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Chapter 1

Introduction

1.1 links

1. [Professor Leslie M. Smith web page|

2. [TA web site]
3. |piazza class page| Needs login



http://www.math.wisc.edu/~lsmith/
http://www.math.wisc.edu/~jrcheng/
http://piazza.com/wisc/spring2017/math320005/home

1.2. syllabus CHAPTER 1. INTRODUCTION

1.2 syllabus

Math 320, Lecture 5: Syllabus
Linear Algebra and Differential Equations
TR 9:30-10:45 in Van Vleck B239

Textbook: Differential Equations and Linear Algebra, 3rd Edition, Edwards and Penney,
Prentice Hall.

Pre-requisite: Math 222.
Credit toward the math major may not be received for both Math 320 and Math 340.

Professor: Leslie Smith, Departments of Mathematics and Engineering Physics, Office
Hours in Van Vleck 825 TR 12:30-2:00, lsmith@math.wisc.edu.

Teaching Assistant:
Jingrui Cheng, Office Hours MWF 7:00-8:00 PM in Van Vleck 516

Exams: There will be two evening exams: Tuesday February 21 and Tuesday, March
28, during the time 7:15-8:30 PM. Please let me know IMMEDIATELY if you have a conflict
with these dates. Each exam is 25% of the final grade.

Final Exam: Sunday May 7, 7:25-9:25 PM, 35% of grade.

Piazza: There will be a Piazza course page where all course materials will be posted, and
to facilitate peer-group discussions.

Piazza Sign-Up Page: piazza.com/wisc/spring2017/math320005
Piazza Course Page: piazza.com/wisc/spring2017/math320005/home

Weekly Problem Sets: Homework is due at the beginning of class, typically on
Thursday. Homework will be available on piazza approximately one week prior to the due
date. Roughly 15 problems will be assigned each week (most of the time from the book, but
not always).

Please write your name and section number clearly on each homework set, stapled please!
Unstapled homework will not be accepted.

Grading of Homework: The TA and/or a grader will grade a subset of the homework
problems given out each week, with some points also given for completeness. Typically (but
not necessarily always), there will be 2 problems graded on a scale of 0-10, with 6 points for
completeness. The homework scores will count for 15% of the grade.

Late Policy: Homework turned in after the beginning of class will be considered late and
will be graded at 80% credit. Late homework will be accepted until 5 PM on the due date
(no credit thereafter, no exceptions). The policy is intended to keep everyone as current as
possible.

Please email Jingrui Cheng directly to make arrangements regarding late homework submis-

sion: jcheng37@wisc.edu

Calculators: Calculators and/or computer software may be used to help with homework
problems but are not permitted during exams.

Grading Scale for Final Grade: 92-100 A, 89-91 AB, 82-88 B, 79-81 BC, 70-78 C, 60-69
D, 59 and below F
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Course description: Differential equations are the fundamental tools that scientists and
engineers use to model physical reality. The importance of differential equations to science
and engineering cannot be over-emphasized. A distinct subject in its own right, linear algebra
is a part of mathematics concerned with the structure inherent in mathematical systems.
We shall study these subjects together for three reasons: (1) The viewpoint of linear algebra
is immensely helpful in uncovering the order underlying the topic of differential equations;
it helps us understand the “why” and not just the “how” of our calculations; (2) Linear
algebra is essential to the theory of differential equations; (3) Linear algebra is crucial to
the computer approximations which are often the only way to solve the most challenging
differential equations.

Throughout this course, we will seek to answer the following basic questions:

e When does a differential equation have a solution? When is that solution unique?

e Can one construct the (unique) solution of a differential equation in terms of elementary
functions? If not, can one approximate its solution numerically and/or understand it
qualitatively?

e How does one choose the differential equation(s) used to model a physical system?
What are the strengths and limitations of such models? Specifically, what is the
significance of linearity in our models and applications?

Course outline: The course covers material in Chapters 1-8 of the text. The topics are
listed below with corresponding chapter.

Chapter 1: First-Order ODEs (continuing from 221/222 with some review).
Chapter 2: Mathematical Models and Numerical Methods.

Chapter 3: Linear Systems and Matrices.

Chapter 4: Vectors Spaces.

Chapter 5: Higher-Order Linear ODEs.

Chapter 6: Eigenvalues and Eigenvectors (sections 6.1-6.2).

Chapter 7: Homogeneous Linear Systems of ODEs.

Chapter 8: Nonhomogeneous Linear Systems of ODEs (sections 8.1-8.2).

Learning Outcomes:

e Students will state and apply the Theorem of Existence and Uniqueness for first-order
ODEs, and the Theorem of Existence and Uniqueness for second-order linear ODEs.

e Students will find analytical solutions to first-order ODEs, including (but not limited
to) separable ODEs and linear ODEs.

e Students will construct approximate solutions to first-order ODEs using numerical
methods.
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e Students will state and apply rules for the algebra of matrices.

e Students will demonstrate knowledge of coupled linear algebraic equations, determine
when the system has solution(s), and be able to find solution(s) when applicable.

e Students will find analytical solutions to second-order linear ODEs in simple cases.

e Students will demonstrate the relation between higher-order linear ODEs and coupled
first-order linear ODEs.

e Students will apply knowledge of linear algebra and differential equations to solve
coupled first-order linear ODEs with constant coefficients.
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Local contents
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2.1 First exam

2.1.1 crib sheet for first exam

Math 320 Exam Crib Sheet

1. Integration by Parts Formula

/udvzuv—/vdu

/xoxp(:p)dm =zexp(z) — /cxp(,?:)da; + C = zexp(z) — exp(z) + C

Example:

with u = z, dv = exp(z) dz, du = dz, and v = exp(z).

2. Example of Partial Fractions

/mdz:/mw

Let
5 A N B
(x—2)(z—-3) (—2)  (z—3)
_ A(xz—-3)+B(r—-2)
@-2@-9)
Therefore

(A+B)x=0 and —3A-2B=5.
Solving A+ B =0 and —3A — 2B =5 gives A = —5 and B = 5. So finally

5 =5 +5
S — - do+ [~ _dr= 5|z -2+ 5]z -3+ C.
_/(iL'2—5x+6)“L /(1’—2) L+/(x—3)"L 5In|z —2|+5n|z |+

3. Exponentials and the Natural Logarithm: All arguments of In are assumed greater
than zero.

In(1) =0
In(a/b) = In(a) — In(b)
In(ab) = In(a) + In(b)

In(a") = r1n(a)

1
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/%duzln|u|+0, w0
exp(in(z)) = o
In(exp(z)) = =

exp(a+ b) = exp(a) exp(b)

exp(a)
exp(b)

exp(a —b) =

exp(ab) = (exp(a))” = (exp(b))"

4. Taylor Series for f(x) about the point = = x,:

n

f(x) = Z dxnf(xﬂz:zn
n=0

n!

(x —x,)"
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2.1.2 First Practice exam for first exam

Math 320 (Smith): Practice Exam 1
1. The autonomous ODE given by

dP(1)
Cdt

models a logistic population with harvesting, for example, the population of fish in a lake from
which h fish per year are removed by fishing.

= —(bP*(t) —aP(t)+h), a>0, b>0, h>0 (1)

(a) Consider a = 6 and b = 1. How does the number of critical points depend on the parameter h?
What are the values of h that yield real-valued critical point(s)?

(b) Consider @ = 6, b =1 and h = 7. Find and classify the critical points. Make a (rough) sketch
of the direction field.

(c) For a = 6, b = 1, h = 7, and starting from the initial condition P(0) = 3, find the limiting
behavior for large time t — oo.

2. The following augmented coefficient matrix results from elementary row operations on a 3 x 3
system of linear algebraic equations Ax = b.

-1 1 1 2
0 5 -k 4

0 0 k p+3

2)

Consider 2 different values of the parameter p: (a) p = —3, and (b) p = —2.

Determine for what values of k the system has (i) a unique solution, (ii) no solution, and (iii)
infinitely many solutions.

FOR PART (a) ONLY when p = —3: Find all solutions in cases (i) and/or (iii), and write the
solution x in vector form.

3. Given

dy _ ylz) | exp(—z)

de ~ (x—1) (z—-1)

(a) Find the exact solution. For what values of x is the solution defined?

y(0) = 2. ®3)

(b) Use one step of the Forward Euler method with step size h to find an approximation for y(h).

4. (20 points) Consider the initial value problem

dz = *57 y°, y(0)=-1 4)
(a) Find y(z) explicitly. For what values of x is the solution defined?

(b) Use one step of the Modified Euler (Improved Euler, RK2) method with step size h to find an
approximation for y(h).

5. (5 points) TRUE or FALSE: The initial value problem

dy _

7 = W=7 () =2 5)

is guaranteed to have a unique solution in a subrange of —oco <t < oo.
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2.1.3 Second Practice exam for first exam

Math 320 (Smith): Practice Exam 1

1. (16 points - 10 min.) For
dy +2 p
=@ DE =Dy -2), y(0)=yo, —00<y,<oo 1

(a) (14 points) Sketch, roughly, a direction field and classify all critical points.
(b) (2 points) Determine (from your sketch), the asymptotic behavior of the solution for y, = —1,
t — oo.

2. (21 points - 15-20 min.) Solve (15 points)

Y —yizexp(z?) =0 (2)
for y(0) = —2. Give the range of validity of the solution (6 points).

3. (24 points - 15-20 min) Write the following systems as Ax = b and determine for what values
of k the system has (i) a unique solution, (ii) no solution, and (iii) infinitely many solutions.

(a) (12 points)

T, — T2+ 223 =4
2wy + 39 —x3 =k
—2x1 + 22 — 323 =2

(b) (12 points)

1+ 323 =8
—x1+kxg—x3=14

3x1 + 22+ 1023 =0
4. (39 points - 20-25 min) Given

eyt em@), y0) =2 (4)

(a) (15 points) Find the exact solution and state the region of validity of the exact solution.

(b) (8 points) Use one step of the Forward Euler method with step A to find an approximation for
y(zo + h).

(c) (8 points) Use one step of the Improved Euler method with step A to find an approximation for
y(zo, + h).

(d) (8 points) Compare the Taylor series expansions for y(z, + h) using (i) the exact solution, (ii)
the Forward Euler approximation and (iii) the Improved Euler approximation. Explain what these
Taylor series expansions tell us about the truncation error of the Forward Euler and Improved Euler
methods.
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2.1.4 my solution for first practice exam for first midterm

2.1.4.1 Problem1

dP (t) )

— = — (6P (t) — aP (t) + h)
Part(a)
For a = 6,b =1 the ODE becomes

dP (t) )

— = —(P2(t)-6P () + 1)
Critical points are given by ‘ﬂ;—it) = 0. Hence solving for P from

P2—6P+h=0 (1)
-b+Vb? -4 6+ V36 —4h
P, = +2a fc_2= : ~3+V9_h
We see now how P. depends on h. For real valued P, we want 9—h > 0 or
h<9

Part(b)
Fora=6,b=1,h =7 then

dP (t) )

— = -(P2()-6P (1) +7)
And the critical P, values are from (1)

P.=3+V9-7
=3+1V2
= {4.4142,1.5858}

To classify P, we look at little above and little below each critical value and see what the
slope is there. Depending on the sign of the slope around each critical point, we will know
if it stable, not stable, or semi-stable. For P, = 4.4142, lets look at P=5 and P =4

—(P2(4) - =_ - =—

(- (P2 () - 6P () + 7))13:5 (25-6(5)+7) = -2

(- (P2 () - 6P () + 7))13:4 =—(16-6(4)+7)=1

Since the slope is negative to the right of P. = 4.4142 and the slope is positive to the left of
P, = 4.4142, this means P, = 4.4142 is stable.

For Pc = 15858, let lookat P=2and P =1
2 - =
(- (P2(t)-6P (1) + 7))P:2 4-6()+7) =1

(- (P2(t)-6P (1) + 7))p:1 =—1-6(1)+7)=-2

Since the slope is positive to the right of P. =1.5858 and the slope is negative to the left of
P, =1.5858, this means P, = 1.5858 is unstable.

10
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Here is the phase plot

unstable stable
| ® - p—o—«
3 -2 3+2

Here is sketch of the slope field diagram using the computer showing the two critical values
of P(t) found above, confirming that one is stable, and the other is not stable.

- fl[t ,y 1:=-(y"2-6y+7)
pl = StreamPlot[ {1, f[t, v}, {t, -2, 6}, {y, -1, 7}, Frame -» False, Axes - True,
AspectRatio -» 1/ GoldenRatio, AxesLabel » {"t", "P(t)"}, BaseStyle - 14,
PlotLabel - "Problem 1, part a", TicksStyle - Red, ImageSize - 400]

Problem 1, part a
P(t)

VEU L Ly
AR ARRECELEEEREREE!
N NN NN OO

s T A B A T
S A A A
L
S g e
AARARREREE RN R R R R RN
AR IR R R

. B\ ) S WP W W VYR WY W | W WA VR W W WY B
BERRERERRRT Y Vv t
APV R e LD

Part(c)
Fora=6,b=1,h =7 then

dl;—ft) =—(P2()-6P () +7)
Since P (0) = 3, then we see from part(b) sketch of slope field, that the solution curve will
move to the critical point P, =3 + V2. Therefore for t — co, P () = 3 + V2. Here is the slope
field diagram, with the solution curve marked as red showing it is moving to the equilibrium
solution.

11
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n4o3= F[t_,y 1 :=-(Yy*"2-6y+7)
pl = StreamPlot[ {1, f[t, v1}, {t, -2, 6}, {y, -1, 7}, Frame -» False, Axes - True,
AspectRatio -» 1/ GoldenRatio, AxesLabel -» {"t", "P(t)"}, BaseStyle - 14,
StreamPoints -» {{{{0@, 3}, Red}, Automatic}}, PlotLabel -» "Problem 1, part a",
TicksStyle - Red, ImageSize - 400]

Problem 1, part a
P(t)

' ¥¥¥¥¥H¥HH\¥¥¥¥
\ \« \ \ \« \ \ \\ \« \\ \\\ \\ \ \ \
IS O S S NSNS N
Out[404] /7/;4 '/'//V' /// -~ /// ////
L
S S LB ORI

2.1.4.2 Problem 2

-1 1 1 2
0 5 -k 4
0 0 kK p+3
Part (a)
Using p = -3
-11 1 2
0 5 -k 4
0 0 kK O

case (i) Last equation says that kx; = 0. If k # 0, then only x; = 0 will satisfy the equation.
Which gives, from second equation 5x, —kx; =4 or x, = %. And from first equation —x; +x, +

X3=20r—x;=2-xp=2- g. Hence x; = % -2= —g Therefore k # 0 gives unique solution.

The solution in vector form is

X1 -z
| 4

Xy | = g

X3 0

12
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case (ii) There is no value of k which gives no solution.

case (iii) If k = 0 then we have 0(x;) = 0. Hence any x; value will satisfy this. So there are

. . . 4kt
infinite number of solutions. Let x3 = f, hence from second equation 5x, —kt =4 or x, = =

5
and from the first equation —x; + 4+Tkt +t=20r—x =2-t- 4+Tkt, hence x; =t + ékt - g. The

solution in vector form is

1 6 6
X1 t+ -kt — - t— -
Z+kt > _ 4 >
2171 5 |7 s
X3 t t -
Part (b)
Using p = -2
-11 1 2
0 5 -k 4
0 0 k 1

case (i) Last equation says that kx; = 1. If k # 0, then unique solution exist. But if k = 0,
we have (0) x3 = 1 which is not possible. So for unique solution we need k # 0 for unique
solution.

case (ii) If k = 0 we have (0) x3 = 1 which is not possible. Hence k = 0 gives no solutions.

case (iii) There is no value of k which gives infinite number of solutions.

2.1.4.3 Problem 3

y___y

ix - wom Txov©@=2
part (a)
d_y oy te”
dx  (x-1)
Hence
-y+e~

f®w:(mﬂ

This is continuous in x except at x = 1. And continuous for all y. Hence solution exist in
. . J - . .
region that does not include x = 1. Now a—jyc = ﬁ We see also here that This is continuous

in x except at x =1. No dependency on y. Hence solution exist and unique in some region

13
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that do not include x = 1. So solve, we use integrating factor

y _y _
dc  (x-1) x-1
i :ef%dx =D = (x —1)

Therefore, by multiplying both sides of (1) by u, we obtain
d e™

— (1) = 1

d X

a((x—1)y)=(x—1);:1

Integrating both sides

x c
= + —
y ) 1-x x-1
From initial conditions
5= 1 c
1 -1
c=-1
Hence the exact solution is
e—x
= + —
y ) 1-x -X
3 e +
o 1-x

(1)

Since initial conditions is at x = 0 and since we found above that solution region can not

include point x =1, then the solution region is | —co < x <1

Here is a plot of the solution showing the singularity at x = 1. For our case, the solution

curve is the one to the left of x =1 in this diagram

14
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s=y[x] /. First@Dsolve[{y'[x] +y[X] / (x-1) =EXp[-x] / (x-1), y[O] =2}, y[Xx], X1}
Plot[s, {x, -5, 5}, Frame - True, FrameLabel -» {{"y(x)", None}, {"x", "Problem 3 solution, part (a)"}},
BaseStyle -» 14, GridLines -» Automatic, GridLinesStyle - LightGray, ImageSize - 400,

ExclusionsStyle - Red]

Problem 3 solution, part (a)

20¢

Part (b)
In Forward Euler, we have
Yni1 =Yn T hf (xn/yn)

e—x
+ —, hence
x-1

In this problem f (x, y) =_Y

(x-1)
Yn et
- hl-
Yn+1 Yn t ( (xn_1)+xn_1)
For n = 0, we have
_ Y e
yl‘y”h( (0 -1) +x0—1)

But yy = 2 at x5 = 0, hence the above becomes

2 1
W :yo+h(—_—+—)

Therefore, after one step
y(h) =y +h
2.1.4.4 Problem 4
dy _ 545 -

Part (a)

f (x, y) = —gx4y3. We see that this is continuous for all x and all .

15
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continuous for all x and all y. Therefore a solution exist and is unique in some region inside
—00 < x < 00.

Now we solve the ODE. This is separable. Hence

d 5
—Z = ——x*dx
Y 2
Integrating
-1 1
_ 5
ﬁ —EX +C
Applying initial conditions
-1
— =
2
Hence exact solution is
-1 B 1 5 1
2y2 2 2
B -x° -1
2
Hence ;—: =-x"-1or
-1
2 _
A
3 1
x5 +1
S

But since y(0) = -1, then at this point, using the above solution, we see that -1 = i\/?

Hence only the negative sign can be used, to satisfy the initial conditions. Therefore, the
solution becomes

1
X +1

y=-
Since the solution must be real, then x° = -1 is not allowed (or x = -1 is not allowed). And
since we started at x = 0, then the solution is valid for

-l<x<o0

Here is a plot of the solution curve

16
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ClearAll[y, x]

ode=y'[x] ==-5/2x"4y[x]"3;

s=y[x] /. FirsteDSolve[{ode, y[O] = -1}, y[Xx], X]

Plot[s, {x, -2, 5}, Frame -» True, FrameLabel -» {{"y (x)", None}, {"x", "Problem 4 solution, part (a)"}},
BaseStyle -» 14, GridLines - Automatic, GridLinesStyle - LightGray, ImageSize - 400, ExclusionsStyle - Red]

Problem 4 solution, part (a)

0.0 [ [ ]
-0.5} ]
__-1.0} ]
< [
= [
-1.5F 1
-2.0} ]
-2.5¢ | , ]
-2 -1 0 1 2 3 4 5
X
Part (b)

In rk2, we have

ky = f(xnryn)
Upt1 = Yn + hiy

ky = f (xp41, Ups1)
1
Ynv1 =VYn + hE (kl + k2)

In this problem f (x, y) = —gx4y3, hence

5
=5 XnYn

k
1=

For n = 0, we have

ky _gxéyg
But yy = -1 at xy = 0, hence the above becomes
ki =0
Hence
uy = Yo + hky

=Yo
=-1

17
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And
ky = f(x1,u1)

Hence

1
Y1=Yo +h§ (ky +kp)

1 5
=-1+h=(0+=h*
+2( +2)

2.1.4.5 Problem 5

Here

3
This does not depend on t. If y <1, then (y - 1)2 will be complex valued. Hence for real
1

solution, we want y > 1. g—f = é(y - 1)5. This does not depend on t. Therefore a solution
y 2

exist and is unique in some region —co < t < co. As long as y > 1. Hence TRUE

2-6t+13

Note: When solving this, the solution came out to be y () = o which means the solution

below up at t = 3. i.e the solution is singular at t = 3. Therefore, the subrange is —co <t < -3.
(we were not asked to find the subrange?) Just to answer that there exist some subrange.
Here is a plot of the solution

18
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15041= ClearAll[y, X]

ode=y'[t] = (y[t] -1)~(3/2);

s=y[t] /. First@eDSolve[{ode, y[1] =2}, y[t], t]

Plot[s, {t, -10, 10}, Frame -» True, FrameLabel -» {{"y(t)", None}, {"t", "Problem 5 solution"}},
BaseStyle -» 14, GridLines -» Automatic, GridLinesStyle -» LightGray, ImageSize - 400, ExclusionsStyle - Red,

ExclusionsStyle -» Red, Epilog —» {Dashed, Red, Line[{{3, 0}, {3, 5}}11}]

13-6t+1t2
(-3+1)2

Problem 5 solution

19
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2.2 second exam

2.2.1 practice exam questions

Math 320 (Smith): Practice Problems for Exam 2

1. Given the matrix

112 3
A=|-1/3 —-3/2 -1 |, 1)
-1/2 -1/4 -=-3/2
for what vectors b does Ax = b have a solution?
2. (a) For what vectors b does Ax = b have a solution, with A given by
2 -1 1/2
A=1[3 1 2|. 3)
0 6 3
(b) Find all possible solutions (or no solution) for b” = [0 1 12/5] and for b = [0 12/5 1].
3. Consider Ax = b for
2/3 a2 -2
A=|-1/5 —-1/3 3/5 |. 3)
1/2  5/6 =3/2

(a) For what values of a1z is A non-singular?
(b) For what values of aja is A singular?

(c) In all cases of A singular, analyze the system Ax = b. What vectors b lead to solutions x?
What are those solutions x?

4. Given that two vectors u and v are linearly independent, are 3u — 5v and v linearly dependent
or linearly independent? Prove your answer.

5. Are the following statements TRUE or FALSE? If the statement is false, correct it.

(
(b) The inverse of a square matrix A exists if A is row equivalent to the identity matrix I with the
same dimensions.

a) A square matrix with two identical rows is row equivalent to the identity matrix.

(c) The determinant of an upper triangular square matrix is the sum of the diagonal elements.

6. Prove Property 4 of the seven properties of determinants.

12 -1
2 -1 2}, (7

0 asz2 ass

7. Consider the matrix A

A=

(a) Find a condition on agy and asz such that A~! exists.

(b) Find the value of the determinant for ase = 1 and ag3 = —2. How many columns of A are
independent for azy = 1 and ag3 = —27
(c) For azs = 5 and azg = —4, can p’ = [3 5 0] be expressed as a linear combination of the
columns of A? Support your answer with a calculation (no work, no credit).
(d) Find the value of the determinant for aze = 5 and ag3 = —4. How many columns of A are
independent for azy = 5 and ag3 = —47

1

20
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8. (a) Consider a 3 x 3 matrix A. Show that det(A”) = det(A).
[In fact, det(AT) = det(A) for A n x n.]

(b) The square matrix A is called orthogonal if A7 = A~'. Show that the determinant of an
orthogonal matrix is either +1 or —1. You may use the fact that det(AB) = det(A) det(B).

9. Find the determinant Hint: Use elementary row operations.

1 2 -2 5
-1 2 3 4
A= 1 3 1 -2 9)
-1 -3 0 -4
10. Using elementary row operations, find the inverse of
3 5 6
A=|2 4 3. (10)
2 3 5

11. (a) Show that any plane through the origin is a subspace of R?.
(b) Show that the plane x + 3y — 2z = 5 is not a subspace of R?.
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2.2.2 my solution to second midterm practice exam

2.2.2.1 Problem1

Question: Given Matrix

1 L 3
a3

A = ? 7 —1
a4 -3
2 4 2

for what vectors b does Ax = b have a solution?

answer Let b = (by,b,,bs). We start by setting up the augmented matrix. The augmented
matrix is

1 = 3 b
103
3 2 b
4 s
2 4 2 73
Applying row operation: R, = R, + %Rl gives
13 b
% b
- 0 b+3
4 1 3 b
2 4 2 3
Ry = Ry + >Ry gives
1 5 3 b
4 by
0 ~3 0 b2 + 3

0 0 0 by+,b

. 1 .
The above is Echelon form. Therefore, from last row, we see that Ox; = b3 + Ebl' For solution

to exist, we need b3 + %bl =0or b3 = —%bl. Hence any vector b where the third entry is —%
the first entry, will result in Ax = b having (infinite) solutions. So b needs to have this form

by
1_9 = b2
-1
2h
1 0
=bi |0 [+Dbf1
-1
5 0
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2.2.2.2 Problem 2

part a For what vector b does Ax = b have solution

1
2 -1 >
A=|3 1 2
0 6 3
answer
Let b = (by, by, b3) then the augmented matrix is
1
2 -1 5 bk
3 1 2 b
0 6 3 b
Applying row operations: R, = R, — gRl gives
2 -1 é by
5 3
0 7 7 b3k
0 6 3 bs
Rs = Ry — =R, gives
(5
2 -1 é b,
5 3
2 18 E _125171
0 0 O Ebl - Ebz + b3

The above is Echelon form. Last row says that Ox; = 15—8b1 - %bz + bs. Therefore for solution
to exist, we need

?bl—%b2+b3:0
This will generate infinite number of solutions. Any b vector of 3 elements where the above
constraint is satisfied, will make Ax = b have (infinite) number of solutions. Solving for b;
in terms of by, b;

, 12 5
171872 187
Hence b can be written as
12 5
I ETICARRTRE
b=| b,
b3
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One such example of b can be

We need to first check if these vectors meet the constraint found in part (a), which is
12 5 .
b = 8b2 - ﬁbS- For the first vector given, we get

18
)12 (12\ 5
S (Z)-Zq
0 18(5) TR

02
90
0
Which is not valid. Therefore, b = % will produce no solution for when used in Ax = b.

1
Now we check the second vector to see if it meets the constraint or not.

Yes. It satisfies the constraint. Hence this vector will produce solution for Ax = b. To find
the solution, we plugin this b vector and solve for x

—_
|
(O8]
=
—_
e}

? ? —1 X | = 1
-1 1 -3 X 12
2 4 2 3 5

Following the row operation we did above, the output is

2 -1 é b, 2 -1 é 0
0 3 5 bbb |=|0 5 3 1
18 12 12 12
0 0 O gbl—gbz'f‘b?) 0O 0 O —g(l)'i'g
2 -1 é 0
_ 5
=103 31
00 00
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5 5
Hence from last row x3 = ¢, and from second row o+ t=Tlorx = t and from first

1 2 1 1 -
row 2x; —Xp + >x3 = 0 or 2x; = (— - Et) -5t hence solution is

1
2

[S 1\

5
. 1 ¢
) Lt
7 1
X2 = g— Et
X3 t
1 1
3 £
= |2 [+t]-5t
0 1
2.2.2.3 Problem 3
Consider Ax = b for
2
5 aqp -2
A= _é -1 g
ro33
2 6 2

(a) for what values of a;; is A non-singular? (b) For what values of a;, is A singular? (c) In
all cases of A singular, analyze the system Ax = b. For what vectors b lead to solution x?
What are those solutions?

Answer (a). Expanding along first row gives

2
|Al = ZAq1 +a1pA15 — 2A53

3
2
= 3 (—1)1+1 M +aq (—1)1+2 My, -2 (—1)1+3 M3
2
= §M11 — a1pMyp — 2My3
Bl 2L
=313 3| me|r 3|20 3
6 2 2 2 2 6

2
=3 (0) —a12(0) - 2(0)
= Oayp

Therefore, there are no values of 2;, will make A non-singular, since anything times zero is
zero.

(b) This follows from part (a). For any value a;,, the matrix A remains singular.
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(c) Let b= (by,by,b3), then the augmented matrix is
2

5 aqn -2 bl
1 -1 3
—~ 2 2 p
ro3oa,
2 6 2 3
_1
R2 = R2 - (75) R1 gives
3
g aip -2 bl
3 3 1 3
0 E(l]z ~3 0 Ebl + b,
I T T
2 6 2 3
1
R3 = R3 - %Rl giVCS
3
g aip -2 bl
3 3 1 3
0 @(l]z ~3 0 Ebl + bz
3
0 . Zﬂlz 0 b3 - Zbl
E—Eﬂlz
R3 = R3 - %Rz giVCS
1071273
g aip -2 bl
3 3 1 3
0 Eﬂlz 3 0 Té)bl + bz
0 0 0 Ebz + b3
From last row, we see that Ox; = gbz + b3. Hence we need (for infinite solutions) to have the
constraint
5
Ebz + b3 =0
2
bz = —gb3

In which case we assume x; = f in this case (parameter). The second row says that

3 1 3
(Eﬂlz - 5) Xo = Ebl + bz

. 10 . .
Here we have to consider the case where a;, = n (which can happen, since a1, can be any

value for A singular). In this case, we end up with Ox, = %bl + b,. Then now, for solution to

. 3 10
exist, we need 1—0b1 +b,=0o0rb = —?bz and now we set x, = s, second parameter.
3
. 10 . 3 1 3 Tob1+b2
On the other hand, if a;, # < then this leads to M2 =3 )X = Ebl +b; and now x, = 57—
EX
10 3
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Therefore in summary

10 3
S ap = 3 andEbl + bz =0
_ 3
Xy = ob1+b2 4 10
31 h27 75
107273

Finally, first row gives
2
§X1 + ad1pXp — ZX3 = bl

X1 = bl — apXy + 2x3
3 3

:§b1—§ﬂ123€2+3t
If ulzzgand f—0b1+b2:0then X, = s and above becomes
X —319 5 (1 s + 3t
P72 2l
5 3
=3t--s+=b
3 3S+2 1

10 13—0111+b2
If a1, # < then x, = 57— and x; becomes

1071273
3 3 .
10Y1 2
X1 = Ebl - Ealz [m—lJ + 3t

>
107127 3

Therefore in summary

5 3 10 3
3t — 5534‘ Ebl aip = ; andﬁbl + bz =0
X1=9 3 3 Tob1+b2 10
Ebl - 56112 3 T + 3t ayp *+ r)
10M273

Hence solution vector is,

10 3 5 .
for case a;, = > andﬁbl + by, =0 and Ebz + b3 = 0 then solution is

5 3 5
X1 3t — gS + Ebl 3t — gS + 2b3

Xy | = S = S
X3 t t
3 (-3) (205
=t|0|+s| 1 |+] O
1 0 0
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And the b vector now is

ANEINEE
b=|by|=|-2bs | = |-205
bs bs bs

4

= b, _3§

1

10 5
For case a;, # s and Ebz +b3=0

X1 51273
xz = Eb1+b2
3 1
X3 1041273
t
3
3b 3 ( Tob1+b2 )
>V1 — 12| 3 1
3 2 2 041273
3
=0+ ﬁh1+b2
3 1
101273
0
And the b vector now is
by by
- 2
b = bz = —gb3
b3 b3
1 1
= bl o+ b3 -
0 1

2.2.2.4 Problem 4

Given that two vectors 7,7 are L.I., are 3% — 50 and 0 L.I. or L.D.? prove your answer.

answer

The two vectors are L.I. if the only solution to
c; (31 -50) +c, (@) =0
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is ¢; = 0,c; = 0. Therefore
c1 (Bt — 59) + ¢, (D) = 3c17t — 5¢17 + 0
= 3¢t + 0 (cy — 5cy) (1)
Let
3c; =k (2)
¢y —5c; =k,
And (1) becomes
c1 (371 — 59) + ¢, (D) = kyit + k0
But 1,0 are L.I., hence kit + k,o = 0 implies that k; = k, = 0. This means (from (2)) that
3¢, =0
p—5¢1 =0
First equation gives ¢; = 0. The second equation now gives c, = 0. Hence this shows that
31— 50 and ? are L.I.
2.2.2.5 Problem 5
Are the following statements true or false? If false, correct it.
1. Square matrix with two identical rows is row equivalent to identity matrix

2. Inverse of square matrix A exists if A is row equivalent to identity matrix I with the
same dimension.

3. Determinant of upper triangle square matrix is sum of diagonal elements.
Answer

1. False. Since two rows are identical, the matrix is singular which means there are no
row operations which leads to reduced Echelon form.

2. True.
3. False. Determinant of upper triangle square matrix is product (not sum) of diagonal
elements.
2.2.2.6 Problem 6
Prove property 4 of the seven properties of determinants.
Answer

Property 4 says that if A, B, C are identical except for one row i, and that row is such that
A (i) + B (i) = C (i) then |A| + |B| = |C|
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Let the three matrices be

X X X X X X X X X X X X
al a.z e a. b.l bz oo b C] C.Z e C
A=|" i in B = i i in C= i i in
X X X X X X X X X X X X
X X X X X X X X X X X X

Where in the above, the i is shown. We are also told that A (i) + B (i) = C (i) which implies
an +biy =cn
ap +bp =cp
D= (1)
@iy + biy = Ciy
Taking the determinant of each matrix, and expanding along the i row gives
|Al = anAn + apAp + - + ai, Ay
Similarly for B and C
Bl = bnBiy + bpBip + -+ + by By,
And
ICl = ciCin + cnCip + -+ + iy Ciyy
Where But since A;; = B;; = Cj; is the submatrix for all matrices, we are told the matrices are

identical in all other rows (and columns) except for the i row. Then we can just use any
one of them. Lets use C;; for each case. Therefore from above, we can write

|Al +|B| = (a;;Ciy + apCip + -+ + a;,Cyy)) + (b5 Ciq + bpCip + -+ + b;,Cyy,)
= (ag +bjy) Cip + (app +bpp) Cip + -+ + (a;, + byy,) Cyy, (2)
Substituting (1) into (2) gives

|Al + |B| = ¢;1Ciq + cpCip + -+ + ¢i,Ciyy

=IC|
QED.
2.2.2.7 Problem 7
Consider matrix
1 2 -1
A=12 -1 2
0 azx as

1. Find condition on a3, a3 such that A~ exist.

2. Find value of determinant for a;; = 1 and a33 = —-2. How many columns of A are
independent for a3, =1,a33 = -27?

3. For az =5,a33 = -4, can p! = (3,5,0) be expressed as linear combination of columns
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of A?

4. Find value of the determinant for a3, = 5,433 = —4. How many columns of A are
independent?

Answer
(1) Expanding along last row gives
|Al = azp Ay + a33As3
= a3, (-1)**? Mgy + a35 (-1)**° M

= —a3pMsp + azzMs3

1 -1 . 1 2
=—a a
32 ) 33 1
= —4032 - 55133

Hence for A™! to exist, we want |A| # 0, which means we want —4a,, — 5453 # 0 or
4as, + 5azs # 0

(2) When a3, =1 and az3 = -2, the matrix becomes

1 2 -1
A=12 -1 2
01 -2

Expanding along last row gives
|Al = a3 Azp + a33As3
= (1) Mz = 2(-1)"" My

= —M3; —2M3;

1 -1 1 2
"k o2 Tk o
=-4+10

=6
Since |A| # 0, Hence all columns are L.I. (Matrix is full rank).

(3) For a3, =5,a33 = —4 the matrix becomes

1 2 -1
A=2 -1 2
0 5 4

To find if pT = (3,5,0) can be expressed are linear combinations of columns of A, implies

1 2 -1 3
C1 21+ Cy 1|+ C3 21=16
0 5 —4 0

31



2.2. second exam CHAPTER 2. EXAMS

Has solution in ¢. The above can be written as

1 2 -1)(a 3
2 -1 2||c|=|6
0 5 —4)lc 0
Setting up the augmented matrix gives
1 2 -1 3
2 -1 2
0 5 4
Ry = Ry — 2R, gives
1 2 -1
0 -5 4
0 5 -4 0
R3 = R3 + R; gives
1 2 -1 3
0 -5 4 0
0 0 0 O
Therefore, last row gives Oc; = 0. Hence c; can be any value, say t. Second row gives
—5cy +4c3 =0
4
Cp = gt

And from first row
C1 + 2C2 —C3 = 3
= 3 - 2C2 +C3

=3 24t +t
B 5
=3 9t
75
Hence there are infinite solutions.
C1 3 =t
Ch | = -t
C3 t
) [
_ 4
=0+t z
0 1

For any t we can find linear combination of columns of A which gives p’. For example, using
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t = 0 results in solution ¢; = 3,c, =0,c3 = 0. To verify

1 2 -1
C12+C2 -1 +C3 2 1=3]2

0 5 -4
3
=16
0
=p
(4). For az, = 5,a33 = —4 the matrix becomes
1 2 -1
A=[2 -1 2
0 5 -4

The determinant is zero, this is because from part (3), we ended up with one zero pivot in
Echelon form, which implies |A| = 0. Since solution has one parameter family, and matrix is
3 x 3, then there are now 2 L.I. columns in A. This is the same as saying rank of A is 2.

2.2.2.8 Problem 8

Consider 3 x 3 matrix A. Show that |A|" = |A|

Answer Let A be

ajp Az 13
A=lay axp ay
az1 Asp 4d33
Expanding along first row gives

Al = ayy ()" My + ag (1) My, + a3 (-1 M3

a1 dz3 a1 A

+ a3

a3y ds3 431 4ds3 431 Aasp
= ayy (Ap833 — Ax3a37) — 12 (A1433 — A3d31) + dq3 (A21437 — Ax2a31)
= 11090033 — (11023033 — A12021433 + A12023031 + A13021432 — 113022031 1)
Now
a11 41 4z
AT = 12 Az 4z

a3 d3 4as3
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Expanding along first row gives
|AT| = a3y (1) My + g (1) My + a5 (<1)'° My

Ay Az a1 azp i 12 A

=4an — 4y 31

az3 4d33 113 4a33 a3 4dz3
= a11 (Agps3 — Azpap3) — o1 (A12033 — A3pa13) + A1 (A12093 — Axpa13)
= 1102033 — (11432423 — Ap1A12033 + A1A432413 + A314124023 — 3102013

Examining (1) and (2), we see they are the same. Hence |A| = |AT|

2229 Problem 9

Find |A]
1 2 -2 5
-1 2 3 4
A=
1 1 -2
-1 -3 0 -4
Answer
R2 = R2 + Rl giVCS
1 2 -2
0 4 1 9
A=
1 3 1 =2
-1 -3 0 -4
R3 = R3 — R; gives
1 2 -2
0 4 1 9
A=
o 1 3 -7
-1 -3 0 -4
R4 = R4y + Ry gives
1 2 -2 5
0 4 1 9
A=
o1 3 -7
0o -1 -2 1
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Rz =R;3 - zlle gives

Ry=Ry+ jsz gives

7
Ry =Ry — +R3 gives
T

Hence

22210 Problem 10

Using elementary row operations, find the inverse of

Answer

Set up augmented matrix

1 2 -2 5
AO4_19
= 11 37
00 7 -7
0 -1 -2 1
1 2 -2 5
AO419
oo T -
00_47 15
4 4
1 2 -2 5
A_0419
_00%—%
2
OOO—H
11 29
[Al=1%X4X — X ——
4 11
=-29
356
A=12 4 3
2 35
356100
C=12 43010
2 35001
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Ry =R, - 3R gives

5 6 1 00
2 2
C={0 2 -1 -210
35 0 01
R; = Ry - 2R, gives
35 6 1 00
c=|o g 1 -21 90
G, 3
3 3
1
R3:R3—TSR2 gives
3
5 6 1 0 0
2 2
C: 3 —1 —5 1 0
o 1 4 1
2 2

Start backward elimination now. R; = R; - ;Rz gives

02 6 -2 0
C={0 2 -1 -2 1 0
1 1
0 5 -1 5 1
27
Rl :Rl—%Rg, gives
2
0 0 33 -21 -27
2 2
C: 5 —1 —5 1 0
1 1
o 5 -1 3 1
RZ:RZ—_TlR3 gives
2
0 0 33 -21 -27
c=lo 20 -2 2 2
- 3o 3
0 > -1 > 1

Divide each row by diagonal element to make LHS identity matrix. Ry = % gives

00 11 -7 -9
c:o%o-?zz
1 1
05 -1 5 1
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Rzz%gives
3
100 11 -7 -9
cC=|01 0 4 3 3
005 -1 5 1
R3—$gives
2
oo 1n -7 -9
C=]0 -4 3 3
0 0 -2 1 2
Hence
1 -7 -9
Al=|-4 3 3
-2 1 2

2.2.211 Problem 11
(a) Show that any plane through the origin is subspace of R?
(b) Show that the plane x + 3y — 2z = 5 is not subspace of R®

Answer

x

part(a) The plane through the origin is the set W of all vectors v = | y |, such that ax+by+cz = 0,
z

where x, 1,z are the coordinates of the vector v and g, b, c are any arbitrary constants not all

zero. To show that W is subspace of R, we need to show that additions of any two vectors

u,v € W gives vector w € W (closed under addition) and multiplying any vector u € W by

any scalar k gives vector ku € W (closed under scalar multiplication). We are told the zero

vector 0 € W already, so we do not have to show this. (since the plane passes though origin).

