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Chapter 1

Introduction

1.1 links

1. Professor Leslie M. Smith web page

2. TA web site

3. piazza class page Needs login
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http://www.math.wisc.edu/~lsmith/
http://www.math.wisc.edu/~jrcheng/
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1.2. syllabus CHAPTER 1. INTRODUCTION

1.2 syllabus

Math 320, Lecture 5: Syllabus

Linear Algebra and Differential Equations

TR 9:30-10:45 in Van Vleck B239

Textbook: Differential Equations and Linear Algebra, 3rd Edition, Edwards and Penney,
Prentice Hall.

Pre-requisite: Math 222.

Credit toward the math major may not be received for both Math 320 and Math 340.

Professor: Leslie Smith, Departments of Mathematics and Engineering Physics, Office
Hours in Van Vleck 825 TR 12:30-2:00, lsmith@math.wisc.edu.

Teaching Assistant:

Jingrui Cheng, Office Hours MWF 7:00-8:00 PM in Van Vleck 516

Exams: There will be two evening exams: Tuesday February 21 and Tuesday, March

28, during the time 7:15-8:30 PM. Please let me know IMMEDIATELY if you have a conflict
with these dates. Each exam is 25% of the final grade.

Final Exam: Sunday May 7, 7:25-9:25 PM, 35% of grade.

Piazza: There will be a Piazza course page where all course materials will be posted, and
to facilitate peer-group discussions.

Piazza Sign-Up Page: piazza.com/wisc/spring2017/math320005
Piazza Course Page: piazza.com/wisc/spring2017/math320005/home

Weekly Problem Sets: Homework is due at the beginning of class, typically on
Thursday. Homework will be available on piazza approximately one week prior to the due
date. Roughly 15 problems will be assigned each week (most of the time from the book, but
not always).

Please write your name and section number clearly on each homework set, stapled please!
Unstapled homework will not be accepted.

Grading of Homework: The TA and/or a grader will grade a subset of the homework
problems given out each week, with some points also given for completeness. Typically (but
not necessarily always), there will be 2 problems graded on a scale of 0-10, with 6 points for
completeness. The homework scores will count for 15% of the grade.

Late Policy: Homework turned in after the beginning of class will be considered late and
will be graded at 80% credit. Late homework will be accepted until 5 PM on the due date
(no credit thereafter, no exceptions). The policy is intended to keep everyone as current as
possible.

Please email Jingrui Cheng directly to make arrangements regarding late homework submis-
sion: jcheng37@wisc.edu

Calculators: Calculators and/or computer software may be used to help with homework
problems but are not permitted during exams.

Grading Scale for Final Grade: 92-100 A, 89-91 AB, 82-88 B, 79-81 BC, 70-78 C, 60-69
D, 59 and below F
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1.2. syllabus CHAPTER 1. INTRODUCTION

Course description: Differential equations are the fundamental tools that scientists and
engineers use to model physical reality. The importance of differential equations to science
and engineering cannot be over-emphasized. A distinct subject in its own right, linear algebra
is a part of mathematics concerned with the structure inherent in mathematical systems.
We shall study these subjects together for three reasons: (1) The viewpoint of linear algebra
is immensely helpful in uncovering the order underlying the topic of differential equations;
it helps us understand the “why” and not just the “how” of our calculations; (2) Linear
algebra is essential to the theory of differential equations; (3) Linear algebra is crucial to
the computer approximations which are often the only way to solve the most challenging
differential equations.

Throughout this course, we will seek to answer the following basic questions:

• When does a differential equation have a solution? When is that solution unique?

• Can one construct the (unique) solution of a differential equation in terms of elementary
functions? If not, can one approximate its solution numerically and/or understand it
qualitatively?

• How does one choose the differential equation(s) used to model a physical system?
What are the strengths and limitations of such models? Specifically, what is the
significance of linearity in our models and applications?

Course outline: The course covers material in Chapters 1-8 of the text. The topics are
listed below with corresponding chapter.

Chapter 1: First-Order ODEs (continuing from 221/222 with some review).

Chapter 2: Mathematical Models and Numerical Methods.

Chapter 3: Linear Systems and Matrices.

Chapter 4: Vectors Spaces.

Chapter 5: Higher-Order Linear ODEs.

Chapter 6: Eigenvalues and Eigenvectors (sections 6.1-6.2).

Chapter 7: Homogeneous Linear Systems of ODEs.

Chapter 8: Nonhomogeneous Linear Systems of ODEs (sections 8.1-8.2).

Learning Outcomes:

• Students will state and apply the Theorem of Existence and Uniqueness for first-order
ODEs, and the Theorem of Existence and Uniqueness for second-order linear ODEs.

• Students will find analytical solutions to first-order ODEs, including (but not limited
to) separable ODEs and linear ODEs.

• Students will construct approximate solutions to first-order ODEs using numerical
methods.

2
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1.2. syllabus CHAPTER 1. INTRODUCTION

• Students will state and apply rules for the algebra of matrices.

• Students will demonstrate knowledge of coupled linear algebraic equations, determine
when the system has solution(s), and be able to find solution(s) when applicable.

• Students will find analytical solutions to second-order linear ODEs in simple cases.

• Students will demonstrate the relation between higher-order linear ODEs and coupled
first-order linear ODEs.

• Students will apply knowledge of linear algebra and differential equations to solve
coupled first-order linear ODEs with constant coefficients.

3
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Chapter 2

Exams

Local contents
2.1 First exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 second exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 final exam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
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2.1. First exam CHAPTER 2. EXAMS

2.1 First exam

2.1.1 crib sheet for �rst exam

Math 320 Exam Crib Sheet

1. Integration by Parts Formula∫
u dv = uv −

∫
v du

Example: ∫
x exp(x)dx = x exp(x) −

∫
exp(x)dx + C = x exp(x) − exp(x) + C

with u = x, dv = exp(x) dx, du = dx, and v = exp(x).

2. Example of Partial Fractions∫
5

(x2 − 5x + 6)
dx =

∫
5

(x − 2)(x − 3)
dx

Let

5
(x − 2)(x − 3)

=
A

(x − 2)
+

B

(x − 3)

=
A(x − 3) + B(x − 2)

(x − 2)(x − 3)

Therefore

(A + B)x = 0 and − 3A − 2B = 5.

Solving A + B = 0 and −3A − 2B = 5 gives A = −5 and B = 5. So finally

∫
5

(x2 − 5x + 6)
dx =

∫
−5

(x − 2)
dx +

∫
+5

(x − 3)
dx = −5 ln |x − 2| + 5 ln |x − 3| + C.

3. Exponentials and the Natural Logarithm: All arguments of ln are assumed greater
than zero.

ln(1) = 0

ln(a/b) = ln(a) − ln(b)

ln(ab) = ln(a) + ln(b)

ln(ar) = r ln(a)

1
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2.1. First exam CHAPTER 2. EXAMS

∫
1
u

du = ln |u| + C, u 6= 0

exp(ln(x)) = x

ln(exp(x)) = x

exp(a + b) = exp(a) exp(b)

exp(a − b) =
exp(a)
exp(b)

exp(ab) = (exp(a))b = (exp(b))a

4. Taylor Series for f(x) about the point x = xo:

f(x) =
∞∑

n=0

dn

dxn
f(x)|x=xo

(x − xo)n

n!

2
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2.1. First exam CHAPTER 2. EXAMS

2.1.2 First Practice exam for �rst exam

Math 320 (Smith): Practice Exam 1
1. The autonomous ODE given by

dP (t)

dt
= −(bP 2(t)− aP (t) + h), a > 0, b > 0, h > 0 (1)

models a logistic population with harvesting, for example, the population of fish in a lake from
which h fish per year are removed by fishing.

(a) Consider a = 6 and b = 1. How does the number of critical points depend on the parameter h?
What are the values of h that yield real-valued critical point(s)?

(b) Consider a = 6, b = 1 and h = 7. Find and classify the critical points. Make a (rough) sketch
of the direction field.

(c) For a = 6, b = 1, h = 7, and starting from the initial condition P (0) = 3, find the limiting
behavior for large time t → ∞.

2. The following augmented coefficient matrix results from elementary row operations on a 3 × 3
system of linear algebraic equations Ax = b.





−1 1 1 2
0 5 −k 4
0 0 k p+ 3



 (2)

Consider 2 different values of the parameter p: (a) p = −3, and (b) p = −2.

Determine for what values of k the system has (i) a unique solution, (ii) no solution, and (iii)
infinitely many solutions.

FOR PART (a) ONLY when p = −3: Find all solutions in cases (i) and/or (iii), and write the
solution x in vector form.

3. Given

dy

dx
= −

y(x)

(x− 1)
+

exp(−x)

(x− 1)
, y(0) = 2. (3)

(a) Find the exact solution. For what values of x is the solution defined?

(b) Use one step of the Forward Euler method with step size h to find an approximation for y(h).

4. (20 points) Consider the initial value problem

dy

dx
= −

5

2
x4y3, y(0) = −1. (4)

(a) Find y(x) explicitly. For what values of x is the solution defined?

(b) Use one step of the Modified Euler (Improved Euler, RK2) method with step size h to find an
approximation for y(h).

5. (5 points) TRUE or FALSE: The initial value problem

dy

dt
= (y − 1)3/2, y(1) = 2 (5)

is guaranteed to have a unique solution in a subrange of −∞ < t < ∞.

1
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2.1. First exam CHAPTER 2. EXAMS

2.1.3 Second Practice exam for �rst exam

Math 320 (Smith): Practice Exam 1

1. (16 points - 10 min.) For

dy

dt
= (ey+2

− 1)(ey
− 1)(y − 2), y(0) = yo, −∞ < yo < ∞ (1)

(a) (14 points) Sketch, roughly, a direction field and classify all critical points.
(b) (2 points) Determine (from your sketch), the asymptotic behavior of the solution for yo = −1,
t → ∞.

2. (21 points - 15-20 min.) Solve (15 points)

y′ − y3x exp(x2) = 0 (2)

for y(0) = −2. Give the range of validity of the solution (6 points).

3. (24 points - 15-20 min) Write the following systems as Ax = b and determine for what values
of k the system has (i) a unique solution, (ii) no solution, and (iii) infinitely many solutions.

(a) (12 points)

x1 − x2 + 2x3 = 4

2x1 + 3x2 − x3 = k

−2x1 + x2 − 3x3 = 2

(b) (12 points)

x1 + 3x3 = 8

−x1 + kx2 − x3 = 4

3x1 + x2 + 10x3 = 0

4. (39 points - 20-25 min) Given

dy

dx
= y + exp(x), y(0) = 2. (4)

(a) (15 points) Find the exact solution and state the region of validity of the exact solution.

(b) (8 points) Use one step of the Forward Euler method with step h to find an approximation for
y(xo + h).

(c) (8 points) Use one step of the Improved Euler method with step h to find an approximation for
y(xo + h).

(d) (8 points) Compare the Taylor series expansions for y(xo + h) using (i) the exact solution, (ii)
the Forward Euler approximation and (iii) the Improved Euler approximation. Explain what these
Taylor series expansions tell us about the truncation error of the Forward Euler and Improved Euler
methods.

1

2.1.4 my solution for �rst practice exam for �rst midterm

2.1.4.1 Problem 1

𝑑𝑃 (𝑡)
𝑑𝑡

= − �𝑏𝑃2 (𝑡) − 𝑎𝑃 (𝑡) + ℎ�

Part(a)

For 𝑎 = 6, 𝑏 = 1 the ODE becomes
𝑑𝑃 (𝑡)
𝑑𝑡

= − �𝑃2 (𝑡) − 6𝑃 (𝑡) + ℎ�

Critical points are given by 𝑑𝑃(𝑡)
𝑑𝑡 = 0. Hence solving for 𝑃 from

𝑃2 − 6𝑃 + ℎ = 0 (1)

𝑃𝑐 =
−𝑏 ± √𝑏2 − 4𝑎𝑐

2𝑎
=
6 ± √36 − 4ℎ

2
= 3 ± √9 − ℎ

We see now how 𝑃𝑐 depends on ℎ. For real valued 𝑃𝑐 we want 9 − ℎ > 0 or

ℎ < 9

9



2.1. First exam CHAPTER 2. EXAMS

Part(b)

For 𝑎 = 6, 𝑏 = 1, ℎ = 7 then
𝑑𝑃 (𝑡)
𝑑𝑡

= − �𝑃2 (𝑡) − 6𝑃 (𝑡) + 7�

And the critical 𝑃𝑐 values are from (1)

𝑃𝑐 = 3 ± √9 − 7

= 3 ± √2
= {4.4142, 1.5858}

To classify 𝑃𝑐 we look at little above and little below each critical value and see what the
slope is there. Depending on the sign of the slope around each critical point, we will know
if it stable, not stable, or semi-stable. For 𝑃𝑐 = 4.4142, lets look at 𝑃 = 5 and 𝑃 = 4

�− �𝑃2 (𝑡) − 6𝑃 (𝑡) + 7��
𝑃=5

= − (25 − 6 (5) + 7) = −2

�− �𝑃2 (𝑡) − 6𝑃 (𝑡) + 7��
𝑃=4

= − (16 − 6 (4) + 7) = 1

Since the slope is negative to the right of 𝑃𝑐 = 4.4142 and the slope is positive to the left of
𝑃𝑐 = 4.4142, this means 𝑃𝑐 = 4.4142 is stable.

For 𝑃𝑐 = 1.5858, let look at 𝑃 = 2 and 𝑃 = 1
�− �𝑃2 (𝑡) − 6𝑃 (𝑡) + 7��

𝑃=2
= − (4 − 6 (2) + 7) = 1

�− �𝑃2 (𝑡) − 6𝑃 (𝑡) + 7��
𝑃=1

= − (1 − 6 (1) + 7) = −2

Since the slope is positive to the right of 𝑃𝑐 = 1.5858 and the slope is negative to the left of
𝑃𝑐 = 1.5858, this means 𝑃𝑐 = 1.5858 is unstable.

Here is the phase plot

3 +
√
23−

√
2

stableunstable

Here is sketch of the slope field diagram using the computer showing the two critical values
of 𝑃 (𝑡) found above, confirming that one is stable, and the other is not stable.

In[405]:= f[t_, y_] := -(y^2 - 6 y + 7)

p1 = StreamPlot[{1, f[t, y]}, {t, -2, 6}, {y, -1, 7}, Frame → False, Axes → True,

AspectRatio → 1/ GoldenRatio, AxesLabel → {"t", "P(t)"}, BaseStyle → 14,

PlotLabel → "Problem 1, part a", TicksStyle → Red, ImageSize → 400]

Out[406]=

-2 2 4 6
t

2

4

6

P(t)
Problem 1, part a

Part(c)

For 𝑎 = 6, 𝑏 = 1, ℎ = 7 then
10



2.1. First exam CHAPTER 2. EXAMS

𝑑𝑃 (𝑡)
𝑑𝑡

= − �𝑃2 (𝑡) − 6𝑃 (𝑡) + 7�

Since 𝑃 (0) = 3, then we see from part(b) sketch of slope field, that the solution curve will
move to the critical point 𝑃𝑐 = 3 + √2. Therefore for 𝑡 → ∞, 𝑃 (𝑡) = 3 + √2. Here is the
slope field diagram, with the solution curve marked as red showing it is moving to the
equilibrium solution.

In[403]:= f[t_, y_] := -(y^2 - 6 y + 7)

p1 = StreamPlot[{1, f[t, y]}, {t, -2, 6}, {y, -1, 7}, Frame → False, Axes → True,

AspectRatio → 1/ GoldenRatio, AxesLabel → {"t", "P(t)"}, BaseStyle → 14,

StreamPoints → {{{{0, 3}, Red}, Automatic}}, PlotLabel → "Problem 1, part a",

TicksStyle → Red, ImageSize → 400]

Out[404]=

-2 2 4 6
t

2

4

6

P(t)
Problem 1, part a

2.1.4.2 Problem 2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 2
0 5 −𝑘 4
0 0 𝑘 𝑝 + 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Part (a)

Using 𝑝 = −3
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 2
0 5 −𝑘 4
0 0 𝑘 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

case (i) Last equation says that 𝑘𝑥3 = 0. If 𝑘 ≠ 0, then only 𝑥3 = 0 will satisfy the equation.

Which gives, from second equation 5𝑥2−𝑘𝑥3 = 4 or 𝑥2 =
4
5 . And from first equation −𝑥1+𝑥2+

𝑥3 = 2 or −𝑥1 = 2 − 𝑥2 = 2 −
4
5 . Hence 𝑥1 =

4
5 − 2 = −

6
5 Therefore 𝑘 ≠ 0 gives unique solution.

The solution in vector form is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−6
5
4
5
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

case (ii) There is no value of 𝑘 which gives no solution.

case (iii) If 𝑘 = 0 then we have 0 (𝑥3) = 0. Hence any 𝑥3 value will satisfy this. So there are

infinite number of solutions. Let 𝑥3 = 𝑡, hence from second equation 5𝑥2−𝑘𝑡 = 4 or 𝑥2 =
4+𝑘𝑡
5

and from the first equation −𝑥1 +
4+𝑘𝑡
5 + 𝑡 = 2 or −𝑥1 = 2− 𝑡 −

4+𝑘𝑡
5 , hence 𝑥1 = 𝑡 +

1
5𝑘𝑡 −

6
5 . The

11



2.1. First exam CHAPTER 2. EXAMS

solution in vector form is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑡 + 1
5𝑘𝑡 −

6
5

4+𝑘𝑡
5
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑡 − 6
5

4
5
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑘=0

Part (b)

Using 𝑝 = −2
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 1 2
0 5 −𝑘 4
0 0 𝑘 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

case (i) Last equation says that 𝑘𝑥3 = 1. If 𝑘 ≠ 0, then unique solution exist. But if 𝑘 = 0,
we have (0) 𝑥3 = 1 which is not possible. So for unique solution we need 𝑘 ≠ 0 for unique
solution.

case (ii) If 𝑘 = 0 we have (0) 𝑥3 = 1 which is not possible. Hence 𝑘 = 0 gives no solutions.

case (iii) There is no value of 𝑘 which gives infinite number of solutions.

2.1.4.3 Problem 3

𝑑𝑦
𝑑𝑥

= −
𝑦

(𝑥 − 1)
+

𝑒−𝑥

𝑥 − 1
; 𝑦 (0) = 2

part (a)

𝑑𝑦
𝑑𝑥

=
−𝑦 + 𝑒−𝑥

(𝑥 − 1)
Hence

𝑓 �𝑥, 𝑦� =
−𝑦 + 𝑒−𝑥

(𝑥 − 1)
This is continuous in 𝑥 except at 𝑥 = 1. And continuous for all 𝑦 . Hence solution exist in

region that does not include 𝑥 = 1. Now 𝜕𝑓
𝜕𝑦 =

−1
(𝑥−1) . We see also here that This is continuous

in 𝑥 except at 𝑥 = 1. No dependency on 𝑦. Hence solution exist and unique in some region
that do not include 𝑥 = 1. So solve, we use integrating factor

𝑑𝑦
𝑑𝑥
+

𝑦
(𝑥 − 1)

=
𝑒−𝑥

𝑥 − 1
(1)

𝜇 = 𝑒∫
1

𝑥−1𝑑𝑥 = 𝑒ln(𝑥−1) = (𝑥 − 1)

Therefore, by multiplying both sides of (1) by 𝜇, we obtain
𝑑
𝑑𝑥
�𝜇𝑦� = 𝜇

𝑒−𝑥

𝑥 − 1
𝑑
𝑑𝑥
�(𝑥 − 1) 𝑦� = (𝑥 − 1)

𝑒−𝑥

𝑥 − 1
= 𝑒−𝑥

Integrating both sides

(𝑥 − 1) 𝑦 = −𝑒−𝑥 + 𝑐

𝑦 (𝑥) =
𝑒−𝑥

1 − 𝑥
+

𝑐
𝑥 − 1

From initial conditions

2 =
1
1
+
𝑐
−1

𝑐 = −1

12
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Hence the exact solution is

𝑦 (𝑥) =
𝑒−𝑥

1 − 𝑥
+

1
1 − 𝑥

=
𝑒−𝑥 + 1
1 − 𝑥

Since initial conditions is at 𝑥 = 0 and since we found above that solution region can not

include point 𝑥 = 1, then the solution region is −∞ < 𝑥 < 1

Here is a plot of the solution showing the singularity at 𝑥 = 1. For our case, the solution
curve is the one to the left of 𝑥 = 1 in this diagram

In[424]:= s = y[x] /. First@DSolve[{y'[x] + y[x] / (x - 1) ⩵ Exp[-x] / (x - 1), y[0] ⩵ 2}, y[x], x];

Plot[s, {x, -5, 5}, Frame → True, FrameLabel → {{"y(x)", None}, {"x", "Problem 3 solution, part (a)"}},

BaseStyle → 14, GridLines → Automatic, GridLinesStyle → LightGray, ImageSize → 400,

ExclusionsStyle → Red]

Out[425]=
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Problem 3 solution, part (a)

Part (b)

In Forward Euler, we have

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 �𝑥𝑛, 𝑦𝑛�

In this problem 𝑓 �𝑥, 𝑦� = − 𝑦
(𝑥−1) +

𝑒−𝑥

𝑥−1 , hence

𝑦𝑛+1 = 𝑦𝑛 + ℎ �−
𝑦𝑛

(𝑥𝑛 − 1)
+

𝑒−𝑥𝑛
𝑥𝑛 − 1

�

For 𝑛 = 0, we have

𝑦1 = 𝑦0 + ℎ �−
𝑦0

(𝑥0 − 1)
+

𝑒−𝑥0
𝑥0 − 1

�

But 𝑦0 = 2 at 𝑥0 = 0, hence the above becomes

𝑦1 = 𝑦0 + ℎ �−
2
−1

+
1

0 − 1�

= 𝑦0 + ℎ

Therefore, after one step

𝑦 (ℎ) = 𝑦 (0) + ℎ

2.1.4.4 Problem 4

𝑑𝑦
𝑑𝑥

= −
5
2
𝑥4𝑦3; 𝑦 (0) = −1

Part (a)

𝑓 �𝑥, 𝑦� = −5
2𝑥

4𝑦3. We see that this is continuous for all 𝑥 and all 𝑦. 𝜕𝑓
𝜕𝑦 = −5

23𝑥
4𝑦2. This is

also continuous for all 𝑥 and all 𝑦. Therefore a solution exist and is unique in some region
inside −∞ < 𝑥 < ∞.

Now we solve the ODE. This is separable. Hence
𝑑𝑦
𝑦3

= −
5
2
𝑥4𝑑𝑥

13
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Integrating
−1
2𝑦2

= −
1
2
𝑥5 + 𝑐

Applying initial conditions
−1
2
= 𝑐

Hence exact solution is
−1
2𝑦2

= −
1
2
𝑥5 −

1
2

=
−𝑥5 − 1
2

Hence −1
𝑦2 = −𝑥

5 − 1 or

𝑦2 =
−1

−𝑥5 − 1

=
1

𝑥5 + 1

𝑦 = ±
�

1
𝑥5 + 1

But since 𝑦 (0) = −1, then at this point, using the above solution, we see that −1 = ±�
1
1 .

Hence only the negative sign can be used, to satisfy the initial conditions. Therefore, the
solution becomes

𝑦 = −
�

1
𝑥5 + 1

Since the solution must be real, then 𝑥5 = −1 is not allowed (or 𝑥 = −1 is not allowed). And
since we started at 𝑥 = 0, then the solution is valid for

−1 < 𝑥 < ∞

Here is a plot of the solution curve

In[449]:= ClearAll[y, x]

ode = y'[x] == -5 / 2 x^4 y[x]^3;

s = y[x] /. First@DSolve[{ode, y[0] ⩵ -1}, y[x], x]

Plot[s, {x, -2, 5}, Frame → True, FrameLabel → {{"y(x)", None}, {"x", "Problem 4 solution, part (a)"}},

BaseStyle → 14, GridLines → Automatic, GridLinesStyle → LightGray, ImageSize → 400, ExclusionsStyle → Red]

Out[452]=
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Problem 4 solution, part (a)

Part (b)

In rk2, we have

𝑘1 = 𝑓 �𝑥𝑛, 𝑦𝑛�

𝑢𝑛+1 = 𝑦𝑛 + ℎ𝑘1
𝑘2 = 𝑓 (𝑥𝑛+1, 𝑢𝑛+1)

𝑦𝑛+1 = 𝑦𝑛 + ℎ
1
2
(𝑘1 + 𝑘2)

14
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In this problem 𝑓 �𝑥, 𝑦� = −5
2𝑥

4𝑦3, hence

𝑘1 = −
5
2
𝑥4𝑛𝑦3𝑛

For 𝑛 = 0, we have

𝑘1 = −
5
2
𝑥40𝑦30

But 𝑦0 = −1 at 𝑥0 = 0, hence the above becomes

𝑘1 = 0

Hence

𝑢1 = 𝑦0 + ℎ𝑘1
= 𝑦0
= −1

And

𝑘2 = 𝑓 (𝑥1, 𝑢1)

= −
5
2
𝑥41𝑢31

= −
5
2
ℎ4 (−1)3

=
5
2
ℎ4

Hence

𝑦1 = 𝑦0 + ℎ
1
2
(𝑘1 + 𝑘2)

= −1 + ℎ
1
2 �
0 +

5
2
ℎ4�

=
5
4
ℎ5 − 1

2.1.4.5 Problem 5

𝑑𝑦
𝑑𝑡
= �𝑦 − 1�

3
2 ; 𝑦 (1) = 2

Here

𝑓 �𝑡, 𝑦� = �𝑦 − 1�
3
2

This does not depend on 𝑡. If 𝑦 < 1, then �𝑦 − 1�
3
2 will be complex valued. Hence for real

solution, we want 𝑦 ≥ 1. 𝜕𝑓
𝜕𝑦 =

3
2
�𝑦 − 1�

1
2 . This does not depend on 𝑡. Therefore a solution

exist and is unique in some region −∞ < 𝑡 < ∞. As long as 𝑦 ≥ 1. Hence TRUE

Note: When solving this, the solution came out to be 𝑦 (𝑡) = 𝑡2−6𝑡+13
(𝑡−3)2

, which means the

solution below up at 𝑡 = 3. i.e the solution is singular at 𝑡 = 3. Therefore, the subrange
is −∞ < 𝑡 < −3. (we were not asked to find the subrange?) Just to answer that there exist
some subrange. Here is a plot of the solution

15
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In[504]:= ClearAll[y, x]

ode = y'[t] ⩵ (y[t] - 1)^(3 / 2);

s = y[t] /. First@DSolve[{ode, y[1] ⩵ 2}, y[t], t]

Plot[s, {t, -10, 10}, Frame → True, FrameLabel → {{"y(t)", None}, {"t", "Problem 5 solution"}},

BaseStyle → 14, GridLines → Automatic, GridLinesStyle → LightGray, ImageSize → 400, ExclusionsStyle → Red,

ExclusionsStyle → Red, Epilog → {Dashed, Red, Line[{{3, 0}, {3, 5}}]}]

Out[506]=
13 - 6 t + t2

(-3 + t)2

Out[507]=
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Problem 5 solution
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2.2 second exam

2.2.1 practice exam questions

Math 320 (Smith): Practice Problems for Exam 2

1. Given the matrix

A =





1 1/2 3
−1/3 −3/2 −1
−1/2 −1/4 −3/2



 , (1)

for what vectors b does Ax = b have a solution?

2. (a) For what vectors b does Ax = b have a solution, with A given by

A =





2 −1 1/2
3 1 2
0 6 3



 . (3)

(b) Find all possible solutions (or no solution) for bT = [0 1 12/5] and for bT = [0 12/5 1].

3. Consider Ax = b for

A =





2/3 a12 −2
−1/5 −1/3 3/5
1/2 5/6 −3/2



 . (3)

(a) For what values of a12 is A non-singular?
(b) For what values of a12 is A singular?
(c) In all cases of A singular, analyze the system Ax = b. What vectors b lead to solutions x?
What are those solutions x?

4. Given that two vectors u and v are linearly independent, are 3u− 5v and v linearly dependent
or linearly independent? Prove your answer.

5. Are the following statements TRUE or FALSE? If the statement is false, correct it.

(a) A square matrix with two identical rows is row equivalent to the identity matrix.

(b) The inverse of a square matrix A exists if A is row equivalent to the identity matrix I with the
same dimensions.

(c) The determinant of an upper triangular square matrix is the sum of the diagonal elements.

6. Prove Property 4 of the seven properties of determinants.

7. Consider the matrix A

A =





1 2 −1
2 −1 2
0 a32 a33



 , (7)

(a) Find a condition on a32 and a33 such that A−1 exists.

(b) Find the value of the determinant for a32 = 1 and a33 = −2. How many columns of A are
independent for a32 = 1 and a33 = −2?

(c) For a32 = 5 and a33 = −4, can pT = [3 5 0] be expressed as a linear combination of the
columns of A? Support your answer with a calculation (no work, no credit).

(d) Find the value of the determinant for a32 = 5 and a33 = −4. How many columns of A are
independent for a32 = 5 and a33 = −4?

1

17
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8. (a) Consider a 3× 3 matrix A. Show that det(AT ) = det(A).
[In fact, det(AT ) = det(A) for A n× n.]

(b) The square matrix A is called orthogonal if AT = A−1. Show that the determinant of an
orthogonal matrix is either +1 or −1. You may use the fact that det(AB) = det(A) det(B).

9. Find the determinant Hint: Use elementary row operations.

A =









1 2 −2 5
−1 2 3 4
1 3 1 −2
−1 −3 0 −4









(9)

10. Using elementary row operations, find the inverse of

A =





3 5 6
2 4 3
2 3 5



 . (10)

11. (a) Show that any plane through the origin is a subspace of R3.

(b) Show that the plane x+ 3y − 2z = 5 is not a subspace of R3.

2

2.2.2 my solution to second midterm practice exam

2.2.2.1 Problem 1

Question: Given Matrix

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2 3

−1
3

−3
2 −1

−1
2

−1
4

−3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

for what vectors �̄� does 𝐴�̄� = �̄� have a solution?

answer Let �̄� = (𝑏1, 𝑏2, 𝑏3) . We start by setting up the augmented matrix. The augmented

18
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matrix is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2 3 𝑏1

−1
3

−3
2 −1 𝑏2

−1
2

−1
4

−3
2 𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Applying row operation: 𝑅2 = 𝑅2 +
1
3𝑅1 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2 3 𝑏1

0 −4
3 0 𝑏2 +

𝑏1
3

−1
2

−1
4

−3
2 𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 +
1
2𝑅1 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2 3 𝑏1

0 −4
3 0 𝑏2 +

𝑏1
3

0 0 0 𝑏3 +
1
2𝑏1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above is Echelon form. Therefore, from last row, we see that 0𝑥3 = 𝑏3+
1
2𝑏1. For solution

to exist, we need 𝑏3 +
1
2𝑏1 = 0 or 𝑏3 = −

1
2𝑏1. Hence any vector 𝑏 where the third entry is −1

2
the first entry, will result in 𝐴�̄� = �̄� having (infinite) solutions. So �̄� needs to have this form

�̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2

−1
2 𝑏1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑏1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
−1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑏2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.2.2.2 Problem 2

part a For what vector �̄� does 𝐴�̄� = �̄� have solution

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 1
2

3 1 2
0 6 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

answer

Let �̄� = (𝑏1, 𝑏2, 𝑏3) then the augmented matrix is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 1
2 𝑏1

3 1 2 𝑏2
0 6 3 𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Applying row operations: 𝑅2 = 𝑅2 −
3
2𝑅1 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 1
2 𝑏1

0 5
2

5
4 𝑏2 −

3
2𝑏1

0 6 3 𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 −
6

� 52 �
𝑅2 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 1
2 𝑏1

0 5
2

5
4 𝑏2 −

3
2𝑏1

0 0 0 18
5 𝑏1 −

12
5 𝑏2 + 𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above is Echelon form. Last row says that 0𝑥3 =
18
5 𝑏1 −

12
5 𝑏2 + 𝑏3. Therefore for solution

to exist, we need
18
5
𝑏1 −

12
5
𝑏2 + 𝑏3 = 0

19
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This will generate infinite number of solutions. Any �̄� vector of 3 elements where the above
constraint is satisfied, will make 𝐴�̄� = �̄� have (infinite) number of solutions. Solving for 𝑏1
in terms of 𝑏2, 𝑏3

𝑏1 =
12
18
𝑏2 −

5
18
𝑏3

Hence �̄� can be written as

�̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

12
18𝑏2 −

5
18𝑏3

𝑏2
𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

One such example of �̄� can be

�̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
18
1
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

part b Find all possible solutions (or no solution) for

�̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
12
5
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
12
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We need to first check if these vectors meet the constraint found in part (a), which is
𝑏1 =

12
18𝑏2 −

5
18𝑏3 . For the first vector given, we get

0 ?=
12
18 �

12
5 �

−
5
18
(1)

0 ?=
119
90

Which is not valid. Therefore, �̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
12
5
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
will produce no solution for when used in 𝐴�̄� = �̄�.

Now we check the second vector to see if it meets the constraint or not.

0 ?=
12
18
(1) −

5
18 �

12
5 �

0 ?= 0

Yes. It satisfies the constraint. Hence this vector will produce solution for 𝐴�̄� = �̄�. To find
the solution, we plugin this �̄� vector and solve for 𝑥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2 3

−1
3

−3
2 −1

−1
2

−1
4

−3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
12
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Following the row operation we did above, the output is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 1
2 𝑏1

0 5
2

5
4 𝑏2 −

3
2𝑏1

0 0 0 18
5 𝑏1 −

12
5 𝑏2 + 𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 1
2 0

0 5
2

5
4 1

0 0 0 −12
5
(1) + 12

5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 1
2 0

0 5
2

5
4 1

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence from last row 𝑥3 = 𝑡, and from second row 5
2𝑥2 +

5
4 𝑡 = 1 or 𝑥2 =

2
5 −

1
2 𝑡 and from first

row 2𝑥1 − 𝑥2 +
1
2𝑥3 = 0 or 2𝑥1 = �

2
5 −

1
2 𝑡� −

1
2 𝑡 hence solution is

20
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
5 −

𝑡
2

2
5 −

1
2 𝑡
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
5
2
5
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
2

−1
2 𝑡
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.2.2.3 Problem 3

Consider 𝐴�̄� = �̄� for

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3 𝑎12 −2
−1
5

−1
3

3
5

1
2

5
6

−3
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(a) for what values of 𝑎12 is 𝐴 non-singular? (b) For what values of 𝑎12 is 𝐴 singular? (c) In
all cases of 𝐴 singular, analyze the system 𝐴�̄� = �̄�. For what vectors �̄� lead to solution �̄�?
What are those solutions?

Answer (a). Expanding along first row gives

|𝐴| =
2
3
𝐴11 + 𝑎12𝐴12 − 2𝐴13

=
2
3
(−1)1+1𝑀11 + 𝑎12 (−1)

1+2𝑀12 − 2 (−1)
1+3𝑀13

=
2
3
𝑀11 − 𝑎12𝑀12 − 2𝑀13

=
2
3 �

−1
3

3
5

5
6

−3
2
� − 𝑎12 �

−1
5

3
5

1
2

−3
2
� − 2 �

−1
5

−1
3

1
2

5
6
�

=
2
3
(0) − 𝑎12 (0) − 2 (0)

= 0𝑎12
Therefore, there are no values of 𝑎12 will make 𝐴 non-singular, since anything times zero
is zero.

(b) This follows from part (a). For any value 𝑎12, the matrix 𝐴 remains singular.

(c) Let �̄� = (𝑏1, 𝑏2, 𝑏3) , then the augmented matrix is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3 𝑎12 −2 𝑏1
−1
5

−1
3

3
5 𝑏2

1
2

5
6

−3
2 𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 = 𝑅2 − �
− 1
5
2
3
� 𝑅1 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3 𝑎12 −2 𝑏1
0 3

10𝑎12 −
1
3 0 3

10𝑏1 + 𝑏2
1
2

5
6

−3
2 𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 −
1
2
2
3

𝑅1 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3 𝑎12 −2 𝑏1
0 3

10𝑎12 −
1
3 0 3

10𝑏1 + 𝑏2
0 5

6 −
3
4𝑎12 0 𝑏3 −

3
4𝑏1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑅3 = 𝑅3 −
5
6−

3
4 𝑎12

3
10 𝑎12−

1
3

𝑅2 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
3 𝑎12 −2 𝑏1
0 3

10𝑎12 −
1
3 0 3

10𝑏1 + 𝑏2
0 0 0 5

2𝑏2 + 𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From last row, we see that 0𝑥3 =
5
2𝑏2 + 𝑏3. Hence we need (for infinite solutions) to have

the constraint
5
2
𝑏2 + 𝑏3 = 0

𝑏2 = −
2
5
𝑏3

In which case we assume 𝑥3 = 𝑡 in this case (parameter). The second row says that

�
3
10
𝑎12 −

1
3�
𝑥2 =

3
10
𝑏1 + 𝑏2

Here we have to consider the case where 𝑎12 =
10
9 (which can happen, since 𝑎12 can be any

value for 𝐴 singular). In this case, we end up with 0𝑥2 =
3
10𝑏1 + 𝑏2. Then now, for solution

to exist, we need 3
10𝑏1 + 𝑏2 = 0 or 𝑏1 = −

10
3 𝑏2 and now we set 𝑥2 = 𝑠, second parameter.

On the other hand, if 𝑎12 ≠
10
9 then this leads to � 3

10𝑎12 −
1
3
� 𝑥2 =

3
10𝑏1+𝑏2 and now 𝑥2 =

3
10 𝑏1+𝑏2
3
10 𝑎12−

1
3

.

Therefore in summary

𝑥2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

𝑠 𝑎12 =
10
9 and 3

10𝑏1 + 𝑏2 = 0
3
10 𝑏1+𝑏2
3
10 𝑎12−

1
3

𝑎12 ≠
10
9

Finally, first row gives
2
3
𝑥1 + 𝑎12𝑥2 − 2𝑥3 = 𝑏1

𝑥1 = 𝑏1 − 𝑎12𝑥2 + 2𝑥3

=
3
2
𝑏1 −

3
2
𝑎12𝑥2 + 3𝑡

If 𝑎12 =
10
9 and 3

10𝑏1 + 𝑏2 = 0 then 𝑥2 = 𝑠 and above becomes

𝑥1 =
3
2
𝑏1 −

3
2 �
10
9 �

𝑠 + 3𝑡

= 3𝑡 −
5
3
𝑠 +

3
2
𝑏1

If 𝑎12 ≠
10
9 then 𝑥2 =

3
10 𝑏1+𝑏2
3
10 𝑎12−

1
3

and 𝑥1 becomes

𝑥1 =
3
2
𝑏1 −

3
2
𝑎12

⎛
⎜⎜⎜⎜⎜⎝

3
10𝑏1 + 𝑏2
3
10𝑎12 −

1
3

⎞
⎟⎟⎟⎟⎟⎠ + 3𝑡

Therefore in summary

𝑥1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3𝑡 − 5
3𝑠 +

3
2𝑏1 𝑎12 =

10
9 and 3

10𝑏1 + 𝑏2 = 0
3
2𝑏1 −

3
2𝑎12 �

3
10 𝑏1+𝑏2
3
10 𝑎12−

1
3
� + 3𝑡 𝑎12 ≠

10
9

Hence solution vector is,
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for case 𝑎12 =
10
9 and 3

10𝑏1 + 𝑏2 = 0 and
5
2𝑏2 + 𝑏3 = 0 then solution is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3𝑡 − 5
3𝑠 +

3
2𝑏1

𝑠
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3𝑡 − 5
3𝑠 + 2𝑏3
𝑠
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5
3
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2𝑏3
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

And the �̄� vector now is

�̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2
𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−10
3 𝑏2

−2
5𝑏3
𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3𝑏3
−2
5𝑏3
𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑏3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3
−2
5
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For case 𝑎12 ≠
10
9 and 5

2𝑏2 + 𝑏3 = 0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
2𝑏1 −

3
2𝑎12 �

3
10 𝑏1+𝑏2
3
10 𝑎12−

1
3
� + 3𝑡

3
10 𝑏1+𝑏2
3
10 𝑎12−

1
3

𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
0
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
2𝑏1 −

3
2𝑎12 �

3
10 𝑏1+𝑏2
3
10 𝑎12−

1
3
�

3
10 𝑏1+𝑏2
3
10 𝑎12−

1
3

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

And the �̄� vector now is

�̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
𝑏2
𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏1
−2
5𝑏3
𝑏3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑏1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑏3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−2
5
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.2.2.4 Problem 4

Given that two vectors �̄�, �̄� are L.I., are 3�̄� − 5�̄� and �̄� L.I. or L.D.? prove your answer.

answer

The two vectors are L.I. if the only solution to

𝑐1 (3�̄� − 5�̄�) + 𝑐2 (�̄�) = 0̄

is 𝑐1 = 0, 𝑐2 = 0. Therefore

𝑐1 (3�̄� − 5�̄�) + 𝑐2 (�̄�) = 3𝑐1�̄� − 5𝑐1�̄� + 𝑐2�̄�
= 3𝑐1�̄� + �̄� (𝑐2 − 5𝑐1) (1)

Let

3𝑐1 = 𝑘1 (2)

𝑐2 − 5𝑐1 = 𝑘2

23



2.2. second exam CHAPTER 2. EXAMS

And (1) becomes

𝑐1 (3�̄� − 5�̄�) + 𝑐2 (�̄�) = 𝑘1�̄� + 𝑘2�̄�

But �̄�, �̄� are L.I., hence 𝑘1�̄� + 𝑘2�̄� = 0̄ implies that 𝑘1 = 𝑘2 = 0. This means (from (2)) that

3𝑐1 = 0
𝑐2 − 5𝑐1 = 0

First equation gives 𝑐1 = 0. The second equation now gives 𝑐2 = 0. Hence this shows that
3�̄� − 5�̄� and �̄� are L.I.

2.2.2.5 Problem 5

Are the following statements true or false? If false, correct it.

1. Square matrix with two identical rows is row equivalent to identity matrix

2. Inverse of square matrix 𝐴 exists if 𝐴 is row equivalent to identity matrix 𝐼 with the
same dimension.

3. Determinant of upper triangle square matrix is sum of diagonal elements.

Answer

1. False. Since two rows are identical, the matrix is singular which means there are no
row operations which leads to reduced Echelon form.

2. True.

3. False. Determinant of upper triangle square matrix is product (not sum) of diagonal
elements.

2.2.2.6 Problem 6

Prove property 4 of the seven properties of determinants.

Answer

Property 4 says that if 𝐴,𝐵, 𝐶 are identical except for one row 𝑖, and that row is such that
𝐴 (𝑖) + 𝐵 (𝑖) = 𝐶 (𝑖) then |𝐴| + |𝐵| = |𝐶|

Let the three matrices be

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × ×
𝑎𝑖1 𝑎𝑖2 ⋯ 𝑎𝑖𝑛
× × × ×
× × × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × ×
𝑏𝑖1 𝑏𝑖2 ⋯ 𝑏𝑖𝑛
× × × ×
× × × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

× × × ×
𝑐𝑖1 𝑐𝑖2 ⋯ 𝑐𝑖𝑛
× × × ×
× × × ×

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Where in the above, the 𝑖𝑡ℎ is shown. We are also told that 𝐴 (𝑖) + 𝐵 (𝑖) = 𝐶 (𝑖) which implies

𝑎𝑖1 + 𝑏𝑖1 = 𝑐𝑖1
𝑎𝑖2 + 𝑏𝑖2 = 𝑐𝑖2

⋮ =⋮ (1)

𝑎𝑖𝑛 + 𝑏𝑖𝑛 = 𝑐𝑖𝑛
Taking the determinant of each matrix, and expanding along the 𝑖𝑡ℎ row gives

|𝐴| = 𝑎𝑖1𝐴𝑖1 + 𝑎𝑖2𝐴𝑖2 +⋯+ 𝑎𝑖𝑛𝐴𝑖𝑛

Similarly for 𝐵 and 𝐶

|𝐵| = 𝑏𝑖1𝐵𝑖1 + 𝑏𝑖2𝐵𝑖2 +⋯+ 𝑏𝑖𝑛𝐵𝑖𝑛
And

|𝐶| = 𝑐𝑖1𝐶𝑖1 + 𝑐𝑖2𝐶𝑖2 +⋯+ 𝑐𝑖𝑛𝐶𝑖𝑛

Where But since 𝐴𝑖𝑗 = 𝐵𝑖𝑗 = 𝐶𝑖𝑗 is the submatrix for all matrices, we are told the matrices
are identical in all other rows (and columns) except for the 𝑖𝑡ℎ row. Then we can just use
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any one of them. Lets use 𝐶𝑖𝑗 for each case. Therefore from above, we can write

|𝐴| + |𝐵| = (𝑎𝑖1𝐶𝑖1 + 𝑎𝑖2𝐶𝑖2 +⋯+ 𝑎𝑖𝑛𝐶𝑖𝑛) + (𝑏𝑖1𝐶𝑖1 + 𝑏𝑖2𝐶𝑖2 +⋯+ 𝑏𝑖𝑛𝐶𝑖𝑛)
= (𝑎𝑖1 + 𝑏𝑖1) 𝐶𝑖1 + (𝑎𝑖2 + 𝑏𝑖2) 𝐶𝑖2 +⋯+ (𝑎𝑖𝑛 + 𝑏𝑖𝑛) 𝐶𝑖𝑛 (2)

Substituting (1) into (2) gives

|𝐴| + |𝐵| = 𝑐𝑖1𝐶𝑖1 + 𝑐𝑖2𝐶𝑖2 +⋯+ 𝑐𝑖𝑛𝐶𝑖𝑛

= |𝐶|

QED.

2.2.2.7 Problem 7

Consider matrix

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −1
2 −1 2
0 𝑎32 𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

1. Find condition on 𝑎32, 𝑎33 such that 𝐴−1 exist.

2. Find value of determinant for 𝑎32 = 1 and 𝑎33 = −2. How many columns of 𝐴 are
independent for 𝑎32 = 1, 𝑎33 = −2 ?

3. For 𝑎32 = 5, 𝑎33 = −4, can 𝑝𝑇 = (3, 5, 0) be expressed as linear combination of columns
of 𝐴?

4. Find value of the determinant for 𝑎32 = 5, 𝑎33 = −4. How many columns of 𝐴 are
independent?

Answer

(1) Expanding along last row gives

|𝐴| = 𝑎32𝐴32 + 𝑎33𝐴33

= 𝑎32 (−1)
3+2𝑀32 + 𝑎33 (−1)

3+3𝑀33

= −𝑎32𝑀32 + 𝑎33𝑀33

= −𝑎32 �
1 −1
2 2

� + 𝑎33 �
1 2
2 −1

�

= −4𝑎32 − 5𝑎33
Hence for 𝐴−1 to exist, we want |𝐴| ≠ 0, which means we want −4𝑎32 − 5𝑎33 ≠ 0 or

4𝑎32 + 5𝑎33 ≠ 0

(2) When 𝑎32 = 1 and 𝑎33 = −2, the matrix becomes

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −1
2 −1 2
0 1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Expanding along last row gives

|𝐴| = 𝑎32𝐴32 + 𝑎33𝐴33

= (−1)3+2𝑀32 − 2 (−1)
3+3𝑀33

= −𝑀32 − 2𝑀33

= − �
1 −1
2 2

� − 2 �
1 2
2 −1

�

= −4 + 10
= 6

Since |𝐴| ≠ 0, Hence all columns are L.I. (Matrix is full rank).
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(3) For 𝑎32 = 5, 𝑎33 = −4 the matrix becomes

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −1
2 −1 2
0 5 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

To find if 𝑝𝑇 = (3, 5, 0) can be expressed are linear combinations of columns of 𝐴, implies

𝑐1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑐2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
−1
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑐3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
2
−4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
6
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Has solution in 𝑐. The above can be written as
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −1
2 −1 2
0 5 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
6
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Setting up the augmented matrix gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −1 3
2 −1 2 6
0 5 −4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 = 𝑅2 − 2𝑅1 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −1 3
0 −5 4 0
0 5 −4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 + 𝑅2 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −1 3
0 −5 4 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, last row gives 0𝑐3 = 0. Hence 𝑐3 can be any value, say 𝑡. Second row gives

−5𝑐2 + 4𝑐3 = 0

𝑐2 =
4
5
𝑡

And from first row

𝑐1 + 2𝑐2 − 𝑐3 = 3
𝑐1 = 3 − 2𝑐2 + 𝑐3

= 3 − 2
4
5
𝑡 + 𝑡

= 3 −
9
5
𝑡

Hence there are infinite solutions.
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 − 9
5 𝑡

4
5 𝑡
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−9
5
4
5
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For any 𝑡 we can find linear combination of columns of 𝐴 which gives 𝑝𝑇. For example,
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using 𝑡 = 0 results in solution 𝑐1 = 3, 𝑐2 = 0, 𝑐3 = 0. To verify

𝑐1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑐2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
−1
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑐3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
2
−4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
6
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑝

(4). For 𝑎32 = 5, 𝑎33 = −4 the matrix becomes

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −1
2 −1 2
0 5 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The determinant is zero, this is because from part (3), we ended up with one zero pivot in
Echelon form, which implies |𝐴| = 0. Since solution has one parameter family, and matrix
is 3 × 3, then there are now 2 L.I. columns in 𝐴. This is the same as saying rank of 𝐴 is 2.

2.2.2.8 Problem 8

Consider 3 × 3 matrix 𝐴. Show that |𝐴|𝑇 = |𝐴|

Answer Let 𝐴 be

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Expanding along first row gives

|𝐴| = 𝑎11 (−1)
1+1𝑀11 + 𝑎12 (−1)

1+2𝑀12 + 𝑎13 (−1)
1+3𝑀13

= 𝑎11 �
𝑎22 𝑎23
𝑎32 𝑎33

� − 𝑎12 �
𝑎21 𝑎23
𝑎31 𝑎33

� + 𝑎13 �
𝑎21 𝑎22
𝑎31 𝑎32

�

= 𝑎11 (𝑎22𝑎33 − 𝑎23𝑎32) − 𝑎12 (𝑎21𝑎33 − 𝑎23𝑎31) + 𝑎13 (𝑎21𝑎32 − 𝑎22𝑎31)
= 𝑎11𝑎22𝑎33 − 𝑎11𝑎23𝑎32 − 𝑎12𝑎21𝑎33 + 𝑎12𝑎23𝑎31 + 𝑎13𝑎21𝑎32 − 𝑎13𝑎22𝑎31 (1)

Now

𝐴𝑇 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎21 𝑎31
𝑎12 𝑎22 𝑎32
𝑎13 𝑎23 𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Expanding along first row gives

�𝐴𝑇� = 𝑎11 (−1)
1+1𝑀11 + 𝑎21 (−1)

1+2𝑀12 + 𝑎31 (−1)
1+3𝑀13

= 𝑎11 �
𝑎22 𝑎32
𝑎23 𝑎33

� − 𝑎21 �
𝑎12 𝑎32
𝑎13 𝑎33

� + 𝑎31 �
𝑎12 𝑎22
𝑎13 𝑎23

�

= 𝑎11 (𝑎22𝑎33 − 𝑎32𝑎23) − 𝑎21 (𝑎12𝑎33 − 𝑎32𝑎13) + 𝑎31 (𝑎12𝑎23 − 𝑎22𝑎13)
= 𝑎11𝑎22𝑎33 − 𝑎11𝑎32𝑎23 − 𝑎21𝑎12𝑎33 + 𝑎21𝑎32𝑎13 + 𝑎31𝑎12𝑎23 − 𝑎31𝑎22𝑎13 (2)

Examining (1) and (2), we see they are the same. Hence |𝐴| = �𝐴𝑇�

2.2.2.9 Problem 9

Find |𝐴|

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −2 5
−1 2 3 4
1 3 1 −2
−1 −3 0 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Answer

𝑅2 = 𝑅2 + 𝑅1 gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −2 5
0 4 1 9
1 3 1 −2
−1 −3 0 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 − 𝑅1 gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −2 5
0 4 1 9
0 1 3 −7
−1 −3 0 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅4 = 𝑅4 + 𝑅1 gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −2 5
0 4 1 9
0 1 3 −7
0 −1 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 −
1
4𝑅2 gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −2 5
0 4 1 9
0 0 11

4 −37
4

0 −1 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅4 = 𝑅4 +
1
4𝑅2 gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −2 5
0 4 1 9
0 0 11

4 −37
4

0 0 −7
4

13
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅4 = 𝑅4 −
− 7
4

11
4

𝑅3 gives

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 −2 5
0 4 1 9
0 0 11

4 −37
4

0 0 0 −29
11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

|𝐴| = 1 × 4 ×
11
4
× −

29
11

= −29

2.2.2.10 Problem 10

Using elementary row operations, find the inverse of

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 5 6
2 4 3
2 3 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Answer

28



2.2. second exam CHAPTER 2. EXAMS

Set up augmented matrix

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 5 6 1 0 0
2 4 3 0 1 0
2 3 5 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 = 𝑅2 −
2
3𝑅1 gives

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 5 6 1 0 0
0 2

3 −1 −2
3 1 0

2 3 5 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 −
2
3𝑅1 gives

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 5 6 1 0 0
0 2

3 −1 −2
3 1 0

0 −1
3 1 −2

3 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 −
− 1
3
2
3

𝑅2 gives

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 5 6 1 0 0
0 2

3 −1 −2
3 1 0

0 0 1
2 −1 1

2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Start backward elimination now. 𝑅1 = 𝑅1 −
5
2
3

𝑅2 gives

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 27
2 6 −15

2 0
0 2

3 −1 −2
3 1 0

0 0 1
2 −1 1

2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1 = 𝑅1 −
27
2
1
2

𝑅3 gives

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 33 −21 −27
0 2

3 −1 −2
3 1 0

0 0 1
2 −1 1

2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 = 𝑅2 −
−1
1
2

𝑅3 gives

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 0 33 −21 −27
0 2

3 0 −8
3 2 2

0 0 1
2 −1 1

2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Divide each row by diagonal element to make LHS identity matrix. 𝑅1 =
𝑅1
3 gives

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 11 −7 −9
0 2

3 0 −8
3 2 2

0 0 1
2 −1 1

2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 =
𝑅2
2
3

gives

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 11 −7 −9
0 1 0 −4 3 3
0 0 1

2 −1 1
2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑅3 =
𝑅3
1
2

gives

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 11 −7 −9
0 1 0 −4 3 3
0 0 1 −2 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

𝐴−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

11 −7 −9
−4 3 3
−2 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

2.2.2.11 Problem 11

(a) Show that any plane through the origin is subspace of ℝ3

(b) Show that the plane 𝑥 + 3𝑦 − 2𝑧 = 5 is not subspace of ℝ3

Answer

part(a) The plane through the origin is the set𝑊 of all vectors 𝒗 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥
𝑦
𝑧

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, such that 𝑎𝑥+𝑏𝑦+𝑐𝑧 =

0, where 𝑥, 𝑦, 𝑧 are the coordinates of the vector 𝒗 and 𝑎, 𝑏, 𝑐 are any arbitrary constants
not all zero. To show that 𝑊 is subspace of ℝ3, we need to show that additions of any two
vectors 𝒖, 𝒗 ∈ 𝑊 gives vector 𝒘 ∈ 𝑊 (closed under addition) and multiplying any vector
𝒖 ∈ 𝑊 by any scalar 𝑘 gives vector 𝑘𝒖 ∈ 𝑊 (closed under scalar multiplication). We are
told the zero vector 0 ∈ 𝑊 already, so we do not have to show this. (since the plane passes
though origin).

To show closure under addition, consider any two vectors 𝒗1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑦1
𝑧1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
and 𝒖 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥2
𝑦2
𝑧2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Since

these two vectors are taken from 𝑊, then we know they satisfy the equation of the plane
already. i.e.

𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 = 0
𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 = 0 (1)

Now lets add these two vectors

𝒗 + 𝒖 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑦1
𝑧1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥2
𝑦2
𝑧2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 + 𝑥2
𝑦1 + 𝑦2
𝑧1 + 𝑧2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

We now need to check if the above vector in still in𝑊 (i.e. in the plane passing through the
origin). To do so, we take the original equation of the plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0 and replace
𝑥, 𝑦, 𝑧 in this equation by the coordinates in (2) and see if we still get zero in the RHS. This
results in

𝑎 (𝑥1 + 𝑥2) + 𝑏 �𝑦1 + 𝑦2� + 𝑐 (𝑧1 + 𝑧2)
?= 0

𝑎𝑥1 + 𝑎𝑥2 + 𝑏𝑦1 + 𝑏𝑦2 + 𝑐𝑧1 + 𝑐𝑧2
?= 0

�𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1� + �𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2�
?= 0

Substituting (1) into the above gives

0 + 0 ?= 0
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Yes. Therefore 𝒗 + 𝒖 ∈ 𝑊. To check closure under scalar multiplication.

𝑘𝒗 = 𝑘

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑦1
𝑧1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑘𝑥1
𝑘𝑦1
𝑘𝑧1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

We now need to check if the above vector in still in𝑊 (i.e. in the plane passing through the
origin). To do so, we take the original equation of the plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 0 and replace
𝑥, 𝑦, 𝑧 in this equation by the coordinates in (3) and see if we still get zero in the RHS. This
results in

𝑎 (𝑘𝑥1) + 𝑏 �𝑘𝑦1� + 𝑐 (𝑘𝑧1)
?= 0

𝑘 �𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1�
?= 0

But since 𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 = 0 from (1). Therefore 𝑘 �𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1� = 0. So closed under
scalar multiplication.

Part b A subspace must include the zero vector 0 = (0, 0, 0). Replacing the coordinates of
this vector into LHS of 𝑥 + 3𝑦 − 2𝑧 = 5 gives

0 + 3 (0) − 2 (0) ?= 5

0 ?= 5

No. Hence not satisfied. Therefore not subspace of ℝ3.
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2.3 �nal exam

2.3.1 My solution for �nal exam practice.

2.3.1.1 Problem 1

(a) Find general solution to 𝑥2𝑦′′ − 3𝑥𝑦 + 4𝑦 = 0 with 𝑥 > 0. (b) For initial conditions
𝑦 (2) = 𝑎, 𝑦′ (2) = 𝑏 give a 2 × 2 matrix-vector equation to determine the coe�cients of the
unique solution. Solve the system them write the solution to the initial value problem. (c)
Show that general solution contains two L.I. solutions 𝑦1, 𝑦2 with 𝑥 > 0

Solution

2.3.1.1.1 Part(a) Let 𝑦 = 𝑥𝑟 then 𝑦′ = 𝐴𝑟𝑥𝑟−1, 𝑦′′ = 𝐴𝑟 (𝑟 − 1) 𝑥𝑟−2. Substituting these into
the ODE gives

𝑥2𝑟 (𝑟 − 1) 𝑥𝑟−2 − 3𝑥𝑟𝑥𝑟−1 + 4𝑥𝑟 = 0
𝑟 (𝑟 − 1) 𝑥𝑟 − 3𝑟𝑥𝑟 + 4𝑥𝑟 = 0

Since 𝑥 > 0, we can cancel 𝑥𝑟 and obtain the characteristic equation

𝑟 (𝑟 − 1) − 3𝑟 + 4 = 0
𝑟2 − 4𝑟 + 4 = 0

(𝑟 − 2)2 = 0

Hence 𝑟 = 2 double root. Therefore

𝑦1 = 𝑥2

𝑦2 = 𝑥2 ln 𝑥
And the homogenous solution is

𝑦ℎ (𝑥) = 𝑐1𝑥2 + 𝑐2𝑥2 ln 𝑥 (1A)

2.3.1.1.2 Part(b) Applying 𝑦 (2) = 𝑎 gives

𝑎 = 4𝑐1 + 4𝑐2 ln 2 (1)

Taking derivative of 𝑦ℎ (𝑥)

𝑦′ℎ (𝑥) = 2𝑐1𝑥 + 2𝑐2𝑥 ln 𝑥 + 𝑐2𝑥
Applying 𝑦′ (2) = 𝑏 gives

𝑏 = 4𝑐1 + 𝑐2 (4 ln 2 + 2) (2)

Using (1,2), we write them in matrix form to solve for 𝑐1, 𝑐2
⎛
⎜⎜⎜⎜⎝
4 4 ln 2
4 4 ln 2 + 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑎
𝑏

⎞
⎟⎟⎟⎟⎠

𝑅2 = 𝑅2 − 𝑅1 ⎛
⎜⎜⎜⎜⎝
4 4 ln 2
0 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑎

𝑏 − 𝑎

⎞
⎟⎟⎟⎟⎠

From second row,

2𝑐2 = (𝑏 − 𝑎)

𝑐2 =
𝑏 − 𝑎
2

From first row

4𝑐1 + 4 ln 2𝑐2 = 𝑎

𝑐1 =
𝑎 − 4𝑐2 ln 2

4

=
𝑎 − 4 � 𝑏−𝑎2 � ln 2

4

=
𝑎
4
− �

𝑏 − 𝑎
2 � ln 2
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Therefore

𝑐1 =
𝑎
4
− �

𝑏 − 𝑎
2 � ln 2

𝑐2 =
𝑏 − 𝑎
2

Pugging these into the 𝑦ℎ (𝑥) = 𝑐1𝑥2 + 𝑐2𝑥2 ln 𝑥 found in part(a) gives

𝑦ℎ (𝑥) = �
𝑎
4
− �

𝑏 − 𝑎
2 � ln 2� 𝑥2 + �

𝑏 − 𝑎
2 � 𝑥2 ln 𝑥

2.3.1.1.3 Part (c) We found that

𝑦1 = 𝑥2

𝑦2 = 𝑥2 ln 𝑥
Hence the Wronskian is

𝑊(𝑥) = �
𝑦1 𝑦2
𝑦′1 𝑦′2

� = �
𝑥2 𝑥2 ln 𝑥
2𝑥 2𝑥 ln 𝑥 + 𝑥�

= 2𝑥3 ln 𝑥 + 𝑥3 − 2𝑥3 ln 𝑥
= 𝑥3

Since 𝑥 > 0, hence 𝑊(𝑥) never zero. Therefore 𝑦1, 𝑦2 are L.I.

2.3.1.2 Problem 2

Given one solution 𝑦1 (𝑥) = 𝑥, find general solution of 𝑥2𝑦′′ − 𝑥 (𝑥 + 2) 𝑦′ + (𝑥 + 2) 𝑦 = 0 for
𝑥 > 0

Solution

Assume solution is 𝑦 (𝑥) = 𝑣𝑦1 (𝑥). Hence

𝑦′ = 𝑣′𝑦1 + 𝑣𝑦′1
𝑦′′ = 𝑣′′𝑦1 + 𝑣′𝑦′1 + 𝑣′𝑦′1 + 𝑣𝑦′′1

= 𝑣′′𝑦1 + 2𝑣′𝑦′1 + 𝑣𝑦′′1
Plugging the second solution into the original ODE gives

𝑥2𝑦′′ − 𝑥 (𝑥 + 2) 𝑦′ + (𝑥 + 2) 𝑦 = 0

𝑥2 �𝑣′′𝑦1 + 2𝑣′𝑦′1 + 𝑣𝑦′′1 � − 𝑥 (𝑥 + 2) �𝑣′𝑦1 + 𝑣𝑦′1� + (𝑥 + 2) �𝑣𝑦1� = 0

Collecting terms on 𝑣, 𝑣′, 𝑣′′ gives

𝑣′′ �𝑥2𝑦1� + 𝑣′ �2𝑥2𝑦′1 − 𝑥 (𝑥 + 2) 𝑦1� + 𝑣

0

����������������������������������������������𝑥2𝑦′′1 − 𝑥 (𝑥 + 2) 𝑦′1 + (𝑥 + 2) 𝑦1� = 0

Hence

𝑣′′ �𝑥2𝑦1� + 𝑣′ �2𝑥2𝑦′1 − 𝑥 (𝑥 + 2) 𝑦1� = 0

But 𝑦1 = 𝑥, hence 𝑦′1 = 1 and the above becomes

𝑥3𝑣′′ + 𝑣′ �2𝑥2 − 𝑥2 (𝑥 + 2)� = 0
𝑥3𝑣′′ − 𝑥3𝑣′ = 0

Since 𝑥 > 0 then above reduces to

𝑣′′ − 𝑣′ = 0

Let 𝑣′ = 𝑧 then the above becomes 𝑧′ − 𝑧 = 0 or 𝑑𝑧
𝑑𝑥 = 𝑧 which is separable. Hence the

solution is ln |𝑧| = 𝑥 + 𝑐1 or 𝑧 = 𝑐1𝑒𝑥. Therefore
𝑣′ = 𝑐1𝑒𝑥

Integrating

𝑣 = 𝑐1𝑒𝑥 + 𝑐2
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Hence, since

𝑦 = 𝑣𝑦1
= (𝑐1𝑒𝑥 + 𝑐2) 𝑥

Therefore the solution is

𝑦 (𝑥) = 𝑐1𝑥𝑒𝑥 + 𝑐2𝑥

2.3.1.3 Problem 3

Find general solution to 𝑥2𝑦′′ − 3𝑥𝑦′ + 4𝑦 = 𝑥2 ln (𝑥) with 𝑥 > 0

Solution We first solve the homogenous part

𝑥2𝑦′′ − 3𝑥𝑦′ + 4𝑦 = 0

We solved this in problem 1, the solution is

𝑦ℎ (𝑥) = 𝑐1𝑥2 + 𝑐2𝑥2 ln 𝑥
To find particular solution, we will use variation of parameters since ln (𝑥) is not one of
the good functions to guess for. Writing the ODE in standard form

𝑦′′ − 3
1
𝑥
𝑦′ +

4
𝑥2
𝑦 = ln (𝑥)

We see from the homogeneous solution that 𝑦1 (𝑥) = 𝑥2, 𝑦2 = 𝑥2 ln (𝑥). Hence we assume the
complete solution (including particular solution) is

𝑦 = 𝑦1𝑢1 + 𝑦2𝑢2 (1A)

Where

𝑢1 = −�
𝑦2𝑓 (𝑥)
𝑊

𝑑𝑥 (1)

𝑢2 = �
𝑦1𝑓 (𝑥)
𝑊

𝑑𝑥 (2)

Where in the above, 𝑓 (𝑥) = ln (𝑥) and not 𝑥2 ln (𝑥) since we divide by 𝑥2 in order to make
the ODE standard form. 𝑊 is the Wronskian. We found the Wronskian for this ODE in
part(c) problem 1, which is 𝑊 = 𝑥3, Hence (1) becomes

𝑢1 = −�
𝑥2 ln2 (𝑥)

𝑥3
𝑑𝑥 = −�

ln2 (𝑥)
𝑥

𝑑𝑥

Let 𝑧 = ln (𝑥) hence 𝑑𝑧
𝑑𝑥 =

1
𝑥 or 𝑑𝑥 = 𝑥𝑑𝑧., Hence the integral becomes

𝑢1 = −�
𝑧2

𝑥
𝑥𝑑𝑧 = −�𝑧2𝑑𝑧 = −

𝑧3

3
+ 𝑐1

Replacing back gives

𝑢1 = −
1
3

ln3 (𝑥) + 𝑐1

And from (2)

𝑢2 = �
𝑥2 ln (𝑥)
𝑥3

𝑑𝑥 = �
ln (𝑥)
𝑥

𝑑𝑥

Let 𝑧 = ln (𝑥) hence 𝑑𝑧
𝑑𝑥 =

1
𝑥 or 𝑑𝑥 = 𝑥𝑑𝑧., Hence the integral becomes

𝑢2 = �
𝑧
𝑥
𝑥𝑑𝑧 = �𝑧𝑑𝑧 =

𝑧2

2
+ 𝑐2

Replacing back gives

𝑢2 =
1
2

ln2 (𝑥) + 𝑐2

Hence from (1A)

𝑦 = 𝑦1𝑢1 + 𝑦2𝑢2

= 𝑥2 �−
1
3

ln3 (𝑥) + 𝑐1� + 𝑥2 ln (𝑥) �
1
2

ln2 (𝑥) + 𝑐2�

= −
1
3
𝑥2 ln3 (𝑥) + 𝑐1𝑥2 +

1
2
𝑥2 ln3 (𝑥) + 𝑐2𝑥2 ln (𝑥)
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Hence

𝑦 (𝑥) = 𝑐1𝑥2 + 𝑐2𝑥2 ln (𝑥) + 1
6𝑥

2 ln3 (𝑥)

2.3.1.4 Problem 4

Consider the equation 2𝑦′′ − 5𝑦′ + 𝑐𝑦 = 0 with −∞ < 𝑥 < ∞ for 𝑐 real and constant. (a) For
what values of 𝑐 does characteristic equation have 2 di�erent real roots? (b) for what values
of 𝑐 does the characteristic equation have 1 real repeated root? (c) Find general solution for
𝑐 = 2. (d) for 𝑐 = 2 and initial conditions 𝑦 (𝑥0) = 𝑝, 𝑦′ (𝑥0) = 𝑞 write a 2 × 2 matrix equation
to determined the coe�cients of general solutions.

