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1.1 links

1. [Professor Leslie M. Smith web page|

2. |piazza class page| Needs login



http://www.math.wisc.edu/~lsmith/
https://piazza.com/wisc/spring2017/neema548/home
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1.2 syllabus

NE 548
Engineering Analysis I1
TR 11:00-12:15 in Van Vleck B341

Leslie Smith: Ismith@math.wisc.edu, Office Hours in Van Vleck Tuesday/Thursday 12:30-
2:00, http://www.math.wisc.edu/ Ismith.

Textbook 1 Required: Advanced Mathematical Methods for Scientists and Engineers,
Bender and Orszag, Springer.

Textbook 2 Recommended: Applied Partial Differential Equations, Haberman, Pear-
son/Prentice Hall. This text is recommended because some of you may already own it (from
Math 322). Almost any intermediate-advanced PDEs text would be suitable alternative as
reference.

Pre-requisite: NE 547. If you have not taken NE 547, you should have previously taken
courses equivalent to Math 319, 320 or 340, 321, 322.

Assessment: Your grade for the course will be based on two take-home midterm exams
(35% each) and selected homework solutions (30%). The homework and midterms exams
for undergraduate and graduate students will be different in scope; please see the separate
learning outcomes below. Graduate students will be expected to synthesize/analyze material
at a deeper level.

Undergraduate Learning Outcomes:

e Students will demonstrate knowledge of asymptotic methods to analyze ordinary differ-
ential equations, including (but not limited to) boundary layer theory, WKB analysis
and multiple-scale analysis.

e Students will demonstrate knowledge of commonly used methods to analyze partial
differential equations, including (but not limited to) Fourier analysis, Green’s function
solutions, similarity solutions, and method of characteristics.

e Students will apply methods to idealized problems motivated by applications. Such ap-
plications include heat conduction (the heat equation), quantum mechanics (Schrodinger’s
equation) and plasma turbulence (dispersive wave equations).

Graduate Learning Outcomes:

e Students will demonstrate knowledge of asymptotic methods to analyze ordinary differ-
ential equations, including (but not limited to) boundary layer theory, WKB analysis
and multiple-scale analysis.

e Students will demonstrate knowledge of commonly used methods to analyze partial
differential equations, including (but not limited to) Fourier analysis, Green’s function
solutions, similarity solutions, and method of characteristics.

e Students will apply methods to idealized problems motivated by applications. Such ap-
plications include heat conduction (the heat equation), quantum mechanics (Schrodinger’s
equation) and plasma turbulence (dispersive wave equations).
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e Students will apply methods to solve problems in realistic physical settings.

e Students will synthesize multiple techniques to solve equations arising from applica-
tions.

Grading Scale for Final Grade: 92-100 A, 89-91 AB, 82-88 B, 79-81 BC, 70-78 C, 60-69
D, 59 and below F

Midterm 1: Given out Thursday March 2, 2015 and due Thursday March 9, 2017.
Midterm 2: Given out Thursday April 27, 2017 and due Thursday May 4, 2015.

Homework: Homework problems will be assigned regularly, either each week or every other
week, paced for 6 hours out-of-class work every week. Homework groups are encouraged,
but each student should separately submit solutions reflecting individual understanding of
the material.

Piazza: There will be a Piazza course page where all course materials will be posted. Piazza
is also a forum to facilitate peer-group discussions. Please take advantage of this resource to
keep up to date on class notes, homework and discussions.

Piazza Sign-Up Page: piazza.com/wisc/spring2017/neema548
Piazza Course Page: piazza.com/wisc/spring2017/neema548 /home
Course Outline
Part I: Intermediate-Advanced Topics in ODEs from Bender and Orszag.

1. Review of local analysis of ODEs near ordinary points, regular singular points and irregular
singular points (BO Chapter 3, 1.5 weeks)

2. Global analysis using boundary layer theory (BO Chapter 9, 1.5 weeks).

3. Global analysis using WKB theory (BO Chapter 10, 1.5 weeks).

4. Green’s function solutions (1 week)

5. Multiple-scale analysis (BO Chapter 11, 1.5 weeks).

Part II: Intermediate-Advanced Topics in PDEs

1. Review of Sturm-Liouville theory and eigenfunction expansions (1.5 weeks)
2. Non-homogeneous problems and Green’s function solutions (1.5 weeks)

3. Infinite domain problems and Fourier transforms (1.5 weeks)

4. Quasilinear PDEs (1.5 weeks)
5

. Dispersive wave systems (time remaining)
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3.1 HWI1

