6)::— es—l +(S—7)

But (52 —5s + 6) = (s = 3) (s — 2) and the above becomes

4 4e?e % (s—7)

e 9672 606962 G962

1)

These are now simplified by partial fractions. The final result is only shown for brevity, since the

process of performing partial fraction is a standard one.
1 1 1 N 1
(s-1)(s-3)(s-2) 2(s-3) s—-2 2(s-1)

And
s—7 —4 5
= +
(s-3)(s-2) s-3 s-2
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Using the above result back in (1) results in
2 42 L 2 4, 2 4 .5
s-3 s-2 s-1 (s-3) s-2 (s-1))] s-3 s-2
-2 1 2 S 267 4o 2e7E
= + + —e - +
s-3 s-2 s-1 (s-3) s-2 (s-1)

Now we apply the inverse Laplace transform. lookup table is also used for this purpose to obtain

Y(s) =

2)

_ 1
—Zc.%_l (ﬁ) = —2€3t
() -
1
23_1 (:) = 2€t
And
a(e* 3(t-2)
2 =% U(t-2)
af(e® 2(t-2
47 " = 462D (+ - 2)
a(e> -2
27 — =202 (t-2)

Putting all these results back into (2) gives the response in time domain as
y(t) = =263 + ¢ + 2¢t — ¢? (263(“2) — 4e2(-2) 4 2e(t*2)) Uut-2)
The above can also be written as
y(t)={ —263 + % + 2¢! 0<t<2
=263 + 2t 4+ Dt — 2 (2€3t — 40 4 Zet) t>2
Since the original ODE is not stable (due to damping term -5 negative in the given ODE, the

solution will blow up with time). This is seen by the solution above, where the exponential are all
positive, hence growing with time. The following is a plot of the above solution for up to t =2.2

ClearAll[t];
mySol = —2e3t + et + 2t - @2 (2 e3(t-2) _ge2(t-2) 2e(t'2)) UnitStep[t - 2];
Plot [mySol, {t, 0, 2.2},

Frame -> True,

FrameLabel » { {"y(t)", None}, {"t (sec)", "Solution to problem 2"}},
GridLines -» Automatic, GridLinesStyle - LightGray, PlotStyle - Red]

Solution to problem 2

—400 ]
—600 | ]

1000k ]
0.0 05 1.0 15 20

t (sec)

Figure 3.4: Plot of solution for problem 2
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3.3.3 Problem 3

3. Solve the following linear system using Laplace transform

Yy +5y1 +y2 =0
Yy —2y1 + 2y =0

y1(0) =3
y,(0) =0
y2(0) = 1
y2(0) =0

Figure 3.5: Problem 3 Statement

Solution
Let Y{(s) =& [yl (t)] and let Y, (s) = & [yz (t)]. Taking Laplace transform of the two ODE’s gives
s2Y1 (s) —sy1 (0) =5 (0) +5Y7 (s) + Y, (s) =0
$2Y, (8) — sy (0) — 15 (0) —=2Y; (s) +2Y, (s) =0
Substituting the given initial conditions results in
s2Y1-3s+5Y;+Y, =0 1)
§2Y, —s—2Y; +2Y, =0 (2)
The above two ODE’s are now solved for Y7 (s), Y5 (s)
Y (s2+5)+ Y, =3s
Y, (s2+2)-2Y; =s

s?+5 1 |[Yq]| (3s
2 2+2/ly,) |s
Using Gaussian elimination: Adding (ﬁ) times first row to second row gives
s> +5 1 Y, 3s
0 242+ 2]y, s+
s 2w/ \12) 8F 55

[52 +5 1 ] [YlJ [ 3s J
1 (4 2 s (2
0 E (S + 75 + 12) Yz ﬁ (S + 11)

Back substitution: From last row

or

Yo - = (s +11)
LS (s*+752 +12)

s2+
s (s2 + 11)
T st 4782 4+12
s (52 + 11)

" (2+4)(2+3) ©

First row gives

(s2+5) Y1 +Y, =35
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Using Y5 (s) found from (3), the above becomes
s (52 + 11)
(52 + 4) (52 + 3)
3 s (52 + 11)
R I R S Y W

To obtain the time domain solution we need to inverse Laplace transform (3,4). Starting with (3),
and applying partial fractions gives

(52+5)Y1 =3s-

s(52+11) 8 7s
52+4)(52+3) T3+52 4+42

Yz (S) = ( (5)

From tables we see that

83*1[ ’ ]= 8cos(\/§t)

3452

7771 [4582] = 7cos (2t)

Hence (5) becomes in time domain as
Yo (t) = 8cos (\/gt) —7cos (2t)
Similarly for Y7 (s), from (4) and applying partial fractions

. 3 s(sz+11)
I S R Y Y ey
3s 4s 7s 3s
(52+5) _(52+3_52+4+5+52)

From inverse Laplace transform table

(6)

Lq = 3 cos (\/gt)

43‘1[ i ::4cos(\/§t)

73’1[ > -=7cos(2t)

33‘1[ 2— =3 cos (\/gt)
5+s%]
Using these in (6), the solution y; (t) becomes
y1 () =3 cos (\/gt) - (4 cos (\/gt) —7cos (2t) + 3 cos (Vgt))
= -4 cos (\/gt) + 7 cos (2t)

In summary

Y1 () = —4cos (\/gt) + 7 cos (2t)
Yo (t) = 8cos (\/gt) -7 cos (2t)

The following is a plot of the solutions for 10 seconds.
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ClearAlllyl, y2, t]
yl= -4Cos[«/? t] +7Cos[2t];
y2 = 8Cos[‘\/? t] -7Cos[2t];
Plot[{y1, y2}, {t, 0, 10}, Frame - True,
FrameLabel - {{"y1(t),y2(t)", None}, {"t (sec)", "Problem 3 solution"}},
PlotLegends - {"y1(t)", "y2(t)"},
BaseStyle - 14,
GridLines - Automatic,
GridLinesStyle - LightGray]

Problem 3 solution

10} 1

. /\ /\
\\///\\ / \ ' — 1)

sl \\/ L e

-101

[8)]

y1(t),y2(t)

—15’\

Figure 3.6: Plot of solution for problem 3

3.3.4 Problem 4

4. Consider an n x n real matrix A. Show that A can be uniquely written as a sum of
a symmetric and a skew symmetric matrix

A= Asy + A

We say that A is positive definite if q(x) > 0 for x # 0 where the quadratic form
q:R" — R is defined as g(x) = xT Ax.