Solution

2.3.1.4.1 Part (a) Assuming 𝑦 = 𝐴𝑒𝑟 and substituting into the ODE gives the charac-
teristic equation is

2𝑟2 − 5𝑟 + 𝑐𝑟 = 0

The roots are

𝑟 =
−𝑏
2𝑎

± √
𝑏2 − 4𝑎𝑐
2𝑎

=
5
4
±
1
4√

25 − 8𝑐

For two di�erent real roots we want 25 − 8𝑐 > 0. Therefore 25 > 8𝑐 or

𝑐 < 25
8

2.3.1.4.2 Part (b) For repeated real root, we want 𝑟 = 5
4 . Which means we want 25−8𝑐 =

0 or

𝑐 = 25
8

2.3.1.4.3 Part (c) When 𝑐 = 2 the ODE becomes

2𝑦′′ − 5𝑦′ + 2𝑦 = 0

The characteristic equation is

2𝑟2 − 5𝑟 + 2 = 0

(𝑟 − 2) �𝑟 −
1
2�
= 0

Hence the solution is

𝑦ℎ (𝑥) = 𝑐1𝑒2𝑥 + 𝑐2𝑒
𝑥
2

2.3.1.4.4 Part(d) From above,

𝑦′ℎ = 𝑐12𝑒2𝑥 +
1
2
𝑐2𝑒

𝑥
2

Applying first initial conditions gives the equation

𝑝 = 𝑐1𝑒2𝑥0 + 𝑐2𝑒
𝑥0
2 (1)

Applying second initial conditions gives the equation

𝑞 = 𝑐12𝑒2𝑥0 +
1
2
𝑐2𝑒

𝑥0
2 (2)

Writing (1,2) in matrix form gives
⎛
⎜⎜⎜⎜⎜⎝
𝑒2𝑥0 𝑒

𝑥0
2

2𝑒2𝑥0 1
2𝑒

𝑥0
2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑝
𝑞

⎞
⎟⎟⎟⎟⎠

We are asked not to solve if. Solution of the above gives 𝑐1, 𝑐2 which completes the solution.

35



2.3. final exam CHAPTER 2. EXAMS

2.3.1.5 Problem 5

Consider

𝒙′ =
⎛
⎜⎜⎜⎜⎝
−3 5
−5 3

⎞
⎟⎟⎟⎟⎠ 𝒙

(a) find general solution. (b) Write the solution in terms of real functions only. (c) using
method of undetermined coe�cients, write the particular solution for

𝒙′ =
⎛
⎜⎜⎜⎜⎝
−3 5
−5 3

⎞
⎟⎟⎟⎟⎠ 𝒙 +

⎛
⎜⎜⎜⎜⎝
𝑡𝑒4𝑡

𝑒4𝑡

⎞
⎟⎟⎟⎟⎠

(d) Find the algebraic equation that given the undetermined coe�cients. Do not solve.

Solution

2.3.1.5.1 Part (a) The first step is to determine the eigenvalues from

|𝐴 − 𝜆𝐼| = 0

�
−3 − 𝜆 5
−5 3 − 𝜆

� = 0

𝜆2 + 16 = 0
𝜆 = ±4𝑖

For 𝜆1 = 4𝑖 we solve (𝐴 − 𝜆𝐼) 𝒗1 = 0
⎛
⎜⎜⎜⎜⎝
−3 − 𝜆1 5
−5 3 − 𝜆1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−3 − 4𝑖 5
−5 3 − 4𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation we find (−3 − 4𝑖) 𝑣1 + 5𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 =
3+4𝑖
5 , hence

𝒗1 =
⎛
⎜⎜⎜⎜⎝
1

3+4𝑖
5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

5
3 + 4𝑖

⎞
⎟⎟⎟⎟⎠

For 𝜆2 = −4𝑖 we solve (𝐴 − 𝜆𝐼) 𝒗2 = 0
⎛
⎜⎜⎜⎜⎝
−3 − 𝜆2 5
−5 3 − 𝜆2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−3 + 4𝑖 5
−5 3 + 4𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation we find (−3 + 4𝑖) 𝑣1 + 5𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 =
3−4𝑖
5 , hence

𝒗2 =
⎛
⎜⎜⎜⎜⎝
1

3−4𝑖
5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
5

3 − 4𝑖

⎞
⎟⎟⎟⎟⎠

Therefore, the homogenous solution is

𝒙ℎ (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡)
= 𝑐1𝒗1𝑒𝜆1𝑡 + 𝑐2𝒗2𝑒𝜆2𝑡

= 𝑐1

⎛
⎜⎜⎜⎜⎝

5
3 + 4𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑖𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
5

3 − 4𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

−4𝑖𝑡
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Convert to new basis.

𝒙1 (𝑡) = Re (𝒙1 (𝑡))

= Re
⎛
⎜⎜⎜⎜⎝

5
3 + 4𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑖𝑡

= Re
⎛
⎜⎜⎜⎜⎝

5 (cos 4𝑡 + 𝑖 sin 4𝑡)
(3 + 4𝑖) (cos 4𝑡 + 𝑖 sin 4𝑡)

⎞
⎟⎟⎟⎟⎠

= Re
⎛
⎜⎜⎜⎜⎝

5 (cos 4𝑡 + 𝑖 sin 4𝑡)
3 cos 4𝑡 + 3𝑖 sin 4𝑡 + 4𝑖 cos 4𝑡 − 4 sin 4𝑡

⎞
⎟⎟⎟⎟⎠

= Re
⎛
⎜⎜⎜⎜⎝

5 (cos 4𝑡 + 𝑖 sin 4𝑡)
(3 cos 4𝑡 − 4 sin 4𝑡) + 𝑖 (3 sin 4𝑡 + 4 cos 4𝑡)

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

5 cos 4𝑡
(3 cos 4𝑡 − 4 sin 4𝑡)

⎞
⎟⎟⎟⎟⎠

And

𝒙2 (𝑡) = Im
⎛
⎜⎜⎜⎜⎝

5 (cos 4𝑡 + 𝑖 sin 4𝑡)
(3 cos 4𝑡 − 4 sin 4𝑡) + 𝑖 (3 sin 4𝑡 + 4 cos 4𝑡)

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

5 sin 4𝑡
3 sin 4𝑡 + 4 cos 4𝑡

⎞
⎟⎟⎟⎟⎠

Hence the solution using the new basis is

𝒙ℎ (𝑡) = 𝐶1

⎛
⎜⎜⎜⎜⎝

5 cos 4𝑡
(3 cos 4𝑡 − 4 sin 4𝑡)

⎞
⎟⎟⎟⎟⎠ + 𝐶2

⎛
⎜⎜⎜⎜⎝

5 sin 4𝑡
3 sin 4𝑡 + 4 cos 4𝑡

⎞
⎟⎟⎟⎟⎠

2.3.1.5.2 part (c) Since the RHS is

⎛
⎜⎜⎜⎜⎝
𝑡𝑒4𝑡

𝑒4𝑡

⎞
⎟⎟⎟⎟⎠ then we try to see what we would do in the

scalar case and then convert it to vector form. In scalar case, when RHS is 𝑡𝑒4𝑡, then the
guess for 𝑡 is (𝑎 + 𝑏𝑡) and the guess for 𝑒4𝑡 is 𝑐𝑒4𝑡. Therefore for the product, it will be
(𝑎 + 𝑏𝑡) �𝑐𝑒4𝑡� = 𝑎𝑐𝑒4𝑡 + 𝑐𝑏𝑡𝑒4𝑡. Let 𝑎𝑐 = 𝐴, 𝑐𝑏 = 𝐵, then the guess will becomes 𝐴𝑒4𝑡 + 𝐵𝑡𝑒4𝑡 or
(𝐴 + 𝐵𝑡) 𝑒4𝑡. We convert this to vector form now

𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑡 +
⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑡𝑒

4𝑡

=
⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑏1𝑡
𝑎2 + 𝑏2𝑡

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑡

Therefore

𝒙′𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑡 + 4
⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑏1𝑡
𝑎2 + 𝑏2𝑡

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑡
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Plugging this into the ODE

𝒙′𝑝 =
⎛
⎜⎜⎜⎜⎝
−3 5
−5 3

⎞
⎟⎟⎟⎟⎠ 𝒙𝑝 +

⎛
⎜⎜⎜⎜⎝
𝑡𝑒4𝑡

𝑒4𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑡 + 4
⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑏1𝑡
𝑎2 + 𝑏2𝑡

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑡 =
⎛
⎜⎜⎜⎜⎝
−3 5
−5 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑏1𝑡
𝑎2 + 𝑏2𝑡

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑡 +
⎛
⎜⎜⎜⎜⎝
𝑡𝑒4𝑡

𝑒4𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ + 4

⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑏1𝑡
𝑎2 + 𝑏2𝑡

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−3 5
−5 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑏1𝑡
𝑎2 + 𝑏2𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑡
1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
4𝑎1 + 𝑏1 + 4𝑏1𝑡
4𝑎2 + 𝑏2 + 4𝑏2𝑡

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
5𝑎2 − 3𝑎1 − 3𝑡𝑏1 + 5𝑡𝑏2
3𝑎2 − 5𝑎1 − 5𝑡𝑏1 + 3𝑡𝑏2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑡
1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
4𝑎1 + 𝑏1 + 4𝑏1𝑡
4𝑎2 + 𝑏2 + 4𝑏2𝑡

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
5𝑎2 − 3𝑎1 − 3𝑡𝑏1 + 5𝑡𝑏2 + 𝑡
3𝑎2 − 5𝑎1 − 5𝑡𝑏1 + 3𝑡𝑏2 + 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
4𝑎1 + 𝑏1 + 4𝑏1𝑡
4𝑎2 + 𝑏2 + 4𝑏2𝑡

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
5𝑎2 − 3𝑎1 + 𝑡 (5𝑏2 + 1 − 3𝑏1)
3𝑎2 − 5𝑎1 + 1 + 𝑡 (3𝑏2 − 5𝑏1)

⎞
⎟⎟⎟⎟⎠

From first row in the above, we get two equations. And from the second row in the above,
we get two equations. These are

4𝑎1 + 𝑏1 = 5𝑎2 − 3𝑎1
4𝑏1 = 5𝑏2 + 1 − 3𝑏1

4𝑎2 + 𝑏2 = 3𝑎2 − 5𝑎1 + 1
4𝑏2 = 3𝑏2 − 5𝑏1

Or

7𝑎1 − 5𝑎2 + 𝑏1 = 0
7𝑏1 − 5𝑏2 = 1

5𝑎1 + 𝑎2 + 𝑏2 = 1
𝑏2 + 5𝑏1 = 0

In system form, these equations are
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 −5 1 0
0 0 7 −5
5 1 0 1
0 0 5 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We are asked not to solve this. But to verify the solution with computer solution, here is
the complete solution. Solving the above gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

23
128
33
128
1
32
−5
32

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Using these values, the particular solution becomes

𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑏1𝑡
𝑎2 + 𝑏2𝑡

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑡

=
⎛
⎜⎜⎜⎜⎝

23
128 +

1
32 𝑡

33
128 −

5
32 𝑡

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑡

And the full solution is

𝒙 (𝑡) = 𝒙ℎ (𝑡) + 𝒙𝑝 (𝑡)

𝒙 (𝑡) = 𝐶1

⎛
⎜⎜⎜⎜⎝

5 cos 4𝑡
3 cos 4𝑡 − 4 sin 4𝑡

⎞
⎟⎟⎟⎟⎠ + 𝐶2

⎛
⎜⎜⎜⎜⎝

5 sin 4𝑡
3 sin 4𝑡 + 4 cos 4𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

23
128 +

1
32 𝑡

33
128 −

5
32 𝑡

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑡
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Or

𝑥1 (𝑡) = 5𝐶1 cos 4𝑡 + 5𝐶2 sin 4𝑡 + �
23
128

+
1
32
𝑡� 𝑒4𝑡

𝑥2 (𝑡) = 𝐶1 (3 cos 4𝑡 − 4 sin 4𝑡) + 𝐶2 (3 sin 4𝑡 + 4 cos 4𝑡) + �
33
128

−
5
32
𝑡� 𝑒4𝑡
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2.3.1.6 Problem 6

Consider

𝒙′ =
⎛
⎜⎜⎜⎜⎝
2 −4
1
4 4

⎞
⎟⎟⎟⎟⎠ 𝒙 +

⎛
⎜⎜⎜⎜⎝
48
9𝑡

⎞
⎟⎟⎟⎟⎠

(a) find homogeneous solution. (b) using undetermined coe�cients, find particular solution.
(c) find Wronskian (fundamental matrix). (d) Derive the variation of parameters formula
for the solution 𝒙 (𝑡).

Solution

2.3.1.6.1 Part (a) The first step is to determine the eigenvalues from

|𝐴 − 𝜆𝐼| = 0

�
2 − 𝜆 −4

1
4 4 − 𝜆

� = 0

𝜆2 − 6𝜆 + 9 = 0

(𝜆 − 3)2 = 0

Hence 𝜆 = 3 repeated. Let us see if complete eigenvalue or defective. We solve (𝐴 − 𝜆𝐼) 𝒗1 = 0

⎛
⎜⎜⎜⎜⎝
2 − 𝜆 −4

1
4 4 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−1 −4
1
4 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

First row gives −𝑣1 − 4𝑣2 = 0. Assuming 𝑣1 = −1 gives 𝑣2 =
1
4 , hence

v1 =
⎛
⎜⎜⎜⎜⎝
−4
1

⎞
⎟⎟⎟⎟⎠ (1A)

We see that we can only get one eigenvector since the second row gives same result.
Therefore we need a way to find the second eigenvector 𝒗2. We start by assuming

𝒙2 (𝑡) = 𝒗1𝑡𝑒𝜆𝑡 + 𝒗2𝑒𝜆𝑡

We plug this back into the ODE and by comparing terms we find that

(𝐴 − 𝜆𝐼) 𝒗2 = 𝒗1
And now we solve for 𝒗2 from the above equation (since we know 𝒗1 already)

⎛
⎜⎜⎜⎜⎝
−1 −4
1
4 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−4
1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−1 −4
0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−4
0

⎞
⎟⎟⎟⎟⎠

First row gives −𝑣1 − 4𝑣2 = −4. let 𝑣1 = 0, then 𝑣2 = 1 Hence

v2 =
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

Which is the same as book method. Now that we found 𝒙1 (𝑡) and 𝒙2 (𝑡) (using either
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method), then 𝒙ℎ (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡). Or

𝒙ℎ (𝑡) = 𝑐1𝒗1𝑒𝜆𝑡 + 𝑐2 (𝒗1𝑡 + 𝒗2) 𝑒𝜆𝑡

= 𝑐1

⎛
⎜⎜⎜⎜⎝
−4
1

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
−4
1

⎞
⎟⎟⎟⎟⎠ 𝑡 +

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡

= 𝑐1

⎛
⎜⎜⎜⎜⎝
−4
1

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
−4𝑡
𝑡 + 1

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 (2)

2.3.1.6.2 part (b) The RHS is

⎛
⎜⎜⎜⎜⎝
48
9𝑡

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
48
0

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
9

⎞
⎟⎟⎟⎟⎠ 𝑡. Hence the guess is

𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑡

= 𝒂 + 𝒃𝑡

Therefore

𝒙′𝑝 = 𝒃

Substituting into ODE and balancing terms, we solve for 𝒂, 𝒃 as follows

𝒙′𝑝 =
⎛
⎜⎜⎜⎜⎝
2 −4
1
4 4

⎞
⎟⎟⎟⎟⎠ 𝒙𝑝 +

⎛
⎜⎜⎜⎜⎝
48
0

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
9

⎞
⎟⎟⎟⎟⎠ 𝑡

𝒃 =
⎛
⎜⎜⎜⎜⎝
2 −4
1
4 4

⎞
⎟⎟⎟⎟⎠ (𝒂 + 𝒃𝑡) +

⎛
⎜⎜⎜⎜⎝
48
0

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
9

⎞
⎟⎟⎟⎟⎠ 𝑡

Balance constants

𝒃 =
⎛
⎜⎜⎜⎜⎝
2 −4
1
4 4

⎞
⎟⎟⎟⎟⎠ 𝒂 +

⎛
⎜⎜⎜⎜⎝
48
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2 −4
1
4 4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 −4
1
4 4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑏1 − 48
𝑏2

⎞
⎟⎟⎟⎟⎠ (1)

Balance t

0 =
⎛
⎜⎜⎜⎜⎝
2 −4
1
4 4

⎞
⎟⎟⎟⎟⎠ 𝒃 +

⎛
⎜⎜⎜⎜⎝
0
9

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2 −4
1
4 4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
0
9

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 −4
1
4 4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
−9

⎞
⎟⎟⎟⎟⎠

Solve for

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ by elimination. 𝑅2 = 𝑅2 −

1
8𝑅1

⎛
⎜⎜⎜⎜⎝
2 −4
0 9

2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
−9

⎞
⎟⎟⎟⎟⎠
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Hence 9
2𝑏2 = −9, or 𝑏2 = −2, from first row 2𝑏1 − 4𝑏2 = 0 or 𝑏1 = −4. hence

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−4
−2

⎞
⎟⎟⎟⎟⎠

Substituting this in (1) above gives equation to solve for 𝒂

⎛
⎜⎜⎜⎜⎝
2 −4
1
4 4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−4 − 48
−2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 −4
1
4 4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−52
−2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 −4
0 9

2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−52
9
2

⎞
⎟⎟⎟⎟⎠

From second row 𝑎2 = 1 and from first row 2𝑎1 − 4𝑎2 = −52 or 𝑎1 =
−52+4

2 = −24, hence

⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−24
1

⎞
⎟⎟⎟⎟⎠

Hence the particular solution is

𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑡

=
⎛
⎜⎜⎜⎜⎝
−24
1

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
−4
−2

⎞
⎟⎟⎟⎟⎠ 𝑡

=
⎛
⎜⎜⎜⎜⎝
−24 − 4𝑡
1 − 2𝑡

⎞
⎟⎟⎟⎟⎠

And the complete solution is

𝒙 = 𝒙ℎ + 𝒙𝑝

= 𝑐1

⎛
⎜⎜⎜⎜⎝
−4
1

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
−4𝑡
𝑡 + 1

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 +
⎛
⎜⎜⎜⎜⎝
−24 − 4𝑡
1 − 2𝑡

⎞
⎟⎟⎟⎟⎠

Or

𝑥1 (𝑡) = −4𝑐1𝑒3𝑡 − 4𝑐2𝑡𝑒3𝑡 − 24 − 4𝑡
𝑥2 (𝑡) = 𝑐1𝑒3𝑡 + 𝑐2 (1 + 𝑡) 𝑒3𝑡 + 1 − 2𝑡

2.3.1.6.3 part (c) The fundamental matrix Φ (𝑡) is

Φ (𝑡) = �𝒙1 𝒙2�

=
⎛
⎜⎜⎜⎜⎝
−4𝑒3𝑡 −4𝑡𝑒3𝑡

𝑒3𝑡 (𝑡 + 1) 𝑒3𝑡

⎞
⎟⎟⎟⎟⎠

2.3.1.6.4 part (d) The derivation is given in textbook at 498.
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2.3.1.7 Problem 7

Write down the form of the solution including homogenous and particular parts to the
following ODE’s

𝑦′′ − 2𝑦′ + 4𝑦 = 𝑒𝑥 �𝑥 sin �√3𝑥� + 𝑒√3𝑥�

𝑦′′ − 6𝑦′ = 𝑥2 + 𝑥 cosh (6𝑥)

solution

For the first ODE

𝑦′′ − 2𝑦′ + 4𝑦 = 𝑒𝑥𝑥 sin �√3𝑥� + 𝑒𝑥�1+√3�

We start by finding the homogenous solution for 𝑦′′ − 2𝑦′ + 4𝑦 = 0. The characteristic
equation is 𝑟2 − 2𝑟 + 4 = 0, which has roots

𝑟1 = 1 + 𝑖√3

𝑟2 = 1 − 𝑖√3

Hence

𝑦ℎ (𝑥) = 𝑐1

𝑦1
���������������𝑒𝑥 cos �√3𝑥� + 𝑐2

𝑦2
���������������𝑒𝑥 sin �√3𝑥�

To find particular solution, we need to find a guess. since the RHS is 𝑒𝑥𝑥 sin �√3𝑥�+𝑒𝑥�1+√3� ,
the guess for 𝑒𝑥�1+√3� is 𝐶0𝑒

𝑥�1+√3� and the guess for 𝑥 is 𝑐3 + 𝑐4𝑥 and the guess for sin �√3𝑥�
is 𝑐5 sin �√3𝑥� + 𝑐6 cos �√3𝑥�. Hence the guess for 𝑒𝑥𝑥 sin �√3𝑥� term only is

𝑒𝑥𝑥 sin �√3𝑥� → 𝑒𝑥 (𝑐3 + 𝑐4𝑥) �𝑐5 sin �√3𝑥� + 𝑐6 cos �√3𝑥��

→ (𝑐3𝑒𝑥 + 𝑐4𝑥𝑒𝑥) �𝑐5 sin �√3𝑥� + 𝑐6 cos �√3𝑥��

= 𝑐3𝑐5𝑒𝑥 sin �√3𝑥� + 𝑐3𝑐6𝑒𝑥 cos �√3𝑥� + 𝑐4𝑐5𝑥𝑒𝑥 sin �√3𝑥� + 𝑐4𝑐6𝑥𝑒𝑥 cos �√3𝑥�

Rename the constants, and the hence the guess for 𝑒𝑥𝑥 sin �√3𝑥� term only

𝑒𝑥𝑥 sin �√3𝑥� → 𝐶1𝑒𝑥 sin �√3𝑥� + 𝐶2𝑒𝑥 cos �√3𝑥� + 𝐶3𝑥𝑒𝑥 sin �√3𝑥� + 𝐶4𝑥𝑒𝑥 cos �√3𝑥�
Now that we found the initial guess, we have to look at it again and see if 𝑦1 or 𝑦2 are in
the guess just made. If so, we add 𝑥. We see that since 𝑒𝑥𝑥 sin �√3𝑥� is 𝑦1, and 𝑥𝑒𝑥 cos �√3𝑥�
is 𝑦2 so we need to multiply these terms in the guess by 𝑥, therefore the above becomes

𝑒𝑥𝑥 sin �√3𝑥� → 𝐶1𝑥𝑒𝑥 sin �√3𝑥� + 𝐶2𝑥𝑒𝑥 cos �√3𝑥� + 𝐶3𝑥2𝑒𝑥 sin �√3𝑥� + 𝐶4𝑥2𝑒𝑥 cos �√3𝑥�
Therefore the final guess is

𝑦𝑝 = 𝐶0𝑒
𝑥�1+√3� + 𝐶1𝑥𝑒𝑥 sin �√3𝑥� + 𝐶2𝑥𝑒𝑥 cos �√3𝑥� + 𝐶3𝑥2𝑒𝑥 sin �√3𝑥� + 𝐶4𝑥2𝑒𝑥 cos �√3𝑥�

= 𝐶0𝑒
𝑥�1+√3� + (𝐶1 + 𝐶3𝑥) 𝑥𝑒𝑥 sin �√3𝑥� + (𝐶2 + 𝐶4𝑥) 𝑥𝑒𝑥 cos �√3𝑥�

We are asked to stop here and not solve for the coe�cients. (good, since this is hard).
Another option to find 𝑦𝑝 is to use the Wronskian. But this generates hard to evaluate
integral. The Wronskian is

𝑊 = �
𝑦1 𝑦2
𝑦′1 𝑦′2

� = �
𝑒𝑥 cos �√3𝑥� 𝑒𝑥 sin �√3𝑥�

𝑒𝑥 cos �√3𝑥� − √3 sin �√3𝑥� 𝑒𝑥 𝑒𝑥 sin �√3𝑥� + √3 cos �√3𝑥� 𝑒𝑥
�

= 𝑒𝑥 cos �√3𝑥� �𝑒𝑥 sin �√3𝑥� + √3 cos �√3𝑥� 𝑒𝑥� − 𝑒𝑥 sin �√3𝑥� �𝑒𝑥 cos �√3𝑥� − √3 sin �√3𝑥� 𝑒𝑥�

= 𝑒2𝑥 sin �√3𝑥� cos �√3𝑥� + √3𝑒2𝑥 cos2 �√3𝑥� − �𝑒2𝑥 cos �√3𝑥� sin �√3𝑥� − √3𝑒2𝑥 sin2 �√3𝑥��

= √3𝑒2𝑥 cos2 �√3𝑥� + √3𝑒2𝑥 sin2 �√3𝑥�

= √3𝑒𝑥

Assume now 𝑦𝑝 is

𝑦𝑝 = 𝑦1𝑢1 + 𝑦2𝑢2
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Where

𝑢1 = −�
𝑦2𝑓 (𝑥)
𝑊

𝑑𝑥

𝑢2 = �
𝑦1𝑓 (𝑥)
𝑊

𝑑𝑥

Where 𝑓 (𝑥) = 𝑒𝑥 �𝑥 sin �√3𝑥� + exp �√3𝑥��. Hence

𝑢1 = −�
𝑒𝑥 sin �√3𝑥� 𝑒𝑥 �𝑥 sin �√3𝑥� + 𝑒√3𝑥�

√3𝑒𝑥
𝑑𝑥

= −
1

√3
�𝑥𝑒𝑥 sin2 �√3𝑥� + sin �√3𝑥� 𝑒1+√3𝑥𝑑𝑥

And

𝑢2 = �
𝑒𝑥 cos �√3𝑥� 𝑒𝑥 �𝑥 sin �√3𝑥� + 𝑒√3𝑥�

√3𝑒𝑥
𝑑𝑥

=
1

√3
�𝑥𝑒𝑥 sin �√3𝑥� cos �√3𝑥� + 𝑒1+√3𝑥 cos �√3𝑥� 𝑑𝑥

For the second ODE

𝑦′′ − 6𝑦′ = 𝑥2 + 𝑥 cosh (6𝑥)
We start by finding the homogenous solution for 𝑦′′ − 6𝑦′ = 0. The characteristic equation
is 𝑟2 − 6𝑟 = 0, or 𝑟 (𝑟 − 6) = 0 which has roots 𝑟1 = 0, 𝑟2 = 6 hence

𝑦ℎ = 𝑐1 + 𝑐2𝑒6𝑥

Therefore 𝑦1 = 1, 𝑦2 = 𝑒6𝑥. Since RHS is

𝑓 (𝑥) = 𝑥2 + 𝑥 cosh (6𝑥)

= 𝑥2 + 𝑥
𝑒6𝑥 + 𝑒−6𝑥

2

= 𝑥2 +
1
2
𝑥𝑒6𝑥 +

1
2
𝑥𝑒−6𝑥

Then we see that 𝑦2 which is solution of the homogenous solution is part of the forcing
function. Let us find 𝑦𝑝 now.

For 𝑥2 we guess 𝑐1+𝑐2𝑥+𝑐3𝑥2. But now we see that 𝑐1 which is constant, is just 𝑦1 = 1 (scalar
multiple of). So we have to multiply the whole guess by 𝑥, resulting in �𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3� .

For 𝑥𝑒6𝑥 we guess (𝑐4 + 𝑐5𝑥) 𝑒6𝑥 but since 𝑦2 = 𝑒6𝑥 we have to multiply the guess by 𝑥 giving
�𝑐4𝑥 + 𝑐5𝑥2� 𝑒6𝑥.

For 𝑥𝑒−6𝑥 the guess is (𝑐6 + 𝑐7𝑥) 𝑒−6𝑥. Hence we collect all these and obtain the guess 𝑦𝑝 as

𝑦𝑝 = �𝑐1𝑥 + 𝑐2𝑥2 + 𝑐3𝑥3� + (𝑐4 + 𝑐5𝑥) 𝑥𝑒6𝑥 + (𝑐6 + 𝑐7𝑥) 𝑒−6𝑥

Another option to find 𝑦𝑝 is to use the Wronskian. The Wronskian is

𝑊 = �
𝑦1 𝑦2
𝑦′1 𝑦′2

� = �
1 𝑒6𝑥

0 6𝑒𝑥
� = 6𝑒𝑥

Assume now 𝑦𝑝 is

𝑦𝑝 = 𝑦1𝑢1 + 𝑦2𝑢2
Where

𝑢1 = −�
𝑦2𝑓 (𝑥)
𝑊

𝑑𝑥

𝑢2 = �
𝑦1𝑓 (𝑥)
𝑊

𝑑𝑥

Where 𝑓 (𝑥) = 𝑥2 + 𝑥 cosh (6𝑥). Hence

𝑢1 = −
1
6 �

𝑥2 + 𝑥 cosh (6𝑥)
𝑒𝑥

𝑑𝑥
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And

𝑢2 = �
𝑒6𝑥 �𝑥2 + 𝑥 cosh (6𝑥)�

6𝑒𝑥
𝑑𝑥

=
1
6 �

𝑒6𝑥 �𝑥2 + 𝑥 cosh (6𝑥)� 𝑑𝑥

2.3.1.8 Problem 8

Find general solution to

𝑦(6) + 4𝑦(5) + 8𝑦(4) + 16𝑦′′′ + 20𝑦′′ + 16𝑦′ + 16𝑦 = 0

The characteristic equation is

𝑟6 + 4𝑦5 + 8𝑟4 + 16𝑟3 + 20𝑟2 + 16𝑟 + 16 = 0

Using the hint

(𝑟 + 2)2 �𝑟2 + 2�
2
= 0

(𝑟 + 2) (𝑟 + 2) �𝑟2 + 2� �𝑟2 + 2� = 0

Hence the roots are 𝑟1 = −2 multiplicity 2 and 𝑟2 = ±𝑖√2 multiplicity 2. hence the solution
is

𝑦ℎ = 𝑐1𝑒−2𝑥 + 𝑐2𝑥𝑒−2𝑥 + 𝑐3𝑒𝑖√2𝑥 + 𝑐4𝑒−𝑖√2𝑥 + 𝑥 �𝑐5𝑒𝑖√2𝑥 + 𝑐6𝑒−𝑖√2𝑥�

Or as real functions, using Euler relation

𝑦ℎ = 𝑐1𝑒−2𝑥 + 𝑐2𝑥𝑒−2𝑥 + 𝑐3 cos �√2𝑥� + 𝑐4 sin �√2𝑥� + 𝑐5𝑥 cos �√2𝑥� + 𝑐6𝑥 sin �√2𝑥�

Where constants labels kept the same for simplicity (in practice these are not the same).
The solution is analytic everywhere, hence range of solution is −∞ < 𝑥 < ∞
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2.3.2 key for �nal practice exam

46



2.3. final exam CHAPTER 2. EXAMS

47



2.3. final exam CHAPTER 2. EXAMS

48



2.3. final exam CHAPTER 2. EXAMS

49



2.3. final exam CHAPTER 2. EXAMS

50



2.3. final exam CHAPTER 2. EXAMS

51



2.3. final exam CHAPTER 2. EXAMS

52



2.3. final exam CHAPTER 2. EXAMS

53



2.3. final exam CHAPTER 2. EXAMS

54



2.3. final exam CHAPTER 2. EXAMS

55



2.3. final exam CHAPTER 2. EXAMS

56



2.3. final exam CHAPTER 2. EXAMS

57



2.3. final exam CHAPTER 2. EXAMS

58



2.3. final exam CHAPTER 2. EXAMS

59



2.3. final exam CHAPTER 2. EXAMS

60



2.3. final exam CHAPTER 2. EXAMS

61



2.3. final exam CHAPTER 2. EXAMS

2.3.3 �nal exam questions
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2.3.4 sheat sheet for �nal exam

Math 320 Exam Crib Sheet

1. Integration by Parts Formula

∫
u dv = uv −

∫
v du

Example:

∫
x exp(x)dx = x exp(x)−

∫
exp(x)dx+ C = x exp(x)− exp(x) + C

with u = x, dv = exp(x) dx, du = dx, and v = exp(x).

2. Example of Partial Fractions

∫
5

(x2 − 5x+ 6)
dx =

∫
5

(x− 2)(x− 3)
dx

Let

5

(x− 2)(x− 3)
=

A

(x− 2)
+

B

(x− 3)

=
A(x− 3) +B(x− 2)

(x− 2)(x− 3)

Therefore

(A+B)x = 0 and − 3A− 2B = 5.

Solving A+B = 0 and −3A− 2B = 5 gives A = −5 and B = 5. So finally

∫
5

(x2 − 5x+ 6)
dx =

∫ −5

(x− 2)
dx+

∫
+5

(x− 3)
dx = −5 ln |x− 2|+ 5 ln |x− 3|+ C.

3. Exponentials and the Natural Logarithm: All arguments of ln are assumed greater
than zero.

ln(1) = 0

ln(a/b) = ln(a)− ln(b)

ln(ab) = ln(a) + ln(b)

ln(ar) = r ln(a)

1
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∫
1

u
du = ln |u|+ C, u 6= 0

exp(ln(x)) = x

ln(exp(x)) = x

exp(a+ b) = exp(a) exp(b)

exp(a− b) =
exp(a)

exp(b)

exp(ab) = (exp(a))b = (exp(b))a

4. Taylor Series for f(x) about the point x = xo:

f(x) =
∞∑

n=0

dn

dxn
f(x)|x=xo

(x− xo)
n

n!

6. Sines and cosines for some angles:

cos(π/6) =
√
3/2, sin(π/6) = 1/2

cos(π/3) = 1/2, sin(π/3) =
√
3/2

cos(2π/3) = −1/2, sin(2π/3) =
√
3/2

cos(4π/3) = −1/2, sin(4π/3) = −
√
3/2

cos(5π/3) = 1/2, sin(5π/3) = −
√
3/2

cos(π/4) =
√
2/2, sin(π/4) =

√
2/2

cos(3π/4) = −
√
2/2, sin(3π/4) =

√
2/2

cos(5π/4) = −
√
2/2, sin(5π/4) = −

√
2/2

cos(7π/4) =
√
2/2, sin(7π/4) = −

√
2/2

7. Definition of sinh(x) and cosh(x): sinh(x) = (ex − e−x)/2, cosh(x) = (ex + e−x)/2

2
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study notes

3.1 cheat sheet

3.1.1 Summary of content of what will be in exam 2

section 3.1

1. Possible solutions of 𝐴𝑥 = 𝑏 are: no solution, unique solution, infinite number of
solutions.

2. Elementray row operations: multiply one row by non-zero constant, interchange two
rows, add multiple of one row to another row

section 3.2

1. Matrices, Gaussian elimination.

2. Setting up augumented matrix (𝐴|𝑏)

3. Two matrices are row equivelent if we can do operations on one matrix, and obtain
the other matrix

4. Echelon form. Backsubstitution to obtain solution.

section 3.3

1. Reduced Echeoln form: Each leadeing entry in row must be one. All entries in same
column as leading entry, above it or below it must be zero. Gauss-Jordan elimination
generates Reduced Echeoln form. We basically do Gaussian elimination, followed
by backward elimnination, then normalize all diagonal elements to 1.

section 3.4 This section is mainly on matrix operations. Multiplications. How to multiply
matrices. How to write system is linear equations as 𝐴𝑥 = 𝑏. All basic stu�.

section 3.5 Inverses of matrices.

1. To find 𝐴−1. Set up the (𝐴|𝐼) and generate reduced echelon form.

2. Definition of matrix inverse. 𝐵 is inverse of 𝐴 if 𝐴𝐵 = 𝐼 and 𝐵𝐴 = 𝐼.

3. Matrix inverse is unique. (theorem 1)

4. Theorem 3: �𝐴−1�
−1
= 𝐴, (𝐴𝐵)−1 = 𝐵−1𝐴−1

5. If 𝐴 is square and 𝐴𝑥 = 𝑏 has unique solution then 𝑥 = 𝐴−1𝑏 (thm 4)

6. square Matrix is invertible, i� it is row equivalent to 𝐼𝑛. Invertible matrix is also
called non-singular.

section 3.6 Determinants.

1. To find determinants. Do cofactor expansion along a row or column. Pick one with
most zeros in it, to save time.
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(a) Property 1: If we multiply one row (or column) of 𝐴 by 𝑘 then |𝐴| becomes 𝑘 |𝐴|

(b) property 2: interchanging two rows, introduces a minus sign in |𝐴|

(c) property 3: If two rows or columns are the same then |𝐴| = 0

(d) property 4: if 𝐴1, 𝐴2, 𝐵 are identical, except that 𝑖𝑡ℎ row of 𝐵 is the sum of the
𝑖𝑡ℎ of 𝐴1 and 𝐴2, then |𝐵| = |𝐴1| + |𝐴2|

(e) property 5: Adding constant multiple of one row (or column) to another row
(or column) do not change the determinant.

(f) property 6: for upper or lower triangle matrix, |𝐴| is the product of all diagonal
elements.

2. Matrix transpose. (but we did not use this much in class).

3. Thm 2. Matrix 𝐴 is invertible i� |𝐴| ≠ 0

4. thm 3. |𝐴𝐵| = |𝐴| |𝐵|., But in general |𝐴 + 𝐵| ≠ |𝐴| + |𝐵|

5. �𝐴−1� = 1
|𝐴|

6. Cramer rule. But we did not use it. Thm 4. We also did not do thm 5 (adjoint
matrices).

Section 3.7 Linear equations, curve fitting. Did not cover.

section 4.1 Vector spaces.

1. Define ℝ3 as set of all ordered triples (𝑎, 𝑏, 𝑐) of real numbers. (coordinates)

2. Thm 1. If 𝑢, 𝑣, 𝑤 are vectors in ℝ3 then we have properties of communtativity, as-
sociativity, additive inverse and zero element, and distrbutivity. See page 230 for
list.

3. Thm 2. Two vectors 𝒖, 𝒗 are Linearly dependent i� there exist scalars 𝑎, 𝑏 not both
zero, such that 𝑎𝒖 + 𝑏𝒗 = 0

4. 3 vectors in ℝ3 are L.D. if one vector is linear combination of the other two vectors.

5. THM 4. If we put 3 vectors as columns of 𝐴 and then find |𝐴| = 0 then the 3 vectors
are L.D.

6. For square matrix, if 𝐴𝑥 = 0 has only trivial solution, then columns of 𝐴 are L.I.

7. THM 5. If 3 vectors in ℝ3 are L.I., then they are basis vectors.

8. subspaces of ℝ3. None empty subset 𝑊 of vectors of ℝ3 is subspace i� it is closed
under addition and closed under scalar multiplication. Basic problems here, is to
show if vectors make subspace or not. By seeing if the space is closed under additon
and scalar multiplication.

section 4.2 Vector space ℝ𝑛 and subspaces. (page 238).

1. Definition of ℝ𝑛 vector space. Page 240. 7 points listed.

2. THM 1. Subspace. A subset of ℝ𝑛 which is also a vector space is called subspace.
We only need to verify closed under additions and closed under multiplication for
subspace.

3. Solution space: The space in which solution of 𝐴𝑚×𝑛𝑥𝑛×1 = 0𝑚×1 live. THis will always
be subspace of ℝ𝑛. To find it, do G.E. and find the free variables. The number of free
variables, tell us the dimension of the subspace. If there are 2 free variables, then
there will be two basis for the solution space. Each vector will be 𝑛 length. So the
solution space is subspace of ℝ𝑛

4. Solution space of 𝐴𝑚×𝑛𝑥 = 0 is always subspace of ℝ𝑛

section 4.3 Linear combinations and independence of vectors
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1. Given a vector 𝑤 and set of L.I. vectors 𝑣𝑖, find if that vector can be expressed as
linear combination of the set of vectors. Set up 𝑤 = 𝑐1𝑣1 + 𝑐2𝑣2 +⋯ and solve 𝐴𝑐 = 𝑤
and see if 𝑐 is all zeros or not.

2. Definition: L.I. of vectors. Solve 𝐴𝑐 = 0 and see if 𝑐 = 0 or not. If 𝑐 = 0 is solution,
then L.I.

3. For square matrix, the columns are L.I. if |𝐴| ≠ 0.

4. For 𝐴𝑚×𝑛, with 𝑚 > 𝑛, then if rank 𝐴 is 𝑛, then the columns of 𝐴 are L.I.

section 4.4 Basis and dimensions of vector spaces. Did not cover for exam.

3.1.2 possible questions and how to answer them

Question Given a set of linear equations in form 𝐴𝑥 = 𝑏 and asks if the system is consistent
or not.

Answer System is consistent if it has solution. The solution can be either unique or infinite
number of them. To answer this, setup the augmented matrix (𝐴|𝑏) and generate Echelon
form (using Gaussian elimination). Then look at the last row. Lets say 𝐴 had 𝑚 rows. If
last entry in last row is 0 = 0, then there are infinite solutions, so consistent because this
means 0𝑥𝑚 = 0 and 𝑥𝑚 can be anything.

If last entry in last row looks like 0 = 𝑟 where 𝑟 is a number not zero, then no solution,
hence not consistent. If last entry in last row looks line 𝑛𝑢𝑚𝑏𝑒𝑟 = 𝑎𝑛𝑦𝑡ℎ𝑖𝑛𝑔 then unique
solution. So consistent.

So we really need to check if last entry in last row is 0 = 𝑟 to decide. Be careful, do not
check to see if |𝐴| not equal to zero and then say it is consistent. Because |𝐴| = 0 can still
be consistent, since we can have infinite number of solutions. |𝐴| = 0 does not necessarily
mean no solution.

For example, this system

3𝑥1 + 𝑥2 − 3𝑥3 = −4
𝑥1 + 𝑥2 + 𝑥3 = 1

5𝑥1 + 6𝑥2 + 8𝑥3 = 0

For the above |𝐴| = 0. And it happened that this system has no solution hence not consistent.
And the following system

𝑥1 + 3𝑥2 + 3𝑥3 = 13
2𝑥1 + 5𝑥2 + 4𝑥3 = 23
2𝑥1 + 7𝑥2 + 8𝑥3 = 29

has also |𝐴| = 0. But the above has infinite number of solutions. Hence consistent. So
bottom line, do not use |𝐴| to answer questions about consistent or not. (also |𝐴| only
works for square matrices any way). So what does |𝐴| give? If |𝐴| is not zero, it says the
solution is unique. So if the question gives square matrix, and asks if solution is unique,
only then check |𝐴| = 0 or not.

Question Problem gives set of linear equations in form 𝐴𝑥 = 𝑏 and asks if system has
unique solution, no solution, or infinite solution.

Answer Same as above. Follow same steps.

Question Problem gives square matrix 𝐴 and asks to find 𝐴−1.

Answer Set up the augmented matrix (𝐴|𝐼) where 𝐼 is the identity matrix. Go through the
forward elimination to reach echelon form. Then go though the backward elimination to
each reduced Echelon form. Then make all diagonals in 𝐴 be 1. While doing these row
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operations, always do them on the whole (𝐴|𝐼) system, not just on 𝐴. At then end, 𝐴−1 will
be where 𝐼 was sitting.

Question Problem gives square matrix 𝐴 and and square matrix 𝐵 and asks if 𝐵 is the
inverse of 𝐴

Answer Start by multiplying 𝐴𝐵 and see if you can get 𝐼 as result. Also need to do 𝐵𝐴
and see if you can get 𝐼 as well. If so, then 𝐵 is the inverse of 𝐴. To get to 𝐼 need to
do some matrix manipulation in the middle. But it is all algebra. This is all based on
𝐴𝐴−1 = 𝐴−1𝐴 = 𝐼. (if 𝐴 is invertible ofcourse). Remember also that 𝐴−1 is unique. i.e. given
a matrix, it has only one matrix which is its inverse.

Question Problem asks to proof that matrix inverse is unique.

Answer Let 𝐴 be invertible. Let 𝐵 be its inverse. Assume now that 𝐶 is also its inverse but
𝐶 ≠ 𝐵. Then 𝐶 = 𝐶𝐼 = 𝐶 (𝐴𝐵) = (𝐶𝐴) 𝐵 = 𝐼𝐵 = 𝐵, hence 𝐶 = 𝐵. Proof by contradiction. So
only unique inverse.

Question
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4.1 HW1

4.1.1 Section 1.3 problem 12

Determine whether existence of at least one solution of given initial value problem is
guaranteed and is so, whether solution is unique.

𝑑𝑦
𝑑𝑥

= 𝑥 ln 𝑦; 𝑦 (1) = 1

Solution

𝑓 �𝑥, 𝑦� = 𝑥 ln 𝑦

Sine 𝑓 �𝑥, 𝑦� is continuous in 𝑥 for all 𝑥 and continuous in 𝑦 for 𝑦 > 0 and since initial
condition is at point (1, 1), then a solution exist in some interval that contains (1, 1).

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

=
𝑥
𝑦

Since
𝜕𝑓�𝑥,𝑦�

𝜕𝑦 is continuous in 𝑥 for all 𝑥 and continuous in 𝑦 for 𝑦 ≠ 0 and since initial
condition is at point (1, 1), then the solution is unique in some interval that contains (1, 1).
The following the the slope field for 𝑓 �𝑥, 𝑦� = 𝑥 ln 𝑦 showing small interval that contains
(1, 1)

(1,1)

0.4 0.6 0.8 1.0 1.2 1.4

0.6

0.8

1.0

1.2

1.4

x

y(
x)

Direction fields are continuous in some interval (red box)
around initial conditions point at (1,1). Therefore

Solution exist an is unique

Figure 4.1: Problem 1.3, 11

4.1.2 Section 1.3 problem 17

Determine whether existence of at least one solution of given initial value problem is
guaranteed and is so, whether solution is unique.

𝑑𝑦
𝑑𝑥

= 𝑥 − 1; 𝑦 (0) = 1

Solution

𝑓 �𝑥, 𝑦� = 𝑥 − 1

𝑓 �𝑥, 𝑦� is continuous for all 𝑥 (there is no 𝑦 dependency to check), then a solution exist in
some interval that contains (0, 1).

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

= 0
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No dependency on 𝑥 or 𝑦 to check. Hence solution is unique in some interval that contains

(0, 1). The following the the slope field for 𝑓 �𝑥, 𝑦� = 𝑥−1 showing small interval that contains
(0, 1)

(0,1)

-0.2 0.0 0.2 0.4

0.6

0.8

1.0

1.2

1.4

x

y(
x)

Direction fields are continuous in some interval (red box)
around initial conditions point at (0,1). Therefore

Solution exist an is unique

Figure 4.2: Problem 1.3, 17

4.1.3 Section 1.3 problem 18

Determine whether existence of at least one solution of given initial value problem is
guaranteed and is so, whether solution is unique.

𝑦
𝑑𝑦
𝑑𝑥

= 𝑥 − 1; 𝑦 (1) = 0

Solution

𝑓 �𝑥, 𝑦� =
𝑥 − 1
𝑦

𝑓 �𝑥, 𝑦� is continuous for all 𝑥, and continuous for all 𝑦 except at 𝑦 = 0. But since the

initial point itself is at �𝑥 = 1, 𝑦 = 0�, therefore, the theory can not decide on existence or
uniqueness of solution in an intervals containing (1, 0).

4.1.4 Section 1.3 problem 22

Use the method of example 2 (page 20) to construct slope field then sketch solution curve
corresponding to the given initial condition. Finally use this solution curve to estimate the
desired value of the solution 𝑦(𝑥).

𝑑𝑦
𝑑𝑥

= 𝑦 − 𝑥

𝑦 (4) = 1
𝑦 (−4) = ?

Solution

𝑓 �𝑥, 𝑦� = 𝑦 − 𝑥
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By making slope field for 𝑓 �𝑥, 𝑦� = 𝑦 − 𝑥, then locating initial point (4, 1) and tracing the
slope back to 𝑥 = −4, we can then read the 𝑦 value to be −3. Here is a plot showing trace
of the slope field to the point 𝑥 = −4, where 𝑦 = −3. Hence 𝑦 (−4) ≈ −3.

(4,1)

(-4,-3)

-4 -2 0 2 4
-4

-3

-2

-1

0

1

2

x

y(
x)

Tracing Direction slope from (4,1) to x=-4
shows that y(-4)=-3

Figure 4.3: Problem 1.3, 22

4.1.5 Section 1.3 problem 26

Suppose the deer population 𝑃 (𝑡) in small forest satisfies logistic equation 𝑑𝑝
𝑑𝑡 = 0.0225𝑝 −

0.0003𝑝2. Construct a slope field and appropriate solution curve to answer the following
questions: If there are 25 deer at time 𝑡 = 0 and 𝑡 is measured in months, how long will it
take for the number of deer to double? What will be the limiting deer population?

Solution

The slope field was first drawn. Then the point (0, 25) was located. Then the slope field
was traced until 𝑦 = 50, which is double the number of deer from the initial starting time.
Now the 𝑡 component was read from the slope field to answer the first part of the question.

𝑓 �𝑡, 𝑝� = 0.0225𝑝 − 0.0003𝑝2

Here is a plot showing trace of the slope field. This shows at about 𝑡 = 60 months, the deer
population will be 50.

(0,25)

(60,50)

0 10 20 30 40 50 60
20

30

40

50

60

t

p(
t)

Tracing Direction slope from (0,25) to p=50
then finding time at this point. t=60 months

Figure 4.4: Problem 1.3, 26
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4.1.6 Section 1.3 problem 28

Verify that if 𝑘 is constant, then the function 𝑦 (𝑥) = 𝑘𝑥 satisfies the di�erential equation
𝑥𝑦′ = 𝑦 for all 𝑥. Construct a slope field and several of the these straight line solution
curves. Then determine (in terms of 𝑎 and 𝑏) how many di�erent solutions the initial value
problem 𝑥𝑦′ = 𝑦; 𝑦 (𝑎) = 𝑏 has. One, none or infinitely many.

Solution

To verify that 𝑦 (𝑥) = 𝑘𝑥 satisfies the di�erential equation, we plug-in this solution into
the ODE and check that we get the same RHS as given. We see that 𝑦′ (𝑥) = 𝑘. Therefore
𝑥𝑦′ = 𝑦 becomes 𝑥 (𝑘) = 𝑦 = 𝑘𝑥. Hence satisfied.

𝑓 �𝑥, 𝑦� =
𝑦
𝑥

This is continuous for all 𝑥 except at 𝑥 = 0 and continuous for all 𝑦. Therefore solution

exist in interval which do not contain 𝑥 = 0. In addition
𝜕𝑓�𝑥,𝑦�

𝜕𝑦 = 1
𝑥 which is continuous for

all 𝑥 except at 𝑥 = 0. Hence there is a solution and the solution is unique in an interval
that do not contain 𝑥 = 0. Here is a plot of the slope field in region around the origin.

-0.4 -0.2 0.2 0.4
x

-0.4

-0.2

0.2

0.4

y(x)

Figure 4.5: Problem 1.3, 28

We see from the above, that if we start from 𝑥 = 0, 𝑦 = 0, then there are ∞ number of
solutions, since there are ∞ number of slope lines starting or ending at (0, 0). For any point
(𝑎, 𝑏) where 𝑎 ≠ 0, there is unique solution, since we can find interval around (𝑎, 𝑏) in this
case with unique slope line. Finally, if 𝑎 = 0 but 𝑏 ≠ 0, which means the initial condition is
at the 𝑦 axis, then there is no solution, since the slop is ∞ in this case. Hence

1. Infinite number of solution if 𝑎 = 0 and 𝑏 = 0

2. No solution if 𝑎 = 0, 𝑏 ≠ 0

3. Unique solution if 𝑎 ≠ 0 and 𝑏 ≠ 0.

4.1.7 Section 1.3 problem 30

Verify that if 𝑐 is constant, then the function defined piecewise by

𝑦 (𝑥) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 𝑥 ≤ 𝑐
cos (𝑥 − 𝑐) 𝑐 < 𝑥 < 𝑐 + 𝜋

−1 𝑥 ≥ 𝑐 + 𝜋

Satisfies 𝑦′ = −�1 − 𝑦2 for all 𝑥. (Perhaps an preliminary sketch with 𝑐 = 0 will be helpful).
Sketch a variety of such solution curves. Then determine (in terms of 𝑎 and 𝑏 how many
di�erent solutions the initial value problem 𝑦′ = −�1 − 𝑦2; 𝑦 (𝑎) = 𝑏 has.

Solution

The solution 𝑦 (𝑥) is plotted for 𝑐 = 0, −1, +1. The following show the result. The e�ect of 𝑐
is that it causes a shift to the left or right depending on value of 𝑐.
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Figure 4.6: Problem 1.3, 30

Since

𝑓 �𝑥, 𝑦� = −�1 − 𝑦
2

Then the above is real, when �𝑦� < 1 otherwise the value under the root will be become
negative. To show that 𝑦 (𝑥) satisfies the ODE, we plug-in each branch of the piecewise,
one at a time, into the ODE and see if it satisfies it. When 𝑥 ≤ 𝑐, then 𝑦 (𝑥) = 1. Plugging
this into the ODE gives 0 = 0. Verified. When 𝑐 < 𝑥 < 𝑐+𝜋, then 𝑦 (𝑥) = cos (𝑥 − 𝑐). Plugging
this into the ODE gives

− sin (𝑥 − 𝑐) = −�1 − (cos (𝑥 − 𝑐))2

= −�sin (𝑥 − 𝑐)2

= − sin (𝑥 − 𝑐)
Hence satisfied. When 𝑥 ≥ 𝑐 + 𝜋 then 𝑦 (𝑥) = −1 and plugging this into the ODE gives

0 = −�1 − (−1)
2

= −√1 − 1
= 0

Hence solution 𝑦 (𝑥) satisfies the ODE. The slope field is now plotted

-0.4 -0.2 0.2 0.4
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y(x)
Slope field plot for |y|<1

Figure 4.7: Problem 1.3, 30

We see from the slope plot, that starting at any point in a region, as long as �𝑦� < 0 , then
the solution is unique. When 𝑦 = 1 or 𝑦 = −1, then 𝑦′ = 0, and this gives infinite number of
solutions since 𝑦 = 𝑐 for any constant is a solution. For real solution, 𝑦 can not be larger
than 1. Hence in summary

1. Infinite number of solutions if 𝑏 = ±1

2. Unique solution for any (𝑎, 𝑏) where |𝑏| < 1

3. No real solution for |𝑏| > 1
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4.1.8 Section 1.4 problem 6

Final general solution of 𝑑𝑦
𝑑𝑥 = 3√𝑥𝑦

Solution

This is separable.
𝑑𝑦

√𝑦
= 3√𝑥𝑑𝑥

𝑦
−1
2 𝑑𝑦 = 3𝑥

1
2𝑑𝑥

Integrating

𝑦
1
2

1
2

= 3
𝑥
3
2

3
2

+ 𝑐

2𝑦
1
2 = 2𝑥

3
2 + 𝑐

𝑦
1
2 = 𝑥

3
2 + 𝑐1

𝑦 = �𝑥
3
2 + 𝑐1�

2

4.1.9 Section 1.4 problem 10

Final general solution of (1 + 𝑥)2 𝑑𝑦
𝑑𝑥 = �1 + 𝑦�

2

Solution

Before solving, it is good idea to check if the solution exist and if it is unique.

𝑓 �𝑥, 𝑦� =
�1 + 𝑦�

2

(1 + 𝑥)2

𝑓 �𝑥, 𝑦� is continuous for all 𝑦 but not continuous for 𝑥 = −1. Therefore solution exist as
long as solution interval or initial conditions do not include 𝑥 = −1.

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

=
2 �1 + 𝑦�

(1 + 𝑥)2

𝑓 �𝑥, 𝑦� is continuous for all 𝑦 but not continuous for 𝑥 = −1. Therefore solution exist and
is unique as long as solution interval or initial conditions do not include 𝑥 = −1. The slope
field is given below

-2 -1 1 2
x

-2

-1

1

2

y(x)
Slope field

Figure 4.8: Problem 1.4, 10

Now the ODE is solved. This is separable.
𝑑𝑦

�1 + 𝑦�
2 =

𝑑𝑥
(1 + 𝑥)2
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Integrating

�
𝑑𝑦

�1 + 𝑦�
2 = �

𝑑𝑥
(1 + 𝑥)2

Let 𝑢 = 1 + 𝑦 then 𝑑𝑢
𝑑𝑦 = 1. Hence ∫ 𝑑𝑦

�1+𝑦�
2 → ∫ 𝑑𝑢

𝑢2 = − 1
𝑢 → −1

1+𝑦 . Similarly, ∫ 𝑑𝑥
(1+𝑥)2

= −1
1+𝑥 .

Therefore the above becomes
−1
1 + 𝑦

=
−1
1 + 𝑥

+ 𝑐

1
1 + 𝑦

=
1

1 + 𝑥
+ 𝑐1

1
1 + 𝑦

=
1 + 𝑐1 (1 + 𝑥)

1 + 𝑥

1 + 𝑦 =
1 + 𝑥

1 + 𝑐1 (1 + 𝑥)
Hence

𝑦 = 1+𝑥
1+𝑐1(1+𝑥)

− 1

For 𝑥 ≠ −1.

4.1.10 Section 1.4 problem 22

Find explicit particular solution of 𝑑𝑦
𝑑𝑥 = 4𝑥

3𝑦 − 𝑦; 𝑦 (1) = −3

Solution

Before solving, it is good idea to check if the solution exist and if it is unique.

𝑓 �𝑥, 𝑦� = 4𝑥3𝑦 − 𝑦

𝑓 �𝑥, 𝑦� is continuous for all 𝑦 and continuous for all 𝑥.

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

= 4𝑥3 − 1

𝜕𝑓�𝑥,𝑦�

𝜕𝑦 is continuous for all 𝑥. It does not depend on 𝑦. Hence solution is exist and is unique
in some interval that contain initial point (1, −3). Now the ODE is solved.

𝑑𝑦
𝑑𝑥

= 𝑦 �4𝑥3 − 1�

This is now separable
𝑑𝑦
𝑦
= �4𝑥3 − 1� 𝑑𝑥

Integrating

ln �𝑦� = 4𝑥
4

4
− 𝑥 + 𝑐

ln �𝑦� = 𝑥4 − 𝑥 + 𝑐
𝑦 = 𝑒𝑥4−𝑥+𝑐

Let 𝑒𝑐 = 𝑐1, then the above can be written as

𝑦 = 𝑐1𝑒𝑥
4−𝑥

Now the constant of integration is found from initial conditions. 𝑦 (1) = −3, therefore

−3 = 𝑐1𝑒1−1 = 𝑐1
Hence the solution becomes

𝑦 (𝑥) = −3𝑒𝑥4−𝑥

Here is a plot of the solution in small interval around 𝑥 = 1
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Plot of solution problem 1.4 (22) near initial conditions

Figure 4.9: Problem 1.4, 22

4.1.11 Section 1.4 problem 26

Find explicit particular solution of 𝑑𝑦
𝑑𝑥 = 2𝑥𝑦

2 + 3𝑥2𝑦2; 𝑦 (1) = −1

Solution

Before solving, it is good idea to check if the solution exist and if it is unique.

𝑓 �𝑥, 𝑦� = 2𝑥𝑦2 + 3𝑥2𝑦2

𝑓 �𝑥, 𝑦� is continuous for all 𝑦 and continuous for all 𝑥.

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

= 4𝑥𝑦 + 6𝑥2𝑦

𝜕𝑓�𝑥,𝑦�

𝜕𝑦 is continuous for all 𝑥 and for all 𝑦. Hence a solution is exist and is unique in some
interval that contain initial point (1, −1). Now the ODE is solved.

𝑑𝑦
𝑑𝑥

= 𝑦2 �2𝑥 + 3𝑥2�

This is separable.
𝑑𝑦
𝑦2

= 2𝑥 + 3𝑥2𝑑𝑥

Integrating

−
1
𝑦
= 𝑥2 + 𝑥3 + 𝑐

1
𝑦
= − �𝑥2 + 𝑥3 + 𝑐�

𝑦 =
−1

𝑥2 + 𝑥3 + 𝑐
Applying initial conditions to find 𝑐 gives

−1 =
−1

1 + 1 + 𝑐
−2 − 𝑐 = −1

𝑐 = −1

Hence solution is

𝑦 =
−1

𝑥2 + 𝑥3 − 1

=
1

1 − 𝑥2 − 𝑥3
Here is a plot of the solution in small interval around 𝑥 = 1
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Plot of solution problem 1.4 (26) near initial conditions

Figure 4.10: Problem 1.4, 26

We notice that at the real root of 1 − 𝑥2 − 𝑥3, the solution 𝑦 (𝑥) goes to ±∞. This happens at
𝑥 ≈ 0.75487.

4.1.12 Section 1.4 problem 30

Solve �𝑑𝑦𝑑𝑥�
2
= 4𝑦 to verify the general solution curves and singular solution curve that are

illustrated in fig 1.4.5. Then determine the points (𝑎, 𝑏) in the plane for which the initial

value problem �𝑦′�
2
= 4𝑦; 𝑦 (𝑎) = 𝑏 has (a) No solution, (b) infinitely many solutions that are

defined for all 𝑥, (c) on some neighborhood of the point 𝑥 = 𝑎, only finitely many solutions.

Solution

Figure 1.4.5 is below

𝑓 �𝑥, 𝑦� = ±2√𝑦

Hence 𝑓 �𝑥, 𝑦� is continuous in 𝑦 for 𝑦 > 0. Hence solutions exist for 𝑦 > 0.
𝜕𝑓�𝑥,𝑦�

𝜕𝑦 = ±2 1

√𝑦
and

this is also continuous in 𝑦 for 𝑦 > 0. Therefore, unique solution exist for 𝑦 > 0. (Interval
can be found around initial conditions (𝑎, 𝑏) as long as 𝑏 > 0). Here is slope field plot
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Figure 4.11: Problem 1.4, 30

𝑑𝑦
𝑑𝑥

= ±2√𝑦

For the negative case, we obtain

𝑦
−1
2 𝑑𝑦 = −2𝑑𝑥

2𝑦
1
2 = −2𝑥 + 𝑐

𝑦
1
2 = −𝑥 + 𝑐1
𝑦 = (𝑐1 − 𝑥)

2

For the positive case

𝑦
−1
2 𝑑𝑦 = 2𝑑𝑥

2𝑦
1
2 = 2𝑥 + 𝑐

𝑦
1
2 = 𝑥 + 𝑐1
𝑦 = (𝑐1 + 𝑥)

2

Hence the solutions are

𝑦 (𝑥) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(𝑐1 − 𝑥)
2

(𝑐1 + 𝑥)
2

0 singular solution

The solution 𝑦 (𝑥) = 0 is singular, since it can not be obtained from the general solution
(𝑐1 − 𝑥)

2 for arbitrary 𝑐. Summary:

1. No solution for 𝑦 < 0

2. singular solution for 𝑦 = 0

3. Two general solutions (𝑐1 − 𝑥)
2 and (𝑐1 + 𝑥)

2 for all 𝑥 and 𝑦 > 0.