3.1.1 problem 3.3 (page 138)
3111 Partc

problem Classify all the singular points (finite and infinite) of the following

xQ-x)y"+(c-(@+b+1)x)y —aby =0
Answer
Writing the DE in standard form
Y’ Py +q@)y=0

. c—(a+b+1)x/_ ab —0
x(1-x) Y x(l—x)y_
p(x) q(x)
—_——
- c _(a+b+1) , ab _0
Y \xa-» "a-» VM xa-»Y"

x = 0,1 are singular points for p(x) as well as for g(x). Now we classify what type of
singularity each point is. For p (x)

( c (a+b+1))

=N T T Ay

0
( c x(a+b+1))

1-x) 1-x)

Hence xp (x) is analytic at x = 0. Therefore x = 0 is regular singularity point. Now we check
for g (x)

., . —ab

lng 20 9 = i 5
3 —xab
_xl—I>I(1J(1—x)

=0

Hence x%q (x) is also analytic at x = 0. Therefore x = 0 is regular singularity point. Now
we look at x =1 and classify it. For p (x)

c (a+b+1)
x(1-x) (1-x) )

—C (a+b+1)
x(x—l)+ (x-1) )

:lim(_—c+(a+b+1))
x—=1\ X

}Cgr%(x—l)P(X)ﬂcig%(x—l)(

= -

=—c+@+b+1)

Hence (x —1) p (x) is analytic at x = 1. Therefore x =1 is regular singularity point. Now we
check for g (x)

lirri(x—l)zq(x):lirri(x—l)z( —ab )

x(1-x)
T 2 ab
= lmx-1) (x(x—l))
= lim (x—1)(a—b)
x—1 X
=0

Hence (x —1)2q(x) is analytic also at x = 1. Therefore x = 1 is regular singularity point.
Therefore x = 0,1 are regular singular points for the ODE. Now we check for x at co. To
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check the type of singularity, if any, at x = oo, the DE is first transformed using

xX=- (1)
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This transformation will always results in [|new ODE in t of this form

2y (PO+2) 40

ar 2 t4 y=0 ¥
But
_ _(czlarbrDx
MD—PWm%‘( x(1-x) L;
_ C—(a+b+1)%
1 1
z@‘ﬁ
2 —t(a+b+1)
i o (3)
And
ab
9()=qW)| _x = (‘x(1 x)) i
_ ab
== n
;@‘ﬂ
abt?
:_(t_l) (4)

Substituting equations (3,4) into (2) gives

c—t(a+b+1) abt?
(=5 )+2Q+(_wn)

y'+ 2 a Y =0
5 (2t(t-1)- e+ (a+b+1)t) / ab
v 2(t-1) Y-y 0

Expanding
pt) q(t)
. (2t—1—tc+a+b), ab
v+

F(E—-1) T A

We see that t = 0 (this means x = o0) is singular point for both p (x), g (x). Now we check

1Let x = %, then
d_ddt__,d

dx  dtdx  dt
And

d d?
_ _t2 D — 27
( dt dtz)
d a2
— 03" 4
=2t ST

The original ODE becomes
2t3i +t4ﬂl—2 +p @) —tzi +q () =0
FTAMFTEY RO M U7y L B MR
(2t3y' + t4y”) -p(y +q(By=0
thy” + (—tzp (t) + 2t3) Y +qty=0

—p(t)+2t)

. a0
Yy’ + 7Vt gy=0
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what type it is. For p(t)

. Y 2 c (a+b+1)
%%t”(t)‘?l%t(?_(t-lﬁ FE=1) )

. tc (a+b+1)
‘Hro‘(z‘(t—n* (-1 )
=1-a-b

tp (t) is therefore analytic at t = 0. Hence ¢ = 0 is regular singular point. Now we check
for q(t)

9 o ab
b £ (£) = lim £ ( tz(t—l))

i —ab
~ o0\ E-1)
=ab

t2q (t) is therefore analytic at t = 0. Hence t = 0 is regular singular point for g (t). Therefore
t = 0 is regular singular point which mean that x — oo is a regular singular point for the
ODE.

Summary

Singular points are x = 0,1. Both are regular singular points. Also x = co is regular singular
point.