‘Show that A is positive definite if and only if A, is positive definite.

Figure 3.7: Problem 4 Statement

Solution

Part a
Note: In all the following it is assumed that x is a vector and that x # 0
Let
A=Ay + Ag (1)

Where A, is a symmetric matrix, which means AsTy = Ay, and Ay is skew symmetric matrix which
means A, = —A;. Taking the transpose of (1) gives

AT = (Ag + Ayg)'

= AL + AL
= Ay — Ay (2)
Adding (1)+(2) gives
A+ AT =24,
A+ AT
Ay =" 3)

sy = )
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Subtracting (2)-(1) gives

AT-A=-2Ay
A-AT
Agk = > (4)
Therefore for any A,
1
- T
Ay = E(A+A) (4A)
1
- T
Ay = 5(A—A) (4B)
To show that A, is indeed symmetric, this is done by construction :
1 T
T _ T
Ay =5 (a+4T)

o)
T
But (AT) = A, and the above becomes

AL = %(AT+A)
:Asy

Therefore A, is indeed symmetric.

To show that Ay is skew symmetric matrix :

AT = % (A- AT)T
-5 (4-7)
=3 (47-4)
=5 (A-4"

Hence A is indeed skew symmetric.

Therefore any A matrix can be written as A = A, + Ay where A, Ay are given by (4A,4B).

sy’

Now we need to show that this is a unique was to write A. Proof is by contradictions. Let there be

/Ly matrix which is symmetric and Asy # Ay, and let there be /Ly matrix which is skew matrix and
Ag # Ag. And also let A = Asy + Asy in addition to A = Ay, + Ag. Then
. N
AT = (A, + Ay)
- AT+ AT,
Since A, is assumed to be symmetric, then A, = A, and since Ay is assumed to be skew symmetric,
then A, = —A; and the above becomes

AT = A, - Ay
Therefore
DA% AT) = 2 (Ay + Ay + Ay - Ay)
= Asy
But from (4A) above, we showed that % (A + AT) = Ay, Hence
Ay = Asy

Which is a contradiction to our assumption that /Ly # Agy. Therefore A, is unique. The same is

done for Ay. From
(4-4T) = 3 (Ay + Ase - (Ay - Ay))

sk

NI~
2 N

But from (4) above, we showed that %(A - AT) = Ay. Hence Ay = Ay which is a contradiction.
Therefore there is only way to write A as sum of symmetric and skew symmetric way, which is

Asy Ask
——
A+ AT 1

A 5 +§(A—AT)
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QED.

Part b

Starting with the forward direction. We need to show that given A is positive definite (p.d.) then
this implies A, is also p.d.

From part (a) we found that A can be written as A = A, + Ag. Since A is now assumed to be p.d.
then this implies

xTAx >0
2T (A + Ag) x>0
xTAsyx +xTAgx >0 1)
Now we will show that xT Agx = 0 to finish the above proof. First we observe that
(xTASkx)T = (Agx) x
=xTALx
But Ay, = —~AJ by definition of skew symmetric matrix. Therefore the above becomes
(xTAskx)T =- (xTASkx)

But xTA,x is a single number, say g. (To be precise, g is 1 X 1 matrix. but since it is 1 X 1 we can
treat it as a number, since it is one element). But the transpose of a number (or 1 X 1 matrix) is
itself. Hence the above relation says that

T _

9 =-4
For a number, this is the same as saying g = —g and this only possible if 4 = 0 or in other words
xTAgx =0 (2)
Using (2) in (1) shows immediately that
xTAsyx >0

Therefore A, is positive definite.

Now we need to show the reverse direction. That is, we need to show that if A;, is p.d. then this
implies A is also p.d.

Since Ay, is now assumed to be p.d. then we can write
xTAgx >0
But A = A, + A therefore A, = A — Ay and the above becomes
xT(A-Ag)x >0
xTAx —xTAgx > 0
But we showed in (2) that xT Agx = 0. Therefore the above becomes
xTAx >0

Which implies that A is positive definite, which is what we are asked to show. QED

3.3.5 Problem 5

5. Consider

111:[2 3 0 1}, l.Iz:[—l 0 3 2]
U3:[2 2 1 4:], 114:[—6 4 =2 0]

Show that three vectors vy, vs, vg out of the above four form an orthogonal set in
R*. What are these vectors?

Find the best approximation w & Span(vy,va,vs) to the fourth vector using
Gramm'’s theorem.

Find a basis v1, Vo, v3, v4 of orthogonal vectors for R?.

Figure 3.8: Problem 5 Statement
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Solution

Two vectors T, i are orthogonal if their dot product is zero. This is because -1 = |[7]| ||iZ]| cos 6 where
0 is the inner angle between the two vectors. Since the vectors are orthogonal, then cos90° = 0 and
therefore 71 = 0. To find which pairs are orthogonal to each others, we compute the inner product
between all possible pairs :

Uty =-2+0+0+2=0
U3 =4+6+0+4=14
Uy Uy =-124+12+0+0=0
Uy U3 =-2+0+3+8=9
Uy -y =6+0-6+0=0

Uy -ty =-12+8-2+0=-2

—

We see from the above that i -1, = 0,u; - Uy = 0,1, - iy = 0. Therefore
5= {ﬁlﬂzz_ﬁ}

= =2 =
= {01,02,03}

% = (2,3,0,1) (1B)
3, = (-1,0,3,2)
U3 = (—6,4,-2,0)
Form an orthogonal set in R%.
Now we need to find the best approximation of @ = 3 = (2,2,1,4) using the above orthogonal
vectors U1,7,,U3. Using Gram’s theorem, this approximation is
W = ¢10; + Ty + €305 (1A)

Where the constants c; are found from solving the system

- P - = — =
0V1:07 01°0p 01°03]|C1 01w
- — — — — - - —
Up0U1 Up:Uy Up-U3||Co|=|0p W
= = - = - = — =
U301 0U3:0Uy 0U3°03)\C3 U3 -w

But since 7; are all orthogonal to each others then 7 -?5]- =0fori+j,and 7;-7; = ||vl-||2 and the above
becomes