The following is plot of 𝑦 (𝑥) = (𝑐1 − 𝑥)
2 for few values of 𝑐1 to show the shape of the solution

curves. This agrees with the figure given in the book.
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Figure 4.12: Problem 1.4, 30

4.1.13 Section 1.4 problem 42

A certain moon rock was found to contain equal number of potassium and argon atoms.
Assume that all the argon is the result of radioactive decay of potassium (its half like is
about 1.28 × 109 years) and that one of every nine potassium atom disintegrations yields
an argon atom. What is the age of the rock, measured from the time it contained only
potassium?

Solution

Half life is the time for a quantity to reduce to half its original number. Let 𝑇 = 1.28 × 109
years in this example. Let 𝑃 (0) be the number of potassium atoms at time 𝑡 = 0. Hence
the formula for half life decay is

𝑃 (𝑡) = 𝑃 (0) �
1
2�

𝑡
𝑇

Where in the above 𝑃 (𝑡) is number of potassium atoms that remain after time 𝑡. Let 𝑔 (𝑡)
be the number of argon atoms at time 𝑡. Since 1

9 of the decayed potassium atoms changed
to argon, then

𝑔 (𝑡) =
1
9
(𝑃 (0) − 𝑃 (𝑡))

=
1
9

⎛
⎜⎜⎜⎜⎜⎜⎝𝑃 (0) − 𝑃 (0) �

1
2�

𝑡
𝑇

⎞
⎟⎟⎟⎟⎟⎟⎠

=
1
9
𝑃 (0)

⎛
⎜⎜⎜⎜⎜⎜⎝1 − �

1
2�

𝑡
𝑇

⎞
⎟⎟⎟⎟⎟⎟⎠
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Since we want to find 𝑡 when 𝑔 (𝑡) = 𝑃 (𝑡), then we solve from

𝑔 (𝑡) = 𝑃 (𝑡)

1
9
𝑃 (0)

⎛
⎜⎜⎜⎜⎜⎜⎝1 − �

1
2�

𝑡
𝑇

⎞
⎟⎟⎟⎟⎟⎟⎠ = 𝑃 (0) �

1
2�

𝑡
𝑇

1
9

⎛
⎜⎜⎜⎜⎜⎜⎝1 − �

1
2�

𝑡
𝑇

⎞
⎟⎟⎟⎟⎟⎟⎠ = �

1
2�

𝑡
𝑇

1 − �
1
2�

𝑡
𝑇
= 9 �

1
2�

𝑡
𝑇

1 = 9 �
1
2�

𝑡
𝑇
+ �

1
2�

𝑡
𝑇

1 = 10 �
1
2�

𝑡
𝑇

1
10
= �

1
2�

𝑡
𝑇

Taking log

log �
1
10�

=
𝑡
𝑇

log �
1
2�

𝑡 = 𝑇
log � 1

10
�

log �12�

= 1.28 × 109 �
−2.3
−0.693�

= 4.248 2 × 109

Hence it will take 4.2482 billion years.

4.1.14 Section 1.4 problem 46

The barometric pressure 𝑝 (in inches of mercury) at an altitude 𝑥 miles above sea level
satisfies the initial value problem 𝑑𝑝

𝑑𝑥 = (−0.2) 𝑝; 𝑝 (0) = 29.92. (a) Calculate the barometric
pressure at 10, 000 ft. and again at 30, 000 ft. (b) Without prior conditioning, few people
can survive when the pressure drops to less than 15 in. Of mercury. How high is that?

Solution

4.1.14.1 Part (a)

𝑑𝑝
𝑑𝑥

= (−0.2) 𝑝

This is separable.
𝑑𝑝
𝑝
= −0.2𝑑𝑥

ln �𝑝� = −0.2𝑥 + 𝑐
𝑝 = 𝑐𝑒−0.2𝑥

To find 𝑐, we apply initial conditions. At 𝑥 = 0, 𝑝 = 29.92 in, hence

29.92 = 𝑐

Therefore the general solution is

𝑝 = 29.92𝑒−0.2𝑥
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Now, when 𝑥 = 10000 ft or 10000/5280 = 1.894 miles, then

𝑝 = 29.92𝑒−0.2(1.894)

= 20.486 in

when 𝑥 = 30000 ft or 30000/5280 = 5.6818 miles, then

𝑝 = 29.92𝑒−0.2(5.6818)

= 9.6039 in

4.1.14.2 Part (b)

We solve for 𝑥 from

15 = 29.92𝑒−0.2𝑥

15
29.92

= 𝑒−0.2𝑥

Taking natural log

ln 15
29.92

= −0.2𝑥

−0.69047 = −0.2𝑥

Hence

𝑥 =
0.69047
0.2

= 3.4524 miles

= (3.4524) (5280) = 18229 ft
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4.2 HW2

4.2.1 Section 1.5 problem 18 (page 56)

Problem Find general solution for 𝑥𝑦′ = 2𝑦 + 𝑥3 cos 𝑥

Solution It is a good idea to first check if solution exist and if it is unique. Writing the
ODE as

𝑦′ = 𝑓 �𝑥, 𝑦�

=
2𝑦 + 𝑥3 cos 𝑥

𝑥
We see that 𝑓 �𝑥, 𝑦� is continuous for all 𝑥 ≠ 0 and for all 𝑦. And

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

=
2
𝑥

This is continuous for all 𝑥 ≠ 0. Therefore solution exist and unique in some interval which
do not include 𝑥 = 0. Now we will solve the ODE.

𝑥𝑦′ = 2𝑦 + 𝑥3 cos 𝑥
Dividing by 𝑥 ≠ 0 and rearranging gives

𝑦′ −
2
𝑥
𝑦 = 𝑥2 cos 𝑥

We see that the integrating factor 𝜇 = 𝑒∫− 2
𝑥𝑑𝑥 = 𝑒−2 ln 𝑥 = 1

𝑥2 . Hence the above ODE can now
be written as exact di�erential by multiplying both side with 𝜇

𝑑
𝑑𝑥
�𝜇𝑦� = 𝜇 �𝑥2 cos 𝑥�

𝑑
𝑑𝑥 �

1
𝑥2
𝑦� =

1
𝑥2
�𝑥2 cos 𝑥�

𝑑
𝑑𝑥 �

1
𝑥2
𝑦� = cos 𝑥

Integrating both sides gives
1
𝑥2
𝑦 = sin 𝑥 + 𝑐

𝑦 = 𝑥2 (sin 𝑥 + 𝑐) ; 𝑥 ≠ 0

4.2.2 Section 1.5 problem 22

Problem Find solution for 𝑦′ = 2𝑥𝑦 + 3𝑥2𝑒𝑥2; 𝑦 (0) = 5

Solution It is a good idea to first check if solution exist and if it is unique. Writing the
ODE as

𝑦′ = 𝑓 �𝑥, 𝑦�

= 2𝑥𝑦 + 3𝑥2𝑒𝑥2

We see that 𝑓 �𝑥, 𝑦� is continuous for all 𝑥 and for all 𝑦. And

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

= 2𝑥

This is continuous for all 𝑥. Therefore solution exist and unique in some interval. Now we
will solve the ODE.

𝑦′ − 2𝑥𝑦 = 3𝑥2𝑒𝑥2

We see that the integrating factor 𝜇 = 𝑒∫−2𝑥𝑑𝑥 = 𝑒−𝑥2. Hence the above ODE can now be
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written as exact di�erential by multiplying both side with 𝜇
𝑑
𝑑𝑥
�𝜇𝑦� = 𝜇 �3𝑥2𝑒𝑥2�

𝑑
𝑑𝑥
�𝑒−𝑥2𝑦� = 𝑒−𝑥2 �3𝑥2𝑒𝑥2�

𝑑
𝑑𝑥
�𝑒−𝑥2𝑦� = 3𝑥2

Integrating both sides

𝑒−𝑥2𝑦 = 𝑥3 + 𝑐

Hence

𝑦 = 𝑒𝑥2 �𝑥3 + 𝑐�

Now initial conditions 𝑦 (0) = 5 are applied to find 𝑐. This gives

5 = 𝑐

Hence the complete solution (or the particular solution for this initial conditions) is

𝑦 = 𝑒𝑥2 �𝑥3 + 5�

4.2.3 Section 1.5 problem 25

Problem Find solution for �𝑥2 + 1� 𝑦′ + 3𝑥3𝑦 = 6𝑥𝑒
−3
2 𝑥2; 𝑦 (0) = 1

Solution It is a good idea to first check if solution exist and if it is unique. Writing the
ODE as

𝑦′ = 𝑓 �𝑥, 𝑦�

=
6𝑥𝑒

−3
2 𝑥2 − 3𝑥3𝑦
𝑥2 + 1

We see that 𝑓 �𝑥, 𝑦� is continuous for all 𝑥 except when 𝑥2 = −1 or 𝑥 = ±𝑖. But this is not on
real line hence it will not a�ect us. It is also continuous for all 𝑦.

𝜕𝑓 �𝑥, 𝑦�
𝜕𝑦

=
3𝑥3

𝑥2 + 1
Again, this is continuous for all 𝑥 except when 𝑥2 = −1 or 𝑥 = ±𝑖. But this is not on real
line hence it will not a�ect us.

Therefore solution exists and unique for all 𝑥 and 𝑦. Now we will solve the ODE.

𝑦′ +
3𝑥3

𝑥2 + 1
𝑦 =

6𝑥𝑒
−3
2 𝑥2

𝑥2 + 1

Integration factor is 𝜇 = 𝑒
∫ 3𝑥3

𝑥2+1
𝑑𝑥
. To evaluate the integral:

�
3𝑥3

𝑥2 + 1
𝑑𝑥 = 3�

𝑥3

𝑥2 + 1
𝑑𝑥

= 3�𝑥 −
𝑥

𝑥2 + 1
𝑑𝑥

=
3
2
𝑥2 − 3�

𝑥
𝑥2 + 1

𝑑𝑥

Since 𝑑
𝑑𝑥 ln �𝑥2 + 1� = 2𝑥

𝑥2+1 then by comparing this to the second integral, we see that

∫ 𝑥
𝑥2+1 =

1
2 ln �𝑥2 + 1�, hence

�
3𝑥3

𝑥2 + 1
𝑑𝑥 =

3
2
𝑥2 −

3
2

ln �𝑥2 + 1�
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Therefore

𝜇 = 𝑒
∫ 3𝑥3

𝑥2+1
𝑑𝑥

= exp �
3
2
𝑥2 −

3
2

ln �𝑥2 + 1��

= exp �
3
2
𝑥2� exp �−

3
2

ln �𝑥2 + 1��

= exp �
3
2
𝑥2� exp �ln �𝑥2 + 1�

−3
2 �

=
𝑒
3
2𝑥

2

�𝑥2 + 1�
3
2

Multiplying both sides of the ODE with this integration factor gives

𝑑
𝑑𝑥
�𝜇𝑦� =

6𝑥𝑒
−3
2 𝑥2

𝑥2 + 1
𝜇

𝑑
𝑑𝑥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒
3
2𝑥

2

�𝑥2 + 1�
3
2

𝑦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
6𝑥𝑒

−3
2 𝑥2

𝑥2 + 1
𝑒
3
2𝑥

2

�𝑥2 + 1�
3
2

𝑑
𝑑𝑥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑒
3
2𝑥

2

�𝑥2 + 1�
3
2

𝑦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

6𝑥

�𝑥2 + 1�
5
2

Integrating both sides

𝑒
3
2𝑥

2

�𝑥2 + 1�
3
2

𝑦 = �
6𝑥

�𝑥2 + 1�
5
2

𝑑𝑥 + 𝑐 (1)

To evaluate ∫ 6𝑥

�𝑥2+1�
5
2
𝑑𝑥, let 𝑢 = 𝑥2 + 1 hence 𝑑𝑢 = 2𝑥𝑑𝑥, therefore the integral becomes

�
6𝑥

�𝑥2 + 1�
5
2

𝑑𝑥 = �
6𝑥

𝑢
5
2

𝑑𝑢
2𝑥

= 3�
1

𝑢
5
2

𝑑𝑢 = 3�𝑢−
5
2𝑑𝑢 = 3

⎛
⎜⎜⎜⎜⎜⎝
𝑢−

3
2

−3
2

⎞
⎟⎟⎟⎟⎟⎠ = −2𝑢

− 3
2

Hence

�
6𝑥

�𝑥2 + 1�
5
2

𝑑𝑥 = −2 �𝑥2 + 1�
− 3
2 =

−2

�𝑥2 + 1�
3
2

Hence (1) becomes

𝑒
3
2𝑥

2

�𝑥2 + 1�
3
2

𝑦 =
−2

�𝑥2 + 1�
3
2

+ 𝑐

𝑦 =
−2

�𝑥2 + 1�
3
2

�𝑥2 + 1�
3
2

𝑒
3
2𝑥

2
+ 𝑐

�𝑥2 + 1�
3
2

𝑒
3
2𝑥

2

𝑦 = −2𝑒
−3
2 𝑥2 + 𝑐 �𝑥2 + 1�

3
2 𝑒

−3
2 𝑥2

Applying 𝑦 (0) = 1 gives

1 = −2 + 𝑐
𝑐 = 3

Hence the particular solution is

𝑦 = −2𝑒
−3
2 𝑥2 + 3 �𝑥2 + 1�

3
2 𝑒

−3
2 𝑥2

= 𝑒
−3
2 𝑥2 �3 �𝑥2 + 1�

3
2 − 2�
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4.2.4 Section 1.5 problem 27

Problem Solve the di�erential equation by regarding 𝑦 as the independent variable rather
than 𝑥

�𝑥 �𝑦� + 𝑦𝑒𝑦�
𝑑𝑦

𝑑𝑥 �𝑦�
= 1

Solution

𝑑𝑦
𝑑𝑥 �𝑦�

=
1

𝑥 �𝑦� + 𝑦𝑒𝑦

𝑑𝑥 �𝑦�
𝑑𝑦

= 𝑥 �𝑦� + 𝑦𝑒𝑦

𝑑𝑥 �𝑦�
𝑑𝑥

− 𝑥 �𝑦� = 𝑦𝑒𝑦

For 𝑥 �𝑦� ≠ 𝑦𝑒𝑦. Hence

𝑑𝑥 �𝑦�
𝑑𝑦

= 𝑥 �𝑦� + 𝑦𝑒𝑦

𝑑𝑥 �𝑦�
𝑑𝑥

− 𝑥 �𝑦� = 𝑦𝑒𝑦

Integrating factor is 𝜇 = 𝑒−∫𝑑𝑦 = 𝑒−𝑦. Multiplying both sides with 𝜇 gives

𝑑
𝑑𝑦
�𝜇𝑥� = 𝜇𝑦𝑒𝑦

𝑑
𝑑𝑦
(𝑒−𝑦𝑥) = 𝑦

Integrating both sides

𝑒−𝑦𝑥 �𝑦� =
𝑦2

2
+ 𝑐

Therefore

𝑥 �𝑦� = �
𝑦2

2
+ 𝑐� 𝑒𝑦

4.2.5 Section 1.5 problem 31

Problem (a) show that 𝑦𝑐 (𝑥) = 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 is a general solution of 𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 0. (b) Show

that 𝑦𝑝 (𝑥) = 𝑒−∫𝑃(𝑥)𝑑𝑥∫�𝑄 (𝑥) 𝑒∫𝑃(𝑥)𝑑𝑥� 𝑑𝑥 is a particular solution of 𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 𝑄 (𝑥). (c)

Suppose that 𝑦𝑐 (𝑥) is any general solution of 𝑑𝑦
𝑑𝑥 +𝑃 (𝑥) 𝑦 = 0 and that 𝑦𝑝 (𝑥) is any particular

solution of 𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 𝑄 (𝑥). Show that 𝑦 (𝑥) = 𝑦𝑐 (𝑥) + 𝑦𝑝 (𝑥) is a general solution of

𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 𝑄 (𝑥)

Solution

4.2.5.1 Part (a)

Given
𝑑𝑦
𝑑𝑥
+ 𝑃 (𝑥) 𝑦 = 0

Then
𝑑𝑦
𝑦
= −𝑃 (𝑥) 𝑑𝑥

Integrating both sides

ln �𝑦� = −�𝑃 (𝑥) 𝑑𝑥 + 𝐶

𝑦 (𝑥) = 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥
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QED. We can also solve this by substituting 𝑦 (𝑥) = 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 into 𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 0 which

gives

Δ =
𝑑
𝑑𝑥
�𝐶𝑒−∫𝑃(𝑥)𝑑𝑥� + 𝑃 (𝑥) 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 (1)

But 𝑑
𝑑𝑥𝑒

𝑔(𝑥) = 𝑔′ (𝑥) 𝑒𝑔(𝑥), hence

𝑑
𝑑𝑥
�𝐶𝑒−∫𝑃(𝑥)𝑑𝑥� = 𝐶

𝑑
𝑑𝑥
�−�𝑃 (𝑥) 𝑑𝑥� 𝑒−∫𝑃(𝑥)𝑑𝑥

= −𝐶𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥

Therefore (1) becomes

Δ = −𝐶𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 + 𝑃 (𝑥) 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥

= 0

Hence the solution 𝑦 (𝑥) = 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 satisfies the ODE. Therefore it is solution.

4.2.5.2 Part(b)

Given 𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 𝑄 (𝑥), the integrating factor is 𝜇 = 𝑒∫𝑃(𝑥)𝑑𝑥. Multiplying this by both

sides of the ODE gives

𝑒∫𝑃(𝑥)𝑑𝑥𝑑𝑦
𝑑𝑥
+ 𝑒∫𝑃(𝑥)𝑑𝑥𝑃 (𝑥) 𝑦 = 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥)

𝑑
𝑑𝑥
�𝑒∫𝑃(𝑥)𝑑𝑥𝑦 (𝑥)� = 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥)

Integrating both sides

𝑒∫𝑃(𝑥)𝑑𝑥𝑦 (𝑥) = �𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥 + 𝐶

𝑦 (𝑥) = 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥� + 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥

For particular 𝐶 = 0, we obtain

𝑦𝑝 (𝑥) = 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥�

Which is what we asked to show.

4.2.5.3 Part(c)

Let

𝑦 (𝑥) = 𝑦𝑐 (𝑥) + 𝑦𝑝 (𝑥)

= 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 + 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥�

We need now to substitute this in 𝑑𝑦
𝑑𝑥 +𝑃 (𝑥) 𝑦 = 𝑄 (𝑥) and see if it satisfies it. First we find 𝑑𝑦

𝑑𝑥

𝑑𝑦
𝑑𝑥

=
𝑑
𝑑𝑥 �

𝐶𝑒−∫𝑃(𝑥)𝑑𝑥� +
𝑑
𝑑𝑥 �

𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥��

= 𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 (−𝑃 (𝑥)) +
𝑑
𝑑𝑥
𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥� + 𝑒−∫𝑃(𝑥)𝑑𝑥 𝑑

𝑑𝑥 �
𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥

= −𝐶𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 + 𝑒−∫𝑃(𝑥)𝑑𝑥 (−𝑃 (𝑥)) �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥� + 𝑒−∫𝑃(𝑥)𝑑𝑥 �𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥)�

= −𝐶𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 − 𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥� + 𝑒−∫𝑃(𝑥)𝑑𝑥 �𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥)�

= −𝐶𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 − 𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥� + 𝑄 (𝑥)

= −𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥 + 𝐶� + 𝑄 (𝑥)
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Substituting the above into the left hand side of the given 𝑑𝑦
𝑑𝑥 + 𝑃 (𝑥) 𝑦 = 𝑄 (𝑥)

𝐿𝐻𝑆 =
𝑑𝑦
𝑑𝑥
+ 𝑃 (𝑥) 𝑦

= −𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥 + 𝐶� + 𝑄 (𝑥) + 𝑃 (𝑥) �𝐶𝑒−∫𝑃(𝑥)𝑑𝑥 + 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥��

=
���������������������������������������������������������
− 𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 �� 𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥 + 𝐶�+𝑄 (𝑥) +

���������������������������������������������������������
𝑃 (𝑥) 𝑒−∫𝑃(𝑥)𝑑𝑥 �𝐶 + ��𝑒∫𝑃(𝑥)𝑑𝑥𝑄 (𝑥) 𝑑𝑥��

We see that the first term in the RHS above and the third term cancel each others. Hence

𝐿𝐻𝑆 = 𝑄 (𝑥)

Which is the right side of the ODE. Hence the solution 𝑦 (𝑥) = 𝑦𝑐 (𝑥) + 𝑦𝑝 (𝑥) satisfies the
ODE.

QED.

4.2.6 Section 1.5 problem 37

Problem A 400 gal tank initially contains 100 gal of brine containing 50 lb of salt. Brine
containing 1 lb of salt per gallon enters the tank at rate 5 gal/s and the well mixed brine
in the tank flows out at rate of 3 gal/s. How much salt will the tank contain when it is full
of brine?

Solution

To reduce confusion, let 𝑥 be the substance which causes the concentration in the Brine.
Let 𝑄(𝑡) be the mass (normally called the amount, but saying mass is more clear than
saying amount) of 𝑥 at time 𝑡 . Hence 𝑄(0) = 50 lb. The goal is to find an ODE that
describes how 𝑄(𝑡) changes in time. That is, how the mass of 𝑥 in the tank changes in time.
Using

𝑑𝑄
𝑑𝑡

= 𝑅𝑖𝑛 − 𝑅𝑜𝑢𝑡

Where 𝑅𝑖𝑛 rate of mass of salt entering the tank per second. And 𝑅𝑜𝑢𝑡 is rate of mass of
salt leaving the tank per second. But

𝑅𝑖𝑛 = 5 lb/sec

And

𝑅𝑜𝑢𝑡 =
𝑄 (𝑡)
𝑉 (𝑡)

[lb]
�gal�

× 3
�gal�

[second]
=

3
𝑉 (𝑡)

𝑄 (𝑡)

Where 𝑉 (𝑡) is current volume of brine in tank at time 𝑡. Hence the ODE is
𝑑𝑄
𝑑𝑡

= 5 −
3

𝑉 (𝑡)
𝑄 (𝑡)

𝑑𝑄
𝑑𝑡

+
3

𝑉 (𝑡)
𝑄 (𝑡) = 5 (1)

But we can find 𝑉 (𝑡). Since initially 𝑉 (0) = 100 gal, and in one second 5 gal enters, and 3
gal exists, then

𝑉 (𝑡) = 100 + 2𝑡

Hence (1) becomes

𝑑𝑄
𝑑𝑡 +

3
100+2𝑡𝑄 (𝑡) = 5

Integrating factor is

𝜇 = 𝑒∫
3

100+2𝑡𝑑𝑡 = 𝑒3∫
1

100+2𝑡𝑑𝑡 = 𝑒
3
2 ln(100+2𝑡) = (100 + 2𝑡)

3
2

Hence (1) becomes
𝑑
𝑑𝑡
�𝜇𝑄� = 5𝜇
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Integrating both sides

𝜇𝑄 = 5�𝜇𝑑𝑡 + 𝑐

(100 + 2𝑡)
3
2 𝑄 = 5�(100 + 2𝑡)

3
2 𝑑𝑡 + 𝑐

(100 + 2𝑡)
3
2 𝑄 = (100 + 2𝑡)

5
2 + 𝑐

Hence

𝑄 (𝑡) = (100 + 2𝑡) + 𝑐 (100 + 2𝑡)
−3
2

But at 𝑡 = 0, 𝑄 (0) = 50, hence

50 = 100 + 𝑐 (100)
−3
2

𝑐 = −50 000

Hence the solution is

𝑄 (𝑡) = (100 + 2𝑡) − 50 000 (100 + 2𝑡)
−3
2 (2)

This gives us the mass of salt at time 𝑡. What we need now to find out is the time it will
take to fill the tank say 𝑡𝑒𝑛𝑑, and use that time to find 𝑄 (𝑡𝑒𝑛𝑑) from above. Since initially the
tank had 300 gallons remains to be filled, and the flow in is at rate of 5 gal/sec and flow out
is at 3 gal/sec, then in one second, the tank will fill up with 2 gallons. Hence it will take

𝑡 =
300
2

= 150 sec

To fill the tank. Using this value of 𝑡 in (2) gives

𝑄 (150) = (100 + 2 (150)) − 50 000 (100 + 2 (150))
−3
2

=
1575
4

= 393.75 lb

4.2.7 Section 1.5 problem 44

Problem: Figure 1.5.8 shows a slope field and typical solution curves for 𝑦′ = 𝑥 + 𝑦. (a)
show that every curve approaches the straight line 𝑦 = −𝑥 − 1 as 𝑥 → −∞. (b) for each of
the five values 𝑦1 = −10, −5, 0, 5, 10, determined the initial value 𝑦0 (accurate to 4 decimal
points) such that 𝑦 (5) = 𝑦1 for the solution satisfying the initial condition 𝑦 (−5) = 𝑦0

Solution:

4.2.7.1 Part(a)

𝑦′ = 𝑥 + 𝑦
𝑦′ − 𝑦 = 𝑥

Integrating factor is 𝜇 = 𝑒−∫𝑑𝑥 = 𝑒−𝑥. Multiplying the above with 𝜇 results in

𝑑
𝑑𝑥
�𝜇𝑦� = 𝜇𝑥

𝑑
𝑑𝑥
�𝑒−𝑥𝑦� = 𝑒−𝑥𝑥

Integrating both sides

𝑒−𝑥𝑦 = �𝑥𝑒−𝑥𝑑𝑥 + 𝑐

But ∫𝑥𝑒−𝑥𝑑𝑥 = 𝑒−𝑥 (−1 − 𝑥) using integration by parts. Hence the above becomes

𝑒−𝑥𝑦 = 𝑒−𝑥 (−1 − 𝑥) + 𝑐
𝑦 = (−1 − 𝑥) + 𝑐𝑒𝑥 (1)

But

lim
𝑥→−∞

𝑒𝑥 = 0
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Hence solution becomes (at large negative 𝑥)

𝑦 = −1 − 𝑥

Therefore, solution curves approach line −1 − 𝑥.

4.2.7.2 Part(b)

The solution is 𝑦 = (−1 − 𝑥) + 𝑐𝑒𝑥 from part (a). Using 𝑦 (−5) = 𝑦0, then

𝑦0 = (−1 + 5) + 𝑐𝑒−5

𝑦0 = 4 + 𝑐𝑒−5

𝑐 = �𝑦0 − 4� 𝑒5

Hence solution is

𝑦 = (−1 − 𝑥) + �𝑦0 − 4� 𝑒5𝑒𝑥

= (−1 − 𝑥) + �𝑦0 − 4� 𝑒𝑥+5 (2)

Now we need to find 𝑦0 such as 𝑦 (5) = −10 . From (2)

−10 = (−1 − 5) + �𝑦0 − 4� 𝑒10

𝑦0 = (−10 + 6) 𝑒−10 + 4
= 3.99982

For 𝑦 (5) = −5, from (2)

−5 = (−1 − 5) + �𝑦0 − 4� 𝑒10

𝑦0 = (−5 + 6) 𝑒−10 + 4
= 4.00005

For 𝑦 (5) = 0 from (2)

0 = (−1 − 5) + �𝑦0 − 4� 𝑒10

𝑦0 = 6𝑒−10 + 4
= 4.00027

For 𝑦 (5) = 5 from (2)

5 = (−1 − 5) + �𝑦0 − 4� 𝑒10

𝑦0 = (5 + 6) 𝑒−10 + 4
= 4.00050

For 𝑦 (5) = 10 from (2)

10 = (−1 − 5) + �𝑦0 − 4� 𝑒10

𝑦0 = (10 + 6) 𝑒−10 + 4
= 4.00073

4.2.8 Section 2.1 problem 3

Problem: Solve 𝑑𝑥
𝑑𝑡 = 1 − 𝑥

2; 𝑥 (0) = 3 and sketch solution

Solution:
𝑑𝑥
𝑑𝑡
= 1 − 𝑥2

𝑑𝑥
1 − 𝑥2

= 𝑑𝑡 (1)

For 1 − 𝑥2 ≠ 0 or for 𝑥 ≠ ±1. But

�
𝑑𝑥

1 − 𝑥2
= �

𝑑𝑥
(1 + 𝑥) (1 − 𝑥)

96



4.2. HW2 CHAPTER 4. HWS

Where 1
(1+𝑥)(1−𝑥) =

𝐴
(1+𝑥) +

𝐵
(1−𝑥) . But 𝐴 = � 1

(1−𝑥)
�
𝑥=−1

= 1
2 and 𝐵 = � 1

(1+𝑥)
�
𝑥=1

= 1
2 , hence

�
𝑑𝑥

(1 + 𝑥) (1 − 𝑥)
=
1
2 �

𝑑𝑥
(1 + 𝑥)

+
1
2 �

𝑑𝑥
(1 − 𝑥)

=
1
2

ln |(1 + 𝑥)| − 1
2

ln |(1 − 𝑥)|

Therefore (1) becomes
1
2

ln |(1 + 𝑥)| − 1
2

ln |(1 − 𝑥)| = �𝑑𝑡

ln �
(1 + 𝑥)
(1 − 𝑥)

� = �2𝑑𝑡

ln �
(1 + 𝑥)
(1 − 𝑥)

� = 2𝑡 + 𝑐

(1 + 𝑥)
(1 − 𝑥)

= 𝑐𝑒2𝑡

(1 + 𝑥) = (1 − 𝑥) 𝑐𝑒2𝑡

1 + 𝑥 = 𝑐𝑒2𝑡 − 𝑥𝑐𝑒2𝑡

𝑥 + 𝑥𝑐𝑒2𝑡 = 𝑐𝑒2𝑡 − 1

𝑥 =
𝑐𝑒2𝑡 − 1
1 + 𝑐𝑒2𝑡

Now we use initial conditions 𝑥 (0) = 3 to find 𝑐

3 =
𝑐 − 1
1 + 𝑐

𝑐 = −2

Hence solution is

𝑥 =
−2𝑒2𝑡 − 1
1 − 2𝑒2𝑡

=
1 + 2𝑒2𝑡

2𝑒2𝑡 − 1
Here is a plot of the above solution and two other solutions starting from di�erent initial
conditions

0.5 1.0 1.5 2.0 2.5 3.0
t

1.5

2.0

2.5

3.0

x(t)

Figure 4.13: Problem 2.1, 3

4.2.9 Section 2.1 problem 13

Problem: Consider a breed of rabbits whose birth and death rates 𝛽, 𝛿 are each proportional
to the rabbit population 𝑃 = 𝑃 (𝑡) with 𝛽 > 𝛿. (a) Show that 𝑃 (𝑡) = 𝑃(0)

1−𝑘𝑃(0)𝑡 , where 𝑘 constant.

Note that 𝑃 (𝑡) → ∞ as 𝑡 → 1
(𝑘𝑃(0)) . This is the doomsday. (b) Suppose that 𝑃 (0) = 6 and

that there are nine rabbits after ten months. When does doomsday occur?

4.2.9.1 Part(a)

For doomsday, per book page 86, we use the model that birth rate occur at rate 𝛽 ∝ 𝑃2 (𝑡)
per unit time per population, but in this problem, since death rate is not constant, but also
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proportional to the rabbit population, then we also make 𝛿 ∝ 𝑃2 (𝑡) where 𝛽 > 𝛿. Hence we
write

𝑑𝑃 (𝑡)
𝑑𝑡

= 𝑘𝑃2 (𝑡)

Where 𝑘 is the combined constant of proportionality. This is separable.

𝑑𝑃 (𝑡)
𝑃2 (𝑡)

= 𝑘𝑑𝑡

�
𝑑𝑃 (𝑡)
𝑃2 (𝑡)

= �𝑘𝑑𝑡

−
1
𝑃
= 𝑘𝑡 + 𝑐

𝑃 (𝑡) =
1

𝑐 − 𝑘𝑡
(1)

Using initial conditions, 𝑡 = 0, 𝑃 (0) we find 𝑐

𝑃 (0) =
1
𝑐

𝑐 =
1

𝑃 (0)
Hence (1) becomes

𝑃 (𝑡) =
1

1
𝑃(0) − 𝑘𝑡

=
𝑃 (0)

1 − 𝑃 (0) 𝑘𝑡
(2)

4.2.9.2 Part (b)

Applying initial conditions to (2) in part (a)

𝑃 (𝑡) =
𝑃 (0)

1 − 𝑘𝑃 (0) 𝑡

9 =
6

1 − 𝑘 (6) (10)

𝑘 =
1
180

Hence solution becomes

𝑃 (𝑡) =
6

1 − 6
180 𝑡

When 𝑡 = 180
6 = 30 months, then 𝑃 (𝑡) → ∞. Hence 30 months is doomsday.

4.2.10 Section 2.1 problem 15

Problem Consider population 𝑃 (𝑡) satisfying logistic equation 𝑑𝑃
𝑑𝑡 = 𝑎𝑃 − 𝑏𝑃

2 where 𝐵 = 𝑎𝑃
is the time rate at which birth occur and 𝐷 = 𝑏𝑃2 is the rate at which death occur. If the
initial population is 𝑃 (0) and 𝐵 (0) , 𝐷 (0) are the rates per month at 𝑡 = 0, show that the
limiting population is 𝑀 = 𝐵(0)𝑃(0)

𝐷(0)

Solution

For the limiting model, per book page 82 (limiting population and carrying capacity), we
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can use
𝑑𝑃
𝑑𝑡

= 𝑎𝑃 − 𝑏𝑃2

= 𝑎 �1 −
𝑏
𝑎
𝑃� 𝑃

= 𝑎 �1 −
𝑃
𝑀�𝑃

note: In class lecture, the above is written as 𝑑𝑃
𝑑𝑡 = 𝑟 �1 − 𝑃

𝑘
� 𝑝, where 𝑟 = 𝑎 and 𝑘 = 𝑀)

But book uses di�erent notations. 𝑀 is the limiting capacity (or also called equilibrium
population). Hence from the above, we see that

𝑀 =
𝑎
𝑏

(1)

But 𝑎, which is the growth rate per time per population is

𝑎 =
𝐵0
𝑃0

And 𝐷 (0) = 𝑏𝑃2 (0), hence

𝑏 =
𝐷0

𝑃20
Therefore (1) becomes

𝑀 =
𝐵0
𝑃0
𝐷0
𝑃20

=
𝐵0
𝐷0
𝑃0

QED.

4.2.11 Section 2.1 problem 17

Problem Consider rabbit population 𝑃 (𝑡) satisfying the logistic equation as in problem 15.
If the initial population is 240 rabbits and there are 9 births per month and 12 death per
month occurring at time 𝑡 = 0, how many months does it take for 𝑃 (𝑡) to reach 105% of
the limiting population 𝑀?

Solution The logistic equation, from problem 15 is

𝑑𝑃
𝑑𝑡

= 𝑎𝑃 − 𝑏𝑃2

From problem 15: Where

𝐵 = 𝑎𝑃

Is the time rate at which birth occur and

𝐷 = 𝑏𝑃2

Is the rate at which death occur and 𝑃 (𝑡) is current size of population. Per problem 15, we
know that the limiting population is

𝑀 =
𝐵 (0) 𝑃 (0)
𝐷 (0)

=
𝐵 (0) 𝑃 (0)
𝐷 (0)

But we are given here, that 𝑃 (0) = 240, 𝐵 (0) = 9 per month and 𝐷 (0) = 12 per month. This
means

𝑀 =
9 (240)
12

= 180

The above is the limiting population size. We now need to solve (1) in order to answer the
question

𝑑𝑃
𝑑𝑡

= 𝑎𝑃 − 𝑏𝑃2
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This is separable
𝑑𝑃

𝑎𝑃 − 𝑏𝑃2
= 𝑑𝑡

�
𝑑𝑃

𝑎𝑃 − 𝑏𝑃2
= 𝑡 + 𝑐

�
𝑑𝑃

𝑃 (𝑎 − 𝑏𝑃)
= 𝑡 + 𝑐

�
1
𝑎𝑃

−
𝑏

𝑎 (𝑏𝑃 − 𝑎)
𝑑𝑃 = 𝑡 + 𝑐

1
𝑎

ln |𝑃| − 1
𝑎

ln |𝑏𝑃 − 𝑎| = 𝑡 + 𝑐

1
𝑎

ln ��
𝑏𝑃

𝑏𝑃 − 𝑎�
� = 𝑡 + 𝑐

1
𝑎

ln ��
𝑏𝑃

𝑏𝑃 − 𝑎�
� = 𝑡 + 𝑐

ln ��
𝑏𝑃

𝑏𝑃 − 𝑎�
� = 𝑎𝑡 + 𝑎𝑐

𝑏𝑃
𝑏𝑃 − 𝑎

= 𝑐1𝑒𝑎𝑡

Where the sign is determined by constant 𝑐1. Hence the above becomes

𝑏𝑃 = 𝑐1𝑒𝑎𝑡 (𝑏𝑃 − 𝑎)
= 𝑐1𝑒𝑎𝑡𝑏𝑃 − 𝑐1𝑎𝑒𝑎𝑡

𝑏𝑃 − 𝑐1𝑒𝑎𝑡𝑏𝑃 = −𝑐1𝑎𝑒𝑎𝑡

𝑃 �𝑏 − 𝑐1𝑒𝑎𝑡𝑏� = −𝑐1𝑎𝑒𝑎𝑡

𝑃 (𝑡) =
−𝑐1𝑎𝑒𝑎𝑡

𝑏 − 𝑐1𝑒𝑎𝑡𝑏

=
𝑐1𝑎𝑒𝑎𝑡

𝑐1𝑒𝑎𝑡𝑏 − 𝑏

𝑃 (𝑡) =
𝑎

𝑏 − 𝑏
𝑐1
𝑒−𝑎𝑡

We now need to find 𝑐1 from initial conditions. At 𝑡 = 0, 𝑃 (0) = 240, hence since 𝐵 = 𝑎𝑃
then

𝑎 (0) =
𝐵 (0)
𝑃 (0)

=
9
240

=
3
80

And since 𝐷 = 𝑏𝑃2 then

𝑏 (0) =
𝐷 (0)
𝑝 (0)2

=
12
2402

=
1

4800
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Therefore, at 𝑡 = 0, the above solution becomes

𝑃 (0) =
𝑐1𝑎 (0) 𝑒𝑎𝑡

𝑐1𝑒𝑎𝑡𝑏 (0) − 𝑏 (0)

240 =
𝑐1𝑎 (0)

𝑐1𝑏 (0) − 𝑏 (0)
=

𝑐1
3
80

1
4800

(𝑐1 − 1)

240 �
1

4800
(𝑐1 − 1)� = 𝑐1

3
80

1
20
𝑐1 −

1
20

= 𝑐1
3
80

1
20
𝑐1 − 𝑐1

3
80

=
1
20

𝑐1 �
1
20
−
3
80�

=
1
20

𝑐1 �
1
80�

=
1
20

𝑐1 = 4

Hence solution is

𝑃 (𝑡) =
4𝑎𝑒𝑎𝑡

4𝑒𝑎𝑡𝑏 − 𝑏

=
4 � 3

80
� 𝑒

3
80 𝑡

4𝑒
� 3
80 �𝑡 � 1

4800
� − 1

4800

We now solve for 𝑡 when 𝑃 (𝑡) = 105% of 𝑀

105
100

(180) =
4 � 3

80
� 𝑒

3
80 𝑡 (4800)

4𝑒
� 3
80 �𝑡 − 1

189 �4𝑒
� 3
80 �𝑡 − 1� = 720𝑒

3
80 𝑡

756𝑒
� 3
80 �𝑡 − 189 = 720𝑒

3
80 𝑡

756𝑒
� 3
80 �𝑡 − 720𝑒

3
80 𝑡 = 189

𝑒
3
80 𝑡 =

189
36

3
80
𝑡 = ln 189

36

𝑡 =
80
3

ln 189
36

= 44.219 months

4.2.12 Section 2.1 problem 30

Problem A tumor may be regarded as population of multiplying cells. The birth rate of
cells in a tumor decreases exponentially with time so that 𝛽 (𝑡) = 𝛽0𝑒−𝛼𝑡 where 𝛼, 𝛽0 are
positive constants. Hence 𝑑𝑃

𝑑𝑡 = 𝛽0𝑒−𝛼𝑡𝑃 with 𝑃 (0) = 𝑃0. Solve the initial value problem

for 𝑃 (𝑡) = 𝑃0𝑒
� 𝛽0𝛼 �1−𝑒−𝛼𝑡��

. Observe that 𝑃 (𝑡) approaches finite limiting population 𝑃0𝑒
� 𝛽0𝛼 �

as
𝑡 → ∞.

Solution

𝑑𝑃
𝑑𝑡

= 𝛽0𝑒−𝛼𝑡𝑃

This is separable.
𝑑𝑃
𝑃
= 𝛽0𝑒−𝛼𝑡𝑑𝑡
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Integrating

ln |𝑃| = 𝛽0�𝑒−𝛼𝑡𝑑𝑡

= 𝛽0
𝑒−𝛼𝑡

−𝛼
+ 𝐶

Hence

𝑃 (𝑡) = 𝐶𝑒−𝛽0
𝑒−𝛼𝑡
𝛼 (1)

Applying initial condition on the above gives

𝑃 (0) = 𝑃0 = 𝐶𝑒
−𝛽0

1
𝛼

𝐶 = 𝑃0𝑒
𝛽0

1
𝛼

Therefore the solution (1) becomes

𝑃 (𝑡) = 𝑃0𝑒
𝛽0

1
𝛼 𝑒−𝛽0

𝑒−𝛼𝑡
𝛼

= 𝑃0𝑒
−𝛽0

𝑒−𝛼𝑡
𝛼 +

𝛽0
𝛼

= 𝑃0𝑒
𝛽0
𝛼 �1−𝑒−𝛼𝑡�

As 𝑡 → ∞ then 𝑒−𝛼𝑡 → 0 since 𝛼 > 0, hence the above becomes

𝑃 (∞) = 𝑀 = 𝑃0𝑒
𝛽0
𝛼

The above is the limiting population.

4.2.13 Section 2.1 problem 31

Problem For tumor in problem 30, suppose that at 𝑡 = 0, there are 𝑃0 = 106 cells and that
𝑃 (𝑡) is then increasing at rate 3×105 cells per month. After 6 months the tumor has doubled
(in size and number of cells). Solve numerially for 𝛼 and then find the limiting population
of tumor.

Solution From problem (30) we found

𝑃 (𝑡) = 𝑃0𝑒
𝛽0
𝛼 �1−𝑒−𝛼𝑡�

= 106𝑒
𝛽0
𝛼 �1−𝑒−𝛼𝑡�

Then, at 𝑡 = 0, we are told �𝑑𝑃(𝑡)𝑑𝑡
�
𝑡=0

= 3 × 105 (cells per month). Hence, since 𝑑𝑃
𝑑𝑡 = 𝛽0𝑒

−𝛼𝑡𝑃

then at 𝑡 = 0

3 × 105 = 𝛽0𝑃0
= 𝛽0106

Therefore

𝛽0 =
3 × 105

106
= 0.3

We also told that after 6 months, the number of cells has doubled. This means, using 𝑡 = 6
(with units of month) that

𝑃 (6) = 2𝑃0

106𝑒
𝛽0
𝛼 �1−𝑒−6𝛼� = 2 × 106

But 𝛽0 = 0.3, hence the above becomes

𝑒
3

10𝛼 �1−𝑒
−6𝛼� = 2

3
10𝛼

�1 − 𝑒−6𝛼� = ln 2

10𝛼 ln 2 = 3 − 3𝑒−6𝛼

10𝛼 ln 2 + 3𝑒−6𝛼 = 3
Using a computer, the solutions are 𝛼 = 0 or 𝛼 = 0.3915
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Now the limiting population is found. From 𝑃 (𝑡) = 𝑃0𝑒
𝛽0
𝛼 �1−𝑒−𝛼𝑡�, for large 𝑡 and since 𝛼 > 0

this becomes

lim
𝑡→∞

𝑃 (𝑡) = 𝑃0𝑒
𝛽0
𝛼

= 106𝑒
0.3

0.3915

= 2.1518 × 106

The above is limit of number of cells for large 𝑡.

4.2.14 Section 2.2 problem 7

Problem Solve for 𝑓 (𝑥) = 0 to find critical points. Then analyze the sign of 𝑓 (𝑥) to determine
if each critical point is stable or not and construct the phase diagram for the di�erential
equation. Next solve the ODE. Finally plot the slope field and verify visually the stability
of each critital point.

𝑑𝑥
𝑑𝑡
= 𝑓 (𝑥) = (𝑥 − 2)2

Solution The critial points are 𝑥 values (dependent variable values) where 𝑓 (𝑥) = 0. Hence

(𝑥 − 2)2 = 0
𝑥 = 2

Since 𝑓 (𝑥) is always positive, this means if 𝑥 started at something just below 𝑥 = 2, say
𝑥 = 1.5, then eventually 𝑥 will reach 𝑥 = 2 and stay there. But if 𝑥 is started at something
just about 𝑥 = 2, say 𝑥 = 2.5, then 𝑥 will keep increasing away from 𝑥 = 2. This means
𝑥 = 2 is semi stable critial since if we start below it, we reach it, but not if we start about
it. Hence the phase diagram is

x = 2

x′ > 0
x > 2

x′ > 0
x < 2

x = 2 is semi-stable point

Figure 4.14: Phase diagram, 2.2 problem 7

Now the ODE is solved 𝑑𝑥
𝑑𝑡 = (𝑥 − 2)

2. This is non-linear seperable

𝑑𝑥
(𝑥 − 2)2

= 𝑑𝑡 𝑥 ≠ 2

�
𝑑𝑥

(𝑥 − 2)2
= �𝑑𝑡

Let 𝑥 − 2 = 𝑢 → 𝑑𝑢
𝑑𝑥 = 1, therefore ∫

𝑑𝑥
(𝑥−2)2

= ∫ 𝑑𝑢
𝑢2 = −

1
𝑢 = −

1
𝑥−2 and the above becomes

−
1

𝑥 − 2
= 𝑡 + 𝑐

𝑥 = 2 −
1

𝑡 + 𝑐
Let 𝑥 (0) = 𝑥0, therefore

𝑥0 = 2 −
1
𝑐

𝑐 =
1

2 − 𝑥0
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And the solution becomes

𝑥 = 2 −
1

𝑡 + 1
2−𝑥0

= 2 −
2 − 𝑥0

𝑡 (2 − 𝑥0) + 1

=
2 (𝑡 (2 − 𝑥0) + 1) − 2 + 𝑥0

𝑡 (2 − 𝑥0) + 1

=
2𝑡 (2 − 𝑥0) + 𝑥0
𝑡 (2 − 𝑥0) + 1

=
4𝑡 − 2𝑡𝑥0 + 𝑥0
2𝑡 − 𝑥0𝑡 + 1

Hence

𝑥 (𝑡) = (2𝑡−1)𝑥0−4𝑡
𝑡𝑥0−2𝑡−1

Here is slope field plot

0.5 1.0 1.5 2.0 2.5 3.0
t

1.5

2.0

2.5

3.0

x(t)

From the above plot, we see the solution lines are moving away from 𝑥 = 2 when they start
from 𝑥 > 2 but move towards 𝑥 = 2 when starting from 𝑥 < 2.

4.2.15 Section 2.2 problem 10

Problem Solve for 𝑓 (𝑥) = 0 to find critical points. Then analyze the sign of 𝑓 (𝑥) to determine
if each critical point is stable or not and construct the phase diagram for the di�erential
equation. Next solve the ODE. Finally plot the slope field and verify visually the stability
of each critital point.

𝑑𝑥
𝑑𝑡
= 𝑓 (𝑥) = 7𝑥 − 𝑥2 − 10

Solution

The critial points are 𝑥 values (dependent variable values) where 𝑓 (𝑥) = 0. Hence

7𝑥 − 𝑥2 − 10 = 0
𝑥1 = 2
𝑥2 = 5

The phase diagram is

104



4.2. HW2 CHAPTER 4. HWS

x = 2

x′ > 0
x > 2

x′ < 0
x < 2

x = 2 unstable
x = 5

x = 5 stable

x′ < 0
x > 5

x′ > 0
x < 5

Figure 4.15: Phase diagram, 2.2 problem 7

Now the ODE is solved 𝑑𝑥
𝑑𝑡 = 7𝑥 − 𝑥

2 − 10. This is non-linear seperable

𝑑𝑥
7𝑥 − 𝑥2 − 10

= 𝑑𝑡 𝑥 ≠ 2, 𝑥 ≠ 5

−𝑑𝑥
𝑥2 − 7𝑥 + 10

= 𝑑𝑡

−�
𝑑𝑥

𝑥2 − 7𝑥 + 10
= �𝑑𝑡

But 1
(𝑥−2)(𝑥−5) =

𝐴
(𝑥−2) +

𝐵
(𝑥−5) , hence 𝐴 = � 1

(𝑥−5)
�
𝑥=2

= � 1
−3
� and 𝐵 = � 1

(𝑥−2)
�
𝑥=5

= 1
3 and the above

becomes

−��
1

−3 (𝑥 − 2)
+

1
3 (𝑥 − 5)�

= �𝑑𝑡

�
1

3 (𝑥 − 2)
−�

1
3 (𝑥 − 5)

= �𝑑𝑡

1
3 �

𝑑𝑥
(𝑥 − 2)

−
1
3 �

𝑑𝑥
(𝑥 − 5)

= �𝑑𝑡

1
3

ln |𝑥 − 2| − 1
3

ln |𝑥 − 5| = �𝑑𝑡

ln |𝑥 − 2| − ln |𝑥 − 5| = �3𝑑𝑡

ln �𝑥 − 2
𝑥 − 5

� = 3𝑡 + 𝑐

𝑥 − 2
𝑥 − 5

= 𝑐𝑒3𝑡

𝑥 − 2 = 𝑥𝑐𝑒3𝑡 − 5𝑐𝑒3𝑡

𝑥 − 𝑥𝑐𝑒3𝑡 = 2 − 5𝑐𝑒3𝑡

𝑥 =
2 − 5𝑐𝑒3𝑡

1 − 𝑐𝑒3𝑡
Here is slope field plot

0.5 1.0 1.5 2.0 2.5 3.0
t

2

4

6

x(t)

From the above plot, we see the solution lines are moving away from 𝑥 = 2 indicating it is
unstable and move towards 𝑥 = 5 indicating it is stable.
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4.2.16 Section 2.2 problem 23

Problem Suppose that logistic equation 𝑑𝑥
𝑑𝑡 = 𝑘𝑥 (𝑀 − 𝑥) models a population 𝑥 (𝑡) of fish

in lake that after 𝑡 months during which no fishing occurs. Now suppose that because of
fishing, fish are removed from lake at rate of ℎ𝑥 fish per month, with ℎ > 0. Thus fish are
harvested at a rate propertional to existing fish population, rather than at constant rate of
example 4. (a) if 0 < ℎ < 𝑘𝑀, show that population is still logistic. What is the new limiting
population. (b) if ℎ ≥ 𝑘𝑀., show that 𝑥 (𝑡) → 0 at 𝑡 → ∞ so that lake is eventually fished
out.

Solution

Part (a)

Since fish is removed at rate of ℎ𝑥 fish per month, then
𝑑𝑥
𝑑𝑡
= 𝑘𝑥 (𝑀 − 𝑥) − ℎ𝑥

= 𝑘𝑥 �(𝑀 − 𝑥) −
ℎ
𝑘�

= 𝑘𝑥 �𝑀 −
ℎ
𝑘
− 𝑥�

= 𝑘𝑥 ��𝑀 −
ℎ
𝑘�
− 𝑥�

But 𝑀− ℎ
𝑘 > 0 since 0 < ℎ < 𝑘𝑀, therefore, if we let �𝑀 − ℎ

𝑘
� = 𝜆, then 𝑑𝑥

𝑑𝑡 = 𝑘𝑥 (𝜆 − 𝑥) is still

logistic just as 𝑑𝑥
𝑑𝑡 = 𝑘𝑥 (𝑀 − 𝑥) since 𝜆 > 0. 𝜆 = 𝑀 − ℎ

𝑘 is the new limiting population.

Part (b)

In this case

𝑑𝑥
𝑑𝑡
= 𝑘𝑥 ��𝑀 −

ℎ
𝑘�
− 𝑥�

= 𝑘𝑥 (𝜆 − 𝑥)

Now 𝜆 < 0. Solving this ode
𝑑𝑥

𝑥 (𝜆 − 𝑥)
= 𝑘

1
𝜆𝑥

−
1
𝜆

1
(𝜆 − 𝑥)

= 𝑘

Integrating
1
𝜆

ln |𝑥| − 1
𝜆

ln |(𝜆 − 𝑥)| = �𝑘𝑑𝑡

ln � 𝑥
𝜆 − 𝑥

� = �𝜆𝑘𝑑𝑡

ln � 𝑥
𝜆 − 𝑥

� = 𝜆𝑘𝑡 + 𝑐
𝑥

𝜆 − 𝑥
= 𝐶𝑒𝜆𝑘𝑡

𝑥 + 𝑥𝐶𝑒𝜆𝑘𝑡 = 𝜆𝐶𝑒𝜆𝑘𝑡

𝑥 (𝑡) =
𝜆𝐶𝑒𝜆𝑘𝑡

1 + 𝐶𝑒𝜆𝑘𝑡

Now, since 𝜆 < 0, then as 𝑡 → ∞ then 𝑥 (𝑡) → 0
1 = 0. Hence the population of fish will die

out. (no need to find 𝐶 first, as the whole term goes to zero). This is what we are asked to
show.
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4.3 HW3

4.3.1 Section 2.4 problem 8 (page 122)

Problem Apply Euler method twice to approximate solution on interval �0, 12� first with
step size ℎ = 0.25 then with step size ℎ = 0.1. Compare to three decimal places values of

the two approximation at 𝑥 = 1
2 with the value 𝑦 �12� of the exact solution. 𝑦

′ = 𝑒−𝑦; 𝑦 (0) = 0 .
Exact solution is 𝑦 (𝑥) = ln (𝑥 + 1)

Solution

Using forward Euler method, we write

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 �𝑥𝑛, 𝑦𝑛�

Here 𝑓 �𝑥, 𝑦� = 𝑒−𝑦.

ℎ = 0.25

𝑦 (0) = 0
𝑦 (ℎ) = 𝑦 (0.25) = 𝑦 (0) + ℎ𝑒−𝑦(0) = 0 + 0.25𝑒0 = 0.25
𝑦 (2ℎ) = 𝑦 (0.5) = 𝑦 (0.25) + ℎ𝑒−𝑦(0.25) = 0.25 + 0.25𝑒−0.25 = 0.445

ℎ = 0.1

𝑦 (0) = 0
𝑦 (ℎ) = 𝑦 (0.1) = 𝑦 (0) + ℎ𝑒−𝑦(0) = 0 + 0.1𝑒−0 = 0.1
𝑦 (2ℎ) = 𝑦 (0.2) = 𝑦 (0.1) + ℎ𝑒−𝑦(0.1) = 0.1 + 0.1𝑒−0.1 = 0.190
𝑦 (3ℎ) = 𝑦 (0.3) = 𝑦 (0.2) + ℎ𝑒−𝑦(0.2) = 0.190 + 0.1𝑒−0.190 = 0.273
𝑦 (4ℎ) = 𝑦 (0.4) = 𝑦 (0.3) + ℎ𝑒−𝑦(0.3) = 0.273 + 0.1𝑒−0.273 = 0.349
𝑦 (5ℎ) = 𝑦 (0.5) = 𝑦 (0.4) + ℎ𝑒−𝑦(0.4) = 0.349 + 0.1𝑒−0.349 = 0.420

Exact solution is 𝑦 (0.5) = ln (0.5 + 1) = 0.405

h size 𝑦 �12�

0.25 0.445
0.1 0.420
exact 0.405

4.3.2 Section 2.4 problem 13 (page 122)

Problem Find the exact solution, then apply Euler method twice to approximate to 4
decimal places values the solution on the given interval. First with step ℎ = 0.01 then with
step ℎ = 0.005. Make table showing the approximate values and the actual values, together
with percentage error in the more accurate approximation for 𝑥 an integral multiple of 0.2.
𝑦𝑦′ = 2𝑥3; 𝑦 (1) = 3; 1 ≤ 𝑥 ≤ 2 .

Solution

𝑦′ =
2𝑥3

𝑦
= 𝑓 �𝑥, 𝑦�

Looking at 𝑓 (𝑥) we see that solution is not defined at 𝑦 = 0. Otherwise, 𝑓 �𝑥, 𝑦� is continuous

everywhere. Hence solution exist for 𝑦 ≠ 0. Also 𝜕𝑓
𝜕𝑦 = −

2𝑥3

𝑦2 , hence we see solution is unique,

on some interval that does not include 𝑦 = 0. Now we will solve the ODE

𝑦
𝑑𝑦
𝑑𝑥

= 2𝑥3

𝑦𝑑𝑦 = 2𝑥3𝑑𝑥
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Integrating
1
2
𝑦2 =

1
2
𝑥4 + 𝑐

Applying initial conditions
1
2
(9) =

1
2
+ 𝑐

9
2
−
1
2
= 𝑐

𝑐 = 4

Hence exact solution is
1
2
𝑦2 =

1
2
𝑥4 + 4

𝑦2 = 𝑥4 + 8

𝑦 = ±√𝑥4 + 8

Since 1 ≤ 𝑥 ≤ 3 and 𝑦 (1) = 3, then 𝑦 can not become negative (else it will have to cross
𝑦 = 0). Therefore solution is just the positive branch

𝑦𝑒𝑥𝑎𝑐𝑡 = √𝑥4 + 8

Using Euler, we write

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 �𝑥𝑛, 𝑦𝑛�

But 𝑓 �𝑥𝑛, 𝑦𝑛� =
2𝑥3𝑛
𝑦𝑛

and 𝑥𝑛 = 1 + 𝑛ℎ where ℎ is the step size. The above becomes

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 �𝑥𝑛, 𝑦𝑛�

Using initial conditions, where 𝑛 = 0, the given values 𝑦0 = 3 at 𝑥0 = 1. A small function
was written to implement Euler method and print table. Source code is given below. Here
is the final table generated

x 1. 1.2 1.4 1.6 1.8 2.
h=0.01 3 3.1718 3.4368 3.8084 4.2924 4.889
h=0.005 3 3.1729 3.439 3.8117 4.2967 4.894
exact 3. 3.1739 3.4412 3.8149 4.3009 4.899

% error 0. 0.032303 0.062773 0.085478 0.098183 0.10218

Source code listing:
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In[69]:= SetOptions[$FrontEndSession, PrintPrecision → 5]

(*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.4 13*)

f[x_, y_] := 2 x^3 / y;

makeTable[h_, from_, to_, y0_] := Module[{nSteps = (to - from) / h, data, y, x, skip},

Array[y, Rationalize@nSteps, 0];

Array[x, Rationalize@nSteps, 0];

y[0] = y0; x[0] = from;

Do[(*Euler loop*)

y[n + 1] = y[n] + h f[x[n], y[n]];

x[n + 1] = x[n] + h,

{n, 0, nSteps}

];

skip = Round[0.2 / h];

Table[{x[n], y[n]}, {n, 0, nSteps, skip}]

]

In[76]:= data1 = makeTable[0.01, 1, 2, 3];

data2 = makeTable[0.005, 1, 2, 3];

exact = Sqrt[# ^4 + 8] & /@ data2[[All, 1]];

p = Grid[{

{"x", Sequence @@ data1[[All, 1]]},

{"h=0.01", Sequence @@ data1[[All, 2]]},

{"h=0.005", Sequence @@ data2[[All, 2]]},

{"exact", Sequence @@ exact},

{"% error", Sequence @@ (Abs[data2[[All, 2]] - exact] / Abs[exact] * 100)}

}, Frame → All]

4.3.3 Section 2.4 problem 25

Problem Apply Euler method for 𝑑𝑣
𝑑𝑡 = 32 − 1.6𝑣 with 𝑣 (0) = 0. For 0 ≤ 𝑡 ≤ 2, using step size

ℎ = 0.01, ℎ = 0.005, round 𝑣 to one decimal point. What percentage of limiting velocity 20
ft/sec has been attained after 1 second? After 2 seconds?

Solution

The exact solution is
𝑑𝑣
𝑑𝑡
+ 1.6𝑣 = 32

𝜇 = 𝑒∫1.6𝑑𝑡 = 𝑒1.6𝑡, hence
𝑑
𝑑𝑡
�𝑒1.6𝑡𝑣� = 32𝑒1.6𝑡

Integrating

𝑒1.6𝑡𝑣 = 32�𝑒1.6𝑡𝑑𝑡

=
32
1.6
𝑒1.6𝑡 + 𝑐

Hence

𝑣 (𝑡) =
32
1.6

+ 𝑐𝑒−1.6𝑡

Applying initial conditions

0 =
32
1.6

+ 𝑐

𝑐 = −
32
1.6

109



4.3. HW3 CHAPTER 4. HWS

Therefore, exact solution is

𝑣 (𝑡) =
32
1.6

−
32
1.6
𝑒−1.6𝑡

= 20 �1 − 𝑒−1.6𝑡�

The Euler method is

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓 �𝑥𝑛, 𝑦𝑛�

Where here

𝑓 �𝑥𝑛, 𝑦𝑛� = 32 − 1.6𝑦𝑛
Small function was written to find 𝑣 (𝑡) at 𝑡 = 1, 2 seconds using Euler, with the di�erent
step sizes. It prints the value of 𝑣 when iteration reaches 1 and 2 seconds. Here is the screen
output

data1 = makeTable[0.01, 0, 2, 0];
At one second, using h=0.01 speed is 16.078 at step n = 100
At 2 seconds, using h=0.01 speed is 19.206 at step n = 200
data2 = makeTable[0.005, 0, 2, 0];
At one second, using h=0.005 speed is 16.02 at step n = 200
At 2 seconds, using h=0.005 speed is 19.195 at step n = 400

Therefore (where percentage below, is percentage of limiting speed of 20 ft/sec)

h speed at 1 second speed at 2 seconds

0.01 16.078 19.206
0.005 16.02 (80.1%) 19.195 (95.98%)

The source code written for this problem is given below

In[80]:= SetOptions[$FrontEndSession, PrintPrecision → 5]

(*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.4 25*)

f[t_, y_] := 32 - 1.6 y;

makeTable[h_, from_, to_, y0_] := Module[{nSteps = Rationalize[(to - from) / h], data, t, skip, y},

Array[y, nSteps, 0];

Array[t, nSteps, 0];

y[0] = y0; t[0] = from;

Do[(*Euler loop*)

y[n + 1] = y[n] + h f[t[n], y[n]];

If[t[n] ⩵ 1, Print["At one second, using h=", h, " speed is ", y[n + 1], " at step n = ", n]];

t[n + 1] = t[n] + h,

{n, 0, nSteps}

];

Print["At 2 seconds, using h=", h, " speed is ", y[nSteps], " at step n = ", nSteps];

(*skip=Round[0.2/h];*)

skip = 1;

Table[{t[n], y[n]}, {n, 0, nSteps, skip}]

]

In[83]:= data1 = makeTable[0.01, 0, 2, 0];

At one second, using h=0.01 speed is 16.078 at step n = 100

At 2 seconds, using h=0.01 speed is 19.206 at step n = 200

In[84]:= data2 = makeTable[0.005, 0, 2, 0];

At one second, using h=0.005 speed is 16.02 at step n = 200

At 2 seconds, using h=0.005 speed is 19.195 at step n = 400

4.3.4 Section 2.4 problem 30

Problem Apply Euler method with successively smaller step sizes on the interval [0, 2] to
verify empirically that the solution of 𝑦′ = 𝑥2 + 𝑦2; 𝑦 (0) = 0 has vertical asymptote near
𝑥 = 2.003147. Contrast this with example 2, in which 𝑦 (0) = 1.
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Solution

Small function was written to implement Forward Euler for this problem.

In[85]:= SetOptions[$FrontEndSession, PrintPrecision → 5]

(*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.4 30*)

f[x_, y_] := x^2 + y^2;

makeTable[h_, from_, to_, y0_] := Module[{nSteps = Rationalize[(to - from) / h], data, x, y, skip},

Array[y, nSteps, 0];

Array[x, nSteps, 0];

(*Print["number of steps is ",nSteps];*)

y[0] = y0; x[0] = from;

Do[(*Euler loop*)

y[n + 1] = y[n] + h f[x[n], y[n]];

x[n + 1] = x[n] + h,

{n, 0, nSteps}

];

skip = 1;

Table[{x[n], y[n]}, {n, 0, nSteps, skip}]

]

The above function was called for ℎ = 0.1, 0.01, 0.001 which showed that better and better
approximation, the numerical solution approached asymptote near 𝑥 = 2.003147. For ℎ = 0.1,
here is the output

In[88]:= h = 0.1;

data1 = makeTable[h, 0, 2, 0];

p1 = ListLinePlot[data1,

Frame → True,

FrameLabel →

{{"y(x)", None},

{"x", Row[{"Euler solution using h= ", h, " with asymptote line in red"}]}},

BaseStyle → 14, GridLines → Automatic, GridLinesStyle → LightGray,

Epilog → {Red, Line[{{2.003147, 0}, {2.003147, 7}}]}, ImageSize → 400]

Out[90]=
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Euler solution using h= 0.1 with asymptote line in red

For ℎ = 0.01, here is the output
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In[48]:= h = 0.01;

data1 = makeTable[h, 0, 2, 0];

p1 = ListLinePlot[data1,

Frame → True,

FrameLabel →

{{"y(x)", None},

{"x", Row[{"Euler solution using h= ", h, " with asymptote line in red"}]}},

BaseStyle → 14, GridLines → Automatic, GridLinesStyle → LightGray,

Epilog → {Red, Line[{{2.003147, 0}, {2.003147, 7}}]}, ImageSize → 400]

Out[50]=
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Euler solution using h= 0.01 with asymptote line in red

For ℎ = 0.001, here is the output

In[51]:= h = 0.001;

data1 = makeTable[h, 0, 2, 0];

p1 = ListLinePlot[data1,

Frame → True,

FrameLabel →

{{"y(x)", None},

{"x", Row[{"Euler solution using h= ", h, " with asymptote line in red"}]}},

BaseStyle → 14, GridLines → Automatic, GridLinesStyle → LightGray,

Epilog → {Red, Line[{{2.003147, 0}, {2.003147, 7}}]}, ImageSize → 400]

Out[53]=
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Euler solution using h= 0.001 with asymptote line in red

4.3.5 Section 2.5 problem 8

Apply improved Euler method to approximate solution on interval �0, 12� with step size

ℎ = 0.1 Construct table showing 4 decimal places values of approximation solution and
exact solution at points 0.1, 0.2, 0.3, 0.4, 0.5.