X1 X2
To show closure under addition, consider any two vectors v; = |y; [ and u = |y, |. Since these
21 22
two vectors are taken from W, then we know they satisfy the equation of the plane already.
ie.
axy +by; +cz; =0
axy + by, +czp =0 (1)
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Now lets add these two vectors

X1 X2
v+u= y]_ + yz
Z1 Z
X1+ Xo

=|y1+y2 (2)
Z1+ 2o

We now need to check if the above vector in still in W (i.e. in the plane passing through the
origin). To do so, we take the original equation of the plane ax + by + cz = 0 and replace
x,Y,z in this equation by the coordinates in (2) and see if we still get zero in the RHS. This
results in

a(xq +x2)+b(y1 +y2) +c(z1 +2) 20
axy + axy + by + by, + czy + czp 20
(ax1 + by, + czl) + (axz + by, + czZ) 20
Substituting (1) into the above gives
0+020
Yes. Therefore v + u € W. To check closure under scalar multiplication.
X1
kv =k|y,
21
kxq
= |kyx (3)
kzq

We now need to check if the above vector in still in W (i.e. in the plane passing through the
origin). To do so, we take the original equation of the plane ax + by + cz = 0 and replace
x,Y,z in this equation by the coordinates in (3) and see if we still get zero in the RHS. This
results in

a(kx;)+b (kyl) + ¢ (kzq) 20
k(ax1 + by, + czl) 20

But since ax; + by, +cz; = 0 from (1). Therefore k (ax1 + by, + czl) = 0. So closed under scalar
multiplication.

Part b A subspace must include the zero vector 0 = (0,0,0). Replacing the coordinates of
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this vector into LHS of x + 3y — 2z = 5 gives
0+3(0)=2(0)=5
0<5

No. Hence not satisfied. Therefore not subspace of R3.
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2.3 final exam

2.3.1 My solution for final exam practice.

2.3.1.1 Problem 1

(a) Find general solution to x?y” — 3xy + 4y = 0 with x > 0. (b) For initial conditions
y(2) = a4,y (2) = b give a 2 X 2 matrix-vector equation to determine the coefficients of the
unique solution. Solve the system them write the solution to the initial value problem. (c)
Show that general solution contains two L.I. solutions yy,y, with x > 0

Solution

2.3.1.1.1 Part(a) Lety=x"theny = Arx™},y”’ = Ar(r—1)x"2. Substituting these into
the ODE gives

x2r(r—=1)x"2-3xrx™ 1 +4x" =0
r(r=1)x" -3rx +4x" =0
Since x > 0, we can cancel x” and obtain the characteristic equation
r(r-1)-3r+4=0

?—4r+4=0
r-2°=0
Hence r = 2 double root. Therefore
=2
Yo =x%Inx
And the homogenous solution is
v (%) = 2% + cpx® Inx (1A)

2.31.1.2 Part(b) Applying y(2)=a gives
a=4c; +4c,In2 (1)
Taking derivative of y;, (x)
Yy, (0) = 2c1x + 2cox Inx + cpx
Applying i’ (2) = b gives
b=4c;+c,(4In2+2) (2)

Using (1,2), we write them in matrix form to solve for cy, c;

4  4ln2 |[cy| |4
4 4n2+2)lc,) b
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Ry=Ry— R4
4 4In2|(c a
b A
From second row,
2¢c, = (b —a)
_b-a
€= ——

From first row

4c1 +4In2cy =a

_a-4cIn2
1 = 2
b-a
~ a—4 (T) In2
B 4
a (b-a o
=-—(—|In
4
Therefore
a (b-a o
c;=-—-(——]In
74\ 2
b-a
CHh = ——
27 2
Pugging these into the v, (x) = c;x% + c,x? In x found in part(a) gives
a (b-a b-a
I A 2 [274) 2
Y (x) = (4 ( 5 )an)x +( > )x In x
2.3.1.1.3 Part (c) We found that
y1 =22
¥, = x*Inx
Hence the Wronskian is
W) = Vi Y| _ x>  x®Inx
vi vo|l 2x 2xInx+x

=28 Inx+x°-2x31nx

Since x > 0, hence W (x) never zero. Therefore y;,y, are L.I.

2.31.2 Problem 2

Given one solution y; (x) = x, find general solution of Xy —x(x+2)y' +(x+2)y=0forx >0

Solution
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Assume solution is y (x) = vy; (x). Hence
Y =vytoy
y' =0y + 0y + 0y oy
= 0"y, + 20'y] + vy
Plugging the second solution into the original ODE gives
Xy —x(x+2)y +(x+2)y=0
x? (v”y1 + 20’y + vy’l’) —x(x+2) (v’y1 + vyi) +(x+2) (vyl) =0

Collecting terms on v,v’, 0" gives
0

v’ (xzyl) + 0/ (2x2yi —x(x+2) yl) +0 (xzyi’ —x(x+2)y) + (x +2) yl) =0

Hence
v’ (xzyl) + 0/ (2x2yi —x(x+2) yl) =0
But y; = x, hence y; =1 and the above becomes
v+ (2x2 —x%(x+ 2)) =0
3o’ -x30" =0
Since x > 0 then above reduces to
v -9 =0

% — 2 which is separable. Hence the solution

Let v = z then the above becomes z’ —z =0 or =

is In|z| = x + ¢; or z = cye*. Therefore
v =ce*

Integrating

v=cef+0y
Hence, since

y=un

= (c1e* +cp)x

Therefore the solution is

Y (x) = cyxe* + cpx

2.31.3 Problem 3
Find general solution to x?y” — 3xy’ + 4y = x* In (x) with x > 0
Solution We first solve the homogenous part
x?y” = 3xy +4y =0
We solved this in problem 1, the solution is

v (%) = 2% + cpx? Inx
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To find particular solution, we will use variation of parameters since In (x) is not one of the
good functions to guess for. Writing the ODE in standard form

1 4
Yy’ - 3;_1/’ + Y= In (x)

We see from the homogeneous solution that y; (x) = x?,y, = x?In (x). Hence we assume the
complete solution (including particular solution) is

Y =Yaug + Yollp (1A)

Where
iy = — f &Mﬁx)dx 1)
w= [ y—”;\;x)dx )

Where in the above, f (x) = In (x) and not x? In (x) since we divide by x? in order to make the
ODE standard form. W is the Wronskian. We found the Wronskian for this ODE in part(c)
problem 1, which is W = x®, Hence (1) becomes

2 2
ul:_flen (x)dx:_fln (x)dx

x3 X

Let z = In (x) hence Z—i = j—c or dx = xdz., Hence the integral becomes

2 3

ulz—f%xdz:—fzzdz:—%+c1

1
U = -3 In® (x) + 1

Replacing back gives

And from (2)

2
”2=fx ln(x)dx:fln(x)dx

x3 x
dz 1 .
Let z = In (x) hence i =_or dx = xdz., Hence the integral becomes
2

uzzfj—cxdz=fzdz:%+c2

1
Uy = 5 In? (x) + ¢y

Replacing back gives

Hence from (1A)
Y =Yty + Yolp

= x2 (—% n® (x) + cl) +x21n (x) (% In? (x) + cz)

1 1
= —gxz In® (x) + ;2% + Exz In® (x) + 0,22 In (%)

43



2.3. final exam CHAPTER 2. EXAMS

Hence

y(x) = ;2% + cox? In (x) + %xz In® (x)

2.3.1.4 Problem 4

Consider the equation 2y” - 5y" + cy = 0 with —co < x < oo for c real and constant. (a) For
what values of ¢ does characteristic equation have 2 different real roots? (b) for what values
of ¢ does the characteristic equation have 1 real repeated root? (c) Find general solution for
c = 2. (d) for ¢ = 2 and initial conditions y (xg) = p,y’ (xg) = q write a 2 X 2 matrix equation
to determined the coefficients of general solutions.

Solution

23141 Part (a) Assuming y = Ae" and substituting into the ODE gives the character-
istic equation is
212 -5r+cr=0

The roots are

_ b . Vb2 — 4ac

r

T2 2a
1
:21;/25—&

For two different real roots we want 25 — 8¢ > 0. Therefore 25 > 8¢ or

C<25
8

2.31.4.2 Part (b) For repeated real root, we want r = Z. Which means we want 25—-8c = 0
or

2.3.1.4.3 Part (c) When c =2 the ODE becomes
2y" -5y +2y =0
The characteristic equation is
2r2 -5r+2=0
(r—2)(r— %) =0
Hence the solution is

X
Yy, (x) = c16%* + cpe?
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2.3.1.4.4 Part(d) From above,
1
v, = c12e% + 526

Applying first initial conditions gives the equation

%
p = c16%0 + cpe2 (1)

Applying second initial conditions gives the equation

X0

1
g = c12¢%%0 + 5c2e? 2)

&0 o7 a| [p
2¢%%0 %e% ) |4

We are asked not to solve if. Solution of the above gives c;,c, which completes the solution.

Writing (1,2) in matrix form gives

2.3.1.5 Problem 5

Consider

. (-3 5
X = X
-5 3

(a) find general solution. (b) Write the solution in terms of real functions only. (c) using
method of undetermined coefficients, write the particular solution for

P i tett
x' = x
-5 3 et
(d) Find the algebraic equation that given the undetermined coefficients. Do not solve.

Solution

2.3.1.51 Part (a) The first step is to determine the eigenvalues from

|[A-AIl=0
-3-A2 5
=0
-5 3-A
A24+16=0
A =+4i

For A, = 4i we solve (A—Al)v; =0
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From first equation we find (-3 — 4i) v; + 5v, = 0. Let v; =1 then v, = 3+T4i, hence

(1) [ 5 ]
U1 =|3+4i | = .
T 3+ 4

For A, = —4i we solve (A—-Al)v, =0
—3—/\2 5 ol 0
5 3-M ]l |0
3+4i 5 (o) (0
-5 3+4i]lo,] |0

From first equation we find (-3 + 4i) v; + 5v, = 0. Let v; =1 then v, = 3_T4i, hence

SR

Therefore, the homogenous solution is

xp, (£) = c1xq (£) + cxp (1)

= Clvle/‘lt + szze)\zt

5 . 5 .
=0 ' et 4 Cy . e it
3+ 4 3—-4i
Convert to new basis.

x1 () = Re (x (£))

= Re > et
3+4i

5 4t + isin 4t
~ Re (cos isin4t) ]

(3 + 4i) (cos 4t + isin 4t)

5 (cos 4t + isin 4t)
3 cos4t + 3isin 4t + 4i cos 4t — 4 sin 4t

5 (cos 4t + isin 4tf)
(Bcos4t —4sin4dt) + i (3sin 4t + 4 cos 4f)

3 5 cos 4t
- (3 cos 4t — 4 sin 4t)

5 (cos4t + isin 4f)
(3cos4t —4sin4t) +i(3sin4t + 4 cos 4t)

3 5sin 4t
B 3sin4t + 4 cos 4t

46
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Hence the solution using the new basis is

5 cos 4t 5 sin 4t
x (£) = Cy . +Co .
(3 cos4t — 4sin 4t) 3sin 4t + 4 cos 4t

At

£
2.3.1.5.2 part (c) Since the RHS is [ ¢

4tJ then we try to see what we would do in the
e

scalar case and then convert it to vector form. In scalar case, when RHS is te*, then the
guess for t is (a+bt) and the guess for ¢* is ce'. Therefore for the product, it will be
(a + bt) (ce‘“) = ace® + cbte*. Let ac = A,cb = B, then the guess will becomes Ae* + Bte* or

(A + Bt)e*. We convert this to vector form now

Therefore

Plugging this into the ODE

, [-3 5 tet
xp - -5 3 xp + e4t
bl e4t +4 a; + blt e4t _ -3 5 a; + blt e4t + t€4t
bz a, + bzt -5 3 a, + bzt €4t
bl 44 ﬂ1+b1t _ -3 5 ﬂl+b1t + t
bz a, + bzt -5 3 a, + bzt 1

401 + b] + 4b1t 5112 - 3&1 - 3tb1 + 5tb2 + t
4[12 + bz + 4b2t 3&2 — 5ﬂ1 - 5tb1 + Stbz 1
4:&1 + b] + 4b1t 5ﬂ2 - 3ﬂ1 - Stb] + Stbz +t
4(12 + bz + 4b2t 3112 — 5611 - 5tb1 + 3tb2 +1

4[1] + b] + 4b1t 502 - 3&1 + t(5b2 +1- 3b1)
4612 + bz + 4b2t 3112 - 5[11 +1+ t(3b2 - 5b1)
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From first row in the above, we get two equations. And from the second row in the above,
we get two equations. These are

4(11 + bl = 5(12 - 3(11
4171 = 5b2 +1 —3b1
4a2+b2 =3a2—5a1+1

4b, = 3b, — 5b;
Or
7a1 —5a, +b; =0
7by —5by = 1
5a; +a,+by, =1
b, +5b; =0

In system form, these equations are

7 51 0)\(a 0

0 7 -5||a, 1
1 0 1||h 1
0 5 1)\b 0

We are asked not to solve this. But to verify the solution with computer solution, here is the
complete solution. Solving the above gives

oS a1 O©

23

a] e
128

53

21 _ | 128
b 1
1 %
by —
2

Using these values, the particular solution becomes
ay + byt
X, = 1 1 €4t
ap + bZt
ﬁ + lt
- (13238 2 ] oAt

128 32
And the full solution is

x () = x, () + x, (D)

23 1
5 cos 4t 5sin 4t — 4+ =t
x(t) :cl( cos ]+c2( o ]+(13238 2 Je‘”

3 cos4t —4sin 4t 3sin4t + 4 cos 4t

128 32
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Or

x1 (t) =5C 4t + 5C, sin 4t + 23 + 1t et
1 = 1 COS 2 S111 ]_28 32

33 5
Xy (t) = C; (3cosdt —4sin4t) + C, (3sin4t + 4 cos4t) + (@ - 3—2t) et
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2.3.1.6 Problem 6
Consider
2 -4 48
x =1 X+
(z 4] (9f]

(a) find homogeneous solution. (b) using undetermined coefficients, find particular solution.
(c) find Wronskian (fundamental matrix). (d) Derive the variation of parameters formula
for the solution x (f).

Solution

2.3.1.6.1 Part (a) The first step is to determine the eigenvalues from

A=Al =0
2-1 -4
Lo
A2-61+9=0
(A-3%=0

Hence A = 3 repeated. Let us see if complete eigenvalue or defective. We solve (A — Al)v; =0

e N
;4o o
-1 4|y 0
[0
First row gives —v; — 4v, = 0. Assuming v; = -1 gives v, = i, hence

vi = [_4] (1A)

1

We see that we can only get one eigenvector since the second row gives same result. Therefore
we need a way to find the second eigenvector v,. We start by assuming

x, (t) = vytet + vyett
We plug this back into the ODE and by comparing terms we find that
(A-ADwvy =1

And now we solve for v, from the above equation (since we know v, already)

50



2.3. final exam CHAPTER 2. EXAMS

1 =

Z 1 (%) 1

-1 —4\(vy) (-4

0 0]lw,) |0
First row gives —v; — 4v, = —4. let v; = 0, then v, =1 Hence

o

Which is the same as book method. Now that we found x; () and x; (t) (using either method),
then Xy (t) =01x (t) + CoXy (t) Or

Xy (t) = Clvle’u + Cy (Ult + 172) E’/U

R bR

-4 —4t
= €3t + €3t 2
01(1] Cz[t+1] (2)
48| (48] (O
2.31.6.2 part (b) The RHSis (915] = [0 ] + [9] t. Hence the guess is
b
a3 by
=a+bt
Therefore
x,=b