31.1.2 Part (d)

Problem Classify all the singular points (finite and infinite) of the following
xy" +(b-x)y —ay=0
solution

Writing the ODE in standard for

,,+(b—x) _% 0
Yy x 7 YT
We see that x = 0 is singularity point for both p (x) and g (x). Now we check its type. For p (x)
(b - x)

gy )=
=b

Hence xp(x) is analytic at x = 0. Therefore x = 0 is regular singularity point for p (x).
For g (x)

o2 —tma2 (2
g0 = i ()

- -

=0
Hence x?g (x) is analytic at x = 0. Therefore x = 0 is regular singularity point for g (x).

Now we check for x at co. To check the type of singularity, if any, at x = co, the DE is first

transformed using

1
- 1
; @

X =
This results in (as was done in above part)

2y | (-p () +2t) L10
dr? 12 t4

y=0
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Where
o=,
e-3)
-1
=(bt-1)

And q(t) = —z = —at Hence the new ODE is
d%/+(—aﬁ—1)+2n at

ar P =0
dy -bt+1+2t a
et e o
Therefore t = 0 (or x = o) is singular point. Now we will find the singularity type
' , bt +1+2t
iy 0 = g5
, (—bt +1+ Zt)
=lim|———
t—0 t
=

Hence tp () is not analytic, since the limit do not exist, which means t = 0 is an irregular
singular point for p (t) . We can stop here, but will also check for g(t)

o w22

iy ) = iy (~5)
:lim(—z)
t—0 t
=

Therefore, t = 0 is irregular singular point, which means x = oo is an irregular singular
point.

Summary

x = 0 is regular singular point. x = co is an irregular singular point.

3.1.2 problem 3.4

3121 partd
problem Classify x = 0 and x = co of the following

1
xzy” = yex

Answer

In standard form
1

24 ex —
y'-zy=0
1

Hence p(x) =0,9(x) = —i—z. The singularity is x = 0. We need to check on g (x) only.

0

1
= lim (—eX)
x—0

1 1 1
The above is not analytic, since lim, g+ (—ei) = co while lim,_,4- (—ez) = 0. This means ex

1
.2 2| 8
B

1
is not differentiable at x = 0. Here is plot ex near x =0
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Plot of exp(1/x)

600

= 4007

2001

-0.4 -0.2 0.0 0.2 0.4

Therefore x = 0 is an irregular singular point. We now convert the ODE using x = % in

order to check what happens at x = co. This results in (as was done in above part)

“y 10

2 ay=0

But
9= q@)|

_tzet
Hence the ODE becomes
_tZet
y'-—ay=0
ot
y'+3zy=0

We now check g (t).
2 i
g0 ® = iy P
= lime¢
t—0
=1

This is analytic. Hence ¢ = 0 is regular singular point, which means x = co is regular
singular point.

Summary x = 0 is irregular singular point, x = oo is regular singular point.

31.2.2 Parte
problem

Classify x = 0 and x = co of the following
(tanx)y’ =y

Answer

y=0

tanx
The function tan x looks like
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tan(x)

6,

4r

2,

< r
c Of
© [
_2}
—-4F
-6

T T
-JT _E 0 E JT

is not

tan(x)

Therefore, tan (x) is not analytic at x = (n - %) 7t for n € Z. Hence the function

analytic at x = nm as seen in this plot

1/tan(x)
6,
4r
— 2
X [
§ O
-4F
-6F
IT IT
-JT _E 0 5 JT
X

Hence singular points are x = {---,-2m,-n,0, 7,27, ---}. Looking at x = 0
. . 1
}clg(l) xp ) = }cli% (xtan (x))

dx
1 dx
= }}_r,% [ dtan() ]
dx
) 1
= lim >
x—0 Ssece x
= lim cos? x

x—0

=1

. . . . . 1
Therefore the point x = 0 is regular singular point. To classify x = oo, we use x = -

substitution. 4 _da_ —t‘zi and the ODE becomes
dx dt dx dt

Hence

1
PO ()

This function has singularity at t = 0 and at ¢ = % for n € Z. We just need to consider
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t = 0 since this maps to x = co. Hence

iy ) =i

=0 ttan(—)

= lim —  lim -
t—0 tan (l) Lhopitals t—0 secz(?)

= lim

t—0 SeCZ (%)
1

= lim (cos2 (—)
t—0 t

The following is a plot of cos? (1) as t goes to zero.

¥
cosz(l)
t

1.0F"
0.8/

0.6

f(t)

0.4r

0.2

0.0}

™
o
IS

This is the same as asking for lim,_,, cos? (x) which does not exist, since cos (x) keeps
oscillating, hence it has no limit. Therefore, we conclude that tp(t) is not analytic at t = 0,
hence t is irregular singular point, which means x = oo is an irregular singular point.