𝑦′ = 𝑒−𝑦; 𝑦 (0) = 0

Exact solution is 𝑦 (𝑥) = ln (𝑥 + 1)

Solution

112



4.3. HW3 CHAPTER 4. HWS

Improved Euler method uses

𝑘1 = 𝑓 �𝑥𝑛, 𝑦𝑛�

𝑢𝑛+1 = 𝑦𝑛 + ℎ𝑘1
𝑘2 = 𝑓 (𝑥𝑛+1, 𝑢𝑛+1)

𝑦𝑛+1 = 𝑦𝑛 + ℎ
𝑘1 + 𝑘2
2

A small function was written to implement the above improved Euler method. The following
is source code

(*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.5 8, improved Euler*)

f[x_, y_] := Exp[-y];

makeTableImproved[h_, from_, to_, y0_] :=

Module[{nSteps = Rationalize[(to - from) / h], data, x, y, skip, k1, k2, predictor},

Array[y, nSteps, 0];

Array[x, nSteps, 0];

y[0] = y0; x[0] = from;

Do[(*Euler loop*)

k1 = f[x[n], y[n]];

predictor = y[n] + h k1;

x[n + 1] = x[n] + h;

k2 = f[x[n + 1], predictor];

y[n + 1] = y[n] + h (1 / 2 * (k1 + k2)),

{n, 0, nSteps}

];

skip = Round[0.1 / h];

Table[{x[n], y[n]}, {n, 0, nSteps, skip}]

]

This function was called to generate the table and format it. Here is the result

In[270]:= h = 0.1;

data1 = makeTable[h, 0, .5, 0];

exact = Log[# + 1] & /@ data1[[All, 1]];

p = Grid[{

{"x", Sequence @@ data1[[All, 1]]},

{"h=0.01", Sequence @@ data1[[All, 2]]},

{"exact", Sequence @@ exact},

{"% error",

Sequence @@ ((exact - data1[[All, 2]]) / (If[exact == 0, 1, exact, 1]) * 100)}

}, Frame → All]

Out[273]=

x 0 0.1 0.2 0.3 0.4 0.5

h=0.01 0 0.09524187 0.1822067 0.2622174 0.3363033 0.405281

exact 0 0.09531018 0.1823216 0.2623643 0.3364722 0.4054651

% error 0 0.00683089 0.01148799 0.01469129 0.01689781 0.01840683

Then Euler method was compared to Improved Euler for the same step size ℎ = 0.1, by
plotting them on the same figure. Here is the result. The red line is the Euler method, and
the blue line is the improved Euler method. We see the di�erence between them increases
as more steps are taken.
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In[216]:= h = 0.1;

dataEuler = makeTableEuler[h, 0, .5, 0];

dataEulerImproved = makeTableImproved[h, 0, .5, 0];

p1 = ListLinePlot[{dataEuler, dataEulerImproved},

Frame → True, PlotStyle → {Red, Blue},

FrameLabel →

{{"y(x)", None}, {"x", Row[{"Compare Euler with Improved Euler (Red is Euler, Blue is improved)"}]}},

BaseStyle → 12, GridLines → Automatic, GridLinesStyle → LightGray, ImageSize → 400]

Out[219]=
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Compare Euler with Improved Euler (Red is Euler, Blue is improved)

4.3.6 Section 2.5 problem 13

Problem Find the exact solution, then apply improved Euler method twice to approximate
to 5 decimal places values the solution on the given interval. First with step ℎ = 0.01
then with step ℎ = 0.005. Make table showing the approximate values and the actual
values, together with percentage error in the more accurate approximation for 𝑥 an integral
multiple of 0.2. 𝑦𝑦′ = 2𝑥3; 𝑦 (1) = 3; 1 ≤ 𝑥 ≤ 2 .

Solution

The analytical solution is the same as in problem 13, section 2.5 and hence will not be
repeated again. The improved Euler function, which was written for problem 8 above, was
now used for ℎ = 0.01 and ℎ = 0.005. Source code is given above in problem 8. Here is the
final table generated

In[285]:= h = 0.01;

data1 = makeTableImproved[h, 1, 2, 3];

h = 0.005;

data2 = makeTableImproved[h, 1, 2, 3];

exact = Sqrt[# ^4 + 8] & /@ data2[[All, 1]];

p = Grid[{

{"x", Sequence @@ data1[[All, 1]]},

{"h=0.01", Sequence @@ data1[[All, 2]]},

{"h=0.005", Sequence @@ data2[[All, 2]]},

{"exact", Sequence @@ exact},

{"% error", Sequence @@ ((exact - data2[[All, 2]]) / exact * 100)}

}, Frame → All]

Out[290]=

x 1 1.2 1.4 1.6 1.8 2.

h=0.01 3 3.1739 3.44118 3.81494 4.30091 4.89901

h=0.005 3 3.1739 3.44117 3.81492 4.30089 4.89899

exact 3 3.17389 3.44116 3.81492 4.30088 4.89898

% error 0 -0.0000547372 -0.000101625 -0.000134386 -0.000151819 -0.000156696

To better compare the improved Euler method, with the Euler method, a new table was
generated. This gives result only for ℎ = 0.01. Here is the result. This used the Euler function
which was written for section 2.4 and listed above. The table also includes the di�erence at
each 𝑥 between the two methods. We see from this table, that as more steps are made (at
𝑥 = 2 ) that the di�erence between the improved Euler and Euler method has increased.
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In[311]:= h = 0.01;

dataEuler = makeTableEuler[h, 1, 2, 3];

dataImproved = makeTableImproved[h, 1, 2, 3];

p = Grid[{

{"x", Sequence @@ dataEuler[[All, 1]]},

{"h=0.01, Euler", Sequence @@ dataEuler[[All, 2]]},

{"h=0.01, Improved Euler", Sequence @@ dataImproved[[All, 2]]},

{"Absolute Difference", Sequence @@ (dataEuler[[All, 2]] - dataImproved[[All, 2]])}

}, Frame → All, Alignment → Left]

Out[314]=

x 1 1.2 1.4 1.6 1.8 2.

h=0.01, Euler 3 3.171843 3.436841 3.808392 4.292431 4.88896

h=0.01, Improved Euler 3 3.1739 3.441177 3.814939 4.30091 4.89901

Absolute Difference 0 -0.002057166 -0.004335663 -0.006546691 -0.008478646 -0.01005077

4.3.7 Section 2.5 problem 25

Problem Apply improved Euler method for 𝑑𝑣
𝑑𝑡 = 32−1.6𝑣 with 𝑣 (0) = 0. For 0 ≤ 𝑡 ≤ 2, using

step size ℎ = 0.01, ℎ = 0.005, round 𝑣 to one decimal point. What percentage of limiting
velocity 20 ft/sec has been attained after 1 second? After 2 seconds?

Solution The exact solution we derived in section 2.4 above. The improved Euler method,
implemented in the function shown above, was used in this problem to generate similar
table to section 2.4, problem 25. But now using the improved Euler. Here is the resulting
table.

data1 = makeTableImproved[0.01, 0, 2, 0];
At one second, using h=0.01 speed is 15.96179 at step n = 100
At 2 seconds, using h=0.01 speed is 19.18464 at step n = 200
data2 = makeTableImproved[0.005, 0, 2, 0];
At one second, using h=0.005 speed is 15.962 at step n = 200
At 2 seconds, using h=0.005 speed is 19.18473 at step n = 400

Therefore, improved Euler method result is

h speed at 1 second speed at 2 seconds

0.01 15.96179 19.18464
0.005 15.962 (79.81%) 19.18473 (95.923%)

This can be compared with Euler method in problem 2.4.25. We see small di�erence in
speeds at 1 and 2 seconds. The improved Euler result should be taken as the more accurate.
Here is the Euler method result, copied from 2.4.25 to make it easier to compare with

h speed at 1 second speed at 2 seconds

0.01 16.078 19.206
0.005 16.02 (80.1%) 19.195 (95.98%)

4.3.8 Section 2.5 problem 26

Problem Deer population 𝑃 (𝑡) in small forest initially numbered 25 and satisfies logistic

equation 𝑑𝑃
𝑑𝑡 = 0.0225𝑃 (𝑡) − 0.0003𝑃2. With 𝑡 in months. Use improved Euler method to

approximate solution for 10 years. First with step ℎ = 1 and then with ℎ = 0.5 rounding
o� 𝑃 to 3 decimal points. What percentage of the limiting population of 75 deer has been
attained after 5, 10 years?

Solution The improved Euler method

𝑘1 = 𝑓 �𝑥𝑛, 𝑦𝑛�

𝑢𝑛+1 = 𝑦𝑛 + ℎ𝑘1
𝑘2 = 𝑓 (𝑥𝑛+1, 𝑢𝑛+1)

𝑦𝑛+1 = 𝑦𝑛 + ℎ
𝑘1 + 𝑘2
2
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With initial conditions 𝑦0 = 25 was used to solve this ODE with 𝑓 �𝑥, 𝑦� = 0.0225𝑦 − 0.0003𝑦2.
The same improved Euler method function listed earlier was used. The following table
summarizes the results

h (moths) 𝑝 (𝑡) at 5 years 𝑝 (𝑡) at 10 years

1 49.3909 (65.85%) 66.1129 (88.15%)
0.5 49.39135 (65.85%) 66.11343 (88.15%)

In[347]:=

(*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.5 26, improved Euler*)

f[t_, y_] := 0.0225 y - 0.0003 y^2;

makeTableImproved[h_, from_, to_, y0_] :=

Module[{nSteps = Rationalize[(to - from) / h], data, t, y, skip, k1, k2, predictor},

Array[y, nSteps, 0];

Array[t, nSteps, 0];

y[0] = y0; t[0] = from;

Do[(*Euler loop*)

k1 = f[t[n], y[n]];

predictor = y[n] + h k1;

t[n + 1] = t[n] + h;

k2 = f[t[n + 1], predictor];

y[n + 1] = y[n] + h (1 / 2 * (k1 + k2)),

{n, 0, nSteps}

];

skip = 1; (*Round[0.2/h];*)

Table[{t[n], y[n]}, {n, 0, nSteps, skip}]

]
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4.4 HW4

4.4.1 Section 3.1 problem 11 (page 155)

Problem Use method of elimination to determine if linear system is consistent or not. For
each consistent system, find the solution if it is unique. Otherwise, describe the infinite
solution set in terms of an arbitrary parameter 𝑡 as in examples 5 and 7.

2𝑥 + 7𝑦 + 3𝑧 = 11
𝑥 + 3𝑦 + 2𝑧 = 2
3𝑥 + 7𝑦 + 9𝑧 = −12

Solution

We set up the augmented matrix and do forward elimination. The row operations are
given on top of each arrow. For example 𝑅2 = −

1
2𝑅1 + 𝑅2 mean that row 2 is replaced by

−1
2 of the first row added to the second row.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 7 3 11
1 3 2 2
3 7 9 −12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−
1
2𝑅1⟹

𝑅3=𝑅3−
3
2𝑅1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 7 3 11
0 −0.5 0.5 −3.5
0 −3.5 4.5 −28.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=−7𝑅2⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 7 3 11
0 3.5 −3.5 24. 5
0 −3.5 4.5 −28.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3+𝑅2⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 7 3 11
0 3.5 −3.5 24. 5
0 0 1 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence the system of equation now is (from the last matrix above)

2𝑥 + 7𝑦 + 3𝑧 = 11
3.5𝑦 − 3.5𝑧 = 24. 5

𝑧 = −4

Since at the last row, we did not get 0 = some number, then the system is consistent. This
means the system has either a unique solution, or has infinite number of solutions. But
since we did not get 0𝑧 = 0, then the system has a unique solution. Now we will find the
unique solution by backward substitution. From last equation, we obtain

𝑧 = −4

From the second equation

3.5𝑦 − 3.5 (−4) = 24. 5
𝑦 = 3

And from the first equation

2𝑥 + 7 (3) + 3 (−4) = 11
𝑥 = 1

Hence the solution is

𝑥 = 1
𝑦 = 3
𝑧 = −4

4.4.2 Section 3.1 problem 16

Problem Use method of elimination to determine if linear system is consistent or not. For
each consistent system, find the solution if it is unique. Otherwise, describe the infinite
solution set in terms of an arbitrary parameter 𝑡 as in examples 5 and 7.

𝑥 − 3𝑦 + 2𝑧 = 6
𝑥 + 4𝑦 − 𝑧 = 4
5𝑥 + 6𝑦 + 𝑧 = 20

Solution
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We set up the augmented matrix and do forward elimination
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −3 2 6
1 4 −1 4
5 6 1 20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−𝑅1⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −3 2 6
0 7 −3 −2
5 6 1 20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=−5𝑅1+𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −3 2 6
0 7 −3 −2
0 21 −9 −10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=−3𝑅2+𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −3 2 6
0 7 −3 −2
0 0 0 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence the last equation of last matrix above, we see that 0𝑧 = −4. Since this result implies
0 = −4, which is not possible, then there is no solution. The system is inconsistent. There
are no solutions.

4.4.3 Section 3.1 problem 21

Problem Use method of elimination to determine if linear system is consistent or not. For
each consistent system, find the solution if it is unique. Otherwise, describe the infinite
solution set in terms of an arbitrary parameter 𝑡 as in examples 5 and 7.

𝑥 + 𝑦 − 𝑧 = 5
3𝑥 + 𝑦 + 3𝑧 = 11
4𝑥 + 𝑦 + 5𝑧 = 14

solution

We set up the augmented matrix and do forward elimination
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 5
3 1 3 11
4 1 5 14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=−3𝑅1+𝑅2⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 5
0 −2 6 −4
4 1 5 14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=−4𝑅1+𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 5
0 −2 6 −4
0 −3 9 −6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=−1.5𝑅2+𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 5
0 −2 6 −4
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since the final equation has 0𝑧 = 0, this means there are infinite number of solutions. Since
any 𝑧 will satisfy this. The system is therefore consistent. Let 𝑧 = 𝑡, hence from the second
equation we obtain

−2𝑦 + 6𝑧 = −4
−2𝑦 + 6𝑡 = −4

𝑦 =
−4 − 6𝑡
−2

= 2 + 3𝑡

First equation gives

𝑥 + 𝑦 − 𝑧 = 5
𝑥 = 5 − 𝑦 + 𝑧
= 5 − (2 + 3𝑡) + 𝑡
= 3 − 2𝑡

Hence solution is

𝑥 = 3 − 2𝑡
𝑦 = 2 + 3𝑡
𝑧 = 𝑡

4.4.4 Section 3.1 problem 31

Problem A system has the form

𝑎1𝑥 + 𝑏1𝑦 = 0
𝑎2𝑥 + 𝑏2𝑦 = 0
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Explain by geometric reasoning why such a system has either a unique solution or infinitely
many solutions. In the former case, what is the unique solution?

solution These two equations represent two lines in 2D space. These can be written in
standard form as

𝑦 = −
𝑎1
𝑏1
𝑥

𝑦 = −
𝑎2
𝑏2
𝑥

We see now, when we compare each equation above to the equation of a line of the form

𝑦 = 𝑚𝑥 + 𝑐

Where 𝑚 is the slope, and 𝑐 is the intercept with the 𝑦 axis, we see that both lines have
zero intercept.

This means both lines pass through the origin, but with possibly di�erent slope. There-
fore, since both lines pass though one point, then there is either a unique solution,
which is the origin in this case, when 𝑎1

𝑏1
≠ 𝑎2

𝑏2
, or the other case is the infinite number

of solutions when the slope is the same, i.e. 𝑎1
𝑏1
= 𝑎2

𝑏2
, which means both lines are on top of

each others. (same line).

4.4.5 Section 3.1 problem 33

Problem The linear system

𝑎1𝑥 + 𝑏1𝑦 = 𝑐1
𝑎2𝑥 + 𝑏2𝑦 = 𝑐2
𝑎3𝑥 + 𝑏3𝑦 = 𝑐3

of three equations in two unknowns, represents three lines 𝐿1, 𝐿2, 𝐿3 in 𝑥𝑦 plane. Figure 3.1.5
shows six possible configurations of these three lines. In each case describe the solution
set of the system.

solution

case a No solution. Since there is not one point where the three lines meet at.

case b Unique solution. Since there is a single point where the three lines intersect at.

case c No solution. Since there is not one point where the three lines meet at.

case d No solutions. All lines are parallel. There is not one point where the three lines
meet at

case e Unique solution. There is one single point where the three lines intersect. Even
though lines 𝐿1, 𝐿2 are on top of each others.

case f Infinite number of solutions. The three lines are on top of each others.

4.4.6 Section 3.1 problem 34

Problem Consider the linear system

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1
𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2
𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 = 𝑑3

of three equations in three unknowns to represent three planes 𝑃1, 𝑃2, 𝑃3 in 𝑥𝑦𝑧 plane.
Describe the solution in each of the following cases. (a) Three planes are parallel and
distinct. (b) The three planes coincide. 𝑃1 = 𝑃2 = 𝑃3. (c) 𝑃1 and 𝑃2 coincide and are parallel
to 𝑃3. (d) 𝑃1, 𝑃2 intersect in a line 𝐿 that is parallel to 𝑃3. (e) 𝑃1, 𝑃2 intersect in line 𝐿 that
lies in 𝑃3. (f) 𝑃1, 𝑃2 intersect in a line 𝐿 that intersect 𝑃3 in a single point.

solution

case a No solution exist. Since three planes do not intersect.
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case b There are infinite number of solutions. Since intersection is line.

case c No solution Since 𝑃1, 𝑃2 are parallel to 𝑃3

case d No solution. This is similar to case c.

case e Infinite number of solution, since the intersection between all three planes is a line.

case f Unique solution. Since a single point is found on the three planes.

4.4.7 Section 3.2 problem 11

Problem Use elementary row operations to transform each augmented coe�cient matrix
to echelon form then solve the system by back substitution

2𝑥1 + 8𝑥2 + 3𝑥3 = 2
𝑥1 + 3𝑥2 + 2𝑥3 = 5
2𝑥1 + 7𝑥2 + 4𝑥3 = 8

solution

We set up the augmented matrix and do forward elimination
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 8 3 2
1 3 2 5
2 7 4 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=−
1
2𝑅1+𝑅2⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 8 3 2
0 −1 1

2 4
2 7 4 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=−𝑅1+𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 8 3 2
0 −1 1

2 4
0 −1 1 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=−𝑅2+𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 8 3 2
0 −1 1

2 4
0 0 1

2 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above final matrix is now in echelon form. Since the final equation says that 1
2𝑥3 = 2,

therefore the system is consistent. Doing backward substitution gives

𝑥3 = 4

From second equation

−𝑥2 +
1
2
𝑥3 = 4

−𝑥2 +
1
2
(4) = 4

𝑥2 = −2

And from first equation

2𝑥1 + 8𝑥2 + 3𝑥3 = 2
2𝑥1 + 8 (−2) + 3 (4) = 2

𝑥1 = 3

Hence solution is

𝑥1 = 3
𝑥2 = −2
𝑥3 = 4

4.4.8 Section 3.2 problem 18

Problem Use elementary row operations to transform each augmented coe�cient matrix
to echelon form then solve the system by back substitution

3𝑥1 − 6𝑥2 + 𝑥3 + 13𝑥4 = 15
3𝑥1 − 6𝑥2 + 3𝑥3 + 21𝑥4 = 21
2𝑥1 − 4𝑥2 + 5𝑥3 + 26𝑥4 = 23

solution
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We set up the augmented matrix and do forward elimination
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −6 1 13 15
3 −6 3 21 21
2 −4 5 26 23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=−𝑅1+𝑅2⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −6 1 13 15
0 0 2 8 6
2 −4 5 26 23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=−2𝑅1+3𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −6 1 13 15
0 0 2 8 6
0 0 13 52 39

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=−13𝑅2+2𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −6 1 13 15
0 0 2 8 6
0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above final matrix is now in echelon form. Since last row gives 0𝑥𝑖 = 0, then there are
infinite number of solutions, as any 𝑥 will satisfy this. System is therefore consistent.

Let

𝑥4 = 𝑡

Hence from the second row, we obtain

2𝑥3 + 8𝑥4 = 6
2𝑥3 + 8𝑡 = 6

𝑥3 =
6 − 8𝑡
2

= 3 − 4𝑡

And from the first equation

3𝑥1 − 6𝑥2 + 𝑥3 + 13𝑥4 = 15
3𝑥1 − 6𝑥2 = 15 − 𝑥3 − 13𝑥4
3𝑥1 − 6𝑥2 = 15 − (3 − 4𝑡) − 13𝑡

Let 𝑥2 = 𝑠 then

3𝑥1 − 6𝑠 = 12 − 9𝑡

𝑥1 =
12 − 9𝑡 + 6𝑠

3
= 4 − 3𝑡 + 2𝑠

Hence the final solution is

𝑥1 = 4 − 3𝑡 + 2𝑠
𝑥2 = 𝑠
𝑥3 = 3 − 4𝑡
𝑥4 = 𝑡

4.4.9 Section 3.2 problem 24

problem Determine for what value of 𝑘 each system has (a) unique solution (b) no solution
(c) infinite solutions

3𝑥 + 2𝑦 = 0
6𝑥 + 𝑘𝑦 = 0

solution

We set up the augmented matrix and do forward elimination
⎛
⎜⎜⎜⎜⎝
3 2 0
6 𝑘 0

⎞
⎟⎟⎟⎟⎠
𝑅2=−2𝑅1+𝑅2⟹

⎛
⎜⎜⎜⎜⎝
3 2 0
0 −4 + 𝑘 0

⎞
⎟⎟⎟⎟⎠

Hence, the last equation says that

(−4 + 𝑘) 𝑦 = 0

case a A unique solution exist if 𝑘 ≠ 4, since in this case 𝑦 must be zero. Giving the unique
solution �𝑦 → 0, 𝑥 → 0�

case b There is no value of 𝑘 which causes no solution to exist. Since the RHS is zero in
the last equation.
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case c If 𝑘 = 4, then we have 0𝑦 = 0. Then any value of 𝑦 will satisfy this. Hence infinite
number of solutions.

4.4.10 Section 3.2 problem 27

problem Determine for what value of 𝑘 each system has (a) unique solution (b) no solution
(c) infinite solutions

𝑥 + 2𝑦 + 𝑧 = 3
2𝑥 − 𝑦 − 3𝑧 = 5
4𝑥 + 3𝑦 − 𝑧 = 𝑘

solution

We set up the augmented matrix and do forward elimination
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1 3
2 −1 −3 5
4 3 −1 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=−2𝑅1+𝑅2⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1 3
0 −5 −5 −1
4 3 −1 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=−4𝑅1+𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1 3
0 −5 −5 −1
0 −5 −5 𝑘 − 12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=−𝑅2+𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 1 3
0 −5 −5 −1
0 0 0 𝑘 − 11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence, the last equation says that

(0) 𝑧 = 𝑘 − 11

case a No 𝑘 exist which gives unique solution. For if 𝑘 = 11, then we have (0) 𝑧 = 0 and this
gives infinite solutions. And if 𝑘 ≠ 11, then we have (0) 𝑧 = number. Which says there are
no solution.

case b If 𝑘 ≠ 11, then we have (0) 𝑧 = number. Which says there are no solution.

case c if 𝑘 = 11, then we have (0) 𝑧 = 0 and this gives infinite solutions

4.4.11 Section 3.2 problem 28

Problem Under what conditions on the constants 𝑎, 𝑏, 𝑐 does the systems

2𝑥 − 𝑦 + 3𝑧 = 𝑎
𝑥 + 2𝑦 + 𝑧 = 𝑏

7𝑥 + 4𝑦 + 9𝑧 = 𝑐

Have unique solution, no solution, infinite number of solutions?

solution

We set up the augmented matrix and do forward elimination
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 3 𝑎
1 2 1 𝑏
7 4 9 𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=2𝑅2⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 3 𝑎
2 4 2 2𝑏
7 4 9 𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−𝑅1⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 3 𝑎
0 5 −1 2𝑏 − 𝑎
7 4 9 𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=7𝑅1⟹
𝑅3=2𝑅3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

14 −7 21 7𝑎
0 5 −1 2𝑏 − 𝑎
14 8 18 2𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3−𝑅1⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

14 −7 21 7𝑎
0 5 −1 2𝑏 − 𝑎
0 15 −3 2𝑐 − 7𝑎

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3−3𝑅2⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

14 −7 21 7𝑎
0 5 −1 2𝑏 − 𝑎
0 0 0 2𝑐 − 4𝑎 − 6𝑏

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Hence, the last equation says

(0) 𝑧 = 2𝑐 − 4𝑎 − 6𝑏
(0) 𝑧 = 𝑐 − 2𝑎 − 3𝑏
0 (𝑧) = 𝑐 − (2𝑎 + 3𝑏)

If the RHS is zero, then we have infinite number of solutions, since then we end up with
(0) 𝑧 = 0, which means any 𝑧 will satisfy this equation. But if the RHS is not zero, then we
end up with (0) 𝑧 = some number. Which is not possible. Therefore we conclude that

If 𝑐 = (2𝑎 + 3𝑏) then infinite number of solutions.

If 𝑐 ≠ (2𝑎 + 3𝑏) then no solution.

It is not possible to obtain a unique solution.

4.4.12 Problem 3

Write the following as 𝐴𝑥 = 𝑏 and determine for what values of the parameter 𝑘 the system
has (i) unique solution (ii) no solution, (iii) infinite solutions. (a)

𝑥1 + 3𝑥2 = 8
−𝑥1 + 2𝑥2 − 𝑥3 = 4
3𝑥1 + 𝑥2 + 10𝑥3 = 𝑘

(b)

−𝑥2 + 0.5𝑥3 = 0
4𝑥1 + 2𝑥2 + 3𝑥3 = 2

2𝑥1 + 3𝑥2 + 0.5𝑥3 = 𝑘

4.4.12.1 Part (a)

We write it first as 𝐴𝑥 = 𝑏
𝐴

���������������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 3
−1 2 −1
3 1 10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑏
�⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

𝑏
⏞⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

8
4
𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We next set up the augmented matrix and do forward elimination
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 3 8
−1 2 −1 4
3 1 10 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅1+𝑅2⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 3 8
0 2 2 12
3 1 10 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=3𝑅1−𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 3 8
0 2 2 12
0 −1 −1 24 − 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅2+2𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 3 8
0 2 2 12
0 0 0 60 − 2𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, from last equation we see that

(0) 𝑥3 = 30 − 𝑘

case (i) It is not possible to have unique solution.

case (iI) If (30 − 𝑘) ≠ 0 then there is no solution, since then we have 0𝑥3 = some number,
which is not possible. Hence for 𝑘 ≠ 30, there is no solution.

case (iii) If (30 − 𝑘) = 0 or 𝑘 = 30, then there are infinite number of solutions.
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4.4.12.2 Part (b)

We write it first as 𝐴𝑥 = 𝑏
𝐴

�����������������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0.5
4 2 3
2 3 0.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑏
�⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

𝑏
⏞⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2
𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We next set up the augmented matrix and do forward elimination
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 0.5 0
4 2 3 2
2 3 0.5 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

swap(𝑅2,𝑅1)
⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 2 3 2
0 −1 0.5 0
2 3 0.5 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅1−2𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 2 3 2
0 −1 0.5 0
0 −4 2 2 − 2𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=−4𝑅2+𝑅3⟹

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 2 3 2
0 −1 0.5 0
0 0 0 2 − 2𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, from last equation we see that

(0) 𝑥3 = 1 − 𝑘

case (i) It is not possible to have unique solution.

case (iI) If (1 − 𝑘) ≠ 0 then there is no solution, since then we have 0𝑥3 = some number,
which is not possible. Hence for 𝑘 ≠ 1, there is no solution.

case (iii) If (1 − 𝑘) = 0 or 𝑘 = 1, then there are infinite number of solutions.
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4.5 HW5

4.5.1 Section 3.3 problem 8 (page 174)

Problem Find Reduced Echelon form for
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
3 −9 3
1 −2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solution

The first step is to obtain the Echelon form, then convert that to Reduced Echelon form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
3 −9 3
1 −2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−3𝑅1⟶
𝑅3=𝑅3−𝑅1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
0 3 18
0 2 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3−
2
3𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
0 3 18
0 0 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now it is in Echelon form, we make it Reduced Echelon form. First we make each leading
element 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
0 3 18
0 0 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=
1
3𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
0 1 6
0 0 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=
−1
4 𝑅3

⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
0 1 6
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now we make all entries above each leading element zero
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −5
0 1 6
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=𝑅1+4𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 19
0 1 6
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−6𝑅3⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 19
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=𝑅1−19𝑅3⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.5.2 Section 3.3 problem 9

Problem Find Reduced Echelon form for
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 2 18
0 1 4
4 1 12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solution

The first step is to obtain the Echelon form, then we convert that to Reduced Echelon form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 2 18
0 1 4
4 1 12

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3−
4
5𝑅1⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 2 18
0 1 4
0 −3

5 −12
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3+
3
5𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 2 18
0 1 4
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now it is in Echelon form, we make it Reduced Echelon form. First we make each leading
element 1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 2 18
0 1 4
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=
1
5𝑅1⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2
5

18
5

0 1 4
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now we make all entries above each leading element zero
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2
5

18
5

0 1 4
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=𝑅1−
2
5𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 2
0 1 4
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.5.3 Section 3.3 problem 31

Problem Show that the two matrices in (1) are both row equivalent to the 3 × 3 identity
matrix (and hence by theorem 1, to each others)
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Solution The two matrices in (1) are
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 4 5
0 0 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
0 2 2
0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

We now reduce each matrix to Reduced Echelon form and see if we obtain the 3×3 identity
matrix. Starting with the first matrix above, and since the matrices are already in Echelon
form, we just need to do the reduction steps.

First we make each leading element 1
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 4 5
0 0 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=
1
4𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 1 5

4
0 0 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=
1
6𝑅3⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 1 5

4
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now we make all entries above each leading element zero
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 1 5

4
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=𝑅1−2𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1
2

0 1 5
4

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−
5
4𝑅3⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1
2

0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=𝑅1−
1
2𝑅3⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2)

Now we work on the second matrix. First we make each leading element 1
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
0 2 2
0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=
1
2𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
0 1 1
0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=
1
3𝑅3⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
0 1 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now we make all entries above each leading element zero
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1
0 1 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=𝑅1−𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−𝑅3⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

Comparing (2) and (3) we see that the Reduced Echelon form in both case came out to be
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence both matrices in (1) are row equivalent.

4.5.4 Section 3.3 problem 32

Problem Show that the matrix
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠

is row equivalent to the 2 × 2 identity matrix, provided 𝑎𝑑 − 𝑏𝑐 ≠ 0

Solution let us convert the given matrix to Reduced Echelon form. Assuming 𝑎 ≠ 0 then
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠
𝑅2=𝑅2−

𝑐
𝑎𝑅1⟶

⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
0 𝑑 − 𝑐

𝑎𝑏

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
0 𝑎𝑑−𝑐𝑏

𝑎

⎞
⎟⎟⎟⎟⎠

Now we need to make each leading element 1.
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
0 𝑎𝑑−𝑐𝑏

𝑎

⎞
⎟⎟⎟⎟⎠
𝑅1=

1
𝑎𝑅1⟶

⎛
⎜⎜⎜⎜⎝
1 𝑏

𝑎
0 𝑎𝑑−𝑐𝑏

𝑎

⎞
⎟⎟⎟⎟⎠
𝑅2=

𝑎
𝑎𝑑−𝑐𝑏𝑅2⟶

⎛
⎜⎜⎜⎜⎝
1 𝑏

𝑎
0 1

⎞
⎟⎟⎟⎟⎠

Now, assuming that 𝑎𝑑 − 𝑐𝑏 ≠ 0, only then we can do the next step, since we dividing by
𝑎𝑑 − 𝑐𝑏

⎛
⎜⎜⎜⎜⎝
1 𝑏

𝑎
0 𝑎𝑑−𝑐𝑏

𝑎

⎞
⎟⎟⎟⎟⎠
𝑅2=

𝑎
𝑎𝑑−𝑐𝑏𝑅2⟶

⎛
⎜⎜⎜⎜⎝
1 𝑏

𝑎
0 1

⎞
⎟⎟⎟⎟⎠
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Now we make all entries in column above each leading element zero.
⎛
⎜⎜⎜⎜⎝
1 𝑏

𝑎
0 1

⎞
⎟⎟⎟⎟⎠
𝑅1=𝑅1−

𝑏
𝑎𝑅2⟶

⎛
⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎠

So we see, that unless 𝑎𝑑 − 𝑐𝑏 ≠ 0, we would not have been able to complete the Reduced
Echelon form process, since in one the steps above, we would have divided by zero. We
conclude that any 2 × 2 matrix is row equivalent to 2 × 2 identity matrix provided the
determinant is not zero. Since |𝐴| = 𝑎𝑑 − 𝑐𝑏.

4.5.5 Section 3.3 problem 36

Problem Suppose that 𝑎𝑑 − 𝑏𝑐 ≠ 0 in the homogeneous system of problem 35. Use problem
32 to show that its only solution is the trivial solution.

Solution Problem 35 gives

𝑎𝑥 + 𝑏𝑦 = 0
𝑐𝑥 + 𝑑𝑦 = 0

In matrix form ⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Since 𝑎𝑑 − 𝑐𝑏 ≠ 0, then using problem 32, we know 𝐴 is row equivalent to 2 × 2 identity
matrix. Which means the original system can now be written as

⎛
⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Which means the solution is 𝑥 = 0 and 𝑦 = 0. The trivial solution.
⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

4.5.6 Section 3.3 problem 37

Problem Show that the system in problem 35 has a non-trivial solution i� 𝑎𝑑 − 𝑏𝑐 = 0

solution Problem 35 gives

𝑎𝑥 + 𝑏𝑦 = 0
𝑐𝑥 + 𝑑𝑦 = 0

In matrix form ⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

The augment matrix is
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏 0
𝑐 𝑑 0

⎞
⎟⎟⎟⎟⎠

We start by reducing it to Echelon form. We assume all along that 𝑎 ≠ 0.

⎛
⎜⎜⎜⎜⎝
𝑎 𝑏 0
𝑐 𝑑 0

⎞
⎟⎟⎟⎟⎠
𝑅2=𝑅2−

𝑐
𝑎𝑅1⟶

⎛
⎜⎜⎜⎜⎝
𝑎 𝑏 0
0 𝑑 − 𝑐

𝑎𝑏 0

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
𝑎 𝑏 0
0 𝑎𝑑−𝑐𝑏

𝑎 0

⎞
⎟⎟⎟⎟⎠

Now we can solve by backward substitution. There are two cases to consider.

case 1 𝑎𝑑 − 𝑐𝑏 = 0. In this case, the Echelon form becomes
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏 0
0 0 0

⎞
⎟⎟⎟⎟⎠

Hence the second equation says 0 �𝑦� = 0. This implies infinite number of solutions, since
any 𝑦 will do the job.
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case 2 𝑎𝑑− 𝑐𝑏 ≠ 0. Lets say 𝑎𝑑− 𝑐𝑏 = 𝑁, some non-zero value. In this case, the Echelon form
becomes ⎛

⎜⎜⎜⎜⎝
𝑎 𝑏 0
0 𝑁 0

⎞
⎟⎟⎟⎟⎠

Hence the second equation says 𝑁�𝑦� = 0. The solution to this is 𝑦 = 0. Therefore, from
the first equation we obtain

𝑎𝑥 + 𝑏𝑦 = 0
𝑎𝑥 = 0
𝑥 = 0

So we see that the solution vector is ⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

This is the trivial solution.

Conclusion The system has infinite number of solution i� 𝑎𝑑 − 𝑐𝑏 = 0 (this is the non-
trivial solution case). And the system has unique solution, which is the trivial solution i�
𝑎𝑑 − 𝑐𝑏 ≠ 0.
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4.6 practice 𝐴𝑥 = 𝑏

4.6.1 Problem 1Math 320 (Smith): Practice Ax = b Problems

Not Due

1. Write the following system as Ax = b and determine for what values of k the system
has (i) a unique solution, (ii) no solution, and (iii) infinitely many solutions. In the case
of (i) or (iii), find the solution(s).

2x1 + 2x2 − x3 = 1

3x2 + 3x3 = 3

4x1 + x2 + kx3 = −1 (1)

2. For what values of k does Ax = b have (i) no solution, (ii) a unique solution, or (iii)
an infinite number of solutions? In the case of (ii) or (iii), find the solution(s).

A =





2 0 −2
−1 1 k
3 1 4



 , b =





8
4
20



 (2)

3. In the following exercises, we write the augmented coefficient matrix for Ax = b.
Determine for what values of the parameter p the system has (i) an unique solution, (ii) no
solution, (iii) an infinite number of solutions. In case (i), find the unique solution. In case
(iii), determine if there is a one-parameter family of solutions, or a two-parameter family
of solutions, and find an expression for the solutions x in terms of the parameter(s).





2 1 3 1
0 p 0 1
−1 −2 4 3



 (3a)





1 1 2 1
2 p 4 2
3 p+ 1 6 p+ 1



 (3b)





−2 3 p 1
4 3/2 2 2
3 3 5/2 5/2



 (3c)

1

solution
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 −1
0 3 3
4 1 𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The augmented matrix is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 −1 1
0 3 3 3
4 1 𝑘 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We start by converting the above to Echelon form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 −1 1
0 3 3 3
4 1 𝑘 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3−2𝑅1⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 −1 1
0 3 3 3
0 −3 𝑘 + 2 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3+𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 −1 1
0 3 3 3
0 0 𝑘 + 5 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We see that the last equation now has the form

(𝑘 + 5) 𝑥3 = 0

If 𝑘 + 5 = 𝑛 ≠ 0 then the equation becomes 𝑛𝑥3 = 0, which means 𝑥3 = 0 is only choice,
since 𝑛 ≠ 0. This means, from the second equation, 3𝑥2 + 3𝑥3 = 3 or 𝑥2 = 1 and from the
first equation, 2𝑥1 + 2𝑥2 − 𝑥3 = 1 or 2𝑥1 + 2 = 1 or 𝑥1 =

−1
2 . Hence a unique solution. But

if 𝑘 + 5 = 0 then last equation gives 0𝑥3 = 0, which means any 𝑥3 will do the job. Hence
infinite number of solutions.

Therefore, (i) 𝑘 ≠ −5 gives unique solution. (ii) Not possible. (iii) 𝑘 = −5 gives infinite
solutions.

4.6.2 Problem 2

Math 320 (Smith): Practice Ax = b Problems

Not Due

1. Write the following system as Ax = b and determine for what values of k the system
has (i) a unique solution, (ii) no solution, and (iii) infinitely many solutions. In the case
of (i) or (iii), find the solution(s).

2x1 + 2x2 − x3 = 1

3x2 + 3x3 = 3

4x1 + x2 + kx3 = −1 (1)

2. For what values of k does Ax = b have (i) no solution, (ii) a unique solution, or (iii)
an infinite number of solutions? In the case of (ii) or (iii), find the solution(s).

A =





2 0 −2
−1 1 k
3 1 4



 , b =





8
4
20



 (2)

3. In the following exercises, we write the augmented coefficient matrix for Ax = b.
Determine for what values of the parameter p the system has (i) an unique solution, (ii) no
solution, (iii) an infinite number of solutions. In case (i), find the unique solution. In case
(iii), determine if there is a one-parameter family of solutions, or a two-parameter family
of solutions, and find an expression for the solutions x in terms of the parameter(s).





2 1 3 1
0 p 0 1
−1 −2 4 3



 (3a)





1 1 2 1
2 p 4 2
3 p+ 1 6 p+ 1



 (3b)





−2 3 p 1
4 3/2 2 2
3 3 5/2 5/2



 (3c)

1

solution
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −2
−1 1 𝑘
3 1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

8
4
20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The augmented matrix is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −2 8
−1 1 𝑘 4
3 1 4 20

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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We start by converting the above to Echelon form. Swap the second and third row
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −2 8
3 1 4 20
−1 1 𝑘 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −2 8
3 1 4 20
−1 1 𝑘 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−
3
2𝑅1⟶

𝑅3=𝑅3+
1
2𝑅1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −2 8
0 1 7 8
0 1 𝑘 − 1 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3−𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −2 8
0 1 7 8
0 0 𝑘 − 8 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

From last equation, we obtain (𝑘 − 8) 𝑥3 = 0.

(i) No solution case is not possible.

(ii) When 𝑘 ≠ 8, then unique solution. Hence 𝑥3 = 0. Which means from second equation
that 𝑥2 = 8 and from first equation, 2𝑥1 = 8 or 𝑥1 = 4.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
8
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(iii) infinite number of solutions when 𝑘 = 8. This gives 0 (𝑥3) = 0, hence any 𝑥3 will do the
job. Let 𝑥3 = 𝑡, the second equation gives 𝑥2 + 7𝑡 = 8 or 𝑥2 = 8 − 7𝑡. and the first equation
gives 2𝑥1 − 2𝑡 = 8 or 𝑥1 = 4 − 𝑡. Hence solution is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4 − 𝑡
8 − 7𝑡
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
8
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−7
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.6.3 Problem 3

Math 320 (Smith): Practice Ax = b Problems

Not Due

1. Write the following system as Ax = b and determine for what values of k the system
has (i) a unique solution, (ii) no solution, and (iii) infinitely many solutions. In the case
of (i) or (iii), find the solution(s).

2x1 + 2x2 − x3 = 1

3x2 + 3x3 = 3

4x1 + x2 + kx3 = −1 (1)

2. For what values of k does Ax = b have (i) no solution, (ii) a unique solution, or (iii)
an infinite number of solutions? In the case of (ii) or (iii), find the solution(s).

A =





2 0 −2
−1 1 k
3 1 4



 , b =





8
4
20



 (2)

3. In the following exercises, we write the augmented coefficient matrix for Ax = b.
Determine for what values of the parameter p the system has (i) an unique solution, (ii) no
solution, (iii) an infinite number of solutions. In case (i), find the unique solution. In case
(iii), determine if there is a one-parameter family of solutions, or a two-parameter family
of solutions, and find an expression for the solutions x in terms of the parameter(s).





2 1 3 1
0 p 0 1
−1 −2 4 3



 (3a)





1 1 2 1
2 p 4 2
3 p+ 1 6 p+ 1



 (3b)





−2 3 p 1
4 3/2 2 2
3 3 5/2 5/2



 (3c)

1

solution

4.6.3.1 Part a

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 3
0 𝑝 0
−1 −2 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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The augmented matrix is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 3 1
0 𝑝 0 1
−1 −2 4 + 3

2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3+
1
2𝑅1⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 3 1
0 𝑝 0 1
0 −3

2
11
2

7
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3+
3
2𝑝𝑅2

⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 1 3 1
0 𝑝 0 1
0 0 11

2
1
2𝑝
�7𝑝 + 3�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We now convert the above to reduced Echelon form. First we make each leading entry 1
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2

3
2

1
2

0 1 0 1
𝑝

0 0 1 1
𝑝

�7𝑝+3�

11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now we zero out all entries in column above leading entries
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1
2

3
2

1
2

0 1 0 1
𝑝

0 0 1 1
𝑝

�7𝑝+3�

11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=𝑅1−
1
2𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 3
2

1
2𝑝
�𝑝 − 1�

0 1 0 1
𝑝

0 0 1 1
𝑝

�7𝑝+3�

11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=𝑅1−
3
2𝑅3⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 − 5
11𝑝

�𝑝 + 2�

0 1 0 1
𝑝

0 0 1 1
𝑝

�7𝑝+3�

11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence, the last equation says

𝑥3 =
1
𝑝
�7𝑝 + 3�
11

Therefore, if 7𝑝 + 3 ≠ 0 then 𝑥3 is parameterized by 𝑝 and we have infinite number of solutions.
In this case the solution vector is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 5
11𝑝

�𝑝 + 2�
1
𝑝

1
𝑝

�7𝑝+3�

11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

But if 7𝑝 + 3 = 0 then 𝑥3 = 0, and this means 𝑝 = −3
7 . Then from second equation we

obtain 𝑥2 =
−7
3 and from first equation 𝑥1 = − 5

11�− 3
7 �
�−3

7 + 2� =
5
3 . Hence in this case the

solution is unique
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5
3
−7
3
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

In both cases, we assumed 𝑝 ≠ 0. It is no possible to obtain the case (ii) which is no solu-
tion.

4.6.3.2 Part b

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2
2 𝑝 4
3 𝑝 + 1 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2

𝑝 + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The augmented matrix is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 1
2 𝑝 4 2
3 𝑝 + 1 6 𝑝 + 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−2𝑅1⟶
𝑅3=𝑅3−3𝑅1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 1
0 𝑝 − 2 0 0
0 𝑝 − 2 0 𝑝 − 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3−𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 2 1
0 𝑝 − 2 0 0
0 0 0 𝑝 − 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We see from last equation that 0 (𝑥3) = 𝑝 − 2. This means that if 𝑝 − 2 ≠ 0 then there is
no solution. This means if 𝑝 ≠ 2 then no solution. On the other hand, if 𝑝 = 2 then last
equation becomes 0 (𝑥3) = 0, which means any 𝑥3 will do. Let 𝑥3 = 𝑡. From second equation,
we have

�𝑝 − 2� 𝑥2 = 0
0 (𝑥2) = 0

So any 𝑥2 will do. Let 𝑥2 = 𝑠. Then the first equation becomes 𝑥1+𝑠+2𝑡 = 1 or 𝑥1 = 1− 𝑠−2𝑡.
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Hence solution vector
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 𝑠 − 2𝑡
𝑠
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Case (ii) do not apply. This is two family solution.

4.6.3.3 Part c

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 3 𝑝
4 3

2 2
3 3 5

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
5
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The augmented matrix is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 3 𝑝 1
4 3

2 2 2
3 3 5

2
5
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2+2𝑅1⟶
𝑅3=𝑅3+

3
2𝑅1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 3 𝑝 1
0 15

2 2 + 2𝑝 4
0 15

2
5
2 +

3
2𝑝 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3−𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 3 𝑝 1
0 15

2 2 + 2𝑝 4
0 0 1

2 −
1
2𝑝 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Last equation gives �12 −
1
2𝑝� 𝑥3 = 0. If

1
2−

1
2𝑝 = 0 or 𝑝 = 1, then there are infinite number of solutions.

Let 𝑥3 = 𝑡. From second equation, 15
2 𝑥2 + �2 + 2𝑝� 𝑥3 = 4 or 15

2 𝑥2 + 4𝑡 = 4, which gives

𝑥2 =
8
15 −

8
15 𝑡 and from first equation −2𝑥1 + 3𝑥2 + 𝑥3 = 1 or −2𝑥1 + 3 �

8
15 −

8
15 𝑡� + 𝑡 = 1, hence

𝑥1 =
3
10 −

3
10 𝑡. The solution vector is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
10 −

3
10 𝑡

8
15 −

8
15 𝑡
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

If 1
2 −

1
2𝑝 ≠ 0, then last equation gives 𝑛𝑥3 = 0 which is only possible if 𝑥3 = 0. This means

if 𝑝 ≠ 1, then 𝑥3 = 0. Second equation gives 15
2 𝑥2 = 4 or 𝑥2 =

8
15 and first equation gives

−2𝑥1 + 3𝑥2 + 𝑥3 = 1 or −2𝑥1 + 3 �
8
15
� = 1, or 𝑥1 =

3
10 , hence solution vector is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
10
8
15
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

case (ii) is not possible.
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4.7 HW6

4.7.1 Section 3.4 problem 8 (page 186)

Problem Calculate 𝐴𝐵 and 𝐵𝐴 if defined.

𝐴 =
⎛
⎜⎜⎜⎜⎝
1 0 3
2 −5 4

⎞
⎟⎟⎟⎟⎠ , 𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0
−1 4
6 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

solution 𝐴 is 2 × 3 and 𝐵 is 3 × 2, Since inner dimensions agree, then 𝐴𝐵 is defined and
given by 2 × 2 matrix

𝐶 = 𝐴𝐵

=
⎛
⎜⎜⎜⎜⎝
1 0 3
2 −5 4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0
−1 4
6 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
21 15
35 0

⎞
⎟⎟⎟⎟⎠

Now 𝐵 is 3 × 2 and 𝐴 is 2 × 3, hence inner dimensions agree, and 𝐵𝐴 is 3 × 3

𝐶 = 𝐵𝐴

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0
−1 4
6 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 0 3
2 −5 4

⎞
⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 0 9
7 −20 13
16 −25 38

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.7.2 Section 3.4 problem 15

Problem 𝐴𝐵𝐶 matrices are given, verify by computation, that 𝐴 (𝐵𝐶) = (𝐴𝐵)𝐶

𝐴 =
⎛
⎜⎜⎜⎜⎝
3
2

⎞
⎟⎟⎟⎟⎠ , 𝐵 = �1 −1 2� , 𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0
0 3
1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

solution 𝐴 is 2 × 1, 𝐵 is 1 × 3 and 𝐶 is 3 × 2.

𝐵𝐶 = �1 −1 2�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0
0 3
1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
= �4 5�

Hence

𝐴 (𝐵𝐶) =
⎛
⎜⎜⎜⎜⎝
3
2

⎞
⎟⎟⎟⎟⎠ �4 5�

=
⎛
⎜⎜⎜⎜⎝
12 15
8 10

⎞
⎟⎟⎟⎟⎠ (1)

Now we will do (𝐴𝐵)𝐶 and see if we get same result as above

𝐴𝐵 =
⎛
⎜⎜⎜⎜⎝
3
2

⎞
⎟⎟⎟⎟⎠ �1 −1 2� =

⎛
⎜⎜⎜⎜⎝
3 −3 6
2 −2 4

⎞
⎟⎟⎟⎟⎠
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Hence

(𝐴𝐵)𝐶 =
⎛
⎜⎜⎜⎜⎝
3 −3 6
2 −2 4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0
0 3
1 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
12 15
8 10

⎞
⎟⎟⎟⎟⎠ (2)

Comparing (1) and (2), we see they are the same. QED.

4.7.3 Section 3.4 problem 20

Problem Write the system as 𝐴𝑥 = 0 and the find the solution in vector form

𝑥1 − 3𝑥2 + 7𝑥5 = 0
𝑥3 − 2𝑥5 = 0
𝑥4 − 10𝑥5 = 0

Solution

𝐴

���������������������������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −3 0 0 7
0 0 1 0 −2
0 0 0 1 −10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑏
�⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

To find solution, we need to do Gaussian elimination to obtain Echelon form. But 𝐴 is
already in Echelon form. Hence we start with back substitution phase. From last equation

𝑥4 − 10𝑥5 = 0

Let 𝑥5 = 𝑡, hence

𝑥4 = 10𝑡

From second equation

𝑥3 − 2𝑥5 = 0
𝑥3 = 2𝑡

From first equation

𝑥1 − 3𝑥2 + 7𝑥5 = 0
𝑥1 − 3𝑥2 = −7𝑡

Let 𝑥2 = 𝑠 then

𝑥1 = 3𝑠 − 7𝑡

Hence solution is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3𝑠 − 7𝑡
𝑠
2𝑡
10𝑡
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑠 �3 1 0 0 0� + 𝑡 �−7 0 2 10 1�
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4.7.4 Section 3.4 problem 27

Problem A diagonal matrix is square matrix of form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 0 0 0
0 𝑎22 0 0
0 0 ⋱ 0
0 0 0 𝑎𝑛𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

in which every element o� the diagonal is zero. Show that the product 𝐴𝐵 of two 𝑛 × 𝑛
diagonal matrices is again a diagonal matrix. State concise rule for quickly computing 𝐴𝐵.
Is it clear that 𝐴𝐵 = 𝐵𝐴 ? Explain.

Solution

We want to perform (using 3 × 3 for illustration) the following.

𝐶 = 𝐴𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 0 0
0 𝑎22 0
0 0 𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏11 0 0
0 𝑏22 0
0 0 𝑏33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let use the matrix multiplication method, where we multiply 𝐴 by each column of 𝐵 at a
time, to produce one column of the result C. This means the first column of 𝐶 is

𝑐1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 0 0
0 𝑎22 0
0 0 𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏11
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

And the second column of 𝐶 is

𝑐2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 0 0
0 𝑎22 0
0 0 𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
𝑏22
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

And third column of 𝐶 is

𝑐3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 0 0
0 𝑎22 0
0 0 𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
𝑏33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

And so on for larger matrices. Using the above view, shows that 𝑐1 will come out to be
(using rules of matrix times vector now)

𝑐1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11𝑏11
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

And 𝑐2 and 𝑐3 will come out to be

𝑐2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
𝑎22𝑏22
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑐3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

𝑎33𝑏33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

And so one for larger matrices. Now we uses these columns to make up 𝐶 and obtain

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11𝑏11 0 0
0 𝑎22𝑏22 0
0 0 𝑎33𝑏33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We see that 𝐶 is diagonal matrix as well. If we reverse the order of multiplications, 𝐵𝐴
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and follow the same process as above, we will obtain

𝐶 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑏11𝑎11 0 0
0 𝑏22𝑎22 0
0 0 𝑏33𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We see if the same Matrix, since number 𝑎𝑖𝑖𝑏𝑖𝑖 is same as 𝑏𝑖𝑖𝑎𝑖𝑖. A quick rule to make 𝐶 is
this: Start with 𝐶 which is all zeros, then multiply each corresponding diagonal elements
in 𝐴 and 𝐵 and move the result in the diagonal of resulting matrix 𝐶. So basically, we just
need to multiply diagonal elements.

𝑐𝑖𝑖 =

⎧⎪⎪⎨
⎪⎪⎩
𝑎𝑖𝑖𝑏𝑖𝑖 𝑖 = 1, 2, 3⋯𝑛
0 otherwise

4.7.5 Section 3.4 problem 29

Problem If 𝐴 =
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠ then show that 𝐴2 = (𝑎 + 𝑑)𝐴−(𝑎𝑑 − 𝑏𝑐) 𝐼2 where 𝐼2 is the 2×2 identity

matrix. Thus every 2×2 matrix 𝐴 satisfies the equation 𝐴2−(𝑡𝑟𝑎𝑐𝑒 𝐴)𝐴+(det𝐴) 𝐼 = 0 where
det (𝐴) = 𝑎𝑑 − 𝑏𝑐 and trace is sum of diagonal elements.

solution

First we find 𝐴2 using matrix-matrix multiplication

𝐴2 =
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
𝑎2 + 𝑏𝑐 𝑎𝑏 + 𝑏𝑑
𝑎𝑐 + 𝑐𝑑 𝑑2 + 𝑏𝑐

⎞
⎟⎟⎟⎟⎠ (1)

Now 𝑡𝑟𝑎𝑐𝑒 (𝐴) = 𝑎 + 𝑑. Hence

(𝑡𝑟𝑎𝑐𝑒 𝐴)𝐴 = (𝑎 + 𝑑)
⎛
⎜⎜⎜⎜⎝
𝑎 𝑏
𝑐 𝑑

⎞
⎟⎟⎟⎟⎠

This is scalar times matrix. Hence

(𝑡𝑟𝑎𝑐𝑒 𝐴)𝐴 =
⎛
⎜⎜⎜⎜⎝
(𝑎 + 𝑑) 𝑎 (𝑎 + 𝑑) 𝑏
(𝑎 + 𝑑) 𝑐 (𝑎 + 𝑑) 𝑑

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
𝑎2 + 𝑎𝑑 𝑎𝑏 + 𝑑𝑏
𝑎𝑐 + 𝑑𝑐 𝑎𝑑 + 𝑑2

⎞
⎟⎟⎟⎟⎠

And det (𝐴) 𝐼2 is

det (𝐴) 𝐼2 = (𝑎𝑑 − 𝑏𝑐)
⎛
⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎠

This is scalar times matrix. Hence

det (𝐴) 𝐼2 =
⎛
⎜⎜⎜⎜⎝
𝑎𝑑 − 𝑏𝑐 0
0 𝑎𝑑 − 𝑏𝑐

⎞
⎟⎟⎟⎟⎠

From the above, we see that

(𝑡𝑟𝑎𝑐𝑒 𝐴)𝐴 − det (𝐴) 𝐼2 =
⎛
⎜⎜⎜⎜⎝
𝑎2 + 𝑎𝑑 𝑎𝑏 + 𝑑𝑏
𝑎𝑐 + 𝑑𝑐 𝑎𝑑 + 𝑑2

⎞
⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎝
𝑎𝑑 − 𝑏𝑐 0
0 𝑎𝑑 − 𝑏𝑐

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
�𝑎2 + 𝑎𝑑� − (𝑎𝑑 − 𝑏𝑐) 𝑎𝑏 + 𝑑𝑏

𝑎𝑐 + 𝑑𝑐 �𝑎𝑑 + 𝑑2� − (𝑎𝑑 − 𝑏𝑐)

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
𝑎2 + 𝑏𝑐 𝑎𝑏 + 𝑑𝑏
𝑎𝑐 + 𝑑𝑐 𝑑2 + 𝑏𝑐

⎞
⎟⎟⎟⎟⎠ (2)

If we compare (1) and (2), we see they are the same. Hence we showed that

𝐴2 = (𝑡𝑟𝑎𝑐𝑒 𝐴)𝐴 − det (𝐴) 𝐼2
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4.7.6 Section 3.4 problem 30

Problem The formula 𝐴2 = (𝑡𝑟𝑎𝑐𝑒 𝐴)𝐴−det (𝐴) 𝐼2 can be used to compute𝐴2 without explicit
matrix multiplication. It follows that 𝐴3 = (𝑡𝑟𝑎𝑐𝑒 𝐴)𝐴2 − det (𝐴)𝐴 and 𝐴4 = (𝑡𝑟𝑎𝑐𝑒 𝐴)𝐴3 −

det (𝐴)𝐴2 and so on. Use this method to determine 𝐴2, 𝐴3, 𝐴4, 𝐴5 given that 𝐴 =
⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

solution

𝑡𝑟𝑎𝑐𝑒 𝐴 = 2 + 2 = 4
det𝐴 = 4 − 1 = 3

Hence

𝐴2 = (𝑡𝑟𝑎𝑐𝑒 𝐴)𝐴 − det (𝐴) 𝐼2

= 4
⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠ − 3

⎛
⎜⎜⎜⎜⎝
1 0
0 1

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
5 4
4 5

⎞
⎟⎟⎟⎟⎠

And

𝐴3 = (𝑡𝑟𝑎𝑐𝑒 𝐴)𝐴2 − det (𝐴)𝐴

= 4
⎛
⎜⎜⎜⎜⎝
5 4
4 5

⎞
⎟⎟⎟⎟⎠ − 3

⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
14 13
13 14

⎞
⎟⎟⎟⎟⎠

And

𝐴4 = (𝑡𝑟𝑎𝑐𝑒 𝐴)𝐴3 − det (𝐴)𝐴2

= 4
⎛
⎜⎜⎜⎜⎝
14 13
13 14

⎞
⎟⎟⎟⎟⎠ − 3

⎛
⎜⎜⎜⎜⎝
5 4
4 5

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
41 40
40 41

⎞
⎟⎟⎟⎟⎠

And

𝐴5 = (𝑡𝑟𝑎𝑐𝑒 𝐴)𝐴4 − det (𝐴)𝐴3

= 4
⎛
⎜⎜⎜⎜⎝
41 40
40 41

⎞
⎟⎟⎟⎟⎠ − 3

⎛
⎜⎜⎜⎜⎝
14 13
13 14

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
122 121
121 122

⎞
⎟⎟⎟⎟⎠

4.7.7 Section 3.4 problem 32

Problem (a) Suppose that 𝐴 =
⎛
⎜⎜⎜⎜⎝
2 −1
−4 3

⎞
⎟⎟⎟⎟⎠ , 𝐵 =

⎛
⎜⎜⎜⎜⎝
1 5
3 7

⎞
⎟⎟⎟⎟⎠. Show that (𝐴 + 𝐵)2 ≠ 𝐴2+2𝐴𝐵+𝐵2. (b)

Suppose that 𝐴,𝐵 are square matrices such that 𝐴𝐵 = 𝐵𝐴. Show that (𝐴 + 𝐵)2 = 𝐴2+2𝐴𝐵+𝐵2

solution
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4.7.7.1 Part (a)

First we find the LHS

(𝐴 + 𝐵)2 =
⎡
⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝
2 −1
−4 3

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
1 5
3 7

⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦

2

=
⎛
⎜⎜⎜⎜⎝
3 4
−1 10

⎞
⎟⎟⎟⎟⎠

2

=
⎛
⎜⎜⎜⎜⎝
3 4
−1 10

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
3 4
−1 10

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
5 52
−13 96

⎞
⎟⎟⎟⎟⎠ (1)

Now

𝐴2 =
⎛
⎜⎜⎜⎜⎝
2 −1
−4 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 −1
−4 3

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
8 −5
−20 13

⎞
⎟⎟⎟⎟⎠

And

𝐵2 =
⎛
⎜⎜⎜⎜⎝
1 5
3 7

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 5
3 7

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
16 40
24 64

⎞
⎟⎟⎟⎟⎠

And

𝐴𝐵 =
⎛
⎜⎜⎜⎜⎝
2 −1
−4 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 5
3 7

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−1 3
5 1

⎞
⎟⎟⎟⎟⎠

Hence

2𝐴𝐵 = 2
⎛
⎜⎜⎜⎜⎝
−1 3
5 1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−2 6
10 2

⎞
⎟⎟⎟⎟⎠

Therefore, the RHS 𝐴2 + 2𝐴𝐵 + 𝐵2 is

𝐴2 + 2𝐴𝐵 + 𝐵2 =
⎛
⎜⎜⎜⎜⎝
8 −5
−20 13

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
−2 6
10 2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
16 40
24 64

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
22 41
14 79

⎞
⎟⎟⎟⎟⎠ (2)

Comparing (1) and (2) we see that are not the same. Hence we showed that, in this example,
(𝐴 + 𝐵)2 ≠ 𝐴2 + 2𝐴𝐵 + 𝐵2

4.7.7.2 Part (b)

Now, we assume that 𝐴𝐵 = 𝐵𝐴. But since (𝐴 + 𝐵)2 = 𝐴2 +𝐵2 +𝐴𝐵+𝐵𝐴 and we are told that
𝐴𝐵 = 𝐵𝐴, then

(𝐴 + 𝐵)2 = 𝐴2 + 𝐵2 + 𝐴𝐵 + 𝐴𝐵
= 𝐴2 + 𝐵2 + 2𝐴𝐵

So only in the case when 𝐴𝐵 = 𝐵𝐴 is (𝐴 + 𝐵)2 = 𝐴2 + 𝐵2 + 2𝐴𝐵. In Part (a), 𝐴𝐵 =
⎛
⎜⎜⎜⎜⎝
−1 3
5 1

⎞
⎟⎟⎟⎟⎠,

But 𝐵𝐴 =
⎛
⎜⎜⎜⎜⎝
−18 14
−22 18

⎞
⎟⎟⎟⎟⎠, so in part (a), 𝐴𝐵 ≠ 𝐵𝐴 and that is why equality failed.
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4.7.8 Section 3.5 problem 13 (page 199)

Problem Find 𝐴−1 for

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 7 3
1 3 2
3 7 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

solution

We set up 𝐴𝐼3 and perform row operations on 𝐴 and 𝐼 at same time, to convert 𝐴 to 𝐼3.
Then 𝐴−1 will be the on the right side

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 7 3
1 3 2
3 7 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=𝑅2⟶
𝑅2=𝑅1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2
2 7 3
3 7 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
1 0 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−2𝑅1⟶
𝑅3=𝑅3−3𝑅1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2
0 1 −1
0 −2 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
1 −2 0
0 −3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3+2𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 2
0 1 −1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0
1 −2 0
2 −7 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=𝑅1−3𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 5
0 1 −1
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 7 0
1 −2 0
2 −7 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2+𝑅3⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 5
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 7 0
3 −9 1
2 −7 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=𝑅1−5𝑅3⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−13 42 −5
3 −9 1
2 −7 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since the left side is 𝐼3 we stop. Hence

𝐴−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−13 42 −5
3 −9 1
2 −7 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.7.9 Section 3.5 problem 19

Problem Find 𝐴−1 for

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 3
1 4 5
2 5 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

solution

We set up 𝐴𝐼3 and perform row operations on 𝐴 and 𝐼 at same time, to convert 𝐴 to 𝐼3.
Then 𝐴−1 will be the on the right side

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 3
1 4 5
2 5 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−𝑅1⟶
𝑅3=𝑅3−2𝑅1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 3
0 0 2
0 −3 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
−1 1 0
−2 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅2⟶
𝑅3=𝑅2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 3
0 −3 −5
0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
−2 0 1
−1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=
𝑅2
−3⟶

𝑅3=
𝑅3
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 3
0 1 5

3
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
2
3 0 −1

3
−1
2

1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=𝑅1−4𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −11
3

0 1 5
3

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5
3 0 4

3
2
3 0 −1

3
−1
2

1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−
5
3𝑅3⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 −11
3

0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5
3 0 4

3
3
2

−5
6

−1
3

−1
2

1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅1=𝑅1+
11
3 𝑅3⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−7
2

11
6

4
3

3
2

−5
6

−1
3

−1
2

1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Since the left side is 𝐼3 we stop. Hence

𝐴−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−7
2

11
6

4
3

3
2

−5
6

−1
3

−1
2

1
2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.7.10 Section 3.5 problem 24

Problem Use method of example 8 to find matrix 𝑋 such that 𝐴𝑋 = 𝐵

𝐴 =
⎛
⎜⎜⎜⎜⎝
7 6
8 7

⎞
⎟⎟⎟⎟⎠ , 𝐵 =

⎛
⎜⎜⎜⎜⎝
2 0 4
0 5 −3

⎞
⎟⎟⎟⎟⎠

solution

𝐴𝑋 = 𝐵

Pre multiply both sides by 𝐴−1

𝐴−1𝐴𝑋 = 𝐴−1𝐵
𝐼3𝑋 = 𝐴−1𝐵
𝑋 = 𝐴−1𝐵 (1)

But

𝐴−1 =
1

det (𝐴)

⎛
⎜⎜⎜⎜⎝
7 −6
−8 7

⎞
⎟⎟⎟⎟⎠

=
1

(7 × 7) − (6 × 8)

⎛
⎜⎜⎜⎜⎝
7 −6
−8 7

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
7 −6
−8 7

⎞
⎟⎟⎟⎟⎠

Hence (1) becomes

𝑋 =
⎛
⎜⎜⎜⎜⎝
7 −6
−8 7

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 0 4
0 5 −3

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
14 −30 46
−16 35 −53

⎞
⎟⎟⎟⎟⎠

4.7.11 Section 3.5 problem 30

Problem Suppose that 𝐴,𝐵, 𝐶 are invertible matrices of same size, show that product 𝐴𝐵𝐶
is invertible and that (𝐴𝐵𝐶)−1 = 𝐶−1𝐵−1𝐴−1

solution

(𝐴𝐵𝐶) �𝐶−1𝐵−1𝐴−1� = (𝐴𝐵) �𝐶𝐶−1� �𝐵−1𝐴−1�

= (𝐴𝐵) 𝐼 �𝐵−1𝐴−1�

= (𝐴𝐵) �𝐵−1𝐴−1�

= 𝐴 �𝐵𝐵−1�𝐴−1

= 𝐴𝐼𝐴−1

= 𝐴𝐴−1

𝐼
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And

�𝐶−1𝐵−1𝐴−1� (𝐴𝐵𝐶) = 𝐶−1𝐵−1 �𝐴−1𝐴�𝐵𝐶
= 𝐶−1𝐵−1𝐼𝐵𝐶
= 𝐶−1𝐵−1𝐵𝐶

= 𝐶−1 �𝐵−1𝐵�𝐶
= 𝐶−1 (𝐼) 𝐶
= 𝐶−1𝐶
= 𝐼

Thus we get 𝐼 when we multiply 𝐴𝐵𝐶 on either side by 𝐶−1𝐵−1𝐴−1. Because the inverse of
𝐴𝐵𝐶 is unique, this proves that 𝐴𝐵𝐶 is invertible and that its inverse is 𝐶−1𝐵−1𝐴−1. QED

4.7.12 Section 3.5 problem 32

Problem Show that if 𝐴 is invertible matrix and 𝐴𝐵 = 𝐴𝐶 then 𝐵 = 𝐶. Thus invertible
matrices can be canceled.

solution

Pre multiplying both sides of 𝐴𝐵 = 𝐴𝐶 by 𝐴−1 (which we can do, since we are told 𝐴 is
invertible, then

𝐴−1𝐴𝐵 = 𝐴−1𝐴𝐶
�𝐴−1𝐴�𝐵 = �𝐴−1𝐴�𝐶

𝐼𝐵 = 𝐼𝐶
𝐵 = 𝐶

QED

4.7.13 Section 3.5 problem 34

Problem Show that a diagonal matrix is invertible i� each diagonal element is non-zero.
In this case, state concisely how the inverse matrix is obtained.

solution

An 𝑛 × 𝑛 Matrix 𝐴 is invertible, if there are elementary row operations which converts 𝐴
to the identity matrix 𝐼𝑛. Since for a diagonal matrix, we just need to divide each row by
its diagonal element in order to make the diagonal element 1 (if it was not already so),
then we see immediately, that any diagonal matrix can be converted to 𝐼𝑛 this way, unless
the diagonal element happened to be zero. Since we can not divide by zero. There are
no other operations to make the diagonal element, which is zero, become one. Since all
entries above and below the diagonal element (i.e. all elements on the same column as the
current zero diagonal element) are zero also by definition. So we are stuck with the zero
on the diagonal, and unable to make it 1 using row operations.