‘ER‘
I
—

5]
Il
—

B, N R~ DN
|
A
~~~
)
+
-
—
N
+
S
© X
N —
+
—_—
o o
N —
—~

Balance constants
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Balance t

Bl N R= N

2
1
4

b
Solve for (bl) by elimination. R, = R, — %Rl
2

bl

by
by

(1)

Bl=, N R I= N

B

Hence gbz = -9, or b, = -2, from first row 2b; —4b, = 0 or b; = —4. hence

)

o

Substituting this in (1) above gives equation to solve for a

I

as

I

ap

I

O N BRI, DN RPN

as

-4 -48
-2

=52
-2

=52
= 9
2
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From second row a, =1 and from first row 2a; —4a, = =52 or a; = _5§+4 = —24, hence

Hence the particular solution is

And the complete solution is

X =x,+7%,
—4 —4t —24 — 4t
=0 e+ et +
1 t+1 1-2¢

x1 (t) = —4cq® — deyte® — 24 — 4t
Xo () =cre¥ + oy (L+1t)e3 +1 -2t

Or

2.3.1.6.3 part (c) The fundamental matrix @ (¢) is

CD (t) = (xl .X'Z)
_ —4¢3  —4te3t
LS+

2.31.6.4 part (d) The derivation is given in textbook at 498.
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2.3.1.7 Problem 7

Write down the form of the solution including homogenous and particular parts to the
following ODE’s

yz/ _ 2y/ + 4y = ¢ (x sin (\/gx) + e\/§x)
y/l _ 6y’ = xz + X COSh (6x)

solution

For the first ODE

Y’ =2y +4y = e“xsin (\/§x) 4+ (13
We start by finding the homogenous solution for y”” -2y’ +4y = 0. The characteristic equation
is 72 — 2r + 4 = 0, which has roots

r=1+iV3
szl—i\/g

Hence
n )

Yy (X) = c1€* cos (\/gx) + cye* sin (\/gx)

To find particular solution, we need to find a guess. since the RHS is e“x sin (\/gx) + o (1+V3) ,
the guess for 10V3) 4 Coex(l“/é)
is c5sin (\/gx) + cg COS (\/gx) Hence the guess for e“xsin (\/gx) term only is
e*xsin (\/gx) — ¥ (3 + c4x) (c5 sin (\/gx) + ¢4 COS (\/gx))
— (c3€* + cqxe®) (c5 sin (\/gx) + ¢ COS (\/gx))
= c3c5e” sin (\/gx) + c3C4€* COS (\/gx) + c4C5xe* sin (\/gx) + c4Cexe* COs (\/gx)

and the guess for x is c3 + ¢4x and the guess for sin (\/gx)

Rename the constants, and the hence the guess for e“xsin (\/?_)x) term only

e*xsin (\/gx) — Cq€¥sin (\/gx) + Cye* cos (\/gx) + Caxe* sin (\/gx) + Cyxe* cos (\/gx)
Now that we found the initial guess, we have to look at it again and see if y; or y, are in the

guess just made. If so, we add x. We see that since e“x sin (\/gx) is 11, and xe* cos (\/gx) is ¥
so we need to multiply these terms in the guess by x, therefore the above becomes

e*xsin (\/gx) — Cyxe* sin (\/gx) + Cyxe* cos (\/gx) + C3x%e* sin (\/gx) + Cyx%e” cos (\/gx)
Therefore the final guess is
Yy = Coex(1+‘/§) + Cyxe* sin (\/gx) + Cyxe* cos (\/gx) + C3x%e* sin (\/gx) + Cyx%e cos (\/gx)
= Coex(l’“/g) + (Cq + C3x) xe* sin (\/gx) + (Cy + Cyx) xe* cos (\/gx)

54



2.3. final exam CHAPTER 2. EXAMS

We are asked to stop here and not solve for the coefficients. (good, since this is hard). Another
option to find y, is to use the Wronskian. But this generates hard to evaluate integral. The
Wronskian is

W= Vi Vol _ e* cos (\/gx) e* sin (\/gx)
Vi Yo e* cos (\/gx) - \/5 sin (\/gx) e’ e¥sin (\/gx) + \/§ cos (\/gx) er

= e* cos (\/gx) (ex sin (\/gx) + V3 cos (\/gx) e") —e*sin (\/gx) (ex oS (\/gx) ~V3sin (\/gx) e’“)
= ¢ sin (\/gx) cos (\/gx) + V362 cos? (\/gx) - (ez" cos (\/gx) sin (\/gx) — V3¢ sin? (\/gx))
= /362" cos? (\/gx) + V32 sin? (\/gx)
_ 3t

Assume now y, is

Yp = Y1t + Yol
Where

Uy = — f —yZJ;\;x)dx
Uy = f ylf—v\fx)dx
Where f (x) =¢* (x sin (\/gx) + exp (\/gx)) Hence

e sin (\/§x) e* (xsin (\/gx) +eV3x
U =- f (\/gex )dx

= —% fxex sin® (\/gx) + sin (\/gx) el +V3x gy

And
e* cos (\/gx) ex (x sin (\/gx) + e\/gx)
Uy = f dx
V3ex

= % f xe* sin (\/gx) cos (\/gx) +e1+V3Y cog (\/gx) dx

For the second ODE

y// . 6]/’ = x2 + xcosh (6x)

We start by finding the homogenous solution for y” — 6y’ = 0. The characteristic equation is
1> —6r =0, or r(r — 6) = 0 which has roots r; = 0,7, = 6 hence

yp, = ¢p + e
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Therefore y; = 1,y, = ¢%*. Since RHS is
f (x) = x? + x cosh (6x)
e6x + e—6x
2

=x2+x

1 1
= x% + —xe® + —xe O

Then we see that y, which is solution of the homogenous solution is part of the forcing
function. Let us find y, now.

For x? we guess c1 + cox + c3x%. But now we see that ¢; which is constant, is just y; =1 (scalar
multiple of). So we have to multiply the whole guess by x, resulting in (clx +0px? + c3x3) .

For xe® we guess (¢4 + c5x) % but since y, = ¢ we have to multiply the guess by x giving
(c4x + c5x2) e,

For xe ® the guess is (cg + c7X) ¢ . Hence we collect all these and obtain the guess y, as
yp = (clx + Cpx? + c3x3) + (g + C5x) X% + (cq + Cyx) €76%
Another option to find y, is to use the Wronskian. The Wronskian is

1 er

0 6¢*

Y1 Yo
vi Y

W =

— 6ex

Assume now y, is

Yp = Y11 + Yalp
Where

Uy = — f —yZJ;\;x)dx

Uy = f yu;\;x)dx

Where f (x) = x2 + x cosh (6x). Hence

1 [ x*+ xcosh (6x)
—— dx
6 e*

up =
And
o (x2 + x cosh (6x))
6e*

== fe6x (x2 + x cosh (6x)) dx

dx

Uy =

—

AN =

2.3.1.8 Problem 8

Find general solution to
y© + 4y + 8y@ + 16y + 20y” + 16y’ +16y = 0
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The characteristic equation is
% +4y° + 8% +161° + 2012 + 167 +16 = 0
Using the hint

(r +2)° (r2 + 2)2 =0
(r+2)(r+2) (P +2)(2+2) =0
Hence the roots are r; = =2 multiplicity 2 and r, = ii\@ multiplicity 2. hence the solution is
Y = c1e % + coxe ™ + 036!V + eV + x (c5ei 2 4 cge™ 2")
Or as real functions, using Euler relation
Y, = cre 2 + cpxe > + c3cos (\/Ex) + ¢4 8in (\/ix) + c5x COS (\/Ex) + cgx sin (\/Ex)

Where constants labels kept the same for simplicity (in practice these are not the same).
The solution is analytic everywhere, hence range of solution is —co < x < o0
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2.3.2 key for final practice exam
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2.3.3 final exam questions
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2.3.4 sheat sheet for final exam

Math 320 Exam Crib Sheet

1. Integration by Parts Formula

/udv:uvf/vdu

/.’L’ exp(z)dx = wexp(z) — /exp(:t)dm + C = zexp(z) — exp(z) + C

Example:

with u = z, dv = exp(z) dz, du = dz, and v = exp(z).

2. Example of Partial Fractions

R e e

Let
5 A . B
G- D3 @2 (-9
_ A(xz—-3)+ Bz —-2)
(x—2)(x—3)
Therefore

(A+B)x=0 and —3A-2B=5.
Solving A+ B =0 and —3A — 2B =5 gives A = —5 and B = 5. So finally

5 [ -5 o
/mdxf/(m_mdz-i-/(l._adxf 5In|z —2|+5Injz - 3|+ C.

3. Exponentials and the Natural Logarithm: All arguments of In are assumed greater
than zero.

In(1) =0
In(a/b) = In(a) — In(b)
In(ab) = In(a) + In(d)

In(a") = r1n(a)

1
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/%du:ln|u|+0, u#0
exp(ln(z)) = =
In(exp(x)) =«

exp(a + b) = exp(a) exp(b)

~—

exp(a
exp(b)

exp(ab) = (exp(a))” = (exp(b))”

exp(a —b) =

4. Taylor Series for f(x) about the point z = x,:

> dr (x —xz,)"

flz) = dzn (@)=,

n!
n=0

6. Sines and cosines for some angles:

cos(m/6) = V/3/2, sin(n/6) = 1/2
cos(m/3) =1/2, sin(n/3) = V3/2
cos(2m/3) = —1/2, sin(27/3) = V/3/2
cos(4m/3) = —1/2, sin(47/3) = —V/3/2
cos(5m/3) =1/2, sin(5m/3) = —v/3/2
cos(m/4) =V/2/2, sin(n/4) = V2/2
cos(3m/4) = —\/2/2, sin(3w/4) = V2/2
cos(5m/4) = —/2/2, sin(br/4) = —v/2/2
cos(Tm/4) = v2/2, sin(7r/4) = —v/2/2

7. Definition of sinh(x) and cosh(x): sinh(x) = (e* —e™7)/2, cosh(z) = (e* +e77)/2

2
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Chapter 3

study notes

3.1 cheat sheet

3.1.1 Summary of content of what will be in exam 2
section 3.1

1. Possible solutions of Ax = b are: no solution, unique solution, infinite number of
solutions.

2. Elementray row operations: multiply one row by non-zero constant, interchange two
rows, add multiple of one row to another row

section 3.2
1. Matrices, Gaussian elimination.
2. Setting up augumented matrix (A|b)

3. Two matrices are row equivelent if we can do operations on one matrix, and obtain
the other matrix

4. Echelon form. Backsubstitution to obtain solution.
section 3.3

1. Reduced Echeoln form: Each leadeing entry in row must be one. All entries in same
column as leading entry, above it or below it must be zero. Gauss-Jordan elimination
generates Reduced Echeoln form. We basically do Gaussian elimination, followed by
backward elimnination, then normalize all diagonal elements to 1.

section 3.4 This section is mainly on matrix operations. Multiplications. How to multiply
matrices. How to write system is linear equations as Ax = b. All basic stuff.

section 3.5 Inverses of matrices.
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—

. To find A7L. Set up the (A|l) and generate reduced echelon form.
2. Definition of matrix inverse. B is inverse of A if AB=1 and BA=1.

3. Matrix inverse is unique. (theorem 1)
-1
4. Theorem 3: (A‘l) = A, (AB)_1 =B1A"!
5. If A is square and Ax = b has unique solution then x = A™!b (thm 4)

6. square Matrix is invertible, iff it is row equivalent to I,,. Invertible matrix is also called
non-singular.

section 3.6 Determinants.

1. To find determinants. Do cofactor expansion along a row or column. Pick one with
most zeros in it, to save time.

(a) Property 1: If we multiply one row (or column) of A by k then |A| becomes k|A]
(b) property 2: interchanging two rows, introduces a minus sign in |A]
(c) property 3: If two rows or columns are the same then |A| =0

(d) property 4: if A;, A,, B are identical, except that i row of B is the sum of the i
of A; and A,, then |B| = |A{| + |A)]

(e) property 5: Adding constant multiple of one row (or column) to another row (or
column) do not change the determinant.

(f) property 6: for upper or lower triangle matrix, |A| is the product of all diagonal
elements.

2. Matrix transpose. (but we did not use this much in class).
3. Thm 2. Matrix A is invertible iff [A] # 0
4. thm 3. |AB| = |Al|B|., But in general |A + B| # |A| + |B]

5. a7 =

6. Cramer rule. But we did not use it. Thm 4. We also did not do thm 5 (adjoint matrices).
Section 3.7 Linear equations, curve fitting. Did not cover.
section 4.1 Vector spaces.

1. Define R3 as set of all ordered triples (a,b,c) of real numbers. (coordinates)

2. Thm 1. If u, v, w are vectors in IR? then we have properties of communtativity, associa-
tivity, additive inverse and zero element, and distrbutivity. See page 230 for list.

3. Thm 2. Two vectors u,v are Linearly dependent iff there exist scalars a,b not both
zero, such that au + bv =0
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3 vectors in R® are L.D. if one vector is linear combination of the other two vectors.

THM 4. If we put 3 vectors as columns of A and then find |A| = 0 then the 3 vectors
are L.D.

For square matrix, if Ax =0 has only trivial solution, then columns of A are L.I.
THM 5. If 3 vectors in R? are L.1., then they are basis vectors.

subspaces of R®. None empty subset W of vectors of R® is subspace iff it is closed
under addition and closed under scalar multiplication. Basic problems here, is to show
if vectors make subspace or not. By seeing if the space is closed under additon and
scalar multiplication.

section 4.2 Vector space R” and subspaces. (page 238).

1.
2.

4.

Definition of R” vector space. Page 240. 7 points listed.

THM 1. Subspace. A subset of R” which is also a vector space is called subspace.
We only need to verify closed under additions and closed under multiplication for
subspace.

Solution space: The space in which solution of A,,,,x,x1 = 0,,%x1 live. THis will always
be subspace of R". To find it, do G.E. and find the free variables. The number of free
variables, tell us the dimension of the subspace. If there are 2 free variables, then there
will be two basis for the solution space. Each vector will be n length. So the solution
space is subspace of R”

Solution space of A,,,,x = 0 is always subspace of R”

section 4.3 Linear combinations and independence of vectors

1.

3.
4.

Given a vector w and set of L.I. vectors v;, find if that vector can be expressed as linear
combination of the set of vectors. Set up w = ¢;v; +c,v, + --- and solve Ac = w and see
if c is all zeros or not.

Definition: L.I. of vectors. Solve Ac = 0 and see if ¢ = 0 or not. If ¢ = 0 is solution, then
L.L

For square matrix, the columns are L.I. if |A] # 0.

For A,,,, with m > n, then if rank A is n, then the columns of A are L.I.

section 4.4 Basis and dimensions of vector spaces. Did not cover for exam.

3.1.2 possible questions and how to answer them

Question Given a set of linear equations in form Ax = b and asks if the system is consistent
or not.

Answer System is consistent if it has solution. The solution can be either unique or infinite
number of them. To answer this, setup the augmented matrix (Alb) and generate Echelon

85



3.1. cheat sheet CHAPTER 3. STUDY NOTES

form (using Gaussian elimination). Then look at the last row. Lets say A had m rows. If last
entry in last row is 0 = 0, then there are infinite solutions, so consistent because this means
Ox,, = 0 and x,, can be anything.

If last entry in last row looks like 0 = r where r is a number not zero, then no solution, hence
not consistent. If last entry in last row looks line number = anything then unique solution.
So consistent.

So we really need to check if last entry in last row is 0 = r to decide. Be careful, do not
check to see if |A| not equal to zero and then say it is consistent. Because |A| = 0 can still
be consistent, since we can have infinite number of solutions. |A| = 0 does not necessarily
mean no solution.

For example, this system

3X1+X2—3X3:—4
X1+XZ+X3:1
5x1+6x2+8x3:0

For the above |A| = 0. And it happened that this system has no solution hence not consistent.
And the following system

X1+ 3XZ + 3X3 =13
2x1 + 5XZ + 4.7(3 =23
le + 7x2 + SX3 =29

has also |A] = 0. But the above has infinite number of solutions. Hence consistent. So bottom
line, do not use |A| to answer questions about consistent or not. (also |A| only works for
square matrices any way). So what does |A| give? If |A] is not zero, it says the solution is
unique. So if the question gives square matrix, and asks if solution is unique, only then
check |A| = 0 or not.

Question Problem gives set of linear equations in form Ax = b and asks if system has unique
solution, no solution, or infinite solution.

Answer Same as above. Follow same steps.

Question Problem gives square matrix A and asks to find A~

Answer Set up the augmented matrix (A[l) where I is the identity matrix. Go through the
forward elimination to reach echelon form. Then go though the backward elimination to
each reduced Echelon form. Then make all diagonals in A be 1. While doing these row
operations, always do them on the whole (A|l) system, not just on A. At then end, A1 will
be where I was sitting.
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Question Problem gives square matrix A and and square matrix B and asks if B is the inverse
of A

Answer Start by multiplying AB and see if you can get I as result. Also need to do BA and
see if you can get I as well. If so, then B is the inverse of A. To get to I need to do some
matrix manipulation in the middle. But it is all algebra. This is all based on AA™ = A1TA=1.
(if A is invertible ofcourse). Remember also that A™! is unique. i.e. given a matrix, it has
only one matrix which is its inverse.

Question Problem asks to proof that matrix inverse is unique.

Answer Let A be invertible. Let B be its inverse. Assume now that C is also its inverse but
C # B. Then C = CI = C(AB) = (CA)B = IB = B, hence C = B. Proof by contradiction. So
only unique inverse.

Question
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41 HWI1

41.1 Section 1.3 problem 12

Determine whether existence of at least one solution of given initial value problem is guar-
anteed and is so, whether solution is unique.

dy
Iy xlnyy1) =1

Solution

f (x, y) =xlny
Sine f (x,y) is continuous in x for all x and continuous in y for ¥ > 0 and since initial
condition is at point (1,1), then a solution exist in some interval that contains (1,1).

8f(x,y) x

dy Y

J f(x,y)
9y

condition is at point (1,1), then the solution is unique in some interval that contains (1,1).

Since

is continuous in x for all x and continuous in y for y # 0 and since initial

The following the the slope field for f (x, y) = xIny showing small interval that contains (1,1)

Direction fields are continuous in some interval (red box)
around initial conditions point at (1,1). Therefore
Solution exist an is unique

[ — T T T T T T T T T \/ ‘/ -

14} ]

12} ]

= 1.0 ]
>

B = e

' e N

0.6 i:\\\\:\\:\{\\N 1]

O AUTRIOOOIONONON

Figure 4.1: Problem 1.3, 11
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4.1.2 Section 1.3 problem 17

Determine whether existence of at least one solution of given initial value problem is guar-
anteed and is so, whether solution is unique.

dy
-~ =x-1: =1
ix iy (0)

Solution

f(x,y) =x-1

f (x, y) is continuous for all x (there is no y dependency to check), then a solution exist in
some interval that contains (0,1).

af (x, y)
Iy
No dependency on x or y to check. Hence solution is unique in some interval that contains

=0

(0,1). The following the the slope field for f (x, y) = x—1 showing small interval that contains
0,1)

Direction fields are continuous in some interval (red box)
around initial conditions point at (0,1). Therefore
Solution exist an is unique

e o SO N
3 AN N
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%
%
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s
/
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y(x)
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A A )//
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-0.2 0.0 0.2 0.4

Figure 4.2: Problem 1.3, 17
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4.1.3 Section 1.3 problem 18

Determine whether existence of at least one solution of given initial value problem is guar-
anteed and is so, whether solution is unique.

dy

2L =x-1y(1) =
Uil ;y1) =0

Solution

flxy) =

f (x, y) is continuous for all x, and continuous for all y except at y = 0. But since the initial

x-1
Y

point itself is at (x =1,y= 0), therefore, the theory can not decide on existence or uniqueness
of solution in an intervals containing (1, 0).

4.1.4 Section 1.3 problem 22

Use the method of example 2 (page 20) to construct slope field then sketch solution curve
corresponding to the given initial condition. Finally use this solution curve to estimate the
desired value of the solution y(x).

dy _
dx
y4) =
y(-4) =72
Solution
floy)=y-x

By making slope field for f (x, y) = y — x, then locating initial point (4,1) and tracing the
slope back to x = —4, we can then read the y value to be —-3. Here is a plot showing trace of
the slope field to the point x = —4, where y = -3. Hence y (-4) = -3.
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Tracing Direction slope from (4,1) to x=-4
shows that y(-4)=-3

Figure 4.3: Problem 1.3, 22

4.1.5 Section 1.3 problem 26

Suppose the deer population P (f) in small forest satisfies logistic equation % = 0.0225p —

0.0003p?. Construct a slope field and appropriate solution curve to answer the following
questions: If there are 25 deer at time ¢ = 0 and f is measured in months, how long will it
take for the number of deer to double? What will be the limiting deer population?

Solution

The slope field was first drawn. Then the point (0,25) was located. Then the slope field was
traced until y = 50, which is double the number of deer from the initial starting time. Now
the t component was read from the slope field to answer the first part of the question.

£ (t,p) = 0.0225p - 0.0003p?

Here is a plot showing trace of the slope field. This shows at about # = 60 months, the deer
population will be 50.
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Tracing Direction slope from (0,25) to p=50
then finding time at this point. =60 months

60 "+

Figure 4.4: Problem 1.3, 26

41.6 Section 1.3 problem 28

Verify that if k is constant, then the function y(x) = kx satisfies the differential equation
xy’ =y for all x. Construct a slope field and several of the these straight line solution curves.
Then determine (in terms of a and b) how many different solutions the initial value problem
xy’ =y;y(a) = b has. One, none or infinitely many.

Solution

To verify that y (x) = kx satisfies the differential equation, we plug-in this solution into the
ODE and check that we get the same RHS as given. We see that y’ (x) = k. Therefore xy’ =y
becomes x (k) = y = kx. Hence satisfied.

y
flry) ==
This is continuous for all x except at x = 0 and continuous for all y. Therefore solution exist
If(vy) 1

in interval which do not contain x = 0. In addition

X which is continuous for all x
except at x = 0. Hence there is a solution and the solution is unique in an interval that do

not contain x = 0. Here is a plot of the slope field in region around the origin.
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y(x)
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Figure 4.5: Problem 1.3, 28

We see from the above, that if we start from x = 0,y = 0, then there are co number of
solutions, since there are co number of slope lines starting or ending at (0,0). For any point
(a,b) where a # 0, there is unique solution, since we can find interval around (g, b) in this
case with unique slope line. Finally, if 2 = 0 but b # 0, which means the initial condition is
at the y axis, then there is no solution, since the slop is co in this case. Hence

1. Infinite number of solutionif a=0and b =0
2. No solutionif a =0,b #0

3. Unique solution if 2 # 0 and b # 0.

4.1.7 Section 1.3 problem 30

Verify that if c is constant, then the function defined piecewise by

1 x<c
y(x) =14 cos(x—c) c<x<c+T
-1 X>Cc+m

Satisfies ' = —4/1 —y? for all x. (Perhaps an preliminary sketch with ¢ = 0 will be helpful).
Sketch a variety of such solution curves. Then determine (in terms of 2 and b how many

different solutions the initial value problem y’ = —/1 - y?;y(a) = b has.
Solution

The solution y (x) is plotted for ¢ = 0,1, +1. The following show the result. The effect of c is
that it causes a shift to the left or right depending on value of c.
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Casec=-1 Casec=0 Casec=1
y(x) y(x) y(x)
ﬂ —1.0] 1.0
0.5 0,5\ 0.5 \

- - - ~ X - = 4 - - ~ X
=27 -7t 7T 2 |-2m -7T I 2 -2 -7 v 2
-0.5 -0.5 -0.5¢
-1.0 -1.0 -1.0f

Figure 4.6: Problem 1.3, 30

Since

flry)=-—y1-¢2

Then the above is real, when |y| < 1 otherwise the value under the root will be become
negative. To show that y (x) satisfies the ODE, we plug-in each branch of the piecewise, one
at a time, into the ODE and see if it satisfies it. When x < ¢, then y (x) = 1. Plugging this
into the ODE gives 0 = 0. Verified. When ¢ < x < ¢ + 7, then y (x) = cos (x — ¢). Plugging this
into the ODE gives

—gin(x—c¢) = —\/1 — (cos (x — c))2
= —4/sin (x — c)2
= —sin(x —¢)
Hence satisfied. When x > c + 7 then y (x) = -1 and plugging this into the ODE gives
0=—+/1-(-1)
=-V1-1
=0
Hence solution y (x) satisfies the ODE. The slope field is now plotted
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Slope field plot for |y|<1
y(x)

Figure 4.7: Problem 1.3, 30

We see from the slope plot, that starting at any point in a region, as long as |y| <0, then
the solution is unique. When y =1 or y = -1, then ¥’ = 0, and this gives infinite number of
solutions since y = c for any constant is a solution. For real solution, y can not be larger
than 1. Hence in summary

1. Infinite number of solutions if b = +1
2. Unique solution for any (a,b) where [b| <1

3. No real solution for |b] > 1

4.1.8 Section 1.4 problem 6

Final general solution of Z—z = 3/xy
Solution

This is separable.

dy
—Z = 34/xdx
Vv

c 1
y2dy =3x2dx
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Integrating

1 3
2 2
yT:BxT+c
2 2
1 3
2y2 =2x2 +¢
o8
Y2 =x2+0
3 2
y=|x2 +cl)

4.1.9 Section 1.4 problem 10

Final general solution of (1 + x)? Z—z = (1 + y)2

Solution

Before solving, it is good idea to check if the solution exist and if it is unique.

_@+@2
- a+ x)2

f(xy)

f (x, y) is continuous for all ¥ but not continuous for x = 1. Therefore solution exist as long
as solution interval or initial conditions do not include x = —1.

Bf(x,y) ~ 2(1 +y)
Wy (1+x)?

f (x, y) is continuous for all y but not continuous for x = —1. Therefore solution exist and is
unique as long as solution interval or initial conditions do not include x = 1. The slope

field is given below

Slope field
y(x)

SN, P e
P e
A L e
A A
ﬁ(//l’//ﬂf N e e
W= s

Figure 4.8: Problem 1.4, 10
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Now the ODE is solved. This is separable.
dy dx
(1+ y)z (1 +x)°

d d
J ( +yy)2 - a +xx>2

Integrating

du dy du 1 -1 o . dx -1
= — =1. - = — — larl — = —.
Let u = 1+ y then ” 1. Hence f (1+y)2 - |5 midl vor Similarly, f nf - T
Therefore the above becomes
-1 -1
T+y 1+x
1 1
— = +0
1+y 1+x
1 1400+
1+y 1+x
liy= 1+x
A c1 (1 +x)
Hence
_ 1+x _
T 1+¢1(14%)
For x # -1.

4.1.10 Section 1.4 problem 22

Find explicit particular solution of % =43y -y;y(1) = -3

Solution

Before solving, it is good idea to check if the solution exist and if it is unique.
flvy) =4y -y

f (x, y) is continuous for all y and continuous for all x.

df (x,
M — 4x3 -1
dy
af(x,
fgy) is continuous for all x. It does not depend on y. Hence solution is exist and is unique

in some interval that contain initial point (1, -3). Now the ODE is solved.

dy 3

==Y (43 -1)
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This is now separable

v _ (4x3 - 1) dx
Yy
Integrating

!
Inly=4—-x+c
Iyl = 47
Inly|=x*-x+c
y= pXi-xte
Let ¢ = ¢4, then the above can be written as
y= clex4‘x
Now the constant of integration is found from initial conditions. y (1) = -3, therefore

-1 _ ¢

-3 =ce
Hence the solution becomes
y(x) = —3extx

Here is a plot of the solution in small interval around x =1

Plot of solution problem 1.4 (22) near initial conditions

0.0 0.2 0.4 0.6 0.8 1.0 1.2
X

Figure 4.9: Problem 1.4, 22

4.1.11 Section 1.4 problem 26

Find explicit particular solution of Z—z =2xy? + 3x%y%y (1) = -1
Solution

Before solving, it is good idea to check if the solution exist and if it is unique.

f (x, y) = 2xy? + 3x%y?
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f (x, y) is continuous for all y and continuous for all x.

af (x,
% = 4xy + 6x%y
If(xy) | ) ., . )
——= is continuous for all x and for all y. Hence a solution is exist and is unique in some
interval that contain initial point (1, -1). Now the ODE is solved.

Z—Z =y? (Zx + 3x2)

This is separable.

d
—Z = 2x + 3x%dx

Yy
Integrating
1
——=x>+x*+c
Yy
1
- :—(x2+x3+c)
Yy
B -1
o,
Applying initial conditions to find c gives
s
C1+1l+4c
-2-c=-1
c=-1
Hence solution is
B -1
7
B 1
C1-x2-a3

Here is a plot of the solution in small interval around x =1
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Plot of solution problem 1.4 (26) near initial conditions

y(x)

0.0 0.5 1.0 1.5 2.0

X

Figure 4.10: Problem 1.4, 26

We notice that at the real root of 1 —x2? — x%, the solution y (x) goes to +oo. This happens at
x = 0.75487.

4.1.12 Section 1.4 problem 30

2
d . . . .
Solve (%) = 4y to verify the general solution curves and singular solution curve that are

illustrated in fig 1.4.5. Then determine the points (4,b) in the plane for which the initial

2
value problem (y’) =4y;y(a) = b has (a) No solution, (b) infinitely many solutions that are
defined for all x, (c) on some neighborhood of the point x = 4, only finitely many solutions.

Solution

Figure 1.4.5 is below
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754 |/

sof /[

—-15 -1} -5 0 5 10 15

x

FIGURE 1.4.5. The general
solution curves y = (x — €)? and
the singular solution curve y =0
of the differential equation

() =4y.

fvy) =2y

afx,
Hence f (x, y) is continuous in y for y > 0. Hence solutions exist for y > 0. fxy)

9y
this is also continuous in y for y > 0. Therefore, unique solution exist for y > 0. (Interval
can be found around initial conditions (a,b) as long as b > 0). Here is slope field plot

=421 and
Y

Slope field

Figure 4.11: Problem 1.4, 30

dy
T 24y
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For the negative case, we obtain

y2dy = -2dx
1
2y2 = 2x+c
1
Y2 =-x+c
y=(c1—x)
For the positive case
-1
y2dy = 2dx
1
2y2 =2x+c
1
Y2 =x+0
y=(c;+x)°
Hence the solutions are
(c1 —x)°
y() =1 (e +x?
0 singular solution

The solution y(x) = 0 is singular, since it can not be obtained from the general solution
(¢, — x)°* for arbitrary c. Summary:

1. No solution for y <0
2. singular solution for y =0
3. Two general solutions (c; — x)2 and (c; + x)2 for all x and y > 0.

The following is plot of y (x) = (c; - x)2 for few values of c; to show the shape of the solution
curves. This agrees with the figure given in the book.
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100

80

60+

401

201

-20 -10 0 10 20

Figure 4.12: Problem 1.4, 30

4.1.13 Section 1.4 problem 42

A certain moon rock was found to contain equal number of potassium and argon atoms.
Assume that all the argon is the result of radioactive decay of potassium (its half like is about
1.28 x 10° years) and that one of every nine potassium atom disintegrations yields an argon
atom. What is the age of the rock, measured from the time it contained only potassium?

Solution

Half life is the time for a quantity to reduce to half its original number. Let T = 1.28 x 10°
years in this example. Let P (0) be the number of potassium atoms at time ¢ = 0. Hence the
formula for half life decay is

t

vo-rol)

Where in the above P (t) is number of potassium atoms that remain after time ¢. Let g (f) be

the number of argon atoms at time ¢. Since é of the decayed potassium atoms changed to
argon, then

5= 5 (PO~ P )

1 1)7
1 1 T
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Since we want to find t when g (t) = P (t), then we solve from
t

gt)=P()
1 1 T 1\T

-G J-6

Taking log

-0.693
= 4.2482 x 10°

Hence it will take 4.2482 billion years.

-23
=1.28 x 10° (—)

4.1.14 Section 1.4 problem 46

The barometric pressure p (in inches of mercury) at an altitude x miles above sea level

satisfies the initial value problem Z—Z = (-0.2)p;p(0) = 29.92. (a) Calculate the barometric
pressure at 10,000 ft. and again at 30,000 ft. (b) Without prior conditioning, few people can
survive when the pressure drops to less than 15 in. Of mercury. How high is that?

Solution

41141 Part (a)

dp
E = (—02)p
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This is separable.

d
P _ -0.2dx
p
In |p| =-02x+c
p= Ce—O.Zx
To find ¢, we apply initial conditions. At x = 0,p = 29.92 in, hence
2992 =¢
Therefore the general solution is
p = 29.92¢70%

Now, when x = 10000 ft or 10000/5280 = 1.894 miles, then
p = 29.92¢~02(1:8%)
= 20.486 in
when x = 30000 ft or 30000/5280 = 5.6818 miles, then

p= 29.926—0.2(5.6818)
= 9.6039 in

4.1.14.2 Part (b)

We solve for x from
15 = 29.92¢70-2x

15 — p—0.2x
29.92
Taking natural log
15
In —— =-0.2x
29.92
—0.69047 = -0.2x
Hence
0.69047 )
X = 02 3.4524 miles

= (3.4524) (5280) = 18229 ft
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42 HW2

4.21 Section 1.5 problem 18 (page 56)

Problem Find general solution for xy’ = 2y + x° cos x

Solution It is a good idea to first check if solution exist and if it is unique. Writing the ODE
as

v =f(xy)
_ 2y +x3cosx
=

We see that f (x, y) is continuous for all x # 0 and for all y. And

af (x, y) 2
dy  x
This is continuous for all x # 0. Therefore solution exist and unique in some interval which
do not include x = 0. Now we will solve the ODE.

xy’ =2y + x°cosx

Dividing by x # 0 and rearranging gives

2

' T — 42
y-zy=x

COS X

2
We see that the integrating factor y = el 5 = g2 % Hence the above ODE can now
be written as exact differential by multiplying both side with u

d
o (yy) = 1 (a2 cos x)

d (1 1
o (;y) =3 (x2 Cos x)

d (1
E ;y = COS X
Integrating both sides gives
1 )
x—zy =sinx+c¢

y =x(sinx +c); x#0

4.2.2 Section 1.5 problem 22

Problem Find solution for y" = 2xy + 3x2e" ;y(0)=5

Solution It is a good idea to first check if solution exist and if it is unique. Writing the ODE
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as
v =f(xy)
= 2xy + 3x2e*
We see that f (x, y) is continuous for all x and for all y. And
af (x, y)
Iy

This is continuous for all x. Therefore solution exist and unique in some interval. Now we
will solve the ODE.

= 2x

Y — 2xy = 3x%e"
We see that the integrating factor u = e/ 2 = ¢~* Hence the above ODE can now be

written as exact differential by multiplying both side with u
d 2
2 () = (34e°)

dx

Integrating both sides
ey =xd+c
Hence
y=e" (x3 + c)
Now initial conditions y(0) = 5 are applied to find c. This gives
5=c
Hence the complete solution (or the particular solution for this initial conditions) is

y=e" (x3 + 5)
4.2.3 Section 1.5 problem 25

-3
Problem Find solution for (x2 + 1) Y +3x% = 6xe7xz;y 0) =1

Solution It is a good idea to first check if solution exist and if it is unique. Writing the ODE
as

v = f(xy)
32
_bxez" —3x%
B x2+1

We see that f (x, y) is continuous for all x except when x? = -1 or x = +i. But this is not on
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real line hence it will not affect us. It is also continuous for all y.

af (x, y) 3x3

dy  x2+1

Again, this is continuous for all x except when x? = -1 or x = +i. But this is not on real line
hence it will not affect us.

Therefore solution exists and unique for all x and y. Now we will solve the ODE.

) 3x3  6xe?”
ST e

3:3
——d
Integration factor is y = ef 21" To evaluate the integral:

3x3 X3
dx = f d
fx2+1x 3 x2+1x
x
:3f - d
* x2+1x

3 X
2
2x X2 +1 x
_ 2x

. d 2 . . . X
Since ——In (x + 1) = -7 then by comparing this to the second integral, we see that f e

+1
% In (xz + 1), hence

3x3 3 3
_22 2
fx2+1dx—§x —Eln(x +1)

Therefore

3:3
U= ef x2+1 dx

= exp gxz - gln (xz + 1))

= exp gxz) exp (—g In (x2 + 1))

-3
= exp gxz) exp (111 (xz + 1) 2 )
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Multiplying both sides of the ODE with this integration factor gives

1)

_3
= —21/l 2

32
i( ) _ 6xe 2
dx W)= g
d egx2 B 6909_733(2 egx2
dx Rl IO :
(xz+1)2 (xz+1)2
32
d e2 3 6x
ax L 5
(x2+1)2 (9c2+1)2
Integrating both sides
32
e2 6x
——Y= f 5 dx +c¢
(x2+1)2 (x2 +1)2
To evaluate f 6—x5dx, let u = x?> + 1 hence du = 2xdx, therefore the integral becomes
(x2+1)2
J _3
6 6 1 _5 2
[~ = S8 [ Lams [ zduzg[%
(2 +1)° w2 -
Hence
6x -3 -2
de:—Z(x2+1)2: 3
(x2 +1)2 (x2 +1)2
Hence (1) becomes
32
e2” -2
Y= 7t
(xz+1)2 (x2+1)2
3 3
2 (x2 +1)2 (x2+1)2
y= 3T 3, I,
(241) o

3 3

__3x2 2 > _x2
y=-2e2 +c(x +1) e?

Applying y(0) =1 gives

1=-2+c¢

c=3
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Hence the particular solution is

3 3
2,32%

y——ZeZ +3(x +1)

e
-3
:e?xz( x2 +1 )

4.2.4 Section 1.5 problem 27

Problem Solve the differential equation by regarding v as the independent variable rather