B o 0 \(a) (4@
0 [Bff o ||e|=|%-® (1)
0 0 Jl\s) B@
But
7w =(2301)-(12,21,4=4+6+4=14
Ty w=(-1,0,3,2)-(2,2,1,4) =2+3+8=9
Ty =(—6,4,-2,0)-(2,2,1,4) = -12+8-2=-6
Hence (1) becomes
BF 0o 0 (o) (14
0 Bl o ||e|=]|9 @)

o 0 el la) (-6
Since
B = 12,3,0, )P =4+9+1=14
o = 11(=1,0,3, 2 =1+9 + 4 =14
5| = 11(=6,4, 2, 0)I* = 36 + 16 + 4 = 56
Then (2) becomes

14 0 0)\(cq 14
0 14 0l||c|=1]9 (3)
0 0 56)lc;) |-6
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From the above we see that

C1=1
9

Cz—ﬁ
-3

C3—§

Hence the best approximation using (1A) becomes
W= le))l + C232 + C3?7)3
=(2,3,0,1) + 0 (-1,0,3,2) - 0 (-6,4,-2,0)
- 77 Yy 14 7Yy 28 v 7

18 15 16
7777

Therefore
S 1
@ = - (14,18,15,16)

Now we need to find basis 7y, 7,, U3, 74 of orthogonal vectors in R*. We already found that from (1B)
that ¥y, 7,, U3 are three such vectors. So we just need to find another 7, = [ay, 45, a3, a4] such that it is
orthogonal to the other three, in other words we need to solve

61‘5)4:0
62'64:0
63'64:0

This implies
[2,3,0,1]- [ay,a5,a3,a4] =0
[-1,0,3,2] - [aq,4ap,a3,a4] =0
[-6,4,-2,0] - [ay,a,,a3,a4] =0

Or
2a1+3a2+a4=0
—ﬂ1+3613+2614=0
—6ﬂ1+4612—2€l3=0
Or
m
2 3 0 1 0
az
-1 0 3 2 =10
-6 4 -2 0oJ|°| (o

This system has three equations and 4 unknowns. Therefore it will have one free parameter giving
an infinite number of solutions. Using Gaussian elimination:

2.3 0 1), . i 3 0 1

2=Rp+ 51K R3=R3+3R

10 3 2/ -0 2 o3 ST
6 4 2 0 6 4 2 0
2 3 1 x (2 3 0 1
3 5 | Re=Rs—3 Rz 3 5
0 3 e N
013 -2 3 00—28—%

We stop the elimination here since no more elimination is possible. We have now this system

M

2 3 0 1 0
a

34 5 |[®2]2],
2 %6 as

0 0 -28 - 0
ay

Back substitution: From last row we obtain the equation
56
—28ﬂ3 - ?a4 =0

3
ag = —503
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The second row gives

3 5
—a2+3a3 + —ay = 0

2 2
2 5
ap = 5 (—3a3 - 504)
=-2a 5a
= 3 3 4

. 3
Since a4 = —503 the above becomes

5( 3
ap, = —2ﬂ3 - 5 —§ﬂ3
1

=-a
573
First row gives
2a1+3a2+a4 =0

1
a; = E (=3ay — ay)

. 1 3
Since a, = a3 and a; = —=a, the above becomes
2= 503 4 233

ITNARES

=0
Therefore the solution is
aq 0
a 1
a3 1
3
ay —=

2
The above means that for any arbitrary a3 value there is a solution. a3 is just a scalar which only
stretches or shrinks the vector but does not change its direction (orientation). Therefore the vector
remains orthogonal to all others for any a;. Let us pick a3 = 1. Using this 7, becomes

1 3
64 = l:Ol 5111_5]

To verify the result found, we will check that 7, is indeed orthogonal with the other three vectors :

BT =123,0,1]-|0,5,1,-2 =0
0104—,// /2//2_

1 3
2.3 - —1/0’3,2 . 0’_/1’__ :0
Uy Uy = ] [ 5 2]
03.04:[—6,4,—2,()].[015/1’__]:0
QED.

3.3.6 Problem 6

6. For a general n X n nonsingular matrix A compute the total number of multiplica~
tions/divisions necessary to solve the linear system

Ax = b,

a) using Gauss elimination with back-substitution,
b) using Cramer’s rule. ‘

Figure 3.9: Problem 6 Statement

Solution



Let
a1 412 M3 A1p by
p1 dpp a3 o b,
Apxn = |z az  as az, [, b=|bs
Ayl Ap2  Au3 App bn
Part (a)

The first step in Gaussian elimination is to reduce the above matrix to row echelon form :

ap; 42 a13 a1, | b1
0 axp ax azp || b2
Apn=|0 0 ax a3, || b3
0 0 o0 a,, )5,
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Row echelon form has zeros in its the lower left triangle. After this, back substitution starts by
solving for x, from the last row, then solving for x,_; from the row above the last row and so on
until we reach the first row.

Counting operations for forward pass

The first step is to zero out all entries in first column below a;; using a;; as pivot. Next is to zero
out all entries in second column below the (updated) ay, value and so on.

PN a PO
To zero out an entry, for example a,,, we first need to do one division aﬂ = A and store this in

11
memory, then do a,; = a,; — Aay; for all entries in that row, which means for i =1---n. (no need to
count ay; since we know it will be zero). We have to remember that this is being applied to the b
vector as well and not just for A matrix rows.

Hence we need one division to find A, and then 21 multiplication and addition/subtraction opera-
tions per row. The division is only needed once per row to find the pivot scaling A.

Since there are n —1 rows then there are (n —1) divisions and (2n) (n — 1) multiplications/addition to
zero out the first column. After this we have the following system reached

a1 4 413 a1y | b1

0 axpn ax gy || b2

Apn =0 az as az, || bs
0 Ay  Ay3 Apn bn

The total cost now is therefore (n —1) + 2n) (n —1).

We now switch to the second row and use the new value of a5, as pivot and repeat the same as

above. The only difference now is that there are n — 2 rows to process and (n —2) divisions and
therefore 2 (n — 1) (n — 2) multiplications/addition to zero out the second column entries below the
second row. After this we reach the following system

a1 a2 413 a1, | b1

0 ay axp gy || b2

Anxn =(0 0 ass a3y b3
0 0 agp Ay, J\ by,

The total cost of the above is therefore (n —2) +2(n —1) (n - 2).