Another way to proof this is the following. Since the determinant of diagonal matrix is
obtained by just multiplying all the diagonal elements with each others, then if one element
is zero, then the whole product is zero, and this means det (𝐴) = 0. But a matrix whose
determinant is zero is singular and do not have an inverse. QED.

To obtain the inverse matrix for diagonal matrix with non-zero elements, we simply invert
each element on the diagonal. For example

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 0 0
0 𝑎22 0
0 0 𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝐴−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑎11

0 0

0 1
𝑎22

0

0 0 1
𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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4.7.14 Section 3.5 problem 35

Problem Let 𝐴 be 𝑛×𝑛 matrix with either row or column consisting of all zeros. Show that
𝐴 is not invertible.

solution

An 𝑛 × 𝑛 that has at least one row all zeros, or at least one column all zero, is singular.
Meaning its determinant is zero. This is from properties of determinants. Therefore, the
matrix is not invertible.

Another proof: A matrix with row all zero, can not have a pivot of 1. Hence it is not
possible to transform 𝐴 to 𝐼𝑛 using elementary row operations. Since it is square matrix,
if the column is all zeros, then by transposing it, we end up with row which is all zero.
Which is the same.
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4.8 HW7

4.8.1 Section 3.6 problem 4 (page 216)

Problem Use cofactor expansion along row of column which minimize the amount of
computation to find determinant of

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 11 8 7
3 −2 6 23
0 0 0 −3
0 4 0 17

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

solution Since the 3rd row has most zeros(as well as first column), expansion is carried on
the last row. Therefore

det (𝐴) = 𝑎31𝐴31 + 𝑎32𝐴32 + 𝑎33𝐴33 + 𝑎34𝐴34

But 𝑎31 = 𝑎32 = 𝑎33 = 0. Hence the above simplifies to

det (𝐴) = 𝑎34𝐴34

= 𝑎34 (−1)
3+4𝑀34

= −3 (−1)7𝑀34

= 3𝑀34 (1)

Now we need to find𝑀34, which is determinant of the matrix obtained from 𝐴 by removing
the third row and fourth column. Let this new matrix be called 𝐵

𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 11 8
3 −2 6
0 4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑀34 = det (𝐵)

We expand this along the 3rd row of 𝐵, since that is the one with most zeros.

𝑀34 = det (𝐵) = 𝑏31𝐵31 + 𝑏32𝐵32 + 𝑏33𝐵33
But 𝑏31 = 𝑏33 = 0. So the above simplifies to

𝑀34 = 𝑏32𝐵32
= 𝑏32 (−1)

3+2𝑀32

= 4 (−1)5𝑀32

= −4𝑀32 (2)

But

𝑀32 = �
5 8
3 6

�

= 30 − 24
= 6

Therefore from (2), 𝑀34 = −4 (6) = −24 and from (1)

det (𝐴) = 3𝑀34

= 3 (−24)

Hence

det (𝐴) = −72

4.8.2 Section 3.6 problem 8

Problem Evaluate determinant of
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𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 4
−2 −3 1
3 2 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

after first simplifying the computation by adding multiple of some row of column to another.

solution The determinant of matrix do not change by adding multiple of one row or
multiple of a column to another row or to another column. In the above, we see that
adding the second row to the first row gives

𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 5
−2 −3 1
3 2 7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now, expanding on the first row, since that is the one with most zeros, gives

det(𝐵) = 𝑏11𝐵11 + 𝑏12𝐵12 + 𝑏13𝐵13
But 𝑏11 = 𝑏12 = 0, hence

det(𝐵) = 𝑏13𝐵13
= 5 (−1)1+3𝑀13

= 5𝑀13

But

𝑀13 = �
−2 −3
3 2

� = −4 + 9 = 5

Hence det(𝐵) = 5 (5) = 25. But since det (𝐵) = det (𝐴), then

det (𝐴) = 25

4.8.3 Section 3.6 problem 19

Problem Use the method of elimination to evaluate the determinant of

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 3
0 1 −2 0
−2 3 −2 3
0 −3 3 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

solution The idea is to use Forward elimination to produce an upper triangle matrix. The
determinant of upper triangle matrix is then easily found as the product of elements on
the diagonal. Since determinant do not change when adding multiple of a row to another,
this method works. So we need first to produce the Echelon form (triangle matrix)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 3
0 1 −2 0
−2 3 −2 3
0 −3 3 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3+2𝑅1⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 3
0 1 −2 0
0 3 −2 9
0 −3 3 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3−3𝑅2⟶
𝑅4=𝑅4+3𝑅2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 3
0 1 −2 0
0 0 4 9
0 0 −3 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅4=𝑅4+
3
4𝑅3⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 3
0 1 −2 0
0 0 4 9
0 0 0 39

4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

det (𝐴) = 1 × 1 × 4 × 39
4

= 39
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4.8.4 Section 3.6 problem 46

Problem Verify the property

�

�

𝑎11 + 𝑘𝑎12 𝑎12 𝑎13
𝑎21 + 𝑘𝑎22 𝑎22 𝑎23
𝑎31 + 𝑘𝑎32 𝑎32 𝑎33

�

�
=
�

�

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

�

�

solution This property is saying that adding 𝑘 times the second columns of 𝐴 to the first

column of 𝐴 do not change the determinant. This is property 5. Let 𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and let 𝐵 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 + 𝑘𝑎12 𝑎12 𝑎13
𝑎21 + 𝑘𝑎22 𝑎22 𝑎23
𝑎31 + 𝑘𝑎32 𝑎32 𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Then

det (𝐵) =
�

�

𝑎11 + 𝑘𝑎12 𝑎12 𝑎13
𝑎21 + 𝑘𝑎22 𝑎22 𝑎23
𝑎31 + 𝑘𝑎32 𝑎32 𝑎33

�

�

=
�

�

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

�

�
+ 𝑘

�

�

𝑎12 𝑎12 𝑎13
𝑎22 𝑎22 𝑎23
𝑎32 𝑎32 𝑎33

�

�

But 𝑘
�

�

𝑎12 𝑎12 𝑎13
𝑎22 𝑎22 𝑎23
𝑎32 𝑎32 𝑎33

�

�
= 0 since the first column is the same as the second column. Hence

det (𝐵) = det (𝐴). Now we will show this is true by actual expansion, since this is what the
problem is asking. Expanding 𝐵 along the first column, gives

det (𝐵) = 𝑏11𝐵11 + 𝑏21𝐵21 + 𝑏31𝐵31
= (𝑎11 + 𝑘𝑎12) (−1)

1+1𝑀11 + (𝑎21 + 𝑘𝑎22) (−1)
2+1𝑀21 + (𝑎31 + 𝑘𝑎32) (−1)

3+1𝑀31

= (𝑎11 + 𝑘𝑎12)𝑀11 − (𝑎21 + 𝑘𝑎22)𝑀21 + (𝑎31 + 𝑘𝑎32)𝑀31

= (𝑎11𝑀11 − 𝑎21𝑀21 + 𝑎31𝑀31) + 𝑘 (𝑎12𝑀11 − 𝑎22𝑀21 + 𝑎32𝑀31)

But (𝑎11𝑀11 − 𝑎21𝑀21 + 𝑎31𝑀31) = det (𝐴), hence above becomes

det (𝐵) = det (𝐴) + 𝑘 (𝑎12𝑀11 − 𝑎22𝑀21 + 𝑎32𝑀31) (1)

But

𝑎12𝑀11 − 𝑎22𝑀21 + 𝑎32𝑀31 = 𝑎12 �
𝑎22 𝑎23
𝑎32 𝑎33

� − 𝑎22 �
𝑎12 𝑎13
𝑎32 𝑎33

� + 𝑎32 �
𝑎12 𝑎13
𝑎22 𝑎23

�

= 𝑎12 (𝑎22𝑎33 − 𝑎23𝑎32) − 𝑎22 (𝑎12𝑎33 − 𝑎13𝑎32) + 𝑎32 (𝑎12𝑎23 − 𝑎13𝑎22)

=�����������𝑎12𝑎22𝑎33 − �𝑎12𝑎23𝑎32 −�����������𝑎22𝑎12𝑎33 + �⃖�������⃗𝑎22𝑎13𝑎32 + �𝑎32𝑎12𝑎23 − �⃖�������⃗𝑎32𝑎13𝑎22
We see from the above, that all terms cancel out, and we obtain

𝑎12𝑀11 − 𝑎22𝑀21 + 𝑎32𝑀31 = 0

Hence (1) becomes

det (𝐵) = det (𝐴) + 𝑘 (0)
= det (𝐴)

QED.

4.8.5 Section 3.6 problem 49

Problem Let 𝐴 = �𝑎𝑖𝑗� be 3 × 3 matrix. Show that det �𝐴𝑇� = det (𝐴) by expanding det (𝐴)
along its first row and det �𝐴𝑇� along its first column.
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solution Let

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Expanding det (𝐴) along first row gives

det (𝐴) = 𝑎11𝐴11 + 𝑎12𝐴12 + 𝑎13𝐴13

= 𝑎11 (−1)
1+1𝑀11 + 𝑎12 (−1)

1+2𝑀12 + 𝑎13 (−1)
1+3𝑀13

= 𝑎11 �
𝑎22 𝑎23
𝑎32 𝑎33

� − 𝑎12 �
𝑎21 𝑎23
𝑎31 𝑎33

� + 𝑎13 �
𝑎21 𝑎22
𝑎31 𝑎32

�

= 𝑎11 (𝑎22𝑎33 − 𝑎23𝑎32) − 𝑎12 (𝑎21𝑎33 − 𝑎23𝑎31) + 𝑎13 (𝑎21𝑎32 − 𝑎22𝑎31) (1)

But

𝐵 = 𝐴𝑇 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎11 𝑎21 𝑎31
𝑎12 𝑎22 𝑎32
𝑎13 𝑎23 𝑎33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Finding det �𝐴𝑇� by expanding along first column gives

det (𝐵) = 𝑏11𝐵11 + 𝑏21𝐵21 + 𝑏31𝐵31
= 𝑎11 (−1)

1+1𝑀11 + 𝑎12 (−1)
1+2𝑀21 + 𝑎13 (−1)

1+3𝑀31

= 𝑎11𝑀11 − 𝑎12𝑀21 + 𝑎13𝑀31

= 𝑎11 �
𝑎22 𝑎32
𝑎23 𝑎33

� − 𝑎12 �
𝑎21 𝑎31
𝑎23 𝑎33

� + 𝑎13 �
𝑎21 𝑎31
𝑎22 𝑎32

�

= 𝑎11 (𝑎22𝑎33 − 𝑎32𝑎23) − 𝑎12 (𝑎21𝑎33 − 𝑎31𝑎23) + 𝑎13 (𝑎21𝑎32 − 𝑎31𝑎22) (2)

Examining (1) and (2) shows that they are the same expression. Hence

det (𝐴) = det �𝐴𝑇�

QED.

4.8.6 Section 3.6 problem 52

Problem The square matrix 𝐴 is called orthogonal provided that 𝐴𝑇 = 𝐴−1. Show that the
determinant of such matrix must be either +1 or −1.

solution

We are given 𝐴𝑇 = 𝐴−1. Premultiplying both sides by 𝐴 gives

𝐴𝐴𝑇 = 𝐴𝐴−1

𝐴𝐴𝑇 = 𝐼

Taking the determinant of both sides gives

det �𝐴𝐴𝑇� = det (𝐼)
But det (𝐼) = 1 hence

det �𝐴𝐴𝑇� = 1

But det �𝐴𝐴𝑇� = det �𝐴𝑇�det (𝐴) by property of determinant of products, therefore the
above becomes

det �𝐴𝑇�det (𝐴) = 1

But by property of determinant, we know that det (𝐴) = det �𝐴𝑇�, therefore the above
becomes

det (𝐴)det (𝐴) = 1
(det (𝐴))2 = 1

Therefore

det (𝐴) = ±1
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QED

4.8.7 Section 3.6 problem 53

Problem The matrices 𝐴,𝐵 are said to be similar provided that 𝐴 = 𝑃−1𝐵𝑃 for some
invertible matrix 𝑃. Show that if 𝐴 and 𝐵 are similar then |𝐴| = |𝐵|

solution

Since

𝐴 = 𝑃−1𝐵𝑃 (1)

Pre multiplying both sides by 𝑃 gives

𝑃𝐴 = 𝑃𝑃−1𝐵𝑃

= �𝑃𝑃−1� 𝐵𝑃
= 𝐼𝐵𝑃
= 𝐵𝑃

Now, taking determinant of both sides gives

det (𝑃𝐴) = det (𝐵𝑃)
det (𝑃)det (𝐴) = det (𝐵)det (𝑃)

Since 𝑃 is invertible, then det (𝑃) ≠ 0, therefore, we can divide both sides by det (𝑃) and
this gives

det (𝐴) = det (𝐵)
QED.
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4.9 HW8

4.9.1 Section 4.1 problem 7 (page 237)

problem Determine if 𝑢, 𝑣 are linearly dependent or not

�̄� = (2, 2)
�̄� = (2, −2)

solution

Two vectors �̄�, �̄� are L.D if there exist scalars 𝑎, 𝑏, not both zero such that

𝑎�̄� + 𝑏�̄� = 0̄

𝑎
⎛
⎜⎜⎜⎜⎝
2
2

⎞
⎟⎟⎟⎟⎠ + 𝑏

⎛
⎜⎜⎜⎜⎝
2
−2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 2
2 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎
𝑏

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

The above is now is in 𝐴𝑥 = 0 format. The determinant of 𝐴 is |𝐴| = −4 − 4 = −8. Since
|𝐴| ≠ 0, then a unique exist. Since 0̄ vector is is always solution to 𝐴𝑥 = 0, and so it is
the only solution here (since solution is unique). This means that only 𝑎 = 0, 𝑏 = 0 satisfy
𝑎�̄� + 𝑏�̄� = 0̄. Therefore, �̄�, �̄� are linearly independent.

4.9.2 Section 4.1 problem 12

problem Express 𝑤 as linear combination of 𝑢, 𝑣.

�̄� = (4, 1)
�̄� = (−2, −1)
�̄� = (2, −2)

solution

Need to find scalars 𝑎, 𝑏 such that 𝑎�̄� + 𝑏�̄� = �̄�, hence

𝑎
⎛
⎜⎜⎜⎜⎝
4
1

⎞
⎟⎟⎟⎟⎠ + 𝑏

⎛
⎜⎜⎜⎜⎝
−2
−1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2
−2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
4 −2
1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎
𝑏

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2
−2

⎞
⎟⎟⎟⎟⎠

Applying Gaussian elimination
⎛
⎜⎜⎜⎜⎝
4 −2 2
1 −1 −2

⎞
⎟⎟⎟⎟⎠
𝑅2=𝑅2−

1
4𝑅1⟶

⎛
⎜⎜⎜⎜⎝
4 −2 2
0 −1

2 −5
2

⎞
⎟⎟⎟⎟⎠

Hence, from last equation

−
1
2
𝑏 = −

5
2

𝑏 = 5

From first equation

4𝑎 − 2𝑏 = 2
4𝑎 = 2 (5) + 2
𝑎 = 3

Therefore

5�̄� − 3�̄� = �̄�
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4.9.3 Section 4.1 problem 18

problem Apply theorem 4 (that is calculate a determinant) to determine whether the given
vectors �̄�, �̄�, �̄� are L.D. or L.I.

�̄� = (1, 1, 0)
�̄� = (4, 3, 1)
�̄� = (3, −2, −4)

solution

Let 𝑎, 𝑏, 𝑐 be scalars, such that 𝑎�̄� + 𝑏�̄� + 𝑐�̄� = 0̄. The goal now is to determine 𝑎, 𝑏, 𝑐 and see
they are are all zero or not. Setting up 𝐴�̄� = 0̄ system gives

𝑎

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑏

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑐

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
−2
−4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 3
1 3 −2
0 1 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎
𝑏
𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now the |𝐴| is found. Subtracting row one from second row first, gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 3
0 −1 −5
0 1 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Performing cofactor expansion on the first column gives

|𝐴| = 𝑎11𝐴11 + 𝑎21𝐴21 + 𝑎31𝐴31

= 𝑎11𝐴11

= 𝑎11 (−1)
1+1𝑀11

= 1 ×𝑀11

= 𝑀11

= �
−1 −5
1 −4

�

= 4 + 5
= 9

Since |𝐴| is not zero, then solution of 𝐴𝑥 = 0 is unique. Hence only solution is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎
𝑏
𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Which implies that �̄�, �̄�, �̄� are linearly independent.

4.9.4 Section 4.1 problem 24

problem Use the method of example 3 to determine whether the given vectors �̄�, �̄�, �̄� are
L.D. or L.I. If they are L.D. then find scalars 𝑎, 𝑏, 𝑐 not all zero such that 𝑎�̄� + 𝑏�̄� + 𝑐�̄� = 0

�̄� = (1, 4, 5)
�̄� = (4, 2, 5)
�̄� = (−3, 3, −1)

solution
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Let 𝑎, 𝑏, 𝑐 be scalars, such that 𝑎�̄� + 𝑏�̄� + 𝑐�̄� = 0̄. Setting up 𝐴�̄� = 0̄ system gives

𝑎

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑏

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
2
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑐

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3
3
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 −3
4 2 3
5 5 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎
𝑏
𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Applying Gaussian elimination, 𝑅2 = 𝑅2 − 4𝑅1 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 −3
0 −14 15
5 5 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎
𝑏
𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 − 5𝑅1 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 −3
0 −14 15
0 −15 14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎
𝑏
𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 −
15
14𝑅2 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 4 −3
0 −14 15
0 0 −29

14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎
𝑏
𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Since the final Echelon form has no zero pivot, therefore |𝐴| ≠ 0. This means the solution
is unique. Hence

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎
𝑏
𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Which implies �̄�, �̄�, �̄� are linearly independent.

4.9.5 Section 4.1 problem 28

problem Express vector 𝑡 as linear combination of vectors 𝑢, 𝑣, 𝑤

̄𝑡 = (7, 7, 7)
�̄� = (2, 5, 3)
�̄� = (4, 1, −1)
�̄� = (1, 1, 5)

solution

Let 𝑎�̄� + 𝑏�̄� + 𝑐�̄� = ̄𝑡, hence

𝑎

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
5
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑏

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
1
−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑐

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
7
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 1
5 1 1
3 −1 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎
𝑏
𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
7
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Applying Gaussian elimination. 𝑅2 = 𝑅2 −
5
2𝑅1 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 1
0 −9 −3

2
3 −1 5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎
𝑏
𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
−21

2
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑅3 = 𝑅3 −
3
2𝑅1 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 1
0 −9 −3

2
0 −7 7

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎
𝑏
𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
−21

2
−7
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 −
7
9𝑅2 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 1
0 −9 −3

2
0 0 14

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎
𝑏
𝑐

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7
−21

2
14
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence
14
3
𝑐 =

14
3

𝑐 = 1

And from second row

−9𝑏 −
3
2
𝑐 = −

21
2

−9𝑏 −
3
2
= −

21
2

𝑏 = 1

And from first row

2𝑎 + 4𝑏 + 𝑐 = 7
2𝑎 + 4 + 1 = 7

𝑎 = 1

Hence

̄𝑡 = �̄� + �̄� + �̄�

4.9.6 Section 4.1 problem 31

problem Show that the given set 𝑉 is closed under addition and under multiplication by

scalars and is therefore subspace of ℝ3. 𝑉 is the set of all �𝑥, 𝑦, 𝑧� such that 2𝑥 = 3𝑦

solution

What the above says, that given any vector in this space, such as �̄�1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑦1
𝑧1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
then 𝑦1 =

2
3𝑥1.

Hence any vector in this space can be written as �̄�1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
2
3𝑥1
𝑧1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Given two vectors �̄�1, �̄�2 in this

space, the sum, should also be in this space. let �̄� = �̄�1 + �̄�2, therefore

�̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
2
3𝑥1
𝑧1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥2
2
3𝑥2
𝑧2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 + 𝑥2
2
3𝑥1 +

2
3𝑥2

𝑧1 + 𝑧2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 + 𝑥2
2
3
(𝑥1 + 𝑥2)
𝑧1 + 𝑧2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence �̄� is also in this space, since its 𝑦 coordinate is also 2
3 of its 𝑥 coordinate. Now check
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is made for multiplication by scaler. Let �̄� = 𝑐�̄�, hence

�̄� = 𝑐

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
2
3𝑥1
𝑧1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐𝑥1
2
3𝑐𝑥1
𝑧1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence �̄� is also in this space, since its 𝑦 coordinate is also 2
3 of its 𝑥 coordinate. Therefore

set 𝑉 is closed under addition and under multiplication by scalars.

4.9.7 Section 4.1 problem 35

problem Show that the given set 𝑉 is not a subspace of ℝ3. 𝑉 is the set of all �𝑥, 𝑦, 𝑧� such
that 𝑧 ≥ 0.

solution

The above set 𝑉 is the upper half of the 3D space. (all vectors in the positive 𝑧 part of 3D).
But for this to be subspace, it must be closed under scalar multiplication. Let �̄� be a vector
in the set 𝑉. Multiplying this vector by 𝑐 = −1, will result in this vector having negative 𝑧
component, and it will therefore leave the set 𝑉. Therefore the set 𝑉 is not closed under
scalar multiplication. Hence 𝑉 is not a subspace of ℝ3.

4.9.8 Section 4.1 problem 40

problem Suppose that �̄�, �̄�, �̄� are vectors in ℝ3 such that �̄�, �̄� are L.I. but �̄�, �̄�, �̄� are L.D.
Show that there exist scalars 𝑎, 𝑏 such that �̄� = 𝑎�̄� + 𝑏�̄�

solution

Let �̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢1
𝑢2
𝑢3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, �̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, �̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑤1

𝑤2

𝑤3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. Consider the sum 𝑎�̄�+𝑏�̄�. Since �̄�, �̄� are L.I. then 𝑎�̄�+𝑏�̄� will

produce non-zero vector unless 𝑎, 𝑏 are both zero. Let this vector be �̄�. Hence 𝑎�̄� + 𝑏�̄� = �̄�.
By definition, �̄� is linear combination of �̄�, �̄�, hence the three vectors �̄�, �̄�, �̄� are L.D.

A geometrical proof is as follows. Since �̄�, �̄� are L.I. then they span a plane in 3D. This
means �̄�, �̄� are basis vector for this 2D plane inside ℝ3. Now since �̄�, �̄�, �̄� are L.D. then the
vector �̄� must also be in the same plane that �̄�, �̄� are its basis. Hence the vector �̄� can be
expressed in terms of �̄�, �̄�. Therefore there exist 𝑎, 𝑏 such that 𝑎�̄� + 𝑏�̄� = �̄�.

4.9.9 Section 4.2 problem 2 (page 244)

problem A subset 𝑊 of some 𝑛 space ℝ𝑛 is defined by means of a given condition imposed
on typical vector (𝑥1, 𝑥2,⋯ , 𝑥𝑛). Apply theorem 1 to determine whether or not𝑊 is subspace
of ℝ𝑛. 𝑊 is set of all vectors in ℝ3 such that 𝑥1 = 5𝑥2

solution

From theorem 1, for the subset 𝑊 to be subspace, it has to at least satisfy being closed
under addition of vectors and under scalar multiplication. Let any vector in this space be

�̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
and since 𝑥1 = 5𝑥2 therefore �̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5𝑥2
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
Hence adding any two such vectors in this
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space gives

�̄� + �̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5𝑥2
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5𝑦2
𝑦2
𝑦3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5𝑥2 + 5𝑦2
𝑥2 + 𝑦2
𝑥3 + 𝑦3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 �𝑥2 + 𝑦2�
𝑥2 + 𝑦2
𝑥3 + 𝑦3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore the sum is also in this set, since its first coordinate is also 5 times its second
coordinate. Now scalar multiplication is checked for being closed. Let

𝑐�̄� = 𝑐

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5𝑥2
𝑥2
𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

5 (𝑐𝑥2)
(𝑐𝑥2)
𝑐𝑥3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore multiplication by scalar is also in this set, since the first coordinate is also 5
times its second coordinate. Therefore 𝑊 is subspace of ℝ3

4.9.10 Section 4.2 problem 8

problem A subset𝑊 of some space ℝ𝑛 is defined by means of a given condition imposed on
typical vector (𝑥1, 𝑥2,⋯ , 𝑥𝑛). Apply theorem 1 to determine whether or not 𝑊 is subspace
of ℝ𝑛. 𝑊 is set of all vectors in ℝ2 such that 𝑥21 + 𝑥22 = 0.

solution

From theorem 1, for the subset 𝑊 to be subspace, it has to satisfy being closed under
addition of vectors and under scalar multiplication. Let any vector in this space be �̄� =⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠ , �̄� =

⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠ be two such vectors such that where 𝑥21 +𝑥22 = 0,𝑦21 +𝑦22 = 0. Hence adding any

two such vectors in this space gives

�̄� + �̄� =
⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑦1
𝑦2

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
𝑥1 + 𝑦1
𝑥2 + 𝑦2

⎞
⎟⎟⎟⎟⎠

Checking if �𝑥1 + 𝑦1�
2
+ �𝑥2 + 𝑦2�

2
= 0 or not. Expanding

�𝑥1 + 𝑦1�
2
+ �𝑥2 + 𝑦2�

2
= �𝑥21 + 𝑦21 + 2𝑥1𝑦1� + �𝑥22 + 𝑦22 + 2𝑥2𝑦2� (1)

But 𝑥21 = −𝑥22 and 𝑦21 = −𝑦22 by definition. Substituting this into (1) gives

�𝑥1 + 𝑦1�
2
+ �𝑥2 + 𝑦2�

2
= �−𝑥22 − 𝑦22 + 2𝑥1𝑦1� + �𝑥22 + 𝑦22 + 2𝑥2𝑦2�

= 2 �𝑥1𝑦1 + 𝑥2𝑦2�

Now 𝑥1 = 𝑖𝑥2 and 𝑦1 = ±𝑖𝑦2. Hence the above becomes

�𝑥1 + 𝑦1�
2
+ �𝑥2 + 𝑦2�

2
= 2 �(±𝑖𝑥2) �±𝑖𝑦2� + 𝑥2𝑦2�

= 2 �(𝑖𝑥2) �𝑖𝑦2� + 𝑥2𝑦2�

= 2 �−𝑥2𝑦2 + 𝑥2𝑦2�

= 0

153



4.9. HW8 CHAPTER 4. HWS

Therefore closed under multiplication. Checking now if closed under scalar multiplication.

𝑐�̄� = 𝑐
⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
𝑐𝑥1
𝑐𝑥2

⎞
⎟⎟⎟⎟⎠

Hence

(𝑐𝑥1)
2 + (𝑐𝑥2)

2 = 𝑐2𝑥21 + 𝑐2𝑥22
= 𝑐2 �𝑥21 + 𝑥22�

But 𝑥21 + 𝑥22 = 0. Therefore (𝑐𝑥1)
2 + (𝑐𝑥2)

2 = 0 and it is closed under scalar multiplication as
well. Therefore 𝑊 is subspace of ℝ2 .

4.9.11 Section 4.2 problem 11

problem A subset 𝑊 of some 𝑛 space ℝ𝑛 is defined by means of a given condition imposed
on typical vector (𝑥1, 𝑥2,⋯ , 𝑥𝑛). Apply theorem 1 to determine whether or not𝑊 is subspace
of ℝ𝑛. 𝑊 is set of all vectors in ℝ4 such that 𝑥1 + 𝑥2 = 𝑥3 + 𝑥4.

solution

From theorem 1, for the subset 𝑊 to be subspace, it has to satisfy being closed under
addition of vectors and under scalar multiplication. Let any vector in this space be �̄� =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, �̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3
𝑦4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

be two such vectors such that 𝑥1 + 𝑥2 = 𝑥3 + 𝑥4 and 𝑦1 + 𝑦2 = 𝑦3 + 𝑦4. Adding

any two such vectors in this space gives

�̄� + �̄� =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦1
𝑦2
𝑦3
𝑦4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1 + 𝑦1
𝑥2 + 𝑦2
𝑥3 + 𝑦3
𝑥4 + 𝑦4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Checking now if �𝑥1 + 𝑦1� + �𝑥2 + 𝑦2� = �𝑥3 + 𝑦3� + �𝑥4 + 𝑦4� or not.

�𝑥1 + 𝑦1� + �𝑥2 + 𝑦2� = (𝑥1 + 𝑥2) + �𝑦1 + 𝑦2�

But 𝑥1 + 𝑥2 = 𝑥3 + 𝑥4 and 𝑦1 + 𝑦2 = 𝑦3 + 𝑦4, therefore the above becomes

�𝑥1 + 𝑦1� + �𝑥2 + 𝑦2� = (𝑥3 + 𝑥4) + �𝑦3 + 𝑦4�

Hence closed under addition. Checking now if closed under scalar multiplication.

𝑐�̄� = 𝑐

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐𝑥1
𝑐𝑥2
𝑐𝑥3
𝑐𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

(𝑐𝑥1) + (𝑐𝑥2) = 𝑐 (𝑥1 + 𝑥2)
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But 𝑥1 + 𝑥2 = 𝑥3 + 𝑥4 hence
(𝑐𝑥1) + (𝑐𝑥2) = 𝑐 (𝑥3 + 𝑥4)

= (𝑐𝑥3) + (𝑐𝑥4)

And therefore it is closed under scalar multiplication as well. Hence 𝑊 is subspace of ℝ4

4.9.12 Section 4.2 problem 16

problem Apply method of example 5 to find two solution vectors 𝑢, 𝑣 such that the solution
space is the set of all linear combinations of the form 𝑠𝑢 + 𝑡𝑣

𝑥1 − 4𝑥2 − 3𝑥3 − 7𝑥4 = 0
2𝑥1 − 𝑥2 + 𝑥3 + 7𝑥4 = 0

𝑥1 + 2𝑥2 + 3𝑥3 + 11𝑥4 = 0

solution

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −3 −7
2 −1 1 7
1 2 3 11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let 𝑅2 = 𝑅2 − 2𝑅1, hence

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −3 −7
0 7 7 21
1 2 3 11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let 𝑅3 = 𝑅3 − 𝑅1, hence

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −3 −7
0 7 7 21
0 6 6 18

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let 𝑅3 = 𝑅3 −
6
7𝑅2, hence

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −4 −3 −7
0 7 7 21
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Last row gives 0𝑥3 + 0𝑥4 = 0. Therefore 𝑥4 = 𝑡, 𝑥3 = 𝑠 are the free parameters. From second
row

7𝑥2 + 7𝑥3 + 21𝑥4 = 0
7𝑥2 = −7𝑠 − 21𝑡
𝑥2 = −𝑠 − 3𝑡

From first equation

𝑥1 − 4𝑥2 − 3𝑥3 − 7𝑥4 = 0
𝑥1 = 4𝑥2 + 3𝑥3 + 7𝑥4
= 4 (−𝑠 − 3𝑡) + 3𝑠 + 7𝑡
= −𝑠 − 5𝑡
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Hence solution vector is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑠 − 5𝑡
−𝑠 − 3𝑡
𝑠
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−𝑠
−𝑠
𝑠
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5𝑡
−3𝑡
0
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
−1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ 𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−5
−3
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑠�̄� + 𝑡�̄�

4.9.13 Section 4.2 problem 22

problem Reduce the given system to echelon form to find a single solution vector 𝑢 such
that the solution space is the set of all scalar multiples of 𝑢

𝑥1 + 3𝑥2 + 3𝑥3 + 3𝑥4 = 0
2𝑥1 + 7𝑥2 + 5𝑥3 − 𝑥4 = 0
2𝑥1 + 7𝑥2 + 4𝑥3 − 4𝑥4 = 0

solution

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 3 3
2 7 5 −1
2 7 4 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 = 𝑅2 − 2𝑅1 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 3 3
0 1 −1 −7
2 7 4 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 = 𝑅3 − 2𝑅1 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 3 3
0 1 −1 −7
0 1 −2 −10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 − 𝑅2 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 3 3 3
0 1 −1 −7
0 0 −1 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Last row gives −𝑥3 − 3𝑥4 = 0. Therefore let 𝑥4 = 𝑡 be the free parameter. Hence 𝑥3 = −3𝑡.
From second equation

𝑥2 − 𝑥3 − 7𝑥4 = 0
𝑥2 = 𝑥3 + 7𝑥4
= −3𝑡 + 7𝑡
= 4𝑡
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And from first equation

𝑥1 + 3𝑥2 + 3𝑥3 + 3𝑥4 = 0
𝑥1 = −3𝑥2 − 3𝑥3 − 3𝑥4
= −3 (4𝑡) − 3 (−3𝑡) − 3𝑡
= −6𝑡

Hence solution vector is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−6𝑡
4𝑡
−3𝑡
𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−6
4
−3
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑡�̄�

4.9.14 Section 4.2 problem 26

problem Prove: If �̄� is a fixed vector in vector space 𝑉, then the set of 𝑊 of all scalar
multiples 𝑐�̄� of �̄� is subspace of 𝑉

solution

Let

𝑊 = {𝑐�̄�}

Closure under addition gives

𝑐1�̄� + 𝑐2�̄� = (𝑐1 + 𝑐2) �̄�
= 𝑏�̄�

Where 𝑏 = 𝑐1 + 𝑐2. Hence closed under additions. Closure under multiplication by scalar 𝑏
gives

𝑏𝑐�̄� = (𝑏𝑐) �̄�
= 𝐶1�̄�

Where 𝐶1 = 𝑏𝑐 a new constant. Hence closed under multiplication by scalar 𝑏. Therefore
𝑊 is subspace of 𝑉

4.9.15 Section 4.2 problem 27

problem Let �̄� and �̄� be fixed vectors in vector space 𝑉. Show that the set 𝑊 of all linear
combinations 𝑎�̄� + 𝑏�̄� is subspace of 𝑉

solution

The set 𝑊 is 𝑊 = {𝑎�̄� + 𝑏�̄�} which is linear combinations of �̄� and �̄� where 𝑎, 𝑏 are arbitrary
scalar. Closure under addition gives

(𝑎1�̄� + 𝑏1�̄�) + (𝑎2�̄� + 𝑏2�̄�) = (𝑎1 + 𝑎2) �̄� + (𝑏1 + 𝑏2) �̄�

But 𝑎1+𝑎2 and 𝑏1+𝑏2 are arbitrary scalars, say 𝐶1, 𝐶2 respectively. Hence the above becomes
𝐶1�̄�+𝐶2�̄� and this is in𝑊. Hence𝑊 is closed under addition. Closure under multiplication
by scalar 𝑐 gives

𝑐 (𝑎�̄� + 𝑏�̄�) = 𝑐𝑎�̄� + 𝑐𝑏�̄�

But 𝑐𝑎 and 𝑐𝑏 are arbitrary scalars, say 𝐶1, 𝐶2 respectively. Hence the above becomes
𝐶1�̄� + 𝐶2�̄� and this is in 𝑊. Therefore 𝑊 is subspace of 𝑉.
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4.9.16 Section 4.2 problem 28

problem Suppose 𝐴 is 𝑛×𝑛 matrix and 𝑘 is constant scalar. Show that the set of all vectors
�̄� such that 𝐴�̄� = 𝑘�̄� is subspace of ℝ𝑛

solution

Let 𝑊 = {�̄�} where 𝐴�̄� = 𝑘�̄�. To determine if closed under addition, we consider the vector
�̄�1 + �̄�2. This vector should also satisfy 𝐴 (�̄�1 + �̄�2) = 𝑘 (�̄�1 + �̄�2) for it to be closed. Let us
check if this is the case or not.

𝐴 (�̄�1 + �̄�2) = 𝐴�̄�1 + 𝐴�̄�2
= 𝑘�̄�1 + 𝑘�̄�2
= 𝑘 (�̄�1 + �̄�2)

Hence it is closed under addition. We will now check closure under scalar multiplication.

𝐴 (𝑐�̄�1) = 𝑐𝐴�̄�1
= 𝑐𝑘�̄�
= 𝑘 (𝑐�̄�)

Hence closed under scalar multiplication. Therefore 𝑊 is subspace of 𝑉.

4.9.17 Section 4.3 problem 6 (page 252)

problem Determine whether the given vectors are L.I. or L.D. Do this by inspection without
solving linear system of equations

�̄�1 = (1, 0, 0)
�̄�2 = (1, 1, 0)
�̄�3 = (1, 1, 1)

solution

The equation 𝑐1�̄�1 + 𝑐2�̄�2 + 𝑐3�̄�3 = 0̄ gives

𝑐1 (1, 0, 0) + 𝑐2 (1, 1, 0) + 𝑐3 (1, 1, 1) = (0, 0, 0)
(𝑐1 + 𝑐2 + 𝑐3, 𝑐2 + 𝑐3, 𝑐3) = (0, 0, 0)

Hence 𝑐3 = 0 and 𝑐2 = 0 and 𝑐1 = 0 is the only solution. Therefore definition of linear
independence (page 248), the vectors are linearly independent.

4.9.18 Section 4.3 problem 7

problem Determine whether the given vectors are L.I. or L.D. Do this by inspection without
solving linear system of equations

𝑣1 = (2, 1, 0, 0)
𝑣2 = (3, 0, 1, 0)
𝑣3 = (4, 0, 0, 1)

solution

The equation 𝑐1�̄�1 + 𝑐2�̄�2 + 𝑐3�̄�3 = 0̄ gives

𝑐1 (2, 1, 0, 0) + 𝑐2 (3, 0, 1, 0) + 𝑐3 (4, 0, 0, 1) = (0, 0, 0, 0)
(2𝑐1 + 3𝑐2 + 4𝑐3, 𝑐1, 𝑐2, 𝑐3) = (0, 0, 0, 0)

Therefore, we see by inspection (comparing terms) that 𝑐3 = 0, 𝑐2 = 0, 𝑐1 = 0. Therefore
definition of linear independence (page 248), the vectors are linearly independent.
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4.9.19 Section 4.3 problem 15

problem Express the indicated vector 𝑤 as linear combination of the given vectors 𝑣𝑖 if
this is possible. If not, show it is impossible

�̄� = (4, 5, 6)
�̄�1 = (2, −1, 4)
�̄�2 = (3, 0, 1)
�̄�3 = (1, 2, −1)

solution

The equation 𝑐1�̄�1 + 𝑐2�̄�2 + 𝑐3�̄�3 = �̄� gives (in matrix form)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 1
−1 0 2
4 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
5
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We now solve for 𝑐1, 𝑐2, 𝑐3. Let 𝑅2 = 𝑅2 +
1
2𝑅1 therefore

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 1
0 3

2
5
2

4 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 − 2𝑅1 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 1
0 3

2
5
2

0 −5 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7
−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 −
10
3 𝑅2 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 4
0 3

2
5
2

0 0 16
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7
64
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, since there are no zero pivots at end of forward Gaussian elimination, the
solution is unique and not zero. (by backward substitution,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
−2
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

�̄� = 𝑐1�̄�1 + 𝑐2�̄�2 + 𝑐3�̄�3
= 3�̄�1 − 2�̄�2 + 4�̄�3

4.9.20 Section 4.3 problem 20

problem Three vectors 𝑣1, 𝑣2, 𝑣3 are given. If they are L.I., show this. Otherwise, find a
nontrivial linear combination of them that is equal to the zero vector.

�̄�1 = (1, 1, −1, 1)
�̄�2 = (2, 1, 1, 1)
�̄�3 = (3, 1, 4, 1)

solution

Here the space is ℝ4, but only 3 vectors are given. Therefore theorem 3 at page 252 is
used. This theorem says that, if we set the 𝐴 matrix, with its columns as the given vectors
above, then the vectors are L.I. i� there is a 3 × 3 submatrix inside 𝐴 which has nonzero
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determinant. To show this, Gaussian eliminating is used.

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
1 1 1
−1 1 4
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−𝑅1⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 −1 −2
−1 1 4
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3+𝑅1⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 −1 −2
0 3 7
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅4=𝑅4−𝑅1⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 −1 −2
0 3 7
0 −1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3+3𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 −1 −2
0 0 1
0 −1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅4=𝑅4−𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 −1 −2
0 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above shows that there is a submatrix of size 3 × 3 which has nonzero determinant. It
is the matrix of the first 3 rows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 −1 −2
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

This has nonzero determinant. Since it is diagonal, its determinant is the product of
diagonal elements. Since no diagonal element is zero, the determinant is not zero. This
implies vectors are linearly independent.

4.9.21 Section 4.3 problem 24

problem The vectors �̄�𝑖 are known to be L.I., apply the definition of L.I. to show that the
vectors 𝑢𝑖 are also L.I.

�̄�1 = �̄�1 + �̄�2
�̄�2 = 2�̄�1 + 3�̄�2

solution

We will examine

𝑎�̄�1 + 𝑏�̄�2 = 0̄

To see if this is satisfied only for 𝑎 = 0, 𝑏 = 0.

𝑎�̄�1 + 𝑏�̄�2 = 0̄
𝑎 (�̄�1 + �̄�2) + 𝑏 (2�̄�1 + 3�̄�2) = 0̄
�̄�1 (𝑎 + 2𝑏) + �̄�2 (𝑎 + 3𝑏) = 0̄

But since we are told that �̄�1, �̄�2 are L.I., then this implies that 𝑎 + 2𝑏 = 0 and 𝑎 + 3𝑏 = 0.
These two equations we solve now for 𝑎, 𝑏. These two equations show that 2𝑏 = 3𝑏, which
means 𝑏 = 0. Hence 𝑎 = 0 as well. Therefore only solution for 𝑎�̄�1 + 𝑏�̄�2 = 0̄ is that 𝑎 = 𝑏 = 0.
This is the same as saying �̄�1, �̄�2 are linearly independent.

QED
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4.10 HW9

4.10.1 Section 4.3 problem 6 (page 252)

problem Determine whether the given vectors are L.I. or L.D. Do this by inspection without
solving linear system of equations

�̄�1 = (1, 0, 0)
�̄�2 = (1, 1, 0)
�̄�3 = (1, 1, 1)

solution

The equation 𝑐1�̄�1 + 𝑐2�̄�2 + 𝑐3�̄�3 = 0̄ gives

𝑐1 (1, 0, 0) + 𝑐2 (1, 1, 0) + 𝑐3 (1, 1, 1) = (0, 0, 0)
(𝑐1 + 𝑐2 + 𝑐3, 𝑐2 + 𝑐3, 𝑐3) = (0, 0, 0)

Hence 𝑐3 = 0 and 𝑐2 = 0 and 𝑐1 = 0 is the only solution. Therefore definition of linear
independence (page 248), the vectors are linearly independent.

4.10.2 Section 4.3 problem 7

problem Determine whether the given vectors are L.I. or L.D. Do this by inspection without
solving linear system of equations

𝑣1 = (2, 1, 0, 0)
𝑣2 = (3, 0, 1, 0)
𝑣3 = (4, 0, 0, 1)

solution

The equation 𝑐1�̄�1 + 𝑐2�̄�2 + 𝑐3�̄�3 = 0̄ gives

𝑐1 (2, 1, 0, 0) + 𝑐2 (3, 0, 1, 0) + 𝑐3 (4, 0, 0, 1) = (0, 0, 0, 0)
(2𝑐1 + 3𝑐2 + 4𝑐3, 𝑐1, 𝑐2, 𝑐3) = (0, 0, 0, 0)

Therefore, we see by inspection (comparing terms) that 𝑐3 = 0, 𝑐2 = 0, 𝑐1 = 0. Therefore
definition of linear independence (page 248), the vectors are linearly independent.

4.10.3 Section 4.3 problem 15

problem Express the indicated vector 𝑤 as linear combination of the given vectors 𝑣𝑖 if
this is possible. If not, show it is impossible

�̄� = (4, 5, 6)
�̄�1 = (2, −1, 4)
�̄�2 = (3, 0, 1)
�̄�3 = (1, 2, −1)

solution

The equation 𝑐1�̄�1 + 𝑐2�̄�2 + 𝑐3�̄�3 = �̄� gives (in matrix form)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 1
−1 0 2
4 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
5
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We now solve for 𝑐1, 𝑐2, 𝑐3. Let 𝑅2 = 𝑅2 +
1
2𝑅1 therefore

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 1
0 3

2
5
2

4 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑅3 = 𝑅3 − 2𝑅1 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 3 1
0 3

2
5
2

0 −5 −3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7
−2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 −
10
3 𝑅2 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 4
0 3

2
5
2

0 0 16
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
7
64
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, since there are no zero pivots at end of forward Gaussian elimination, the
solution is unique and not zero. (by backward substitution,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
−2
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence

�̄� = 𝑐1�̄�1 + 𝑐2�̄�2 + 𝑐3�̄�3
= 3�̄�1 − 2�̄�2 + 4�̄�3

4.10.4 Section 4.3 problem 20

problem Three vectors 𝑣1, 𝑣2, 𝑣3 are given. If they are L.I., show this. Otherwise, find a
nontrivial linear combination of them that is equal to the zero vector.

�̄�1 = (1, 1, −1, 1)
�̄�2 = (2, 1, 1, 1)
�̄�3 = (3, 1, 4, 1)

solution

Here the space is ℝ4, but only 3 vectors are given. Therefore theorem 3 at page 252 is
used. This theorem says that, if we set the 𝐴 matrix, with its columns as the given vectors
above, then the vectors are L.I. i� there is a 3 × 3 submatrix inside 𝐴 which has nonzero
determinant. To show this, Gaussian eliminating is used.

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
1 1 1
−1 1 4
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2=𝑅2−𝑅1⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 −1 −2
−1 1 4
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3+𝑅1⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 −1 −2
0 3 7
1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅4=𝑅4−𝑅1⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 −1 −2
0 3 7
0 −1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3+3𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 −1 −2
0 0 1
0 −1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅4=𝑅4−𝑅2⟶

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 −1 −2
0 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above shows that there is a submatrix of size 3 × 3 which has nonzero determinant. It
is the matrix of the first 3 rows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3
0 −1 −2
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

This has nonzero determinant. Since it is diagonal, its determinant is the product of
diagonal elements. Since no diagonal element is zero, the determinant is not zero. This
implies vectors are linearly independent.
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4.10.5 Section 4.3 problem 24

problem The vectors �̄�𝑖 are known to be L.I., apply the definition of L.I. to show that the
vectors 𝑢𝑖 are also L.I.

�̄�1 = �̄�1 + �̄�2
�̄�2 = 2�̄�1 + 3�̄�2

solution

We will examine

𝑎�̄�1 + 𝑏�̄�2 = 0̄

To see if this is satisfied only for 𝑎 = 0, 𝑏 = 0.

𝑎�̄�1 + 𝑏�̄�2 = 0̄
𝑎 (�̄�1 + �̄�2) + 𝑏 (2�̄�1 + 3�̄�2) = 0̄
�̄�1 (𝑎 + 2𝑏) + �̄�2 (𝑎 + 3𝑏) = 0̄

But since we are told that �̄�1, �̄�2 are L.I., then this implies that 𝑎 + 2𝑏 = 0 and 𝑎 + 3𝑏 = 0.
These two equations we solve now for 𝑎, 𝑏. These two equations show that 2𝑏 = 3𝑏, which
means 𝑏 = 0. Hence 𝑎 = 0 as well. Therefore only solution for 𝑎�̄�1 + 𝑏�̄�2 = 0̄ is that 𝑎 = 𝑏 = 0.
This is the same as saying �̄�1, �̄�2 are linearly independent.

QED
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4.11 HW10

4.11.1 Section 5.1 problem 10 (page 299)

problem

Verify that 𝑦1, 𝑦2 are solutions of the di�erential equation. Then find a particular solution
of the form 𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2 that satisfies the initial conditions. 𝑦′′ − 10𝑦′ + 25𝑦 = 0 with
𝑦1 = 𝑒5𝑥, 𝑦2 = 𝑥𝑒5𝑥 and 𝑦 (0) = 3, 𝑦′ (0) = 13

solution

To verify that 𝑦1 or 𝑦2 is solution to the ODE, we plug it into the ODE and see if it gives
zero, which is what the RHS is. Since 𝑦′1 = 5𝑒5𝑥, 𝑦′′1 = 25𝑒5𝑥, then substituting this into the
ODE gives

𝑦′′1 − 10𝑦′1 + 25𝑦1 = 0

25𝑒5𝑥 − 10 �5𝑒5𝑥� + 25 �𝑒5𝑥� = 0
25𝑒5𝑥 − 50𝑒5𝑥 + 25𝑒5𝑥 = 0

0 = 0

Hence verified. Now we do the same for 𝑦2. Since 𝑦′2 = 𝑒5𝑥 + 5𝑥𝑒5𝑥, 𝑦′′2 = 5𝑒5𝑥 + 5𝑒5𝑥 + 25𝑥𝑒5𝑥,
then substituting this into the ODE gives

𝑦′′2 − 10𝑦′2 + 25𝑦2 = 0
�5𝑒5𝑥 + 5𝑒5𝑥 + 25𝑥𝑒5𝑥� − 10 �𝑒5𝑥 + 5𝑥𝑒5𝑥� + 25 �𝑥𝑒5𝑥� = 0

5𝑒5𝑥 + 5𝑒5𝑥 + 25𝑥𝑒5𝑥 − 10𝑒5𝑥 − 50𝑥𝑒5𝑥 + 25𝑥𝑒5𝑥 = 0
25𝑥𝑒5𝑥 − 50𝑥𝑒5𝑥 + 25𝑥𝑒5𝑥 = 0

0 = 0

Hence verified. Therefore the general solution is

𝑦 (𝑥) = 𝑐1𝑦1 (𝑥) + 𝑐2𝑦 (𝑥)

Where the constants are found from initial conditions. Using the first initial condition gives

𝑦 (0) = 3
𝑐1𝑦1 (0) + 𝑐2𝑦2 (0) = 3

𝑐1 �𝑒5𝑥�𝑥=0 + 𝑐2
�𝑥𝑒5𝑥�

𝑥=0
= 3

𝑐1 = 3

Hence the solution becomes

𝑦 (𝑥) = 3𝑦1 (𝑥) + 𝑐2𝑦2 (𝑥)
𝑦′ = 3𝑦′1 + 𝑐2𝑦′2
= 3 �5𝑒5𝑥� + 𝑐2 �𝑒5𝑥 + 5𝑥𝑒5𝑥�

Applying the second boundary conditions gives
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𝑦′ (0) = 13

3 �5𝑒5𝑥�
𝑥=0

+ 𝑐2 �𝑒5𝑥 + 5𝑥𝑒5𝑥�𝑥=0 = 13

3 (5) + 𝑐2 = 13
𝑐2 = 13 − 15
= −2

Therefore the particular solution is

𝑦 (𝑥) = 𝑐1𝑦1 (𝑥) + 𝑐2𝑦 (𝑥)
= 3𝑦1 (𝑥) − 2𝑦 (𝑥)
= 3𝑒5𝑥 − 2𝑥𝑒5𝑥

= 𝑒5𝑥 (3 − 2𝑥)

4.11.2 Section 5.1 problem 19

problem Show that 𝑦1 = 1, 𝑦2 = √𝑥 are solutions to 𝑦𝑦′′ + �𝑦′�
2
= 0 but that their sum

𝑦 = 𝑦1 + 𝑦2 is not a solution

solution To show that 𝑦1 and 𝑦2 are solution to the ODE, we plug them into the ODE
and see if the result is the same as the RHS. Since 𝑦1 = 1 then 𝑦′1 = 0, 𝑦′′1 = 0. Then ODE
becomes

𝑦1𝑦′′1 + �𝑦′1�
2
= 0

1 (0) + 0 = 0
0 = 0

Hence verified. For 𝑦2, we have 𝑦′2 =
1

2𝑥
1
2
, 𝑦′′2 =

−1
4

1

𝑥
3
2
. Hence the ODE becomes

𝑦2𝑦′′2 + �𝑦′2�
2
= 0

𝑥
1
2

⎛
⎜⎜⎜⎜⎝
−1
4
1

𝑥
3
2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
1

2𝑥
1
2

⎞
⎟⎟⎟⎟⎠

2

= 0

�
−1
4
1
𝑥�
+ �

1
4𝑥�

= 0

0 = 0

Hence verified. Now we plugin the sum into the ODE.

�𝑦1 + 𝑦2� �𝑦1 + 𝑦2�
′′
+ ��𝑦1 + 𝑦2�

′
�
2
= 0

�𝑦1 + 𝑦2� �𝑦′′1 + 𝑦′′2 � + �𝑦′1 + 𝑦′2�
2
= 0

�𝑦1𝑦′′1 + 𝑦1𝑦′′2 � + �𝑦2𝑦′′1 + 𝑦2𝑦′′2 � + �𝑦′1�
2
+ �𝑦′2�

2
+ 2𝑦′1𝑦′2 = 0

𝑦1𝑦′′1 + 𝑦1𝑦′′2 + 𝑦2𝑦′′1 + 𝑦2𝑦′′2 + �𝑦′1�
2
+ �𝑦′2�

2
+ 2𝑦′1𝑦′2 = 0

But we found that 𝑦1𝑦′′1 + �𝑦′1�
2
= 0 and 𝑦2𝑦′′2 + �𝑦′2�

2
= 0 from earlier. Using these into the

LHS of the above simplifies it to

𝑦1𝑦′′2 + 𝑦2𝑦′′1 + 2𝑦′1𝑦′2 = 0
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But 𝑦′′2 =
−1
4

1

𝑥
3
2
, 𝑦′′1 = 0, 𝑦′1 = 0, 𝑦1 = 1, then the above becomes

−1
4
1

𝑥
3
2

= 0

We see that the LHS is not zero. Hence 𝑦1 + 𝑦2 is not a solution to the ODE.

4.11.3 Section 5.1 problem 24

problem Determine whether the pairs of functions are linearly independent or not on the

real line. 𝑓 (𝑥) = sin2 𝑥, 𝑔 (𝑥) = 1 − cos 2𝑥

solution The two functions are L.I. if 𝑐1𝑓 (𝑥) + 𝑐1𝑔 (𝑥) = 0 for each 𝑥, only when 𝑐1 = 𝑐2 = 0.
Or stated di�erently, two functions are L.D. if there exist 𝑐1, 𝑐2 not all zero, such that
𝑐1𝑓 (𝑥) + 𝑐1𝑔 (𝑥) = 0 for each 𝑥. To show this, we set up the Wronskian 𝑊 and see if it is zero
or not. If 𝑊 = 0 then this mean that the functions are L.D.

𝑊 = �
𝑓 (𝑥) 𝑔 (𝑥)
𝑓′ (𝑥) 𝑔′ (𝑥)

� =

�
sin2 𝑥 1 − cos 2𝑥

2 sin 𝑥 cos 𝑥 2 sin 2𝑥 �

= 2 sin2 𝑥 sin 2𝑥 − (1 − cos 2𝑥) (2 sin 𝑥 cos 𝑥)
= 2 sin2 𝑥 sin 2𝑥 − 2 sin 𝑥 cos 𝑥 + 2 cos 2𝑥 sin 𝑥 cos 𝑥

The RHS of the above simplifies to 0.

𝑊 = 0

Therefore, the functions are linearly dependent.

4.11.4 Section 5.1 problem 26

problem Determine whether the pairs of functions are linearly independent or not on the
real line. 𝑓 (𝑥) = 2 cos 𝑥 + 3 sin 𝑥, 𝑔 (𝑥) = 3 cos 𝑥 − 2 sin 𝑥

solution To show this, we set up the Wronskian 𝑊 and see if it is zero or not. If 𝑊 = 0
then this mean that the functions are L.D.

𝑊 = �
𝑓 (𝑥) 𝑔 (𝑥)
𝑓′ (𝑥) 𝑔′ (𝑥)

� =

�
2 cos 𝑥 + 3 sin 𝑥 3 cos 𝑥 − 2 sin 𝑥
−2 sin 𝑥 + 3 cos 𝑥 −3 sin 𝑥 − 2 cos 𝑥�

= (2 cos 𝑥 + 3 sin 𝑥) (−3 sin 𝑥 − 2 cos 𝑥) − (3 cos 𝑥 − 2 sin 𝑥) (−2 sin 𝑥 + 3 cos 𝑥)
= −13 cos2 𝑥 − 13 sin2 𝑥

= −13 �cos2 𝑥 + sin2 𝑥�

= −13

Since 𝑊 ≠ 0 then the functions are Linearly independent.

4.11.5 Section 5.1 problem 27

problem Ley 𝑦𝑝 be a particular solution of the nonhomogeneous equation 𝑦′′+𝑝𝑦′+𝑞𝑦 = 𝑓 (𝑥)
and let 𝑦ℎ be the homogenous solution. Show that 𝑦 = 𝑦ℎ + 𝑦𝑝 is a solution of the given
ODE.
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solution since 𝑦ℎ satisfies the homogenous ODE then we can write

𝑦′′ℎ + 𝑝𝑦′ℎ + 𝑞𝑦ℎ = 0 (1)

And since 𝑦𝑝 satisfies the nonhomogeneous ODE then we can write

𝑦′′𝑝 + 𝑝𝑦′𝑝 + 𝑞𝑦𝑝 = 𝑓 (𝑥) (2)

Adding (1)+(2) gives

�𝑦′′𝑝 + 𝑦′′ℎ � + 𝑝 �𝑦′𝑝 + 𝑦′𝑝� + 𝑞 �𝑦𝑝 + 𝑦ℎ� = 𝑓 (𝑥)

But due to linearity of di�erentiation, then the above can be written as

�𝑦𝑝 + 𝑦ℎ�
′′
+ 𝑝 �𝑦𝑝 + 𝑦𝑝�

′
+ 𝑞 �𝑦𝑝 + 𝑦ℎ� = 𝑓 (𝑥)

Let 𝑌 = 𝑦𝑝 + 𝑦ℎ then

𝑌′′ + 𝑝𝑌′ + 𝑞𝑌 = 𝑓 (𝑥)

Therefore we showed that 𝑌 = 𝑦𝑝 + 𝑦ℎ satisfies the original ODE, hence it is a solution.
QED

4.11.6 Section 5.1 problem 31

problem Show that 𝑦1 = sin 𝑥2 and 𝑦 = cos 𝑥2 are L.I. functions, but their Wronskian
vanishes are 𝑥 = 0. Why does this implies that there is no di�erential equation of the
form 𝑦′′ + 𝑝 (𝑥) 𝑦′ + 𝑞 (𝑥) 𝑦 = 0 with both 𝑝, 𝑞 continuous everywhere, having both 𝑦1, 𝑦2 are
solutions?

solution

𝑊 = �
𝑦1 𝑦2
𝑦′2 𝑦′2

� =

�
sin 𝑥2 cos 𝑥2

(2𝑥) cos 𝑥2 − (2𝑥) sin 𝑥2�

= −2𝑥 sin 𝑥2 sin 𝑥2 − 2𝑥 cos2 cos 𝑥2

= −2𝑥 ��sin 𝑥2�
2
+ �cos 𝑥2�

2
�

= −2𝑥

The Wronskian is zero at 𝑥 = 0 but not zero at other points. It is only when 𝑊 = 0
everywhere, we say that 𝑦1, 𝑦2 are L.D. We can have L.I. functions, but also have𝑊(𝑥0) = 0
at some 𝑥0 as in this problem. What this mean, is that 𝑥 = 0 can not be in the domain of
the solution for 𝑦1, 𝑦2 to be solutions to the ODE. Hence, since the domain of the solution
is everywhere, this means 𝑥 = 0 is part of the domain, then we conclude that 𝑦1, 𝑦2 can not
be both solutions, since they are L.I. at 𝑥 = 0.

4.11.7 Section 5.1 problem 32

problem Let 𝑦1, 𝑦2 be two solutions of 𝐴 (𝑥) 𝑦′′ + 𝐵 (𝑥) 𝑦′ + 𝐶 (𝑥) 𝑦 = 0 on open interval 𝐼
where 𝐴,𝐵, 𝐶 are continuous and 𝐴 (𝑥) is never zero. (a) Let 𝑊 = 𝑊�𝑦1, 𝑦2�. Show that

𝐴 (𝑥) 𝑑𝑊𝑑𝑥 = 𝑦1 �𝐴𝑦′′2 � − 𝑦2 �𝐴𝑦′′1 � then substitute for 𝐴𝑦′′2 and 𝐴𝑦′′1 from the original ODE to
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show that 𝐴 (𝑥) 𝑑𝑊𝑑𝑥 = −𝐵 (𝑥)𝑊 (𝑥) (b) Solve this first order ODE equation to deduce Abel’s

formula 𝑊(𝑥) = 𝑘 exp �−∫ 𝐵(𝑥)
𝐴(𝑥)𝑑𝑥� where 𝑘 is constant. (c) Why does Abel’s formula imply

that the Wronskian 𝑊�𝑦1, 𝑦2� is either zero everywhere or non-zero everywhere (as stated
in theorem 3)?

solution

4.11.7.1 Part (a)

By definition

𝑊(𝑥) = 𝑦1𝑦′2 − 𝑦2𝑦′1

Hence

𝑑𝑊
𝑑𝑥

= 𝑦′1𝑦′2 + 𝑦1𝑦′′2 − 𝑦′2𝑦′1 − 𝑦2𝑦′′1
= 𝑦1𝑦′′2 − 𝑦2𝑦′′1

Therefore

𝐴 (𝑥)
𝑑𝑊
𝑑𝑥

= 𝐴 (𝑥) �𝑦1𝑦′′2 − 𝑦2𝑦′′1 �

= 𝑦1 �𝐴 (𝑥) 𝑦′′2 � − 𝑦2 �𝐴 (𝑥) 𝑦′′1 � (1)

But from original ODE, 𝐴 (𝑥) 𝑦′′1 + 𝐵 (𝑥) 𝑦′1 + 𝐶 (𝑥) 𝑦1 = 0, therefore

𝐴 (𝑥) 𝑦′′1 = −𝐵 (𝑥) 𝑦′1 − 𝐶 (𝑥) 𝑦1 (2)

And also from original ODE, 𝐴 (𝑥) 𝑦′′2 + 𝐵 (𝑥) 𝑦′2 + 𝐶 (𝑥) 𝑦2 = 0, therefore

𝐴 (𝑥) 𝑦′′2 = −𝐵 (𝑥) 𝑦′2 − 𝐶 (𝑥) 𝑦2 (3)

Substituting (2,3) into (1) gives

𝐴 (𝑥)
𝑑𝑊
𝑑𝑥

= 𝑦1 �−𝐵 (𝑥) 𝑦′2 − 𝐶 (𝑥) 𝑦2� − 𝑦2 �−𝐵 (𝑥) 𝑦′1 − 𝐶 (𝑥) 𝑦1�

= −𝐵 (𝑥) 𝑦1𝑦′2 − 𝐶 (𝑥) 𝑦1𝑦2 + 𝐵 (𝑥) 𝑦2𝑦′1 + 𝐶 (𝑥) 𝑦2𝑦1
= −𝐵 (𝑥) 𝑦1𝑦′2 + 𝐵 (𝑥) 𝑦2𝑦′1
= −𝐵 (𝑥) �𝑦1𝑦′2 − 𝑦2𝑦′1�

= −𝐵 (𝑥)𝑊 (𝑥) (4)

QED.