than x

Solution

For x (y) # yeY. Hence

(x(s) +3e1) 715 =1

2

Integrating factor is yu = oS = e, Multiplying both sides with u gives

Integrating both sides

Therefore

dx (y)
dy _ 1
dx (y) X (y) + ye¥
d
Z(yy) =x(y) + e
d
T
d
3;}(;,) =x(y) +ye!
d
) )=
d
” (1) = pye
e -
e Yx (y) = y; +c
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4.2.5 Section 1.5 problem 31

Problem (a) show that y. (x) = Ce JPOMx i o general solution of Z—Z +P(x)y = 0. (b) Show that
Y, (x) = ¢~ J P f (Q (x) efp(x)d") dx is a particular solution of Z—z +P(x)y = Q(x). (c) Suppose
that y. (x) is any general solution of Z—Z + P (x)y = 0 and that y, (x) is any particular solution
of Z—z +P(x)y = Q (x). Show that y (x) = y. (x) +y, (x) is a general solution of Z—Z +P(x)y=Q((x)

Solution

4.2.51 Part (a)

Given
d_y +P(x)y=0
dx
Then
d_y = —P(x)dx
Y

Integrating both sides
1n|y| = —fP(x)dx+ C
y(x) — Ce—fP(x)dx

QED. We can also solve this by substituting y (x) = Ce™ /PO into Z—Z + P (x)y = 0 which gives

d
A= E (Ce—fP(x)dx) +P () Ce—fP(x)dx (1)

%(Ce—fP(x)dx) :C% (—fP(x)dx) o~ [ P

= —CP ()¢ /P&
Therefore (1) becomes

A = —CP (x) e J PO 4 p(x) Ce [ P
=0

Hence the solution y (x) = Ce™J PO gatisfies the ODE. Therefore it is solution.
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4.2.5.2 Part(b)

Given Z—Z + P (x)y = Q(x), the integrating factor is y = ol Py Multiplying this by both sides
of the ODE gives

efP(x)de_z " efp(x)dxp (X)y = efp(x)de(x)

d

- (efP(x)dxy (x)) _ efp(x)de(x)

Integrating both sides
el? Cdxy (x) = f el? @4x0 (x) dx + C

y(x) — e—fP(X)dx (f efP(X)de (X) dX) + Ce—fP(x)dx

For particular C = 0, we obtain

v, () = o~ [ P (fefp(")de(x) dx)

Which is what we asked to show.

4.2.5.3 Part(c)
Let
y () =y (%) +y, (%)
— Co JP@ix - [P ( f ol POX() () dx)

. .. d op s . . . d
We need now to substitute this in ﬁ + P(x)y = Q(x) and see if it satisfies it. First we find %

£ e ] 4l (i)
_ eI PO (Cp () + % o [ P ( f o POt () dx) + o P % f oI PO (1) i
_ _CP (e P 4 o [P (_p () ( f o PR (3 dx) + o S PG (efP(x)de(x))
_ _CP ()¢ P p () o [ Py ( f oJ PG () dx) + o [ PGox ( o P (x))
= —CP e I P p ) [P ( [l P01 ) + Q )

= _P(x)e [P0 [ f e PO () e + c] + Q@)
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Substituting the above into the left hand side of the given Z—Z +P(x)y=Q(x)

dy
LHS = —+P
S T +P(x)y

=-P(x) o J PEdx [fefp(x)de (%) dx + C] +Q(x)+ P(x) [Ce‘fp(x)dx + o~ PE0dx (f efp(x)de (%) dx)]

= -P(x) ¢~ J P [f efp(x)de (x)dx + C] +Q (x) + P (x) ¢~ J P [C + (fefp(x)de (%) dx)]
We see that the first term in the RHS above and the third term cancel each others. Hence
LHS = Q(x)
Which is the right side of the ODE. Hence the solution y (x) = y. (x) +y, (x) satisfies the ODE.

QED.

4.2.6 Section 1.5 problem 37

Problem A 400 gal tank initially contains 100 gal of brine containing 50 1b of salt. Brine
containing 1 Ib of salt per gallon enters the tank at rate 5 gal/s and the well mixed brine in
the tank flows out at rate of 3 gal/s. How much salt will the tank contain when it is full of
brine?

Solution

To reduce confusion, let x be the substance which causes the concentration in the Brine. Let
Q(t) be the mass (normally called the amount, but saying mass is more clear than saying
amount) of x at time ¢ . Hence Q(0) = 50 lb. The goal is to find an ODE that describes how
Q(t) changes in time. That is, how the mass of x in the tank changes in time. Using

dQ

dat
Where R;, rate of mass of salt entering the tank per second. And R, is rate of mass of salt
leaving the tank per second. But

= Rip — Ryt

R;, =5 Ib/sec
And

_Qom) . [s] _ 3
"= VD) [gal] " Tsecond] VB

Where V (t) is current volume of brine in tank at time {. Hence the ODE is

iQ 3
5—5—‘/—(”@0)
iQ 3 )
E+V_(t)Q(t)_5 (1)

But we can find V(). Since initially V' (0) = 100 gal, and in one second 5 gal enters, and 3
gal exists, then

V() = 100 + 2t
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Hence (1) becomes

dQ 3

7 T 10022 =5

Integrating factor is
3 1 3 3
U= ef Tooszt — e3f Toorat = o7 n(100+2) _ (100 + 2t)2

Hence (1) becomes

d
T (vQ) = 5u
Integrating both sides

yQ:5fydt+c
3 3
(100+2t)zQ:5f(100+2t)2 dt + ¢

(100 + 2t)§ Q = (100 + 21&)g +c
Hence
Q () = (100 + 2t) + ¢ (100 + 21,‘)_73
But at t =0, Q (0) = 50, hence

-3

50 =100 + ¢ (100) 2
¢ = -50000

Hence the solution is
-3

Q (t) = (100 + 2¢) — 50000 (100 + 2) 2

(2)

This gives us the mass of salt at time . What we need now to find out is the time it will take
to fill the tank say f,,;, and use that time to find Q (f,,;) from above. Since initially the tank
had 300 gallons remains to be filled, and the flow in is at rate of 5 gal/sec and flow out is at
3 gal/sec, then in one second, the tank will fill up with 2 gallons. Hence it will take

300
t= - =150 sec

To fill the tank. Using this value of ¢ in (2) gives

Q(150) = (100 + 2 (150)) — 50 000 (100 + 2 (150)) 2
157

4
= 393.75 b

4.2.7 Section 1.5 problem 44

Problem: Figure 1.5.8 shows a slope field and typical solution curves for y’ = x +y. (a) show
that every curve approaches the straight line y = —x -1 as x — —co. (b) for each of the five

values y; = -10,-5,0,5,10, determined the initial value y, (accurate
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such that y (5) = y; for the solution satisfying the initial condition y (-5) =y,

Solution:

4.2.7.1 Part(a)

y=x+y
y-y=x
Integrating factor is yu = o= e, Multiplying the above with u results in

d
— (uy) = px

% (e‘xy) =e'x

Integrating both sides
ey = f xe ¥dx +c
But f xe~“dx = e7* (-1 — x) using integration by parts. Hence the above becomes

ey=e*(-1-x)+c

y=(-1-x)+ce* (1)
But
lim e* =0
X——00

Hence solution becomes (at large negative x)
y=-1-x

Therefore, solution curves approach line -1 - x.

4.2.7.2 Part(b)
The solution is y = (-1 — x) + ce* from part (a). Using y (-5) = yg, then
Yo =(-1+5) +ce™

yo=4+ce?d

c=(yo-4)c
Hence solution is
y=(-1-x)+ (yo —4) eoer
= (-1-x) + (yo - 4) e*® (2)
Now we need to find yy such as y (5) = -10. From (2)
=10 = (-1-5) + (yo — 4) €™
Yo =(-10+6)e 10+ 4
= 3.99982
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For y (5) = -5, from (2)
-5=(-1-5)+ (yo - 4) et0
Yo = (—5 + 6) 6_10 +4
= 4.00005
For y (5) = 0 from (2)

0=(-1-5)+(yo—4)e'®
Yo =670 +4
= 4.00027
For y (5) =5 from (2)

5=(-1-5)+ (yo —4)e10
yo=06+6)el+4
= 4.00050
For y (5) =10 from (2)
10 = (-1-5) + (yo — 4) €
Yo=(10+6)e 10 +4
=4.00073

4.2.8 Section 2.1 problem 3

Problem: Solve % =1-x%x(0) = 3 and sketch solution

Solution:
dr
dr
X 1)

dx dx
1-x2 :f(1+x)(1—x)

A, B ButA:(l) :landB=(1) =%,hence
x=-1 x=1

1-x2

For1-x% # 0 or for x # +1. But

Where o—-— = 0.5 * i 1) 2 (1+x)

dx _1 dx 1 dx
f(1+x)(1—x)‘§ Q+x 2J -9

1 1
= Elnl(l +x)|—§ln|(1—x)|
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Therefore (1) becomes

1 1
S+ ) = 5 In|(1 - ) _fdt

1+x)|
In -2 —f2dt
1+x) _ o
n 0|~ +c
.
1+x)=(1-x)ce*
1+ x = ce® — xce*t

x + xce? = ce?t -1
ce*t -1
S
Now we use initial conditions x(0) = 3 to find ¢

Hence solution is
—2¢% -1

T 12
1426

T 22t -1

Here is a plot of the above solution and two other solutions starting from different initial

conditions

3.0‘ \ \ \ \ \ \ \ ‘\ ‘\ ‘\ ‘\ \ \ \
| A A A A A A A N SR SR

L1 A W A A A A N W SO

L \\ \ \ \ \ \ \ \ \ \ \ \ \\
25 S S S S S N O N SR W W W
| AR A U W A U W U W W W W

\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\

2.0} \SR A VR W W W A N W W W
A\ N N Y W W W N A W W W WY

AN N D N R W N N N N A U N

150 N X VN N N N N N N N N N
= N N\ N\ NN
N N N N N ~N ~N ~N ~N ~N ~N ~N ~N N

0.5 1.0 1.5 2.0 25 3.0

Figure 4.13: Problem 2.1, 3
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4.2.9 Section 2.1 problem 13

Problem: Consider a breed of rabbits whose birth and death rates §, 6 are each proportional

to the rabbit population P = P (f) with § > 6. (a) Show that P (f) = 1_123()0”,
1

Note that P(t) —» o as t — 0" This is the doomsday. (b) Suppose that P(0) = 6 and that
there are nine rabbits after ten months. When does doomsday occur?

where k constant.

4.29.1 Part(a)

For doomsday, per book page 86, we use the model that birth rate occur at rate g o P2 (t)
per unit time per population, but in this problem, since death rate is not constant, but also
proportional to the rabbit population, then we also make 6 o P? () where 8 > 6. Hence we
write

dP(t)
— = kP? (t)

Where k is the combined constant of proportionality. This is separable.

dP (1)
P2 (1)

dP(t)
6 - fkdt

= kdt

1
——=kt+c
P

1
P(H)=— ®

Using initial conditions, t = 0, P (0) we find ¢

1

Hence (1) becomes

“1-P(O)kt @)
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4.2.9.2 Part (b)

Applying initial conditions to (2) in part (a)

_ P(0)
P = 1-kP(0)¢t
9 __ 6
1-k(6)(10)
1
k=180
Hence solution becomes
6
P(t) =
1- 24

180

When t = 1%0 = 30 months, then P (t) — co. Hence 30 months is doomsday.

4.2.10 Section 2.1 problem 15

Problem Consider population P (t) satisfying logistic equation ‘Z—I; = aP — bP? where B = aP is
the time rate at which birth occur and D = bP? is the rate at which death occur. If the initial

population is P(0) and B(0),D (0) are the rates per month at t = 0, show that the limiting
B(0)P(0)
D(0)

population is M =
Solution

For the limiting model, per book page 82 (limiting population and carrying capacity), we
can use

dapP

& p—pp?
ar

=)
—al1-2p|P

a
1-P\p

=aqa - —
M

note: In class lecture, the above is written as Z—It) =r (1 - %) p, where r = a and k = M) But book
uses different notations. M is the limiting capacity (or also called equilibrium population).
Hence from the above, we see that

a
M:E (1)

But a, which is the growth rate per time per population is
B
a= 2
Py
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And D (0) = bP?(0), hence

Therefore (1) becomes

QED.

4.2.11 Section 2.1 problem 17

Problem Consider rabbit population P (f) satisfying the logistic equation as in problem 15.
If the initial population is 240 rabbits and there are 9 births per month and 12 death per
month occurring at time t = 0, how many months does it take for P (f) to reach 105% of the
limiting population M?

Solution The logistic equation, from problem 15 is

6;—1; = aP - bP?
From problem 15: Where
B =aP
Is the time rate at which birth occur and
D = bP?

Is the rate at which death occur and P (t) is current size of population. Per problem 15, we
know that the limiting population is
B(0)P(0) _ B(0)P(0)
" DO D)
But we are given here, that P (0) = 240, B (0) = 9 per month and D (0) = 12 per month. This
means

9 (240)
12
The above is the limiting population size. We now need to solve (1) in order to answer the

question

M = =180

AP
g N
ar
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This is separable

f b _,.
ap_ppz "€

[ —ap=t+
aP a(P-a) .

1 1
—In|P|]--In|bP-a|=t+c
a a

1ln bp ):t+c

a bP —a

1 bP

Eh’l bP—a) =ft+c
bP

In =at + ac
bP—a)

bP o

bP—uzcle

Where the sign is determined by constant ¢;. Hence the above becomes
bP = cie" (bP — a)
= c16"bP - cyae™
bP — c1e"bP = —cyae™

p (b - cle’”b) = —cqae™

—cyae
P = b —cieb
o cqae”
"~ ce"b—b
P(t) B b- Ee—at
€1
We now need to find ¢; from initial conditions. At = 0, P (0) = 240, hence since B = aP then
B(0) 9
ﬂ(O) = m = %
3
" 80
And since D = bP? then
b(0) = D(Oz = 1—22
p(0F 240
1
" 4800
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Therefore, at t = 0, the above solution becomes

_cqa(0)e”
PO = c1eb (0) — b (0)
3
40 = c1a(0) €13

b0 -b0) L . _
¢1b(0) -b(0) @ -1
1 3
240 —— (¢ = 1)| = ¢, =
0 (4800 @ )) 150
11 3
_Cl - = Cl_
207720~ “%0
1 31
— —C1— = —
207 180 " 20

1 3 1
cl=—-=|==
20 80/ 20

1\ 1
“1{80) ™ 20

c;1=4
Hence solution is
at
P = 4;:115— b
e
el (1) - 2

We now solve for ¢ when P () = 105% of M
3
i) esa' (4800)

4
105 (
50 (180) = Bl
4e\80) —1
3 3
189 (46(8°)t - 1) — 720e%"
(i)t it
7560\%) — 189 = 720¢%

3

= 3
7563(8°)t — 720e%" =189
3,189

80 —= ——
¢ 36

3 189
Zp=ln—2
80 36

= 44.219 months
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4.2.12 Section 2.1 problem 30

Problem A tumor may be regarded as population of multiplying cells. The birth rate of
cells in a tumor decreases exponentially with time so that g(t) = Boe™* where a, B, are

positive constants. Hence b _ Boe P with P (0) = Py. Solve the initial value problem for

dt
ﬁ_O _p—at @
Pt = Poe( 2 (1-e )) Observe that P (t) approaches finite limiting population Poe( “) as t — oo,
Solution
ar
T Boe™'P
This is separable.
apr
? = ﬁoe_"‘tdt
Integrating
In|P| = By fe‘“tdt
et
=pp— +C
Po 2 +
Hence
e—at
P(t)=Ce (1)

Applying initial condition on the above gives
1
P(0) = Py = Ce Poa
1
C= poE'BOE

Therefore the solution (1) becomes
1 E—O(f
P(f) = Pyefae oo

eat
o
a a

= Pye P

- poeéo(l‘e’“t)

As t — oo then ¢ — 0 since a > 0, hence the above becomes
P(c0) =M = POeﬁFO

The above is the limiting population.

4.2.13 Section 2.1 problem 31

Problem For tumor in problem 30, suppose that at t = 0, there are Py = 10° cells and that
P (t) is then increasing at rate 3 x10° cells per month. After 6 months the tumor has doubled
(in size and number of cells). Solve numerially for @ and then find the limiting population
of tumor.
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Solution From problem (30) we found

/30 —
P(f) = Pyee 17 ‘)

_,—at

= 1063%(1 )

Then, at t = 0, we are told (%)t ; =3 x10° (cells per month). Hence, since ‘Z—I; = Boe 4P
then at t =0
3x10° = ByPy
= Bp10°
Therefore
0= 3?—01605 =03

We also told that after 6 months, the number of cells has doubled. This means, using t = 6
(with units of month) that

P (6) = 2P0
1067 07) = 2 106
But By = 0.3, hence the above becomes
eloia(l_e_éa) =2
3
-6} —
m (1 —€ Dt) =In2

10aIn2 = 3 — 3¢
10aln2 + 3¢ =3

Using a computer, the solutions are a = 0 or a = 0.3915

0 —a
Now the limiting population is found. From P (t) = POeF(l_e t), for large t and since @ > 0
this becomes

fo
tlim P(t) = Pye
0.3
= 106¢03915
=2.1518 x 10°

The above is limit of number of cells for large t.

4.2.14 Section 2.2 problem 7

Problem Solve for f (x) = 0 to find critical points. Then analyze the sign of f (x) to determine
if each critical point is stable or not and construct the phase diagram for the differential
equation. Next solve the ODE. Finally plot the slope field and verify visually the stability of
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each critital point.

dx
—=f@W=0-2
Solution The critial points are x values (dependent variable values) where f (x) = 0. Hence
(x-2)%=0
x=2
Since f (x) is always positive, this means if x started at something just below x = 2, say
x = 1.5, then eventually x will reach x = 2 and stay there. But if x is started at something
just about x = 2, say x = 2.5, then x will keep increasing away from x = 2. This means

x = 2 is semi stable critial since if we start below it, we reach it, but not if we start about it.
Hence the phase diagram is

x/>0 .T/>0

x <2 T > 2
e >
r =2

x = 2 is semi-stable point

Figure 4.14: Phase diagram, 2.2 problem 7

Now the ODE is solved % =(x- 2)2. This is non-linear seperable

dx
( 2)2 =dt xX#+2
x_

f(x C_sz)z - fdt

d d d 1 1
Let x -2 = u — = =1, therefore f = f—z = —- = —— and the above becomes
dx (x=2) u u x-2

Let x (0) = xp, therefore
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And the solution becomes

1
x=2-

1

t+g

2

X0)+1

2 —
t(2-
_ 2(t(2—x0)+1)—2+x0

t(2—x0)+1

22 -xp) + xp
o tQ2-x) +1
4t - 2txg + X
C 2t—xpt+1

Hence

x(t) =

(2t-1)xg—4t
txo -2t-1

Here is slope field plot

25 ;:é"/'/ /'//'rj/}'

2.0¢

— g
I T T T T T T T T T T
e

b e T A

gl et ety

0.5 1.0 1

5

20

3.0

From the above plot, we see the solution lines are moving away from x = 2 when they start

from x > 2 but move towards x = 2 when starting from x < 2.

4.2.15 Section 2.2 problem 10

Problem Solve for f (x) = 0 to find critical points. Then analyze the sign of f (x) to determine
if each critical point is stable or not and construct the phase diagram for the differential
equation. Next solve the ODE. Finally plot the slope field and verify visually the stability of
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each critital point.

d

d_JtC = f(x)=7x—x*>-10
Solution

The critial points are x values (dependent variable values) where f (x) = 0. Hence

7x —x>*-10=0
X1 =2
x2:5
The phase diagram is
!
z' <0 $>>20 ' >0 ' <0
<2 <5 r>9
- .
=2 z=5

x = 2 unstable 2 = 5 stable

Figure 4.15: Phase diagram, 2.2 problem 7

Now the ODE is solved Z—f = 7x — x> —10. This is non-linear seperable

@ _ g £ x%5
7xr—x2-10 rEax
—dx
S =l

7x+10

- dt
f 7x+10 f

1 1 1 1
hence A = ((x_5))x:2 = (_—3) and B = ((x_z))x:5 =3 and the above

1 A

But 205 @2 T sy
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becomes

_f(—3(i—2)+3(x1—5)):fdt

fs(xl—z)_f3(x1—5) :fdt
d

% (x—xz)_% (xd—x5):fdt

1 1
51n|x—2|—§1m|x—5|:falt

1n|x-z|—1n|x—5|:f3dt

| x_2| 3t+
n = c
x-5
x-2 o
x—-5

x —2 = xcedt — 5cet

x — xce® =2 — 5¢et
2 — 5¢et
11— cedt

Here is slope field plot

From the above plot, we see the solution lines are moving away from x = 2 indicating it is
unstable and move towards x = 5 indicating it is stable.

4.216 Section 2.2 problem 23

Problem Suppose that logistic equation % = kx (M — x) models a population x () of fish in
lake that after t months during which no fishing occurs. Now suppose that because of fishing,
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fish are removed from lake at rate of hx fish per month, with & > 0. Thus fish are harvested
at a rate propertional to existing fish population, rather than at constant rate of example 4.
(a) if 0 < h < kM, show that population is still logistic. What is the new limiting population.
(b) if h > kM., show that x (t) — 0 at t — oo so that lake is eventually fished out.

Solution

Part (a)

Since fish is removed at rate of hx fish per month, then

d
d—f:kx(M—x)—hx

= kx (M—x)—%)

h
= kx M———x)

ol

But M - % > 0 since 0 < h < kM, therefore, if we let (M - %) = A, then % = kx (A —x) is still

e dx . _ B ... .
logistic just as — = kx (M —x) since A > 0. A = M — - is the new limiting population.

Part (b)

In this case

=kx(A-x)
Now A < 0. Solving this ode
dx
x(A-x)
11 1
Ax A(A-x)
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Integrating

1 1
~Injx = 3 (A - ) _fkdt

|| = [ Ak

X
In || = Akt +
n|o— c
X
= CeMkt
A—x ¢
x + xCekt = ACetkt
Ace)lkt
="
0= 1w

Now, since A < 0, then as t — oo then x (t) — g = 0. Hence the population of fish will die out.
(no need to find C first, as the whole term goes to zero). This is what we are asked to show.
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4.3 HW33

4.3.1 Section 2.4 problem 8 (page 122)

Problem Apply Euler method twice to approximate solution on interval [0, %] first with step
size h = 0.25 then with step size 1 = 0.1. Compare to three decimal places values of the two
approximation at x = % with the value y (%) of the exact solution. y’ = e¥;y(0) = 0. Exact
solution is y (x) = In (x + 1)

Solution

Using forward Euler method, we write

Yns1 =Yu +hf (xn/yn)
Here f (x, y) =e.

h =025
y(0)=0
y(h) =y (0.25) = y(0) + he ¥ = 0 + 0.25¢" = 0.25
v (2h) = y(0.5) = y(0.25) + he¥(0-2) = 0.25 + 0.25¢79% = 0.445
h=01

y(0)=0

y(h) =y (01)=y(©0)+he¥® =0+0.1e=0.1
y(2h) = y(0.2) = y(0.1) + he ¥V = 0.1 + 0.1e7%1 = 0.190
y(3h) = y(0.3) = y(0.2) + he¥®2 = 0.190 + 0.1e91%0 = 0.273
y (4h) = y(0.4) = y(0.3) + he¥®3 = 0.273 + 0.1e79%73 = 0.349
y (5h) = y(0.5) = y(0.4) + he V09 = 0.349 + 0.1e703% = 0.420

Exact solution is y(0.5) = In (0.5 + 1) = 0.405

h size | y (%)

0.25 0.445
01 0.420
exact | 0.405

4.3.2 Section 2.4 problem 13 (page 122)

Problem Find the exact solution, then apply Euler method twice to approximate to 4 decimal
places values the solution on the given interval. First with step i1 = 0.01 then with step
h = 0.005. Make table showing the approximate values and the actual values, together
with percentage error in the more accurate approximation for x an integral multiple of 0.2.
yy =2x%5y(1)=31<x<2.
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Solution

2x3
y=—-=fluy
2 (o)
Looking at f (x) we see that solution is not defined at y = 0. Otherwise, f (x, y) is continuous
3
everywhere. Hence solution exist for y # 0. Also Z—jy[ = —zyiz, hence we see solution is unique,
on some interval that does not include y = 0. Now we will solve the ODE
dy
2L =053
Yax =
ydy = 2x3dx
Integrating
1 1
Eyz = §x4 +c
Applying initial conditions
1 1
E (9) E +cC
9 1
———=C
2 2
c=4
Hence exact solution is
1 1
—y? = —xt+4
2 T2t
Y =xt+8

Since 1 < x <3 and y (1) = 3, then y can not become negative (else it will have to cross y = 0).
Therefore solution is just the positive branch

yexact = Vx4 +8

Using Euler, we write
Yne1 =Yn T hf (xn/ yn)
3
But f (xn,yn) = % and x,, = 1 + nh where h is the step size. The above becomes
Yne1 =Yn T hf (xnryn)
Using initial conditions, where n = 0, the given values yy = 3 at xy = 1. A small function was

written to implement Euler method and print table. Source code is given below. Here is the
final table generated
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X 1. 1.2 1.4 1.6 1.8 2.
h=0.01 | 3 3.1718 3.4368 3.8084 4.2924 4.889
h=0.005 | 3 3.1729 3.439 3.8117 4.2967 4.894

exact [3.] 3.1739 3.4412 3.8149 4.3009 4.899
% error |0. [0.032303 |0.062773 |0.085478 |0.098183 |0.10218

Source code listing:

SetOptions [$FrontEndSession, PrintPrecision -» 5]

(*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.4 13x)

flx ,y 1:=2x"3/y;

makeTable[h , from_, to_, y@ ] := Module[{nSteps = (to - from) / h, data, y, x, skip},
Array[y, Rationalize@nSteps, 0];
Array[x, Rationalize@nSteps, 0];
y[0] =y@; x[e] = from;

Do[ (#Euler loop=x)

y[n+1] =y[n] + hf[x[n], y[n]];
x[n+1] =x[n] + h,

{n, 0, nSteps}

15

skip = Round[0.2/ h];
Table[{x[n], y[n]}, {n, @, nSteps, skip}]
]

datal = makeTable[0.01, 1, 2, 3];
data2 = makeTable[0.005, 1, 2, 3];
exact =Sqrt[#74 + 8] & /@ data2[[All, 1]];
p=Grid[{
{"x", Sequence @@ datal[ [All, 1]]},
{"h=0.01", Sequence @@ datal[ [All, 2]},
{"h=0.005", Sequence @@ data2[[All, 2]]},
{"exact", Sequence @e exact},
{"% error", Sequence @@ (Abs[data2[[All, 2]] - exact] / Abs[exact] % 100) }
}, Frame -» All]
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4.3.3 Section 2.4 problem 25

Problem Apply Euler method for % =32 -1.6v with v(0) = 0. For 0 <t <2, using step size
h = 0.01,h = 0.005, round v to one decimal point. What percentage of limiting velocity 20
ft/sec has been attained after 1 second? After 2 seconds?

Solution
The exact solution is

dov
— +1.60=32
dt

u= oJ 16t _ el hence

i (31,6tv) — 3Dpl6t

dt
Integrating
o6y — 30 f o161 g
32
_ 2216t 4
1.6
Hence

32
_ ~1.6t
v(t) = 16 + ce
Applying initial conditions

021,_6+C

c=—-—

1.6
Therefore, exact solution is
32
16
=20(1-e7)

32
H=—"=_ —1.6t
v =1g

The Euler method is

Yt = Y + Bf (Xu V)
Where here
f (xn,yn) =32 -1.6y,
Small function was written to find v () at t = 1,2 seconds using Euler, with the different step

sizes. It prints the value of v when iteration reaches 1 and 2 seconds. Here is the screen
output
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datal = makeTable[0.01, 0, 2, 0];
At one second, using h=0.01 speed is 16.078 at step n = 100
At 2 seconds, using h=0.01 speed is 19.206 at step n = 200
data2 = makeTable[0.005, 0, 2, 0];
At one second, using h=0.005 speed is 16.02 at step n = 200
At 2 seconds, using h=0.005 speed is 19.195 at step n = 400

Therefore (where percentage below, is percentage of limiting speed of 20 ft/sec)

h speed at 1 second | speed at 2 seconds
0.01 | 16.078 19.206
0.005 | 16.02 (80.1%) 19.195 (95.98%)

The source code written for this problem is given below

SetOptions[$FrontEndSession, PrintPrecision -» 5]
(*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.4 25x)
flt ,y 1:=32-1.6y;

makeTable[h , from , to_, y@ ] :=Module[{nSteps = Rationalize[ (to - from) / h], data, t, skip, y},

Array [y, nSteps, 0];
Array[t, nSteps, 0];
y[e] =ye; t[e] = from;

Do[ (#Euler loop#)
y[n+1] =y[n] + hf[t[n], y[n]];
If[t[n] =1, Print["At one second, using h=", h, " speed is ", y[n+1], "
t[n+1] =t[n] + h,
{n, 9, nSteps}

15

Print["At 2 seconds, using h=", h, " speed is ", y[nSteps], " at step n =
(»skip=Round[0.2/h] ;)

skip =1;

Table[{t[n], y[n]}, {n, @, nSteps, skip}]

1

datal = makeTable[0.01, 0, 2, 9] ;

At one second, using h=0.01 speed is 16.078 at step n = 100
At 2 seconds, using h=0.01 speed is 19.206 at step n = 200

data2 = makeTable[0.005, 0, 2, 9] ;

At one second, using h=0.005 speed is 16.02 at step n = 200
At 2 seconds, using h=0.005 speed is 19.195 at step n = 400
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4.3.4 Section 2.4 problem 30

Problem Apply Euler method with successively smaller step sizes on the interval [0,2] to
verify empirically that the solution of ¥’ = x? + y%,y(0) = 0 has vertical asymptote near
x = 2.003147. Contrast this with example 2, in which y (0) = 1.

Solution

Small function was written to implement Forward Euler for this problem.

SetOptions [$FrontEndSession, PrintPrecision - 5]
(*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.4 30x)
flx_ ,y 1:=x"2+y"2;
makeTable[h , from_, to_, y6 ] :=Module[{nSteps = Rationalize[ (to - from) / h], data, x, y, skip},
Array[y, nSteps, 0];
Array[x, nSteps, 0];
(*Print["number of steps is ",nSteps];=*)
y[0] =y@; x[0] = from;

Do[ (xEuler loop=)
y[n+1] =y[n] + hf[x[n], y[n]1;
x[n+1] =x[n] + h,
{n, @, nSteps}
15
skip = 1;
Table[{x[n], y[n]}, {n, @, nSteps, skip}]
]

The above function was called for # = 0.1,0.01,0.001 which showed that better and better
approximation, the numerical solution approached asymptote near x = 2.003147. For h = 0.1,
here is the output
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nsg= h=0.1;
datal = makeTable[h, 0, 2, 0];
pl = ListLinePlot[datal,
Frame - True,
FrameLabel -
{{"y(x)", None},
{"x", Row[ {"Euler solution using h= ", h, " with asymptote line in red"}]}},
BaseStyle -» 14, GridLines - Automatic, GridLinesStyle - LightGray,
Epilog » {Red, Line[{{2.003147, 0}, {2.003147, 7}}]}, ImageSize -» 400]

Euler solution using h= 0.1 with asymptote line in red

T T T

0.0 0.5 1.0 1.5 2.0
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For h = 0.01, here is the output

28 - h=0.01;
datal = makeTable[h, 0, 2, 0];
pl = ListLinePlot[datal,
Frame - True,
FrameLabel -»
{{"y(x)", None},
{"x", Row[{"Euler solution using h= ", h, " with asymptote line in red"}]1}},
BaseStyle -» 14, GridLines - Automatic, GridLinesStyle - LightGray,
Epilog » {Red, Line[{{2.003147, 0}, {2.003147, 7}}]}, ImageSize -» 400]

Euler solution using h= 0.01 with asymptote line in red

6, 4

For h = 0.001, here is the output

W51- h=0.001;
datal = makeTable[h, 0, 2, 0];
pl = ListLinePlot[datal,
Frame - True,
FrameLabel -»
{{"y(x)", None},
{"x", Row[ {"Euler solution using h= ", h, " with asymptote line in red"}]1}},
BaseStyle - 14, GridLines - Automatic, GridLinesStyle - LightGray,
Epilog » {Red, Line[{{2.003147, 0}, {2.003147, 7}}1}, ImageSize - 400]

Euler solution using h= 0.001 with asymptote line in red

out[53]= > 3r ]
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4.3.5 Section 2.5 problem 8

. . . . 1] . .
Apply improved Euler method to approximate solution on interval |0, E] with step size

h = 0.1 Construct table showing 4 decimal places values of approximation solution and
exact solution at points 0.1,0.2,0.3,0.4,0.5.

vV =¢%y0)=0
Exact solution is y (x) = In (x + 1)
Solution
Improved Euler method uses
ki =f (xnryn)
Uns1 = Yn + Hky

ky = f(xn+1/un+1)
ki + ky

Yn+1 = Yn +h

A small function was written to implement the above improved Euler method. The following
is source code

(*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.5 8, improved Eulerx)
fix_,y_1:=Exp[-y1;
makeTableImproved[h , from , to , y0 ] :=
Module [ {nSteps = Rationalize[ (to - from) / h], data, x, y, skip, k1, k2, predictor},
Array[y, nSteps, 0];
Array[x, nSteps, 0];
y[@] = y@; x[0] = from;

Do[ (#Euler loop=x)
ki=f[x[nl, y[nll;
predictor =y[n] + hkl;
x[n+1] =x[n] + h;
k2 = f[x[n + 1], predictor];
y[n+1] =y[n] +h (/2% (k1 +k2)),
{n, @, nSteps}
15
skip = Round[0.1/ h];
Table[{x[n], y[n]}, {n, @, nSteps, skip}]
]

This function was called to generate the table and format it. Here is the result
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h=0.1;

datal = makeTable[h, @, .5, 9] ;
exact = Log[# + 1] & /@datal[ [All, 1]];

p=Grid[{

{"x", Sequence @@ datal[ [All, 1]]},
{"h=0.01", Sequence @@ datal[ [All, 2]]},
{"exact", Sequence @@ exact},

{"% error",

Sequence @@ ( (exact - datal[[All, 2]]) / (If[exact ==0, 1, exact, 1]) »100) }

}, Frame - All]

X [ 0.1 0.2 0.3 0.4 0.5
h=0.01 [0 ]0.09524187 | ©.1822067 | 0.2622174 | ©.3363033 | 0.405281
exact [0[0.09531018 ( ©.1823216 | ©.2623643 | 0.3364722 | 0.4054651

% error (0]0.00683089 |0.01148799 |0.01469129 |0.01689781 |0.01840683

Then Euler method was compared to Improved Euler for the same step size & = 0.1, by
plotting them on the same figure. Here is the result. The red line is the Euler method, and
the blue line is the improved Euler method. We see the difference between them increases

as more steps are taken.

h=9.1;

dataEuler = makeTableEuler[h, 9, .5, 0];

dataEulerImproved = makeTableImproved[h, 0, .5, 0];

pl = ListLinePlot [ {dataEuler, dataEulerImproved},
Frame » True, PlotStyle » {Red, Blue},

FrameLabel -

{{"y(x)", None}, {"x

Compare Euler with Improved Euler (Red is Euler, Blue is improved)

0.4F

0.3F

> 0.2f

0.1r

0.0 L |

4.3.6 Section 2.5 problem 13

Problem Find the exact solution, then apply improved Euler method twice to approximate to
5 decimal places values the solution on the given interval. First with step # = 0.01 then with
step h = 0.005. Make table showing the approximate values and the actual values, together
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with percentage error in the more accurate approximation for x an integral multiple of 0.2.
yy =2x%5y(1)=3;1<x<2.

Solution

The analytical solution is the same as in problem 13, section 2.5 and hence will not be
repeated again. The improved Euler function, which was written for problem 8 above, was
now used for 1 = 0.01 and h = 0.005. Source code is given above in problem 8. Here is the
final table generated

h=0.01;
datal = makeTableImproved[h, 1, 2, 3];
h=0.005;
data2 = makeTableImproved[h, 1, 2, 3];
exact =Sqrt[#"4 + 8] & /@data2[[All, 1]];
p=Grid[{
{"x", Sequence @@ datal[ [All, 1]]},
{"h=0.01", Sequence @@ datal[[All, 2]]},
{"h=0.005", Sequence @@ data2[ [All, 2]]},
{"exact", Sequence @ee exact},
{"% error", Sequence@e ( (exact - data2[[All, 2]]) / exact %= 100) }
}, Frame -» All]

X 1 1.2 1.4 1.6 1.8 2.
h=0.01 |3 3.1739 3.44118 3.81494 4.30091 4.89901
h=0.005 (3 3.1739 3.44117 3.81492 4.30089 4.89899

exact |3 3.17389 3.44116 3.81492 4.30088 4.89898
% error (0]-0.0000547372 | -0.000101625 (-0.000134386 |-0.000151819 | -0.000156696

To better compare the improved Euler method, with the Euler method, a new table was
generated. This gives result only for = 0.01. Here is the result. This used the Euler function
which was written for section 2.4 and listed above. The table also includes the difference at
each x between the two methods. We see from this table, that as more steps are made (at

x = 2) that the difference between the improved Euler and Euler method has increased.
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h= 0.01;

dataEuler = makeTableEuler[h, 1, 2, 3];

dataImproved = makeTableImproved[h, 1, 2, 3];

p = Grid[{

{"x", Sequence @@ dataEuler[ [All, 1]]},
{"h=0.01, Euler", Sequence @@ dataEuler[[All, 2]]},

{"h=0.01, Improved Euler", Sequence @@ dataImproved[ [All, 2]]},
{"Absolute Difference", Sequence @@ (dataEuler[[All, 2]] - dataImproved[ [All, 2]])}
}, Frame » All, Alignment - Left]

X 1]1.2 1.4 1.6 1.8 2.

h=0.01, Euler 313.171843 3.436841 3.808392 4.292431 4.88896
h=0.01, Improved Euler |3|3.1739 3.441177 3.814939 4.30091 4.89901
Absolute Difference 0 |-0.002057166 | -0.004335663 | -0.006546691 |-0.008478646 |-0.01005077

4.3.7 Section 2.5 problem 25

Problem Apply improved Euler method for % =32-1.60 with v(0) = 0. For 0 <t <2, using
step size h = 0.01,h = 0.005, round v to one decimal point. What percentage of limiting
velocity 20 ft/sec has been attained after 1 second? After 2 seconds?

Solution The exact solution we derived in section 2.4 above. The improved Euler method,
implemented in the function shown above, was used in this problem to generate similar
table to section 2.4, problem 25. But now using the improved Euler. Here is the resulting

table.

datal =

data2 =

makeTableImproved[0.01, 0, 2, 0];
At one second, using h=0.01 speed is 15.96179 at step n =
At 2 seconds, using h=0.01 speed is 19.18464 at step n =
makeTableImproved[0.005, 0, 2, 0];

At one second, using h=0.005 speed is 15.962 at step n =
At 2 seconds, using h=0.005 speed is 19.18473 at step n = 400

100
200

200

Therefore, improved Euler method result is

h

speed at 1 second

speed at 2 seconds

0.01

15.96179

19.18464

0.005

15.962 (79.81%)

19.18473 (95.923%)

This can be compared with Euler method in problem 2.4.25. We see small difference in
speeds at 1 and 2 seconds. The improved Euler result should be taken as the more accurate.

Here is the Euler method result, copied from 2.4.25 to make it easier to compare with

h

speed at 1 second

speed at 2 seconds

0.01

16.078

19.206

0.005

16.02 (80.1%)

19.195 (95.98%)
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4.3.8 Section 2.5 problem 26

Problem Deer population P (f) in small forest initially numbered 25 and satisfies logistic

equation Z—I: = 0.0225P (t) — 0.0003P2. With t in months. Use improved Euler method to
approximate solution for 10 years. First with step & =1 and then with & = 0.5 rounding off P
to 3 decimal points. What percentage of the limiting population of 75 deer has been attained
after 5,10 years?

Solution The improved Euler method

ki = f(xnr yn)
Ups1 = Yn + iy
ky = f (Xy11, 1)
ki +k;
2
With initial conditions y, = 25 was used to solve this ODE with f (x, y) = 0.0225y — 0.0003y>.

The same improved Euler method function listed earlier was used. The following table
summarizes the results

Ynv1 =VYn +h

h (moths) | p(t) at 5 years p(t) at 10 years
1 49.3909 (65.85%) | 66.1129 (88.15%)
0.5 49.39135 (65.85%) | 66.11343 (88.15%)

(*HW 3, Math 320. By Nasser M. Abbasi. Problem 2.5 26, improved Eulerx)
flt ,y ]1:=0.0225y -0.0003 y"2;
makeTableImproved[h , from , to , y@ ] :=
Module[ {nSteps = Rationalize[ (to - from) / h], data, t, y, skip, k1, k2, predictor},
Array[y, nSteps, 0];
Array[t, nSteps, 0];
y[@] =y@; t[e] = from;

Do[ (*Euler loop=x)
ki=f[t[n], y[nll;
predictor =y[n] + hkl;
t[n+1] =t[n] + h;
k2 =f[t[n+ 1], predictor];
y[n+1] =y[n] +h (1/ 2% (k1+k2)),
{n, @, nSteps}
15
skip =1; (¥Round[©.2/h];*)
Table[{t[n], y[n]}, {n, @, nSteps, skip}]
]
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44 HW4