We now switch to the third row and use the new value of a33 as pivot. Now there are now (n - 3)

divisions and 2 (n - 2) (n — 3) multiplications/additions to obtain the following system

a1 a4y 43 a1 | (b1

0 axp ax azp || b2

Anxn = 0 0 as3 asy, b3
0 0 0 a,, )\b,
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The total cost of the above is therefore (n —3)+2(n-2) (n - 3).

And so on until we reach the row before the last row, where there is only one row below it to process.
The cost then is just one division and 2 additions and 2 multiplications. Therefore the number of
total number of multiplication and additions operations for the forward pass is the sum of all the
above operations, which can be written as

row 2 row 3 last row
—_——
[(m-1)+2n)(n-D]+ [(n-2)+2n-1)(n—-2)] +--- + [1 +4]
n-1
Writing the above as E (n—k)+2(n—-k+1)(n—k) then we need to calculate this sum using known
k=1
formulas for summations. Let this sum be A, hence
n-1
A=Y -3k + 2k + 3n — 4kn + 2n?
k=1
n-1 n-1 n-1 n-1 n-1
= 3)k+2) k2 +3)n—4Ykn+2)n?
k=1 k=1 k=1 k=1 k=1
nn-1) nw n: on ) n?(n-1) )
:—3( > )+2(§—? te +3(n2-n)-4 —— +2(n?(n-1))
2 1 7
23,22 7 1
3" T T (1)

The above is the number of operations just for for the forward pass (elimination phase).

For example for matrix of size 3 x 3 the above gives 19 operations, and for matrix of size 4 x 4, it
gives 46 operations and for 5 x 5 it gives 90 operations and so on.

Counting operations for backward pass In back substitution, we start from the end of the elimina-

tion phase above, which will be

a1 412 413 o I || % by
0 axp axpm - ay|lx b,
0 0 ass3 e Az || X3 | T b3
0O 0 0 - a,)\x, b,

First step is to solve for x, by finding x, = :l This requires only one division. Next is to solve for
nn

Xn-1 bY ﬁnding Ay—1,n-1Xp-1 + Ap-10Xn = b,_1, or

bn—l - (an—l,n) Xn
Xp-1 =
(an—l,n—l)

We see that this needs one subtraction, one multiplication and one division, or 3 operations. The
next step is to solve for x,_, from

(an—2,n—2) Xy + (an—z,n—l) Xp-1 + (an—Z,n) Xp = b2
Hence
by - (an—z,n—l) Xp-1— (ﬂn—z,n> Xn
(an72,n—2)

Therefore we need 2 subtractions, 2 multiplication and one division, or 5 operations. And so on
until we reach the first row to solve for x;. Therefore the total number of operations can be seen as

1+34+54+7+--

Xp-2 =

The above can be written as the sum

n-1 n-1 n-1
I;)(2k+1)=22k+k21

k=0 =0
=2(n(n2_1))+n

=nn-1)+n
=n’-n+n

= n2 2)

We see that the cost of the elimination is much greater than the cost of back substitution. One is
O (n%) while the other is O (n?).
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From (1,2), the total number of operations for the complete Gaussian elimination process is

2 1 7
A==+ -n?>--n+n?
3 2 6
2 3 7
3 2
=-n’+-n“--n
3 2 6
For large n the above is O (n3).
Part (b)
Given a system of equations
a1 412 413 A1 || %1 by
az1 Az a3 o || X2 by
az; dsp 433 3y (| X3 bs
A1 Op2  Ay3 Aun ) \Xn bn
Cramer method works as follows :
o= |Al
= —
|A1]
LA
= —
|As]
- |A|
A

Where |A| is the determinant of coefficient matrix A,, and |A,| is determinant of coefficient matrix
but with the i column replaced by the column vector b.

An efficient way to find the determinant is to convert the matrix to row echelon form. In this
form, the matrix is upper triangle. Hence the determinant is the product of all elements along the
diagonal. This is more efficient than using the matrix cofactor expansion method.

In doing these row operations on the matrix to find |A| the only difference from the elimination
steps we did for part(a), is that we have to remember the following rules now during the elimination
process

1. When adding multiple of one row to another row, the determinant is not affected.
2. When switching two rows, the determinant is multiplied by -1

3. When multiplying one row by some scalar, the determinant is also multiplied by the same
scalar.

Given the above, let us assume that for each elimination step of a row, we do one multiplication to
account for a possible multiplication by —1 or possible multiplication by a scalar. Since we do not
know if this will happen every time as this clearly depends on the data in the matrix, then this will
be the worst case counting.

This means there is an additional (n —1) multiplications to add to the cost of doing the elimination
step to reach row echelon form at the end.

Another small difference from part(a), is that now we do not have the b vector added during the
forward step.

Therefore, as we did in part(a), the cost to reach this form

a1 412 M3 o Ay
0 ayp ay - a4y
0 azp azp - a4z
0 App  Apz - Ay

Is now (n —1) + (2(n - 1)) (n — 1). Recalling from part(a) the cost at this stage was (n —1) + (2n) (n - 1)
here. So we changed 2n to 2 (n —1), since there is no b vector, hence one less element. And as was
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done in part (a), the cost to reach

a1 412 413 ot 1y
0 ay ay - ay
0 0 as3 cee asy
0 0 a3 - ay

Now becomes (1 —2) + 2(n —2) (n —2). Recalling from part(a) the cost at this stage was (n-1) +
2(n—-1)(n—-1). So we changed 2(n-1) to 2(n - 2), since there is no b vector. This continues to
the row before the last as in part (a). Therefore the number of total multiplication and additions
operations for just the forward pass is

row 2 row 3 last row
—N—

[(m-1D)+Q2n-1)n-D]+[(n-2)+2n-2)(n-2)]+ -+ [1 + 2]

Hence the cost to put the matrix in row echelon form is

n-1 n-1 n-1 n-1
M-k +20m-kF=Yn-Yk+2), (n-k7>
k=1 k=1

k=1 k=1
-1 - 3n? + 2n°
:n(n—l)—n(n )+2n " "
2 6
2 1 1
=-n’--n’>--n 1)
3 2 6
The above cost is very close to part(a) elimination phase as expected which was §n3 + %nz - gn.

Current cost is smaller because in part(a) we had the b vector there which added more operations,
while here we just operated on A itself.