Summary

x = 0 is regular singular point and x = co is an irregular singular point

3.1.3 Problem 3.6
3131 partb

Problem Find the Taylor series expansion about x = 0 of the solution to the initial value
problem

y'=2xy'+8y =0
y(0)=0
y (0)=4
solution

Since x = 0 is ordinary point, then we can use power series solution

y () = D) a,x"
n=0
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Hence

[o¢] (o] o0
Y (x) = Z na,x"t = Z na,x" 1 = E (n+1)a,,,x"
n=0 n=1 n=0
(e}

Y () = D +1)a,x" = Y n (1), = Y] (4 1) (1 + 2) 41"

n=0 n=1 n=0

Therefore the ODE becomes

(o]

E (n+1)(n+2)a, x" —ZxE n+1)a, 1x"+8 Zanx” =0

n=0 n=0 n=0
D +1) (1 +2) ay0x" = D 2(n+1) gy x™ + ), 82,2 =0
n=0 n=0 n=0
2 m+1)(n+2)a,,x" - E 2na,x" + E 8a,x" =0
n=0 n=1 n=0

Hence, for n = 0 we obtain
(m+1)(n+2)a,ox" +8a,x" =0
2a; + 8ayg =0
apy = —4.510
Forn>1
m+1)(n+2)a,.n—2na,+8a,=0
2na, — 8a,
Api2 = T 7 oy
n+1)(n+2)
_ a,(2n-138)
T m+1D)(n+2)
Hence forn =1

. a;(2-138) _
ST+ +2) !
Forn=2
o Q@9 114
2+1)(2+2) 3 3 3
Forn=3
o 3C®=8 1 1 oLl
BG+1)(3+2) 10 10 10
Forn=4
1e = a,(2(4)-8) _
4+1)(4+2)
Forn=5
Lo 52E-8) 1 :l(la):ia
7T G+1)G+2) 210 21\10°Y T 2107t
Forn=6
o 2O-8 1
8T 6+1)(6+2) 14 °°
Forn=7
a,2(7)-8) 1 1(1 1
”9:(7+1)(7+2)2507213(%”1):@”1

Writing now few terms
o0
y () = 3 a,x"
n=0
= agx® + a;x! + a,x% + a3x3 + agxt + asx® + agx® + azx” + agx® + agx® + ---

4 1 1 1
=dyg+mx+ (—4:{10) x2 + (—al)x3 + gﬂo.XA + Ea1x5 +0+ ma1x7 +0+ M{llxg + ..

2 3 4 4 1 5 1 7 1 9
=4y +a1x —4a0x —mx + —agX + =X+ X+ —=—a X"+

3 10 210 2520
4 1 1 1
=ag|1-4%+ x| +a; [x -2+ =%+ —x" + —2 + - 1)
3 10 210 2520
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We notice that a, terms terminates at x4 but the a; terms do not terminate. Now we need
to find 4y, a; from initial conditions. At x = 0,y (0) = 0. Hence from (1)

OZEIO

Hence the solution becomes

(2)

1 1
- LBy S T 94 ...
y(x) =m (x XA ¥ et )

Taking derivative of (2), term by term

5, 7 9
’ — 1_32+_4+_6+_8+...
v ”1( Y10t T a0t T 2m20”

Using y’ (0) = 4 the above becomes
4= aq

Hence the solution is

1.1 1
v (x Y0t T a0t T 2m20” )

2 1
=x7 + —x) + -

A A3 L 2.5
y(x) = 4x — 4x + X+ a0

The above is the Taylor series of the solution expanded around x = 0.

3.1.4 Problem 3.7

Problem: Estimate the number of terms in the Taylor series (3.2.1) and (3.2.2) at page 68
of the text, that are necessary to compute

Ai(x) and Bi(x) correct to three decimal places at x = +1, +100, £10000

Answer:
2 & X3 -4 @ K3+l
Ai@) =383 ) ————-3% ) ——F—— (3.2.1)
n=0 9"pnll’ (n + 5) n=0 9! (n + 5)
. g x3n 5 & 31+
Bi() =37 2y =3 A (3.2.2)
n=0 9"n!T’ (n + 5) n=0 9"yl (n + 5)

The radius of convergence of these series extends from x = 0 to +co so we know this will
converge to the correct value of Ai(x),Bi(x) for all x, even though we might need large

number of terms to achieve this, as will be shown below. The following is a plot of Ai(x)
and Bi (x)