4.41 Section 3.1 problem 11 (page 155)

Problem Use method of elimination to determine if linear system is consistent or not. For
each consistent system, find the solution if it is unique. Otherwise, describe the infinite
solution set in terms of an arbitrary parameter t as in examples 5 and 7.
2x+7y+3z =11
xX+3y+2z=2
3x+7y+9z=-12

Solution

We set up the augmented matrix and do forward elimination. The row operations are given

on top of each arrow. For example R, = —%Rl + R; mean that row 2 is replaced by —% of the
first row added to the second row.

273 1 1, (27 3 11
Ro=Ry~3R; Rpy=—7R;

1 3 2 2 = 0 -05 05 -35
Rs=R3—2Ry

379 -12 27\0 =35 45 -285

2 7 3 11 2 7 3 11

R3=R3+R2
0 35 =35 245 = |0 35 =35 24.5
0 -35 45 -285 0 0 1 -4

Hence the system of equation now is (from the last matrix above)

2x+7y+3z=11
3.5y -3.5z=24.5
z=-4

Since at the last row, we did not get 0 = some number, then the system is consistent. This

means the system has either a unique solution, or has infinite number of solutions. But since
we did not get 0z = 0, then the system has a unique solution. Now we will find the unique

solution by backward substitution. From last equation, we obtain
z=-4
From the second equation
3.5y —3.5(—4) = 24.5
y=3
And from the first equation
2x+7(3) +3(-4) =11

x=1
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Hence the solution is

4.4.2 Section 3.1 problem 16

Problem Use method of elimination to determine if linear system is consistent or not. For
each consistent system, find the solution if it is unique. Otherwise, describe the infinite
solution set in terms of an arbitrary parameter t as in examples 5 and 7.

x—=3y+2z==6
x+4y-z=4
Sx+6y+z=20

Solution

We set up the augmented matrix and do forward elimination

132 6) (132 6)
=Rp- =-5Rq+
1 4 -1 4| =" 7 3 2"7="
5 6 1 20 5 6 1 20
1 -3 2 6 1 3 2 6
R3=-3Ry+R3
07 -3 2| = "lo 7 -3 -2
021 -9 -10 0 0 0 -4

Hence the last equation of last matrix above, we see that 0z = —4. Since this result implies
0 = -4, which is not possible, then there is no solution. The system is inconsistent. There
are no solutions.

4.4.3 Section 3.1 problem 21

Problem Use method of elimination to determine if linear system is consistent or not. For
each consistent system, find the solution if it is unique. Otherwise, describe the infinite
solution set in terms of an arbitrary parameter t as in examples 5 and 7.

x+y-z=5
3x+y+3z=11
dx+y+5z=14

solution
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We set up the augmented matrix and do forward elimination

11 -1 5 1 1 -1 5
Ry=—3R;+Ry Ry=—4R;+R3
31 3 11 = 0 2 6 -4 =
4 1 5 14 4 1 5 14
1 1 -1 5 1 1 -1 5
R3:—1.5R2+R3
0 2 6 -4 =" "lo 2 6 -4
0 -3 9 -6 0 0 0 O

Since the final equation has 0z = 0, this means there are infinite number of solutions. Since
any z will satisfy this. The system is therefore consistent. Let z = ¢, hence from the second
equation we obtain

-2y +6z=-4
-2y + 6t = -4
—4 -6t
y=— =243t
First equation gives
x+y-z=5
x=5-y+z
=5-(2+3t)+t
=3-2t
Hence solution is
x=3-2t
y=2+3t
z=t

4.4.4 Section 3.1 problem 31

Problem A system has the form
ax + bl]/ =0
ax + by =0

Explain by geometric reasoning why such a system has either a unique solution or infinitely
many solutions. In the former case, what is the unique solution?

solution These two equations represent two lines in 2D space. These can be written in
standard form as

5
=——x
Yy by
ap
=——x
y b,
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We see now, when we compare each equation above to the equation of a line of the form
y=mx+c

Where m is the slope, and c is the intercept with the y axis, we see that both lines have zero
intercept.

This means both lines pass through the origin, but with possibly different slope. Therefore,
since both lines pass though one point, then there is either a unique solution, which is the origin in this case

when Z—l # Z—Z, or the other case is the infinite number of solutions when the slope is the same,
1 2

ie. Z—i = Z—j, which means both lines are on top of each others. (same line).
4.4.5 Section 3.1 problem 33

Problem The linear system
ax + by =
ax + by = ¢
azx + by = c3

of three equations in two unknowns, represents three lines L, L,, L in xy plane. Figure 3.1.5
shows six possible configurations of these three lines. In each case describe the solution set
of the system.

solution

case a No solution. Since there is not one point where the three lines meet at.

case b Unique solution. Since there is a single point where the three lines intersect at.
case ¢ No solution. Since there is not one point where the three lines meet at.

case d No solutions. All lines are parallel. There is not one point where the three lines meet
at

case e Unique solution. There is one single point where the three lines intersect. Even though
lines Ly, L, are on top of each others.

case f Infinite number of solutions. The three lines are on top of each others.

4.4.6 Section 3.1 problem 34

Problem Consider the linear system
ax+by+cz=d;
ax +byy + ¢z = d,
asx + bsy + c3z = ds
of three equations in three unknowns to represent three planes P;,P,, P5 in xyz plane. De-

scribe the solution in each of the following cases. (a) Three planes are parallel and distinct.
(b) The three planes coincide. P; = P, = P5. (c) P; and P, coincide and are parallel to P;3.
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(d) Py, P, intersect in a line L that is parallel to P;. (e) Py, P, intersect in line L that lies in
Ps. (f) P,, P, intersect in a line L that intersect P; in a single point.

solution

case a No solution exist. Since three planes do not intersect.

case b There are infinite number of solutions. Since intersection is line.

case ¢ No solution Since Py, P, are parallel to P;

case d No solution. This is similar to case c.

case e Infinite number of solution, since the intersection between all three planes is a line.

case f Unique solution. Since a single point is found on the three planes.

4.4.7 Section 3.2 problem 11

Problem Use elementary row operations to transform each augmented coefficient matrix to
echelon form then solve the system by back substitution
2x1 +8xp + 3x3 =2
X1 +3x+2x3=5
2x1 + 7%y +4x3 =8

solution

We set up the augmented matrix and do forward elimination

28 32 ) 2 8 3
Rp==3R1+Rp 1 R3=—R;+R3

1325 = |0-1 ;4 =

27 4 8 2 7 4 8

2 8 3 2 2 8 32
R3=—R»+R

0—1%43:%30—1%4

0 -1 1 6 00 ;2

The above final matrix is now in echelon form. Since the final equation says that %x3 =2,
therefore the system is consistent. Doing backward substitution gives

X3:4

From second equation
Xy + zx3=4
2t 5%

1
X+ =-(4) =4
X2 2()

X2:—2
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And from first equation
2x1 +8xp + 3x3 =2
2x; +8(-2) +3(4) =2
x1=3

Hence solution is

X1—3
x2:—2
X3—4

4.4.8 Section 3.2 problem 18

Problem Use elementary row operations to transform each augmented coefficient matrix to
echelon form then solve the system by back substitution

3X1 — 6XZ + X3 + 13X4 =15
SX1 — 6x2 + 3X3 + 21X4 =21
2X1 - 4X2 + 5X3 + 26X4 =23

solution

We set up the augmented matrix and do forward elimination

3 -6 1 13 15 3 -6 1 13 15
Ro=—R1+Ry R3=-2R{+3R3

3 -6 3 21 21 = |0 0 2 8 6

2 -4 5 26 23 2 -4 5 26 23

3 -6 1 13 15 3 61 13 15
R3=—13R2+2R3

0 0 2 8 6 = 0 0 2 8 6

0 0 13 52 39 0 0 0 0 O

The above final matrix is now in echelon form. Since last row gives Ox; = 0, then there are
infinite number of solutions, as any x will satisfy this. System is therefore consistent.

Let
Xq4 =1t
Hence from the second row, we obtain
2x3+8x4 =6
2x3+8t =6
_6-8t

X3 T:3—4t
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And from the first equation
3x1 —6xp + x3 +13x4 =15
3x1 —6xp =15 —x3 —13x4
3x1 —6x, =15— (3 —4t) —13¢
Let x, = s then
3x; —6s=12-9¢

_12-9t+6s
w=—
=4-3t+2s
Hence the final solution is

x1=4-3t+2s

Xy =8

X3 =3 -4t

X4 =1t

4.4.9 Section 3.2 problem 24

problem Determine for what value of k each system has (a) unique solution (b) no solution
(c) infinite solutions

3x+2y=0
6x+ky=0
solution

We set up the augmented matrix and do forward elimination

3 2 0)Ry=-2R;+R, |3 2 0
=
6 kK O 0 -4+k O

Hence, the last equation says that

(-4+ky=0
case a A unique solution exist if k # 4, since in this case y must be zero. Giving the unique
solution [y - 0,x— 0}

case b There is no value of k which causes no solution to exist. Since the RHS is zero in the
last equation.

case ¢ If k = 4, then we have Oy = 0. Then any value of y will satisfy this. Hence infinite
number of solutions.
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4.410 Section 3.2 problem 27

problem Determine for what value of k each system has (a) unique solution (b) no solution
(c) infinite solutions

X+2y+z=3
2x-y—-3z=5
4x+3y—-z=k

solution

We set up the augmented matrix and do forward elimination

1 2 1 3 1 2 1 3
Ry=—2R{+Ry

2 -1 -3 5| " =""lo -5 -5 1

4 3 -1 k 4 3 -1 k

(21 3 (1213
=—4 K1+ =—RH+
"="l0 5 5 a4 | "="lo -5 -5 -1

0 -5 -5 k-12 00 0 k-11

Hence, the last equation says that
0)z=k-11

case a No k exist which gives unique solution. For if k = 11, then we have (0)z = 0 and this
gives infinite solutions. And if k # 11, then we have (0) z = number. Which says there are no
solution.

case b If k # 11, then we have (0) z = number. Which says there are no solution.

case c if k =11, then we have (0)z = 0 and this gives infinite solutions

4411 Section 3.2 problem 28

Problem Under what conditions on the constants a,b,c does the systems

2x-y+3z=a
X+2y+z=>
7x+4y+9z=c

Have unique solution, no solution, infinite number of solutions?

solution
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We set up the augmented matrix and do forward elimination

2 -1 3 a 2 -1 3 a 2 -1 3 a
R,=2R, Ro=Ry—R;

1 2 1 b = |2 4 2 20| = |0 5 -1 2b-a
7 4 9 ¢ 7 4 9 ¢ 7 4 9 c
14 -7 21 7a 14 -7 21 7a

R1:7R1 R3=R3—R1
= |0 5 -1 2b-a = 0 5 -1 2b-a
R3=2R;
14 8 18 2c 0 15 -3 2c—-7a
14 -7 21 7a
R3=R3-3R,
. 5 -1 2b—-a

0 0 0 2c-4a-6b
Hence, the last equation says
(0)z=2c—4a—-6b
0)z=c—-2a-3b
0(z) =c—(2a+3b)

If the RHS is zero, then we have infinite number of solutions, since then we end up with
(0)z = 0, which means any z will satisfy this equation. But if the RHS is not zero, then we
end up with (0) z = some number. Which is not possible. Therefore we conclude that

If ¢ = (2a + 3b) then infinite number of solutions.
If ¢ # (2a + 3b) then no solution.

It is not possible to obtain a unique solution.

4412 Problem 3

Write the following as Ax = b and determine for what values of the parameter k the system
has (i) unique solution (ii) no solution, (iii) infinite solutions. (a)
X1 +3x, =8
X1 +2xy—x3=4
3x1 +xp +10x3 = k

(b)

—Xy + O.SX3 =0
4X1 + ZXZ + 3X3 =2
2.7C1 + 3.X'2 + 0.5X3 =k
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4.412.1 Part (a)

We write it first as Ax =0
—_— b b
1 0 3)\(x 8
-1 2 -1||x|=14
3 1 10 X3 k

We next set up the augmented matrix and do forward elimination

10 3 8 10 3 8
Ry=R{+Ry
102 -1 4] =02 2 12
3 1 10 k 3110 k
R3=3R{—R: 0 3 8RR2R103 8
=3R1— =R+
=0 2 2 122|722 12
0 -1 -1 24—k 00 0 60-2k

Therefore, from last equation we see that
(0)x3 =30-k
case (i) It is not possible to have unique solution.

case (il) If (30 — k) # 0 then there is no solution, since then we have Ox; = some number,
which is not possible. Hence for k # 30, there is no solution.

case (iii) If (30 —-k) =0 or k = 30, then there are infinite number of solutions.

4.412.2 Part (b)

We write it first as Ax =b
— v b
0 -1 0.5)(x; 0
4 2 3|[xnl=]2
2 3 05)\x3 k

We next set up the augmented matrix and do forward elimination

0 -1 05 0 4 2 3 2 4 2 3 2
swap(Rz,Rl) R3=R1—2R3
4 2 3 2 = 0 -1 05 0 = [0 -1 05 0
2 3 05 k 2 3 05 k 0 4 2 2-2k
4 2 3 2
R3=—4Ry+R3
= 0 -1 05 0

0 0 0 2-2k
Therefore, from last equation we see that
0)x3=1-k
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case (i) It is not possible to have unique solution.

case (il) If (1 - k) # O then there is no solution, since then we have Ox; = some number,
which is not possible. Hence for k # 1, there is no solution.

case (iii) If 1 —k) =0 or k =1, then there are infinite number of solutions.
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4.5 HW)S

4.5.1 Section 3.3 problem 8 (page 174)
Problem Find Reduced Echelon form for

1 -4 -5
3 -9 3
1 -2 3

Solution

The first step is to obtain the Echelon form, then convert that to Reduced Echelon form

1 -4 -5 1 -4 -5 2 (1 -4 -5
Ry=Ry-3R; R3=R3~3R;

3 -9 3 — 0 3 18 — 0 3 18
R3=R3-R;

1 -2 3 0 2 8 0 0 -4

Now it is in Echelon form, we make it Reduced Echelon form. First we make each leading
element 1

1 -4 -5 1, (1 -4 -5 a. (1 -4 -5
RZZ 3 Rz R3= TR‘O’

0 3 18 — |01 6| — [0 1 6

0 0 -4 0 0 -4 0 0 1

Now we make all entries above each leading element zero

1 4 -5 1 0 19 1 0 19 1 00
R1=R1+4R2 R2=R2—6R3 R1=R1—19R3

0 1 6 — 01 6 — 01 0 — 010

0 0 1 00 1 00 1 0 01

4.5.2 Section 3.3 problem 9
Problem Find Reduced Echelon form for

Solution

The first step is to obtain the Echelon form, then we convert that to Reduced Echelon form

21 5 2 18 21
5 8 R3:R3—§R1 R3=R3+§R2 5 8
01 4 — 0 1 4 — 01 4
41 12 0 -2 -3 00 0

Now it is in Echelon form, we make it Reduced Echelon form. First we make each leading

157



4.5. HW) CHAPTER 4. HWS

element 1
2 18
5 2 18 Ri=1R, 1z 3
01 4( — |01 4
00 0 00 O
Now we make all entries above each leading element zero
2 18
L5 35 Ri=Ri-2R, 102
01 4 — |01 4
00 0 000

4.5.3 Section 3.3 problem 31

Problem Show that the two matrices in (1) are both row equivalent to the 3 x 3 identity
matrix (and hence by theorem 1, to each others)

Solution The two matrices in (1) are

1 2 3)(1 11
04 5|,lo 22 1)
0 0 6)\0 0 3

We now reduce each matrix to Reduced Echelon form and see if we obtain the 3 x 3 identity

matrix. Starting with the first matrix above, and since the matrices are already in Echelon
form, we just need to do the reduction steps.

First we make each leading element 1

123 1 (123 1 2 3
Z:ZRZ 5 R326R3 5
045 — |01 f — 13
0 06 0 06 01
Now we make all entries above each leading element zero
123 10 - s, (10 3 (100
5 | Ri=R1-2Ry £ | R2=Re—3Rs 2 | Ry=R1—3R3
001 001 001 001
Now we work on the second matrix. First we make each leading element 1
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Now we make all entries above each leading element zero

111 100 100

R{=R;1-R Ry=Ry—R
011 —=7fo1 1] 37010 (3)
00 1 00 1 00 1

Comparing (2) and (3) we see that the Reduced Echelon form in both case came out to be

1 00
010
0 01

Hence both matrices in (1) are row equivalent.

4.5.4 Section 3.3 problem 32
Problem Show that the matrix
)
c d
is row equivalent to the 2 x 2 identity matrix, provided ad — bc # 0

Solution let us convert the given matrix to Reduced Echelon form. Assuming a # 0 then

a b)Re=Ro-<Ri (g b a b
ﬁ =
c d 0 d-<p) |0 ‘”T‘d’

Now we need to make each leading element 1.

a b k= %Rl 1 S Ry=—"=R5 (1 b
_ — a — a
0 ada cb 0 ada cb 0 1

Now, assuming that ad - cb # 0, only then we can do the next step, since we dividing by

ad —cb
1 g R2=@Rz 1 Z
0 adﬂ—ch 0 1

Now we make all entries in column above each leading element zero.

1 é R1:R1—§R2 1 0
a —>
01 01

So we see, that unless ad — cb # 0, we would not have been able to complete the Reduced
Echelon form process, since in one the steps above, we would have divided by zero. We
conclude that any 2 X 2 matrix is row equivalent to 2 x 2 identity matrix provided the
determinant is not zero. Since |A| = ad — cb.
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4.5.5 Section 3.3 problem 36

Problem Suppose that ad — bc # 0 in the homogeneous system of problem 35. Use problem
32 to show that its only solution is the trivial solution.

Solution Problem 35 gives
ax +by =0
cx+dy=0

- J6)-()

Since ad—cb # 0, then using problem 32, we know A is row equivalent to 2 X2 identity matrix.
Which means the original system can now be written as

b - ()

Which means the solution is x = 0 and y = 0. The trivial solution.

In matrix form

4.5.6 Section 3.3 problem 37

Problem Show that the system in problem 35 has a non-trivial solution iff ad — bc = 0

solution Problem 35 gives
ax+by =0
cx+dy=0

L))
L)

We start by reducing it to Echelon form. We assume all along that a # 0.

a b 0)Re=Re—=Ri (g b 0 a b 0
— — _
cdo 0 d-<p 0) (0 “dad’ 0

Now we can solve by backward substitution. There are two cases to consider.

In matrix form

The augment matrix is
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case 1 ad — cb = 0. In this case, the Echelon form becomes

a b 0
0 00

Hence the second equation says 0 (y) = 0. This implies infinite number of solutions, since

any y will do the job.

case 2 ad — cb # 0. Lets say ad — cb = N, some non-zero value. In this case, the Echelon form

becomes
a b 0
0 NO

Hence the second equation says N(y) = 0. The solution to this is ¥ = 0. Therefore, from the
first equation we obtain

ax+by=0
ax =0
x=0

So we see that the solution vector is

This is the trivial solution.

Conclusion The system has infinite number of solution iff ad — cb = 0 (this is the non-trivial
solution case). And the system has unique solution, which is the trivial solution iff ad —cb # 0.
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4.6 practice Ax="0

4.6.1 Problem1

1. Write the following system as Ax = b and determine for what values of k the system
has (i) a unique solution, (ii) no solution, and (iii) infinitely many solutions. In the case
of (i) or (iii), find the solution(s).

2:131+2l’2*l‘3:1

3rs +3x3 =3
4r1 + a0 + kxs = —1 (1)
solution
2 -1 X1 1

The augmented matrix is

2 2 -1 1

03 3 3

4 1 k 1

We start by converting the above to Echelon form
22 -1 1 2 2 - 22 -1 1

R3=R3-2R; R3=R3+R;

03 3 3 — [0 3 3 — |03 3 3
41 k -1 0 -3 k+2 -3 0 0 k+5 0

We see that the last equation now has the form
(k+5)x3=0

If k +5=n # 0 then the equation becomes nx; = 0, which means x; = 0 is only choice, since
n # 0. This means, from the second equation, 3x; + 3x3 = 3 or x, = 1 and from the first

equation, 2x; +2x, —x3 =1lor2x;+2=1o0r x; = _71 Hence a unique solution. Butif k+5=0
then last equation gives Ox; = 0, which means any x; will do the job. Hence infinite number
of solutions.

Therefore, (i) k # -5 gives unique solution. (ii) Not possible. (iii) k = -5 gives infinite
solutions.

4.6.2 Problem 2
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2. For what values of k£ does Ax = b have (i) no solution, (ii) a unique solution, or (iii)
an infinite number of solutions? In the case of (ii) or (iii), find the solution(s).

2 0 2] {8}
A=|-11 k|, b=|4 (2)
3 1 4 20
solution
2 0 -2)\(x
-1 1 &k [
3 1 4
The augmented matrix is
-2 8
-1 1
3 1 4 20
We start by converting the above to Echelon form. Swap the second and third row
2 0 -2 8
31 4 20
-1 1 k 4
Now
2 0 -2 8 5. (2 0 -2 8 20 -2 8
Ry=Ry—3R1 R3=R3-R>
31 4 20 -, o1 7 8 — JO1T 7 8
11k 4)0N{0 1 k-1 8 00 k-8 0

From last equation, we obtain (k — 8)x3 = 0.
(i) No solution case is not possible.

(i) When k # 8, then unique solution. Hence x; = 0. Which means from second equation
that x, = 8 and from first equation, 2x; = 8 or x; = 4.

Xq 4
Xy | = 8
X3 0

(iii) infinite number of solutions when k = 8. This gives 0(x3) = 0, hence any x; will do the
job. Let x3 = t, the second equation gives x, + 7t = 8 or x, = 8 —7t. and the first equation
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gives 2x; — 2t = 8 or x; =4 —t. Hence solution is

X1 4t
X | =87t
X3 t
4 -1
=|[8|+t|-7
0 1

4.6.3 Problem 3

3. In the following exercises, we write the augmented coefficient matrix for Ax = b.
Determine for what values of the parameter p the system has (i) an unique solution, (ii) no
solution, (iii) an infinite number of solutions. In case (i), find the unique solution. In case
(iii), determine if there is a one-parameter family of solutions, or a two-parameter family
of solutions, and find an expression for the solutions x in terms of the parameter(s).

2 1 31
0 p 01 (3a)
-1 -2 4 3
1 1 2 1
2 p 4 2 (30)
3 p+1 6 p+1

solution
4631 Parta
2 1 3 X1 1
0 p 0 Xy | = 1
1 -2 4l |3
The augmented matrix is
2 1 3 1 R3:R3+%R1 3 1 R3=R3+%R2 2 1 3 1
o p 0 1f — p 0 1| — [0p O 1
3 3 11 7 1mn 1
-1 -2 4+5 3 0 - > 3 00 < 5(7p+3)
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We now convert the above to reduced Echelon form. First we make each leading entry 1

1 3 1
22 3
010 -
(7+3)
1 (%
00 T
Now we zero out all entries in column above leading entries
1 3 1 301 5
R 10 g 5k 100 g(p+2)
010 - |MNER| 1 9 ; Rl [V ¢ ;
1 (7p+3) 1 (7p+3) 1 (7P+3)
001p11 001;—711 001 T
Hence, the last equation says
1(7p+3)
X3 = —
Ty on

Therefore, if 7p + 3 # 0 then x;3 is parameterized by p and we have infinite number of solutions.

In this case the solution vector is

1
Xy | = p
X3 1(7p+3)
p 11
. . 3 .
But if 7p +3 =0 then x3 = 0, and this means p = —-. Then from second equation we
. -7 . 5 3 5 . .
obtain x, = 5 and from first equation x; = _W (—; + 2) = 3 Hence in this case the
1(-3
7
solution is unique
. 5
) 2
Xo| = ?
X3 0

In both cases, we assumed p # 0. It is no possible to obtain the case (ii) which is no solution.

46.3.2 Partb
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The augmented matrix is

1 1 2 1 1 1 2 1 1 1 2 1
Ry=Ry—2R; R3=R3-R;

2 p 4 2 — 0 p-2 0 0 — 0 p-2 0 0
R3=R3-3R;

3 p+1 6 p+1 0 p-2 0 p-2 0 0 0 p-2

We see from last equation that 0(x3) = p — 2. This means that if p —2 # 0 then there is
no solution. This means if p # 2 then no solution. On the other hand, if p = 2 then last

equation becomes 0 (x3) = 0, which means any x; will do. Let x; = t. From second equation,
we have

(p—Z)xz =0
O(Xz) =0

So any x, will do. Let x, = s. Then the first equation becomes x; +s+2t =1 or x; =1 -s-2t.
Hence solution vector

X1 1-s-2t 1 -1 -2
X | = S =|0|+s|1 |+ 0
X3 t 0 0 1

Case (ii) do not apply. This is two family solution.

4633 Partc
-2 3 Pllx 1
4 2 2f|n|=2
3 2 2
2/ 18 2
The augmented matrix is
2 3 p 1 2 3 p 1 2 3 p 1
Ry=Ry+2R R3=R3-R
4 22 2| BT Doogoy 4737 2 242p 4
3 3 8 5 | Rs=Rs+3Ry 0 5 5 3 0o 1.1,
2 2 2 272 272

Last equation gives (% - %p) x3=0.1f %—%p = 0 orp =1, then there are infinite number of solutions.

Let x3 = t. From second equation, §x2+(2 + Zp) X3 =4 or §x2+4t = 4, which gives x, = 5 3

15 15
. 8 8 3 3
and from first equation —2x; +3x, + x3 =1 or -2x; +3 (E - Et) +t =1, hence x; = o b
The solution vector is
; 33
. 22
ol=|E_%
2 15 15
X3 t

If % - %p # 0, then last equation gives nx; = 0 which is only possible if x; = 0. This means

. . . 15 8 . .
if p # 1, then x3 = 0. Second equation gives —x, = 4 or x, = = and first equation gives
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8 3 . .
-2x1 +3xp+x3=1o0r -2x; +3 (E) =1,orx = o hence solution vector is

X 3
1 10
x| = 8
2 1
X3 0

case (ii) is not possible.
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47 HW6

4.71 Section 3.4 problem 8 (page 186)
Problem Calculate AB and BA if defined.
1 0 3 >0
A= [ ],B =|-1 4
2 -5 4
6 5

solution A is 2 x 3 and B is 3 X 2, Since inner dimensions agree, then AB is defined and
given by 2 X 2 matrix

C=AB
3
1 0 3)
= -1
2 -5 4
6
(21 15
35 0
Now B is 3 x2 and A is 2 X 3, hence inner dimensions agree, and BA is 3 X 3
C=BA
30
1 0 3
=|-1 4
2 -5 4
6 5
3 0 9
=17 -20 13
16 -25 38

4.7.2 Section 3.4 problem 15
Problem ABC matrices are given, verify by computation, that A (BC) = (AB)C

5 2 0
2,B:(1 -1 2),C={0 3
1 4

A=

solution Ais2x1,Bis1x3 and Cis 3 x 2.

2 0
BC=(1 -1 2){0 3|=(4 5)
1 4
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Hence

A(BC) = @ (4 5)

12 15
) (8 10) W

Now we will do (AB) C and see if we get same result as above

3 3 -3 6
AB=|"|(1 -1 2)=
2 2 -2 4
Hence
20
3 -3 6
(AB)C = 0 3
2 -2 4
1 4
12 15
= (2)
8 10

Comparing (1) and (2), we see they are the same. QED.

4.7.3 Section 3.4 problem 20

Problem Write the system as Ax = 0 and the find the solution in vector form

x1—3x2+7x5=0

X3 —2x5 =0
x4 —10x5 =0
Solution
b
A x
1 =300 7])|x 0
0 1 0 -2({[x3]=10
0 0 1 -10)|x4 0
X5

To find solution, we need to do Gaussian elimination to obtain Echelon form. But A is
already in Echelon form. Hence we start with back substitution phase. From last equation

X4 — 103(5 =0
Let x5 = t, hence
X4 = 10t
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From second equation
X3 —2x5 =0
X3 =2t
From first equation

X1—3X2+7X5:0

X1 — 3XZ = -7t
Let x, = s then
X1 =3s-7t

Hence solution is

Xq 3s -7t

X2 S

X3 | = 2t

X4 10t

X5 t

=s(3 1 0 0 0)+t(-7 0 2 10 1)

4.7.4 Section 3.4 problem 27

Problem A diagonal matrix is square matrix of form

aq; 0 0 O
0 ay 0 O
0 0 ~ 0
0 0 0 a,

in which every element off the diagonal is zero. Show that the product AB of two n xn

diagonal matrices is again a diagonal matrix. State concise rule for quickly computing AB.
Is it clear that AB = BA ? Explain.

Solution
We want to perform (using 3 x 3 for illustration) the following.

a1 0 0 bll 0 0
C=AB= 0 25 0 0 bzz 0
0 0 asz 0 0 b33

Let use the matrix multiplication method, where we multiply A by each column of B at a
time, to produce one column of the result C. This means the first column of C is

a;p 0 0 (b
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And the second column of C is

And third column of C is

C3 = 0 s> 0 0
0 0 33 b33

And so on for larger matrices. Using the above view, shows that c¢; will come out to be (using
rules of matrix times vector now)

a11b11
C1 = 0

And ¢, and c3 will come out to be

Co = [agybyy

C3 = 0

a33bs3

And so one for larger matrices. Now we uses these columns to make up C and obtain

aq bll 0 0
C= 0 a22b22 0
0 0 ﬂ33b33

We see that C is diagonal matrix as well. If we reverse the order of multiplications, BA and
follow the same process as above, we will obtain

bllall 0 0
C= 0 b22a22 0
0 0 b33a33

We see if the same Matrix, since number a;b;; is same as b;a;;. A quick rule to make C is
this: Start with C which is all zeros, then multiply each corresponding diagonal elements
in A and B and move the result in the diagonal of resulting matrix C. So basically, we just
need to multiply diagonal elements.

aiibii i:1,2,3"'7l
Ci: =
! 0 otherwise
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4.7.5 Section 3.4 problem 29

Problem If A = |*
C

b
d] then show that A2 = (a + d) A - (ad — bc) I, where I, is the 2 X 2 identity

matrix. Thus every 2 X 2 matrix A satisfies the equation A2 — (trace A) A+ (det A)I = 0 where
det (A) = ad — bc and trace is sum of diagonal elements.

solution
First we find A? using matrix-matrix multiplication

i

A% =

a2 +bc ab+bd
- 2 (1)
ac+cd d+bc
Now trace (A) = a + d. Hence
b
(trace A) A = (a + d) (“ J
c d
This is scalar times matrix. Hence
d db
(trace A) A = @+dja (a+d)
(a+d)c (a+d)d
_(a*+ad ab+db
Nac+dc ad+ d?
And det (A) I, is
10
det (A) I, = (ad - bc
(A =( )(0 1)
This is scalar times matrix. Hence
ad — bc 0
det (A) I, =
etk [ 0 ad — bc)
From the above, we see that
24+ad ab+db d—-b 0
(trace A) A—det (A)I, = wradab _|* ¢
ac+dc ad + d? 0 ad — bc
~ (az + ad) — (ad - be) ab + db
B ac + dc (ad + dz) — (ad - bc)
a2 +bc ab+db
- 2 (2)
ac+dc d°+bc

If we compare (1) and (2), we see they are the same. Hence we showed that
A? = (trace A) A —det (A) I,
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4.7.6 Section 3.4 problem 30

Problem The formula A? = (trace A) A—det (A)I, can be used to compute A? without explicit
matrix multiplication. It follows that A®> = (trace A) A?> — det (A) A and A* = (trace A) A3 -

21
det (A) A% and so on. Use this method to determine A?, A3, A% AS given that A = [1 2)

solution
trace A=2+2=4
detA=4-1=3
Hence
A? = (trace A) A —det (A) I,
4 [2 1) 3(1 0
1 2 01
5 4
)
And
A3 = (trace A) A% —det (A) A
_ 4[5 4, (2 1]
4 5 1 2
14 13
B [13 14]
And
A% = (trace A) A3 — det (A) A?
_ 4[14 13) _3(5 4)
13 14 4 5
41 40
) (40 4
And

AS = (trace A) A* — det (A) A3
a1 40) (14 13

40 41 13 14

(122 121

121 122

173




4.7. HW6 CHAPTER 4. HWS

4.7.7 Section 3.4 problem 32

-4 3 3
Suppose that A, B are square matrices such that AB = BA. Show that (A + B)* = A2 +2AB+ B2

2 -1 1 5
Problem (a) Suppose that A = ( ],B = ( 7). Show that (A + B)* # A2 + 2AB + B2. (b)

solution

4.7.7.1 Part (a)
First we find the LHS

_ 2
arst=[% )6 )
-4 3] |37
) 2
(3 4
| 10)
(3 4)(3 4
-1 10/{-1 10

5 52
|-13 96] W

L
(5 )
=)k )

(16 40
|24 64

2 -1|f1 5
AB =
S

Now

And

And

Hence

-1 3 -2 6
248 =2 [ ]
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Therefore, the RHS A% + 2AB + B? is

8§ -5 -2 6 16 40
A2 +2AB +B? = -+ -+
-20 13 10 2 24 64
22 41
= (2)
14 79
Comparing (1) and (2) we see that are not the same. Hence we showed that, in this example,
(A+B)* + A%+ 2AB + B2

4.7.7.2 Part (b)

Now, we assume that AB = BA. But since (A + B)2 = A% + B> + AB + BA and we are told that
AB = BA, then

(A+B)>= A2+ B2 + AB + AB

= A%+ B?+2AB
i : 2 2 2 -1 3
So only in the case when AB = BA is (A + B)” = A+ B“+2AB. In Part (a), AB = 5 1) But
-18 14 i ) ) )
A=  18) so in part (a), AB # BA and that is why equality failed.

4.7.8 Section 3.5 problem 13 (page 199)

Problem Find A~! for

Q=N
N W N
O N W

solution

We set up Al; and perform row operations on A and [ at same time, to convert A to I;. Then
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A7! will be the on the right side

2 7 311 00 1 3 201 0
R{=Ry» Ry=Rp—2R;
1 3 2110 1 — 2 7 3|1 0 O
Ry=Rq R3=R3-3R;
37 9J10 0 37 90 01
1 3 2)0 1 O 1 3 20 1 O
R3=R3+2Ry R1=R1-3Ry
0 1 -1|j1 -2 0 — 01 111 -2 0
0 -2 3)10 -3 1 00 1)\2 -7 1
1 0 53 7 0 1 0 5(-3 7 O
R2=R2+R3 Rl—R1—5R3
o1 -111 -2 0 — |01 0]]3 -9
00 1)\2 -7 1 00 1)\2 -7 1
1 0 0)(-13 42 -5
010113 -9 1
00 1)L2 -7 1

Since the left side is I3 we stop. Hence

-13 42 -5
Al=]13 -9 1
2 -7 1

4.7.9 Section 3.5 problem 19

Problem Find A~! for

N R
(62 INY NS

3
5
1
solution

We set up Al; and perform row operations on A and I at same time, to convert A to I3. Then
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A7! will be the on the right side

1 4 3\(1 O 1 4 3)(1 00
Ry=Rp—R; R3=R;
1 4 5(|0 1 — 0 0 21111 —
R3=R3-2R; R3=R,
2 5 1J)10 0 0 -3 -5J){-2 0
1 4 3)(1 00 (1 4 3)[1 0 0
Ro==5 5[] 2 -1 | R1=R1—4R;
0 -3 -5(|-2 0 1 — 01 3|3 0 < —
_ 23
00 2J-1 1000 15 ; 0
11\, 5 4 11\, 5 4
10 IEN IS 0 3 | Re=Rp-3Rs 1o -3 e _05 3 | Ri=Ri+ 1R
01 3 3 0 3 E— 01 0 3 ? 3 —
11 1
00 1){-; ;5 O 00 1 -5 5 0
Lo (f L
01 03 ‘?5 =
1
0 01 -5 5 0
Since the left side is I; we stop. Hence
7om o4
2 6 3
-1_1 3 -5 -1
it
2 3

4.7.10 Section 3.5 problem 24
Problem Use method of example 8 to find matrix X such that AX =B

7 6 2 0 4
A= B =
8 7) [o 5 —3]

solution

AX =B
Pre multiply both sides by A~
ATTAX = A'B
I,X = A'B
X=A"B
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But

L1 7 -6
Al_det(A)[—S 7)
~ 1 7 -6
- (7x7)-(6x%x8)|-8 7
(7 -6
(-8 7
7 -6\(2 0 4
8 7]Jlo 5 -3
(14 30 46
“|(-16 35 -53

4.711 Section 3.5 problem 30

Hence (1) becomes

X =

Problem Suppose that A, B, C are invertible matrices of same size, show that product ABC

is invertible and that (ABC)_1 =C 1B 1At

solution

(ABC) (CT'B1A™!) = (4B) (CC!) (B1AY)

= (AB)I(BA™)
= (AB)(B1A™)
= A(BB) AT

And

(C'B1A™Y) (ABC) = C7'B™' (A A) BC

= C1B-lIBC
= C1B-1BC
=C'(B'B)C
=cl(c
=cIc

=1

Thus we get [ when we multiply ABC on either side by C'B1A™!. Because the inverse of
ABC is unique, this proves that ABC is invertible and that its inverse is C"'B1A™1. QED
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4.7.12 Section 3.5 problem 32

Problem Show that if A is invertible matrix and AB = AC then B = C. Thus invertible
matrices can be canceled.

solution
Pre multiplying both sides of AB = AC by A™! (which we can do, since we are told A is
invertible, then
AT'AB = ATAC
(A71A)B = (A1A)C

IB=1IC

B=C
QED

4.7.13 Section 3.5 problem 34

Problem Show that a diagonal matrix is invertible iff each diagonal element is non-zero. In
this case, state concisely how the inverse matrix is obtained.

solution

An n x n Matrix A is invertible, if there are elementary row operations which converts A to
the identity matrix I,. Since for a diagonal matrix, we just need to divide each row by its
diagonal element in order to make the diagonal element 1 (if it was not already so), then
we see immediately, that any diagonal matrix can be converted to I, this way, unless the
diagonal element happened to be zero. Since we can not divide by zero. There are no other
operations to make the diagonal element, which is zero, become one. Since all entries above
and below the diagonal element (i.e. all elements on the same column as the current zero
diagonal element) are zero also by definition. So we are stuck with the zero on the diagonal,
and unable to make it 1 using row operations.

Another way to proof this is the following. Since the determinant of diagonal matrix is ob-

tained by just multiplying all the diagonal elements with each others, then if one element
is zero, then the whole product is zero, and this means det (A) = 0. But a matrix whose
determinant is zero is singular and do not have an inverse. QED.

To obtain the inverse matrix for diagonal matrix with non-zero elements, we simply invert
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each element on the diagonal. For example

aqq 0 0

A= 0 [25))] 0

0 0 assz

= 0 0

a1 1

Al=l0 — 0
a2 1

0O 0 —

4.7.14 Section 3.5 problem 35

Problem Let A be n X n matrix with either row or column consisting of all zeros. Show that
A is not invertible.

solution

An n X n that has at least one row all zeros, or at least one column all zero, is singular.
Meaning its determinant is zero. This is from properties of determinants. Therefore, the
matrix is not invertible.

Another proof: A matrix with row all zero, can not have a pivot of 1. Hence it is not possible
to transform A to I, using elementary row operations. Since it is square matrix, if the column
is all zeros, then by transposing it, we end up with row which is all zero. Which is the same.
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48 HW7

4.8.1 Section 3.6 problem 4 (page 216)

Problem Use cofactor expansion along row of column which minimize the amount of com-
putation to find determinant of

5 11 8 7
|3 2 6 23
1o 0 0 -3
0 4 0 17

solution Since the 3" row has most zeros(as well as first column), expansion is carried on
the last row. Therefore

det (A) = a31A31 + a3 Azp + a33A35 + 134 A3
But a3 = a3, = as3 = 0. Hence the above simplifies to
det (A) = a3 Az
= 34 (1) M,
= -3(-1) Mas
= 3M;, (1)

Now we need to find M3y, which is determinant of the matrix obtained from A by removing
the third row and fourth column. Let this new matrix be called B

5 11 8

B=[3 =2 6

0 4 0
Ms, = det (B)

We expand this along the 3" row of B, since that is the one with most zeros.
M3y = det (B) = b31 B3y + b33B3p + b33Bss
But b3y = bsz = 0. So the above simplifies to
M3y = b3B3;

= bay (-1 M3,

= 4(-1)’ Mz,

= —4Ms, (2)
But
5 8
3 6
=30-24
=6

32 —
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Therefore from (2), M3y = -4 (6) = =24 and from (1)
det (A) = 3M34

= 3(-24)
Hence