4.11.7.2 Part (b)

Solving (4).

𝐴 (𝑥)
𝑑𝑊
𝑑𝑥

+ 𝐵 (𝑥)𝑊 (𝑥) = 0

𝑑𝑊
𝑑𝑥

+
𝐵 (𝑥)
𝐴 (𝑥)

𝑊 (𝑥) = 0

Integrating factor is 𝜇 = 𝑒∫
𝐵(𝑥)
𝐴(𝑥)𝑑𝑥, hence the above becomes

𝑑
𝑑𝑥
�𝜇𝑊 (𝑥)� = 0
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Integrating gives

𝜇𝑊 (𝑥) = 𝑘

𝑊 (𝑥) = 𝑘𝑒−∫
𝐵(𝑥)
𝐴(𝑥)𝑑𝑥

4.11.7.3 Part (c)

Since an exponential function is never zero (for bounded 𝐵(𝑥)
𝐴(𝑥)), then 𝑊(𝑥) = 𝑘𝑒(⋅) can only

be zero if 𝑘 = 0. This makes 𝑊 = 0 everywhere when 𝑘 = 0. But if 𝑘 ≠ 0, then 𝑊 ≠ 0
everywhere. So 𝑊 can only be zero everywhere, or not zero everywhere.

4.11.8 Section 5.1 problem 34

problem Apply theorem 5 and 6 to find general solutions of the di�erential equation
𝑦′′ + 2𝑦′ − 15𝑦 = 0

solution The characteristic equation is 𝑟2 + 2𝑟 − 15 = 0, and the roots are

𝑟1 = 3
𝑟2 = −5

Therefore the solution is

𝑦 (𝑥) = 𝑐1𝑒𝑟1𝑥 + 𝑐2𝑒𝑟2𝑥

= 𝑐1𝑒3𝑥 + 𝑐2𝑒−5𝑥

4.11.9 Section 5.1 problem 42

problem Apply theorem 5 and 6 to find general solutions of the di�erential equation
35𝑦′′ − 𝑦′ − 12𝑦 = 0

solution The characteristic equation is 35𝑟2 − 𝑟 − 12 = 0, and the roots are

𝑟1 =
3
5

𝑟2 = −
4
7

Therefore the solution is

𝑦 (𝑥) = 𝑐1𝑒𝑟1𝑥 + 𝑐2𝑒𝑟2𝑥

= 𝑐1𝑒
3
5𝑥 + 𝑐2𝑒

− 4
7𝑥

4.11.10 Section 5.1 problem 48

problem Problem gives a general solution 𝑦 (𝑥) of a homogeneous second order ODE

𝑎𝑦′′+𝑏𝑦′+𝑐𝑦 = 0 with constant coe�cients. Find such an equation 𝑦 (𝑥) = 𝑒𝑥 �𝑐1𝑒𝑥√2 + 𝑐2𝑒−𝑥√2�

solution We compare the above solution to the general form of the solution given by

𝑦 = 𝑐1𝑒𝑟1𝑥 + 𝑐2𝑒𝑟2𝑥

= 𝑐1𝑒
𝑥�1+√2� + 𝑐2𝑒

𝑥�1−√2�

We see that

𝑟1 = 1 + √2

𝑟2 = 1 − √2
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This implies that the characteristic equation is

(𝑟 − 𝑟1) (𝑟 − 𝑟2) = 0

�𝑟 − �1 + √2�� �𝑟 − �1 − √2�� = 0

𝑟2 − 2𝑟 − 1 = 0

Therefore the ODE is

𝑦″ − 2𝑦′ − 𝑦 = 0

Where 𝑎 = 1, 𝑏 = −2, 𝑐 = −1.
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4.12 HW11

4.12.1 Section 5.2 problem 12 (page 311)

Problem: Use the Wronskian to prove that the given functions are linearly independent on
the given interval. 𝑓 (𝑥) = 𝑥, 𝑔 (𝑥) = cos (ln 𝑥) , ℎ (𝑥) = sin (ln 𝑥) for 𝑥 > 0

solution The Wronskian is

𝑊(𝑥) =
�

�

𝑓 𝑔 ℎ
𝑓′ 𝑔′ ℎ′

𝑓′′ 𝑔′′ ℎ′′

�

�

=
�

�

𝑥 cos (ln 𝑥) sin (ln 𝑥)
1 − sin (ln 𝑥) 1𝑥 cos (ln 𝑥) 1𝑥
0 − cos (ln 𝑥) 1

𝑥2 + sin (ln) 1
𝑥2 − sin (ln 𝑥) 1

𝑥2 − cos (ln 𝑥) 1
𝑥2

�

�

Expanding along the last row

𝑊(𝑥) = 𝑊32 (−1)
3+2𝐴32 +𝑊33 (−1)

3+3𝐴33

= − �− cos (ln 𝑥) 1
𝑥2
+ sin (ln) 1

𝑥2 � �
𝑥 sin (ln 𝑥)
1 cos (ln 𝑥) 1𝑥

� + �− sin (ln 𝑥) 1
𝑥2
− cos (ln 𝑥) 1

𝑥2 � �
𝑥 cos (ln 𝑥)
1 − sin (ln 𝑥) 1𝑥

�

= �cos (ln 𝑥) 1
𝑥2
− sin (ln) 1

𝑥2 �
(cos (ln 𝑥) − sin (ln 𝑥)) + �sin (ln 𝑥)

1
𝑥2
+ cos (ln 𝑥) 1

𝑥2 �
(sin (ln 𝑥) + cos (ln 𝑥))

Let sin (ln) 1
𝑥2 = 𝐴, cos (ln 𝑥) 1

𝑥2 = 𝐵, cos (ln 𝑥) = 𝑎, sin (ln 𝑥) = 𝑏 then the above is

𝑊(𝑥) = (𝐵 − 𝐴) (𝑎 − 𝑏) + (𝐴 + 𝐵) (𝑏 + 𝑎)
= 2𝐴𝑏 + 2𝐵𝑎

Transforming back

𝑊(𝑥) = 2 sin (ln) 1
𝑥2

sin (ln 𝑥) + 2 cos (ln 𝑥) 1
𝑥2

cos (ln 𝑥)

= 2 sin2 (ln) 1
𝑥2
+ 2 cos2 (ln 𝑥) 1

𝑥2

=
2
𝑥2

Hence, for 𝑥 > 0 the Wronskian is not zero. Therefore the functions are L.I.

4.12.2 Section 5.2 problem 16

Problem: A third order ODE is given, and three L.I. solutions are given. Find a particular
solution satisfying the given initial conditions 𝑦′′′ − 5𝑦′′ + 8𝑦′ − 4𝑦 = 0 and 𝑦 (0) = 1, 𝑦′ (0) =
4, 𝑦′′ (0) = 0 and 𝑦1 = 𝑒𝑥, 𝑦2 = 𝑒2𝑥, 𝑦3 = 𝑥𝑒2𝑥

solution The general solution is

𝑦 = 𝑐1𝑦1 + 𝑐2𝑦2 + 𝑐3𝑦3
= 𝑐1𝑒𝑥 + 𝑐2𝑒2𝑥 + 𝑐3𝑥𝑒2𝑥

Hence

𝑦′ = 𝑐1𝑒𝑥 + 2𝑐2𝑒2𝑥 + 𝑐3 �𝑒2𝑥 + 2𝑥𝑒2𝑥�

And

𝑦′′ = 𝑐1𝑒𝑥 + 4𝑐2𝑒2𝑥 + 𝑐3 �2𝑒2𝑥 + 2𝑒2𝑥 + 4𝑥𝑒2𝑥�

From first initial condition we obtain

1 = 𝑐1 + 𝑐2 (1)

From second initial condition we obtain

4 = 𝑐1 + 2𝑐2 + 𝑐3 (2)
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And from the third initial condition

0 = 𝑐1 + 4𝑐2 + 4𝑐3 (3)

We have three equations (1,2,3) to solve for 𝑐1, 𝑐2, 𝑐3.
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
1 2 1
1 4 4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Augmented matrix is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1
1 2 1 4
1 4 4 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑅2=𝑅2−𝑅1⟼
𝑅3=𝑅3−𝑅1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1
0 1 1 3
0 3 4 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3=𝑅3−3𝑅2⟼

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 1
0 1 1 3
0 0 1 −10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

We see that |𝐴| = 1, since reduced matrix is upper diagonal matrix. Hence the solution is
unique. From last row we obtain 𝑐3 = −10 and from second row 𝑐2+𝑐3 = 3 or 𝑐2 = 3+10 = 13
and from first row 𝑐1 + 𝑐2 = 1 or 𝑐1 = 1 − 13 = −12, hence the particular solution is

𝑦 (𝑥) = 𝑐1𝑒𝑥 + 𝑐2𝑒2𝑥 + 𝑐3𝑥𝑒2𝑥

= −12𝑒𝑥 + 13𝑒2𝑥 − 10𝑥𝑒2𝑥

4.12.3 Section 5.2 problem 24

Problem: A nonhomogeneous ODE, homogeneous solution 𝑦ℎ and particular solution
𝑦𝑝 are given. Find solution that satisfy the initial conditions. 𝑦′′ − 2𝑦′ + 2𝑦 = 2𝑥 with
𝑦 (0) = 4, 𝑦′ (0) = 8 and 𝑦ℎ = 𝑐1𝑒𝑥 cos 𝑥 + 𝑐2𝑒𝑥 sin 𝑥 and 𝑦𝑝 = 𝑥 + 1

solution The general solution is

𝑦 = 𝑦ℎ + 𝑦𝑝
= 𝑐1𝑒𝑥 cos 𝑥 + 𝑐2𝑒𝑥 sin 𝑥 + 𝑥 + 1

Therefore

𝑦′ = 𝑐1 (𝑒𝑥 cos 𝑥 − 𝑒𝑥 sin 𝑥) + 𝑐2 (𝑒𝑥 sin 𝑥 + 𝑒𝑥 cos 𝑥) + 1
First initial conditions gives

4 = 𝑐1 + 1
𝑐1 = 3

Second initial conditions gives

8 = 𝑐1 + 𝑐2 + 1

Hence 𝑐2 = 7 − 𝑐1 = 4. Therefore the general solution becomes

𝑦 = 3𝑒𝑥 cos 𝑥 + 4𝑒𝑥 sin 𝑥 + 𝑥 + 1
= 𝑒𝑥 (3 cos 𝑥 + 4 sin 𝑥) + 𝑥 + 1

4.12.4 Section 5.2 problem 28

Problem: Show that 1, 𝑥, 𝑥2,⋯ , 𝑥𝑛 are L.I.

solution Using the Wronskian

𝑊(𝑥) =

�

�

�

�

1 𝑥 𝑥2 𝑥3 ⋯ 𝑥𝑛

0 1 2𝑥 3𝑥2 ⋯ 𝑛𝑥𝑛−1

0 0 2 6𝑥 ⋯ 𝑛 (𝑛 − 1) 𝑥𝑛−2

⋮ ⋮ 0 6 ⋯ 𝑛 (𝑛 − 1) (𝑛 − 2) 𝑥𝑛−3

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 𝑛!

�

�

�

�

Therefore, the resulting Wronskian is an upper diagonal. The determinant of an upper
diagonal matrix is the product of the diagonal. We see that there can be no zero element
on the diagonal. Hence the determinant is never zero. Therefore 1, 𝑥, 𝑥2,⋯ , 𝑥𝑛 are L.I.
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4.12.5 Section 5.2 problem 30

Problem: Verify that 𝑦1 = 𝑥 and 𝑦2 = 𝑥2 are L.I. solutions on the entire line of the equation
𝑥2𝑦′′ − 2𝑥𝑦 + 2𝑦 = 0 but that 𝑊�𝑥, 𝑥2� vanishes at 𝑥 = 0. Why does these observations not
contradicts part (b) of theorem 3?

solution To verify that 𝑦1, 𝑦2 are solution of the ODE, we plugin each into the ODE and
see if they satisfy it. For 𝑦1, we obtain

𝑥2𝑦′′1 − 2𝑥𝑦1 + 2𝑦1 = 0

But 𝑦′1 = 1, 𝑦′′1 = 0, therefore the above becomes

−2𝑥 + 2𝑥 = 0
0 = 0

Verified. For 𝑦2, where 𝑦′2 = 2𝑥, 𝑦′′2 = 2, we obtain

𝑥2𝑦′′2 − 2𝑥𝑦2 + 2𝑦2 = 0
2𝑥2 − 4𝑥2 + 2𝑥2 = 0

0 = 0

Hence verified. Now we need to show that 𝑦1, 𝑦2 are L.I.

𝑐1𝑦1 + 𝑐2𝑦2 = 0

We now solve for 𝑐1, 𝑐2
𝑐1𝑥 + 𝑐2𝑥2 = 0

Comparing coe�cients on the LHS and RHS, we see that 𝑐1 = 0, 𝑐2 = 0. Hence this shows
that 𝑦1, 𝑦2 are L.I. We now find the Wronskian

𝑊(𝑥) = �
𝑦1 𝑦2
𝑦′1 𝑦′2

� = �
𝑥 𝑥2

1 2𝑥
� = 2𝑥2 − 𝑥2 = 𝑥2

Hence 𝑊(𝑥) = 0 at 𝑥 = 0. This does not contradicts part (b) of theorem 3, because when
we write the ODE in the standard form

𝑦′′1 −
2
𝑥
𝑦1 +

2
𝑥2
𝑦1 = 0

We see that 𝑝1 (𝑥) = −2
𝑥 , 𝑝2 (𝑥) =

2
𝑥2 . These functions are not continuous at 𝑥 = 0 (there is

singularity at 𝑥 = 0). But theorem 3 applies only to the interval where 𝑝𝑖 (𝑥) are continuous.
Hence does not apply in this case. If 𝑊(𝑥) was zero at location other than 𝑥 = 0, only then
this will be a contradiction.

4.12.6 Section 5.3 problem 9 (page 323)

Problem: Find the general solution of the ODE 𝑦′′ + 8𝑦′ + 25𝑦 = 0

solution This is constant coe�cient, linear, second order ODE. The characteristic equation
is 𝑟2 + 8𝑟 + 25 = 0. The roots (using quadratic formula) are

𝑟1 = −4 + 3𝑖
𝑟2 = −4 − 3𝑖

Hence the general solution is

𝑦 = 𝑐1𝑒𝑟1𝑥 + 𝑐2𝑒𝑟2𝑥

= 𝑐1𝑒(−4+3𝑖)𝑥 + 𝑐2𝑒(−4−3𝑖)𝑥

= 𝑒−4𝑥 (𝑐1 cos 3𝑥 + 𝑐2 sin 3𝑥)

4.12.7 Section 5.3 problem 16

Problem: Find the general solution of the ODE 𝑦(4) + 18𝑦′′ + 81𝑦 = 0

solution This is constant coe�cient, linear, second order ODE. The characteristic equation
is 𝑟4 + 18𝑟2 + 81 = 0. Let 𝑟2 = 𝑧, hence 𝑧2 + 18𝑧 + 81 = 0. This can be factored to (𝑧 + 9)2 = 0.
Hence the roots are −9 repeated. Therefore 𝑟2 = −9 or 𝑟 = ±3𝑖. Therefore, the 4 roots are

{3𝑖, −3𝑖, 3𝑖, −3𝑖}
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Hence the solution is

𝑦 = 𝑐1𝑒3𝑖𝑥 + 𝑐2𝑒−3𝑖𝑥 + 𝑐3𝑥𝑒3𝑖𝑥 + 𝑐4𝑥𝑒−3𝑖𝑥

Or

𝑦 = 𝑐1 cos 3𝑥 + 𝑐2 sin 3𝑥 + 𝑥 �𝑐3𝑒3𝑖𝑥 + 𝑐4𝑒−3𝑖𝑥�
= 𝑐1 cos 3𝑥 + 𝑐2 sin 3𝑥 + 𝑥 (𝑐3 cos 3𝑥 + 𝑐4 sin 3𝑥)

Or

𝑦 = (𝑐1 + 𝑥𝑐3) cos 3𝑥 + 𝑐2 sin 3𝑥 (𝑐2 + 𝑥𝑐4)

4.12.8 Section 5.3 problem 23

Problem: Solve the initial value problem 𝑦′′ − 6𝑦′ + 25𝑦 = 0, 𝑦 (0) = 3, 𝑦′ (0) = 1

solution This is constant coe�cient, linear, second order ODE. The characteristic equation
is 𝑟2 − 6𝑟 + 25 = 0. Using quadratic formula, the roots are

𝑟1 = 3 + 4𝑖
𝑟2 = 3 − 4𝑖

Hence the general solution is

𝑦 (𝑥) = 𝑒3𝑥 (𝑐1 cos 4𝑥 + 𝑐2 sin 4𝑥)
Hence

𝑦′ (𝑥) = 3𝑒3𝑥 (𝑐1 cos 4𝑥 + 𝑐2 sin 4𝑥) + 𝑒3𝑥 (−𝑐14 sin 4𝑥 + 𝑐24 cos 4𝑥)
Applying first initial conditions gives

3 = 𝑐1
Applying second initial conditions gives

1 = 3 (3) + 4𝑐2

𝑐2 =
1 − 9
4

= −2

Hence the solution is

𝑦 (𝑥) = 𝑒3𝑥 (3 cos 4𝑥 − 2 sin 4𝑥)

4.12.9 Section 5.3 problem 26

Problem: Solve the initial value problem 𝑦(3) + 10𝑦′′ + 25𝑦′ = 0, 𝑦 (0) = 3, 𝑦′ (0) = 4, 𝑦′′ (0) = 5

solution This is constant coe�cient, linear, second order ODE. The characteristic equation
is 𝑟3 + 10𝑟2 + 25𝑟 = 0 or 𝑟 �𝑟2 + 10𝑟 + 25� = 0, or 𝑟 (𝑟 + 5)2 = 0. Hence the roots are {0, −5, −5}.
There are repeated root. Hence the solution is

𝑦 (𝑥) = 𝑐1𝑒𝑟1𝑥 + 𝑐2𝑒𝑟2𝑥 + 𝑐3𝑥𝑒𝑟2𝑥

= 𝑐1 + 𝑐2𝑒−5𝑥 + 𝑐3𝑥𝑒−5𝑥

Hence

𝑦′ = −5𝑐2𝑒−5𝑥 + 𝑐3 �𝑒−5𝑥 − 5𝑥𝑒−5𝑥�

And

𝑦′′ = 25𝑐2𝑒−5𝑥 + 𝑐3 �−5𝑒−5𝑥 − 5 �𝑒−5𝑥 − 5𝑥𝑒−5𝑥��

Applying first IC gives

3 = 𝑐1 + 𝑐2
Applying second IC gives

4 = −5𝑐2 + 𝑐3
Applying third IC gives

5 = 25𝑐2 + 𝑐3 (−5 − 5)
= 25𝑐2 − 10𝑐3
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We have three equations to solve for 𝑐1, 𝑐2, 𝑐3.
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
0 −5 1
0 25 −10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
4
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore 𝑅3 = 𝑅3 + 5𝑅2 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
0 −5 1
0 0 −5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
4
25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, from third row, −5𝑐3 = 25 or

𝑐3 = −5

From second row

−5𝑐2 + 𝑐3 = 4
−5𝑐2 = 4 + 5 = 9

𝑐2 = −
9
5

From first row

𝑐1 + 𝑐2 = 3

𝑐1 = 3 +
9
5

=
24
5

Hence the general solution is

𝑦 = 𝑐1 + 𝑐2𝑒−5𝑥 + 𝑐3𝑥𝑒−5𝑥

=
24
5
−
9
5
𝑒−5𝑥 − 5𝑥𝑒−5𝑥

=
1
5
�24 − 9𝑒−5𝑥 − 25𝑥𝑒−5𝑥�

4.12.10 Section 5.3 problem 35

Problem: One solution of the di�erential equation is given, find the second solution 6𝑦(4) +
5𝑦(3) + 25𝑦′′ + 20𝑦′ + 4𝑦 = 0, and 𝑦1 = cos 2𝑥

solution The characteristic equation is 6𝑟4 +5𝑟3 +25𝑟2 +20𝑟+ 4 = 0 . Since cos 2𝑥 is solution,
then this implies the roots for this solution must be 𝑟 = ±2𝑖, since this is what will give
cos 2𝑥 solution. Therefore, there must be factor �𝑟2 + 4�. Doing long division

6𝑟4 + 5𝑟3 + 25𝑟2 + 20𝑟 + 4
�𝑟2 + 4�

= 6𝑟2 + 5𝑟 + 1

Hence characteristic equation is

�𝑟2 + 4� �6𝑟2 + 5𝑟 + 1�

�𝑟2 + 4� (2𝑟 + 1) (3𝑟 + 1)

Hence the roots are 𝑟1 = 2𝑖, 𝑟2 = −2𝑖, 𝑟3 =
−1
2 , 𝑟4 =

−1
3 . Therefore the solution is

𝑦 = 𝑐1𝑒2𝑖𝑥 + 𝑐2𝑒−2𝑖𝑥 + 𝑐3𝑒
− 1
2𝑥 + 𝑐4𝑒

−1
3 𝑥

= 𝑐1 cos 2𝑥 + 𝑐2 sin 2𝑥 + 𝑐3𝑒−
1
2𝑥 + 𝑐4𝑒

−1
3 𝑥

4.12.11 Section 5.3 problem 38

Problem: Solve 𝑦(3) − 5𝑦′′ + 100𝑦′ − 500𝑦 = 0 with 𝑦 (0) = 0, 𝑦′ (0) = 10, 𝑦′′ (0) = 250 given that
𝑦1 (𝑥) = 𝑒5𝑥 is one particular solution of the di�erential equation.
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solution The characteristic equation is 𝑟3 − 5𝑟2 + 100𝑟 − 500 = 0. Since 𝑦1 (𝑥) = 𝑒5𝑥 is one
solution, then (𝑟 − 5) is one of the roots. Hence by long division

𝑟3 − 5𝑟2 + 100𝑟 − 500
𝑟 − 5

= 𝑟2 + 100

Therefore the factoring of the characteristic equation is

(𝑟 − 5) �𝑟2 + 100� = 0

Therefore the roots are 𝑟1 = 5, 𝑟2 = 10𝑖, 𝑟3 = −10𝑖 and therefore the solution is

𝑦 = 𝑐1𝑒5𝑥 + 𝑐2 cos 10𝑥 + 𝑐3 sin 10𝑥
Hence

𝑦′ = 5𝑐1𝑒5𝑥 − 10𝑐2 sin 10𝑥 + 10𝑐3 cos 10𝑥
𝑦′′ = 25𝑐1𝑒5𝑥 − 100𝑐2 cos 10𝑥 − 100𝑐3 sin 10𝑥

Applying first IC gives

0 = 𝑐1 + 𝑐2
Second IC gives

10 = 5𝑐1 + 10𝑐3
Third IC gives

250 = 25𝑐1 − 100𝑐2
We have three equations to solve for 𝑐1, 𝑐2, 𝑐3.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
5 0 10
25 −100 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
10
250

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 = 𝑅2 − 5𝑅1 and 𝑅3 = 𝑅3 − 25𝑅1 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
0 −5 10
0 −125 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
10
250

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 − 25𝑅2 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
0 −5 10
0 0 −250

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
10
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Hence from last row 𝑐3 = 0. From second row −5𝑐2 = 10 or 𝑐2 = −2 and from first row
𝑐1 + 𝑐2 = 0 or 𝑐1 = 2. Hence the solution is

𝑦 = 𝑐1𝑒5𝑥 + 𝑐2 cos 10𝑥 + 𝑐3 sin 10𝑥
= 2𝑒5𝑥 − 2 cos 10𝑥

4.12.12 Section 5.3 problem 40

Problem: Find linear homogeneous constant coe�cient equation with the given general
solution 𝑦 (𝑥) = 𝐴𝑒2𝑥 + 𝐵 cos 2𝑥 + 𝐶 sin 2𝑥

solution From the solution, we see that the roots are 𝑟1 = 2, 𝑟2 = 2𝑖, 𝑟3 = −2𝑖. Hence the
characteristic equation is

(𝑟 − 2) �𝑟2 + 4� = 0
𝑟3 − 2𝑟2 + 4𝑟 − 8 = 0

Therefore the original ODE is

𝑦′′′ (𝑥) − 2𝑦′′ + 4𝑦′ − 8𝑦 = 0

4.12.13 Section 5.3 problem 49

Problem: Solve 𝑦(4) − 𝑦(3) − 𝑦′′ − 𝑦′ − 2𝑦 = 0 with 𝑦 (0) = 0, 𝑦′ (0) = 0, 𝑦′′ (0) = 0, 𝑦(3) = 30
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solution The characteristic equation is

𝑟4 − 𝑟3 − 𝑟2 − 𝑟 − 2 = 0

By inspection, we see that 𝑟 = −1 is a root. Hence by long division, we have

𝑟4 − 𝑟3 − 𝑟2 − 𝑟 − 2
(𝑟 + 1)

= 𝑟3 − 2𝑟2 + 𝑟 − 2

Therefore characteristic equation is

(𝑟 + 1) �𝑟3 − 2𝑟2 + 𝑟 − 2� = 0

By inspection, one of the roots of 𝑟3 − 2𝑟2 + 𝑟 − 2 = 0 is 2, hence by long division

𝑟3 − 2𝑟2 + 𝑟 − 2
𝑟 − 2

= 𝑟2 + 1

Therefore characteristic equation becomes

(𝑟 + 1) (𝑟 − 2) �𝑟2 + 1� = 0

Hence roots are 𝑟1 = −1, 𝑟2 = 2, 𝑟3 = −𝑖, 𝑟4 = 𝑖 and therefore the solution is

𝑦 = 𝑐1𝑒−𝑥 + 𝑐2𝑒2𝑥 + 𝑐3 cos 𝑥 + 𝑐4 sin 𝑥
Initial conditions are now applied to find the constants.

𝑦′ = −𝑐1𝑒−𝑥 + 2𝑐2𝑒2𝑥 − 𝑐3 sin 𝑥 + 𝑐4 cos 𝑥
𝑦′′ = 𝑐1𝑒−𝑥 + 4𝑐2𝑒2𝑥 − 𝑐3 cos 𝑥 − 𝑐4 sin 𝑥
𝑦′′′ = −𝑐1𝑒−𝑥 + 8𝑐2𝑒2𝑥 + 𝑐3 sin 𝑥 − 𝑐4 cos 𝑥

From 𝑦 (0) = 0 we obtain

0 = 𝑐1 + 𝑐2 + 𝑐3
From 𝑦′ (0) = 0

0 = −𝑐1 + 2𝑐2 + 𝑐4
From 𝑦′′ (0) = 0

0 = 𝑐1 + 4𝑐2 − 𝑐3
And from 𝑦′′′ (0) = 30

30 = −𝑐1 + 8𝑐2 − 𝑐4
The 4 equations are solved for 𝑐𝑖

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0
−1 2 0 1
1 4 −1 0
−1 8 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3
𝑐4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 = 𝑅2 + 𝑅1, 𝑅3 = 𝑅3 − 𝑅1, 𝑅4 = 𝑅4 + 𝑅1 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0
0 3 1 1
0 3 −2 0
0 9 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3
𝑐4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 − 𝑅2, 𝑅4 = 𝑅4 − 3𝑅2 gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0
0 3 1 1
0 0 −3 −1
0 0 −2 −4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3
𝑐4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅4 = 𝑅4 −
2
3𝑅3 gives

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0
0 3 1 1
0 0 −3 −1
0 0 0 −10

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑐1
𝑐2
𝑐3
𝑐4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
30

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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Hence from last row −10
3 𝑐4 = 30,then

𝑐4 = −9

From 3rd row

−3𝑐3 − 𝑐4 = 0
𝑐3 = 3

From second row

3𝑐2 + 𝑐3 + 𝑐4 = 0
3𝑐2 + 3 − 9 = 0

𝑐2 = 2

From first row

𝑐1 + 𝑐2 + 𝑐3 = 0
𝑐1 + 2 + 3 = 0

𝑐1 = −5

Hence solution is

𝑦 = 𝑐1𝑒−𝑥 + 𝑐2𝑒2𝑥 + 𝑐3 cos 𝑥 + 𝑐4 sin 𝑥
= −5𝑒−𝑥 + 2𝑒2𝑥 + 3 cos 𝑥 − 9 sin 𝑥
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4.13 HW12

4.13.1 Section 5.1 problem 52 (page 299)

Problem Make the substitution 𝑣 = ln 𝑥 to find general solution for 𝑥 > 0 of the Euler
equation 𝑥2𝑦′′ + 𝑥𝑦′ − 𝑦 = 0

solution Let 𝑣 = ln 𝑥. Hence 𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑣

𝑑𝑣
𝑑𝑥 =

𝑑𝑦
𝑑𝑣

1
𝑥 and

𝑑2𝑦
𝑑𝑥2

=
𝑑
𝑑𝑥 �

𝑑𝑦
𝑑𝑣
1
𝑥�

=
𝑑2𝑦
𝑑𝑣2

𝑑𝑣
𝑑𝑥
1
𝑥
+
𝑑𝑦
𝑑𝑣

𝑑
𝑑𝑥 �

1
𝑥�

=
𝑑2𝑦
𝑑𝑣2

1
𝑥2
−
𝑑𝑦
𝑑𝑣

1
𝑥2

Hence the ODE becomes

𝑥2𝑦′′ + 𝑥𝑦′ − 𝑦 = 0

𝑥2 �
𝑑2𝑦
𝑑𝑣2

1
𝑥2
−
𝑑𝑦
𝑑𝑣

1
𝑥2 �

+ 𝑥 �
𝑑𝑦
𝑑𝑣
1
𝑥�
− 𝑦 (𝑣) = 0

𝑑2𝑦
𝑑𝑣2

−
𝑑𝑦
𝑑𝑣
+
𝑑𝑦
𝑑𝑣
− 𝑦 (𝑣) = 0

𝑑2𝑦
𝑑𝑣2

− 𝑦 (𝑣) = 0

This can now be solved using characteristic equation. 𝑟2 − 1 = 0 or 𝑟2 = 1 or 𝑟 = ±1. Hence
the solution is

𝑦 (𝑣) = 𝑐1𝑒𝑣 + 𝑐2𝑒−𝑣

But 𝑣 = ln 𝑥, hence
𝑦 (𝑥) = 𝑐1𝑒ln 𝑥 + 𝑐2𝑒− ln 𝑥

= 𝑐1𝑥 + 𝑐1
1
𝑥

The above is the solution.

But an easier method is the following. Let 𝑦 = 𝑥𝑟. Hence 𝑦′ = 𝑟𝑥𝑟−1, 𝑦′′ = 𝑟 (𝑟 − 1) 𝑥𝑟−2.
Substituting this into the ODE gives

𝑟 (𝑟 − 1) 𝑥𝑟 + 𝑟𝑥𝑟 − 𝑥𝑟 = 0
𝑥𝑟 (𝑟 (𝑟 − 1) + 𝑟 − 1) = 0

Since 𝑥𝑟 ≠ 0, we simplify the above and obtain the characteristic equation

𝑟 (𝑟 − 1) + 𝑟 − 1 = 0
𝑟2 − 1 = 0

𝑟2 = 1
𝑟 = ±1

Hence

𝑦 (𝑥) = 𝑐1𝑥𝑟1 + 𝑐2𝑥𝑟2

= 𝑐1𝑥 + 𝑐2𝑥−1

For 𝑥 > 0.

4.13.2 Section 5.1 problem 54

Problem Make the substitution 𝑣 = ln 𝑥 to find general solution for 𝑥 > 0 of the Euler
equation 4𝑥2𝑦′′ + 8𝑥𝑦′ − 3𝑦 = 0
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solution Let 𝑣 = ln 𝑥. Hence 𝑑𝑦
𝑑𝑥 =

𝑑𝑦
𝑑𝑣

𝑑𝑣
𝑑𝑥 =

𝑑𝑦
𝑑𝑣

1
𝑥 and

𝑑2𝑦
𝑑𝑥2

=
𝑑
𝑑𝑥 �

𝑑𝑦
𝑑𝑣
1
𝑥�

=
𝑑2𝑦
𝑑𝑣2

𝑑𝑣
𝑑𝑥
1
𝑥
+
𝑑𝑦
𝑑𝑣

𝑑
𝑑𝑥 �

1
𝑥�

=
𝑑2𝑦
𝑑𝑣2

1
𝑥2
−
𝑑𝑦
𝑑𝑣

1
𝑥2

Hence the ODE becomes

𝑥2𝑦′′ + 𝑥𝑦′ − 𝑦 = 0

4𝑥2 �
𝑑2𝑦
𝑑𝑣2

1
𝑥2
−
𝑑𝑦
𝑑𝑣

1
𝑥2 �

+ 8𝑥 �
𝑑𝑦
𝑑𝑣
1
𝑥�
− 3𝑦 (𝑣) = 0

4
𝑑2𝑦
𝑑𝑣2

− 4
𝑑𝑦
𝑑𝑣
+ 8

𝑑𝑦
𝑑𝑣
− 3𝑦 (𝑣) = 0

4
𝑑2𝑦
𝑑𝑣2

+ 4
𝑑𝑦
𝑑𝑣
− 3𝑦 (𝑣) = 0

This can now be solved using characteristic equation. 4𝑟2 + 4𝑟 − 3 = 0, whose roots are
𝑟1 =

−3
2 , 𝑟2 =

1
2 Hence the solution is

𝑦 (𝑣) = 𝑐1𝑒
−3
2 𝑣 + 𝑐2𝑒

1
2𝑣

But 𝑣 = ln 𝑥, hence

𝑦 (𝑥) = 𝑐1𝑒
−3
2 ln 𝑥 + 𝑐2𝑒

1
2 ln 𝑥

= 𝑐1𝑥
−3
2 + 𝑐1𝑥

1
2

4.13.3 Section 5.2 problem 40 (page 311)

Problem Use reduction of order to find second L.I. solution 𝑦2. 𝑥2𝑦′′−𝑥 (𝑥 + 2) 𝑦′+(𝑥 + 2) 𝑦 = 0
with 𝑦1 = 𝑥 and 𝑥 > 0

solution Let 𝑦 = 𝑣𝑦1, hence

𝑦′ = 𝑣′𝑦1 + 𝑣𝑦′1
𝑦′′ = 𝑣′′𝑦1 + 𝑣′𝑦′1 + 𝑣′𝑦′1 + 𝑣𝑦′′1

= 𝑣′′𝑦1 + 2𝑣′𝑦′1 + 𝑣𝑦′′1
Therefore the original ODE becomes

𝑥2𝑦′′ − 𝑥 (𝑥 + 2) 𝑦′ + (𝑥 + 2) 𝑦 = 0

𝑥2 �𝑣′′𝑦1 + 2𝑣′𝑦′1 + 𝑣𝑦′′1 � − 𝑥 (𝑥 + 2) �𝑣′𝑦1 + 𝑣𝑦′1� + (𝑥 + 2) �𝑣𝑦1� = 0

𝑣′′ �𝑥2𝑦1� + 𝑣′ �2𝑥2𝑦′1 − 𝑥 (𝑥 + 2) 𝑦1� + 𝑣

0

����������������������������������������������𝑥2𝑦′′1 − 𝑥 (𝑥 + 2) 𝑦′1 + (𝑥 + 2) 𝑦1� = 0

Hence

𝑣′′ �𝑥2𝑦1� + 𝑣′ �2𝑥2𝑦′1 − 𝑥 (𝑥 + 2) 𝑦1� = 0

But 𝑦1 = 𝑥, hence the above becomes

𝑥3𝑣′′ + 𝑣′ �2𝑥2 − 𝑥 (𝑥 + 2) 𝑥� = 0
𝑥3𝑣′′ − 𝑥3𝑣′ = 0

Since we are told 𝑥 > 0 when we can divide by 𝑥3 and obtain

𝑣′′ − 𝑣′ = 0

To solve the above, let

𝑧 = 𝑣′

Therefore 𝑧′ − 𝑧 = 0 or 𝑑
𝑑𝑥
(𝑧𝑒𝑥) = 0 or 𝑧𝑒𝑥 = 𝑐1 or 𝑧 = 𝑐1𝑒−𝑥. Therefore the above becomes

𝑣′ = 𝑐1𝑒−𝑥
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Integrating

𝑣 = 𝑐2 − 𝑐1𝑒−𝑥

Since 𝑦 = 𝑣𝑦1 therefore

𝑦 = 𝑦1 (𝑐2 − 𝑐1𝑒−𝑥)

But 𝑦1 = 𝑥, hence the complete solution is

𝑦 = 𝑐2𝑥 − 𝑐1𝑥𝑒−𝑥

Therefore, we see now that the two basis solutions are

𝑦1 = 𝑥
𝑦2 = 𝑥𝑒𝑥

These can be shown to be L.I. using the Wronskian as follows

𝑊(𝑥) = �
𝑦1 𝑦2
𝑦′1 𝑦′2

�

= �
𝑥 𝑥𝑒𝑥

1 𝑒𝑥 + 𝑥𝑒𝑥
�

= 𝑥𝑒𝑥 + 𝑥2𝑒𝑥 − 𝑥𝑒𝑥

= 𝑥2𝑒𝑥

Which is not zero since we are told 𝑥 > 0. Hence indeed the second basis solution 𝑦2 found
is L.I. to 𝑦1.

4.13.4 Section 5.5 problem 9 (page 351)

Problem Find the particular solution for 𝑦′′ + 2𝑦′ − 3𝑦 = 1 + 𝑥𝑒𝑥

solution First we find the homogenous solution. This will tell us if 𝑒𝑥 is one of the basis
solutions of not, so we know what to guess. The characteristic equation is

𝑟2 + 2𝑟 − 3 = 0
(𝑟 − 1) (𝑟 + 3) = 0

Hence 𝑦1 = 𝑒𝑥, 𝑦2 = 𝑒−3𝑥. 𝑒𝑥 is a solution to the homogeneous ODE. The guess is therefore

𝑦𝑝 = 𝐴 + (𝐵 + 𝐶𝑥) 𝑥𝑒𝑥

= 𝐴 + �𝐵𝑥 + 𝐶𝑥2� 𝑒𝑥 (1)

Hence

𝑦′𝑝 = (𝐵 + 2𝐶𝑥) 𝑒𝑥 + �𝐵𝑥 + 𝐶𝑥2� 𝑒𝑥

= 𝑒𝑥 �𝐵 + 2𝐶𝑥 + 𝐵𝑥 + 𝐶𝑥2�

𝑦′′𝑝 = (2𝐶 + 𝐵 + 2𝐶𝑥) 𝑒𝑥 + 𝑒𝑥 �𝐵 + 2𝐶𝑥 + 𝐵𝑥 + 𝐶𝑥2�

= 𝑒𝑥 �2𝐶 + 𝐵 + 2𝐶𝑥 + 𝐵 + 2𝐶𝑥 + 𝐵𝑥 + 𝐶𝑥2�

= 𝑒𝑥 �2𝐶 + 2𝐵 + 4𝐶𝑥 + 𝐵𝑥 + 𝐶𝑥2�

Plugging into the ODE

𝑒𝑥 �2𝐶 + 2𝐵 + 4𝐶𝑥 + 𝐵𝑥 + 𝐶𝑥2� + 2𝑒𝑥 �𝐵 + 2𝐶𝑥 + 𝐵𝑥 + 𝐶𝑥2� − 3 �𝐴 + �𝐵𝑥 + 𝐶𝑥2� 𝑒𝑥� = 1 + 𝑥𝑒𝑥

𝑒𝑥 (2𝐶 + 2𝐵 + 2𝐵) + 𝑥𝑒𝑥 (4𝐶 + 𝐵 + 4𝐶 + 2𝐵 − 3𝐵) + 𝑥2𝑒𝑥 (𝐶 + 2𝐶 − 3𝐶) − 3𝐴 = 1 + 𝑥𝑒𝑥

𝑒𝑥 (2𝐶 + 4𝐵) + 𝑥𝑒𝑥 (8𝐶) − 3𝐴 = 1 + 𝑥𝑒𝑥

Hence −3𝐴 = 1 or 𝐴 = −1
3 and

8𝐶 = 1

Or

𝐶 =
1
8
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And

2𝐶 + 4𝐵 = 0

Or

𝐵 = −
1
16

Hence particular solution becomes, from (1)

𝑦𝑝 = −
1
3
+ �−

1
16
𝑥 +

1
8
𝑥2� 𝑒𝑥

= −
1
3
+
1
16
�2𝑥2 − 𝑥� 𝑒𝑥

4.13.5 Section 5.5 problem 10

Problem Find the particular solution for 𝑦′′ + 9𝑦 = 2 cos 3𝑥 + 3 sin 3𝑥

solution First we find the homogenous solution. The characteristic equation is

𝑟2 + 9 = 0
𝑟2 = −9
𝑟 = ±3𝑖

Hence 𝑦1 = 𝑒3𝑖𝑥, 𝑦2 = 𝑒−3𝑖𝑥 or 𝑦ℎ = 𝑐1 cos 3𝑥 + 𝑐2 sin 3𝑥. We see that cos 3𝑥 and sin 3𝑥 are
already in the homogeneous solution. Therefore the guess is

𝑦𝑝 = 𝐴𝑥 cos 3𝑥 + 𝐵𝑥 sin 3𝑥
Hence

𝑦′𝑝 = 𝐴 cos 3𝑥 − 3𝐴𝑥 sin 3𝑥 + 𝐵 sin 3𝑥 + 3𝐵𝑥 cos 3𝑥
𝑦′′𝑝 = −3𝐴 sin 3𝑥 − 3𝐴 sin 3𝑥 − 9𝐴𝑥 cos 3𝑥 + 3𝐵 cos 3𝑥 + 3𝐵 cos 3𝑥 − 9𝐵𝑥 sin 3𝑥

Substitution into the ODE gives

(−3𝐴 sin 3𝑥 − 3𝐴 sin 3𝑥 − 9𝐴𝑥 cos 3𝑥 + 3𝐵 cos 3𝑥 + 3𝐵 cos 3𝑥 − 9𝐵𝑥 sin 3𝑥)
+ 9 (𝐴𝑥 cos 3𝑥 + 𝐵𝑥 sin 3𝑥) = 2 cos 3𝑥 + 3 sin 3𝑥

Or

−6𝐴 sin 3𝑥 − 9𝐴𝑥 cos 3𝑥 + 6𝐵 cos 3𝑥 − 9𝐵𝑥 sin 3𝑥 + 9𝐴𝑥 cos 3𝑥 + 9𝐵𝑥 sin 3𝑥 = 2 cos 3𝑥 + 3 sin 3𝑥
sin 3𝑥 (−6𝐴) + cos 3𝑥 (6𝐵) + 𝑥 sin 3𝑥 (−9𝐵 + 9𝐵) + 𝑥 cos 3𝑥 (−9𝐴 + 9𝐴) = 2 cos 3𝑥 + 3 sin 3𝑥

−6𝐴 sin 3𝑥 + 6𝐵 cos 3𝑥 = 2 cos 3𝑥 + 3 sin 3𝑥

Hence −6𝐴 = 3 or 𝐴 = −1
2 and 6𝐵 = 2 or 𝐵 = 1

3 , therefore the particular solution is

𝑦𝑝 =
−1
2
𝑥 cos 3𝑥 + 1

3
𝑥 sin 3𝑥

=
1
6
(2𝑥 sin 3𝑥 − 3𝑥 cos 3𝑥)

4.13.6 Section 5.5 problem 16

Problem Find the particular solution for 𝑦′′ + 9𝑦 = 2𝑥2𝑒3𝑥 + 5

solution From the above problem, we found 𝑦ℎ = 𝑐1 cos 3𝑥 + 𝑐2 sin 3𝑥. Therefore there are
no basis solutions in the RHS which are in the homogenous solution. The guess for the
constant term is 𝐴. The guess for 2𝑥2𝑒3𝑥 is �𝐵0 + 𝐵1𝑥 + 𝐵2𝑥2� 𝑒3𝑥, hence

𝑦𝑝 = 𝐴 + �𝐵0 + 𝐵1𝑥 + 𝐵2𝑥2� 𝑒3𝑥

𝑦′𝑝 = (𝐵1 + 2𝐵2𝑥) 𝑒3𝑥 + 3 �𝐵0 + 𝐵1𝑥 + 𝐵2𝑥2� 𝑒3𝑥

𝑦′′𝑝 = 2𝐵2𝑒3𝑥 + 3 (𝐵1 + 2𝐵2𝑥) 𝑒3𝑥 + 3 (𝐵1 + 2𝐵2𝑥) 𝑒3𝑥 + 9 �𝐵0 + 𝐵1𝑥 + 𝐵2𝑥2� 𝑒3𝑥

Simplifying

𝑦′′𝑝 = 𝑒3𝑥 (2𝐵2 + 3𝐵1 + 3𝐵1 + 9𝐵0) + 𝑥𝑒𝑥 (6𝐵2 + 6𝐵2 + 9𝐵1) + 𝑥2𝑒3𝑥 (9𝐵2)
= 𝑒3𝑥 (2𝐵2 + 6𝐵1 + 9𝐵0) + 𝑥𝑒𝑥 (12𝐵2 + 9𝐵1) + 𝑥2𝑒3𝑥 (9𝐵2)
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Substitution into the ODE gives

𝑒3𝑥 (2𝐵2 + 6𝐵1 + 9𝐵0) + 𝑥𝑒𝑥 (12𝐵2 + 9𝐵1) + 𝑥2𝑒3𝑥 (9𝐵2) + 9 �𝐴 + �𝐵0 + 𝐵1𝑥 + 𝐵2𝑥2� 𝑒3𝑥� = 2𝑥2𝑒3𝑥 + 5

𝑒3𝑥 (2𝐵2 + 6𝐵1 + 9𝐵0) + 𝑥𝑒𝑥 (12𝐵2 + 9𝐵1) + 𝑥2𝑒3𝑥 (9𝐵2) + 9𝐴 + �9𝐵0 + 9𝐵1𝑥 + 9𝐵2𝑥2� 𝑒3𝑥 = 2𝑥2𝑒3𝑥 + 5
𝑒3𝑥 (2𝐵2 + 6𝐵1 + 18𝐵0) + 𝑥𝑒𝑥 (12𝐵2 + 18𝐵1) + 𝑥2𝑒3𝑥 (18𝐵2) + 9𝐴 = 2𝑥2𝑒3𝑥 + 5

Comparing coe�cients gives

9𝐴 = 5
2𝐵2 + 6𝐵1 + 18𝐵0 = 0

12𝐵2 + 18𝐵1 = 0
19𝐵2 = 2

From last equation 𝐵2 =
1
9 . Hence from third equation 18𝐵1 = −

12
9 , or 𝐵1 = −

2
27 . And from

second equation

2𝐵2 + 6𝐵1 + 18𝐵0 = 0

2 �
1
9�
+ 6 �−

2
27�

+ 18𝐵0 = 0

𝐵0 =
1
81

And 𝐴 = 5
9 . Therefore

𝑦𝑝 = 𝐴 + �𝐵0 + 𝐵1𝑥 + 𝐵2𝑥2� 𝑒3𝑥

=
5
9
+ �

1
81
−
2
27
𝑥 +

1
9
𝑥2� 𝑒3𝑥

=
5
9
+ �

1
81
−
6
81
𝑥 +

9
81
𝑥2� 𝑒3𝑥

=
45
81
+ �

1
81
−
6
81
𝑥 +

9
81
𝑥2� 𝑒3𝑥

=
1
81
�45 + 𝑒3𝑥 − 6𝑥𝑒𝑥 + 9𝑥2𝑒3𝑥�

4.13.7 Section 5.5 problem 25

Problem Setup the form for the particular solution but do not determine the values of the
coe�cients. 𝑦′′ + 3𝑦′ + 2𝑦 = 𝑥𝑒−𝑥 − 𝑥𝑒−2𝑥

solution First we find the homogenous solution. The characteristic equation is

𝑟2 + 3𝑟 + 2 = 0
(𝑟 + 1) (𝑟 + 2) = 0

Hence 𝑦1 = 𝑒−𝑥, 𝑦2 = 𝑒−2𝑥. We see that the basis solutions are part of the RHS. Therefore
the guess solution is

𝑦𝑝 = 𝑥 (𝐴1 + 𝐴2𝑥) 𝑒−𝑥 + 𝑥 (𝐴3 + 𝐴4𝑥) 𝑒−2𝑥

4.13.8 Section 5.5 problem 26

Problem Setup the form for the particular solution but do not determine the values of the
coe�cients. 𝑦′′ − 6𝑦′ + 13𝑦 = 𝑥𝑒3𝑥 sin 2𝑥

solution First we find the homogenous solution. The characteristic equation is

𝑟2 − 6𝑟 + 13 = 0

The roots are 3 ± 2𝑖. Hence the homogenous solution is 𝑦ℎ = 𝑐1𝑒3𝑥 cos 2𝑥 + 𝑐2𝑒3𝑥 sin 2𝑥. We
see that 𝑒3𝑥 sin 2𝑥 is already in the homogenous solution. Hence the guess is

𝑦𝑝 =
𝑥 guess

�������������(𝐴1 + 𝐴2𝑥)𝑥

sin 2𝑥𝑒3𝑥 guess

�����������������������������������(𝐴3 sin 2𝑥 + 𝐴4 cos 2𝑥) 𝑒3𝑥

= �𝐴1𝑥 + 𝐴2𝑥2� 𝑒3𝑥 cos 2𝑥 + �𝐴3𝑥 + 𝐴4𝑥2� 𝑒3𝑥 sin 2𝑥
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4.13.9 Section 5.5 problem 37

Problem Solve the initial value problem 𝑦′′′ − 2𝑦′′ + 𝑦′ = 1 + 𝑥𝑒𝑥 with 𝑦 (0) = 0, 𝑦′ (0) =
0, 𝑦′′ (0) = 1

solution First we find the homogenous solution. The characteristic equation is

𝑟3 − 2𝑟2 + 𝑟 = 0

𝑟 �𝑟2 − 2𝑟 + 1� = 0

For 𝑟2 − 2𝑟 + 1 = 0, it factors into (𝑟 − 1) (𝑟 − 1), hence roots are 𝑟1 = 0, 𝑟2 = 1, 𝑟3 = 1. Since
double roots, the homogenous solution is

𝑦ℎ = 𝑐1 + 𝑐2𝑒𝑥 + 𝑐3𝑥𝑒𝑥

We notice that both 𝑒𝑥 and 𝑥𝑒𝑥 is in the RHS. Therefore we need to multiply by 𝑥2. The
guess is therefore

𝑦𝑝 = 𝐴𝑥 + 𝑥2 (𝐵 + 𝐶𝑥) 𝑒𝑥

= 𝐴𝑥 + �𝐵𝑥2 + 𝐶𝑥3� 𝑒𝑥

Therefore

𝑦′𝑝 = 𝐴 + �2𝐵𝑥 + 3𝐶𝑥2� 𝑒𝑥 + �𝐵𝑥2 + 𝐶𝑥3� 𝑒𝑥

𝑦′′𝑝 = (2𝐵 + 6𝐶𝑥) 𝑒𝑥 + �2𝐵𝑥 + 3𝐶𝑥2� 𝑒𝑥 + �2𝐵𝑥 + 3𝐶𝑥2� 𝑒𝑥 + �𝐵𝑥2 + 𝐶𝑥3� 𝑒𝑥

Simplifying gives

𝑦′𝑝 = 𝐴 + 𝑥𝑒𝑥 (2𝐵) + 𝑥2𝑒𝑥 (3𝐶 + 𝐵) + 𝑥3𝑒𝑥 (𝐶)
𝑦′′𝑝 = 𝑒𝑥 (2𝐵) + 𝑥𝑒𝑥 (6𝐶 + 4𝐵) + 𝑥2𝑒𝑥 (6𝐶 + 𝐵) + 𝑥3𝑒𝑥 (𝐶)
𝑦′′′𝑝 = 𝑒𝑥 (2𝐵) + 𝑒𝑥 (6𝐶 + 4𝐵) + 𝑥𝑒𝑥 (6𝐶 + 4𝐵) + 2𝑥𝑒𝑥 (6𝐶 + 𝐵) + 𝑥2𝑒𝑥 (6𝐶 + 𝐵) + 3𝑥2𝑒𝑥 (𝐶) + 𝑥3𝑒𝑥 (𝐶)

= 𝑒𝑥 (6𝐵 + 6𝐶) + 𝑥𝑒𝑥 (6𝐶 + 4𝐵 + 12𝐶 + 2𝐵) + 𝑥2𝑒𝑥 (6𝐶 + 𝐵 + 3𝐶) + 𝐶𝑥3𝑒𝑥

= 𝑒𝑥 (6𝐵 + 6𝐶) + 𝑥𝑒𝑥 (18𝐶 + 6𝐵) + 𝑥2𝑒𝑥 (9𝐶 + 𝐵) + 𝐶𝑥3𝑒𝑥

Substitution into the ODE gives

𝑦′′′𝑝 − 2𝑦′′𝑝 + 𝑦′𝑝 = 1 + 𝑥𝑒𝑥

Hence

𝑒𝑥 (6𝐵 + 6𝐶) + 𝑥𝑒𝑥 (18𝐶 + 6𝐵) + 𝑥2𝑒𝑥 (9𝐶 + 𝐵) + 𝐶𝑥3𝑒𝑥

− 2 �𝑒𝑥 (2𝐵) + 𝑥𝑒𝑥 (6𝐶 + 4𝐵) + 𝑥2𝑒𝑥 (6𝐶 + 𝐵) + 𝑥3𝑒𝑥 (𝐶)� +
𝐴 + 𝑥𝑒𝑥 (2𝐵) + 𝑥2𝑒𝑥 (3𝐶 + 𝐵) + 𝑥3𝑒𝑥 (𝐶) = 1 + 𝑥𝑒𝑥

Or

𝑒𝑥 (6𝐵 + 6𝐶) + 𝑥𝑒𝑥 (18𝐶 + 6𝐵) + 𝑥2𝑒𝑥 (9𝐶 + 𝐵) + 𝐶𝑥3𝑒𝑥

− 𝑒𝑥 (4𝐵) − 𝑥𝑒𝑥 (12𝐶 + 8𝐵) − 𝑥2𝑒𝑥 (12𝐶 + 2𝐵) − 𝑥3𝑒𝑥 (2𝐶) +
𝐴 + 𝑥𝑒𝑥 (2𝐵) + 𝑥2𝑒𝑥 (3𝐶 + 𝐵) + 𝑥3𝑒𝑥 (𝐶) = 1 + 𝑥𝑒𝑥

Or

𝑒𝑥 (6𝐵 + 6𝐶 − 4𝐵) + 𝑥𝑒𝑥 (18𝐶 + 6𝐵 − 12𝐶 − 8𝐵 + 2𝐵)+
𝑥2𝑒𝑥 (9𝐶 + 𝐵 − 12𝐶 − 2𝐵 + 3𝐶 + 𝐵) + 𝑥3𝑒𝑥 (𝐶 − 2𝐶 + 𝐶) + 𝐴 = 1 + 𝑥𝑒𝑥

Or

𝑒𝑥 (2𝐵 + 6𝐶) + 𝑥𝑒𝑥 (6𝐶) + 𝐴 = 1 + 𝑥𝑒𝑥

Hence

6𝐶 = 1
2𝐵 + 6𝐶 = 0

𝐴 = 1

Therefore, 𝐶 = 1
6 , 𝐵 = −

1
2 , and the particular solution is

𝑦𝑝 = 𝐴𝑥 + 𝑥2 (𝐵 + 𝐶𝑥) 𝑒𝑥

= 𝑥 + �−
1
2
𝑥2 +

1
6
𝑥3� 𝑒𝑥
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Hence the complete solution is

𝑦 = 𝑦ℎ + 𝑦𝑝

= 𝑐1 + 𝑐2𝑒𝑥 + 𝑐3𝑥𝑒𝑥 + 𝑥 + �−
1
2
𝑥2 +

1
6
𝑥3� 𝑒𝑥

Applying initial conditions. 𝑦 (0) = 0 gives

0 = 𝑐1 + 𝑐2 (1)

And

𝑦′ = 𝑐2𝑒𝑥 + 𝑐3𝑒𝑥 + 𝑐3𝑥𝑒𝑥 + 1 + �−𝑥 +
1
2
𝑥2� 𝑒𝑥 + �−

1
2
𝑥2 +

1
6
𝑥3� 𝑒𝑥

Applying second initial conditions 𝑦′ (0) = 0 gives

0 = 𝑐2 + 𝑐3 + 1 (2)

And

𝑦′′ = 𝑐2𝑒𝑥 + 𝑐3𝑒𝑥 + 𝑐3𝑒𝑥 + 𝑐3𝑥𝑒𝑥 + (−1 + 𝑥) 𝑒𝑥 + �−𝑥 +
1
2
𝑥2� 𝑒𝑥 + �−𝑥 +

1
2
𝑥2� 𝑒𝑥 + �−

1
2
𝑥2 +

1
6
𝑥3� 𝑒𝑥

Applying initial conditions 𝑦′′ (0) = 1 gives

1 = 𝑐2 + 2𝑐3 − 1
2 = 𝑐2 + 2𝑐3

The solution is 𝑐1 = 4, 𝑐2 = −4, 𝑐3 = 3, hence the general solution is

𝑦 = 𝑐1 + 𝑐2𝑒𝑥 + 𝑐3𝑥𝑒𝑥 + 𝑥 + �−
1
2
𝑥2 +

1
6
𝑥3� 𝑒𝑥

= 4 − 4𝑒𝑥 + 3𝑥𝑒𝑥 + 𝑥 −
1
2
𝑥2𝑒𝑥 +

1
6
𝑥3𝑒𝑥

4.13.10 Section 5.5 problem 49

Problem Use method of variation of parameters to find particular solution 𝑦′′−4𝑦′+4𝑦 = 2𝑒2𝑥

solution We need to first find the homogenous solution. The characteristic equation is

𝑟2 − 4𝑟 + 4 = 0
(𝑟 − 2) (𝑟 − 2) = 0

Hence 𝑟1 = 2, double root. Therefore

𝑦1 (𝑥) = 𝑒2𝑥

𝑦2 (𝑥) = 𝑥𝑒2𝑥

Let

𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2
Where

𝑢1 = −�
𝑦2 (𝑥) 𝑓 (𝑥)
𝑊 (𝑥)

𝑑𝑥

𝑢2 = �
𝑦1 (𝑥) 𝑓 (𝑥)
𝑊 (𝑥)

𝑑𝑥

Where 𝑓 (𝑥) = 2𝑒2𝑥 and

𝑊(𝑥) = �
𝑦1 𝑦2
𝑦′1 𝑦′2

� = �
𝑒2𝑥 𝑥𝑒2𝑥

2𝑒2𝑥 𝑒2𝑥 + 2𝑥𝑒2𝑥
�

= 𝑒2𝑥 �𝑒2𝑥 + 2𝑥𝑒2𝑥� − 2𝑥𝑒4𝑥

= 𝑒4𝑥 + 2𝑥𝑒4𝑥 − 2𝑥𝑒4𝑥

= 𝑒4𝑥

Hence

𝑢1 = −�
𝑥𝑒2𝑥 �2𝑒2𝑥�

𝑒4𝑥
𝑑𝑥 = −�2𝑥𝑑𝑥 = −𝑥2
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And

𝑢2 = �
𝑒2𝑥 �2𝑒2𝑥�
𝑒4𝑥

𝑑𝑥 = 2𝑥

Therefore

𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2
= −𝑥2𝑒2𝑥 + 2𝑥2𝑒2𝑥

= 𝑥2𝑒2𝑥

4.13.11 Section 5.5 problem 50

Problem Use method of variation of parameters to find particular solution 𝑦′′−4𝑦 = sinh 2𝑥

solution We need to first find the homogenous solution. The characteristic equation is

𝑟2 − 4 = 0
𝑟 = ±2

Therefore

𝑦1 (𝑥) = 𝑒2𝑥

𝑦2 (𝑥) = 𝑒−2𝑥

Let

𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2
Where

𝑢1 = −�
𝑦2 (𝑥) 𝑓 (𝑥)
𝑊 (𝑥)

𝑑𝑥

𝑢2 = �
𝑦1 (𝑥) 𝑓 (𝑥)
𝑊 (𝑥)

𝑑𝑥

Where 𝑓 (𝑥) = sinh 2𝑥 = 𝑒2𝑥−𝑒−2𝑥

2 and

𝑊(𝑥) = �
𝑦1 𝑦2
𝑦′1 𝑦′2

� = �
𝑒2𝑥 𝑒−2𝑥

2𝑒2𝑥 −2𝑒−2𝑥
�

= −2 − 2 = −4

Hence

𝑢1 = −�
𝑒−2𝑥 � 𝑒

2𝑥−𝑒−2𝑥

2
�

−4
𝑑𝑥

=
1
4 �

𝑒−2𝑥 �
𝑒2𝑥 − 𝑒−2𝑥

2 � 𝑑𝑥

=
1
8 �

�1 − 𝑒−4𝑥� 𝑑𝑥

=
1
8 �
𝑥 +

𝑒−4𝑥

4 �

And

𝑢2 = �
𝑒2𝑥 � 𝑒

2𝑥−𝑒−2𝑥

2
�

−4
𝑑𝑥

= −
1
8 �

𝑒2𝑥 �𝑒2𝑥 − 𝑒−2𝑥� 𝑑𝑥

= −
1
8 �

�𝑒4𝑥 − 1� 𝑑𝑥

= −
1
8 �
𝑒4𝑥

4
− 𝑥�
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Therefore

𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2

=
1
8 �
𝑥 +

𝑒−4𝑥

4 � 𝑒2𝑥 −
1
8 �
𝑒4𝑥

4
− 𝑥� 𝑒−2𝑥

= �
1
8
𝑥𝑒2𝑥 +

𝑒−2𝑥

32 �
−
1
8 �
𝑒2𝑥

32
−
𝑥𝑒−2𝑥

8 �

=
1
8
𝑥𝑒2𝑥 +

𝑒−2𝑥

32
−
𝑒2𝑥

32
+
𝑥𝑒−2𝑥

8

=
1
4
𝑥 �
𝑒2𝑥 + 𝑒−2𝑥

2 � +
1
16 �

𝑒−2𝑥 − 𝑒2𝑥

2 �

=
1
4
𝑥 �
𝑒2𝑥 + 𝑒−2𝑥

2 � −
1
16 �

𝑒2𝑥 − 𝑒−2𝑥

2 �

=
1
4
𝑥 cosh 2𝑥 − 1

16
sinh 2𝑥

=
1
16
(4𝑥 cosh 2𝑥 − sinh 2𝑥)

4.13.12 Section 5.5 problem 53

Problem Use method of variation of parameters to find particular solution 𝑦′′+9𝑦 = 2 sec 3𝑥

solution We need to first find the homogenous solution. The characteristic equation is

𝑟2 + 9 = 0
𝑟 = ±3𝑖

Therefore

𝑦1 (𝑥) = sin 3𝑥
𝑦2 (𝑥) = cos 3𝑥

Let

𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2
Where

𝑢1 = −�
𝑦2 (𝑥) 𝑓 (𝑥)
𝑊 (𝑥)

𝑑𝑥

𝑢2 = �
𝑦1 (𝑥) 𝑓 (𝑥)
𝑊 (𝑥)

𝑑𝑥

Where 𝑓 (𝑥) = 2 sec 3𝑥 = 2
cos 3𝑥 and

𝑊(𝑥) = �
𝑦1 𝑦2
𝑦′1 𝑦′2

� = �
sin 3𝑥 cos 3𝑥
3 cos 3𝑥 −3 sin 3𝑥�

= −3 sin2 3𝑥 − 3 cos2 𝑥
= −3

Hence

𝑢1 = −�
cos 3𝑥 � 2

cos 3𝑥�

−3
𝑑𝑥

=
1
3 �

2𝑑𝑥

=
2
3
𝑥
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And

𝑢2 = �
sin 3𝑥 � 2

cos 3𝑥�

−3
𝑑𝑥

=
−2
3 � tan 3𝑥𝑑𝑥

=
−2
3 �

1
6

ln 1
cos2 (3𝑥)�

Therefore

𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2

=
2
3
𝑥 (sin 3𝑥) + −2

3 �
1
6

ln 1
cos2 (3𝑥)� cos 3𝑥

=
2
3
𝑥 (sin 3𝑥) − 1

9
cos (3𝑥) ln �

1
cos2 (3𝑥)�

=
2
3
𝑥 (sin 3𝑥) + 1

9
cos (3𝑥) ln �cos2 (3𝑥)�

=
2
3
𝑥 (sin 3𝑥) + 2

9
cos (3𝑥) ln |cos (3𝑥)|

4.13.13 Section 5.5 problem 61

Problem Find a particular solution to the Euler ODE 𝑥2𝑦′′+𝑥𝑦′+𝑦 = ln 𝑥 with homogenous
solution 𝑦ℎ = 𝑐1 cos (ln 𝑥) + 𝑐2 sin (ln 𝑥)

solution We see that

𝑦1 = cos (ln 𝑥)
𝑦2 = sin (ln 𝑥)

Using variation of parameters on the ODE

𝑦′′ +
1
𝑥
𝑦′ +

1
𝑥2
𝑦 =

ln 𝑥
𝑥2

Where now we use 𝑓 (𝑥) = ln 𝑥
𝑥2 . Let

𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2
Where

𝑢1 = −�
𝑦2 (𝑥) 𝑓 (𝑥)
𝑊 (𝑥)

𝑑𝑥

𝑢2 = �
𝑦1 (𝑥) 𝑓 (𝑥)
𝑊 (𝑥)

𝑑𝑥

And

𝑊(𝑥) = �
𝑦1 𝑦2
𝑦′1 𝑦′2

� = �
cos (ln 𝑥) sin (ln 𝑥)
−1
𝑥 sin (ln 𝑥) 1

𝑥 cos (ln 𝑥)�

=
1
𝑥

cos2 (ln 𝑥) + 1
𝑥

sin2 (ln 𝑥)

=
1
𝑥

Hence

𝑢1 = −�
sin (ln 𝑥) � ln 𝑥

𝑥2
�

1
𝑥

𝑑𝑥

= −�
ln 𝑥 sin (ln 𝑥)

𝑥
𝑑𝑥

= ln (𝑥) cos (ln 𝑥) − sin (ln 𝑥)
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And

𝑢2 = �
cos (ln 𝑥) � ln 𝑥

𝑥2
�

1
𝑥

𝑑𝑥

= �
cos (ln 𝑥) (ln 𝑥)

𝑥
𝑑𝑥

= ln (𝑥) sin (ln 𝑥) + cos (ln 𝑥)
Therefore

𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2
= (ln (𝑥) cos (ln 𝑥) − sin (ln 𝑥)) cos (ln 𝑥) + (ln (𝑥) sin (ln 𝑥) + cos (ln 𝑥)) sin (ln 𝑥)
= ln (𝑥) cos2 (ln 𝑥) − sin (ln 𝑥) cos (ln 𝑥) + ln (𝑥) sin2 (ln 𝑥) + sin (ln) cos (ln 𝑥)
= ln (𝑥) cos2 (ln 𝑥) + ln (𝑥) sin2 (ln 𝑥)
= ln 𝑥

4.13.14 Section 5.5 problem 62

Problem Find a particular solution to the Euler ODE �𝑥2 − 1� 𝑦′′ − 2𝑥𝑦′ + 2𝑦 = 𝑥2 − 1 with
homogenous solution 𝑦ℎ = 𝑐1𝑥 + 𝑐2 �1 + 𝑥2�

solution We see that

𝑦1 = 𝑥
𝑦2 = 1 + 𝑥2

Using variation of parameters on the ODE

𝑦′′ − 2
𝑥

�𝑥2 − 1�
𝑦′ +

2
�𝑥2 − 1�

𝑦 = 1

Where now we use 𝑓 (𝑥) = 1. Let

𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2
Where

𝑢1 = −�
𝑦2 (𝑥) 𝑓 (𝑥)
𝑊 (𝑥)

𝑑𝑥

𝑢2 = �
𝑦1 (𝑥) 𝑓 (𝑥)
𝑊 (𝑥)

𝑑𝑥

And

𝑊(𝑥) = �
𝑦1 𝑦2
𝑦′1 𝑦′2

� = �
𝑥 1 + 𝑥2

1 2𝑥
�

= 2𝑥2 − �1 + 𝑥2�

= 𝑥2 − 1

Hence

𝑢1 = −�
�1 + 𝑥2� (1)
𝑥2 − 1

𝑑𝑥

= −𝑥 − ln (𝑥 − 1) + ln (𝑥 + 1)
And

𝑢2 = �
𝑥

𝑥2 − 1
𝑑𝑥

=
1
2

ln (𝑥 − 1) + 1
2

ln (𝑥 + 1)
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Therefore

𝑦𝑝 = 𝑢1𝑦1 + 𝑢2𝑦2

= (−𝑥 − ln (𝑥 − 1) + ln (𝑥 + 1)) 𝑥 + �
1
2

ln (𝑥 − 1) + 1
2

ln (𝑥 + 1)� �1 + 𝑥2�

= −𝑥2 + 𝑥 ln �𝑥 + 1
𝑥 − 1

� +
1
2
�1 + 𝑥2� ln |(𝑥 − 1) (𝑥 + 1)|

= −𝑥2 + 𝑥 ln �𝑥 + 1
𝑥 − 1

� +
1
2
�1 + 𝑥2� ln �𝑥2 − 1�
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4.14 HW13

4.14.1 Section 7.1 problem 3 (page 404)

problem Transform the following problem or system to set of first order ODE 𝑡2𝑥′′ + 𝑡𝑥′ +
�𝑡2 − 1� 𝑥 = 0

solution Since this is second order ODE, we need two state variables, say 𝑥1, 𝑥

Let 𝑥1 = 𝑥, 𝑥2 = 𝑥′, hence

𝑥1 = 𝑥
𝑥2 = 𝑥′

⎫⎪⎪⎬
⎪⎪⎭

take derivative⟶
𝑥′1 = 𝑥′

𝑥′2 = 𝑥′′

⎫⎪⎪⎬
⎪⎪⎭

replace RHS
⟶

𝑥′1 = 𝑥2

𝑥′2 = −
𝑥′

𝑡 −
�𝑡2−1�𝑥

𝑡 = −𝑥2
𝑡 −

�𝑡2−1�𝑥1
𝑡

Hence the two first order ODE’s are (now coupled)

𝑥′1 = 𝑥2

𝑥′2 = −
𝑥2
𝑡
−
�𝑡2 − 1� 𝑥1

𝑡
The matrix form of the above is

𝒙′ = 𝐴𝒙
⎛
⎜⎜⎜⎜⎝
𝑥′1
𝑥′2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
0 1

− 𝑡2−1
𝑡 −1

𝑡

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠

4.14.2 Section 7.1 problem 8

problem Transform the following problem or system to set of first order ODE 𝑥′′ + 3𝑥′ +
4𝑥 − 2𝑦 = 0; 𝑦′′ + 2𝑦′ − 3𝑥 + 𝑦 = cos 𝑡

solution We have two second order ODE’s, hence we need 4 state variables. Let 𝑥1 = 𝑥, 𝑥2 =
𝑥′, 𝑥3 = 𝑦, 𝑥4 = 𝑦′, therefore

𝑥1 = 𝑥
𝑥2 = 𝑥′

𝑥3 = 𝑦
𝑥4 = 𝑦′

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

take derivative⟶

𝑥′1 = 𝑥′

𝑥′2 = 𝑥′′

𝑥′3 = 𝑦
𝑥′4 = 𝑦′′

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

replace RHS
⟶

𝑥′1 = 𝑥2
𝑥′2 = −3𝑥′ − 4𝑥 + 2𝑦 = −3𝑥2 − 4𝑥1 + 2𝑥3

𝑥′3 = 𝑥3
𝑥′4 = −2𝑦′ + 3𝑥 − 𝑦 + cos 𝑡 = −2𝑥4 + 3𝑥1 − 𝑥3 + cos 𝑡

Hence the 4 first order ODE’s are

𝑥′1 = 𝑥2
𝑥′2 = −3𝑥2 − 4𝑥1 + 2𝑥3
𝑥′3 = 𝑥3
𝑥′4 = −2𝑥4 + 3𝑥1 − 𝑥3 + cos 𝑡

The matrix form of the above is

𝒙′ = 𝐴𝒙 + 𝒇
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥′1
𝑥′2
𝑥′3
𝑥′4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0
−4 −3 2 0
0 0 1 0
3 0 −1 −2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

cos 𝑡

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.14.3 Section 7.2 problem 9 (page 417)

problem Write the given system in form 𝑥′ = 𝑃 (𝑡) 𝑥 + 𝑓 (𝑡)

𝑥′ = 3𝑥 − 4𝑦 + 𝑧 + 𝑡
𝑦′ = 𝑥 − 3𝑧 + 𝑡2

𝑧′ = 6𝑦 − 7𝑧 + 𝑡3
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solution The dependent variables are 𝑥, 𝑦, 𝑧 and the independent variable is 𝑡. The matrix
form is seen by inspection to be

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥′

𝑦′

𝑧′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 −4 1
1 0 −3
0 6 −7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥
𝑦
𝑧

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑡
𝑡2

𝑡3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

4.14.4 Section 7.2 problem 10

problem Write the given system in form 𝑥′ = 𝐴 (𝑡) 𝑥 + 𝑓 (𝑡)

𝑥′ = 𝑡𝑥 − 𝑦 + 𝑒𝑡𝑧
𝑦′ = 2𝑥 + 𝑡2𝑦 − 𝑧
𝑧′ = 𝑒−𝑡𝑥 + 3𝑡𝑦 + 𝑡3𝑧

solution The dependent variables are 𝑥, 𝑦, 𝑧 and the independent variable is 𝑡. The matrix
form is seen by inspection to be

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥′

𝑦′

𝑧′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑡 −1 𝑒𝑡

2 𝑡2 −1
𝑒−𝑡 3𝑡 𝑡3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥
𝑦
𝑧

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Notice that 𝑃 matrix is time dependent and not constant as the last problem. This is time
varying system.