Let us now add the (7 —1) multiplication we mentioned earlier to the result above. The cost now
becomes

2 1
A=§n3—5n2—gn+(n—1)
2 1 5
251’13—51’124‘61’1—1

We still need to calculate the product of the diagonal elements to find the determinant. For n x n
matrix, this takes n —1 multiplications. Adding these to the above gives

2 1 5
A==nm*—-n? +-n-1+n-1
3 2 6
2 1 11
== -+ —n-2
3 2 6
2 1 11
~ -’ -+ —n
3 2 6

We will use the above as the cost of finding the determinant.

How many times do we need to find determinants? We need to do it one time to find |A| and then n
more time for each |A;]. Hence (1 + 1) times. This is the main reason why Cramer method becomes
much more costly compared to Gaussian elimination.

The number of operations now becomes

2 1 11
A= (§n3 - §n2 + gn) (n+1)

2 1 4 11
= 51’14 + gl/l3 + 51/12 + ETZ
We also need to add the cost of the final divisions ﬂ to find each x;. So we add n divisions to the

i
above, giving the final cost as
2 1 4 11
A= §n4+gn3+§n2+gn+n
2 1 4 17
= 51’14 + gl’ls + 51’12 + g?’l

We see from above, that Cramer rule for large n is O <n4) while Gaussian elimination was O (113).
Hence Gaussian elimination is much more efficient for large n.

In summary
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17

n | cost of Gaussian elimination §n3 + gn — g | cost of Cramer §n4 + %n3 + %nz +
2 |5 23

3 |19 79

4 | 46 214

5 190 485

6 | 155 965

7 | 245 1743

8 | 364 2924

9 | 516 4629

10 | 705 6995

The following is a graphical illustration of the above

3 7
ge = n3+3n2—gn;

wWIN

2

. 1 4 17
cramer = —n" +—n
3 6

+=n%+ —n;
3 6

w

dataGE = Table[{n, ge}, {n, 2, 10}];
dataCramer = Table[{n, cramer}, {n, 2, 10}];

ListLinePlot [ {dataCramer, dataGE}, Mesh » Full, PlotRange - All,

MeshStyle - {Red, PointSize@Large}, GridLines - Automatic, GridLinesStyle - LightGray,
"G.E."}, AxesLabel » {"n", "cost"}, BaseStyle - 14,
AxesOrigin - {1, @}, Ticks » {Range[2, 10], Automatic}]

PlotLegends -» {"Cramer",

cost
7000
6000
5000
4000+
3000F
2000F
1000F

—— Cramer
G.E.

Figure 3.10: Cost of Gaussian elimination vs. Cramer method. Problem 6

3.3.7 Problem 7
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7. Counsider the matrix

A=

oSSt
[l
o5

a) Show that its eigenvalues lie on the unit circle in C.

4(x,y) = £(Ax, Ay).

b) Show that the linear transformation T'(x) = Ax preserves the angles in R?, i.e.
for any x,y € R3,

(Here Z(u,v) denotes the angle between u and v in R*. Note that Z(u,v) can be
expressed in terms of the norms and dot product of the vectors u and v.)

Solution

Figure 3.11: Problem 7 Statement




Part a

The eigenvalues of A are found by solving |A — Al

Hence A = 1. The quadratic formula is used to solve -5A2 + A (\/5 -5

Then A = ;—s + %Vbz — 4ac where b = — (—

Therefore the roots are

— " —
2% 2l& 2l

=0or
1 2
A0
2 T
V5 V5
0 -1 -A
1 -2
- 2 2
‘/E—O+i‘/§ =
A V5 o -1

(A-1)(- 5A2+/1(\/_ 5)-5

542-A(V5-5)+5=0

—/\(%\/5—1)+1:0

1
5

Nl= NI= N

N =

—_
=2 N&

N =

—_
sl%

—_

=2 &
|

N =

= —_ "
sl& 38l& Bl&

||
/H/T\ _
|
NI =
\_/
—_
o|"‘
—_
o
S
+
N
(@)
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—5 = 0. First it is normalized

\/5—1),0 =1,a =1 and the roots are

NI= NI= N

2

1 [(1
+-1l[=V5-1] -4
*3 (5\/_ )

1 5 2
+7[1+—-25-4
+2\/+25 5\/_

1 1 2
+—4/1+=-=-V5-4

2 5 5\/—
L1 |4 24/5
2\ 5 5
1 14 -2+5
T2 5

1. [14+2+5
+ —1

2 5

)—JT



Numerically the above becomes

A1=1
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Ay = —=0.276 + 0.961i
Ay = —-0.276 —0.961i

The following plot shows the locations on the complex plane

eigs = ReImeeigs;
img = Graphics[{

overlay[ {img, grid}]

0.5

~e_.. —

eigs = {1, -0.276 +0.961 I, -0.276 - 0.961 I};

{FaceForm[White], EdgeForm[Black], Disk[]},
{Red, PointSize[.05], Point[eigs]}
}, ImageSize -» 300, Axes - True];
grid = Graphics[{}, GridLines - Automatic, PlotRangePadding - None,
GridLinesStyle - LightGray, ImageSize -» ImageDimensions@img] ;

N

0.5

S

=

Figure 3.12: Graphical location of eigenvalues for problem 7

To show analytically that the eigenvalues lie on the unit circle means to show that the magnitude
of each complex number is 1. Clearly A, already satisfy this condition. We need to check now that

Il = 1 and that [|As]| = 1

Ml = yRe (1,2 + T (1,)°

&y

(o)

2

=«%_

10
10

10

=1

343416+1)

10 10

Similarly for A; since it is the same except for the sign on the complex part (complex conjugate)
which does not affect the norm. Therefore all the eigenvalues lie on unit circle in C. QED.