det (A) = -72
4.8.2 Section 3.6 problem 8
Problem Evaluate determinant of
2 3 4
A=|-2 -3 1
3 2 7

after first simplifying the computation by adding multiple of some row of column to another.

solution The determinant of matrix do not change by adding multiple of one row or multiple
of a column to another row or to another column. In the above, we see that adding the
second row to the first row gives

0 0 5
B=|-2 -3 1
3 2 7

Now, expanding on the first row, since that is the one with most zeros, gives
det(B) = b11B11 + b1aB1a + by13By3
But by, = b, =0, hence
det(B) = by3B13
=5(-1)"" My,

= 5Mj;
But
Mys = 2 3. 4i9=5
3 2

Hence det(B) = 5(5) = 25. But since det (B) = det (A), then

det (A) =25
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4.8.3 Section 3.6 problem 19

Problem Use the method of elimination to evaluate the determinant of

1 0 0 3
o 1 20
|2 3 23

0 -3 3 3

solution The idea is to use Forward elimination to produce an upper triangle matrix. The
determinant of upper triangle matrix is then easily found as the product of elements on the
diagonal. Since determinant do not change when adding multiple of a row to another, this
method works. So we need first to produce the Echelon form (triangle matrix)

1 0 0 3 1 0 0 3
0 1 -2 O0O|R3=R3+2R; |0 1 -2 0] R3=R3-3R,
—> —>

2 3 -2 3 0 3 -2 9|R4=R4#3R
0 -3 3 3 0 -3 3 3
100 3 100 3

01 -2 0|Re=Re+3Rs|0 1 -2 0

00 49 ~ Joo 9

00 -3 3 00 o0 2

n
Hence
39
det(A):1X1X4XZ

=39

4.8.4 Section 3.6 problem 46
Problem Verify the property

ay +kayp app ap | 4w a
gy +kayp ay Ayl =i axn ax
a1 +kazpy az asg|  faz azp as
solution This property is saying that adding k times the second columns of A to the first
a1 412 a3
column of A do not change the determinant. This is property 5. Let A =|ay; ay» ay;|and

31 Az 4asj
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ay +kayp app ag
let B = ay + kll22 apy  An3 |- Then
az +kazp azp  as;
ayy +kayp app a3
det (B) = |ax + kllzz dyy 3
az +kazy az; asz
a;p dyp 413 aip a2 M3

=lay axp ayp|tklay ayp ax

431 Az 4s3 a3y a3 433
a1 M2 413
But k|ay,, ay ays| = 0 since the first column is the same as the second column. Hence

Aszp A3p 433
det (B) = det (A). Now we will show this is true by actual expansion, since this is what the
problem is asking. Expanding B along the first column, gives

det (B) = b11B1q + b1 Ba1 + b31Bay
= (a1 +kay) (-1)' " My + (a1 + kag) (-1)*" Myy + (as; + kazp) (-1)>" My,
= (a11 + kayp) My — (a1 + kagy) Moy + (a3 + kazp) Ma,
= (a11M1q — an My + a31Mzy) + k (a1pMyy — ap My + azMs;)

But (a;1M11 — ap1 My + az1M3;) = det (A), hence above becomes

det (B) = det (A) + k (a1,M17 — apMy; + azMas) (1)
But
(y 023 a2 M3 a1 M3
a1pMy1 — aMay + azsMszy = agp -
azp 433 azp d33 ayy dz3

= a1 (pa33 — Ax3a3)) — Ay (A12433 — A13A3) + A3y (12423 — A13422)

= (12092033 —(1202303p — Appl12033 +A22013A437 + A3012023 — (32013022
We see from the above, that all terms cancel out, and we obtain

a1oMy1 — apMpy + a3Mz; =0
Hence (1) becomes
det (B) = det (A) + k(0)
= det (A)

QED.

4.8.5 Section 3.6 problem 49

Problem Let A = (ai]-) be 3 X 3 matrix. Show that det (AT) = det (A) by expanding det (A)
along its first row and det (AT) along its first column.
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solution Let
a1 12 413
A=lay ay ax
a3z 4dz 4as3
Expanding det (A) along first row gives
det (A) = a1 A1 + a1pAgp + ai3A43

= ay (1) My + ap (1) My, + a3 (-1 M3

a1 dz3 a1 A

+dq3

Ay As3 a3 ds3 a31 A4z
= a1y (2033 — A23032) — A1 (A21433 — A3a31) + A3 (A21437 — A2031)
But
a1 421 431
B=AT= A1 A a3
M3 3 33
Finding det (AT) by expanding along first column gives
det (B) = b11B11 + b1 Bo1 + b31B3;
=an (—1)l+1 My +app (—1)1+2 My + a3 (_1)1+3 M3z

= a;1Myq — a1pMpy + a13Ms,

Az a1 a3 a1 a3

+dq3

=dy —ap

a3 As3 A3 A3z Az a3
= a1 (Aa33 — A32023) — 13 (A21433 — A31023) + A13 (A21432 — A31422)

Examining (1) and (2) shows that they are the same expression. Hence

det (A) = det (AT)

QED.

4.8.6 Section 3.6 problem 52

(1)

(2)

Problem The square matrix A is called orthogonal provided that AT = A~!. Show that the

determinant of such matrix must be either +1 or 1.
solution
We are given AT = A71. Premultiplying both sides by A gives

AAT = AA7!

AAT =1
Taking the determinant of both sides gives

det (AAT) = det (I)
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But det (I) =1 hence
det (AAT) =1
But det (AAT) = det (AT) det (A) by property of determinant of products, therefore the above
becomes
det (AT) det (4) =1

But by property of determinant, we know that det (A) = det (AT), therefore the above be-
comes

det (A)det (A) =1
(det (A))* =1
Therefore
det (A) = 1
QED

4.8.7 Section 3.6 problem 53

Problem The matrices A, B are said to be similar provided that A = P~1BP for some invertible
matrix P. Show that if A and B are similar then |A| = |B|

solution
Since
A=P'BP (1)
Pre multiplying both sides by P gives
PA = PP~'BP

= (pP) BP

= IBP

= BP

Now, taking determinant of both sides gives
det (PA) = det (BP)
det (P) det (A) = det (B) det (P)

Since P is invertible, then det (P) # 0, therefore, we can divide both sides by det (P) and this
gives

det (A) = det (B)
QED.
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49 HWS

4.9.1 Section 4.1 problem 7 (page 237)

problem Determine if u, v are linearly dependent or not
n=(2,2)
2=(2,-2)
solution
Two vectors i1, 7 are L.D if there exist scalars a,b, not both zero such that

ait +bo =0

-
ok

The above is now is in Ax = 0 format. The determinant of A is |[A| = -4 — 4 = -8. Since
|A| # 0, then a unique exist. Since 0 vector is is always solution to Ax = 0, and so it is the only
solution here (since solution is unique). This means that only a = 0,b = 0 satisfy ait + b0 = 0.
Therefore, 7,7 are linearly independent.

4.9.2 Section 4.1 problem 12

problem Express w as linear combination of u, v.

n=(41)
o= (-2,-1)
U = (2/ _2)

solution

Need to find scalars a,b such that ait + bo = @, hence
Applying Gaussian elimination

4 —2 2 \Re=Ro—3Ri(4 -2 2
— 1 5
1 -1 -2 0 —- -2

2 2
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Hence, from last equation

1 5
2=
b=5
From first equation
4a-2b=2
4a=2(5)+2
a=23
Therefore
5 -30=w

4.9.3 Section 4.1 problem 18

problem Apply theorem 4 (that is calculate a determinant) to determine whether the given
vectors 1,0, are L.D. or L.I.

n=(1,1,0)
v=(4,31)
@ = (3,-2,-4)

solution

Let a,b, c be scalars, such that ait + bo + cw = 0. The goal now is to determine 4,b,c and see
they are are all zero or not. Setting up Ax = 0 system gives

1 4 3 0
al1{+b]|3]+c|-2|=]0
0 1 —4 0
1 4 3)\(a 0

1 3 -2||v[=]|0

0 1 —4)\c 0

Now the |A] is found. Subtracting row one from second row first, gives

1 4 3
0 -1 -5
01 -4
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Performing cofactor expansion on the first column gives

|Al = a11A11 + ax1Ag1 + a3 A3

= a1 Ay

1+1
=a;; (1) My
= 1 X Mll
= My
1 s
1 -4
=4+5

Since |A| is not zero, then solution of Ax = 0 is unique. Hence only solution is
a 0
bl=10
c 0

Which implies that i, 9, @ are linearly independent.

4.9.4 Section 4.1 problem 24

problem Use the method of example 3 to determine whether the given vectors i, 9, @ are
L.D. or L.I. If they are L.D. then find scalars a,b, c not all zero such that ait + b0 + cw =0

7=(1,4,5)
5 = (4,2,5)
@ = (-3,3,-1)

solution

Let a,b, ¢ be scalars, such that aii + bo + cw = 0. Setting up Ax = 0 system gives

1 4 -3 0
al4|+b|2]|+c| 3 |=]0
5 5 -1 0
1 4 -3)\(a 0

4 2 3||1b|=|0

5 5 -1)\c 0

Applying Gaussian elimination, R, = R, — 4R; gives

1 4 -3)(a 0
0 -14 15|(b|=]0
5 5 -1)\¢ 0
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R3 = R3 - 5R1 gives

R; = Ry — TR, gives

1
0
0

4 -3)\(a
-14 15||b|=
-15 14)\c

4 -3|(a
-14 15 (|{b|=
0 2 c

T4

Since the final Echelon form has no zero pivot, therefore |A| # 0. This means the solution is

unique. Hence

Which implies #, 7, @ are linearly independent.

4.9.5 Section 4.1 problem 28

problem Express vector t as linear combination of vectors u, v, w

solution

Let ait + b0 + civ = £, hence

2

al5|+b|l 1 |+c|l1]=

t=(7,7,7)
n=(2,5,3)
7=(4,1,-1)
@ =(1,1,5)

4 1

2 4 1

5 1 1||b|=

3 -1 5)\c

Applying Gaussian elimination. R, = R; - gRl gives

2
0
3

4 1

3 —
-9 - bl=1-
-1 5 J\c

N N N N NN
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R3 = R3 - ;Rl gives

Rs = Ry — _R; gives

Hence

And from second row

And from first row

Hence

4 1 \(a
3
-9 —||b|=
; 7
4 1 \(a
-9 _3 bl=
0 1£
? C
14 14
—C = —
3 3
c=1
3 21
9b—--—c=-—
2T
3 21
Op- - =-—
2 2
b=1
20+4b+c=7
2a+4+1=7
a=1

I
1]
=
+
QU
+
S

4.9.6 Section 4.1 problem 31

problem Show that the given set V is closed under addition and under multiplication by

scalars and is therefore subspace of R3. V is the set of all (x, Y, z) such that 2x = 3y

solution

X1

What the above says, that given any vector in this space, such as 9; = |y, | then y; = gxl.

X1

4

. . . _ 2 . - = . .
Hence any vector in this space can be written as 7, = 3| Given two vectors 71,7, in this
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X1 X2

X1+ X
= 2x +2x
T3 T 372
Z1+ 2o
X1+ Xy

2
=3 (1 +x)

Z1+ 2o

Hence # is also in this space, since its y coordinate is also g of its x coordinate. Now check
is made for multiplication by scaler. Let # = c?, hence

X1

_ZCX
= |30

Z1

Hence # is also in this space, since its y coordinate is also g of its x coordinate. Therefore
set V is closed under addition and under multiplication by scalars.

4.9.7 Section 4.1 problem 35

problem Show that the given set V is not a subspace of R®. V is the set of all (x, Y, z) such
that z > 0.

solution

The above set V is the upper half of the 3D space. (all vectors in the positive z part of 3D).
But for this to be subspace, it must be closed under scalar multiplication. Let # be a vector
in the set V. Multiplying this vector by ¢ = -1, will result in this vector having negative z
component, and it will therefore leave the set V. Therefore the set V is not closed under
scalar multiplication. Hence V is not a subspace of R°.

4.9.8 Section 4.1 problem 40

problem Suppose that i1, 7, @ are vectors in IR® such that #, 9 are L.I. but #, 9, @ are L.D. Show
that there exist scalars a4,b such that @ = ait + bo

solution
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Uq U1 w1
Leta=|u,|,2=|v,|,@ =|w, | Consider the sum a# + bo. Since i1, 7 are L.I. then a + bo will
2 2 2
Uz U3 w3
produce non-zero vector unless a,b are both zero. Let this vector be @. Hence ait + b? = .
By definition, @ is linear combination of #,?, hence the three vectors i, o, @ are L.D.
y > ’

A geometrical proof is as follows. Since #,7 are L.I. then they span a plane in 3D. This
means #, D are basis vector for this 2D plane inside R3. Now since i, 7, @ are L.D. then the
vector @ must also be in the same plane that 7,7 are its basis. Hence the vector @ can be
expressed in terms of 7, 0. Therefore there exist a,b such that aut + b0 = @.

4.9.9 Section 4.2 problem 2 (page 244)

problem A subset W of some n space R" is defined by means of a given condition imposed

on typical vector (x1,xy, -+, x,). Apply theorem 1 to determine whether or not W is subspace
of R". W is set of all vectors in R® such that x; = 5x,

solution

From theorem 1, for the subset W to be subspace, it has to at least satisfy being closed under
X1
addition of vectors and under scalar multiplication. Let any vector in this space be X =[x,
X3
5x,
and since x; = 5x, therefore x = | x, [ Hence adding any two such vectors in this space gives

X3

5% (52
X |+ Y2
X3 Y3
5x, + 5y,
= x2ty2
X3+Ys3
5 (xz + yz)
=l X2ty
X3+ Y3

Therefore the sum is also in this set, since its first coordinate is also 5 times its second

=l

+
<l

Il
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coordinate. Now scalar multiplication is checked for being closed. Let
5.X'2
X =c| x
X3
5 (cxp)
=| (cexa)
CX3

Therefore multiplication by scalar is also in this set, since the first coordinate is also 5 times
its second coordinate. Therefore W is subspace of R®

4.9.10 Section 4.2 problem 8

problem A subset W of some space R" is defined by means of a given condition imposed on

typical vector (x1,x,,---,x,). Apply theorem 1 to determine whether or not W is subspace
of R". W is set of all vectors in R? such that x7 + x3 = 0.

solution

From theorem 1, for the subset W to be subspace, it has to satisfy being closed under addition
x
of vectors and under scalar multiplication. Let any vector in this space be x = [ 1],y = (%)

*2 Y2
be two such vectors such that where x2 + x3 = 0,55 + y5 = 0. Hence adding any two such

vectors in this space gives
X2 Y2

_ [x1 + y1)
X2t Y2
2 2
Checking if (x1 + yl) + (x2 + y2) = 0 or not. Expanding

(x1 + yl)z + (x2 + y2)2 = (x% +y2+ 2x1y1) + (x% +3 + 2x2y2) (1)
But x? = —x3 and y? = —3 by definition. Substituting this into (1) gives
(x1 + y1)2 + (x2 + yz)z = (—x% - y% + 2x1y1) + (x% + y% + 2x2y2)

=2 (x1y1 + xzyz)
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Now x; = ix, and y; = +iy,. Hence the above becomes
(xl + yl)z + (x2 + yz)z =2 ((iixz) (iiyz) + xzyz)
=2 ((ixz) (iyZ) + xzyz)
=2 (—xzyz + xzyz)
=0

Therefore closed under multiplication. Checking now if closed under scalar multiplication.

_ X1
cx=c
X2
_ CX1
CX»y
(cx1)? + (cxp)? = 242 + a2
1 2)” =X 2

= 2(42 4 42
=c (x1+x2)

But x? + x5 = 0. Therefore (cx1)2 + (cxz)2 = 0 and it is closed under scalar multiplication as
well. Therefore W is subspace of R?.

Hence

4911 Section 4.2 problem 11

problem A subset W of some 1 space R" is defined by means of a given condition imposed

on typical vector (x1,x, -+, x,). Apply theorem 1 to determine whether or not W is subspace
of R". W is set of all vectors in R* such that x; + x, = x5 + x4.

solution

From theorem 1, for the subset W to be subspace, it has to satisfy being closed under addition

X1 n
X

of vectors and under scalar multiplication. Let any vector in this space be X = 2 7= 72
'3 Ys
2 Ya

be two such vectors such that x; + x, = x3 + x4 and y; + y, = y3 + y4. Adding any two such
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vectors in this space gives

X1 n
X

2|, Y2
X3 Y3

Xq Ya
X1+
Xo + Y2
X3+ Y3
Xg+ Yy

=l

+
<l

Il

Checking now if (x1 + yl) + (xz + yz) = (x3 + y3) + (x4 + y4) or not.

(x1 + ]/1) + (xz + yz) = (1 +x2) + (]/1 + yz)
But xq + x, = x3 + x4 and y; + Y, = y3 + V4, therefore the above becomes
(xl + ]/1) + (xz + yz) = (13 +x4) + (}/3 + y4)
Hence closed under addition. Checking now if closed under scalar multiplication.

X1

CX3
CXy
Hence
(cxq) + (cxp) = c(x1 + xp)
But x; + x, = x3 + x4 hence
(cxq) + (cxp) = c(x3 + x4)
= (cx3) + (cxy)

And therefore it is closed under scalar multiplication as well. Hence W is subspace of R*
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4.9.12 Section 4.2 problem 16

problem Apply method of example 5 to find two solution vectors u, v such that the solution
space is the set of all linear combinations of the form su + tv
X1 —4x, = 3x3-7x4 =0
2x1 —Xp+x3+7x4 =0
X1+ 2x +3x3 +11x4 =0

solution

X1
1 4 -3 -7 0
X2
2 -1 1 7 =
X3
1 2 3 11 0
Xq
Let R2:R2—2R1, hence
X1
1 4 -3 -7 0
X2
0o 7 7 2 =10
X3
1 2 3 11 0
Xq
Let R3 = R3 — Ry, hence
X1
1 -4 -3 -7 0
X2
o 7 7 21 =
X3
0 6 6 18 0
X4
Let R3:R3—§R2, hence
X1
1 -4 -3 -7 0
X2
7 7 21 =10
X3
0O 0 O 0
Xg

Last row gives Ox3 + Ox, = 0. Therefore x, = t,x3 = s are the free parameters. From second
row

7XZ + 7X3 + 21X4 =0
7xy = =75 — 21t

Xy = —s—3t
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From first equation
X1 —4x, —3x3-7x4 =0
X1 =4x, +3x3 + 7x4
=4(-s—-3t)+3s+ 7t

=—-s—5¢
Hence solution vector is
X -5 — 5t -s -5t
Xp -5 —3t -5 =3t
= = +
X3 s s 0
X4 t 0 t
-1 -5
-1 -3
=S +t
1 0
1
=si+to

4.9.13 Section 4.2 problem 22

problem Reduce the given system to echelon form to find a single solution vector u such
that the solution space is the set of all scalar multiples of u
X1 +3xy +3x3 +3x4, =0
2x1 +7xy +5x3 —x4 =0
2x1 +7xp +4x3-4x4, =0

solution
X1
1 3 3 3 0
X2
2 7 5 -1 =10
X3
2 7 4 -4 0
X4
R2:R2—2R1 gives
X1
1 3 3 3 0
X2
o1 -1 -7 =10
X3
2 7 4 -4 0
Xg
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R2 = R3 - 2R1 giVeS

|
13 3 3 0
X2
01 -1 -7 =0
X3
01 -2 -10 0
X4
R3 = R3 - Rz gives
X1
13 3 3 0
X2
-1 -7 =10
X3
-1 -3 0
X4
Last row gives —x3 — 3x4 = 0. Therefore let x, = t be the free parameter. Hence x3 = -3t.

From second equation
Xp—x3—7x4=0
X = X3+ 7xy
=-3t+7t
=4t
And from first equation
X1 +3xy +3x3+3x4 =0
X1 = —=3xp —3x3 — 3x4
=-3(4t) -3 (-3t) -3t

= -6t
Hence solution vector is

X1 -6t
Xo | 4t
X3 -3t

X4 t
-6

=t 4
-3

1

=tu

4.9.14 Section 4.2 problem 26

problem Prove: If # is a fixed vector in vector space V, then the set of W of all scalar multiples

cit of 71 is subspace of V
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solution

Let
W = {cii}
Closure under addition gives
it + i = (¢ + ¢p) 11
=bn

Where b = ¢; + ¢;. Hence closed under additions. Closure under multiplication by scalar b
gives
beit = (bo) @t
= Clﬂ

Where C; = bc a new constant. Hence closed under multiplication by scalar b. Therefore W
is subspace of V

4.9.15 Section 4.2 problem 27

problem Let # and o be fixed vectors in vector space V. Show that the set W of all linear
combinations ail + b? is subspace of V

solution

The set W is W = {afi + b?} which is linear combinations of # and o where a,b are arbitrary
scalar. Closure under addition gives

(511171 + bll_)) + (61217 + bzf)) = (111 + 612) u+ (bl + bz) 0

But a; +a, and by + b, are arbitrary scalars, say Cy, C, respectively. Hence the above becomes
C1i1 + C,0 and this is in W. Hence W is closed under addition. Closure under multiplication
by scalar c gives

c(an + bo) = cait + cbv

But ca and cb are arbitrary scalars, say C;, C, respectively. Hence the above becomes C;i1+C,
and this is in W. Therefore W is subspace of V.

4.9.16 Section 4.2 problem 28

problem Suppose A is n X n matrix and k is constant scalar. Show that the set of all vectors
X such that AX = kX is subspace of R"

solution

Let W = {x} where Ax = kx. To determine if closed under addition, we consider the vector
X1 +X,. This vector should also satisfy A (¥; + X,) = k (¥; + X;) for it to be closed. Let us check
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if this is the case or not.
A (X + Xy) = AX| + AXp
= kX + kX,
=k(x; +X)
Hence it is closed under addition. We will now check closure under scalar multiplication.
A(cxq) = cAxy
= ckx
=k (cX)

Hence closed under scalar multiplication. Therefore W is subspace of V.

4.9.17 Section 4.3 problem 6 (page 252)

problem Determine whether the given vectors are L.I. or L.D. Do this by inspection without
solving linear system of equations

Z_)l = (1/ 0/ O)
7_)2 = (1/ ]-/ 0)
03 =(1,1,1)

solution
The equation ¢191 + ¢;0, + c303 = 0 gives
C1 (1/ OI 0) + C2 (1/ 1/ 0) + C3 (1/ 1/ 1) = (OI 0/ O)
(c1 +¢3 + 3,00 +c3,c3) = (0,0,0)

Hence c; = 0 and ¢, = 0 and ¢; = 0 is the only solution. Therefore definition of linear
independence (page 248), the vectors are linearly independent.

4.9.18 Section 4.3 problem 7

problem Determine whether the given vectors are L.I. or L.D. Do this by inspection without
solving linear system of equations
v =(2,1,0,0)
v, =(3,0,1,0)
v3=(4,0,0,1)
solution
The equation c101 + ¢;0, + c303 = 0 gives
c1(2,1,0,0) + ¢, (3,0,1,0) + c3(4,0,0,1) = (0,0,0,0)
(2c1 + 3¢y +4c3,¢1,09,¢3) = (0,0,0,0)

Therefore, we see by inspection (comparing terms) that c; = 0,c, = 0,c; = 0. Therefore
definition of linear independence (page 248), the vectors are linearly independent.
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4.9.19 Section 4.3 problem 15

problem Express the indicated vector w as linear combination of the given vectors v; if this
is possible. If not, show it is impossible

W= (4,5,6)
71 =(2,-1,4)
7, =(3,0,1)
73=(1,2,-1)

solution
The equation 19, + ¢;0, + 303 = @ gives (in matrix form)

2 3 1\(c;) (4
-1 0 2 G| = 5
4 1 -1)les) 6

1
We now solve for c¢q,cy,c5. Let R, =R, + 5R1 therefore

3 1 C1

3 5 -

2 2 ||9?|T

1 -1 C3 6

R3 = R3 - 2R1 giVCS

3 1 C1 4
3 5 _

2 2 ||2|7|7

Rz =R5 - 13—0R2 gives

2 —1 4 C1 4:
0 2 2|le|=|7
0 0 & ¢

3/\6 3

Therefore, since there are no zero pivots at end of forward Gaussian elimination, the solution
is unique and not zero. (by backward substitution,

(] 3
G| = -2
C3 4

Hence
w = le_)l + C2'(_)2 + C3'Z_]3
= 31_)1 - 21_)2 + 41_)3
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4.9.20 Section 4.3 problem 20

problem Three vectors vy, v,,v3 are given. If they are L.I., show this. Otherwise, find a
nontrivial linear combination of them that is equal to the zero vector.

5 = (1,1,-1,1)

7, =(2,1,1,1)

73 =(3,1,4,1)

solution

Here the space is R, but only 3 vectors are given. Therefore theorem 3 at page 252 is used.
This theorem says that, if we set the A matrix, with its columns as the given vectors above,
then the vectors are L.I. iff there is a 3X3 submatrix inside A which has nonzero determinant.
To show this, Gaussian eliminating is used.

1 2 3 1 2 3 1 2 3
1 1 1|Ry=Ry-R;| 0 -1 =2|Rs=R3+R; |0 -1 —2]|R4=R4—R;
A= — — —
-1 1 4 -1 1 4 0o 3 7
1 11 1 1 1 1 1 1
1 2 3 1 2 3 1 2 3
O -1 -2 R3=R3+3Ry O -1 -2 R4=R4-Ry O -1 -2
— —
0o 3 7 0 0 1 0 0 1
0o -1 -2 0 -1 -2 0 0 O

The above shows that there is a submatrix of size 3 X 3 which has nonzero determinant. It
is the matrix of the first 3 rows

1 2 3
0 -1 -2
0 0 1

This has nonzero determinant. Since it is diagonal, its determinant is the product of diagonal
elements. Since no diagonal element is zero, the determinant is not zero. This implies vectors
are linearly independent.

4.9.21 Section 4.3 problem 24

problem The vectors 9; are known to be L.I., apply the definition of L.I. to show that the
vectors u; are also L.I.

U =01 +70;
i, = 20, + 30,
solution
We will examine
aity + bity =0
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To see if this is satisfied only for 2 =0, = 0.
aiiy + bit, =0
a (0 +0y) +b(201 +30,) =0
01 (a+2b)+7,(a+3b)=0
But since we are told that 9;,7, are L.I., then this implies that a + 2b = 0 and a4 + 3b = 0.
These two equations we solve now for 4,b. These two equations show that 2b = 3b, which

means b = 0. Hence a = 0 as well. Therefore only solution for aii; + bii, = 0 is that a = b = 0.
This is the same as saying I, i, are linearly independent.

QED
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4.10.1 Section 4.3 problem 6 (page 252)

problem Determine whether the given vectors are L.I. or L.D. Do this by inspection without
solving linear system of equations

'(_)1 = (11 0/ O)
0, =(1,1,0)
Z_)3 = (1/ 1/1)

solution
The equation ¢;01 + ¢,0, + c303 = 0 gives
C1 (1/ O/ 0) + (6] (1/ 1/ 0) + C3 (1/ 1/ 1) = (O/ 0/ 0)
(c1 + ¢ + 3,00 +¢3,¢3) =(0,0,0)

Hence c; = 0 and ¢; = 0 and ¢; = 0 is the only solution. Therefore definition of linear
independence (page 248), the vectors are linearly independent.

4.10.2 Section 4.3 problem 7

problem Determine whether the given vectors are L.I. or L.D. Do this by inspection without
solving linear system of equations
v1 =(2,1,0,0)
v, =(3,0,1,0)
v3=(4,0,0,1)
solution
The equation ¢;91 + ¢,0, + ¢305 = 0 gives
c1(2,1,0,0) + ¢, (3,0,1,0) + c3(4,0,0,1) = (0,0,0,0)
(2c1 + 3¢y +4c3,01,09,03) = (0,0,0,0)

Therefore, we see by inspection (comparing terms) that ¢c; = 0,c; = 0,c; = 0. Therefore
definition of linear independence (page 248), the vectors are linearly independent.

4.10.3 Section 4.3 problem 15

problem Express the indicated vector w as linear combination of the given vectors v; if this
is possible. If not, show it is impossible

W= (4,5,6)
71 =(2,-1,4)
7, =(3,0,1)
73 =(1,2,-1)
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solution
The equation c¢19; + ¢;0, + 303 = @ gives (in matrix form)

2 3 1\(c;) (4
-1 0 2||le|=]5
4 1 -1)le;) 6

We now solve for ¢q,c;,c3. Let R, =R, + %Rl therefore

3 1 C1
35 _
2 2 ||%2]|7
1 -1 C3 6
R3 = R3 —ZR] gives
2 3 1 C1
3 5 B
0 5 E G| = 7
0 -5 -3)le;) (-2
Ry = Ry — 2R, gives
2 -1 4)(c;) (4
0 3 2|lel=|7
0 0 & ¢
EWASE 3

Therefore, since there are no zero pivots at end of forward Gaussian elimination, the solution
is unique and not zero. (by backward substitution,

C1 3
G| = -2
C3 4

Hence
W = €101 + €0y + €373
= 3771 — 27_12 + 4773

4.10.4 Section 4.3 problem 20
problem Three vectors v,v,,v; are given. If they are L.I., show this. Otherwise, find a
nontrivial linear combination of them that is equal to the zero vector.
Z_)l = (1/1/ _1/1)
Z_)Z = (2/ 1/ 1/1)
773 = (3/ 1/ 4/1)
solution
Here the space is R?, but only 3 vectors are given. Therefore theorem 3 at page 252 is used.
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This theorem says that, if we set the A matrix, with its columns as the given vectors above,
then the vectors are L.I. iff there is a 3X3 submatrix inside A which has nonzero determinant.
To show this, Gaussian eliminating is used.

1 2 3 1 2 3 1 2 3
1 11 Ro=Ry-R; 0o -1 -2 R3=R3+R1 0o -1 -2 R4=R4-Rq
A = e —_—> —_
-1 1 4 -1 1 4 0 3 7
1 11 1 1 1 1 1 1
1 2 3 1 2 3 1 2 3
O —1 —2 R3=R3+3R; O —1 —2 R4=R4—Ry O —1 —2
—> —
0 3 7 0 0 1 0 0 1
0 -1 -2 0 -1 -2 0 0 0

The above shows that there is a submatrix of size 3 X 3 which has nonzero determinant. It
is the matrix of the first 3 rows

1 2 3
0 -1 -2
0 0 1

This has nonzero determinant. Since it is diagonal, its determinant is the product of diagonal
elements. Since no diagonal element is zero, the determinant is not zero. This implies vectors
are linearly independent.

4.10.5 Section 4.3 problem 24

problem The vectors 9; are known to be L.I., apply the definition of L.I. to show that the
vectors u; are also L.I.

U =01 +0y
iy =201 + 30,
solution
We will examine
aily + biiy = 0
To see if this is satisfied only for a =0,b = 0.
aiiy + bit, =0
a1 +0,) +b(201 +30,) =0
91 (a+2b)+7,(a+3b)=0

But since we are told that 9;,7, are L.I., then this implies that a + 2b = 0 and a4 + 3b = 0.
These two equations we solve now for 4,b. These two equations show that 2b = 3b, which
means b = 0. Hence a = 0 as well. Therefore only solution for aii; + bii, = 0 is that a = b = 0.
This is the same as saying Iy, i, are linearly independent.
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QED
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4.11.1 Section 5.1 problem 10 (page 299)
problem

Verify that y;,y, are solutions of the differential equation. Then find a particular solution
of the form vy = cyy; + ¢y, that satisfies the initial conditions. y” — 10y” + 25y = 0 with
y1 = e, y, = x¢>* and y (0) = 3,y (0) = 13

solution

To verify that y; or y, is solution to the ODE, we plug it into the ODE and see if it gives
zero, which is what the RHS is. Since y; = 5¢™,y; = 25¢%, then substituting this into the
ODE gives

vy —10y; +25y; =0

2565 10 (5¢%) + 25 (¢%) = 0
25¢%% — 50e% + 25¢°% = ()
0=0

Hence verified. Now we do the same for y,. Since y = € + 5xe™, y§ = 5¢> + 5¢> + 25xe™,
then substituting this into the ODE gives

vy —10y5 + 25y, = 0

(5e5x + 5e%% + 25xe5") -10 (e5x + 5x65") +25 (xe5x) =0
5e°* + 5% + 25xe°* — 10e>* — 50xe>* + 25xe°* = 0
25xe>* — 50xe>* + 25xe>* = 0

0=0

Hence verified. Therefore the general solution is

y (x) = c1y1 () + oy (x)

Where the constants are found from initial conditions. Using the first initial condition gives

y(0)=3

c1y1 (0) + coy2 (0) = 3

1 (e5x)x:0 +0p (xe5")x20 =3
1 = 3
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Hence the solution becomes
y(x) = 3y; (%) + oy (%)
Y =3y1 +

=3 (565") +cp (65" + 5x65")

Applying the second boundary conditions gives

Y (0) =13
3 (5€5x)x:0 +0p (65" + 5xe5x)x:O =13
3(5) +c, =13
Cy = 13-15
=2

Therefore the particular solution is

y(x) = cqy1 (x) + ¢y (x)
=3y (x) — 2y (x)
= 3e%% — 2y

= e (3-2x)

4.11.2 Section 5.1 problem 19

problem Show that y; = 1,y, = +/x are solutions to yy”’ + (y’)z = 0 but that their sum y = y; +y,

is not a solution

solution To show that y; and y, are solution to the ODE, we plug them into the ODE and
see if the result is the same as the RHS. Since y; =1 then y; = 0,y] = 0. Then ODE becomes

2
iy +(v4) =0
100+0=0
0=0

Hence verified. For y,, we have y; = %,yé’ = _Zli Hence the ODE becomes

1 3"
2x2 x2
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vyt + (1) =0

2
13 1
4 x2 2x2

1
X2

=0
-11 N 1 —0
4 x d¢ |
0=0

Hence verified. Now we plugin the sum into the ODE.

(1 +92) (v +v2) ((y1 + yz)')2 =0

(v +v2) (v +3) + (45 +93) =0

/

(7 +vag) + vy +vavs) + () + ()" + 203 = 0
iy + iy v+ vy + (1) + () + 2y = 0

2 2
But we found that y,y{ + (yi) = 0 and yy5 + (yz) = 0 from earlier. Using these into the

LHS of the above simplifies it to

-1

But y3y = I%,y{’ =0,y; = 0,y; =1, then the above becomes
%2

vy +yoyy +2y1y5 =0

-11
— =0
x2

We see that the LHS is not zero. Hence y; + , is not a solution to the ODE.

4.11.3 Section 5.1 problem 24

problem Determine whether the pairs of functions are linearly independent or not on the

real line. f (x) = sin®x, g(x) =1-cos2x

solution The two functions are L.I. if ¢;f (x) + ¢, (x) = 0 for each x, only when ¢; = ¢, = 0.
Or stated differently, two functions are L.D. if there exist c;,c; not all zero, such that
c1f (x) + c19 (x) = 0 for each x. To show this, we set up the Wronskian W and see if it is zero

or not. If W = 0 then this mean that the functions are L.D.
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|fw sw]_
fr(x) g x)
sin® x 1—cos2x

2sinxcosx 2sin2x
= 2sin® xsin 2x — (1 — cos2x) (2sinx cosx)

= 2sin® xsin 2x — 2 8in x cos x + 2 cos 2 Sin x COS X

The RHS of the above simplifies to 0.

W=0

Therefore, the functions are linearly dependent.

4.11.4 Section 5.1 problem 26

problem Determine whether the pairs of functions are linearly independent or not on the
real line. f(x) =2cosx + 3sinx, g (x) = 3cosx —2sinx

solution To show this, we set up the Wronskian W and see if it is zero or not. If W = 0 then
this mean that the functions are L.D.

f) g()
f) g ()

2cosx+3sinx 3cosx-—2sinx

—2sinx+3cosx —3sinx —2cosx
= (2cosx + 3sinx) (-3sinx —2cosx) — (3cosx —2sinx) (-2sinx + 3 cos x)
= —13cos? x — 13 sin® x

=-13 (0052 X + sin? x)

=-13

Since W # 0 then the functions are Linearly independent.

4.11.5 Section 5.1 problem 27

problem Ley y, be a particular solution of the nonhomogeneous equation y” +py’ +qy = f (x)
and let y;, be the homogenous solution. Show that y = y;, +y, is a solution of the given ODE.

solution since y;, satisfies the homogenous ODE then we can write
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v, +py,+aqy, =0 1)

And since y, satisfies the nonhomogeneous ODE then we can write

Yp +0Yp +ayy = f (%) (2)
Adding (1)+(2) gives

vy +vi)+p(vp+vp) +a (v +v) = F )

But due to linearity of differentiation, then the above can be written as

(o +un) +p (o +u) +a(yp+m) = F)

Let Y =y, +y; then

Y” +pY' +qY = f(x)

Therefore we showed that Y = y, +y satisfies the original ODE, hence it is a solution. QED

411.6 Section 5.1 problem 31

problem Show that y; = sinx? and y = cos x? are L.I. functions, but their Wronskian vanishes

are x = 0. Why does this implies that there is no differential equation of the form vy’ +p (x) y’ +
g (x)y = 0 with both p, g continuous everywhere, having both y;,y, are solutions?

solution

1 Y

Y2 Y2

sin x? cos x2
(2x) cosx?> —(2x) sin x?
= —2x sin x% sin x2 — 2x cos? cos x%

2 2

= -2x ((sm xz) + (cos xz) )
= -2x

The Wronskian is zero at x = 0 but not zero at other points. It is only when W = 0 everywhere,
we say that y;,y, are L.D. We can have L.I. functions, but also have W (xy) = 0 at some x; as
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in this problem. What this mean, is that x = 0 can not be in the domain of the solution for
y1,Y> to be solutions to the ODE. Hence, since the domain of the solution is everywhere, this
means x = 0 is part of the domain, then we conclude that y;,1, can not be both solutions,
since they are L.I. at x = 0.

4.11.7 Section 5.1 problem 32

problem Let y;,1, be two solutions of A(x)y” + B(x)y" + C(x)y = 0 on open interval |
where A,B,C are continuous and A (x) is never zero. (a) Let W = W(yl,yz). Show that
A(x) %\[ =1 (Ayé’) ) (Ayi’) then substitute for Ayy and Ay{ from the original ODE to
show that A (x) %\/ = —B(x) W(x) (b) Solve this first order ODE equation to deduce Abel’s
formula W(x) = kexp (— f %dx) where k is constant. (c) Why does Abel’s formula imply
that the Wronskian W(yl,yz) is either zero everywhere or non-zero everywhere (as stated in
theorem 3)?

solution

411.7.1 Part (a)

By definition

W (x) = y1v5 — vo1

Hence
dW !5, s /., /7
PR T V1Y2 —Yoh1 ~ Yo
= V1y2 —yayi
Therefore
AW
A(x) i A(x) (ylyél - }/2}/1’)
=y (A@ W) -y (A@ W) (1)
But from original ODE, A (x)y} + B(x)y; + C (x) y; = 0, therefore
Ay =-Bx)y; -C)m (2)
And also from original ODE, A (x) y5 + B (x)y3 + C (x) y, = 0, therefore
AX)yy =-Bx)y; - Cx)y2 (3)

Substituting (2,3) into (1) gives
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AW
A@) —= =1 (-BO)s - C0y2) -2 (-B@)yi - C@w)

= -B@) y1y; - C () y1y2 + B(x) y2y7 + C (x) Y2y

=By + B vy

= -B () (v1v5 - v214)

= -B (x) W (x) (4)
QED.

411.7.2 Part (b)
Solving (4).

I
Integrating factor is y = ¢’ 4®

Integrating gives

411.7.3 Part (c)

X
>

A(x)illxv+B(x)W(x):O

dW  B(x)
AW

Wi(x)=0

hence the above becomes

c;ix (/JW(x)) =0

uW (x) =k
M

W(x) = ke ¥ 40"

Since an exponential function is never zero (for bounded %), then W (x) = ke®) can only be

zero if k = 0. This makes W = 0 everywhere when k = 0. But if k # 0, then W # 0 everywhere.
So W can only be zero everywhere, or not zero everywhere.

4.11.8 Section 5.1 problem 34

problem Apply theorem 5 and 6 to find general solutions of the differential equation y”" +

2y’ -15y =0
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solution The characteristic equation is 72 + 2r —15 = 0, and the roots are
r = 3
Yy = -5

Therefore the solution is

Y (x) = 1€ + cpe2*

3x -5x

=1 +0re

4.11.9 Section 5.1 problem 42

problem Apply theorem 5 and 6 to find general solutions of the differential equation 35y" —
y-12y=0

solution The characteristic equation is 357> — r — 12 = 0, and the roots are

1"125

4
1’2:—5

Therefore the solution is

Y (x) = 1" + cpe'?”
. _iy
=c1e5 +cye 7

4.11.10 Section 5.1 problem 48

problem Problem gives a general solution y (x) of a homogeneous second order ODE ay” +

by’ + cy = 0 with constant coefficients. Find such an equation y (x) = ¢* (cle"\/E + cze"“/i)

solution We compare the above solution to the general form of the solution given by

y = cre'* + cpe?*

V2 o (1V2)

+C€

We see that
" :1+\/§
7’2:1—\/5

This implies that the characteristic equation is
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Therefore the ODE is

Wherea=1,b=-2,c = -1.

(r=r)(r-ry)=0

(- ) -5

?-2r-1=0

4 /

y' -2y -y=0

217



412. HWI11 CHAPTER 4. HWS

412 HWI11

4.12.1 Section 5.2 problem 12 (page 311)

Problem: Use the Wronskian to prove that the given functions are linearly independent on
the given interval. f (x) = x,g(x) = cos(Inx),h (x) = sin (Inx) for x > 0