4.14.5 Section 7.2 problem 25

problem Find the complete solution that satisfies the initial conditions. 𝒙 (0) =
⎛
⎜⎜⎜⎜⎝
11
−7

⎞
⎟⎟⎟⎟⎠

𝒙′ =
⎛
⎜⎜⎜⎜⎝
4 1
−2 1

⎞
⎟⎟⎟⎟⎠ 𝒙

𝒙1 =
⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡

𝒙2 =
⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ 𝑒

2𝑡

solution

𝒙 (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡)

= 𝑐1

⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ 𝑒

2𝑡 (1)

At 𝑡 = 0 the above becomes ⎛
⎜⎜⎜⎜⎝
11
−7

⎞
⎟⎟⎟⎟⎠ = 𝑐1

⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
1 1
−1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠

Hence ⎛
⎜⎜⎜⎜⎝
1 1
−1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
11
−7

⎞
⎟⎟⎟⎟⎠

Gaussian elimination. 𝑅2 = 𝑅2 + 𝑅1 gives
⎛
⎜⎜⎜⎜⎝
1 1
0 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
11
4

⎞
⎟⎟⎟⎟⎠

192



4.14. HW13 CHAPTER 4. HWS

Hence −𝑐2 = 4 or 𝑐2 = −4. From first row, 𝑐1 + 𝑐2 = 11 or 𝑐1 = 11 − 𝑐2 = 11 + 4 = 15, hence the
complete solution from (1) is

𝒙 (𝑡) = 15𝒙1 (𝑡) − 4𝒙2 (𝑡)

= 15
⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 − 4
⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ 𝑒

2𝑡

=
⎛
⎜⎜⎜⎜⎝
15
−15

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 +
⎛
⎜⎜⎜⎜⎝
−4
8

⎞
⎟⎟⎟⎟⎠ 𝑒

2𝑡

4.14.6 Section 7.3 problem 7 (page 429)

problem Apply the eigenvalue method to find general solution of the given system. For
each problem, use a computer to construct direction field and typical solution curve.
𝑥′1 = −3𝑥1 + 4𝑥2; 𝑥′2 = 6𝑥1 − 5𝑥2

solution

The system in matrix form is

𝒙′ = 𝐴𝒙
⎛
⎜⎜⎜⎜⎝
𝑥′1
𝑥′2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
−3 4
6 −5

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠

The eigenvalues are found from solving

|𝐴 − 𝜆𝐼| = 0

�
−3 − 𝜆 4
6 −5 − 𝜆

� = 0

(−3 − 𝜆) (−5 − 𝜆) − 24 = 0
𝜆2 + 8𝜆 − 9 = 0

(𝜆 + 9) (𝜆 − 1) = 0

Hence 𝜆1 = 1, 𝜆2 = −9. For 𝜆1, we now solve

(𝐴 − 𝜆1𝐼) 𝒗1 = 0⎛
⎜⎜⎜⎜⎝
−3 − 𝜆1 4

6 −5 − 𝜆1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−3 − 1 4
6 −5 − 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−4 4
6 −6

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Using first equation, we see that −4𝑣1 + 4𝑣2 = 0. Picking 𝑣1 = 1, then 𝑣2 = 1, hence the

eigenvector is 𝒗1 =
⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠

For 𝜆2, we now solve

(𝐴 − 𝜆2𝐼) 𝒗2 = 0⎛
⎜⎜⎜⎜⎝
−3 − 𝜆2 4

6 −5 − 𝜆2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−3 + 9 4
6 −5 + 9

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
6 4
6 4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Using first equation, we see that 6𝑣1 + 4𝑣2 = 0. Picking 𝑣1 = 1, then 𝑣2 = −3
2 , hence the
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second eigenvector is 𝒗2 =
⎛
⎜⎜⎜⎜⎝
1
−3
2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2
−3

⎞
⎟⎟⎟⎟⎠ Therefore the solution is

𝒙 (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡)
= 𝑐1𝒗1 (𝑡) 𝑒𝜆1𝑡 + 𝑐2𝒗2 (𝑡) 𝑒𝜆2𝑡

Therefore ⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠ = 𝑐1

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
2
−3

⎞
⎟⎟⎟⎟⎠ 𝑒

−9𝑡

Or

𝑥1 (𝑡) = 𝑐1𝑒𝑡 + 2𝑐2𝑒−9𝑡

𝑥2 (𝑡) = 𝑐1𝑒𝑡 − 3𝑐2𝑒−9𝑡

No initial conditions are given.

4.14.7 Section 7.3 problem 9

problem Apply the eigenvalue method to find general solution of the given system. For
each problem, use a computer to construct direction field and typical solution curve.
𝑥′1 = 2𝑥1 − 5𝑥2; 𝑥′2 = 4𝑥1 − 2𝑥2; 𝑥1 (0) = 2, 𝑥2 (0) = 3

solution

The system in matrix form is

𝒙′ = 𝐴𝒙
⎛
⎜⎜⎜⎜⎝
𝑥′1
𝑥′2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2 −5
4 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠

The eigenvalues are found from solving

|𝐴 − 𝜆𝐼| = 0

�
2 − 𝜆 −5
4 −2 − 𝜆

� = 0

(2 − 𝜆) (−2 − 𝜆) + 20 = 0
𝜆2 + 16 = 0

𝜆 = ±4𝑖

Hence 𝜆1 = 4𝑖, 𝜆2 = −4𝑖. For 𝜆1, we now solve

(𝐴 − 𝜆1𝐼) 𝒗1 = 0⎛
⎜⎜⎜⎜⎝
2 − 𝜆1 −5
4 −2 − 𝜆1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 − 4𝑖 −5
4 −2 − 4𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Using first equation, we see that (2 − 4𝑖) 𝑣1 − 5𝑣2 = 0. Picking 𝑣1 = 1, then 𝑣2 =
2−4𝑖
5 , hence

the eigenvector is 𝒗1 =
⎛
⎜⎜⎜⎜⎝
1

2−4𝑖
5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
5

2 − 4𝑖

⎞
⎟⎟⎟⎟⎠

For 𝜆2, we now solve

(𝐴 − 𝜆2𝐼) 𝒗2 = 0⎛
⎜⎜⎜⎜⎝
2 − 𝜆2 −5
4 −2 − 𝜆2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 + 4𝑖 −5
4 −2 + 4𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Using first equation, we see that (2 + 4𝑖) 𝑣1 − 5𝑣2 = 0. Picking 𝑣1 = 1, then 𝑣2 =
(2+4𝑖)

5 , hence
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the eigenvector is 𝒗2 =
⎛
⎜⎜⎜⎜⎝
1

2+4𝑖
5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

5
2 + 4𝑖

⎞
⎟⎟⎟⎟⎠ Therefore the solution is

𝒙 (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡)
= 𝑐1𝒗1 (𝑡) 𝑒𝜆1𝑡 + 𝑐2𝒗2 (𝑡) 𝑒𝜆2𝑡

Therefore ⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠ = 𝑐1

⎛
⎜⎜⎜⎜⎝
5

2 − 4𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑖𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝

5
2 + 4𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

−4𝑖𝑡

Or

𝑥1 (𝑡) = 𝑐15𝑒4𝑖𝑡 + 𝑐25𝑒−4𝑖𝑡

𝑥2 (𝑡) = 𝑐1 (−2 + 4𝑖) 𝑒4𝑖𝑡 − 𝑐2 (2 + 4𝑖) 𝑒−4𝑖𝑡

Convert to new basis.

ℜ (𝒙1) = ℜ
⎛
⎜⎜⎜⎜⎝

5𝑒4𝑖𝑡

(2 − 4𝑖) 𝑒4𝑖𝑡

⎞
⎟⎟⎟⎟⎠ = ℜ

⎛
⎜⎜⎜⎜⎝
5 (cos 4𝑡 + 𝑖 sin 4𝑡)
�2𝑒4𝑖𝑡 − 4𝑖𝑒4𝑖𝑡�

⎞
⎟⎟⎟⎟⎠

= ℜ
⎛
⎜⎜⎜⎜⎝

5 (cos 4𝑡 + 𝑖 sin 4𝑡)
(2 (cos 4𝑡 + 𝑖 sin 4𝑡) − 4𝑖 (cos 4𝑡 + 𝑖 sin 4𝑡))

⎞
⎟⎟⎟⎟⎠

= ℜ
⎛
⎜⎜⎜⎜⎝

5 (cos 4𝑡 + 𝑖 sin 4𝑡)
2 cos 4𝑡 + 𝑖2 sin 4𝑡 − 4𝑖 cos 4𝑡 + 4 sin 4𝑡

⎞
⎟⎟⎟⎟⎠

= ℜ
⎛
⎜⎜⎜⎜⎝

5 cos 4𝑡 + 𝑖5 sin 4𝑡
(2 cos 4𝑡 + 4 sin 4𝑡) + 𝑖 (2 sin 4𝑡 − 4 cos 4𝑡)

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

5 cos 4𝑡
2 cos 4𝑡 + 4 sin 4𝑡

⎞
⎟⎟⎟⎟⎠

And

ℑ (𝒙1) = ℑ
⎛
⎜⎜⎜⎜⎝

5 cos 4𝑡 + 𝑖5 sin 4𝑡
(2 cos 4𝑡 + 4 sin 4𝑡) + 𝑖 (2 sin 4𝑡 − 4 cos 4𝑡)

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

5 sin 4𝑡
2 sin 4𝑡 − 4 cos 4𝑡

⎞
⎟⎟⎟⎟⎠

Therefore ⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠ = 𝑐3

⎛
⎜⎜⎜⎜⎝

5 cos 4𝑡
2 cos 4𝑡 + 4 sin 4𝑡

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝

5 sin 4𝑡
2 sin 4𝑡 − 4 cos 4𝑡

⎞
⎟⎟⎟⎟⎠ (1)

Or

𝑥1 (𝑡) = 𝑐35 cos 4𝑡 + 𝑐45 sin 4𝑡
𝑥2 (𝑡) = 𝑐3 (2 cos 4𝑡 + 4 sin 4𝑡) + 𝑐4 (2 sin 4𝑡 − 4 cos 4𝑡)

We now apply the initial conditions. From (1), at 𝑡 = 0 we obtain
⎛
⎜⎜⎜⎜⎝
2
3

⎞
⎟⎟⎟⎟⎠ = 𝑐3

⎛
⎜⎜⎜⎜⎝
5
2

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝
0
−4

⎞
⎟⎟⎟⎟⎠

Or ⎛
⎜⎜⎜⎜⎝
5 0
2 −4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐3
𝑐4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2
3

⎞
⎟⎟⎟⎟⎠

From first row, 5𝑐3 = 2 or 𝑐3 =
2
5 . From second row 2𝑐3−4𝑐4 = 3 or 𝑐4 = −

3−2� 25 �

4 = −11
20 . Hence

the solution (1) becomes
⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠ =

2
5

⎛
⎜⎜⎜⎜⎝

5 cos 4𝑡
2 cos 4𝑡 + 4 sin 4𝑡

⎞
⎟⎟⎟⎟⎠ −

11
20

⎛
⎜⎜⎜⎜⎝

5 sin 4𝑡
2 sin 4𝑡 − 4 cos 4𝑡

⎞
⎟⎟⎟⎟⎠ (1A)
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Or

𝑥1 (𝑡) =
2
5
5 cos 4𝑡 − 11

20
5 sin 4𝑡

𝑥2 (𝑡) =
2
5
(2 cos 4𝑡 + 4 sin 4𝑡) − 11

20
(2 sin 4𝑡 − 4 cos 4𝑡)

Or

𝑥1 (𝑡) = 2 cos 4𝑡 − 11
4

sin 4𝑡

𝑥2 (𝑡) =
4
5

cos 4𝑡 + 8
5

sin 4𝑡 − 22
20

sin 4𝑡 + 11
5

cos 4𝑡

Or

𝑥1 (𝑡) = 2 cos 4𝑡 − 11
4

sin 4𝑡

𝑥2 (𝑡) = 3 cos 4𝑡 + 1
2

sin 4𝑡

4.14.8 Section 7.3 problem 12

problem Apply the eigenvalue method to find general solution of the given system. For
each problem, use a computer to construct direction field and typical solution curve.
𝑥′1 = 𝑥1 − 5𝑥2; 𝑥′2 = 𝑥1 + 3𝑥2;

solution The system in matrix form is

𝒙′ = 𝐴𝒙
⎛
⎜⎜⎜⎜⎝
𝑥′1
𝑥′2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 −5
1 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠

The eigenvalues are found from solving

|𝐴 − 𝜆𝐼| = 0

�
1 − 𝜆 −5
1 3 − 𝜆

� = 0

(1 − 𝜆) (3 − 𝜆) + 5 = 0
𝜆2 − 4𝜆 + 8 = 0

𝜆 = 2 ± 2𝑖

Hence 𝜆1 = 2 + 2𝑖, 𝜆2 = 2 − 2𝑖. For 𝜆1, we now solve

(𝐴 − 𝜆1𝐼) 𝒗1 = 0⎛
⎜⎜⎜⎜⎝
1 − 𝜆1 −5
1 3 − 𝜆1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 − (2 + 2𝑖) −5

1 3 − (2 + 2𝑖)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−1 − 2𝑖 −5
1 1 − 2𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Using first equation, we see that (−1 − 2𝑖) 𝑣1 −5𝑣2 = 0. Picking 𝑣1 = 1, then 𝑣2 =
(−1−2𝑖)

5 , hence
the eigenvector is

𝒗1 =
⎛
⎜⎜⎜⎜⎝
1

−1−2𝑖
5

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

5
−1 − 2𝑖

⎞
⎟⎟⎟⎟⎠
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For 𝜆2, we now solve

(𝐴 − 𝜆2𝐼) 𝒗2 = 0⎛
⎜⎜⎜⎜⎝
1 − 𝜆1 −5
1 3 − 𝜆1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 − (2 − 2𝑖) −5

1 3 − (2 − 2𝑖)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−1 + 2𝑖 −5
1 1 + 2𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Using first equation, we see that (−1 + 2𝑖) 𝑣1 − 5𝑣2 = 0. Picking 𝑣1 = 1, then 𝑣2 =
−1+2𝑖
5 , hence

the second eigenvector is

𝒗2 =
⎛
⎜⎜⎜⎜⎝
1

−1+2𝑖
5

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

5
−1 + 2𝑖

⎞
⎟⎟⎟⎟⎠

Therefore the solution is

𝒙 (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡)
= 𝑐1𝒗1 (𝑡) 𝑒𝜆1𝑡 + 𝑐2𝒗2 (𝑡) 𝑒𝜆2𝑡

Therefore ⎛
⎜⎜⎜⎜⎝
𝑥1 (𝑡)
𝑥2 (𝑡)

⎞
⎟⎟⎟⎟⎠ = 𝑐1

⎛
⎜⎜⎜⎜⎝

5
−1 − 2𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

(2+2𝑖)𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝

5
−1 + 2𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

(2−2𝑖)𝑡

Convert to new basis.

ℜ (𝒙1) = ℜ
⎛
⎜⎜⎜⎜⎝

5𝑒(2+2𝑖)𝑡

(−1 − 2𝑖) 𝑒(2+2𝑖)𝑡

⎞
⎟⎟⎟⎟⎠ = ℜ

⎛
⎜⎜⎜⎜⎝
5𝑒2𝑡 (cos 2𝑡 + 𝑖 sin 2𝑡)
−𝑒(2+2𝑖)𝑡 − 2𝑖𝑒(2+2𝑖)𝑡

⎞
⎟⎟⎟⎟⎠

= ℜ
⎛
⎜⎜⎜⎜⎝
5𝑒2𝑡 (cos 2𝑡 + 𝑖 sin 2𝑡)
−𝑒2𝑡𝑒2𝑖𝑡 − 2𝑖𝑒2𝑡𝑒2𝑖𝑡

⎞
⎟⎟⎟⎟⎠

= ℜ
⎛
⎜⎜⎜⎜⎝

5𝑒2𝑡 (cos 2𝑡 + 𝑖 sin 2𝑡)
−𝑒2𝑡 (cos 2𝑡 + 𝑖 sin 2𝑡) − 2𝑖𝑒2𝑡 (cos 2𝑡 + 𝑖 sin 2𝑡)

⎞
⎟⎟⎟⎟⎠

= ℜ
⎛
⎜⎜⎜⎜⎝

5𝑒2𝑡 (cos 2𝑡 + 𝑖 sin 2𝑡)
−𝑒2𝑡 (cos 2𝑡 + 𝑖 sin 2𝑡) − 2𝑒2𝑡 (𝑖 cos 2𝑡 − sin 2𝑡)

⎞
⎟⎟⎟⎟⎠

= ℜ
⎛
⎜⎜⎜⎜⎝

5𝑒2𝑡 cos 2𝑡 + 𝑖 �5𝑒2𝑡 sin 2𝑡�
−𝑒2𝑡 cos 2𝑡 − 𝑖𝑒2𝑡 sin 2𝑡 − 𝑖2𝑒2𝑡 cos 2𝑡 + 2𝑒2𝑡 sin 2𝑡

⎞
⎟⎟⎟⎟⎠

= ℜ
⎛
⎜⎜⎜⎜⎝

5𝑒2𝑡 cos 2𝑡 + 𝑖 �5𝑒2𝑡 sin 2𝑡�
�−𝑒2𝑡 cos 2𝑡 + 2𝑒2𝑡 sin 2𝑡� + 𝑖 �−𝑒2𝑡 sin 2𝑡 − 2𝑒2𝑡 cos 2𝑡�

⎞
⎟⎟⎟⎟⎠

Hence

ℜ (𝒙1) =
⎛
⎜⎜⎜⎜⎝

5𝑒2𝑡 cos 2𝑡
−𝑒2𝑡 cos 2𝑡 + 2𝑒2𝑡 sin 2𝑡

⎞
⎟⎟⎟⎟⎠

And

ℑ (𝒙1) =
⎛
⎜⎜⎜⎜⎝

5𝑒2𝑡 sin 2𝑡
−𝑒2𝑡 sin 2𝑡 − 2𝑒2𝑡 cos 2𝑡

⎞
⎟⎟⎟⎟⎠

Therefore the solution in the new basis is⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠ = 𝐶1

⎛
⎜⎜⎜⎜⎝

5𝑒2𝑡 cos 2𝑡
−𝑒2𝑡 cos 2𝑡 + 2𝑒2𝑡 sin 2𝑡

⎞
⎟⎟⎟⎟⎠ + 𝐶2

⎛
⎜⎜⎜⎜⎝

5𝑒2𝑡 sin 2𝑡
−𝑒2𝑡 sin 2𝑡 − 2𝑒2𝑡 cos 2𝑡

⎞
⎟⎟⎟⎟⎠

Or

𝑥1 (𝑡) = 𝐶15𝑒2𝑡 cos 2𝑡 + 𝐶25𝑒2𝑡 sin 2𝑡
𝑥2 (𝑡) = 𝐶1 �−𝑒2𝑡 cos 2𝑡 + 2𝑒2𝑡 sin 2𝑡� + 𝐶2 �−𝑒2𝑡 sin 2𝑡 − 2𝑒2𝑡 cos 2𝑡�
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Or

𝑥1 (𝑡) = 𝑒2𝑡 (5𝐶1 cos 2𝑡 + 5𝐶2 sin 2𝑡)
𝑥2 (𝑡) = 𝑒2𝑡 (−𝐶1 cos 2𝑡 + 2𝐶1 sin 2𝑡 − 𝐶2 sin 2𝑡 − 2𝐶2 cos 2𝑡)

Or

𝑥1 (𝑡) = 𝑒2𝑡 (5𝐶1 cos 2𝑡 + 5𝐶2 sin 2𝑡) (1)

𝑥2 (𝑡) = 𝑒2𝑡 (cos 2𝑡 (−𝐶1 − 2𝐶2) + sin 2𝑡 (2𝐶1 − 𝐶2))

Note, book must have used the other choice of eigenvalues ordering since it has the signs
all flipped the other way from what I have above. flipping all the signs in the solution given
above in equation (1), then the book solution results:

𝑥1 (𝑡) = 𝑒2𝑡 (−5𝐶1 cos 2𝑡 − 5𝐶2 sin 2𝑡)
𝑥2 (𝑡) = 𝑒2𝑡 (cos 2𝑡 (𝐶1 + 2𝐶2) + sin 2𝑡 (−2𝐶1 + 𝐶2))

4.14.9 Section 7.3 problem 14

problem Apply the eigenvalue method to find general solution of the given system. For
each problem, use a computer to construct direction field and typical solution curve.
𝑥′1 = 3𝑥1 − 4𝑥2; 𝑥′2 = 4𝑥1 + 3𝑥2;

solution The system in matrix form is

𝒙′ = 𝐴𝒙
⎛
⎜⎜⎜⎜⎝
𝑥′1
𝑥′2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
3 −4
4 3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠

The eigenvalues are found from solving

|𝐴 − 𝜆𝐼| = 0

�
3 − 𝜆 −4
4 3 − 𝜆

� = 0

(3 − 𝜆) (3 − 𝜆) + 16 = 0
𝜆2 − 6𝜆 + 25 = 0

𝜆 = 3 ± 4𝑖

Hence 𝜆1 = 3 + 4𝑖, 𝜆2 = 3 − 4𝑖. For 𝜆1, we now solve

(𝐴 − 𝜆1𝐼) 𝒗1 = 0⎛
⎜⎜⎜⎜⎝
3 − 𝜆 −4
4 3 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
3 − (3 + 4𝑖) −4

4 3 − (3 + 4𝑖)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−4𝑖 −4
4 −4𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Using first equation, we see that (−4𝑖) 𝑣1 − 4𝑣2 = 0. Let 𝑣1 = 1, then 𝑣2 = −𝑖, hence the
eigenvector is

𝒗1 =
⎛
⎜⎜⎜⎜⎝
1
−𝑖

⎞
⎟⎟⎟⎟⎠

For 𝜆2, we now solve
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(𝐴 − 𝜆1𝐼) 𝒗1 = 0⎛
⎜⎜⎜⎜⎝
3 − 𝜆 −4
4 3 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
3 − (3 − 4𝑖) −4

4 3 − (3 − 4𝑖)

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
4𝑖 −4
4 4𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Using first equation, we see that (4𝑖) 𝑣1−4𝑣2 = 0. Let 𝑣1 = 1, then 𝑣2 = 𝑖, hence the eigenvector
is

𝒗2 =
⎛
⎜⎜⎜⎜⎝
1
𝑖

⎞
⎟⎟⎟⎟⎠

Therefore the solution is

𝒙 (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡)
= 𝑐1𝒗1 (𝑡) 𝑒𝜆1𝑡 + 𝑐2𝒗2 (𝑡) 𝑒𝜆2𝑡

Therefore ⎛
⎜⎜⎜⎜⎝
𝑥1 (𝑡)
𝑥2 (𝑡)

⎞
⎟⎟⎟⎟⎠ = 𝑐1

⎛
⎜⎜⎜⎜⎝
1
−𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

(3+4𝑖)𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
1
𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

(3−4𝑖)𝑡

Convert to new basis.

ℜ (𝒙1) = ℜ
⎛
⎜⎜⎜⎜⎝
𝑒(3+4𝑖)𝑡

−𝑖𝑒(3+4𝑖)𝑡

⎞
⎟⎟⎟⎟⎠ = ℜ

⎛
⎜⎜⎜⎜⎝
𝑒3𝑡 (cos 4𝑡 + 𝑖 sin 4𝑡)
𝑒3𝑡 (−𝑖 cos 4𝑡 + sin 4𝑡)

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
𝑒3𝑡 cos 4𝑡
𝑒3𝑡 sin 4𝑡

⎞
⎟⎟⎟⎟⎠

And

ℑ (𝒙1) =
⎛
⎜⎜⎜⎜⎝
𝑒3𝑡 sin 4𝑡
−𝑒3𝑡 cos 4𝑡

⎞
⎟⎟⎟⎟⎠

Therefore the solution in the new basis is⎛
⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎠ = 𝐶1

⎛
⎜⎜⎜⎜⎝
𝑒3𝑡 cos 4𝑡
𝑒3𝑡 sin 4𝑡

⎞
⎟⎟⎟⎟⎠ + 𝐶2

⎛
⎜⎜⎜⎜⎝
𝑒3𝑡 sin 4𝑡
−𝑒3𝑡 cos 4𝑡

⎞
⎟⎟⎟⎟⎠

Or

𝑥1 (𝑡) = 𝑒3𝑡 (𝐶1 cos 4𝑡 + 𝐶2 sin 4𝑡)
𝑥2 (𝑡) = 𝑒3𝑡 (𝐶1 sin 4𝑡 − 𝐶2 cos 4𝑡)

4.14.10 Section 7.3 problem 28

problem TO DO

solution

4.14.11 Section 7.3 problem 30

problem TO DO

solution

4.14.12 Section 7.3 problem 39

problem Find general solution 𝒙′ = 𝐴𝒙

𝐴 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 0 0 9
4 2 0 −10
0 0 −1 8
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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solution The eigenvalues are found from solving

|𝐴 − 𝜆𝐼| = 0

�
�
�

−2 − 𝜆 0 0 9
4 2 − 𝜆 0 −10
0 0 −1 − 𝜆 8
0 0 0 1 − 𝜆

�
�
�
= 0

Expanding along the last row since it has most zeros then

det (𝐴 − 𝜆𝐼) = (1 − 𝜆) (−1)4+4
�

�

−2 − 𝜆 0 0
4 2 − 𝜆 0
0 0 −1 − 𝜆

�

�

= (1 − 𝜆)
�

�

−2 − 𝜆 0 0
4 2 − 𝜆 0
0 0 −1 − 𝜆

�

�

= (1 − 𝜆) (−1 − 𝜆) (−1)3+3 �
−2 − 𝜆 0
4 2 − 𝜆

�

= (1 − 𝜆) (−1 − 𝜆) �
−2 − 𝜆 0
4 2 − 𝜆

�

= (1 − 𝜆) (−1 − 𝜆) (−2 − 𝜆) (2 − 𝜆)

Hence the eigenvalues are (distinct case, no repeated)

𝜆1 = 1, 𝜆2 = −1, 𝜆3 = 2, 𝜆4 = −2

For 𝜆1 = 1
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 − 𝜆1 0 0 9
4 2 − 𝜆1 0 −10
0 0 −1 − 𝜆1 8
0 0 0 1 − 𝜆1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3
𝑣4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 0 0 9
4 1 0 −10
0 0 −2 8
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3
𝑣4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Let 𝑣4 = 1. Hence from third row

−2𝑣3 + 8𝑣4 = 0
𝑣3 = 4

From first row

−3𝑣1 + 9𝑣4 = 0
𝑣1 = 3

From second row

4𝑣1 + 𝑣2 − 10𝑣4 = 0
𝑣2 = 10 − 12
= −2

Hence first eigenvector is

𝒗1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
−2
4
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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For 𝜆2 = −1
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 − 𝜆2 0 0 9
4 2 − 𝜆2 0 −10
0 0 −1 − 𝜆2 8
0 0 0 1 − 𝜆2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3
𝑣4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 9
4 3 0 −10
0 0 0 8
0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3
𝑣4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From last row 2𝑣4 = 0, hence 𝑣4 = 0. From third row it also says that 𝑣4 = 0. from first row
we also obtain that 𝑣1 = 0. From second row

4𝑣1 + 3𝑣2 = 0

Since 𝑣1 = 0 then 𝑣2 = 0. We notice that 𝑣3 is left undetermined as there is no equation to
determine it. (this happens when there is a column of all zeros, as in this case). Hence we
can pick any value for 𝑣3. Lets choose 𝑣3 = 1. Therefore the second eigenvector is

𝒗2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For 𝜆3 = 2
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 − 𝜆3 0 0 9
4 2 − 𝜆3 0 −10
0 0 −1 − 𝜆3 8
0 0 0 1 − 𝜆3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3
𝑣4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4 0 0 9
4 0 0 −10
0 0 −3 8
0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3
𝑣4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From last row −𝑣4 = 0, hence 𝑣4 = 0. From third row it says that 𝑣3 = 0 since 𝑣4 = 0. from
second and first row obtain that 𝑣1 = 0.

We notice that 𝑣2 is left undetermined as there is no equation to determine it. Hence we
can pick any value for 𝑣2. Lets choose 𝑣2 = 1. Therefore the eigenvector is

𝒗3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

For 𝜆4 = −2
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2 − 𝜆4 0 0 9
4 2 − 𝜆4 0 −10
0 0 −1 − 𝜆4 8
0 0 0 1 − 𝜆4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3
𝑣4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 9
4 4 0 −10
0 0 1 8
0 0 0 3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3
𝑣4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From last row 𝑣4 = 0. From third row it says that 𝑣3 = 0 since 𝑣4 = 0. Second row gives
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4𝑣1 + 4𝑣2 = 0. Let 𝑣1 = 1 hence 𝑣2 = −1. Therefore the eigenvector is

𝒗3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We found all the eigenvectors, The solution is

𝒙 (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡) + 𝑐3𝒙3 (𝑡) + 𝑐4𝒙4 (𝑡)
= 𝑐1𝒗1 (𝑡) 𝑒𝜆1𝑡 + 𝑐2𝒗2 (𝑡) 𝑒𝜆2𝑡 + 𝑐3𝒗2 (𝑡) 𝑒𝜆3𝑡 + 𝑐2𝒗4 (𝑡) 𝑒𝜆4𝑡

Or

𝒙 (𝑡) = 𝑐1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3
−2
4
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑒𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑒−𝑡 + 𝑐3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑒2𝑡 + 𝑐4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
−1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑒−2𝑡

Hence

𝑥1 (𝑡) = 3𝑐1𝑒𝑡 + 𝑐4𝑒−2𝑡

𝑥2 (𝑡) = −2𝑐1𝑒𝑡 + 𝑐3𝑒2𝑡 − 𝑐4𝑒−2𝑡

𝑥3 (𝑡) = 4𝑐1𝑒𝑡 + 𝑐2𝑒−𝑡

𝑥4 (𝑡) = 𝑐1𝑒𝑡

4.14.13 Section 7.5 problem 3

problem Find general solution of 𝒙′ =
⎛
⎜⎜⎜⎜⎝
1 −2
2 5

⎞
⎟⎟⎟⎟⎠ 𝒙

solution The eigenvalues are found from solving

|𝐴 − 𝜆𝐼| = 0

�
1 − 𝜆 −2
2 5 − 𝜆

� = 0

(1 − 𝜆) (5 − 𝜆) + 4 = 0
𝜆2 − 6𝜆 + 9 = 0

(𝜆 − 3)2 = 0

Hence 𝜆 = 3. repeated root, multiplicity 𝑘 = 2. Let us first check if this is a complete
eigenvalue or not. (i.e. if we can find two L.I. eigenvectors from this eigenvalue). If not, we
need to use defective algorithm to find the eigenvectors). But we always check if it complete
or not.

(𝐴 − 𝜆𝐼) 𝒗 = 0
⎛
⎜⎜⎜⎜⎝
1 − 𝜆 −2
2 5 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−2 −2
2 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

We see that the first row and the second row give the same eigenvector. −2𝑣1 − 2𝑣2 = 0.

Let 𝑣1 = 1, hence 𝑣2 = −1. So we can only find one eigenvector

⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠. Second row gives

same eigenvector. This means this is defective eigenvalue. We can’t use this method. We
are stuck. So we switch to the defective eigenvalue method (page 450). We start by solving
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for 𝒗2 from
(𝐴 − 𝜆𝐼)2 𝒗2 = 0

⎛
⎜⎜⎜⎜⎝
1 − 𝜆 −2
2 5 − 𝜆

⎞
⎟⎟⎟⎟⎠

2 ⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−2 −2
2 2

⎞
⎟⎟⎟⎟⎠

2 ⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0 0
0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Hence

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ can be any value. Let 𝑣1 = 1, 𝑣2 = 0 and therefore

𝒗2 =
⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠

We now find 𝒗1 from

𝒗1 = (𝐴 − 𝜆𝐼) 𝒗2

=
⎛
⎜⎜⎜⎜⎝
−2 −2
2 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−2
2

⎞
⎟⎟⎟⎟⎠

Hence the solution is

𝒙 (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡) (1)

Where now

𝒙1 (𝑡) = 𝒗1𝑒𝜆𝑡

𝒙2 (𝑡) = (𝒗1𝑡 + 𝒗2) 𝑒𝜆𝑡

Plugging these into (1) gives

𝒙 (𝑡) = 𝑐1𝒗1𝑒𝜆𝑡 + 𝑐2 (𝒗1𝑡 + 𝒗2) 𝑒𝜆𝑡 (2)

Replacing the result we found earlier for 𝒗1, 𝒗2 into the above, and using 𝜆 = 3 gives

𝒙 (𝑡) = 𝑐1

⎛
⎜⎜⎜⎜⎝
−2
2

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
−2
2

⎞
⎟⎟⎟⎟⎠ 𝑡 +

⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡

Hence

𝑥1 (𝑡) = (−2𝑐1 + 𝑐2 − 2𝑐2𝑡) 𝑒3𝑡

𝑥2 (𝑡) = (2𝑐1 + 2𝑐2𝑡) 𝑒3𝑡

4.14.14 Section 7.5 problem 5

problem Find general solution of 𝒙′ =
⎛
⎜⎜⎜⎜⎝
7 1
−4 3

⎞
⎟⎟⎟⎟⎠ 𝒙

solution The eigenvalues are found from solving

|𝐴 − 𝜆𝐼| = 0

�
7 − 𝜆 1
−4 3 − 𝜆

� = 0

(7 − 𝜆) (3 − 𝜆) + 4 = 0

(𝜆 − 5)2 = 0

Hence 𝜆 = 5, repeated root, multiplicity 𝑘 = 2. Let us first check if this is a complete
eigenvalue or not. (i.e. if we can find two L.I. eigenvectors from this eigenvalue). If not, we
need to use defective algorithm to find the eigenvectors). But we always check if it complete
or not.
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(𝐴 − 𝜆𝐼) 𝒗 = 0
⎛
⎜⎜⎜⎜⎝
7 − 𝜆 1
−4 3 − 𝜆

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
7 − 5 1
−4 3 − 5

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 1
−4 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first row we obtain 2𝑣1+𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 = −2. Hence eigenvector is 𝒗 =
⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠.

We can only find this one eigenvector. Second row gives same eigenvector. This means
this is defective eigenvalue. We can’t use this method. We are stuck. So we switch to the
defective eigenvalue method (page 450). We start by solve for 𝒗2 from

(𝐴 − 𝜆𝐼)2 𝒗2 = 0
⎛
⎜⎜⎜⎜⎝
7 − 𝜆 1
−4 3 − 𝜆

⎞
⎟⎟⎟⎟⎠

2 ⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
7 − 5 1
−4 3 − 5

⎞
⎟⎟⎟⎟⎠

2 ⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 1
−4 −2

⎞
⎟⎟⎟⎟⎠

2 ⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0 0
0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Hence

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ can be any value. Let 𝑣1 = 1, 𝑣2 = 0 and therefore

𝒗2 =
⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠

We now find 𝒗1 from

𝒗1 = (𝐴 − 𝜆𝐼) 𝒗2

=
⎛
⎜⎜⎜⎜⎝
2 1
−4 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
2
−4

⎞
⎟⎟⎟⎟⎠

Hence the solution is

𝒙 (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡) (1)

Where now

𝒙1 (𝑡) = 𝒗1𝑒𝜆𝑡

𝒙2 (𝑡) = (𝒗1𝑡 + 𝒗2) 𝑒𝜆𝑡

Plugging these into (1) gives

𝒙 (𝑡) = 𝑐1𝒗1𝑒𝜆𝑡 + 𝑐2 (𝒗1𝑡 + 𝒗2) 𝑒𝜆𝑡 (2)

Replacing the result we found earlier for 𝒗1, 𝒗2 into the above, and using 𝜆 = 3 gives

𝒙 (𝑡) = 𝑐1

⎛
⎜⎜⎜⎜⎝
2
−4

⎞
⎟⎟⎟⎟⎠ 𝑒

5𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
2
−4

⎞
⎟⎟⎟⎟⎠ 𝑡 +

⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ 𝑒

5𝑡

Hence

𝑥1 (𝑡) = (2𝑐1 + 𝑐2 + 2𝑐2𝑡) 𝑒3𝑡

𝑥2 (𝑡) = (−4𝑐1 − 4𝑐2𝑡) 𝑒3𝑡
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4.14.15 Section 7.5 problem 7

Problem Find general solution of 𝒙′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 0
−7 9 7
0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝒙

Solution The eigenvalues are found from solving

|𝐴 − 𝜆𝐼| = 0

�

�

2 − 𝜆 0 0
−7 9 − 𝜆 7
0 0 2 − 𝜆

�

�
= 0

Expanding along last row since it has most zeros

det (𝐴 − 𝜆𝐼) = (2 − 𝜆) (−1)3+3 �
2 − 𝜆 0
−7 9 − 𝜆

�

= (2 − 𝜆) �
2 − 𝜆 0
−7 9 − 𝜆

�

= (2 − 𝜆) (2 − 𝜆) (9 − 𝜆)

Hence roots are 𝜆1 = 2, 𝜆2 = 9, where now 𝜆1 has multiplicity 𝑘 = 2, and 𝜆2 is the good one
with no multiplicity. To find associated eigenvector for 𝜆2 we follow the normal method.

For 𝜆2 = 9

(𝐴 − 𝜆2𝐼) 𝒗𝜆2 = 0⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 − 𝜆2 0 0
−7 9 − 𝜆2 7
0 0 2 − 𝜆2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 − 9 0 0
−7 9 − 9 7
0 0 2 − 9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−7 0 0
−7 0 7
0 0 −7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Last row says −7𝑣3 = 0 or 𝑣3 = 0. second row says −7𝑣1 = 0 or 𝑣1 = 0. First row adds nothing
new. So we see that there is no equation to find 𝑣2 (this is because the second column is
all zeros). Hence we pick 𝑣2 anything we want. Let 𝑣2 = 1 and therefore

𝒗𝜆2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now we go back and look at 𝜆1 = 2, this is the one with multiplicity 𝑘 = 2. Let first check
if this is a complete eigenvalue or not. (i.e. if we can find two L.I. eigenvectors from this
eigenvalue). If not, we need to use defective algorithm to find the eigenvectors). But we
always check if it complete or not.
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(𝐴 − 𝜆1𝐼) 𝒗𝜆1 = 0⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 − 𝜆1 0 0
−7 9 − 𝜆1 7
0 0 2 − 𝜆1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 − 2 0 0
−7 9 − 2 7
0 0 2 − 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
−7 7 7
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Last row says 𝑣3 is arbitrary. Let 𝑣3 = 𝑠. Second row says −𝑣1 + 𝑣2 + 𝑠 = 0, hence 𝑣1 = 𝑣2 + 𝑠.
No other information can be obtained from first row. So 𝑣2 is arbitrary, say 𝑣2 = 𝑟, hence
the solution is

𝒗𝜆1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑣1
𝑣2
𝑣3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟 + 𝑠
𝑟
𝑠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑟

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
+ 𝑠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

So we see that we have linear combination of two eigenvectors for 𝜆1. Hence this eigenvalue
is complete and not defective. No need to use the defective eigenvalue algorithm. These
are the two L.I. eigenvector we are looking for. We got lucky here. Hence

𝒗(1)𝜆1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝒗(2)𝜆1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

The solution is

𝒙 (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡) + 𝑐3𝒙3 (𝑡) (1)

Where now

𝒙1 (𝑡) = 𝒗
(1)
𝜆1 𝑒

𝜆1𝑡

𝒙2 (𝑡) = 𝒗
(2)
𝜆1 𝑒

𝜆1𝑡

𝒙3 (𝑡) = 𝒗𝜆2𝑒
𝜆2𝑡

Therefore (1) becomes

𝒙 (𝑡) = 𝑐1𝒗
(1)
𝜆1 𝑒

𝜆1𝑡 + 𝑐2𝒗
(2)
𝜆1 𝑒

𝜆1𝑡 + 𝑐3𝒗𝜆2𝑒
𝜆2𝑡

= 𝑐1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑒2𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑒2𝑡 + 𝑐3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑒9𝑡

Or

𝑥1 (𝑡) = (𝑐1 + 𝑐2) 𝑒2𝑡

𝑥2 (𝑡) = 𝑐1𝑒2𝑡 + 𝑐3𝑒9𝑡

𝑥3 (𝑡) = 𝑐2𝑒2𝑡
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4.14.16 Section 8.2 problem 5 (page 502)

problem Apply method of undetermined coe�cients to find particular solution system. If
initial conditions are given, apply initial conditions to find the complete solution. 𝑥′ =
6𝑥 − 7𝑦 + 10; 𝑦′ = 𝑥 − 2𝑦 − 2𝑒−𝑡

solution

The matrix form of the system is
⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
6 −7
1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
10
−2𝑒−𝑡

⎞
⎟⎟⎟⎟⎠

The eigenvalues of the homogenous system are found from

|𝐴 − 𝜆𝐼| = 0

�
6 − 𝜆 −7
1 −2 − 𝜆

� = 0

𝜆2 − 4𝜆 − 5 = 0
(𝜆 − 5) (𝜆 + 1) = 0

Hence 𝜆1 = 5, 𝜆2 = −1

For 𝜆1 = 5
⎛
⎜⎜⎜⎜⎝
6 − 𝜆1 −7
1 −2 − 𝜆1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 −7
1 −7

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation 𝑣1 − 7𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 =
1
7 , hence the eigenvector is

𝒗1 =
⎛
⎜⎜⎜⎜⎝
1
1
7

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
7
1

⎞
⎟⎟⎟⎟⎠

For 𝜆1 = −1
⎛
⎜⎜⎜⎜⎝
6 − 𝜆2 −7
1 −2 − 𝜆2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
7 −7
1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation 7𝑣1 − 7𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 = 1, hence the eigenvector is

𝒗2 =
⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠

Therefore the homogenous solution is

𝒙ℎ (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡)
= 𝑐1𝒗1 (𝑡) 𝑒𝜆1𝑡 + 𝑐2𝒗2 (𝑡) 𝑒𝜆2𝑡

Or

𝒙ℎ (𝑡) = 𝑐1

⎛
⎜⎜⎜⎜⎝
7
1

⎞
⎟⎟⎟⎟⎠ 𝑒

5𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡

Or

𝑥ℎ (𝑡) = 7𝑐1𝑒5𝑡 + 𝑐2𝑒−𝑡 (1)

𝑦ℎ (𝑡) = 𝑐1𝑒5𝑡 + 𝑐2𝑒−𝑡

We now see that one of the basis solution in the homogenous part

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡, is also present

in the forcing function (RHS of the original ODE). So to use the method of undetermined

coe�cients, we need to multiply by 𝑡0𝑒−𝑡 and 𝑡1𝑒−𝑡. Therefore, since the RHS is

⎛
⎜⎜⎜⎜⎝
10
−2𝑒−𝑡

⎞
⎟⎟⎟⎟⎠, then
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we guess

𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡 +
⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ 𝑡𝑒

−𝑡

=
⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑡𝑐1
𝑡𝑐2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡

=
⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑏1 + 𝑡𝑐1
𝑏2 + 𝑡𝑐2

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡

Note that in systems, for duplication, we multiplied by 𝑡0𝑒−𝑡 and 𝑡1𝑒−𝑡. Hence the need for

the

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡 term in the above. This is little di�erent than in the scalar case where we just

needed one multiplication. See the note in middle of page 497 of textbook on this. Now
that we have the guess, we plug it into the system and solve for the coe�cients.

𝒙′𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡 −
⎛
⎜⎜⎜⎜⎝
𝑏1 + 𝑡𝑐1
𝑏2 + 𝑡𝑐2

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡

=
⎛
⎜⎜⎜⎜⎝
𝑐1 − 𝑏1 − 𝑡𝑐1
𝑐2 − 𝑏2 − 𝑡𝑐2

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡

Plugging the above into original system, which is

𝒙′𝑝 =
⎛
⎜⎜⎜⎜⎝
6 −7
1 −2

⎞
⎟⎟⎟⎟⎠ 𝒙𝑝 +

⎛
⎜⎜⎜⎜⎝
10
−2𝑒−𝑡

⎞
⎟⎟⎟⎟⎠

Gives ⎛
⎜⎜⎜⎜⎝
𝑐1 − 𝑏1 − 𝑡𝑐1
𝑐2 − 𝑏2 − 𝑡𝑐2

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡 =
⎛
⎜⎜⎜⎜⎝
6 −7
1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑏1 + 𝑡𝑐1
𝑏2 + 𝑡𝑐2

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
10
−2𝑒−𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1 − 𝑏1 − 𝑡𝑐1
𝑐2 − 𝑏2 − 𝑡𝑐2

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡 =
⎛
⎜⎜⎜⎜⎝
6 −7
1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑏1𝑒−𝑡 + 𝑡𝑒−𝑡𝑐1
𝑏2𝑒−𝑡 + 𝑡𝑒−𝑡𝑐2

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
10
−2𝑒−𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1 − 𝑏1 − 𝑡𝑐1
𝑐2 − 𝑏2 − 𝑡𝑐2

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡 =
⎛
⎜⎜⎜⎜⎝
6 −7
1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑏1𝑒−𝑡 + 𝑡𝑒−𝑡𝑐1
𝑎2 + 𝑏2𝑒−𝑡 + 𝑡𝑒−𝑡𝑐2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
10
−2𝑒−𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1 − 𝑏1 − 𝑡𝑐1
𝑐2 − 𝑏2 − 𝑡𝑐2

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡 =
⎛
⎜⎜⎜⎜⎝
6𝑎1 − 7𝑎2 + 6𝑏1𝑒−𝑡 − 7𝑏2𝑒−𝑡 + 6𝑡𝑐1𝑒−𝑡 − 7𝑡𝑐2𝑒−𝑡

𝑎1 − 2𝑎2 + 𝑏1𝑒−𝑡 − 2𝑏2𝑒−𝑡 + 𝑡𝑐1𝑒−𝑡 − 2𝑡𝑐2𝑒−𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
10
−2𝑒−𝑡

⎞
⎟⎟⎟⎟⎠

We obtain

(𝑐1 − 𝑏1 − 𝑡𝑐1) 𝑒−𝑡 = 𝑒−𝑡 (6𝑏1 − 7𝑏2 + 6𝑡𝑐1 − 7𝑡𝑐2) + 6𝑎1 − 7𝑎2 + 10
(𝑐2 − 𝑏2 − 𝑡𝑐2) 𝑒−𝑡 = 𝑒−𝑡 (𝑏1 − 2𝑏2 + 𝑡𝑐1 − 2𝑡𝑐2 − 2) + 𝑎1 − 2𝑎2

Comparing terms, we obtain

𝑐1 − 𝑏1 − 𝑡𝑐1 = 6𝑏1 − 7𝑏2 + 6𝑡𝑐1 − 7𝑡𝑐2
6𝑎1 − 7𝑎2 + 10 = 0
𝑐2 − 𝑏2 − 𝑡𝑐2 = 𝑏1 − 2𝑏2 + 𝑡𝑐1 − 2𝑡𝑐2 − 2

𝑎1 − 2𝑎2 = 0

Or

𝑐1 − 𝑏1 − 𝑡𝑐1 = 6𝑏1 − 7𝑏2 + 𝑡 (6𝑐1 − 7𝑐2)
6𝑎1 − 7𝑎2 + 10 = 0
𝑐2 − 𝑏2 − 𝑡𝑐2 = 𝑏1 − 2𝑏2 + 𝑡 (𝑐1 − 2𝑐2) − 2

𝑎1 − 2𝑎2 = 0

Therefore, from the first and third equation above, we see we get additional two equations
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when we compare terms in 𝑡. Hence

𝑐1 − 𝑏1 = 6𝑏1 − 7𝑏2
−𝑐1 = 6𝑐1 − 7𝑐2

6𝑎1 − 7𝑎2 + 10 = 0
𝑐2 − 𝑏2 = 𝑏1 − 2𝑏2 − 2
−𝑐2 = 𝑐1 − 2𝑐2

𝑎1 − 2𝑎2 = 0

Or

𝑐1 − 𝑏1 = 6𝑏1 − 7𝑏2
𝑐1 = 𝑐2

6𝑎1 − 7𝑎2 + 10 = 0
𝑐2 − 𝑏2 = 𝑏1 − 2𝑏2 − 2

𝑐2 = 𝑐1
𝑎1 − 2𝑎2 = 0

Or

𝑐1 − 7𝑏1 + 7𝑏2 = 0
𝑐1 − 𝑐2 = 0

6𝑎1 − 7𝑎2 = −10
𝑐2 + 𝑏2 − 𝑏1 = −2

𝑎1 − 2𝑎2 = 0

The systems can be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 0 0 0 0
6 −7 0 0 0 0
0 0 −7 7 1 0
0 0 −1 1 0 1
0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−10
0
−2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅2 = 𝑅2 − 6𝑅1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 0 0 0 0
0 5 0 0 0 0
0 0 −7 7 1 0
0 0 −1 1 0 1
0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−10
0
−2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅4 = 𝑅4 −
1
7𝑅3

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 0 0 0 0
0 5 0 0 0 0
0 0 −7 7 1 0
0 0 0 0 −1

7 1
0 0 0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−10
0
−2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑅5 + 7𝑅4

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 0 0 0 0
0 5 0 0 0 0
0 0 −7 7 1 0
0 0 0 0 −1

7 1
0 0 0 0 0 6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
−10
0
−2
−14

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

From last row we obtain that 6𝑐2 = −14 or

𝑐2 =
−7
3

From 4th row

−
1
7
𝑐1 + 𝑐2 = −2

−
1
7
𝑐1 =

7
3
− 2

−𝑐1 =
49
3
− 14

𝑐1 = 14 −
49
3

= −
7
3

From 3rd row

−7𝑏1 + 7𝑏2 + 𝑐1 = 0

−7𝑏1 = −7𝑏2 −
7
3

𝑏1 = 𝑏2 −
1
3

From second row

5𝑎2 = −10
𝑎2 = −2

From first row

𝑎1 − 2𝑎2 = 0
𝑎1 = 2𝑎2
= −4

Therefore the solution is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4
−2

𝑏2 −
1
3

𝑏2
−7
3

−7
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 𝑏2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4
−2
−1
3
0
−7
3

−7
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

210



4.14. HW13 CHAPTER 4. HWS

Where 𝑏1 is arbitrary. If we let 𝑏2 = 0 then
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−4
−2
−1
3
0
7
3
−7
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, we go back to the particular solution

𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡 +
⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ 𝑡𝑒

−𝑡

And substitute these values found in the solution above and obtain

𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
−4
−2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
−1
3
0

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡 +
⎛
⎜⎜⎜⎜⎝
−7
3

−7
3

⎞
⎟⎟⎟⎟⎠ 𝑡𝑒

−𝑡

Or

𝑥𝑝 (𝑡) = −4 −
1
3
𝑒−𝑡 −

7
3
𝑡𝑒−𝑡

𝑦𝑝 (𝑡) = −2 −
7
3
𝑡𝑒−𝑡

Or

𝑥𝑝 (𝑡) =
1
3
�−12 − 𝑒−𝑡 − 7𝑡𝑒−𝑡�

𝑦𝑝 (𝑡) =
1
3
�−6 − 7𝑡𝑒−𝑡�

Hence the complete solution (using the homogenous solution found in (1)) is

𝑥 (𝑡) = 7𝑐1𝑒5𝑡 + 𝑐2𝑒−𝑡 +
1
3
�−12 − 𝑒−𝑡 − 7𝑡𝑒−𝑡�

𝑦ℎ (𝑡) = 𝑐1𝑒5𝑡 + 𝑐2𝑒−𝑡 +
1
3
�−6 − 7𝑡𝑒−𝑡�

4.14.17 Section 8.2 problem 9

problem Apply method of undetermined coe�cients to find particular solution system. If
initial conditions are given, apply initial conditions to find the complete solution. 𝑥′ =
𝑥 − 5𝑦 + cos 2𝑡; 𝑦′ = 𝑥 − 𝑦

solution The matrix form of the system is
⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 −5
1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
cos 2𝑡
0

⎞
⎟⎟⎟⎟⎠

The eigenvalues of the homogenous system are found from

|𝐴 − 𝜆𝐼| = 0

�
1 − 𝜆 −5
1 −1 − 𝜆

� = 0

𝜆2 + 4 = 0
𝜆 = ±2𝑖

For 𝜆1 = 2𝑖 we solve (𝐴 − 𝜆1𝐼) 𝒗1 = 0
⎛
⎜⎜⎜⎜⎝
1 − 2𝑖 −5
1 −1 − 2𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation

(1 − 2𝑖) 𝑣1 − 5𝑣2 = 0
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Let 𝑣1 = 1, hence 𝑣2 =
(1−2𝑖)
5 , therefore

𝒗1 =
⎛
⎜⎜⎜⎜⎝
1

(1−2𝑖)
5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
5

1 − 2𝑖

⎞
⎟⎟⎟⎟⎠

For 𝜆1 = −2𝑖 we solve (𝐴 − 𝜆2𝐼) 𝒗2 = 0
⎛
⎜⎜⎜⎜⎝
1 + 2𝑖 −5
1 −1 + 2𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation

(1 + 2𝑖) 𝑣1 − 5𝑣2 = 0

Let 𝑣1 = 1, hence 𝑣2 =
(1+2𝑖)

5 , therefore

𝒗2 =
⎛
⎜⎜⎜⎜⎝
1

(1+2𝑖)
5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

5
1 + 2𝑖

⎞
⎟⎟⎟⎟⎠

Therefore the homogenous solution is

𝒙ℎ (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡)
= 𝑐1𝒗1 (𝑡) 𝑒𝜆1𝑡 + 𝑐2𝒗2 (𝑡) 𝑒𝜆2𝑡

Or

𝒙ℎ (𝑡) = 𝑐1

⎛
⎜⎜⎜⎜⎝
5

1 − 2𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

2𝑖𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝

5
1 + 2𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

−2𝑖𝑡

Convert to new basis

𝒙1 (𝑡) = Re (𝒙1 (𝑡))

= Re
⎛
⎜⎜⎜⎜⎝
5

1 − 2𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

2𝑖𝑡 = Re
⎛
⎜⎜⎜⎜⎝

5 (cos 2𝑡 + 𝑖 sin 2𝑡)
(cos 2𝑡 + 𝑖 sin 2𝑡) − 2𝑖 (cos 2𝑡 + 𝑖 sin 2𝑡)

⎞
⎟⎟⎟⎟⎠

= Re
⎛
⎜⎜⎜⎜⎝

5 (cos 2𝑡 + 𝑖 sin 2𝑡)
(cos 2𝑡 + 𝑖 sin 2𝑡) − 2 (𝑖 cos 2𝑡 − sin 2𝑡)

⎞
⎟⎟⎟⎟⎠

= Re
⎛
⎜⎜⎜⎜⎝

5 (cos 2𝑡 + 𝑖 sin 2𝑡)
cos 2𝑡 + 𝑖 sin 2𝑡 − 2𝑖 cos 2𝑡 + 2 sin 2𝑡

⎞
⎟⎟⎟⎟⎠

= Re
⎛
⎜⎜⎜⎜⎝

5 (cos 2𝑡 + 𝑖 sin 2𝑡)
cos 2𝑡 + 2 sin 2𝑡 + 𝑖 (sin 2𝑡 − 2 cos 2𝑡)

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

5 cos 2𝑡
cos 2𝑡 + 2 sin 2𝑡

⎞
⎟⎟⎟⎟⎠

And

𝒙2 (𝑡) = Im (𝒙1 (𝑡))

=
⎛
⎜⎜⎜⎜⎝

5 sin 2𝑡
sin 2𝑡 − 2 cos 2𝑡

⎞
⎟⎟⎟⎟⎠

Hence the homogeneous solution is

𝒙ℎ (𝑡) = 𝐶1𝒙1 (𝑡) + 𝐶2𝒙2 (𝑡)