Part b
X1
Let two vectors in the domain of A be x = |x,
X3

mapping, which now lie in the range of A be x =

N
and y = |y, | And let the two vector after the
Y3
X h
%, |and y = |7, |- Since x -y = [|x]|[lyll cos © where
e

X3
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0 is the inner angle between the vectors, and since X - § = ||X|| ||J]| cos 0, then we need to show that

0=0
AT
- - N \
Ay
Domain of A
Range of A

Figure 3.13: Linear transformation Ax preserves angles. Problem 7

Let
Ax =X
Ay =y
Using the A given, then
~ 0 2 L+ =x
‘_g’ \lfs X1 ‘_6 1 \16 3
75 0 75 Xo | = ‘/—§X1+75.X'3
0 -1 0)\x —x,
Hence
L+ 2x
‘_6 1 \lfs 3
X = ‘/—gxl + Tgx:g
We see from the above that
oL .2
¥ = —Xx; + —X
1 \/g 1 \/g 3
_ -2 N 1
Xy = —X1 + —X
2 \/5 1 \/— 3
X3 =—Xp
Similarly
1,2
‘1@% \f’%
y= 75% - 75%
—Y2
We see from the above that
1
L.
n \/gyl \/gy'&
o2 1
Y2 \/gyl \/gyes
V3 =12

We now need to determine 6 and 6 and show they are the same. From the definition above

( ' )

But x -y = x1y; + Xoy, + x3y3 and [[x]| = /3 + x5 + x5 and |lyll = /v + y3 + y3, therefore the above

becomes

6 = arccos

X1Y1 + XoYo + X3Y3 ] 1)
B+ B+ B R+
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Similarly, X - ¥ = ¥;7; + X,¥, + X3¥3. Using the values of %;,7; found above the dot product becomes

Xy (1x-+2x)(1 -FZ )+(Qx+ 1x)(__2 + ! )+(xﬂ )

X - = | — —_— JR— —_— JR— JR— JR— —_— —_ —
TET T NE TR T E T TR \E TR A

= g(x1+—2x3)(y14—2y3)+-é(x3——2x1)(y3——2y1)4—x2y2

—_

2 2 4 4 2 2 1
=gh%+gh%+g%%+g%%+ghw—gﬁ%—g%%+5%%+hw
Which simplifies to
X+ ¥ = X1Y1 + XY + X3Y3

And ||X|| = ,/%% + 5‘(% + X% Using the values of ¥; found above, this becomes

IIXI| = \/(Lﬁﬁ + ixe,)z + (_—2x1 + L353)2 +(=xp)
e

\/12+4 Lo do 4 1,
= =X =X1X =X =X71 — =X1X =X X
51 513 53 51 513 53 2

Il = /33 + 23 + 3

Similarly, ||yl = ,/y% + y% + y% and using the values of 7; found above, then this becomes

Which simplifies to

WbJGﬂﬁé@f%%%*%@iGw

1, 4 4, 4, 4 1,
= g%+§%%+g%+5%—5%%+5%+h

171l = \v3 + 13 + 3

2

Which simplifies to

Therefore
_ 5
[IXI[ 1yl
~ A2+ 33+ 22
0 = arccos (2)

VB + B+ 3R+ 13+ 13
Comparing (1) and (2) shows they are the same. Therefore 6 = §. QED.
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3.3.8 Problem 8

8. Write the expressions
cos(nx — mx) — cos(nz + mz), cos(nz — mx) — cos(nx + mz),

sin(nz — mx) — sin(nz + mz), sin(nz — mz) + sin(nz + ma)

with integers n and m in terms of

COS Nz, SIn NT, COS M, Sin max.

Consider the Hilbert space of real square integrable functions L2[—x 7] on the [, 7]
interval, equipped with the inner product < f,g >= ffﬂ fgdx. Show that the set
of functions ' :

N RV MV AV N

is an orthogonal but not an orthonormal set in L?[—n, 7). How would you change S
to make it orthonormal? Use Gram’s theorem to compute the best approximating
function Hs(z) from the subspace of S-linear combinations span(S) of L[~ 7] to
the function

5':{ 1 cosz sinz cos2z sin2z cos bz sin5:r} L2, 7]

H()=7—|z| € L*-nm,7].

Figure 3.14: Problem 8 Statement

Correction: The set S shown above should be

7 7y 7

1 cosx sinx cos2x sin2x cosbx sinx
o ' n’ m T T T

Solution

Two functions f,g are orthogonal on [-7, rt] if f " fgdx = 0. To show this for the set of functions
=Tt

. . 1 . COS mx sinmx .
given, we pick f = — and then for ¢ we pick — and then —. i.e.
I 7™ 1 cosmx
1= .
21 T
™ 1 sinmx
12 =

Z2n n
For the rest, we have to determine the following 3 cases

U COS mMX COS NX
13 = f dx

n T e
T coS mx sin nx
14 = X
w7 T
T Sin mx sin nx
15 = X
n T T

These will take care of all possible combination of any two function in the set S. We could always
replace m,n by a number from 1---5 after evaluating the integrals in order to obtain a specific case.
Starting with Iy
1 T
1= ﬁﬁncosmxdx

But cos function has period 27 and therefore the integral above is zero I; = 0. This shows that

COos mx

functions in the set.

1 T
f sin mxdx
=Tt

L= —
27 o2

f= % is orthogonal with all -
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As above, sin function has period of 27t and therefore the integral above is zero I, = 0. This shows

that f = % is orthogonal with all % functions in the set.
1 T

I;=—
3 2 L

COS MX COS nxdx

From tables, using cos Acos B = % (cos (A - B) + cos (A + B)), then

COS MX COS NX = % (cos ((m — n) x) + cos ((m + n) x))

And I3 now becomes
1
S 2n2

= zinz(fn cos(m—n)xdx+fn cos((m+n)x)dx)

=Tt

I f_ " cos (1 — 1) %) + cos ((m + m) x) dx

Since the problem is asking us to show orthogonality of different functions in the set, then we
assume m # 1, otherwise the integral will have to be handled as special case when m = n due to the
division.

I = ZLT(Z (m—n [sjn(m—n)x]iz + ml [sin (m +n)X]nn)

+n

But since n,m are integers, then both terms above are zero since sin (N7) = 0 for integer N. Hence

I3 = 0. This shows that Coimx is orthogonal with &nm when m # n.
1 T
== f sin nx cos mxdx
e Jn

Using sin AcosB = % (sin (A — B) + sin (A + B)), the above becomes

1 TT
Iy = 2—7_(2f (sin (n —m) x + sin (n + m) x) dx

! (fn sin(n—m)xdx+fn Sin(n+m)xdx)

T 52
27 -

Again, since n # m, then the above becomes

1 -1 -1
Iy = 52 (n — [cos (n —m)x]"_+ - [cos (m + n)x]?n)

- ﬁ (n__lm [cos ((n = m) m) = cos ((n = m) (-m))] + ——

But cos (—x) = cos (x) and the above becomes

[cos ((n + m) 1) — cos ((n + m) (—n))])

Iy ! ( -1 [cos((n —m) ) — cos ((n — m) )] +

T [cos ((n + m) 7t) — cos ((n + m) n)])

n—m n+m
1 -1 -1
- z—nz(n_m[o]* - [0])
=0
Hence I, = 0. This shows that Sinnmx is orthogonal with g when m # n.