solution The Wronskian is

fog h
Wx)=\|f ¢ I
VA
X cos (Inx) sin (In x)
=11 —sin (In x) ;1? cos (Inx) %
0 —cos(lnx) xlz + sin (In) % —sin (Inx) le —cos (Inx) %

Expanding along the last row
W (x) = Wap (<1)*% Agp + W (1) Agg
x sin(lnx) x cos(lnx)

1

211 cos (Inx) "

1 1
+ (— sin (In x) 2 cos (Inx) F)

1 1
=- (— cos (Inx) 2 Tsin (In) ) 1 —sin(Inx) %

= (cos (Inx) % —sin (In) %) (cos (Inx) — sin (Inx)) + (sin (Inx) % + cos (In x) xl_z) (sin (In x) + cos (In x))

Let sin (In) % = A, cos(Inx) xlz = B, cos(Inx) = a,sin (Inx) = b then the above is
Wx)=B-A)(a-b)+(A+B)(b+a)
=2Ab +2Ba

Transforming back
1 1
W (x) = 2sin (In) =z sin (In x) + 2 cos (Inx) 2 cos (In x)

1 1
= 2sin? (In) — +2cos? (Inx) =
X X

2
Iz

Hence, for x > 0 the Wronskian is not zero. Therefore the functions are L.I.

4.12.2 Section 5.2 problem 16

Problem: A third order ODE is given, and three L.I. solutions are given. Find a particular
solution satisfying the given initial conditions y"”’ -5y + 8y’ -4y =0 and y(0) =1,y (0) =
4,y” (0) = 0 and y; = €5, y, = ¥, y3 = xe**
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solution The general solution is
Y=y + Y2 +C3Y3
= 16 + cpe?* + cyxe®™
Hence
Y = 1" + 20,07 + c3 (sz + erzx)
And
Y’ = 1€ +4cpe® +c3 (262" + 2% + 4xez")
From first initial condition we obtain
l=c+c, (1)

From second initial condition we obtain

4=c1+2c+c3 (2)
And from the third initial condition

0 =cq +4cy +4c; (3)

We have three equations (1,2,3) to solve for cy, ¢, c3.

1 1 0)(c 1
1 2 1||ca|=14
1 4 4)\c 0
Augmented matrix is
1101 110 1 110 1
Ry=Ry—Rq R3=R3-3R,
121 4 +— 1011 3 — ({001 1 3
R3=R3-Ry
1 440 0 3 4 -1 0 01 -10

We see that |A] = 1, since reduced matrix is upper diagonal matrix. Hence the solution is
unique. From last row we obtain c; = =10 and from second row c; +c3 =3 or c; =3+10 =13
and from first row ¢; + ¢; =1 or ¢; =1 -13 = 12, hence the particular solution is

v (x) = c1€* + cpe%* + czxe?

= —12¢° + 13¢** — 10xe?*

4.12.3 Section 5.2 problem 24

Problem: A nonhomogeneous ODE, homogeneous solution y;, and particular solution y, are
given. Find solution that satisfy the initial conditions. y”” -2y’ +2y = 2x with y (0) = 4,1’ (0) = 8
and y;, = cie* cosx + cpe* sinx and y, = x +1

solution The general solution is

Y=Yntyp
=c1efcosx + cpe*sinx+x+1
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Therefore
Y =cp(e¥cosx —e*sinx) 4+ cp (e¥sinx +e* cosx) +1

First initial conditions gives

4=c+1

c1=3
Second initial conditions gives

8=c1+c+1

Hence ¢, =7 — c; = 4. Therefore the general solution becomes

y=3e“cosx +4e“sinx+x+1

=e*(3cosx+4sinx) +x+1

4.12.4 Section 5.2 problem 28

Problem: Show that 1,x,x2,---,x" are L.L

solution Using the Wronskian

1 x x%2 i3 X"

0 1 2x 3x% - nx"1

00 2 6x - n(n-1)x"2
W) =1 . 3

: 0 6 -« nn-1Dmn-2)x"

00 0 O n!

Therefore, the resulting Wronskian is an upper diagonal. The determinant of an upper
diagonal matrix is the product of the diagonal. We see that there can be no zero element
on the diagonal. Hence the determinant is never zero. Therefore 1, x, x2,---,x" are L.L.

4.12.5 Section 5.2 problem 30

Problem: Verify that y; = x and y, = x* are L.L. solutions on the entire line of the equation

x?y” — 2xy + 2y = 0 but that W(x, xz) vanishes at x = 0. Why does these observations not

contradicts part (b) of theorem 3?

solution To verify that y;,y, are solution of the ODE, we plugin each into the ODE and see
if they satisfy it. For y;, we obtain

X2y = 2xy1 + 2y, =0
But y; =1,y{ =0, therefore the above becomes

2x+2x=0
0=0
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Verified. For y,, where y; = 2x,y; = 2, we obtain
X2y3 = 2xyy + 2y, =0
2x% — 4x% + 2x2 = 0
0=0
Hence verified. Now we need to show that y,,y, are L.I.

C1y1 + Y2 =0
We now solve for ¢y, c,

c1x+cx? =0
Comparing coefficients on the LHS and RHS, we see that ¢c; = 0,c, = 0. Hence this shows
that y,,y, are L.I. We now find the Wronskian

x x?

1 2x

Vi Y
Y1 Y2

2

W(x) = = =2x2—x%=x

Hence W (x) = 0 at x = 0. This does not contradicts part (b) of theorem 3, because when we
write the ODE in the standard form

., 2 2 B
]/1‘;%"‘;3/1—0

We see that p; (x) = —JZ—C, pa(x) = xz_z These functions are not continuous at x = 0 (there is
singularity at x = 0). But theorem 3 applies only to the interval where p; (x) are continuous.
Hence does not apply in this case. If W(x) was zero at location other than x = 0, only then
this will be a contradiction.

4.12.6 Section 5.3 problem 9 (page 323)
Problem: Find the general solution of the ODE y” + 8y’ + 25y =0

solution This is constant coefficient, linear, second order ODE. The characteristic equation
is 7% + 8r + 25 = 0. The roots (using quadratic formula) are

= -4+ 3i
ry = —4-3i
Hence the general solution is

Yy =1 + cpe"*
= 43X 4 o p(-4-3D

= 7% (¢4 cos 3x + ¢, sin 3x)

4.12.7 Section 5.3 problem 16

Problem: Find the general solution of the ODE y® +18y” + 81y = 0

solution This is constant coefficient, linear, second order ODE. The characteristic equation
is 74 + 1872 + 81 = 0. Let 72 = z, hence z2 + 18z + 81 = 0. This can be factored to (z + 9)* = 0.
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Hence the roots are -9 repeated. Therefore 2 = -9 or r = +3i. Therefore, the 4 roots are
{31,-3i, 3i, -3}

Hence the solution is

y= Cle3ix + Cze—?)ix + c3xe3ix + c4xe‘3ix
Or
Y =c1c083x + ¢psin 3x + x (c3e3ix n C4e—3ix)
= ¢1 €08 3x + ¢, sin 3x + x (c3 cos 3x + ¢4 sin 3x)
Or

Y = (cq + xc3) cos 3x + ¢, sin 3x (¢ + xcy)

4128 Section 5.3 problem 23
Problem: Solve the initial value problem y” — 6y’ + 25y =0,y (0) =3,y (0) =1

solution This is constant coefficient, linear, second order ODE. The characteristic equation
is 72 — 6r + 25 = 0. Using quadratic formula, the roots are

r=3+4i
rp=3—-4i
Hence the general solution is
y (x) = €3* (1 cos 4x + ¢, sin 4x)
Hence
¥’ (x) = 36> (cq cos 4x + ¢y sin 4x) + €3 (—c14 sin 4x + ¢4 cos 4x)

Applying first initial conditions gives

3=0
Applying second initial conditions gives
1=3@0)+4c,
1-9
Cy = - -2

Hence the solution is
y(x) = € (3 cos 4x — 2 sin 4x)
4129 Section 5.3 problem 26

Problem: Solve the initial value problem y® +10y” + 25y’ = 0, (0) = 3,y (0) = 4,y (0) =5

solution This is constant coefficient, linear, second order ODE. The characteristic equation
is ¥ +10r% + 25r = 0 or r(rz +10r + 25) =0, or r(r +5)* = 0. Hence the roots are {0, -5, 5.
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There are repeated root. Hence the solution is

Y (x) = 1€ + cpe'?" + c3xe2"

= ¢ + 067 + c3xe™>F
Hence
Y = —5ce ™ 4¢3 (3‘5" - 5xe‘5")
And
Y’ = 25ce7% + ¢3 (—53‘5" -5 (6‘5" - 5xe‘5x))
Applying first IC gives

3=c+c
Applying second IC gives
4 =-5c, +c3
Applying third IC gives
5 =25¢c; + c3 (-5 -5)

= 25¢5 —10c3
We have three equations to solve for cy, ¢, c3.
1 1 0| 3
0 -5 1 ||l 4
0 25 -10)\c3 5
Therefore R3 = R3 + 5R; gives
1 1 0)(¢ 3
0 -5 1||c 4
0 0 -5/\c3 25
Therefore, from third row, —5c3 = 25 or
c3=-5
From second row
-5c, +c3 =4
-5, =4+5=9
9
©=-:

From first row
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c1+c=3
9
=3+ =
Cq 5
24
-5

Hence the general solution is

Y =1 + e ™% + caxe™

=5 - 56‘5" — 5xe™>¥

_1 24 — 9¢™> — 25xe~%
5 ( )

41210 Section 5.3 problem 35

Problem: One solution of the differential equation is given, find the second solution 6y® +
5y + 25y + 20y’ + 4y = 0, and y; = cos2x

solution The characteristic equation is 67 + 57> + 25r% + 20r + 4 = 0. Since cos 2x is solution,
then this implies the roots for this solution must be r = +2i, since this is what will give cos 2x
solution. Therefore, there must be factor (rz + 4). Doing long division

6r* + 513 + 2512 + 207 + 4

)
(r2+4) =6r-+br+1

Hence characteristic equation is
(rz + 4) (6r2 + 57+ 1)
(?+4)@r+1)Br+1)

. . -1 -1 .
Hence the roots are r; = 2i,r, = -2i,r3 = > Ta= 7 Therefore the solution is

1 -1
, . _1 -1,
Y = 1€%% + cpe™¥ 4 c3e 2" + e
_L 2
=1 CO82X + CpSin2x + c3e 27 +cye 3

41211 Section 5.3 problem 38

Problem: Solve y® — 5y + 100y’ — 500y = 0 with y(0) = 0,3’ (0) = 10,y” (0) = 250 given that
y1 (x) = e is one particular solution of the differential equation.

solution The characteristic equation is > — 52 + 100r — 500 = 0. Since y; (x) = ¢>* is one
solution, then (r - 5) is one of the roots. Hence by long division

3 = 5¢2 + 1007 — 500
r—5

=72 +100
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Therefore the factoring of the characteristic equation is
(r=5) (2 +100) = 0
Therefore the roots are r; = 5,7, =10i, 73 = —10i and therefore the solution is
Y = 1€ + ¢; cos10x + c3 sin 10x
Hence

¥’ = 5c1°* —10c, sin 10x + 10c3 cos 10x
y”" = 25¢1e>* — 100c, cos 10x — 100c5 sin 10x

Applying first IC gives
O=c;+0
Second IC gives
10 = 5¢; +10c3
Third IC gives
250 = 25¢; —100c,
We have three equations to solve for cy, ¢, c3.
1 1 0)(g 0

5 0 10||c|=]10
25 -100 0 lcs) 250

Ry = Ry —5R; and R3 = R3 — 25R; gives

R3 = R3 - 25R2 gives

0 0 -250/{c;) (O

Hence from last row ¢3 = 0. From second row —5¢, = 10 or ¢, = -2 and from first row
c1 + ¢ =0 or ¢; = 2. Hence the solution is

Y = 16> + ¢ cos10x + c3 sin 10x

= 2e°% — 2 cos10x

4.12.12 Section 5.3 problem 40

Problem: Find linear homogeneous constant coefficient equation with the given general
solution y (x) = Ae* + B cos2x + C sin 2x

solution From the solution, we see that the roots are r; = 2,1, = 2i,r3 = —2i. Hence the
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characteristic equation is
(r—2)(1’2+4) =0
P -2 +4r-8=0
Therefore the original ODE is
vy’ (x)=2y" +4y -8y =0

41213 Section 5.3 problem 49
Problem: Solve y® —y® —y” -y — 2y = 0 with y(0) = 0, (0) = 0,y” (0) = 0,y® = 30
solution The characteristic equation is
M-r—r2-r-2=0
By inspection, we see that r = -1 is a root. Hence by long division, we have

AP —r2—r=2

(r+1)
Therefore characteristic equation is

(r+1)(P-22+7r-2)=0

=P -2 +r-2

By inspection, one of the roots of 7* — 22 + r —2 = 0 is 2, hence by long division
rP-2r+r-2
r—2
Therefore characteristic equation becomes
r+1)(r-2)(2+1)=0

Hence roots are ry = -1,r, = 2,73 = —i,r, = i and therefore the solution is

=r?+1

Y =cre™* + cpe?* + 308X + ¢4 Sinx
Initial conditions are now applied to find the constants.
Y = —ci1e + 2006%* — c3sinx + ¢4 cos x
Y’ =167 + 4cpe® — 03 oS X — ¢y Sinx
Y = —cie7 + 8cye?* + c38inx — ¢y co8 X
From y (0) = 0 we obtain
O=c1+cy+c3
From v’ (0) =0
0=—c1+2c+¢4
From vy (0) =0
0=c+4c,—c3
And from y"” (0) = 30

30 = —C1 + 8C2 —Cy
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The 4 equations are solved for c;

1 1 1
12 0 1|]g
1 4 -1 0||c
-1 8 0 -1){cy
Ry =Ry + Ry,R3 = R3 = Ry,Ry = Ry + R; gives
11 1 0)(q
03 1 1}|c
03 -2 0]]cs
09 1 -1)\g
R3 = R3 — Ry, Ry = Ry — 3R, gives
11 1 0)(q
03 1 1]{|e
0 0 -3 —1ffcs
0 0 -2 —4)\¢y
Ry =Ry — 2R gives
11 1 0)(g
03 1 1]||c
0 0 -3 -1]|c
00 0 -3l
Hence from last row —13—0(:4 = 30,then
g =-9
From 3rd row
—3c3—¢c4 =0
c3=3

From second row
3cp+c3+c4,=0
3¢, +3-9=0
cp =2
From first row
c1+c+c3=0
1+2+3=0

C1:_5
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Hence solution is
Y =cre™* + pe?* + 308X + ¢4 Sinx

= —5¢ +2¢% + 3cosx —9sinx
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4.13.1 Section 5.1 problem 52 (page 299)

Problem Make the substitution v = In x to find general solution for x > 0 of the Euler equation

Xy +xy —y=0

. d dy d dy 1
solution Let v = Inx. Hence = = 22 = ¥~ and
—_— dx do dx du x

d?y d (dyl
dx? E(%§)
fyter dud 1)
dv?dxx dvodx \x
Pyl dy 1l
T A2 dux?
Hence the ODE becomes

Xy +xy -y =0
Py 1 dy1 dy1
2(TY 2 4y 2 2 - =
x(dvzx2 dvx2)+x(dvx) y(©) =0
@y dy  dy
w2 ot a VOO
42
d—vz—y(v)=0

This can now be solved using characteristic equation. > —1 =0 or ¥ =1 or r = +1. Hence
the solution is

y(v) = c1e” + cpe™
But v = Inx, hence

Y (x) = c1e™* + cpem I

1
=X+ 01—
X

The above is the solution.

But an easier method is the following. Let y = x". Hence i’ = rx""1,yy”” = r(r — 1) x'~2. Substi-
tuting this into the ODE gives

rr-Dx" +r"-x"=0
X(r(r-1)+r-1)=0
Since x” # 0, we simplify the above and obtain the characteristic equation

rr-1)+r-1=0

?-1=0
=1
r=41
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Hence
Y (x) = X1 + cpx"2
=X + cpx !

For x > 0.

4.13.2 Section 5.1 problem 54

Problem Make the substitution v = In x to find general solution for x > 0 of the Euler equation
4x?y” + 8xy’ =3y =0

. d dy do dy 1
solution Let v = Inx. Hence = = 2% = 2- and
—_— dx dv dx dov x

d?y d (dyl
ol d_(d__)
RLANAN
do?dxx dodx \x
_dPy 1 dy
T d?x? dux?
Hence the ODE becomes

Xy +xy -y =0

dy1 dyl dy 1
2[4 Y2 - =
x(dvzxz dvx2)+8x(dvx) 3y =0
d? d d
42V 48 g%

T2 %+8%—3y(0):0

dy  dy
4L 4™l =
T2 + o 3y() =0

This can now be solved using characteristic equation. 41> + 4r — 3 = 0, whose roots are
-3

1 S
n=,n=; Hence the solution is

-3 1
y(©) =cie?” + cpez”
But v = Inx, hence

In Inx

-3 1

y(x) =ce2 " + cpel
3 1
=C1X2 +(c1x2

4.13.3 Section 5.2 problem 40 (page 311)

Problem Use reduction of order to find second L. solution y,. x?y”"—x(x +2)y’ +(x +2)y =0
with y; =xand x>0
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solution Let y = vy, hence
Yy =vy +oy
Yy =T+ VY Y oy
= 0"y, + 20'y] + vy
Therefore the original ODE becomes
Xy —x(x+2)y +(x+2)y=0

x? (v”yl +20'y] + vy’l’) -x(x+2) (v’yl + vy{) +(x+2) (vyl) =0
0

v’ (x2y1) +v (szyi —x(x+2) yl) +0 (xzyi’ —x(x+2)y + (x+2) yl) =0

Hence
v’ (xzyl) +v (szyi - x(x+2) yl) =0
But 1, = x, hence the above becomes
v+ (2x2 —x(x+2) x) =0
30" -3 =0
Since we are told x > 0 when we can divide by x> and obtain
v -0 =0
To solve the above, let
z=0
Therefore z/ —z =0 or % (ze*) = 0 or ze* = ¢y or z = cye™. Therefore the above becomes
v =ce*
Integrating
vV =0Cy—Ccre*
Since y = vy, therefore
y=y1(ca—cre™)
But y; = x, hence the complete solution is
Yy =cox —cpxe™™
Therefore, we see now that the two basis solutions are
h=x
Yo = xe*

These can be shown to be L.I. using the Wronskian as follows
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W =[1 2
Y1 Y2

X xe*

1 e +xe*
= xe* + x2e* — xe*
2

= x<e*

Which is not zero since we are told x > 0. Hence indeed the second basis solution y, found
is L.I. to y;.

4.13.4 Section 5.5 problem 9 (page 351)

Problem Find the particular solution for y” + 2y — 3y =1 + xe*

solution First we find the homogenous solution. This will tell us if e* is one of the basis
solutions of not, so we know what to guess. The characteristic equation is

?+2r-3=0
(r-1)(r+3)=0

—3%_ ¢ is a solution to the homogeneous ODE. The guess is therefore

Hence y; ="y, =¢
Y, = A+ (B+Cx)xe
= A+ (Bx + Cx?) " 1)
Hence
v, = (B+2Cx)e* + (Bx + sz) e*
=e" (B +2Cx + Bx + sz)
yy = (Q2C+B+2Cx)e* + ¢ (B +2Cx + Bx + sz)
:ex(ZC+B+2Cx+B+2Cx+Bx+Cx2)
= ¢*(2C + 2B + 4Cx + Bx + Cx2)
Plugging into the ODE
¢* (2C + 2B +4Cx + Bx + Cx?) + 2¢* (B + 2Cx + Bx + Cx?) = 3 (A + (Bx + Cx?) e*) =1 + xe*
e* (2C + 2B + 2B) + x¢* (4C + B+ 4C + 2B - 3B) + x?¢* (C + 2C - 3C) —=3A =1 + x¢*
e (2C +4B) + x¢* (8C) —3A =1 + xe*
Hence -3A=1o0r A= —% and
8C=1
Or

| =
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And
2C+4B =0
Or

4.13.5 Section 5.5 problem 10

Problem Find the particular solution for y”” + 9y = 2 cos 3x + 3sin 3x

solution First we find the homogenous solution. The characteristic equation is

?+9=0
> =-9
r=+3i

Hence y; = ¢®%,y, = ¢ or y, = ¢; cos 3x + ¢, sin 3x. We see that cos 3x and sin 3x are already
in the homogeneous solution. Therefore the guess is
Yp = Axcos3x + Bxsin 3x
Hence
Yp = Acos3x — 3Axsin 3x + Bsin 3x + 3Bx cos 3x
Yy = —3Asin3x — 3Asin3x — 9Ax cos 3x + 3B cos 3x + 3B cos 3x — 9Bx sin 3x

Substitution into the ODE gives
(-3Asin 3x — 3Asin 3x — 9Ax cos 3x + 3B cos 3x + 3B cos 3x — 9Bx sin 3x)

+ 9 (Ax cos 3x + Bx sin 3x) = 2 cos 3x + 3 sin 3x
Or

—6Asin3x — 9Ax cos3x + 6B cos 3x — 9Bx sin 3x + 9Ax cos 3x + 9Bx sin 3x = 2 cos 3x + 3 sin 3x
sin 3x (—6A) + cos3x (6B) + xsin 3x (9B + 9B) + x cos 3x (-9A + 9A) = 2 cos 3x + 3sin 3x
—6Asin3x + 6B cos3x = 2 cos3x + 3sin 3x

Hence -6A =3 or A= _71 and 6B=2or B = %, therefore the particular solution is

1
Yp = 5 xCO8 3x + 3% sin 3x

1
= g (2x sin 3x — 3x cos 3x)
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4.13.6 Section 5.5 problem 16

Problem Find the particular solution for y”’ + 9y = 2x2¢3* + 5

solution From the above problem, we found y;, = c; cos3x + ¢, sin 3x. Therefore there are
no basis solutions in the RHS which are in the homogenous solution. The guess for the
constant term is A. The guess for 2x%¢ is (BO +Bix + Bzxz) ¢, hence

yy=A+ (BO +Bix + Bzxz) e
Yy = (By +2Byx) e + 3 (By + Byx + Byx?) e
Yy = 2Bye> + 3 (By +2Byx) € + 3 (By + 2B,x) € + 9 (By + Byx + Byx?) e
Simplifying
Yy = e (2B, + 3By + 3B; + 9By) + xe* (6B, + 6B, + 9B;) + x%¢** (9B,)
= 3 (2B, + 6B, + 9By) + xe* (12B, + 9B;) + x2¢3 (9B,)
Substitution into the ODE gives
¢ (2B, + 6By + 9By) + xe* (12B, + 9By) + x2¢% (9B,) + 9 (A + (By + Byx + Bpa?) %) = 2x2¢% + 5
e (2B, + 6B; + 9By) + xe* (12B, + 9B;) + x%¢** (9B,) + 9A + (9BO +9B;x + 9B2x2) e = 2x%e% + 5
¢ (2B, + 6B + 18By) + xe* (12B, + 18B;) + x2¢3 (18B,) + 9A = 2x26% + 5
Comparing coefficients gives
9A =5
2B, + 6B +18B; =0
12B, +18B, = 0
19B, =2
From last equation B, = %. Hence from third equation 18B; = —19—2, or B; = —22—7. And from
second equation

ZBZ + 6B1 + 1880 =0

2 ! +6 2 +18B, =0
9 27 0=
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And A = g. Therefore

y,= A+ (BO + Byx + Byx?) &%

o g1 27" "9
5 (1 6

= — - 2| ,3x

_9+(81 81x+81x)e
5 (1 6 9

= — _ 7 N2 ,3x

B 1+(81 81x+81x)e

1
_ 3 2,3
=3 (45+e"—6xe"+9xex)

4.13.7 Section 5.5 problem 25
Problem Setup the form for the particular solution but do not determine the values of the
coefficients. y” + 3y’ + 2y = xe™* — xe >
solution First we find the homogenous solution. The characteristic equation is
P +3r+2=0
r+1)(r+2)=0

Hence y; = ¢™,y, = ¢7>*. We see that the basis solutions are part of the RHS. Therefore the
guess solution is

Yp = X (A1 + Apx) e™ + x (Az + Agx) e

4.13.8 Section 5.5 problem 26

Problem Setup the form for the particular solution but do not determine the values of the
coefficients. y”” — 6y’ + 13y = xe>* sin 2x

solution First we find the homogenous solution. The characteristic equation is

r—-6r+13=0

The roots are 3 + 2i. Hence the homogenous solution is v, = c;¢>* cos 2x + c,¢> sin 2x. We see

that 3 sin 2x is already in the homogenous solution. Hence the guess is

x guess sin 2xe® guess

Yp = (A1 + Apx)x (Azsin 2x + Ay cos 2x) e

= (Alx + Azxz) e cos 2x + (A3x + A4x2) e sin 2x

4.13.9 Section 5.5 problem 37
Problem Solve the initial value problem y"”"-2y"” +y" = 1+xe* with y (0) = 0,' (0) =0,y (0) =1
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solution First we find the homogenous solution. The characteristic equation is
rP=2r+r=0
r(rz—2r+1) =0
For 7> - 2r +1 = 0, it factors into (r —1) (r — 1), hence roots are r; = 0,7, = 1,r; = 1. Since
double roots, the homogenous solution is
Yp = c1 + cpe* + czxe*

We notice that both ¢* and xe* is in the RHS. Therefore we need to multiply by x2. The
guess is therefore

Yy, = Ax +x2 (B + Cx)e"
= Ax + (Bx2 + Cx3) e*
Therefore
yp=A+ (2Bx + 3Cx2) e + (sz + Cx3) e
¥y = (2B +6Cx)e* + (2Bx + 3Cx2) e* + (2Bx + 3Cx2) e* + (Bx2 + Cx3) e*
Simplifying gives
Yy, = A+ xe* (2B) + x%¢* (3C + B) + x%¢* (C)
y, = e* (2B) + xe* (6C + 4B) + x%* (6C + B) + x¢* (C)
vy =€ (2B) + " (6C + 4B) + xe* (6C + 4B) + 2xe* (6C + B) + x%¢* (6C + B) + 3x%¢" (C) + x°¢* (C)
=¢* (6B + 6C) + xe* (6C + 4B + 12C + 2B) + x2¢* (6C + B + 3C) + Cx3¢*
= ¢* (6B + 6C) + xe* (18C + 6B) + x%¢* (9C + B) + Cx3¢*
Substitution into the ODE gives

177

Yp

/7

-2y, +y,=1+xe
Hence
e* (6B + 6C) + xe* (18C + 6B) + x%¢* (9C + B) + Cx3¢*
-2 (ex (2B) + xe* (6C + 4B) + x%¢* (6C + B) + x3¢* (C)) +
A + xe* (2B) + x?¢* (3C + B) + x%¢* (C) = 1 + xe*
Or
¢* (6B + 6C) + xe* (18C + 6B) + x%¢* (9C + B) + Cx3¢*
— e* (4B) — xe* (12C + 8B) — x?¢* (12C + 2B) — x3¢* (2C) +
A + xe* (2B) + x%¢* (3C + B) + x%¢* (C) = 1 + x¢*
Or
¢* (6B + 6C — 4B) + xe* (18C + 6B —12C — 8B + 2B) +
x%¢*(9C+B-12C-2B+3C+B) +x3%¢*(C-2C+C) + A =1+ xe*
Or
e (2B+6C) +xe*(6C) + A =1+ xe*
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Hence
6C =1
2B+6C =0
A=1
Therefore, C = %,B = —%, and the particular solution is

Yy = Ax +x* (B + Cx)e"

1 1
=x+|-=x%+ =233
2 6

Hence the complete solution is
Y=YntYp

1 1
= + 0" + c3xe” + x + (—Exz + 8x3 e

Applying initial conditions. y(0) = 0 gives
0= C1+C (1)
And

1 1 1
Y =" +cze” +ogxe® + 14 |—x + =x2|e¥ + | —=x? + =3 | "
2 2 6
Applying second initial conditions y’ (0) = 0 gives
O=c+c3+1 (2)

And

1 1 1 1
Y = cpe* + c3e* + cze* + caxe’ + (-1 + x) ¥ + (—x + Exz) e+ (—x + Exz) e + (—Ex2 + gx3) e*

Applying initial conditions y” (0) =1 gives
1= Cy + 2C3 -1
2= Cy + 2C3

The solution is ¢; = 4,c, = —4,c3 = 3, hence the general solution is
X 1 2 1 3
Yy =cp+ et +czxe’ +x + —Ex +6x e’

1 1
=4 — 4¢* + 3xe" + x — Exzex + 6x3e"

4.13.10 Section 5.5 problem 49

Problem Use method of variation of parameters to find particular solution y”’ —4y’ +4y = 2¢2*

solution We need to first find the homogenous solution. The characteristic equation is
rP—4r+4=0
(r-2)(r-2)=0
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Hence r; = 2, double root. Therefore

vy (%) = e
ya (x) = xe
Let

Yp = til1 T U2
Where
f Yo (%) f (x)
W (x)
f y1 (%) f (x)
W (x)
Where f (x) = 2¢** and

2x 2x

| |e xe
vyl e e+ 2xe®
=¥ (er + 2xe2x) — 2xe™

= % 4 Dxe® — Dyt
4x

W(x) =

=€

Hence
erx 282x
u1:—f e4x foclx——2
And
er (zer)
Uy = f e4—xdx =2x
Therefore

Yp = Y1 + U2l
— 2 2x + 2x262x
= y2p2x

4.13.11 Section 5.5 problem 50

Problem Use method of variation of parameters to find particular solution " — 4y = sinh 2x
solution We need to first find the homogenous solution. The characteristic equation is
r2-4=0
r=42
Therefore
y1(x) = e
Yo (x) = e
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Let
Yp = Y1 + U2l2
Where
f Yo (%) f (x)
W (x)
y1 () f (x)
w—f W W
Where f (x) = sinh 2x = ezx_;izx and
we ="t 7= 32: e
viovh| |2 -2
=—2-2=-4
Hence
oy €2x_€—2x
B fe(_Z)dx
e 4
T f ( )dx
=3 f(l —e‘4x) dx
_ 1 N e—4x
s\ " g
And

ezx (62x_€—2x)
2
Uy = f—dx
— f 2X 2x —2x dx
8

—= (e4x - 1) dx
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Therefore

Yp = Y1 + U2l2

—4x
e
) er _

+e

_1 er —2x +1
"1\ 2 16

1 (¥ +e % 1
= x| — oo - —
4 2 16

€—2x _ er
"
er _ e—2x
(=)

= —xcosh2x — 16 sinh 2x

4

4.13.12 Section 5.5 problem 53

1
1 (4x cosh 2x — sinh 2x)

Problem Use method of variation of parameters to find particular solution y”” + 9y = 2 sec 3x

solution We need to first find the homogenous solution. The characteristic equation is

”?+9=0
r=+3i
Therefore
y1 (x) = sin 3x
Y2 (x) = cos 3x
Let

Yp =y + Uzly2
Where
f Yo (%) f (X)

W (x)
f y1(x) f (x)
W (x)

2sec3x = _2_ and

Where f (x) = p—

sin 3x

Y1 yzz

Vi W2
= —3sin’3x — 3cos? x
-3

W(x) =

3 cos3x
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Hence
CcoS 3x( )
= — f cos 3x dx
! -3
1
= §f2dx
2
==X
3
And
sin3x( 2 )
cos 3x
Uy = f — " dx
-3
-2
= 3 f tan 3xdx
3 -2 (1 | 1
=3 |6 " cos? (3x)
Therefore

Yp = 1 + U2ly2

2
= — ] 3 + —
3x(sm X)

3 \6  cos?(3x)
2 . 1
= gx (sin 3x) — 5 cos (3x) ln(

cos 3x

1
cos? (3x))

2 . 1
= 3% (sin 3x) + g o8 (3x)In (cos2 (3x))

2
= gx (sin 3x) + 5 cos (3x) In |cos (3x)|

4.13.13 Section 5.5 problem 61

2.0

Problem Find a particular solution to the Euler ODE x“y"" + xi’ + y = In x with homogenous

solution y;, = ¢ cos (Inx) + ¢, sin (In x)

solution We see that
y1 = cos (Inx)
Y2 = sin (Inx)

Using variation of parameters on the ODE

1
Where now we use f (x) = % Let

Yp = Y1 + U2ly2
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Where
C (R0f®
Uy = Wa dx
(0 f&)
up = | N 0 dx
And
cos (Inx) sin (In x)
w =" 2= )
A —-sin (Inx) - cos (Inx)
1 1
= = cos? (Inx) + —sin’ (Inx)
X X
_1
S ox
Hence
. In
sin (In x) (x—zx)
In x sin (In x)
= f DI
X
= In (x) cos (In x) — sin (In x)
And
cos (Inx) (lil—zx)
cos (In x) (In x)
= f —  dx
X
= In (x) sin (In x) + cos (In x)
Therefore

Yp = 1 + U2ly2
= (In (x) cos (In x) — sin (In x)) cos (In x) + (In (x) sin (In x) + cos (In x)) sin (In x)
= In (x) cos? (In x) — sin (In x) cos (In x) + In (x) sin’ (In x) + sin (In) cos (In x)
= In (x) cos? (In x) + In (x) sin? (In x)

=Inx

4.13.14 Section 5.5 problem 62

Problem Find a particular solution to the Euler ODE (x2 —1) Y’ = 2xy’ +2y = x> =1 with

homogenous solution vy, = c;x + ¢, (1 + xz)
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solution We see that

Yr=x

Yo =1+x2
Using variation of parameters on the ODE

x 2

/

Yy ey

Where now we use f(x) =1. Let

Yp = Y1 + U2ly2

Where
C (R0f®
U = —W(x) dx
(x) f (x)
Uy = y—lw<£) dx
And
we =" = L+
i v I
=2x2 — (1 + xZ)
=x2-1
Hence
1+x%)(1)
e fo,
=—x—-In(x-1)+In(x+1)
And
X
Uy = f x2 — 1dx
1 1
= Eln(x—1)+ Eln(x+1)
Therefore

Yp = t1ly1 + U2l

:(—x—ln(x—1)+ln(x+1))x+(%1n(x—l)+%ln(x+1)) (1 +x2)

o x+1 1 9

=-x*+xln P +§(1+x)ln|(x—1)(x+1)|
o x+1 1 5 5
=-x*+xln o +§(l+x)ln|x —1|
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4.14.1 Section 7.1 problem 3 (page 404)

problem Transform the following problem or system to set of first order ODE #2x” + tx’ +
(2-1)x=0
solution Since this is second order ODE, we need two state variables, say x;,x

Let x; = x,x, = x’, hence

- x’ (tz—l)x Xp (tz_l)x1

— . . VA | x/ =x
X1 =X | take derivative X7 =X replace RHS 1 2
—

xy = x"

Hence the two first order ODE’s are (now coupled)

X1 =X
, Xy (tz - 1) X1
Xy = —— —
t t
The matrix form of the above is
x = Ax

4.14.2 Section 7.1 problem 8

problem Transform the following problem or system to set of first order ODE x”” + 3x" + 4x —
2y =0;y" +2y - 3x+y = cost

solution We have two second order ODE’s, hence we need 4 state variables. Let x; = x,x, =
x',x3 =Y,x4 =Y’, therefore

x| =X xp =x xX] =%
Xy =X | take derivative X5 = X’’ | replace RHS xy = =3x" —4x + 2y = =3x, — 4x1 + 2x3
/ /
X3 =Y Y3=Y X3 =3
Xy =Yy xg =y’ xg = -2y +3x—y+cost =-2x4 +3x; — X3 + cost

Hence the 4 first order ODE’s are

X=X

x5 = =3xp — 4x1 + 2x3

X3 = X3

Xy = —2x4 + 3x1 —x3 + cost
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The matrix form of the above is
X =Ax+f
x] 0 1 0 0)(xy 0
G|_|-4 -3 2 0fjx| |0
X3 0 0 1 O0|[xs 0
Xy 3 0 -1 -2)\xg) \cost

4.14.3 Section 7.2 problem 9 (page 417)

problem Write the given system in form x” = P (t) x + f (¢)
X' =3x-4y+z+t
Yy =x-3z+1t
Z=6y-7z+1

solution The dependent variables are x,y,z and the independent variable is ¢. The matrix
form is seen by inspection to be

x’ 3 -4 1]\(x t
y|=|1 0 -=3|ly|+]|#
z’ 0 6 -7)\z T

4.14.4 Section 7.2 problem 10

problem Write the given system in form x” = A(t)x + f (t)
X =tx—y+e'z
Yy =2x+ty -z
7 =elx+ 3ty + 13z

solution The dependent variables are x,y,z and the independent variable is t. The matrix
form is seen by inspection to be

X -1 et)(x 0
v =2 2 -1||ly|[+]0
z’ et 3t Bz 0

Notice that P matrix is time dependent and not constant as the last problem. This is time
varying system.
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4.14.5 Section 7.2 problem 25

11
problem Find the complete solution that satisfies the initial conditions. x(0) = [ )

-7

(41
x' = x

-2 1

1
Xy = et
=4

1
X, = e?t
()

solution

x(t) = c1xq (£) + cox2 (F)

al vl e
el

(5 5
B[S

Gaussian elimination. R, = R, + Ry gives

L

Hence —c, =4 or ¢, = —4. From first row, ¢; + ¢, =11 or ¢; =11 —¢, =11 + 4 = 15, hence the
complete solution from (1) is

At t =0 the above becomes

Hence

X (t) = 15X1 (t) - 4XZ (t)

1 1
:15( ]e3t—4[ ]eZt
-1 -2
— 15 At —4 o2t
-15 8
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4.14.6 Section 7.3 problem 7 (page 429)

problem Apply the eigenvalue method to find general solution of the given system. For

each problem, use a computer to construct direction field and typical solution curve. x] =

=3x1 +4x5; x5 = 6x7 —5x,
solution

The system in matrix form is

x' = Ax

ME AN

The eigenvalues are found from solving

A=Al =0
3-1 4
=0
6 -5-1
(-3-A)(-5-1)-24=0
A2+81-9=0

(A+9)(A-1)=0

Hence A; =1,4, = -9. For A;, we now solve

(A—/\ll)le:O

—3—A1 4 (4] _ 0
6 -5-A;)\v,) |0
3-1 4 |(w) (0
6 -5-1)lv,) |0

-4 4 \(ov1) (0

6 —6Jlv,] |0

Using first equation, we see that —4v; + 4v, = 0.

1
eigenvector is v; = (1]

247
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For A,, we now solve

(A=AaD)vy =0

3=, 4 (o) (0
( 6 —5-A)lo] o
349 4 (o) (0

( 6 -5+9){v) 0

(6 4\(v1) (0

6 4)\v, 0

Using first equation, we see that 6v; +4v, = 0. Picking v; =1, then v, = —g, hence the second

Therefore the solution is

2

eigenvector is v, = [ 3) =

x(t) = c1xq () + coxp (t)

= (101 (t) eMt 4 C0y (t) ehat

1 2
Xy 1 -3

x1 (t) = cret + 20,67

Therefore

X (t) = cret — 3cpe™

No initial conditions are given.

4.14.7 Section 7.3 problem 9

problem Apply the eigenvalue method to find general solution of the given system. For

each problem, use a computer to construct direction field and typical solution curve. x] =
2x1 = Bxp; x5 = 4xy — 2x9;%1(0) =2,x,(0) = 3

solution

The system in matrix form is
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The eigenvalues are found from solving

|[A-AIl=0
2-A -5
=0
4 -2-A
2-A)(-2-A)+20=0
A2+16=0
A= +4i

Hence A; = 4i, A, = —4i. For A{, we now solve

(A=A Do, =0

IR W
4 -2-A )\, 0
(2—41’ -5 )[vl)_[()]
4 —2-4illo,) |0

Using first equation, we see that (2 — 4i) v; —5v, = 0. Picking v; =1, then v, = %, hence the

: . 1 5
eigenvector 18 U1 = | p_y4; [ = o4
- -4

5

For A,, we now solve

(A - /\21) Uy = 0
2 - /\2 -5 0 _ 0
4 -2 - /\2 (%] B 0
2+4i -5 o1 0
4 2+4illv,) |0

_ @2+

Using first equation, we see that (2 + 4i) v; — 5v, = 0. Picking v; =1, then v, = —4i), hence

2+ 4

1 5
the eigenvector is v, = (2+4,-) = ( ] Therefore the solution is

5
x(t) = c1x1 (£) + %, (1)
=(010q (t) eAlt + (65X%) (t) e/\zt

Therefore

5 , 5 ‘
1 =0 . edit 4 Cy ‘ o4t
Xp 2—4i 2+ 40

x1 () = ¢15e¥ + c,5e~4

Xo (1) = 1 (<2 + 4i) et — c, (2 + 4i) e

249

5



4.14. HW13 CHAPTER 4. HWS

Convert to new basis.

5etit 5 (cos4t + isin 4t
R (x,) = N U | gD (cosdtHisind)
(2 — 4i) et (234” -~ 4164”)

5 (cos 4t + isin 4t)
(2 (cos4t + isin 4t) — 4i (cos 4t + i sin 4t))

5 (cos4t + i sin 4t) )

=R

Il
=

2 cos4t + i2sin 4t — 4i cos 4t + 4 sin 4t

5cos 4t + i5sin 4t
(2cos4t + 4sin4t) + i (2sin 4t — 4 cos 4t)

5 cos 4t ]

Il
=
N

"~ |2cos4t + 4sin 4t

And
5cos4t + i5sin 4t
Jx) =3 . . .
(2cos4t + 4sin4t) + i (2sin 4t — 4 cos 4t)
3 5sin 4t
| 2sin4t — 4 cos 4t
Therefore
X 5cos 4t 5sin 4t
=0 . +oof ., . (1)
Xp 2 cos4t + 4 sin 4t 2sin4t — 4 cos 4t
Or

X1 (£) = c35 cos 4t + c45sin 4t
Xy (£) = c3 (2 cos4t + 4sin4dt) + ¢4 (2sin4t — 4 cos4t)

We now apply the initial conditions. From (1), at t = 0 we obtain

Or
5 0 C3 _ 2
2 —4flc,) |3
2 3‘2(5) 1
From first row, 5¢3 =2 or ¢3 = z From second row 2c3 —4cy =3 or ¢y = — T T o Hence
the solution (1) becomes
xal_ g 5cos 4t. _ E . 5sin 4t (1A)
xy] 5\2cos4t+4sindt| 20|2sindt -4 cos4dt
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Or
(t)—25 4t 115 in 4t
x1(t) = z cos 0 sin
2 . 11 .
X () = = (2cos4t + 4 sin4t) — 20 (2sin4t — 4 cos 4t)
Or
1 .
X1 (t) = 2cos4t — 7 sin 4t
(t) L cosdt+ Ssindt— 22 sindt + 2 cosdt
X = —Cos —sin4t — — sin — cos
2 5 5 20 5
Or

11
X1 (t) = 2cos4t - 1 sin 4t

1
Xy (t) = 3cos4t + 5 sin 4t

4.14.8 Section 7.3 problem 12

problem Apply the eigenvalue method to find general solution of the given system. For

each problem, use a computer to construct direction field and typical solution curve. x] =

X1 — Bxp; x5 = x1 + 3x;

solution The system in matrix form is

x = Ax

-6 S

x5 1 3 ){x
The eigenvalues are found from solving
IA—All =0
1-A -5
T
1-1)@-A)+5=0
A2 —41+8=0
A=2+2i
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Hence A =2 +2i,A, =2 - 2i. For A;, we now solve
(A-MD)o

[1 -A =5 (o
1 3-A1)\v2
(1 — (2 +2i) -5 0
1 3-@2+2i)|v,

(—1 ~2i -5 (o,

Il
(@]

|
o O O o O O

1 1-2i (%]

Using first equation, we see that (-1 - 2i) v; — 5v, = 0. Picking v; =1, then v, = (_15—_20, hence
the eigenvector is
1
01 = -1-2i
5

For A,, we now solve
(A - /\21) Uy = 0

1- /\1 -5 (4]
1 3 - /\1 (%)

1-(2-2i) -5 0
1 3-2-2))o,
[—1 +2i -5 (o

o O O o O O

1 1+2i)lo,
-1+2i

Using first equation, we see that (-1 + 2i) v; — 5v, = 0. Picking v; =1, then v, =
the second eigenvector is
1
Uy = -1+2i
5

L%

x(t) = c1xq (£) + coxz (F)

=010q (t) eAlt + C0y (t) 6/121L

, hence

Therefore the solution is
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X1 (t) _ 5 p2+20)t 4 ¢ 5 (220t
X, (1) -1-2i —1+2i

Therefore

Convert to new basis.

0 g 5p(2+20)t o [5€% (cos 2t +isin 2t)
(x1) = (<1 — 24) e@+20t | = _p2420)t _ 0 (2420t
_% 5¢2t (cos 2t + i sin 2t)
- —p2tp2it _ njp2t 2t
% 5e2t (cos 2t + i sin 2t)
| e (cos 2t + isin 2¢) — 2ie? (cos 2t + isin 2t)
- 5e2t (cos 2t + i sin 2t)
=€ (cos 2t + isin 2t) — 2¢%* (i cos 2t — sin 21)
- 5¢2t cos 2t + i (SeZt sin Zt)
T | =62 cos 2t — ie?t sin 2t — i2¢% cos 2t + 262 sin 2t
_w 5¢2t cos 2t + i (5ezt sin Zt)
B (—eZt cos 2t + 2% sin 2t) +1i (—eZt sin 2t — 2¢t cos 2t)
Hence
5¢% cos 2t
R(xp) = .
—e%t cos 2t + 262t sin 2t
And
S () 5¢% gin 2t
x1) =
! —e%t gin 2t — 2¢% cos 2t

Therefore the solution in the new basis is

X1 5e cos 2t 5¢2 sin 2t
=Ci|_ 2t o +Co| o 2t
X —e“" cos 2t + 2¢" sin 2t —e“" sin 2t — 2e“* cos 2t

Or
x1 (t) = C15¢% cos 2t + C,5e? sin 2t
X, () = C4 (—eZt cos 2t + 2% sin 2t) +C, (—eZt sin 2t — 2¢? cos 2t)
Or
x1 (t) = €% (5C; cos 2t + 5C, sin 2t)
xp (t) = €2 (—C; cos 2t + 2C sin 2t — C, sin 2t — 2C, cos 2t)
Or

x1 (t) = €% (5C; cos 2t + 5C, sin 2t) (1)
X, (t) = €% (cos 2t (=C; = 2C,) + sin 2t (2Cy — Cy))
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Note, book must have used the other choice of eigenvalues ordering since it has the signs
all flipped the other way from what I have above. flipping all the signs in the solution given
above in equation (1), then the book solution results:

x1 (t) = e? (=5C; cos 2t — 5C, sin 2t)
X, (t) = e? (cos 2t (C; + 2C,) + sin 2t (=2C; + Cy))

4.14.9 Section 7.3 problem 14

problem Apply the eigenvalue method to find general solution of the given system. For

each problem, use a computer to construct direction field and typical solution curve. x] =
3x1 — 4xp; x5 = 4xq + 3xy;

solution The system in matrix form is

x = Ax
)£ 1
X 4 3 ){x
The eigenvalues are found from solving
[A-All=0
3-4 -4
4 3-A]"
B3-A)B-A4)+16=0
A2-61+25=0
A=3+4i

Hence A; =3 +4i,A, = 3-4i. For A;, we now solve

(A-ADv; =0
3-A4 -4 || 0
( 4 3-2)lo) o
3-(3+4i) —4 1 0
( 4 3-@3+4))lo,) |0
—4i —4\|v; 0
( 4  —4i)lv, - 0
Using first equation, we see that (-4i)v; — 4v, = 0. Let v; = 1, then v, = —i, hence the

eigenvector is

For A,, we now solve
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(A=ADo; =0

[3—A -4 Y(v1) (0

4 3-A)\o, 0

(3—(3—41‘) -4 AN
4 3-(3-4i))(v) |0

[4i ~4\(v1) (0

4 4i)\v, 0

Using first equation, we see that (4i) v; —4v, = 0. Let v; =1, then v, = i, hence the eigenvector

1S
(1]
Oy =,
i

x (1) = c1xq () + coxp (1)
= ¢yvq () Mt + cyv, () 12!

x (B _ o 1. (G 4 1 B4t
Xy (1) —i i

(3+4i)t 3t -

e e’ (cos4t + isin 4t

Rx)=R| .= ( . . )
—je(3+40t 3 (=i cos 4t + sin 4t)

~ et cos 4t
| &3 sin 4t

S(951):[

Therefore the solution is
Therefore

Convert to new basis.