AiryAi(x) AiryBi(x)

Y
Y AAAA T
MY |

1 1 1 1
-10 -5 0 5 10 -10 -5 0

X X
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3.1.41 AiryAl series

. ) (N+1)"
For Ai(x) looking at the N term
3 2 KBN+D) -4 (3N+2
3 - 3
9N+1(N+1)!r(N+1+§) 9N+1(N+1)!r(N+1+§)
A= 3—_2 ¥3N -4 3N+l
3 _
9NN!F(N+§) 9NN!r(N+‘-;)

This can be simplified using I' (N + 1) = NI'(N) giving

(o) 3
s oo

-2 —4
373 3(N+1) 373 3N+2

Hence A becomes

9N+1(N+1)!(N+§)F(N+§) - 9N+1(N+1)!(N+§)F(N+§)

-2 -4
373 x3N 373 x3N+1

A=

9NN!r(N+§) 9NN!r(N+§)
Or

-2 -4
373 3N+1) 373 3N+2

B 9(N+1)(N+§)F(N+§) - 9(N+1)(N+§)F(N+§)

-2 -4
373 3N 373 x3N+1

r(N+§) - r(N+§)

2 4 4 2 2 2
3?x3<N+1>(N+5)r(N+5)—3?x3N+2(N+5)r(N+§)

9(N+1)(N+§)1‘(N+g)(N+§)r(N+§)

2 4 2 2
37x3Nr(N+§)—3?x3N+lr(N+5)

r(m%)r(m%)

2 4 4 2 2 2
3Tx3<N+1)(N+§)r(N+5)—3Tx3N+2(N+§)r(N+§)

9(N+1)(N+§)(N+§)

A=— 4 — 2
33 NT (N + 5) — 373 x3N+IT (N + g)

For large N, we can approximate (N + 2),(N+ g),(N +1) to just N +1 and the above

becomes
-2 -4
3?x3(N+1>r(N+§)—3?x3N+2r(N+§)
A= 9(N+1)2
= 4 = 2
37 3T (N + 5) 33 x3N+1r(N + 5)
Or

-2 4 -4 2
33 x3Nx3T (N + 5) — 373 x3Nx2T (N + 5)

A= 2 (.2 4 = 2
9N +1) (33x3NF(N+§)—33x3NxF(N+5))
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0.488x3N 2 (xF (N + ‘-‘) — 0.488T (N + E))
A= ° 3
(0.488)9 (N +1)2 3N (r (N " g) _0.488xT (N ; j))

4 2
XZ xI’ (N + 5) —0.488I' (N + 5)

= 2
9(N +1) F(N + ;3) —0.488xT (N+ g)

x ["F(N +4§)‘0-488r(N+§))

2
9(N+1) F(N+§)—O.488xF(N+ g)

< 0.001.

We want to solve for N s.t.

Forx=1
I N+4 —0.488] N+2
1 3 : 3

> , < | < 0.001
9(N +1) r(N+ 5)—0.488F(N+ 5)

——— < 0.001
9(N +1)

9 (N +1)* > 1000
1000
(N +1)2 > —

1000
N+1> T

N > 9.541
N =10
For x =100

4 2
002 [ 100r (N + g) — 0.488T (N + 3)
<0.001

9(N +1) r(N + g) ~0.488(100)T (N + §)

I could not simplify away the Gamma terms above any more. Is there a way? So wrote

small function (in Mathematica, which can compute this) which increments N and evaluate
the above, until the value became smaller than 0.001. At N = 11,500 this was achieved.

For x = 10000

4 2

5 2 |l < 0.001

IN +1)* | (N + 5) — 0.488 (10000) T (N + g)
Using the same program, found that N = 11,500, 000 was needed to obtain the result below
0.001.

For = -1 also N = 10. For x = =100, N = 10,030, which is little less than x = +100. For
x = -10000, N = 10,030,000

Summary table for AiryAlI(x)

X N

1 10

-1 10

100 11,500
-100 10,030
10000 | 11,500,000
—-10000 | 10,030, 000

The Mathematica function which did the estimate is the following

estimateAiryAi[x_, n_] := (x72/(9%(n + 1)72))*((x*Gamma[n + 4/3] -
0.488*Gamma[n + 2/3])/(Gamma[n + 4/3] - 0.488*x*Gamma[n + 2/3]))
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estimateAiryAi[-10000, 10030000] // N
-0.0009995904

estimateAiryAi[100, 11500] // N
0.000928983646707407
estimateAiryAi[10000, 11500000] // N
0.000929156800155198