The final integral is

1 TC
15_

= — sin mx sin nxdx
2 J_

TC
Using sin AsinB = % (cos (A — B) — cos (A + B)) the above becomes

Is = 21?jj;cos((m—n)x)—cos((m+n)x)dx

_ 1 (fncos((m—n)x)dx—fncos((m+n)x)dx)

- 2
27 -n -m

1 7T us
Is=— f dx—f dx
22 -7 -7

=0

This shows that % is orthogonal with all Coi—nx when m = n.

Casen=m
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Case n #m
.
2r2 \m -
But since n,m are integers, then both terms above are zero since sin (N7) = 0 for integer N. Hence
I5 = 0. This shows that sin xlS orthogonal —— o

L [sin ((m + n) x)]?n)
n

[sin ((n - ) 1" -
n

The above shows that all the functions in S are pairwise orthogonal.

To make the set S orthonormal, we need to find weight k such that ||k f (x)|| =1 or for functions, this

is the same as
Tt 2
f (kf @) dx =

For f = —, this becomes

cos mx

For f =

T 2
\/f (kcosmx) dr =1
n 14
k 7T
—1/\[ cosZ mxdx =1
\/f -+ —cosmedx—l
k | 1 ™
;\/( . de+ Ej:ncosmedx) =1

sin mx

For f =

7t sinmx2
f (k )dx=1
n i
k T
—df sin® mxdx = 1
-7t
\/f ———cosmedx—
k
—\/( —d ——f cosmedx)—l
T

0
—

k 1 [sin (2mx) ]n
- ——2| |=1
2 2m

—TC

A=
~
I

1
Vn
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Therefore the orthonormal set now becomes, after using the weights found above as
- 1 Ccos X sin x COs 2x sin 2x cos bx sin x
s:{v_zn_,ﬁ YRSnY peos2% psim2v | mcoshr o }

2n b i i b i T
B { 1 cosx sinx cos2x sin2x cos bx sinx}

Var NT N NT R R

We now need to approximate H (x) = 7 — |x| using S. The following is a plot of H(x) over [-7, 7]

f =Pi-Abs[x];

Plot[f, {x, -Pi, Pi}, Frame -> True, GridLines - Automatic,
GridLinesStyle - LightGray, PlotStyle - Red,
FrameLabel -» {{"H(x)", None}, {"x", "Function to approximate"}},
BaseStyle - 12,
FrameTicks -» { {Automatic, None}, {{-Pi, -Pi/2, @, Pi/ 2, Pi}, None}}]

Function to approximate

251

20¢F

1.0F

0.5¢

0.0F

|
S
|
Ny
o
N
S

Figure 3.15: Function H(x) to approximate. Problem 8

Counting the number of functions in 5, there are 11 of them. Using Gram’s theorem, this approxi-
mation is

H(X) = C151 + Czsz + C3S3 + - (1)
1 Ccos X cos bx sinx
Where Sl = \/TTZ,SZ = W’ "',510 = ?,511 = F Hence
H () 1 Ccos X sin x cos 2x sin 2x cos bx sin 5x
X) = Cq +C +C3 +Cq + (g + o+ Co—F—— + 11
Van T A o Vr NG N

where the constants ¢; are found from solving

(51,51) (51,52 (51,83 - (S5 |[a (51, H (x))
(52,51) (52,52 (52, 53) o (S, S || 2 (S2,H (x))
(53,51) (S53,S2) (S3,S3) -+ (S3,S1) || cs|=](Ss H(x)
(511,51 (511,S2) (S11,S3) -+ (S11,511))\en (511, H (%))

But since <Si, Sj> = 0 for i # j, because we showed above they are orthogonal to each others, and

since S; are all normalized now, then (S;,S;) = ||Si||2 =1. Hence the above reduces to

100 - 0)c (S1,H (x))
010 - 0|lc (S, H (x))
001 - 0||les|=](S5,H) 2)
00 0 - 1){ey (511, H (%))

So we just need to evaluate (S;, H(x)). But we need to do this only for three cases. These are
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<\/%,H(x)> <CO\S/TX H(x )> <Smmx H(x)> and then set m =1---5.
<v% H(x>> f \/_H(x)dx
- Tnf H (x)dx
(f (n+X)dx+f (m - x)dx)
X2 0 x2 T
o t] o]
53]
()

+

And
<cosmx H(x )> f cosmxH( ) dx

\/_
0 T
= %(f_n(n+x)cosmxdx+j(; (n—x)cosmxdx)

1 0 0 e 0
= — f T COS X + f X coS mxdx + f 7T COS mxdx — f X cOS mxdx
\/H -7 -7 0 -7

1 T 0 0
= — (f 7T COS MX + f X cos mxdx — f X COS mxdx) (3)
Vi \Jor

-7 —Tt

f xcosmxdx can be evaluated by integration by parts. Let u = x,dv = cosmx — du =1,v = =

hence
0 . 0 0w
sin mx sin mx
x cos mxdx = |x - dx
m m
—TT

- -

1 0
=0-— f sin mxdx
m TC

B 1( Cosmx)O

m m

Tt

= % (1 - cosmm) (4)

. 7T .
7t sin mx U S1n mx
x cos mxdx = |x - dx
0 m- |, Jo m

1 TT
=0-— sin mxdx
mJo
1 ( cosmx)”
T om m /

And

1

=3 (cosmm—1) (5)
And f_n TLCOSMX = T f_n ncosmx = 0. Using (4,5) in (3), then
1
N
1
= e
_ 2(1—cosmn)

m2\n

< COS mx

Vr 'H(’C)>:

1 1
(ﬁ (1 - cosmm) — s (cosmm —1)

(1 — cosmm — cosm +1)



152

Hence
2(1-cosm) 2(1+1) 4

'H(x)>: NN N

2(1—-cos2m)
4

(o)

() ()

<cosmx > _<cos3x > 2(1-cos3n)  2(1+1) 4
() =5 e)

0

9Wn  9n  9n
2(1—cos4n)
16ym
_2(1-cosbm) 4
 25yn 25ym
Similarly (we expect all the following integrals to be zero, this is because we see from above that
H(x) is an even function and sin is odd, hence the product is an odd function and the integral is
over the period). This is the same as when in doing Fourier series expansion (which is what we
are doing here essentially but using Gram’s theorem instead), all the b, terms will be zero when
the function being approximated is even and all the a, terms will be zero when the function being
approximation is odd.