= 𝐶1

⎛
⎜⎜⎜⎜⎝

5 cos 2𝑡
cos 2𝑡 + 2 sin 2𝑡

⎞
⎟⎟⎟⎟⎠ + 𝐶2

⎛
⎜⎜⎜⎜⎝

5 sin 2𝑡
sin 2𝑡 − 2 cos 2𝑡

⎞
⎟⎟⎟⎟⎠

Or

𝑥ℎ (𝑡) = 5𝐶1 cos 2𝑡 + 5𝐶2 sin 2𝑡
𝑦ℎ (𝑡) = (𝐶1 − 2𝐶2) cos 2𝑡 + (2𝐶1 + 𝐶2) sin 2𝑡

We now see that one of the basis solutions for the homogenous part contains cos 2𝑡 which
is also in the forcing function of the original system. Hence we need to pick a guess where
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we multiply by extra 𝑡. Since the forcing function is

⎛
⎜⎜⎜⎜⎝
cos 2𝑡
0

⎞
⎟⎟⎟⎟⎠ then guess

𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ sin 2𝑡 +

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ cos 2𝑡 +

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ 𝑡 sin 2𝑡 +

⎛
⎜⎜⎜⎜⎝
𝑑1
𝑑2

⎞
⎟⎟⎟⎟⎠ 𝑡 cos 2𝑡 (1)

=
⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑡𝑐1
𝑎2 + 𝑡𝑐2

⎞
⎟⎟⎟⎟⎠ sin 2𝑡 +

⎛
⎜⎜⎜⎜⎝
𝑏1 + 𝑡𝑑1
𝑏2 + 𝑡𝑑2

⎞
⎟⎟⎟⎟⎠ cos 2𝑡

Therefore

𝒙′𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ sin 2𝑡 + 2

⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑡𝑐1
𝑎2 + 𝑡𝑐2

⎞
⎟⎟⎟⎟⎠ cos 2𝑡 +

⎛
⎜⎜⎜⎜⎝
𝑑1
𝑑2

⎞
⎟⎟⎟⎟⎠ cos 2𝑡 − 2

⎛
⎜⎜⎜⎜⎝
𝑏1 + 𝑡𝑑1
𝑏2 + 𝑡𝑑2

⎞
⎟⎟⎟⎟⎠ sin 2𝑡

=
⎛
⎜⎜⎜⎜⎝
𝑐1 − 2 (𝑏1 + 𝑡𝑑1)
𝑐2 − 2 (𝑏2 + 𝑡𝑑2)

⎞
⎟⎟⎟⎟⎠ sin 2𝑡 +

⎛
⎜⎜⎜⎜⎝
𝑑1 + 2 (𝑎1 + 𝑡𝑐1)
𝑑2 + 2 (𝑎2 + 𝑡𝑐2)

⎞
⎟⎟⎟⎟⎠ cos 2𝑡 (2)

We now substitute (1) and (2) into

𝒙′𝑝 =
⎛
⎜⎜⎜⎜⎝
1 −5
1 −1

⎞
⎟⎟⎟⎟⎠ 𝒙𝑝 +

⎛
⎜⎜⎜⎜⎝
cos 2𝑡
0

⎞
⎟⎟⎟⎟⎠

Hence
⎛
⎜⎜⎜⎜⎝
𝑐1 − 2 (𝑏1 + 𝑡𝑑1)
𝑐2 − 2 (𝑏2 + 𝑡𝑑2)

⎞
⎟⎟⎟⎟⎠ sin 2𝑡 +

⎛
⎜⎜⎜⎜⎝
𝑑1 + 2 (𝑎1 + 𝑡𝑐1)
𝑑2 + 2 (𝑎2 + 𝑡𝑐2)

⎞
⎟⎟⎟⎟⎠ cos 2𝑡 =

⎛
⎜⎜⎜⎜⎝
1 −5
1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑡𝑐1
𝑎2 + 𝑡𝑐2

⎞
⎟⎟⎟⎟⎠ sin 2𝑡 +

⎛
⎜⎜⎜⎜⎝
𝑏1 + 𝑡𝑑1
𝑏2 + 𝑡𝑑2

⎞
⎟⎟⎟⎟⎠ cos 2𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
cos 2𝑡
0

⎞
⎟⎟⎟⎟⎠

Hence
⎛
⎜⎜⎜⎜⎝
(𝑐1 − 2 (𝑏1 + 𝑡𝑑1)) sin 2𝑡
(𝑐2 − 2 (𝑏2 + 𝑡𝑑2)) sin 2𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
(𝑑1 + 2 (𝑎1 + 𝑡𝑐1)) cos 2𝑡
(𝑑2 + 2 (𝑎2 + 𝑡𝑐2)) cos 2𝑡

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 −5
1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
(𝑎1 + 𝑡𝑐1) sin 2𝑡 + (𝑏1 + 𝑡𝑑1) cos 2𝑡
(𝑎2 + 𝑡𝑐2) sin 2𝑡 + (𝑏2 + 𝑡𝑑2) cos 2𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
cos 2𝑡
0

⎞
⎟⎟⎟⎟⎠

Or
⎛
⎜⎜⎜⎜⎝
(𝑐1 − 2 (𝑏1 + 𝑡𝑑1)) sin 2𝑡 + (𝑑1 + 2 (𝑎1 + 𝑡𝑐1)) cos 2𝑡
(𝑐2 − 2 (𝑏2 + 𝑡𝑑2)) sin 2𝑡 + (𝑑2 + 2 (𝑎2 + 𝑡𝑐2)) cos 2𝑡

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
(cos 2𝑡) (𝑏1 + 𝑡𝑑1) − 5 (cos 2𝑡) (𝑏2 + 𝑡𝑑2) + (sin 2𝑡) (𝑎1 + 𝑡𝑐1) − 5 (sin 2𝑡) (𝑎2 + 𝑡𝑐2)
(cos 2𝑡) (𝑏1 + 𝑡𝑑1) − (cos 2𝑡) (𝑏2 + 𝑡𝑑2) + (sin 2𝑡) (𝑎1 + 𝑡𝑐1) − (sin 2𝑡) (𝑎2 + 𝑡𝑐2)

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
cos 2𝑡
0

⎞
⎟⎟⎟⎟⎠

Therefore

(𝑐1 − 2 (𝑏1 + 𝑡𝑑1)) sin 2𝑡 + (𝑑1 + 2 (𝑎1 + 𝑡𝑐1)) cos 2𝑡 =
(cos 2𝑡) (𝑏1 + 𝑡𝑑1) − 5 (cos 2𝑡) (𝑏2 + 𝑡𝑑2) + (sin 2𝑡) (𝑎1 + 𝑡𝑐1) − 5 (sin 2𝑡) (𝑎2 + 𝑡𝑐2) + cos 2𝑡 (3)

And

(𝑐2 − 2 (𝑏2 + 𝑡𝑑2)) sin 2𝑡 + (𝑑2 + 2 (𝑎2 + 𝑡𝑐2)) cos 2𝑡 =
(cos 2𝑡) (𝑏1 + 𝑡𝑑1) − (cos 2𝑡) (𝑏2 + 𝑡𝑑2) + (sin 2𝑡) (𝑎1 + 𝑡𝑐1) − (sin 2𝑡) (𝑎2 + 𝑡𝑐2) (4)

Equation (3,4) are solved for the unknowns. We need 8 equations in total. Looking at (3)
for now. Comparing coe�cients of sin 2𝑡 in (3)

(𝑐1 − 2 (𝑏1 + 𝑡𝑑1)) = (𝑎1 + 𝑡𝑐1) − 5 (𝑎2 + 𝑡𝑐2)
𝑐1 − 2𝑏1 − 2𝑡𝑑1 = 𝑎1 − 5𝑎2 + 𝑡𝑐1 − 5𝑡𝑐2

𝑐1 − 2𝑏1 + 𝑡 (−2𝑑1) = 𝑎1 − 5𝑎2 + 𝑡 (𝑐1 − 5𝑐2)

Comparing coe�cients we see

𝑐1 − 2𝑏1 = 𝑎1 − 5𝑎2
𝑎1 − 5𝑎2 − 𝑐1 + 2𝑏1 = 0 (1A)
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And

−2𝑑1 = 𝑐1 − 5𝑐2
𝑐1 − 5𝑐2 + 2𝑑1 = 0 (2A)

We do the same for cos 2𝑡 in equation (3) and compare coe�cients

(𝑑1 + 2 (𝑎1 + 𝑡𝑐1)) = (𝑏1 + 𝑡𝑑1) − 5 (𝑏2 + 𝑡𝑑2) + 1
2𝑎1 + 𝑑1 + 2𝑡𝑐1 = 𝑏1 − 5𝑏2 + 𝑡𝑑1 − 5𝑡𝑑2 + 1

2𝑎1 + 𝑑1 + 𝑡 (2𝑐1) = 𝑏1 − 5𝑏2 + 1 + 𝑡 (𝑑1 − 5𝑑2)

Comparing coe�cients on the above gives two new equations

2𝑎1 + 𝑑1 = 𝑏1 − 5𝑏2 + 1
2𝑎1 + 𝑑1 − 𝑏1 + 5𝑏2 = 1 (3A)

And

2𝑐1 = 𝑑1 − 5𝑑2
2𝑐1 − 𝑑1 + 5𝑑2 = 0 (4A)

We have obtained 4 equations from (3). We do the same on (4) to obtain the other 4
equations. Comparing sin 2𝑡 terms in (4) gives

(𝑐2 − 2 (𝑏2 + 𝑡𝑑2)) = (𝑎1 + 𝑡𝑐1) − (𝑎2 + 𝑡𝑐2)
𝑐2 − 2𝑏2 − 2𝑡𝑑2 = 𝑎1 − 𝑎2 + 𝑡𝑐1 − 𝑡𝑐2

𝑐2 − 2𝑏2 + 𝑡 (−2𝑑2) = 𝑎1 − 𝑎2 + 𝑡 (𝑐1 − 𝑐2)

Comparing coe�cients on the above gives two new equations

𝑐2 − 2𝑏2 = 𝑎1 − 𝑎2
𝑎1 − 𝑎2 − 𝑐2 + 2𝑏2 = 0 (5A)

And

−2𝑑2 = 𝑐1 − 𝑐2
𝑐1 − 𝑐2 + 2𝑑2 = 0 (6A)

Finally, Comparing cos 2𝑡 terms in (4) gives

(𝑑2 + 2 (𝑎2 + 𝑡𝑐2)) = (𝑏1 + 𝑡𝑑1) − (𝑏2 + 𝑡𝑑2)
2𝑎2 + 𝑑2 + 2𝑡𝑐2 = 𝑏1 − 𝑏2 + 𝑡𝑑1 − 𝑡𝑑2

2𝑎2 + 𝑑2 + 𝑡 (2𝑐2) = 𝑏1 − 𝑏2 + 𝑡 (𝑑1 − 𝑑2)

Comparing coe�cients on the above gives two new equations

2𝑎2 + 𝑑2 = 𝑏1 − 𝑏2
2𝑎2 + 𝑑2 − 𝑏1 + 𝑏2 = 0 (7A)

And

2𝑐2 = 𝑑1 − 𝑑2
𝑑1 − 𝑑2 − 2𝑐2 = 0 (8A)

Equations (1A) to (8A) are now solved for 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2, 𝑑1, 𝑑2.

𝑎1 − 5𝑎2 − 𝑐1 + 2𝑏1 = 0
𝑐1 − 5𝑐2 + 2𝑑1 = 0

2𝑎1 + 𝑑1 − 𝑏1 + 5𝑏2 = 1
2𝑐1 − 𝑑1 + 5𝑑2 = 0

𝑎1 − 𝑎2 − 𝑐2 + 2𝑏2 = 0
𝑐1 − 𝑐2 + 2𝑑2 = 0

2𝑎2 + 𝑑2 − 𝑏1 + 𝑏2 = 0
𝑑1 − 𝑑2 − 2𝑐2 = 0
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Writing the equations in matrix form
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −5 2 0 −1 0 0 0
0 0 0 0 1 −5 2 0
2 0 −1 5 0 0 1 0
0 0 0 0 2 0 −1 5
1 −1 0 2 0 −1 0 0
0 0 0 0 1 −1 0 2
0 2 −1 1 0 0 0 1
0 0 0 0 0 −2 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2
𝑐1
𝑐2
𝑑1
𝑑2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solving the above using the computer gives
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2
𝑐1
𝑐2
𝑑1
𝑑2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
4
0
0
0
1
4
1
4
1
2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Solve 8.2 problem 9 final Matrix equation

In[112]:= mat = {{1, -5, 2, 0, -1, 0, 0, 0},

{0, 0, 0, 0, 1, -5, 2, 0},

{2, 0, -1, 5, 0, 0, 1, 0},

{0, 0, 0, 0, 2, 0, -1, 5},

{1, -1, 0, 2, 0, -1, 0, 0},

{0, 0, 0, 0, 1, -1, 0, 2},

{0, 2, -1, 1, 0, 0, 0, 1},

{0, 0, 0, 0, 0, -2, 1, -1}};

b = {0, 0, 1, 0, 0, 0, 0, 0};

LinearSolve[mat, b]

Out[114]= 
1

4
, 0, 0, 0,

1

4
,
1

4
,
1

2
, 0

We now go back to (1) and plugging these values into the particular solution

𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ sin 2𝑡 +

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ cos 2𝑡 +

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ 𝑡 sin 2𝑡 +

⎛
⎜⎜⎜⎜⎝
𝑑1
𝑑2

⎞
⎟⎟⎟⎟⎠ 𝑡 cos 2𝑡

=
⎛
⎜⎜⎜⎜⎝
1
4
0

⎞
⎟⎟⎟⎟⎠ sin 2𝑡 +

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ cos 2𝑡 +

⎛
⎜⎜⎜⎜⎝
1
4
1
4

⎞
⎟⎟⎟⎟⎠ 𝑡 sin 2𝑡 +

⎛
⎜⎜⎜⎜⎝
1
2
0

⎞
⎟⎟⎟⎟⎠ 𝑡 cos 2𝑡

Hence

𝑥𝑝 (𝑡) =
1
4

sin 2𝑡 + 1
4
𝑡 sin 2𝑡 + 1

2
𝑡 cos 2𝑡

𝑦𝑝 (𝑡) =
1
4
𝑡 sin 2𝑡

Or

𝑥𝑝 (𝑡) =
1
4
(sin 2𝑡 + 𝑡 sin 2𝑡 + 2𝑡 cos 2𝑡)

𝑦𝑝 (𝑡) =
1
4
𝑡 sin 2𝑡

215



4.14. HW13 CHAPTER 4. HWS

Earlier we obtained the homogenous solution as

𝑥ℎ (𝑡) = 5𝐶1 cos 2𝑡 + 5𝐶2 sin 2𝑡
𝑦ℎ (𝑡) = (𝐶1 − 2𝐶2) cos 2𝑡 + (2𝐶1 + 𝐶2) sin 2𝑡

Therefore the general solution is

𝑥 (𝑡) = 5𝐶1 cos 2𝑡 + 5𝐶2 sin 2𝑡 + 1
4
(sin 2𝑡 + 𝑡 sin 2𝑡 + 2𝑡 cos 2𝑡)

𝑦 (𝑡) = (𝐶1 − 2𝐶2) cos 2𝑡 + (2𝐶1 + 𝐶2) sin 2𝑡 +
1
4
𝑡 sin 2𝑡

4.14.18 Section 8.2 problem 11

problem Apply method of undetermined coe�cients to find particular solution system. If
initial conditions are given, apply initial conditions to find the complete solution. 𝑥′ =
2𝑥 + 4𝑦 + 2; 𝑦′ = 𝑥 + 2𝑦 + 3; 𝑥 (0) = 1, 𝑦 (0) = −1

solution The matrix form of the system is
⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2 4
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
2
3

⎞
⎟⎟⎟⎟⎠

The eigenvalues of the homogenous system are found from

|𝐴 − 𝜆𝐼| = 0

�
2 − 𝜆 4
1 2 − 𝜆

� = 0

𝜆2 − 4𝜆 = 0
(𝜆 − 4) 𝜆 = 0

Hence 𝜆1 = 0, 𝜆2 = 4.

For 𝜆1 = 0 we solve (𝐴 − 𝜆1𝐼) 𝒗1 = 0
⎛
⎜⎜⎜⎜⎝
2 − 𝜆1 4
1 2 − 𝜆1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 4
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation

2𝑣1 + 4𝑣2 = 0

Let 𝑣1 = 1, hence 𝑣2 =
−1
2 , therefore

𝒗1 =
⎛
⎜⎜⎜⎜⎝
1
−1
2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠

For 𝜆1 = 4 we solve (𝐴 − 𝜆2𝐼) 𝒗2 = 0
⎛
⎜⎜⎜⎜⎝
2 − 𝜆2 4
1 2 − 𝜆2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−2 4
1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation

−2𝑣1 + 4𝑣2 = 0

Let 𝑣1 = 1, hence 𝑣2 =
1
2 , therefore

𝒗2 =
⎛
⎜⎜⎜⎜⎝
1
1
2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠
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Therefore the homogenous solution is

𝒙ℎ (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡)
= 𝑐1𝒗1 (𝑡) 𝑒𝜆1𝑡 + 𝑐2𝒗2 (𝑡) 𝑒𝜆2𝑡

Or

𝒙ℎ (𝑡) = 𝑐1

⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑡 (1)

Since constant term exist in both homogenous solution and in forcing function then guess

𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑡

Therefore

𝒙′𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠

Substituting this into

𝒙′𝑝 =
⎛
⎜⎜⎜⎜⎝
2 4
1 2

⎞
⎟⎟⎟⎟⎠ 𝒙𝑝 +

⎛
⎜⎜⎜⎜⎝
2
3

⎞
⎟⎟⎟⎟⎠

Gives ⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2 4
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑡
⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
2
3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2 4
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑏1𝑡
𝑎2 + 𝑏2𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
2
3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2𝑎1 + 4𝑎2 + 2𝑡𝑏1 + 4𝑡𝑏2
𝑎1 + 2𝑎2 + 𝑡𝑏1 + 2𝑡𝑏2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
2
3

⎞
⎟⎟⎟⎟⎠

Hence

𝑏1 = 2𝑎1 + 4𝑎2 + 2𝑡𝑏1 + 4𝑡𝑏2 + 2
𝑏2 = 𝑎1 + 2𝑎2 + 𝑡𝑏1 + 2𝑡𝑏2 + 3

Or

𝑏1 = 2𝑎1 + 4𝑎2 + 2 + 𝑡 (2𝑏1 + 4𝑏2)
𝑏2 = 𝑎1 + 2𝑎2 + 3 + 𝑡 (𝑏1 + 2𝑏2)

So by comparing coe�cients in each equation we obtain 4 equations as follows

𝑏1 = 2𝑎1 + 4𝑎2 + 2
2𝑏1 + 4𝑏2 = 0

𝑏2 = 𝑎1 + 2𝑎2 + 3
𝑏1 + 2𝑏2 = 0

Or

2𝑎1 + 4𝑎2 − 𝑏1 = −2
2𝑏1 + 4𝑏2 = 0

𝑎1 + 2𝑎2 − 𝑏2 = −3
𝑏1 + 2𝑏2 = 0

Hence the matrix form is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 −1 0
0 0 2 4
1 2 0 −1
0 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
0
−3
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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𝑅3 = 𝑅3 −
1
2𝑅1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 −1 0
0 0 2 4
0 0 1

2 −1
0 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
0
−2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 −
1
4𝑅2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 −1 0
0 0 2 4
0 0 0 −2
0 0 1 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
0
−2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅4 = 𝑅4 −
1
2𝑅2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 4 −1 0
0 0 2 4
0 0 0 −2
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
0
−2
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Third row gives −2𝑏2 = −2 or 𝑏2 = 1. From second row 2𝑏1 +4𝑏2 = 0, or 𝑏1 = −2𝑏2 = −2. First
row gives

2𝑎1 + 4𝑎2 − 𝑏1 = −2
2𝑎1 + 4𝑎2 = −2 + 𝑏1
2𝑎1 + 4𝑎2 = −4
1
2
𝑎1 + 𝑎2 = −1

Hence 𝑎1 or 𝑎2 are arbitrary. Let 𝑎2 = 0 then 𝑎2 = −2. Hence the solution is
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
0
−2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore

𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑡

=
⎛
⎜⎜⎜⎜⎝
−2
0

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
−2
1

⎞
⎟⎟⎟⎟⎠ 𝑡

Using (1) the complete solution is

𝒙 (𝑡) = 𝑐1

⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑡 +
⎛
⎜⎜⎜⎜⎝
−2
0

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
−2
1

⎞
⎟⎟⎟⎟⎠ 𝑡 (2)

At 𝑡 = 0 ⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠ = 𝑐1

⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
−2
0

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
2𝑐1 + 2𝑐2 − 2
−𝑐1 + 𝑐2

⎞
⎟⎟⎟⎟⎠

Hence

2𝑐1 + 2𝑐2 − 2 = 1
−𝑐1 + 𝑐2 = −1

Or

2𝑐1 + 2𝑐2 = 3
−𝑐1 + 𝑐2 = −1
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Which gives 𝑐1 =
5
4 , 𝑐2 =

1
4 , therefore (2) becomes

𝒙 (𝑡) =
5
4

⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠ +

1
4

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ 𝑒

4𝑡 +
⎛
⎜⎜⎜⎜⎝
−2
0

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
−2
1

⎞
⎟⎟⎟⎟⎠ 𝑡

Or

𝑥 (𝑡) =
10
4
+
1
2
𝑒4𝑡 − 2 − 2𝑡

𝑦 (𝑡) = −
5
4
+
1
4
𝑒4𝑡 + 𝑡

Or

𝑥 (𝑡) =
1
2
�1 − 4𝑡 + 𝑒4𝑡�

𝑦 (𝑡) =
1
4
�−5 + 4𝑡 + 𝑒4𝑡�

4.14.19 Section 8.2 problem 13

problem Apply method of undetermined coe�cients to find particular solution system. If
initial conditions are given, apply initial conditions to find the complete solution. 𝑥′ =
2𝑥 + 𝑦 + 2𝑒𝑡; 𝑦′ = 𝑥 + 2𝑦 − 3𝑒𝑡

solution The matrix form of the system is
⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
2𝑒𝑡

−3𝑒𝑡

⎞
⎟⎟⎟⎟⎠

The eigenvalues of the homogenous system are found from

|𝐴 − 𝜆𝐼| = 0

�
2 − 𝜆 1
1 2 − 𝜆

� = 0

𝜆2 − 4𝜆 + 3 = 0
(𝜆 − 3) (𝜆 − 1) = 0

Hence 𝜆1 = 1, 𝜆2 = 3.

For 𝜆1 = 1 we solve (𝐴 − 𝜆1𝐼) 𝒗1 = 0
⎛
⎜⎜⎜⎜⎝
2 − 𝜆1 1
1 2 − 𝜆1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 1
1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation 𝑣1 + 𝑣2 = 0. Let 𝑣1 = 1 , hence 𝑣2 = −1 and therefore

𝒗1 =
⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠

For 𝜆1 = 3 we solve (𝐴 − 𝜆2𝐼) 𝒗2 = 0
⎛
⎜⎜⎜⎜⎝
2 − 𝜆2 1
1 2 − 𝜆2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−1 1
1 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation −𝑣1 + 𝑣2 = 0. Let 𝑣1 = 1 , hence 𝑣2 = 1 and therefore

𝒗2 =
⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠

Therefore the homogenous solution is

𝒙ℎ (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡)
= 𝑐1𝒗1 (𝑡) 𝑒𝜆1𝑡 + 𝑐2𝒗2 (𝑡) 𝑒𝜆2𝑡
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Or

𝒙ℎ (𝑡) = 𝑐1

⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 (1)

Since the forcing function is

⎛
⎜⎜⎜⎜⎝
2𝑒𝑡

−3𝑒𝑡

⎞
⎟⎟⎟⎟⎠ and 𝑒

𝑡 is a basis solution for the homogenous part, then

we guess

𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑡 +
⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑡𝑒

𝑡

=
⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑡𝑏1
𝑎2 + 𝑡𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑡

Hence

𝒙′𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑡 +
⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑡𝑏1
𝑎2 + 𝑡𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑡

=
⎛
⎜⎜⎜⎜⎝
𝑏1 + 𝑎1 + 𝑡𝑏1
𝑏2 + 𝑎2 + 𝑡𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑡

Plugging this back into

𝒙′𝑝 =
⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠ 𝒙𝑝 +

⎛
⎜⎜⎜⎜⎝
2𝑒𝑡

−3𝑒𝑡

⎞
⎟⎟⎟⎟⎠

Gives ⎛
⎜⎜⎜⎜⎝
𝑏1 + 𝑎1 + 𝑡𝑏1
𝑏2 + 𝑎2 + 𝑡𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑡 =
⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑡𝑏1
𝑎2 + 𝑡𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑡 +
⎛
⎜⎜⎜⎜⎝
2𝑒𝑡

−3𝑒𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑏1 + 𝑎1 + 𝑡𝑏1
𝑏2 + 𝑎2 + 𝑡𝑏2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑎1 + 𝑡𝑏1
𝑎2 + 𝑡𝑏2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
2
−3

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑏1 + 𝑎1 + 𝑡𝑏1
𝑏2 + 𝑎2 + 𝑡𝑏2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2𝑎1 + 𝑎2 + 2𝑡𝑏1 + 𝑡𝑏2
𝑎1 + 2𝑎2 + 𝑡𝑏1 + 2𝑡𝑏2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
2
−3

⎞
⎟⎟⎟⎟⎠

Hence

𝑏1 + 𝑎1 + 𝑡𝑏1 = 2𝑎1 + 𝑎2 + 2𝑡𝑏1 + 𝑡𝑏2 + 2
𝑏2 + 𝑎2 + 𝑡𝑏2 = 𝑎1 + 2𝑎2 + 𝑡𝑏1 + 2𝑡𝑏2 − 3

or

𝑏1 + 𝑎1 + 𝑡𝑏1 = 2𝑎1 + 𝑎2 + 2 + 𝑡 (2𝑏1 + 𝑏2)
𝑏2 + 𝑎2 + 𝑡𝑏2 = 𝑎1 + 2𝑎2 − 3 + 𝑡 (𝑏1 + 2𝑏2)

Comparing coe�cients in the above two equations generates 4 equations to solve for the
unknowns

𝑏1 + 𝑎1 = 2𝑎1 + 𝑎2 + 2
𝑏1 = 2𝑏1 + 𝑏2

𝑏2 + 𝑎2 = 𝑎1 + 2𝑎2 − 3
𝑏2 = 𝑏1 + 2𝑏2

Or

𝑎1 + 𝑎2 − 𝑏1 = −2
𝑏1 + 𝑏2 = 0

𝑎1 + 𝑎2 − 𝑏2 = 3
𝑏1 + 𝑏2 = 0

Second and third equation are the same. Using the first 3 equations, the matrix equations
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are

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 0
1 1 0 −1
0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
3
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

This is undetermined system. It will either have infinite number of solutions or no solution.

Let 𝑅2 = 𝑅2 − 𝑅1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 0
0 0 1 −1
0 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
5
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑅3 = 𝑅3 − 𝑅2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 −1 0
0 0 1 −1
0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
5
−5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

Last row gives 2𝑏2 = −5 or 𝑏2 =
−5
2 . Second row gives 𝑏1 − 𝑏2 = 5 or 𝑏1 = 5 + 𝑏2 = 5 −

5
2 =

5
2 .

First row gives 𝑎1 + 𝑎2 − 𝑏1 = −2 or 𝑎1 = −𝑎2 + 𝑏1 − 2 or

𝑎1 = −𝑎2 + 𝑏1 − 2

= −𝑎2 +
5
2
− 2

= −𝑎2 +
1
2

𝑎2 is arbitrary. Let 𝑎2 = 0 and we obtain 𝑎1 =
1
2 . Hence the solution is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑎1
𝑎2
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
0
5
2
−5
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore since 𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
𝑎1
𝑎2

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑡 +
⎛
⎜⎜⎜⎜⎝
𝑏1
𝑏2

⎞
⎟⎟⎟⎟⎠ 𝑡𝑒

𝑡 then

𝒙𝑝 =
⎛
⎜⎜⎜⎜⎝
1
2
0

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑡 +
⎛
⎜⎜⎜⎜⎝
5
2
−5
2

⎞
⎟⎟⎟⎟⎠ 𝑡𝑒

𝑡

Or

𝑥𝑝 (𝑡) =
1
2
(1 + 5𝑡) 𝑒𝑡

𝑦𝑝 (𝑡) =
−5
2
𝑡𝑒𝑡

And the general solution is

𝒙 (𝑡) = 𝒙ℎ (𝑡) + 𝒙0 (𝑡)

𝒙ℎ (𝑡) = 𝑐1

⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 +
⎛
⎜⎜⎜⎜⎝
1
2
0

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑡 +
⎛
⎜⎜⎜⎜⎝
5
2
−5
2

⎞
⎟⎟⎟⎟⎠ 𝑡𝑒

𝑡

Or

𝑥 (𝑡) = 𝑐1𝑒𝑡 + 𝑐2𝑒3𝑡 +
1
2
(1 + 5𝑡) 𝑒𝑡

𝑦 (𝑡) = −𝑐1𝑒𝑡 + 𝑐2𝑒3𝑡 −
5
2
𝑡𝑒𝑡

4.14.20 Section 8.2 problem 19

problem Use the method of variation of parameters to solve 𝒙′ = 𝐴𝒙 + 𝒇 (𝑡).
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𝐴 =
⎛
⎜⎜⎜⎜⎝
1 2
2 −2

⎞
⎟⎟⎟⎟⎠ ; 𝒇 (𝑡) =

⎛
⎜⎜⎜⎜⎝
180𝑡
90

⎞
⎟⎟⎟⎟⎠

𝒙 (0) =
⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

solution The matrix form of the system is
⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1 2
2 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
180𝑡
90

⎞
⎟⎟⎟⎟⎠

The eigenvalues of the homogenous system are found from

|𝐴 − 𝜆𝐼| = 0

�
1 − 𝜆 2
2 −2 − 𝜆

� = 0

𝜆2 + 𝜆 − 6 = 0
(𝜆 − 2) (𝜆 + 3) = 0

Hence 𝜆1 = 2, 𝜆2 = −3.

For 𝜆1 = 2 we solve (𝐴 − 𝜆1𝐼) 𝒗1 = 0
⎛
⎜⎜⎜⎜⎝
1 − 𝜆1 2
2 −2 − 𝜆1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−1 2
2 −4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation −𝑣1 + 2𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 =
1
2 and

𝒗1 =
⎛
⎜⎜⎜⎜⎝
1
1
2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠

For 𝜆2 = −3 we solve (𝐴 − 𝜆2𝐼) 𝒗2 = 0
⎛
⎜⎜⎜⎜⎝
1 − 𝜆2 2
2 −2 − 𝜆2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
4 2
2 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation 4𝑣1 + 2𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 = −2 and

𝒗2 =
⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠

Therefore

𝒙ℎ (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡)
= 𝑐1𝒗1 (𝑡) 𝑒𝜆1𝑡 + 𝑐2𝒗2 (𝑡) 𝑒𝜆2𝑡

Or

𝒙ℎ (𝑡) = 𝑐1

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ 𝑒

2𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ 𝑒

−3𝑡 (1)

The Wronskian 𝑊 (which is the same as fundamental matrix Φ) is

𝑊 = �𝒙1 (𝑡) 𝒙2 (𝑡)�

=
⎛
⎜⎜⎜⎜⎝
2𝑒2𝑡 𝑒−3𝑡

𝑒2𝑡 −2𝑒−3𝑡

⎞
⎟⎟⎟⎟⎠

Therefore

𝒙𝑝 (𝑡) = 𝑊�𝑊−1𝒇 (𝑡) 𝑑𝑡 (2)
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Where

𝑊−1 =
⎛
⎜⎜⎜⎜⎝
2𝑒2𝑡 𝑒−3𝑡

𝑒2𝑡 −2𝑒−3𝑡

⎞
⎟⎟⎟⎟⎠

−1

=
⎛
⎜⎜⎜⎜⎝

2
5𝑒

−2𝑡 1
5𝑒

−2𝑡

1
5𝑒

3𝑡 −2
5𝑒

3𝑡

⎞
⎟⎟⎟⎟⎠

Hence, (2) becomes

𝒙𝑝 (𝑡) =
⎛
⎜⎜⎜⎜⎝
2𝑒2𝑡 𝑒−3𝑡

𝑒2𝑡 −2𝑒−3𝑡

⎞
⎟⎟⎟⎟⎠�

⎛
⎜⎜⎜⎜⎝

2
5𝑒

−2𝑡 1
5𝑒

−2𝑡

1
5𝑒

3𝑡 −2
5𝑒

3𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
180𝑡
90

⎞
⎟⎟⎟⎟⎠ 𝑑𝑡

=
⎛
⎜⎜⎜⎜⎝
2𝑒2𝑡 𝑒−3𝑡

𝑒2𝑡 −2𝑒−3𝑡

⎞
⎟⎟⎟⎟⎠�

⎛
⎜⎜⎜⎜⎝
18𝑒−2𝑡 + 72𝑡𝑒−2𝑡

36𝑡𝑒3𝑡 − 36𝑒3𝑡

⎞
⎟⎟⎟⎟⎠ 𝑑𝑡

=
⎛
⎜⎜⎜⎜⎝
2𝑒2𝑡 𝑒−3𝑡

𝑒2𝑡 −2𝑒−3𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−9𝑒−2𝑡 (4𝑡 + 3)
4𝑒3𝑡 (3𝑡 − 4)

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
−60𝑡 − 70
5 − 60𝑡

⎞
⎟⎟⎟⎟⎠

Therefore the general solution is

𝒙 (𝑡) = 𝒙ℎ (𝑡) + 𝒙𝑝 (𝑡) (3)

= 𝑐1

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ 𝑒

2𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ 𝑒

−3𝑡 +
⎛
⎜⎜⎜⎜⎝
−60𝑡 − 70
5 − 60𝑡

⎞
⎟⎟⎟⎟⎠

At 𝑡 = 0 ⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ = 𝑐1

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
−70
5

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
2𝑐1 + 𝑐2 − 70
𝑐1 − 2𝑐2 + 5

⎞
⎟⎟⎟⎟⎠

Hence ⎛
⎜⎜⎜⎜⎝
2 1
1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
70
−5

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 1
0 −5

2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
70
−40

⎞
⎟⎟⎟⎟⎠

Last row gives −5
2 𝑐2 = −40, or 𝑐2 = 16. First row gives 2𝑐1+𝑐2 = 70, hence 𝑐1 =

70−𝑐2
2 = 70−16

2 =
27. Hence the solution from (3) becomes

𝒙 (𝑡) = 27
⎛
⎜⎜⎜⎜⎝
2
−1

⎞
⎟⎟⎟⎟⎠ 𝑒

2𝑡 + 16
⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ 𝑒

−3𝑡 +
⎛
⎜⎜⎜⎜⎝
−60𝑡 − 70
5 − 60𝑡

⎞
⎟⎟⎟⎟⎠

Or

𝑥 (𝑡) = 54𝑒2𝑡 + 16𝑒−3𝑡 − 60𝑡 − 70
𝑦 (𝑡) = −27𝑒2𝑡 − 32𝑒−3𝑡 + 5 − 60𝑡

4.14.21 Section 8.2 problem 22

problem Use the method of variation of parameters to solve 𝒙′ = 𝐴𝒙 + 𝒇 (𝑡).

𝐴 =
⎛
⎜⎜⎜⎜⎝
4 −1
5 −2

⎞
⎟⎟⎟⎟⎠ ; 𝒇 (𝑡) =

⎛
⎜⎜⎜⎜⎝
28𝑒−𝑡

20𝑒3𝑡

⎞
⎟⎟⎟⎟⎠

𝒙 (0) =
⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

solution The matrix form of the system is
⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
4 −1
5 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
28𝑒−𝑡

20𝑒3𝑡

⎞
⎟⎟⎟⎟⎠

223



4.14. HW13 CHAPTER 4. HWS

The eigenvalues of the homogenous system are found from

|𝐴 − 𝜆𝐼| = 0

�
4 − 𝜆 −1
5 −2 − 𝜆

� = 0

𝜆2 − 2𝜆 − 3 = 0
(𝜆 + 1) (𝜆 − 3) = 0

Hence 𝜆1 = −1, 𝜆2 = 3.

For 𝜆1 = −1 we solve (𝐴 − 𝜆1𝐼) 𝒗1 = 0
⎛
⎜⎜⎜⎜⎝
4 − 𝜆1 −1
5 −2 − 𝜆1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
5 −1
5 −1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation 5𝑣1 − 𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 = 5 and

𝒗1 =
⎛
⎜⎜⎜⎜⎝
1
5

⎞
⎟⎟⎟⎟⎠

For 𝜆2 = 3 we solve (𝐴 − 𝜆2𝐼) 𝒗2 = 0
⎛
⎜⎜⎜⎜⎝
4 − 𝜆2 −1
5 −2 − 𝜆2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 −1
5 −5

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation 𝑣1 − 𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 = 1 and

𝒗2 =
⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠

Therefore

𝒙ℎ (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡)
= 𝑐1𝒗1 (𝑡) 𝑒𝜆1𝑡 + 𝑐2𝒗2 (𝑡) 𝑒𝜆2𝑡

Or

𝒙ℎ (𝑡) = 𝑐1

⎛
⎜⎜⎜⎜⎝
1
5

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 (1)

The Wronskian 𝑊 is, (which is the same as fundamental matrix Φ) is

𝑊 = �𝒙1 (𝑡) 𝒙2 (𝑡)�

=
⎛
⎜⎜⎜⎜⎝
𝑒−𝑡 𝑒3𝑡

5𝑒−𝑡 𝑒3𝑡

⎞
⎟⎟⎟⎟⎠

Therefore

𝒙𝑝 (𝑡) = 𝑊�𝑊−1𝒇 (𝑡) 𝑑𝑡 (2)

Where

𝑊−1 =
⎛
⎜⎜⎜⎜⎝
𝑒−𝑡 𝑒3𝑡

5𝑒−𝑡 𝑒3𝑡

⎞
⎟⎟⎟⎟⎠

−1

=
⎛
⎜⎜⎜⎜⎝
−1
4𝑒

𝑡 1
4𝑒

𝑡

5
4𝑒

−3𝑡 −1
4𝑒

−3𝑡

⎞
⎟⎟⎟⎟⎠
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Hence, (2) becomes

𝒙𝑝 (𝑡) =
⎛
⎜⎜⎜⎜⎝
𝑒−𝑡 𝑒3𝑡

5𝑒−𝑡 𝑒3𝑡

⎞
⎟⎟⎟⎟⎠�

⎛
⎜⎜⎜⎜⎝
−1
4𝑒

𝑡 1
4𝑒

𝑡

5
4𝑒

−3𝑡 −1
4𝑒

−3𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
28𝑒−𝑡

20𝑒3𝑡

⎞
⎟⎟⎟⎟⎠ 𝑑𝑡

=
⎛
⎜⎜⎜⎜⎝
𝑒−𝑡 𝑒3𝑡

5𝑒−𝑡 𝑒3𝑡

⎞
⎟⎟⎟⎟⎠�

⎛
⎜⎜⎜⎜⎝
5𝑒4𝑡 − 7
35𝑒−4𝑡 − 5

⎞
⎟⎟⎟⎟⎠ 𝑑𝑡

=
⎛
⎜⎜⎜⎜⎝
𝑒−𝑡 𝑒3𝑡

5𝑒−𝑡 𝑒3𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

5
4𝑒

4𝑡 − 7𝑡
−5𝑡 − 35

4 𝑒
−4𝑡

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

5
4𝑒

3𝑡 − 7𝑡𝑒−𝑡 − 5𝑡𝑒3𝑡 − 35
4 𝑒

−𝑡

25
4 𝑒

3𝑡 − 35𝑡𝑒−𝑡 − 5𝑡𝑒3𝑡 − 35
4 𝑒

−𝑡

⎞
⎟⎟⎟⎟⎠

Therefore the general solution is

𝒙 (𝑡) = 𝒙ℎ (𝑡) + 𝒙𝑝 (𝑡) (3)

= 𝑐1

⎛
⎜⎜⎜⎜⎝
1
5

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 +
⎛
⎜⎜⎜⎜⎝

5
4𝑒

3𝑡 − 7𝑡𝑒−𝑡 − 5𝑡𝑒3𝑡 − 35
4 𝑒

−𝑡

25
4 𝑒

3𝑡 − 35𝑡𝑒−𝑡 − 5𝑡𝑒3𝑡 − 35
4 𝑒

−𝑡

⎞
⎟⎟⎟⎟⎠

At 𝑡 = 0
⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ = 𝑐1

⎛
⎜⎜⎜⎜⎝
1
5

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
5
4 −

35
425

4 −
35
4

⎞
⎟⎟⎟⎟⎠

= 𝑐1

⎛
⎜⎜⎜⎜⎝
1
5

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
−15

2
−5
2

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
𝑐1 + 𝑐2 −

15
2

5𝑐1 + 𝑐2 −
5
2

⎞
⎟⎟⎟⎟⎠

Hence
⎛
⎜⎜⎜⎜⎝
1 1
5 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
15
2
5
2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 1
0 −4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

15
2
−35

⎞
⎟⎟⎟⎟⎠

Last row gives −4𝑐2 = −35, or 𝑐2 =
35
4 . First row gives 𝑐1 + 𝑐2 =

15
2 , hence 𝑐1 =

15
2 −

35
4 =

−5
4 . Hence the solution from (3) becomes

𝒙 (𝑡) =
−5
4

⎛
⎜⎜⎜⎜⎝
1
5

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑡 +
35
4

⎛
⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎠ 𝑒

3𝑡 +
⎛
⎜⎜⎜⎜⎝

5
4𝑒

3𝑡 − 7𝑡𝑒−𝑡 − 5𝑡𝑒3𝑡 − 35
4 𝑒

−𝑡

25
4 𝑒

3𝑡 − 35𝑡𝑒−𝑡 − 5𝑡𝑒3𝑡 − 35
4 𝑒

−𝑡

⎞
⎟⎟⎟⎟⎠

Or

𝑥 (𝑡) =
−5
4
𝑒−𝑡 +

35
4
𝑒3𝑡 +

5
4
𝑒3𝑡 − 7𝑡𝑒−𝑡 − 5𝑡𝑒3𝑡 −

35
4
𝑒−𝑡

𝑦 (𝑡) = −
25
4
𝑒−𝑡 +

35
4
𝑒3𝑡 +

25
4
𝑒3𝑡 − 35𝑡𝑒−𝑡 − 5𝑡𝑒3𝑡 −

35
4
𝑒−𝑡

Or

𝑥 (𝑡) = −10𝑒−𝑡 + 10𝑒3𝑡 − 7𝑡𝑒−𝑡 − 5𝑡𝑒3𝑡

𝑦 (𝑡) = −15𝑒−𝑡 + 15𝑒3𝑡 − 35𝑡𝑒−𝑡 − 5𝑡𝑒3𝑡
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4.14.22 Section 8.2 problem 25

problem Use the method of variation of parameters to solve 𝒙′ = 𝐴𝒙 + 𝒇 (𝑡).

𝐴 =
⎛
⎜⎜⎜⎜⎝
2 −5
1 −2

⎞
⎟⎟⎟⎟⎠

𝒇 (𝑡) =
⎛
⎜⎜⎜⎜⎝
4𝑡
1

⎞
⎟⎟⎟⎟⎠

𝒙 (0) =
⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

solution The matrix form of the system is
⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2 −5
1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
4𝑡
1

⎞
⎟⎟⎟⎟⎠

The eigenvalues of the homogenous system are found from

|𝐴 − 𝜆𝐼| = 0

�
2 − 𝜆 −5
1 −2 − 𝜆

� = 0

𝜆2 + 1 = 0
𝜆 = ±𝑖

Hence 𝜆1 = −𝑖, 𝜆2 = 𝑖.

For 𝜆1 = −𝑖 we solve (𝐴 − 𝜆1𝐼) 𝒗1 = 0
⎛
⎜⎜⎜⎜⎝
2 − 𝜆1 −5
1 −2 − 𝜆1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 + 𝑖 −5
1 −2 + 𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation (2 + 𝑖) 𝑣1 − 5𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 =
(2+𝑖)
5 and

𝒗1 =
⎛
⎜⎜⎜⎜⎝
1

(2+𝑖)
5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
5

2 + 𝑖

⎞
⎟⎟⎟⎟⎠

For 𝜆2 = 𝑖 we solve (𝐴 − 𝜆2𝐼) 𝒗2 = 0
⎛
⎜⎜⎜⎜⎝
2 − 𝜆2 −5
1 −2 − 𝜆2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 − 𝑖 −5
1 −2 − 𝑖

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation (2 − 𝑖) 𝑣1 − 5𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 =
(2−𝑖)
5 and

𝒗1 =
⎛
⎜⎜⎜⎜⎝
1

(2−𝑖)
5

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
5
2 − 𝑖

⎞
⎟⎟⎟⎟⎠

Therefore

𝒙ℎ (𝑡) = 𝑐1𝒙1 (𝑡) + 𝑐2𝒙2 (𝑡)
= 𝑐1𝒗1 (𝑡) 𝑒𝜆1𝑡 + 𝑐2𝒗2 (𝑡) 𝑒𝜆2𝑡

Or

𝒙ℎ (𝑡) = 𝑐1

⎛
⎜⎜⎜⎜⎝
5

2 + 𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑖𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
5
2 − 𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

𝑖𝑡 (1)
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Change to new basis

𝒙1 (𝑡) = Re
⎛
⎜⎜⎜⎜⎝
5

2 + 𝑖

⎞
⎟⎟⎟⎟⎠ 𝑒

−𝑖𝑡

= Re
⎛
⎜⎜⎜⎜⎝

5 (cos 𝑡 − 𝑖 sin 𝑡)
(2 + 𝑖) (cos 𝑡 − 𝑖 sin 𝑡)

⎞
⎟⎟⎟⎟⎠

= Re
⎛
⎜⎜⎜⎜⎝

5 (cos 𝑡 − 𝑖 sin 𝑡)
2 (cos 𝑡 − 𝑖 sin 𝑡) + (𝑖 cos 𝑡 + sin 𝑡)

⎞
⎟⎟⎟⎟⎠

= Re
⎛
⎜⎜⎜⎜⎝

5 (cos 𝑡 − 𝑖 sin 𝑡)
2 cos 𝑡 + sin 𝑡 + 𝑖 (−2 sin 𝑡 + cos 𝑡)

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

5 cos 𝑡
2 cos 𝑡 + sin 𝑡

⎞
⎟⎟⎟⎟⎠

And

𝒙2 (𝑡) = Im
⎛
⎜⎜⎜⎜⎝

5 (cos 𝑡 − 𝑖 sin 𝑡)
2 cos 𝑡 + sin 𝑡 + 𝑖 (−2 sin 𝑡 + cos 𝑡)

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

−5 sin 𝑡
−2 sin 𝑡 + cos 𝑡

⎞
⎟⎟⎟⎟⎠

Hence the homogenous solution in the new basis is

xℎ (𝑡) = 𝐶1

⎛
⎜⎜⎜⎜⎝

5 cos 𝑡
2 cos 𝑡 + sin 𝑡

⎞
⎟⎟⎟⎟⎠ + 𝐶2

⎛
⎜⎜⎜⎜⎝

−5 sin 𝑡
−2 sin 𝑡 + cos 𝑡

⎞
⎟⎟⎟⎟⎠ (1A)

The Wronskian 𝑊 (which is the same as fundamental matrix Φ) is

𝑊 = �𝒙1 (𝑡) 𝒙2 (𝑡)�

=
⎛
⎜⎜⎜⎜⎝

5 cos 𝑡 −5 sin 𝑡
2 cos 𝑡 + sin 𝑡 −2 sin 𝑡 + cos 𝑡

⎞
⎟⎟⎟⎟⎠

Therefore

𝒙𝑝 (𝑡) = 𝑊�𝑊−1𝒇 (𝑡) 𝑑𝑡 (2)

Where

𝑊−1 =
⎛
⎜⎜⎜⎜⎝

5 cos 𝑡 −5 sin 𝑡
2 cos 𝑡 + sin 𝑡 −2 sin 𝑡 + cos 𝑡

⎞
⎟⎟⎟⎟⎠

−1

=
⎛
⎜⎜⎜⎜⎝

1
5
(cos 𝑡 − 2 sin 𝑡) sin 𝑡

1
5
(−2 cos 𝑡 + sin 𝑡) cos 𝑡

⎞
⎟⎟⎟⎟⎠

Hence, (2) becomes

𝒙𝑝 (𝑡) =
⎛
⎜⎜⎜⎜⎝

5 cos 𝑡 −5 sin 𝑡
2 cos 𝑡 + sin 𝑡 −2 sin 𝑡 + cos 𝑡

⎞
⎟⎟⎟⎟⎠�

⎛
⎜⎜⎜⎜⎝

1
5
(cos 𝑡 − 2 sin 𝑡) sin 𝑡

1
5
(−2 cos 𝑡 + sin 𝑡) cos 𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
4𝑡
1

⎞
⎟⎟⎟⎟⎠ 𝑑𝑡

=
⎛
⎜⎜⎜⎜⎝

5 cos 𝑡 −5 sin 𝑡
2 cos 𝑡 + sin 𝑡 −2 sin 𝑡 + cos 𝑡

⎞
⎟⎟⎟⎟⎠�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

sin 𝑡 + 4𝑡 �15 cos 𝑡 − 2
5 sin 𝑡�

cos 𝑡 − 4𝑡 �25 cos 𝑡 − 1
5 sin 𝑡�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
𝑑𝑡

=
⎛
⎜⎜⎜⎜⎝

5 cos 𝑡 −5 sin 𝑡
2 cos 𝑡 + sin 𝑡 −2 sin 𝑡 + cos 𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

8
5 𝑡 cos 𝑡 − 8

5 sin 𝑡 − 1
5 cos 𝑡 + 4

5 𝑡 sin 𝑡
9
5 sin 𝑡 − 8

5 cos 𝑡 − 4
5 𝑡 cos 𝑡 − 8

5 𝑡 sin 𝑡

⎞
⎟⎟⎟⎟⎠

Which, with little help of computer algebra, simplifies to

𝒙𝑝 (𝑡) =
⎛
⎜⎜⎜⎜⎝
8𝑡 − 1
4𝑡 − 2

⎞
⎟⎟⎟⎟⎠
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Therefore the general solution is

𝒙 (𝑡) = 𝒙ℎ (𝑡) + 𝒙𝑝 (𝑡) (3)

= 𝐶1

⎛
⎜⎜⎜⎜⎝

5 cos 𝑡
2 cos 𝑡 + sin 𝑡

⎞
⎟⎟⎟⎟⎠ + 𝐶2

⎛
⎜⎜⎜⎜⎝

−5 sin 𝑡
−2 sin 𝑡 + cos 𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
8𝑡 − 1
4𝑡 − 2

⎞
⎟⎟⎟⎟⎠

At 𝑡 = 0 ⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠ = 𝐶1

⎛
⎜⎜⎜⎜⎝
5
2

⎞
⎟⎟⎟⎟⎠ + 𝐶2

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
−1
−2

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

5𝐶1 − 1
2𝐶1 + 𝐶2 − 2

⎞
⎟⎟⎟⎟⎠

Hence ⎛
⎜⎜⎜⎜⎝
5 0
2 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝐶1

𝐶2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
1
2

⎞
⎟⎟⎟⎟⎠

First row gives 𝐶1 =
1
5 and last row gives 2𝐶1 +𝐶2 = 2 or 𝐶2 = 2−

2
5 =

8
5 . Hence the solution

becomes

𝒙 (𝑡) =
1
5

⎛
⎜⎜⎜⎜⎝

5 cos 𝑡
2 cos 𝑡 + sin 𝑡

⎞
⎟⎟⎟⎟⎠ +

8
5

⎛
⎜⎜⎜⎜⎝

−5 sin 𝑡
−2 sin 𝑡 + cos 𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
8𝑡 − 1
4𝑡 − 2

⎞
⎟⎟⎟⎟⎠

Or

𝑥 (𝑡) = cos 𝑡 − 8 sin 𝑡 + 8𝑡 + 8𝑡 − 1
𝑦 (𝑡) = 2 cos 𝑡 − 3 sin 𝑡 + 4𝑡 − 2

4.14.23 Section 8.2 problem 28

problem Use the method of variation of parameters to solve 𝒙′ = 𝐴𝒙 + 𝒇 (𝑡).

𝐴 =
⎛
⎜⎜⎜⎜⎝
2 −4
1 −2

⎞
⎟⎟⎟⎟⎠

𝒇 (𝑡) =
⎛
⎜⎜⎜⎜⎝
4 ln 𝑡

1
𝑡

⎞
⎟⎟⎟⎟⎠

𝒙 (1) =
⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠

solution The matrix form of the system is
⎛
⎜⎜⎜⎜⎝
𝑥′

𝑦′

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2 −4
1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑥
𝑦

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
4 ln 𝑡
𝑡−1

⎞
⎟⎟⎟⎟⎠

The eigenvalues of the homogenous system are found from

|𝐴 − 𝜆𝐼| = 0

�
2 − 𝜆 −4
1 −2 − 𝜆

� = 0

𝜆2 = 0
𝜆 = 0

Hence zero eigenvalue. Let see if this is complete eigenvalue or not.

For 𝜆 = 0 we solve (𝐴 − 𝜆1𝐼) 𝒗1 = 0
⎛
⎜⎜⎜⎜⎝
2 −4
1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

From first equation 2𝑣1 − 4𝑣2 = 0. Let 𝑣1 = 1 then 𝑣2 =
1
2 and

𝒗1 =
⎛
⎜⎜⎜⎜⎝
1
1
2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠

We can only find this one eigenvector. Second row gives same eigenvector. This means
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this is defective eigenvalue. We can’t use this method. We are stuck. So we switch to the
defective eigenvalue method (page 450). We start by solving for 𝒗2 from

(𝐴 − 𝜆𝐼)2 𝒗2 = 0
⎛
⎜⎜⎜⎜⎝
2 − 𝜆 −4
1 −2 − 𝜆

⎞
⎟⎟⎟⎟⎠

2 ⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 −4
1 −2

⎞
⎟⎟⎟⎟⎠

2 ⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0 0
0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎠

Hence

⎛
⎜⎜⎜⎜⎝
𝑣1
𝑣2

⎞
⎟⎟⎟⎟⎠ can be any value. Let 𝑣1 = 1, 𝑣2 = 0 and therefore

𝒗2 =
⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠

We now find 𝒗1 from

𝒗1 = (𝐴 − 𝜆𝐼) 𝒗2

=
⎛
⎜⎜⎜⎜⎝
2 −4
1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠

Where now

𝒙1 (𝑡) = 𝒗1𝑒𝜆𝑡

𝒙2 (𝑡) = (𝒗1𝑡 + 𝒗2) 𝑒𝜆𝑡

Hence the homogenous solution is

𝒙ℎ (𝑡) = 𝑐1𝒗1𝑒𝜆𝑡 + 𝑐2 (𝒗1𝑡 + 𝒗2) 𝑒𝜆𝑡

= 𝑐1

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ 𝑡 +

⎛
⎜⎜⎜⎜⎝
1
0

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎠

= 𝑐1

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝
2𝑡 + 1
𝑡

⎞
⎟⎟⎟⎟⎠

The Wronskian 𝑊 (which is the same as fundamental matrix Φ) is

𝑊 = �𝒙1 (𝑡) 𝒙2 (𝑡)�

=
⎛
⎜⎜⎜⎜⎝
2 2𝑡 + 1
1 𝑡

⎞
⎟⎟⎟⎟⎠

Therefore

𝒙𝑝 (𝑡) = 𝑊�𝑊−1𝒇 (𝑡) 𝑑𝑡 (2)

Where

𝑊−1 =
⎛
⎜⎜⎜⎜⎝
2 2𝑡 + 1
1 𝑡

⎞
⎟⎟⎟⎟⎠

−1

=
⎛
⎜⎜⎜⎜⎝
−𝑡 2𝑡 + 1
1 −2

⎞
⎟⎟⎟⎟⎠
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Hence, (2) becomes

𝒙𝑝 (𝑡) =
⎛
⎜⎜⎜⎜⎝
2 2𝑡 + 1
1 𝑡

⎞
⎟⎟⎟⎟⎠�

⎛
⎜⎜⎜⎜⎝
−𝑡 2𝑡 + 1
1 −2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
4 ln 𝑡

1
𝑡

⎞
⎟⎟⎟⎟⎠ 𝑑𝑡

=
⎛
⎜⎜⎜⎜⎝
2 2𝑡 + 1
1 𝑡

⎞
⎟⎟⎟⎟⎠�

⎛
⎜⎜⎜⎜⎝
1
𝑡
(2𝑡 + 1) − 4𝑡 ln 𝑡
4 ln 𝑡 − 2

𝑡

⎞
⎟⎟⎟⎟⎠ 𝑑𝑡

=
⎛
⎜⎜⎜⎜⎝
2 2𝑡 + 1
1 𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2𝑡 + ln 𝑡 − 2𝑡2 ln 𝑡 + 𝑡2

4𝑡 ln 𝑡 − 2 ln 𝑡 − 4𝑡

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

2𝑡2 (2 ln 𝑡 − 3)
2𝑡 + ln 𝑡 + 2𝑡2 ln 𝑡 − 2𝑡 ln 𝑡 − 3𝑡2

⎞
⎟⎟⎟⎟⎠

Therefore the general solution is

𝒙 (𝑡) = 𝒙ℎ (𝑡) + 𝒙𝑝 (𝑡) (3)

= 𝑐1

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝
2𝑡 + 1
𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

2𝑡2 (2 ln 𝑡 − 3)
2𝑡 + ln 𝑡 + 2𝑡2 ln 𝑡 − 2𝑡 ln 𝑡 − 3𝑡2

⎞
⎟⎟⎟⎟⎠

At 𝑡 = 1 ⎛
⎜⎜⎜⎜⎝
1
−1

⎞
⎟⎟⎟⎟⎠ = 𝑐1

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝
3
1

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝
−6
−1

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
2𝑐1 + 3𝑐2 − 6
𝑐1 + 𝑐2 − 1

⎞
⎟⎟⎟⎟⎠

Hence ⎛
⎜⎜⎜⎜⎝
2 3
1 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
7
0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
2 3
0 −1

2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
7
−7
2

⎞
⎟⎟⎟⎟⎠

second row gives −1
2𝑐2 = −

7
2 or 𝑐2 = 7 and first row gives 2𝑐1+3𝑐2 = 7 or 𝑐1 =

7−3𝑐2
2 = 7−21

2 = −7.
Hence the solution becomes (from (3))

𝒙 (𝑡) = −7
⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ + 7

⎛
⎜⎜⎜⎜⎝
2𝑡 + 1
𝑡

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

2𝑡2 (2 ln 𝑡 − 3)
2𝑡 + ln 𝑡 + 2𝑡2 ln 𝑡 − 2𝑡 ln 𝑡 − 3𝑡2

⎞
⎟⎟⎟⎟⎠

Or

𝑥 (𝑡) = −7 + 14𝑡 + 2𝑡2 (2 ln 𝑡 − 3)
𝑦 (𝑡) = −7 + 9𝑡 + ln 𝑡 + 2𝑡2 ln 𝑡 − 2𝑡 ln 𝑡 − 3𝑡2

4.14.24 Example on page 500, textbook (Edwards&Penny, 3rd
edition)

problem This problem was solved in textbook using matrix exponential. Here is solved
using the fundamental matrix only. Use the method of variation of parameters to solve
𝒙′ = 𝐴𝒙 + 𝒇 (𝑡).

𝐴 =
⎛
⎜⎜⎜⎜⎝
4 2
3 −1

⎞
⎟⎟⎟⎟⎠

̄𝑓 (𝑡) =
⎛
⎜⎜⎜⎜⎝
−15
4

⎞
⎟⎟⎟⎟⎠ 𝑡𝑒

−2𝑡

�̄� (0) =
⎛
⎜⎜⎜⎜⎝
7
3

⎞
⎟⎟⎟⎟⎠

Solution

The homogeneous solution was found in the book as
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�̄�ℎ = 𝑐1

⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ 𝑒

−2𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ 𝑒

5𝑡

Following scalar case, the guess would be �̄�𝑝 = ��̄� + �̄�𝑡� 𝑒−2𝑡 but since 𝑒−2𝑡 is in the homoge-

neous, we have to adjust to be �̄�𝑝 = ��̄�𝑡 + �̄�𝑡2� 𝑒−2𝑡 + �̄�𝑒5𝑡. Notice we had to add �̄�𝑒5𝑡, else it

will not work if we just guessed �̄�𝑝 = ��̄�𝑡 + �̄�𝑡2� 𝑒−2𝑡 based on what we would do in scalar
case, we will find we get �̄� = �̄� = 0. This seems to be a trial and error stage and one just
have to try to find out. This is why undermined coe�cients for systems is not as easy to
use as with scalar case. Hence

�̄�𝑝 = ��̄�𝑡 + �̄�𝑡2� 𝑒−2𝑡 + �̄�𝑒5𝑡

Now we plug-in this back into the ODE and solve for �̄�, �̄�, �̄�. But an easier method is to use
Variation of parameters. The fundamental matrix is

Φ = ��̄�1 �̄�2�

=
⎛
⎜⎜⎜⎜⎝
𝑒−2𝑡 2𝑒5𝑡

−2𝑒−2𝑡 𝑒5𝑡

⎞
⎟⎟⎟⎟⎠

And

Φ−1 =

⎛
⎜⎜⎜⎜⎝
𝑒5𝑡 2𝑒−2𝑡

−2𝑒5𝑡 𝑒−2𝑡

⎞
⎟⎟⎟⎟⎠

𝑇

|Φ|
=

⎛
⎜⎜⎜⎜⎝
𝑒5𝑡 −2𝑒5𝑡

2𝑒−2𝑡 𝑒−2𝑡

⎞
⎟⎟⎟⎟⎠

𝑒3𝑡 + 4𝑒3𝑡
=
1
5

⎛
⎜⎜⎜⎜⎝
𝑒2𝑡 −2𝑒2𝑡

2𝑒−5𝑡 𝑒−5𝑡

⎞
⎟⎟⎟⎟⎠

Hence using

�̄�𝑝 = Φ�Φ−1 ̄𝑓 (𝑡) 𝑑𝑡

=
1
5
Φ�

⎛
⎜⎜⎜⎜⎝
𝑒2𝑡 −2𝑒2𝑡

2𝑒−5𝑡 𝑒−5𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
−15𝑡𝑒−2𝑡

4𝑡𝑒−2𝑡

⎞
⎟⎟⎟⎟⎠ 𝑑𝑡

=
1
5
Φ�

⎛
⎜⎜⎜⎜⎝
−23𝑡

−26𝑡𝑒−7𝑡

⎞
⎟⎟⎟⎟⎠ 𝑑𝑡

The integral of ∫−23𝑡𝑑𝑡 = −23
2 𝑡

2 and ∫−26𝑡𝑒−7𝑡𝑑𝑡 = 26
49𝑒

−7𝑡 (7𝑡 + 1) (using integration by parts)
hence the above simplifies to

�̄�𝑝 = Φ
⎛
⎜⎜⎜⎜⎝

−23
10 𝑡

2

26
245𝑒

−7𝑡 + 26
35 𝑡𝑒

−7𝑡

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
𝑒−2𝑡 2𝑒5𝑡

−2𝑒−2𝑡 𝑒5𝑡

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

−23
10 𝑡

2

26
245𝑒

−7𝑡 + 26
35 𝑡𝑒

−7𝑡

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

52
245𝑒

−2𝑡 + 52
35 𝑡𝑒

−2𝑡 − 23
10 𝑡

2𝑒−2𝑡
26
245𝑒

−2𝑡 + 26
35 𝑡𝑒

−2𝑡 + 23
5 𝑡

2𝑒−2𝑡

⎞
⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝

1
490𝑒

−2𝑡 �−1127𝑡2 + 728𝑡 + 104�
1
245𝑒

−2𝑡 �1127𝑡2 + 182𝑡 + 26�

⎞
⎟⎟⎟⎟⎠

Hence the complete solution is

�̄� = �̄�ℎ + �̄�𝑝

= 𝑐1

⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ 𝑒

−2𝑡 + 𝑐2

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ 𝑒

5𝑡 +
⎛
⎜⎜⎜⎜⎝

1
490𝑒

−2𝑡 �−1127𝑡2 + 728𝑡 + 104�
1
245𝑒

−2𝑡 �1127𝑡2 + 182𝑡 + 26�

⎞
⎟⎟⎟⎟⎠
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To find the constants, we apply initial conditions. At 𝑡 = 0
⎛
⎜⎜⎜⎜⎝
7
3

⎞
⎟⎟⎟⎟⎠ = 𝑐1

⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎝

52
245
26
245

⎞
⎟⎟⎟⎟⎠

𝑐1

⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ + 𝑐2

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝
7
3

⎞
⎟⎟⎟⎟⎠ −

⎛
⎜⎜⎜⎜⎝

52
245
26
245

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 2
−2 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1663
245
709
245

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 2
0 5

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
𝑐1
𝑐2

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

1663
245
807
49

⎞
⎟⎟⎟⎟⎠

Hence 5𝑐2 =
807
49 or 𝑐2 =

807
245 and 𝑐1 + 2𝑐2 =

1663
245 , hence 𝑐1 =

1663
245 − 2 �

807
245
� = 1

5 . Therefore the

solution becomes

�̄� =
1
5

⎛
⎜⎜⎜⎜⎝
1
−2

⎞
⎟⎟⎟⎟⎠ 𝑒

−2𝑡 +
807
245

⎛
⎜⎜⎜⎜⎝
2
1

⎞
⎟⎟⎟⎟⎠ 𝑒

5𝑡 +
⎛
⎜⎜⎜⎜⎝

1
490𝑒

−2𝑡 �−1127𝑡2 + 728𝑡 + 104�
1
245𝑒

−2𝑡 �1127𝑡2 + 182𝑡 + 26�

⎞
⎟⎟⎟⎟⎠
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