3.1.4.2 AiryBI series

For Bi(x) the difference is the coefficients. Hence using the result from above, and just
replace the coefficients

-1 4 - 2
3% N3 (N + 5) 3% N2 (N + 5)

A= Py = 4 > 2
9N +1) (36x3NF(N+5)—38x3NxF(N+§))

2 (xr (N + g) — 0.604 39T (N + g))

9(N +1)2 (r (N + ‘-;) — 0.60439xT (N + g))
Hence for x =1, using the above reduces to

———— < 0.001

9(N +1)
Which is the same as AiryAl, therefore N = 10. For x = 100, using the same small function
in Mathematica to calculate the above, here are the result.

Summary table for AiryBI(x)

X N

1 10

-1 10

100 11,290
-100 9,900
10000 | 10,900,000
—-10000 | 9,950,000

The result between AiryAi and AiryBi are similar. AiryBi needs a slightly less number of
terms in the series to obtain same accuracy.

The Mathematica function which did the estimate for the larger N value for the above
table is the following

estimateAiryBI[x_, n_] := Abs[(x"2/(9*(n + 1)72))*((x*Gamma[n + 4/3] -
0.60439*Gamma[n + 2/3])/(Gamma[n + 4/3] - 0.6439*x*Gamma[n + 2/3]))]

3.1.5 Problem 3.8

Problem How many terms in the Taylor series solution to y””’ = ¥y with y (0) =1, (0) =
Y (0) = 0 are needed to evaluate f y (x)dx correct to three decimal places?

Answer

y//r _ x3y =0
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Since x is an ordinary point, we use
[o¢]
y= E a,x"
n=0
o o o
Y = Y na ™t = Y na,tt =) (n+ 1) a,40x"
n=0 n=1 n=0

nn+1)a, X" 1= Z nn+1)a, X"t = Z (n+1)(n+2)a,,x"

Q\
Il
Nkl

n=0 n=1 n=0
y/// — E nn+1)(n+2) an+2xn—1 = 2 nn+1)(n+2) ﬂn+2x”—l
n=0 n=1
= Z (1’[ + 1) (n + 2) (1’1 + 3) an+3xn

n=0
Hence the ODE becomes

D +1) (n+2) (1 +3) ay45x" = x> Y a,x" =0

n=0 n=0
E (n+1)(n+2)(n+3)a, x" - E a,xX"*3 =0
n=0 n=0
Z m+1)(n+2)(n+3)a, x" — E a,3x"=0
n=0 n=3
Forn=0
M2)B3)az=0
as =0
Forn=1
(2)3)(4)as =0
a, =0
Forn=2
as =0

For n > 3, recursive equation is used

m+1)(n+2)(n+3)a,;3—a,3=0

_ n-3
T3 = D) (1 +2) (n + 3)
Or, for n =3
o 0
(4) (5) (6)
Forn =4
— gl = o
YT AT D@12 @13 360
Forn =5
BT ID6+2G+3) 6 )
Forn==6
ag = % =0
6+1)(6+2)(6+3)
Forn=7
a0 = - =0
(n+1)(n+2)(n+3)
Forn=38
an = = =0
B8+1)(8+2)(8+3)
Forn=9

_ e _ e _ ag
M27 9 1) (9+2)(9+3)  10)AD12) _ (&) (5)(6)(10)(11) (12)

For n =10
az az a

3= 10+ 1) 10+2)(10+3) A1) (A2)13) _ (5)(6) (7) (11) (12) (13)
47




3.1. HW1 CHAPTER 3. HWS

Forn =11
as as ap

T ) A1+2)11+3)  (12)(13)(14) _ (6)(7)(8) (12) (13) (14)
And so on. Hence the series is

(o]
y= Yo
n=0

_ ag a4 ap
=dy+a;x+ a2x2 +0x3 +0x* + 0x° + @) ©) x0 + BIGIG x7 + —(6) 7 ® x8
+0+0+0+ %0 x12 + i x13
@G 6012 ()6 ) and2) 1)
a
rOoe@a” 00T
Or
_ ag 4 a
e T TR GG IR GIZ IO R
&l 12 4 ay 13 a3 14
HG) 0012 T GEO®a)aa). 6 ) e 12 13) ad)
Or
y(x):a0(1+ i + x +)
@6)6) @ 6)(6)10)11) 12)
x7 x13
T (x "HOO  GOOana)as) )

) x8 x14
T (" TOE) T ©)7)©)12)13) ) )