0

ay
—~
=
~
—~—~———
|

But we will go ahead and do the integrals to show that this is indeed the case.

<M H(x)> _ f SIIX
Tt -1

v v
0 T

f (7t + x) sin mxdx + f (1t — x) sin mxdx)
-7 0

_ 1 (

_\/ﬁ
1 0 0 n 0

=—(f nsinmx+f xsinmxdx+f nsinmxdx—f xsinmxdx)
ﬁ -7 b4 0 e

1 T 0 0
=— (f 7T sinmx + f x sin mxdx — f xsin mxdx) (6)
\/E -7 -7 -7

fxsin mxdx is evaluated by integration by parts. Let u = x,dv = sinmx - du=1,v = —— cos mx

hence

0 —cosmx

dx

0 1
f xsinmxdx:——[xcosmx]g —f
m s

=Tt =Tt

1 1 0
=——[0-(-mtcosmm)] + — f cos mxdx
m mJd_,

. 0
T 1 [sinmx
= —— [cosmm] + —
m m m

= —% [cosmT] (7)

And

T —CcOoSmx

7 1
f x sin mxdx = —— [x cos rrzx]z)T - f dx
0 m

0 m
1 1 m
= —— [cosmm] + — cos mxdx
m mJy

= —% [cos mm] (8)

And fi nsinmx = 0. Using (7,8) in (6), then

,H(x)> = L (—% [cosmm] + % [cos mn])

N

=0

< sin mx

=

Hence as expected all the inner products now are zero

< sin mx

N

,H(x)> =0 m=1,2,3,4,5

m
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Using all the above results in (2) gives

1
(H)
100000000 0 0)fc %",H(x)
01 000O0O0TUO0GO0O0 0llc S’%’H(x)
00100000000C3 cos 2x
,H (x)
0001000O0GO0O0 0|lc V1
sm2xH(x)
0000100000 Offcs BV
0000010000 0llc|= %,H(x)
0000001000 O0|c si\r;;x,H(x)
0000000010 0 Offc o
0000O0O0OO0O0T1O0 0ffc Vi’
sin 4x
000000O0UO0GO0GO0 1 0]y 7 H®
0000O0UO0OOO0O0O0 1)leg C‘j;x,H(x)
Sii;;x,H(x)
Using the results found above, the above becomes
1 3
—T72
1000000000 0)fc ﬁf
01 00 0O O0O0OO0OO0OO0 Offc =
001 00 0 0 O0 0 0 Of]cs 0
0 001 00 O0O0 0 0 0]]cy 0
0 0001 O0O0O0O0 0 Offcs 0
0000O0100GO0TO0O0|lcl|=| -2
9V
0000 O0OO0OT1O0O0O0 0}]]cy 0
0 00 00O O0O0OT1O0 0 0ffcs 0
0 00 00O O0O0O0OT1O0 O0f]c 0
0 000 O0O0O0O0OO0OT1 0ffcio 4
0000000000 1)ley 258/5
Therefore we see that
1 3
C1 \/—ETKZ
4
Cy \/_E
3 0
C4 0
Cs 0
_| 4
MEEE
Cy 0
Cg 0
Co 0
€10 4
c 251
1 0
3
The above shows that ¢; = \/Lini,cz = %,06 = %ﬁ,cm = %ﬁ and all other ¢’s are zero. Therefore
the best approximation is
Hx) ~ ¢ 1 N cosx+csinx+ c052x+ sin2x+ N COS5X+C sin 5x
~ c c c e tC
1\/2_7‘( Zﬁ Sﬁ 4 \/E Sﬁ 10 \/7—_[ 11 ﬁ
1 31 4 cosx 4 cos3x 4 cosbx

=—n

2 Ve NRANR R VR BVR VR

= +4 + 4 3x + 4 5
= 27‘[ nCOSX 97 COS oXx 25 COS OX

1 4 4 4
H(x) = Sm+ —€OSX + — €0S3x + —— cos5x

To verify the approximation, the above was plotted against the original H (x), first using one term



Hy (x) =

and then using all terms Hy (x) =
approximation improved as more terms added giving the best approximation when all terms are

added as expected.

17{ then using 2 terms H, (x) ~

Ly 3 cos x then using 3 terms Hj (x) =

154

1 4 4
ST+ = cosx+ o~ cos 3x

En + % cos X + 9i cos 3x + E cos 5x. The plot below shows that the

ClearAll[x, n];
f =Pi-Abs[x];

data = Table[

BaseStyle -» 12,

ImageSize - 300],
{n, 1, 4}
15
Grid [Partition[data, 2]]

T
2

3.0
25¢F
2.0¢

1.5¢
1.0t
0.5F
0.0f

H(x)

4 cos(x +

s

4 cos(3 x) + I

97T

N

5

3.0
25¢F
2.0¢

1.0f
05F
0.0}

SESE

H(x)

H(x)

3.0
25
2.0
1.5
1.0
0.5
0.0

3.0
25
2.0
1.5
1.0
0.5

0.0}

1 4 4 a
approx = {E T, ;COS[X], ;COS[BX], ECOS[SX]};

Plot[{f, Total[approx[[1;;n]]]}, {x, -Pi, Pi}, Frame -> True,
GridLines - Automatic, GridLinesStyle - LightGray,
PlotStyle » {Red, Blue}, FrameLabel » {{"H(x)"

, None}, {"x", Total[approx[[1

FrameTicks -» { {Automatic, None}, {{-Pi, -Pi/2, @, Pi/ 2, Pi}, None}},

5501111},

4 cos(x) + T
e 2
-7t -z 0 x s
2 2
X
4 cos(x. +40053x +4cos5x +E
e 9 257 2
-7T -z 0 z T
2 2

Figure 3.16: H(x) approximation final resul. Problem 8t
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