And
3t sin 4t
—e3t cos 4t

Therefore the solution in the new basis is
X1 e cos 4t 3 sin 4t
=Cu| 4. +Cof
Xy e’ sin 4t —e” cos 4t

x1 (t) = 3 (Cq cos 4t + C, sin 4t)
X, (t) = 3 (Cy sin 4t — C, cos 4t)

Or

4.14.10 Section 7.3 problem 28
problem TO DO

solution
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4.14.11 Section 7.3 problem 30
problem TO DO

solution

4.14.12 Section 7.3 problem 39

problem Find general solution x’ = Ax

-2 0 0 9
2 -1
=10 o —01 80
0 0 0 1
solution The eigenvalues are found from solving
IA—All =0
-2-A 0 0 9

4 2-1 0 -10
0 0 -1-4 8
0 0 0 1-4
Expanding along the last row since it has most zeros then
-2-A 0 0
det(A-AD=1-N)CD*™ | 4 2-1 0
0 0 -1-A
-2-1 0 0
=1-A)] 4 2-2 0
0 0 -1-4
2-1 0 ‘

_ _ 1 _ _1\3+3
=1=-DE-HET T T

2-1 0
4 2-A
=1-A)EE1-A)(=2-1)2-1)
Hence the eigenvalues are (distinct case, no repeated)
M=1LA=-1,A3=2,A,=-2

=1-M)(1-4)
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For A =1

Let v, = 1. Hence from third row

From first row

From second row

2-A

Hence first eigenvector is

For A, = -1

2-1,

0 0 9
2-A 0 -10
0 -1-24 8
0 0 1-1
-3 0 0 9
4 1 0 -10
0O 0 -2 8
0 0 0 O
203+ 8v, =0
vy =4

301 +90, =0
01 = 3

401+ v, =100, =0

v, =10-12
=2
3
-2
01 = 4
1
0 0 9
2-4, 0 10
0 -1-4, 8
0 0 1-4A,
-1 00 9
4 30 -10
0 00 8
0 00 2

257
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From last row 2v, = 0, hence v, = 0. From third row it also says that v, = 0. from first row
we also obtain that v; = 0. From second row
401 + 302 =0

Since v; = 0 then v, = 0. We notice that v; is left undetermined as there is no equation to
determine it. (this happens when there is a column of all zeros, as in this case). Hence we
can pick any value for v;. Lets choose v; = 1. Therefore the second eigenvector is

0
o
Uz—l
0
For A3 =2
2-1; 0 0 9 \(v;) (0
4 2-1; 0 -10 ||v,| |0
0 0 -1-A; 8 ||lus| |0
0 0 0 1-A3)lwg) O
40 0 9 \(v;) (0
4 0 0 -10||o,| [0
0 0 -3 8 [lus| [0
00 0 -1Jlog \0O

From last row —-v, = 0, hence v, = 0. From third row it says that v; = 0 since v, = 0. from
second and first row obtain that v; = 0.

We notice that v, is left undetermined as there is no equation to determine it. Hence we can
pick any value for v,. Lets choose v, = 1. Therefore the eigenvector is

0

1

=
"o

0
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For Ay = -2

2-1, 0 0 9 \(v;) (0

4 2-1, O -10 ||o,| |0

0 0 -1-4, 8 |los| |0

0 0 0 1-Alwg) MO

000 9)\(v;) (0

4 4 0 -10(|vy| |0

001 8 |lu] |0

000 3w (0

From last row vy = 0. From third row it says that v; = 0 since v, = 0. Second row gives
4v, +4v, = 0. Let v; =1 hence v, = —1. Therefore the eigenvector is
1
|1
vy = 0
0

We found all the eigenvectors, The solution is
x () = c1xq (£) + coxp (£) + €323 (£) + a4 (1)
=107 (t) et 4+ (X%} (t) ehet 4 C30y (t) elst + CrUy (t) ehat
Or

Hence

x1 (t) = 3cqet + cye7?

X (1) = =216 + c53e% — cqe™?
x5 (t) = dcgel + et

x4 (t) = ¢yt

4.14.13 Section 7.5 problem 3

1 -2
problem Find general solution of x" = (2 5 )x
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solution The eigenvalues are found from solving

A=Al =0
1-1 =2
2 5.2
1-A)G-A)+4=0
A2-61+9=0
(A-3)%=0

Hence A = 3. repeated root, multiplicity k = 2. Let us first check if this is a complete
eigenvalue or not. (i.e. if we can find two L.I. eigenvectors from this eigenvalue). If not, we
need to use defective algorithm to find the eigenvectors). But we always check if it complete
or not.

o
> 260

We see that the first row and the second row give the same eigenvector. —2v; —2v, = 0. Let

1
v; = 1, hence v, = -1. So we can only find one eigenvector [ 1 Second row gives same

eigenvector. This means this is defective eigenvalue. We can’t use this method. We are stuck.
So we switch to the defective eigenvalue method (page 450). We start by solving for v, from

(A-ADw, =0
2
1-A -2 (4] _ 0
2 5-1)lo,) |0
2
-2 -2 01 _ 0
2 2] lw) o
0 Offvi] (O
0 0flv,) O
) can be any value. Let v; =1,v, = 0 and therefore

ol

260
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We now find v; from

01 = (A - AI) (%]
-2 =21
12 2/lo

Hence the solution is

x (t) = c1x1 () + coxp (F) (1)
Where now
x1 (t) = v
x, (t) = (01t + vy) e
Plugging these into (1) gives
x(t) = cqoieM + ¢y (v1f + v,) eM (2)

Replacing the result we found earlier for v;,v, into the above, and using A = 3 gives

ool

x1 (£) = (=2¢1 + ¢y — 2cpt) €%
X, (1) = (2c1 + 2c,t) €%

Hence

4.14.14 Section 7.5 problem 5

7 1
problem Find general solution of x" = ( 4 3)x

solution The eigenvalues are found from solving

A=Al =0
7-1 1
=0
4 3-7
(7-2)(B-1)+4=0
(A-572=0

Hence A = 5, repeated root, multiplicity k = 2. Let us first check if this is a complete
eigenvalue or not. (i.e. if we can find two L.I. eigenvectors from this eigenvalue). If not, we
need to use defective algorithm to find the eigenvectors). But we always check if it complete
or not.

261



4.14. HW13

CHAPTER 4. HWS

From first row we obtain 2v; + v, = 0. Let v; =1 then v, = 2. Hence eigenvector is v = (

(A-AD)v=0

(7—A 1 )(w) (0
-4 3-Alwy) |0

7-5 1 \[or) (0

(—4 3-5)lo,) |0
[2 1\(o1) (0

-4 -2)\v, 0

1
-2

)

We can only find this one eigenvector. Second row gives same eigenvector. This means this
is defective eigenvalue. We can’t use this method. We are stuck. So we switch to the defective
eigenvalue method (page 450). We start by solve for v, from

(A= AD*v, =0
7-4 1 ’ v1|
[—4 3-1) \02)
2
7-5 1 ) (o) _(0
[—4 3-5) lv,) (0
2
2 1| (o] _|O
[—4 -2) |v,) 0
0 0)(o1) (0
[o 0) v) (0

v
Hence ( 1) can be any value. Let v; =1,v, = 0 and therefore
02

We now find v; from

s

1
0

|
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Hence the solution is
x (£) = c1x1 (£) + 2 (1)
Where now
x1 (1) = vyelt
X () = (o1t + v) M
Plugging these into (1) gives

X(t) = clvle’” +Cy ('Ult + Uz) B/U

Replacing the result we found earlier for v, v, into the above, and using A = 3 gives

ool

x1 () = (2cy + ¢y + 2c5t) €3
X, (1) = (=4cq — 4oyt

Hence

4.14.15 Section 7.5 problem 7

2 00
Problem Find general solution of ' =|-7 9 7|x
0 0 2

Solution The eigenvalues are found from solving
[A-All=0

2-A2 0 0

-7 9-A 7 [=0

0 0 2-4

Expanding along last row since it has most zeros

2-1 0
det (A—AD) = (2= 1) (1)
(A=A =@-NE T T
2-1 0
=2-2)
7 9-2

=2-1)2-1)0O-1)

(1)

(2)

Hence roots are A; = 2,1, =9, where now A; has multiplicity k = 2, and A, is the good one
with no multiplicity. To find associated eigenvector for A, we follow the normal method.
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For A, =9

2—/\2 0 0 01 0
-7 9—/12 7 Oy | = 0
0 0 2—/12 (%] 0
2-9 0 0 \(o1) (0

7 9-9 7 |lo|=]0
o 0o 2-9)lv) lo
-7 0 0 01 0
-7 0 7 0| = 0
0o 0 -7)\vs) lo

Last row says —7v; = 0 or v3 = 0. second row says —=7v; = 0 or v; = 0. First row adds nothing
new. So we see that there is no equation to find v, (this is because the second column is all
zeros). Hence we pick v, anything we want. Let v, =1 and therefore

0
=1

0
Now we go back and look at A; = 2, this is the one with multiplicity k = 2. Let first check
if this is a complete eigenvalue or not. (i.e. if we can find two L.I. eigenvectors from this

eigenvalue). If not, we need to use defective algorithm to find the eigenvectors). But we
always check if it complete or not.

UAZ

(A-ADoy, =0

2-4 0 0 \(v;) (0
7 9-14, 7 |lwl=]o0
0 0 Z—Al (%] 0
2-2 0 0 \(vy) (0

7 9-2 7 ||ln|=|o0
0o 0 2-2Jlws) (0
0 0 0)(vy) (O
7 7 7||v,| =0
0 0 oJlos) \o

Last row says v; is arbitrary. Let v; = s. Second row says —v; + v, +s = 0, hence v; = v, +s.
No other information can be obtained from first row. So v, is arbitrary, say v, = r, hence
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the solution is

01
) = |02
U3
r+s

= r

s
1 1

r{1]1+s|0
0 1

So we see that we have linear combination of two eigenvectors for A,. Hence this eigenvalue
is complete and not defective. No need to use the defective eigenvalue algorithm. These are
the two L.I. eigenvector we are looking for. We got lucky here. Hence

1
vglll) =1
0
1
v(Azl) =0
1
The solution is
x(f) = cqxq () + coxa () + c3x3 (f) (1)
Where now
x; (t) = v(All)eAlt
x, (t) = v(Azl)eAlt

x3 () = vy,
Therefore (1) becomes
x(f) = clv(All)e/‘lt
1 1 0
=cq|1]e¥ +cy[0]e* + |1 e
0 1 0

2
E\)e/\lf

+ 00, Aot

+c3v,,e

x1 () = (c1 + cp)

X, (t) = cre? + 56

x5 (1) = cp et
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4.14.16 Section 8.2 problem 5 (page 502)

problem Apply method of undetermined coefficients to find particular solution system. If

initial conditions are given, apply initial conditions to find the complete solution. x’ =
6x—7y+10;y’ =x -2y —2¢7!

solution
The matrix form of the system is
x’ 6 -7|(x 10
= +
(}/’) (1 -2 (y] [—W)

The eigenvalues of the homogenous system are found from

A=Al =0
6-1 -7
=0
1 -2-A
A2 —41-5=0

A=-5A+1)=0

Y
b0

From first equation v; —7v, = 0. Let v; =1 then v, = ;, hence the eigenvector is

O1=11|=
> 1
6—A2 -7 (4] _ 0
1 =2-2/l») o
7 -7 0 _ 0
1 -1)lw,) |0
From first equation 7v; — 7v, = 0. Let v; =1 then v, =1, hence the eigenvector is

)
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Therefore the homogenous solution is

xp (1) = c1x1 () + 22 ()
=101 (t) CAlt + 00y (t) e/lzt

x, (1) = c; (Z) e+ ¢, G) et

xp, (1) = 7c1e% + cpet (1)

yp, () = c1e + cpe”

1
We now see that one of the basis solution in the homogenous part ; ™!, is also present

in the forcing function (RHS of the original ODE). So to use the method of undetermined

10
coefficients, we need to multiply by ¢! and t'¢™!. Therefore, since the RHS is [ B t), then

b
X, = L 1]e‘f+ Cl]te—f
ap by (&)
b £
_ ai P+ €1 ot
a2 bz tCZ

a by +tc
— 1 n 1 1 ot
ay bz + tCz

we guess

Note that in systems, for duplication, we multiplied by t’¢* and t'e™!. Hence the need for
the [ l)e‘t term in the above. This is little different than in the scalar case where we just
2

needed one multiplication. See the note in middle of page 497 of textbook on this. Now
that we have the guess, we plug it into the system and solve for the coefficients.

, (Cl) _t (b1 + tCl] _t
xp, = e~ e
Co bz +tcy
(& bl - tCl ¢
= e
Cy — bz —tcy
Plugging the above into original system, which is

. (6 -7 . 10
X, = X.
Pl =2)7 (—2¢
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Gives
cq—by—tc 6 -7]|(|a by + tc 10
. 1+[1 1e‘t+[ _t]
Cy — bz — tCz 1 -2 ap bz + tCZ —2e
cp—by -t 6 -7 bie! +tet 10
10110 ot = ﬂ1+ 1€ €0 +
cp — by — tcy 1 -2)lay) \bye +teic, —2¢7t
(o bl - tCl e_t _ 6 -7 a + ble_t + te_tcl + 10
cp — by — tcy 1 -2)\ap + bye™t +te7tc,) | —2¢7
¢ —by—tey| ,  [6ay —7ay + 6be”t = Thye™! + btcie”t — Ttcpe™! . 10
e =
cp — by — tcy ay —2ay + bie™t = 2bye™t + tege™t — 2tcyet —2¢7t
We obtain

(c1 = by —tey) et = e7t (6by — 7by + 6tcy — Ttcy) + 6a; — 7ap + 10
(co —by —tcy)e™t = e7t (by — 2by + teq — 2tcy — 2) + a; — 2a,
Comparing terms, we obtain
¢ — by —tc; = 6by — 7by + 6tcy — 7tcy
6a; —7a, +10=0
Cy — by —tcy = by —2by + tcg — 2tcy — 2
ay—2a, =0

c1 — by —tcy = 6by —7by + t(6¢1 —7¢5)
6a, —7a, +10=0
Cy —by —tcy = by —2by + t(cq —2¢p) =2
a1 —2a, =0
Therefore, from the first and third equation above, we see we get additional two equations
when we compare terms in ¢. Hence

¢y —by =6b; —7b,
—c1 =6c1 —7¢,
6a; —7a,+10=0
Cy—by=by —2b, -2
—Cy =1 — 20

111—2112:0
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Or

Or

The systems can be written as

1
6
0
0
0
R, = R, - 6R,
1
0
0
0
0
Ry =Ry~ >Ry
1
0
0
0
0

Cq _bl = 6b1 - 7b2

C1 =0
6a1—7a2+10:O

Cz—b2:b1—2b2—2

Cr =0

ﬂ1—2ﬂ2:0

C1—7b1+7b220

C1—C2:O
6a1—7a2:—10
C2+b2—b1:—2
ﬂl—ZIZZZO
I

-2 0 00 O
ap

-7 0 0 0 O
by

0o -7 71 0
by

0 -1 1 0 1
5]

O 0 01 -1
Co
1

-2 0 00 O
ap

5 0 00 O
by

0o -7 71 0
by

0O -1 1 0 1
5]

0O 0 01 -1
Co
a
) o0 o)l"
ap

5 0O 0 O
by
o -7 7 1 0 b

1

0 0 —= 1|2
7 ¢

0 0o 1 -1
Co
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R5 + 7Ry
M
1 -2 0 0 0 O
as
05 0 0 0 O
by
0O 0o -77 1 0 " =
0 0 0o -+ 1|72
0
0 0 0 0 6
C
From last row we obtain that 6¢c, = —14 or
-7
C = —_—
273
From 4th row
1
——C 4+ =2
701 C2
17 )
7173
49
—-=—-14
3
14 49
ci=14- —
! 3
7
3
From 3rd row
—7b1 + 7b2 + 1 = 0
7
-7b; = -7b, — =
1 273
1
by=by -3
From second row
5&2 = _10
ay = -2
From first row
ay—2a, =0
a = 2(12
=-4
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Therefore the solution is

aq -4
ap -2
1
bl _ bz - g
by by
c 7
1 _Z
7
Co ?
aq 0 -4
ap 0 -2
b 1 |-
! = bz + 3
by 1|7 o
C1 0 _g
Co 0 =

Where b, is arbitrary. If we let b, = 0 then

aq -4

a» -2
1

bl _ _5
b,| |0
c 7
1 Z
3

c -7
2 3

Therefore, we go back to the particular solution
a b c

X, = Hael et + et

ap by )

And substitute these values found in the solution above and obtain

_4) (-1 7
X, :[ ]+{ 3let + _9]te‘t
)" o =

Or
1, 7
xp(t):—4—§et—§tet
7,
y, () = —2—§te f
Or
t—1 12 — et = 7te™
xp()‘g(_ -t =7t
1 _
y,(t) = 3 (—6—7te f)
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Hence the complete solution (using the homogenous solution found in (1)) is
1
x(t) = 7cie™ + coet + 3 (—12 —et- 7te‘t)

1
_ 5t -t -t
yp(t) = c1e” +ce™" + 3 (—6 —7te )

4.14.17 Section 8.2 problem 9

problem Apply method of undetermined coefficients to find particular solution system. If

initial conditions are given, apply initial conditions to find the complete solution. x’ =
x—5y+cos2ty =x-y

solution The matrix form of the system is

)+ S

The eigenvalues of the homogenous system are found from

A=Al =0
1-A -5
=0
1 -1-A
A24+4=0
A==2i

For A; = 2i we solve (A-A)v; =0
1-2i -5 (o) (0
1 -1-2ille,) O

(1—2i)01 —502 =0

From first equation

@, therefore

[ 1 ] [ 5 )
O1=1@a-2i)| = .
— 1-2i

For Ay = -2i we solve (A—-A))v, =0
1+2i -5 |foi] (O
1 —1+2if{v) |0

(1+2i)171—502:0

Let v; =1, hence v, =

From first equation
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Let v; =1, hence v, = (1;21), therefore

( : ) ( 5 ]
D2 =1a+2i) | = .
— 1+2i

Therefore the homogenous solution is

xp, (£) = c121 () + x5 (£)
= cyvq (t) eM?

+ cyv, (1) M2t

5 . 5 .
x, () =c At 4 et
) 1(1—21'] 2(1+2i]
Convert to new basis

x1 (£) = Re (¥, (1))

~ Re 52'] 2t _ Re[ 5 (cos 2t + isin 2t) )
i

1- (cos 2t +isin2t) — 2i(cos 2t + isin 2t)
R 5(cos 2t +isin 2t)
= Re
(cos2t +isin2t) — 2 (i cos 2t — sin 2t)
R 5(cos 2t +isin 2t)
= Re
cos 2t + isin 2t — 2i cos 2t + 2 sin 2t
R 5(cos 2t +isin 2t)
= Re
cos 2t + 2sin 2t + i (sin 2t — 2 cos 2t)
3 5cos 2t
|cos2t + 2sin 2t
And
xp (1) = Im (x (1))
3 5sin 2t
~ |sin2t — 2 cos 2t

Hence the homogeneous solution is

xp, (1) = Cyxp (t) + Coxp (8)
5cos 2t 5sin 2t
=C . +Cyf .
cos 2t + 2sin 2t sin 2t — 2 cos 2t

xy, (£) = 5Cq cos 2t + 5C, sin 2t
Y (t) = (C; —2Cy) cos 2t + (2Cy + Cy) sin 2t

We now see that one of the basis solutions for the homogenous part contains cos 2¢ which is
also in the forcing function of the original system. Hence we need to pick a guess where we
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2t
multiply by extra t. Since the forcing function is [COZ ) then guess

b d

x, = = sin2t +| *|cos2t + “a tsin2t +| " |tcos2t (1)

ap by Co dy
+t by +td
= firia sin2t+| ' Hecos 2t
a, + tCz bz + tdz
, c1] . a; + tC] dl bl + tdl .
x, = sin2t + 2 cos 2t + cos2t—2 sin 2t
Cy a» + tCZ dz bz + tdz

c1— 2 (bl + tdl) . dl +2 (ﬂl + tCl)
= sin 2t + cos 2t
Cy — 2 (bz + tdz) dz +2 (Elz + tCZ)

We now substitute (1) and (2) into

, 1 -5 N cos 2t

X, = X

A R 0
Hence

c1— 2 (bl + td]) . dl +2 (ﬂl + tCl)
sin 2t + cos2t =
Cy — 2 (bz + tdz) dz +2 (ﬂz + tCz)

1 =5|[aq +tci] . by + td; cos 2t
sin 2t + cos2t|+
1 -1 a, + tCz bz + tdz 0
Hence

((c1 —2(by + tdy)) sin 2t] N [(d1 +2(ay + tey)) cos 2t]

Therefore

(2)

(cy —2(by + tdy)) sin 2t (dy + 2 (ap + tcy)) cos 2t
1 -5|((ay + tcq) sin 2t + (by + tdy) cos 2t N cos 2t
1 -1\ (ay + tcy) sin 2t + (b, + td;) cos 2t 0
Or
(c1 —2(by + tdy))sin 2t + (dy + 2 (ay + tcy)) cos 2t
(cy —2(by + tdy))sin 2t + (dy + 2 (ay + tcy)) cos 2t

(cos2t) (by + tdy) — (cos2t) (by + tdy) + (sin 2t) (ag + tcy) — (sin 2t) (ap + tcy) 0
Therefore

[(cos 26) (by + tdy) — 5(cos 2t) (by + tdy) + (sin 2t) (ay + tey) — 5 (sin 2¢) (a, + tcz)) N [cos ZtJ

(c; —2(by + tdy))sin 2t + (d; + 2 (ay + tcq)) cos2t =
(cos2t) (by + tdy) — 5 (cos 2t) (by + tdy) + (sin2t) (a; + tcy) — 5 (sin 2t) (ay + tcy) + cos2t  (3)
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And
(cy = 2(by + tdy)) sin 2t + (dy + 2 (ap + tcy)) cos 2t =
(cos2t) (by + tdy) — (cos2t) (by + tdy) + (sin2t) (ay + tcy) — (sin 2t) (ap + tcy)  (4)

Equation (3,4) are solved for the unknowns. We need 8 equations in total. Looking at (3)
for now. Comparing coefficients of sin 2t in (3)

(¢ —2(by +tdy)) = (ag + tcy) = 5(ap + tep)
c1 —2by —2tdy = ay — 5a, + tc; — btey
c1 — 2by + t(-2dy) = a; — 5ay + t(c1 — 5¢y)
Comparing coefficients we see

C1 —Zbl =m —5a2

a;—5a,—c;+2b; =0 (1A)
And
—2d; = c1 —5¢,
c1—5c;+2d; =0 (2A)

We do the same for cos2f in equation (3) and compare coefficients
(dq +2(ay + tcy)) = (by +tdy) = 5(by + tdy) +1
2ay +dy + 2tc; = by —5by + tdy — 5td, + 1
2ay +dqy +t(2c1) = by —5by, +1 + t(dy — 5d,)
Comparing coefficients on the above gives two new equations

2ﬂ1+d1:b1—5b2+1

2a; +dy —b; +5b, =1 (3A)
And
2¢; =dqy —5d,
2¢1 —dy +5d, =0 (4A)

We have obtained 4 equations from (3). We do the same on (4) to obtain the other 4
equations. Comparing sin2t terms in (4) gives

(c2 = 2(by + tdp)) = (ay + tey) — (az + tep)
Cy — 2b2 - 2td2 =ay—ay +tc] —toy
Cy — sz + t(—Zdz) =ay—day + t(Cl - C2)
Comparing coefficients on the above gives two new equations

C2—2b2:611—a2

a;—ay—c, +2b, =0 (5A)
And
—2d, =¢;— ¢y
c1—Cp+2d,=0 (6A)
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Finally, Comparing cos 2t terms in (4) gives

(dy +2(ay + tcy)) = (by + tdy) — (by + tdy)

2a, +dy + 2tcy = by — by + tdy — td,

2a, +dy +t(2c)) = by — by + t(dy — d5)

Comparing coefficients on the above gives two new equations
2a, +dy, = b; — by
2a, +dy — by + b, =0
And
2c, =di; —dy
di—dy—2c,=0

Equations (1A) to (8A) are now solved for aq,a;,b,,b,¢1,¢5,d1,ds.

ay—5a, —c; +2b; =0
c1—5c,+2d; =0
201 +dy —b; +5b, =1
2¢;—dy+5d, =0
ap—a,—¢cp+2b, =0
c1—C+2d,=0
2a, +dy—b; +b, =0

dy—dy—2c, =0
Writing the equations in matrix form
1 -5 2 0-1 0 0 0)\(my 0
0 0 001 -5 2 0l]a 0
2 0 -1 5 0 1 0|y 1
0O 0 0 0 2 -1 5 (|b2| |0
1 -1 02 0 -1 0 0lfleg]| (o0
0 0 001 -1 0 2]||le 0
0 -1 1 0 0 0 1|4 0
0O 0 00 0 -2 1 -1)\d 0
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Solving the above using the computer gives

4
az
by
by

]

|
O NI, O O O wl-

Solve 8.2 problem 9 final Matrix equation

mat = {{1, -5, 2, o, -1, O, 0, 0},

{6, o, O, 0, 1, -5, 2, 0},

{2, ¢, -1, 5, o, 0, 1, 0},

{6, o, O, 0, 2, O, -1, 5},

{1, -1, e, 2, o, -1, o, 0},

{6, o, O, 0, 1, -1, 0, 2},

{6,2, -1, 1, o, o, 0, 1},

{6, @, 0, 0, O, -2, 1, -1}};
b={0,0,1,0,0,0,0,0};
LinearSolve[mat, b]

1 1 1 1
—eee———e}
{4JJ))4)4J2J

We now go back to (1) and plugging these values into the particular solution

ap| . by 1 . dq
X, = sin 2t + cos 2t + tsin 2t + tcos 2t
az by €2 dy
1 1 1
_ . 0 _ . _
=|4|sin2t+| |cos2t+|%|tsin2t+ |2 |tcos2t
0 0 n 0

1 1 1
x, (t) = 1 sin 2t + A—}tsinZt + EtcosZt

Hence

(t)—lt' 2t
Yp(t) = tsin
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Or

1 . .
x, (t) = 1 (sin 2f + t sin 2t + 2t cos 2t)

(t) = Lisinot
Yy (t) = 1 sin
Earlier we obtained the homogenous solution as
Xy, (t) = 5Cy cos 2t + 5C, sin 2t
Y (t) = (C; = 2Cy) cos 2t + (2C1 + Cy) sin 2t

Therefore the general solution is

1
x (t) = 5Cq cos 2t + 5C, sin 2t + 1 (sin 2f + t sin 2t + 2t cos 2t)

1
y (t) = (Cl - 2C2) cos 2t + (2C] + Cz) sin 2t + th sin 2t

4.14.18 Section 8.2 problem 11

problem Apply method of undetermined coefficients to find particular solution system. If

initial conditions are given, apply initial conditions to find the complete solution. x’ =
2x+4y+ 2y =x+2y+3;x(0)=1,y(0) = -1

solution The matrix form of the system is

-6 310

The eigenvalues of the homogenous system are found from

A=Al =0
2-1 4
=0
1 2-2
A2 -4 =0
A-4HA=0

Hence A; =0,A, =4.
For A; =0 we solve (A-A)v; =0

e
-

2’()1 + 4:02 =0

From first equation
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Let v; =1, hence v, = _71, therefore

For A; =4 we solve (A-A,))v, =0
2—/12 4 01 _ 0
1 2-2/lw) o
-2 4 01 _ 0
1 -2)le,) |0

—201 + 4:7]2 =0

From first equation

Let v; =1, hence v, = %, therefore

Therefore the homogenous solution is

xp, (£) = cq2q1 (t) + x5 (F)
=107 (t) C/llt + 00y (t) e

2 2
x, () =c¢ +c et
2]

Aot

(1)

Since constant term exist in both homogenous solution and in forcing function then guess

b
a by

Therefore

Substituting this into
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Gives
b 2 4
1| _ M + by tl+ 2
bz 1 2 ay bz 3
bl _ 2 4 a; + blt + 2
bz B 1 2 a, + bzt 3
bl _ 2ﬂ1 + 402 + thl + 4:tb2 + 2
bz B a; + 2112 + tbl + 2tb2 3
Hence
by = 2ay + 4a, + 2tby + 4tby, + 2
bz =m +2ﬂ2+tb1 +2tb2+3
Or

b1 = 2{11 + 4{12 +2+ t(Zbl + 4b2)
bz =m +2a2 +3+ t(bl +2b2)
So by comparing coefficients in each equation we obtain 4 equations as follows

b1:2ﬂ1 +4El2+2

2by +4b, =0
by =ay+2a,+3
by +2b, =0
Or
2ay +4a, —b; = -2
2by +4b, =0
a, +2a, —b, = -3
b1 +2b, =0
Hence the matrix form is
2 4 -1 0\(ay) (-2
00 2 4f|laf |0
12 0 -1l |-3
00 1 2)\b 0
Ry =Ry~ 3R,
2 4 -1 0\(ay) (-2
00 2 4fla] |0
00 5 -1f{bx] [-2
00 1 2J\b 0
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1
R3 = R3 - ZRZ

S O O N

1
R4 = R4— ERZ

S O O N

Third row gives —2b, = -2 or b, =1.
row gives

4 -1 0)\(a) (-2
0 2 4|laf |0
0 0 -2{|p| |-2
01 2 Lo
4 -1 0)\(a) (-2
0 2 4flayf |0
0 0 -=2|lp| |-2
0 0 0l Lo

From second row 2b; +4b, =0, or b; = -2b, = -2. First

215!1 +4.ﬂ2 - bl =-2

Zﬂl + 4&2 =-2+ bl
2ﬂ1 + 432 =4
1

Hence a; or a, are arbitrary. Let a, = 0 then a, = -2. Hence the solution is

Therefore

Using (1) the complete solution is

x(H) =¢ [_21) +cy [3] e+

Att=0

—aq +a, =-1
5 a; +ap
a1 -2
ar _ 0
by -2
by 1

(2)

_ 2C1 +2C2 -2
—C1 +Cy
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Hence
2c1+2c,-2=1
—1+cp=-1
Or
2c1 +2¢c, =3
-1 +cp =-1

Which gives ¢; = Z,cz = i, therefore (2) becomes

H0=3 [_21] 3 (f] s (‘OZJ ; (‘12}

Or
10 1
t)= —+ e -2-2t
x(t) 4+2e
5 1
y(t):_1+z_1€4t+t
Or
x(t):1(1—4t+e4t)
2
1
_ 4t
y(t)—zl(—5+4t+e )

4.14.19 Section 8.2 problem 13

problem Apply method of undetermined coefficients to find particular solution system. If
initial conditions are given, apply initial conditions to find the complete solution. x’ =
solution The matrix form of the system is

2x+y+2ehy = x+2y -3¢t
X' [2 1)« 2¢!
= +
v 1 2Jly) |-3¢

The eigenvalues of the homogenous system are found from

A=Al =0
2-4 1
=0
1 2-4
A2-41+3=0

A-3)(A-1)=0
Hence A{ =1,A, = 3.
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For A; =1 we solve (A- A )v; =0
2—/11 1 01 _ 0
1 2-24lw) o
1 T){oe] (O
1 1/{w,) |0

From first equation v; + v, = 0. Let v; =1, hence v, = -1 and therefore

1
w3
For A; =3 we solve (A-A,))v, =0
R [
1 2—-Ay vy 0
-1 1|y 0
[

From first equation —v; + v, = 0. Let v; =1, hence v, =1 and therefore

1
O =
21
Therefore the homogenous solution is

xp, (£) = c1x1 () + cox0 ()
=101 (t) €A1t + C0y (t) BAZt

x, () = [_11J et +c, [1) et (1)

t
t] and ¢’ is a basis solution for the homogenous part, then

b
Xy = (ﬂlJet +( 1)tet
ap by
a1 + tb] ;
= e
a, + tbz

x;): b1 et+ Ell+tb1 et
bz ap + tbz

_ (bl +a;+ tbl]et

Since the forcing function is ( 3
-3e
we guess

Hence

bz +ap + tbz
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Plugging this back into

(2 1), (2
X, = X
ol 2)7 |3
Gives
bl +a; + tb] ¢ 21 a, + tbl ¢ 2€t
e = e +
bz +a; + tbz 1 2 a, + tbz —3€t
b1+ﬂ1+tbl _2 1 a1+tb1 + 2
bz +a; + tbz B 1 2 a, + tbz -3
b1+ﬂ1+tbl _ 2&1+ﬂ2+2tb1+tb2 + 2
bz +ap; + tbz B a; + 2612 + tbl + ztbz -3
Hence
b1+ﬂ1+tb1 :201+ﬂ2+2tb1+tb2+2
b2+ﬂ2+tb2 = +2ﬂ2+tb1 +2tb2—3
or

b]+£l1+tb1:2ﬂ1+ﬂ2+2+t(2b1+b2)
b2+a2+tb2:a1+2a2—3+t(b1+2b2)

Comparing coefficients in the above two equations generates 4 equations to solve for the
unknowns

b1+a1=2a1+a2+2

by =2by + b,
by+a,=a;+2a,-3
by, = by +2b,
Or

ay+a,—-by=-2

bi+b,=0

a;+a,—by,=3

by +b,=0

Second and third equation are the same. Using the first 3 equations, the matrix equations
are

11 -1 0 -2
ap

11 0 -1 =|3
by

00 1 1 0
by

This is undetermined system. It will either have infinite number of solutions or no solution.
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Let R2 = RZ - Rl

1 -1 0 -2
as

00 1 -1 =|5
by

0 1 1 0
b,

R3=R3-R,

1

11 -1 0 -2
as

0 0 1 -1 =5
by

0O 0 2 -5
b,

Last row gives 2b, = -5 or b, = %5 Second row gives by —b, =5 0r by =5+b, =5- g =
First row gives a; +a, —by = -2 or ay = —a, + by —2 or

NG

alz—a2+b1—2

+5 2
= —q - —
2%

+1
= —a —
279

a, is arbitrary. Let a, = 0 and we obtain a; = % Hence the solution is

1

aq 5
as 0
=15

by =
! 5
2 2

b
Therefore since x, = (al]et + [ 1) te! then
as by

X, (1) = %(1 +5t) ¢!

-5
yp (t) = Ttet
And the general solution is

x () = x () + x (t)
1 1 1 5
x, (1) = ¢q (_Jef +0 [1]e3t + (é)et + (é) tet
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Or

1
x(t) = cret + cpe3t + > (1 +5t)¢t

5
y(t) = —cie' + cpe® - Etet

4.14.20 Section 8.2 problem 19

problem Use the method of variation of parameters to solve x’ = Ax + f(f).

1 2 180¢
A:(z —2]’f(t):(9o]

0
o}

solution The matrix form of the system is

o/ R

The eigenvalues of the homogenous system are found from

A=All=0

1-14 2

> -
A24+A-6=0

A-2)(A+3)=0
Hence A; =2,A, = -3.
For A; =2 we solve (A-A1))v; =0

P W
S WEH

From first equation —v; + 20, = 0. Let v; =1 then v, = % and

o
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For A, = -3 we solve (A - Ayl)v, =0

[ a2
- )-()

From first equation 4v; + 2v, = 0. Let v; =1 then v, = -2 and

.t

xy, (1) = c1x9 (£) + coxp (F)
ME 4 o0, (e

0
0
0
0

01
(%}
01
(%}

Therefore

=cvq (t)e Azt

2 1
x, (t) = c; (J A+ ¢, [_2] et

The Wronskian W (which is the same as fundamental matrix @) is

W=(x(t) x,()

2eZt e—3t
eZt _26—3t

Therefore
% () =W [ Wf(d
Where
) 2p2t 3t -
W= (ezt 9 StJ
[ =)
e e

287
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Hence, (2) becomes

202t 73 Ze2t L2 (1804
xp () = f g ) dt
eZt _26—31‘ _e3t _ —€3t 90
5 5
3t

_ 202 ¢ f 18¢72 + 72t ”
|2 —peB 36t — 3663t

2% 73t [—96_2t (4t+3)]

2t —2e73t|| 463 (3t —4)
_(~60t - 70
| 5-60t

Therefore the general solution is

x () = x, () + x, (D)

2 1 -60t - 70
=c | |# + 0, e3 +
1 -2 5 — 60t
0 2 1 -70
=0 +Cy +
0 1 -2 5

S -
F )0
et W Y

Last row gives _—Scz = —40, or ¢, = 16. First row gives 2c; +c, = 70, hence ¢; =
Hence the solution from (3) becomes

2 1 —60t — 70
x(t) =27 et +16 e3¢
-1 -2 5 — 60t

x (t) = 54e? + 1673 — 60t — 70
y (t) = —27¢*" — 32¢7% + 5 — 60t

Att=0

Hence
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4.14.21 Section 8.2 problem 22

problem Use the method of variation of parameters to solve x’ = Ax + f(f).
4 -1 28¢7!
A= ;) =
[5 —2] o [20€3t]

0
o)

solution The matrix form of the system is

)L 2

The eigenvalues of the homogenous system are found from

A= All=0
4-1 4

5 —2-al”
A2_210-3=0

A+1)(A-3)=0
Hence A; =-1,1, = 3.
For A; = -1 we solve (A—-A4I)v; =0

[ )
G-

From first equation 5v; — v, = 0. Let v; =1 then v, =5 and

1
»<ly
For A, =3 we solve (A—-A,))v, =0
4-1, -1 0 0
A R
1 1) 0
- 2Je)-()
From first equation v; —v, = 0. Let v; =1 then v, =1 and

|
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Therefore

xp (1) = c1x1 () + 22 ()
=107 (t) CAlt + 009 (t) e

x, (1) = ¢ (;) et +c, (i] et (1)

The Wronskian W is, (which is the same as fundamental matrix ®) is

W=(x;(t) x(t))
e—t e3t
- (Se‘t e3t]

x, () =W f WLE(h) dt )

Aot

Therefore

Where

Hence, (2) becomes

Il

a1

g o
L
-

.8
[€8) @
Q¥

et [ 26 -7t ]
et e -5t - %e“”
23 — 7tet — Btedt — Dot
B 2563* — 35te™ — 5tedt —%e‘t)
Therefore the general solution is
x(£) = x; (1) + x,, (1) (3)

5 35
1 1 263 —7tet — 5l — Zet
=0 (5} et +cy (1] et + (zé 4

25 3t —t _mp3t 30 ¢
2¢ 35te Ste 7€
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Att=0
5 35
0 1 1 - —-=
i
! + ! + _g
= c
s) " 2 1) | =2
2
15
_ C1+C2——
_[5C1+C2——
Hence

. 35 L. . 15 15 35 5
Last row gives —4c, = =35, or ¢, = e First row gives c;+c, = - hencec; = ——= = 7 Hence

2 4
the solution from (3) becomes

5 35
-5(1 35 (1 263t —7tet — el — Zpt
x(t)=— | _[et+—| [+
® 4 [5] 4 (1) [%‘ley — 35te~t — 5tedt —4%564

Or
-5 35 5 35
— —t 3t ~ 3t -t _ 3t _ —t
x(t) = T et + 1 et + 43 7te™! — bte = e
25 35 25 35
y(t) = —Ze_t + Ze3t + Z€3t - 35t€_t — 5t€3t - Ze_t
Or

x(t) = =10e7t + 1063 — 7te~t — 5te3t
y(t) = —15¢~f +15¢% — 35te~! — 5te

4.14.22 Section 8.2 problem 25

problem Use the method of variation of parameters to solve x’ = Ax + f(f).

A-[? —5)
1 -2
4t

o=
0
x(0) = O]
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solution The matrix form of the system is

£)-(: 2JE)-(0)

The eigenvalues of the homogenous system are found from

A=Al =0
2-A -5
1 —2-a”
A2+1=0
A==

Hence A, = -1, A, = i.

For A = —i we solve (A-A))v; =0
2 - /\1 -5 (4] _ 0
1 -2 - /\1 Uy B 0
2+1 -5 (%] _ 0
1 =2+i)lo,) |0

From first equation (2 +i)v; —5v, = 0. Let v; =1 then v, = (25;1) and

1 5
'z} = - =
! Q:) 241

For A, =i we solve (A - Ay])v, =0
2—/\2 -5 ol 0
1 —2—/\2 (%) B 0
2-i =5 |lov] (O
1 -2-illo,] |0

From first equation (2 — i) v; —5v, = 0. Let v; =1 then v, = ? and

)

xp, (£) = c121 () + x5 (F)
=C(C10q (t) €A1t + 00y (t) e

5 ) 5 )
x, (1) =c ety ¢ et
0 1[2+i] Z[Z—i]

292
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Change to new basis

5 ,
x; () = Re ] et
241

5(cost—isint)
= Re . .
(2+1i)(cost—isint)
5(cost—isint)
2(cost—isint) + (icost +sint)
5(cost—isint)
2cost+sint +i(-2sint + cost)

B 5cost
2cost+sint

5(cost—isint)
2cost +sint +i(-2sint + cost)

3 —5sint
| —2sint + cost

Hence the homogenous solution in the new basis is

xh(t):Cl[ 5cost ]+C2( -5sint J (1A)

2cost+sint -2sint + cost

= Re

= Re

And

X, (1) = Im[

The Wronskian W (which is the same as fundamental matrix ®) is
W=(x ) x0)
( 5cost —5sint ]

2cost+sint -2sint+ cost

Therefore
%, (t) = W f WLE(6) dt )
Where
-1
1 5cost —5sint
W= =
2cost+sint -2sint + cost

é (cost—2sint) sint

- [% (—2cost+sint) cos t)
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Hence, (2) becomes

5cost —5sint l((jost—ZSiniE) sint | (4t
%, (B = | , |7 | dt
2cost+sint -2sint+ cost g(—2008t+smt) cost)|1
5 cos t —5sint sint+4t(%cost—§sint>
= dt
2cost+sint -2sint + cost f cost—4t(§cost—ésint)
5cost —5sint §tcost—§sint—écost+étsint
“|2cost+sint —2sint+ cost gsint—gcost—gtcost—gtsint

Which, with little help of computer algebra, simplifies to

8t-1
£ =
% @ [4t - 2)
Therefore the general solution is
x(t) = x, (t) + x, (1) (3)

5cost -5sint 8t-1
=C TG . +
2cost+sint —2sint + cost 4t -2

0 5 0 -1

:Cl +C2 +
0 2 1 -2

3 5C; -1

|2c,+Cy-2

E o[

First row gives C; = % and last row gives 2C; + C; =2 or C; =2 - E = g. Hence the solution
becomes
1 5cost 8 —5sint 8t—1
x(t) == o+ = . +
5(2cost+sint] 5|-2sint+cost) |4t-2

x(t) = cost—8sint+8t+8t-1
y(t) =2cost—3sint + 4t -2

Att=0

Hence

Or
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4.14.23 Section 8.2 problem 28

problem Use the method of variation of parameters to solve x’ = Ax + f(f).

2 —ﬂ
A:
1 -2
41nt
po=[t%
t
1
x(1) = _1]

solution The matrix form of the system is

)< I

The eigenvalues of the homogenous system are found from

A=Al =0

2-1 -4
|
A2=0
A=0

Hence zero eigenvalue. Let see if this is complete eigenvalue or not.

[0

From first equation 2v; —4v, = 0. Let v; =1 then v, = % and

()

For A = 0 we solve (A—-A)v; =0

We can only find this one eigenvector. Second row gives same eigenvector. This means this
is defective eigenvalue. We can’t use this method. We are stuck. So we switch to the defective
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eigenvalue method (page 450). We start by solving for v, from

(A—AI)ZU =0
2
2

2-4 4 ) (u)_(0

[ 1 —2——A] v) (0
2

2 -4 (v

[14]@_

0 0)fv1] _

[o 0] v)

) can be any value. Let v; =1,v, = 0 and therefore

ol

01 = (A - AI) (%]

(3

o o O O

01
Hence
(%)

We now find v; from

Where now

x1 (t) = v

x; (1) = (o1t + vp) eM
Hence the homogenous solution is

Xy (t) = Clvle’” +Cy (Ult + Uz) eM

o 2]+ ()
AN

The Wronskian W (which is the same as fundamental matrix ®) is

W=(x;(t) x(t))
3 2 2t+1
1t

%m:wfvam
9296

Therefore
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-1
— 2 2t+1
1t
B —t 2t+1
1 =2

0 2 2t+1 f —t 2t+1|(4Int it
X, =
4 1t 1 =2 J{ 2

t

2 2t+1) (L@t +1)-4tInt
ft N P
1 t 4lnt—?

Where

Hence, (2) becomes

(2 2t+1)(2t+Int-2PInt+
1 t 4tInt-21Int — 4t

~ 2t2(2Int - 3)

2t +Int+22Int—2tInt — 32

Therefore the general solution is
x () = x5, () + x, (t) 3)

2 2t+1 2t2(21nt - 3)
=C +C2 +
1 t 2t +1Int+ 22 Int —2tInt — 342
1 2 s 3 .\ -6
=C C
) ) ) e
_ 2C1+3C2—6
B C1+C2—1
2 3|[c1] (7
1 1)le,) |0
1 = 7
0 _E Co _E
7-3c,  7-21

second row gives —lcz =Zor ¢, =7 and first row gives 2c; +3c; =7 or ¢y = s = = 7.
Hence the solution becomes (from (3))

2 2t +1 22 (2Int - 3)
x(t)=-7| |+7 +
1 t 2t+Int+22Int—2tInt - 32

Att=1

Hence
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Or
x(t) = -7 +14t + 22 (2Int - 3)
y(t)=-7+9% +1Int+22Int - 2tInt - 3t2

4.14.24 Example on page 500, textbook (Edwards&Penny, 3rd
edition)

problem This problem was solved in textbook using matrix exponential. Here is solved
using the fundamental matrix only. Use the method of variation of parameters to solve

X =Ax+ f(t).
4 2)
A=
3 -1
fo= _i‘r’] te 2!

(7
x(0) = 3]

Solution

The homogeneous solution was found in the book as

Following scalar case, the guess would be %, = (E + dt) e~ but since ¢ is in the homoge-
neous, we have to adjust to be x, = (Et + ﬁtz) e~ + ze>!. Notice we had to add ce™, else it will

not work if we just guessed %, = (bt + at?) e based on what we would do in scalar case, we
will find we get @ = b = 0. This seems to be a trial and error stage and one just have to try to
find out. This is why undermined coeflicients for systems is not as easy to use as with scalar

case. Hence
%, = (bt + at?) e + ze™
Now we plug-in this back into the ODE and solve for 4, b,c. But an easier method is to use

Variation of parameters. The fundamental matrix is

D=3 %

6—21‘ 2€5t
- —_Dp2t G5t
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And
e5t Ze—Zt T eSt _2€5t
o1 _2351? e—Zt ~ 28_2t e—Zt _ 1 o2t —0p2t
- |D| T Bt 4 4Bt 512¢5t Ot
Hence using
; :cpfcp-lf(t)dt

1 et 202t (-
_ o f
5 ze—St e—5t 4te—2t
f —23t
-5 —26te77t
The integral of [-23tdt = —{* and [ -26te "'dt =
hence the above simplifies to

Ze7t (7t +1) (using integration by parts)

2
v — 10
X, =@ 26 7t §t6—7t]
245 35
-23
e—Zt 265t Etz
= 26 26
2p2t o5t || 20,7ty 26,7t
€ € w5f T3

% o2t 4 % fe=2t _ 23 {202t
= %_65 2 %_6te—2t + gtze—zt
245 35
1 o2t 2
5 (1127t +728t+104))

Y R (11274 + 182t + 26)

245

Hence the complete solution is
X=X, +3%,
e (112742 + 728t +104))

e [ 1 )e_Zt to, [2] e [4901 » ,
1 € (1127t +182t + 26)
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To find the constants, we apply initial conditions. At ¢ = 0

52
Ool)=C)
1 2\ (7) (=
o[ a)<li)-0)-2
1 2)(a) (2
[_2 1]( (%
IS
05 Cy o

807 807 1663
Hence 5C2 T or ¢, = 245 and c1+ 2C2 = 235

solution becomes

1663

hence ¢; = o

807 1
2(@) = Therefore the

1 o 2
1(1 807 (2 —¢ (—1127t +728t+104)
- = -2t 4 5t 4 | 490
: 5[ ]e ( ]e ( ]

_ 745 1o 2
2 245 |1 —E° (1127t +182t+26)
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