1
N LI 12 ..
y@ %('+udx+1%4mx " )

fay (x4 =7 + X3+
! 210 360360

+ ..
336 733824
We now apply initial conditions y(0) =1,y" (0) =y” (0) =0. When y(0) =1

1
+a, (x2 +—2x8

1:(10

Hence solution becomes

1 1
=1 _ 46 12
y® ( 120" T 158400" )

1 LT
+agx+ —=x"+ ————xB + -
210 360360

1 1
+ 2~ 84~ A4
az(x 336" | 733824 )

Taking derivative

6 12
y/(x): — ¥4 P ST
120 158400

+a |1+ Lx6 + ix12 + e
210 360360

8 12
+ay 26+ —x" + ——xB + -
”2( YT 336" T 7338247 )

Applying y’ (0) = 0 gives
0= aq
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And similarly, Applying y”’ (0) = 0 gives a, = 0. Hence the solution is

X6 x12
W>=“o(“(4)(5)(6)*(4)(5)(6)(10)(11)(12)+'"
=1+ x® n i + i .
T @O0 @6 600 @ 6)(6) 10) 1) 12)(16) (17) 18)
o ¥12 x18

=1

120 " 158400 * 775526400

We are now ready to answer the question. We will do the integration by increasing the
number of terms by one each time. When the absolute difference between each increment
becomes less than 0.001 we stop. When using one term For

foly(x)dx:foldx
=1

When using two terms
1

1 6 7
f 1+ —dx= (x + )
0 120 120 (7) 0

=14+ —

840
841
840
=1.001190476

Difference between one term and two terms is 0.001190476. When using three terms
1

1 6 12 7 13
f 1+ —+ dx=|(x+ —+ ———
0 120 158400 840 2059200/,

1 1
=14+ —+_—
840 2059200
14431567
14414 400

=1.001190962

Comparing the above result, with the result using two terms, we see that only two terms

are needed since the change in accuracy did not affect the first three decimal points. Hence
we need only this solution with two terms only

1
y(x) =1+ —x°

120

3.1.6 Problem 3.24
3.1.61 parte

Problem Find series expansion of all the solutions to the following differential equation
about x = 0. Try to sum in closed form any infinite series that appear.

2xy” -y +x*y =0

Solution

’’ 1 / + X — O
y -5y T5Y=
The only singularity is in p (x) is x = 0. We will now check if it is removable. (i.e. regular)

1
I — limx— = =
fimap () = lmxor =3

49



3.1. HW1 CHAPTER 3. HWS

Therefore x = 0 is regular singular point. Hence we try Frobenius series
(o)
y(x) = E a,x"t"
n=0
Y (@)= Y 1+ g
n=0

Y’ (x) =Y, (n+71)(n+r=1)a,x""2
n=0

Substituting the above in 2x%y” — xy’ + x>y = 0 results in

(o) 00 o
222 Y (n+1r)(n+r=1)a, "2 = x Y (n+ 1) a,x™ "t +x3 Y 4, =0

n=0 n=0 n=0
o o o
2 2(n+1)(n+r—-1)a,x"" - E (n+71)a,x"*" + Z a, X3 =0
n=0 n=0 n=0
(o] [o0] o
2 2n+ry(n+r-1)a,x™" - Z (n+7)a,x"" + Z a,_3x™" =0 (1)
n=0 n=0 n=3

The first step is to obtain the indicial equation. As the nature of the roots will tell us how
to proceed. The indicial equation is obtained from setting n = 0 in (1) with the assumption
that ay # 0. Setting n = 0 in (1) gives
2m+ry(n+r-1)a,-(n+r)a,=0
2(r)(r—-1)ag—rag =0
Since ay # 0 then we obtain the indicial equation (quadratic in )
2(n(r-1)-r=0
rr-1-1)=0

r(2r-3)=0
Hence roots are
r=0
3
ry = 5

Since r{ -1, is not an integer, then we know we can now construct two linearly independent

solutions
LA (x) = x" Eanxn
n=0

Yo () = x'2 Y b, x"
n=0

n (x) = Zanxn
n=0

3
Yo (x) = Y b2
n=0

Notice that the coefficients are not the same. Since we now know rq,7,, we will use the
above series solution to obtain y; (x) and y; (x).

For y; (x) where r; =0
y1 () = D"
n=0
v (x) = Enanx”‘l = Enanx”‘l = Z (n+1)a,, x"
n=0 n=1

n=0
Yy (x) = En (n+1)a,x" 1 = En (n+1)a,x" 1 = 2 n+1)(n+2)a,,x"
n=0

n=1 n=0
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Substituting the above in 2x%y” — xy’ + x*y = 0 results in
ZxZZ (n+1)(n+2)a,,x" - xz (n+1)a, 1x" + x32anx” =0

n=0 n=0 n=0
22 (n+1)(n+2)a,,,x"*? - E (n+1) a0 + Eﬂnx"+3 ~0
n=0 n=0 n=0

22 n-1)(n)a,x" - Enanx” + Ean_g,x” =0
n=2 n=1 n=3

For n =1 (index starts at n = 1).

—na,x" =0
—a1 = 0
a = 0

Forn=2
2(n-1)(n)a,x" —na,x" =0
22-1)(2)a, —2a, =0
2a, =0
a, =0
For n > 3 we have recursive formula

2(n-1)(n)a, —na, +a,3=0

d. = —au-3
" n(@2n-3)
Hence, for n =3
P ——
@®©-3) 9
Forn=4
—a;
= n(2n - 3) =0
Forn=>5
—a,
% = n(2n - 3) =0
Forn==6
—as —ds —d3 ag 1

6T w@n-3) (6)12-3) 54 (549 486"
And for n = 7,8 we also obtain a; = 0,ag = 0, but for ag
—dg —dg —dy 1
a9 = " = — = = — [10
9(2(9)-3) 135 (135)(486) 65610

And so on. Hence from Zanx” we obtain
n=0

e R SV
Y1 (%) =g = 7+ ee@X” — Loy

=ay|1 1x3+ 1x6 1 ¥ +
-0 9 486" 65610

X+

Now that we found y; (x).

For y, (x) with r, = g
3
y(x) = Y b2
n=0

Y (x) = 2 (n + g) bnx"+%

n=0

Yy (x) = E (n + %) (n + g) bnxn_%

n=0
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Substituting this into 2x%y” — xy’ + x>y = 0 gives
1 3 1 3 1 3
222y (” + E) (ﬂ + E) byx""2 —x ), (n + E) b,xX""2 + 23 b,x""2 =0
n=0 n=0 n=0

1 3 1 3 1 3
22 (n + E) (n + E) b,x" 2t 2 (n + 5) bnxn"LZJrl + anxn+2+3 =0
n=0 n=0

n=0

1 3 3 3 3 9
2 (n + 5) (n + E) bx""2 =) (n + 5) b,x""2 + Y b, X2 =0

n=0 n=0 n=0

1 3 3 3 3 I_
2 (n + 5) (n + 5) b,x""2 =) (n + 5) byx""2 + Y b, 52" =0

n=0 n=0 n=3

1 3\, nsd 3\, nsd n+3
22 n+§ n+§ b,x 2—2 n+§ b,x 2+Ebn_3x 2=0
n=0 n=3

n=0

Now that all the x terms have the same exponents, we can continue.

Forn=0

0by =0
Hence b, is arbitrary.
Forn=1
3
2 (n + E) (n + —) bx""2 - (n + 5) b,x""2 =0
1 3 3
2(1+§)(1+§)b1—(1+§)b1 =0
5b1 = 0
by =0
Forn=2

1 3 3
2(2+§)(2+§)b2—(2+5)b2:0

For n > 3 we use the recursive formula

1 3 3
2(n+E)(Tl+§)bn—(1’l+§)bn+bn_3—O

Hence for n =3
—by _ —bo
by=—F"=—
309 27
For n=4,n =5 we will get by =0 and b5 = 0 since b; =0 and b, = 0.
Forn=6
b = “bs by by by
®T 6(12+3) 90  27(90) 2430
For n =7,n =8 we will get b; =0 and bg = 0 since by =0 and b5 =0
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Forn=9
b __ by _<be__ by __-hy
n(2n + 3) "9 (18 + 3) 189 2430 (189) 459270

ag =

3
And so on. Hence, from y, (x) = anxn+5 the series is

n=0
3b 3 b 3 b 3
Y2 (x) = bpx2 — A e (N S e
27 2430 459270
_, 3 3 46 0
= 2(1- — 4+ — e
ot ( 27 2430~ 459270 © )

The final solution is

y(x) =y (x) +y2 (%)
Or

13,1 6 1 2 B ¥
— _z — 46 _ 01— L 2 _ e
y(x) =ag (1 30+ 5 " G T ) + box? (1 7 Va0 " woono b 2)

Now comes the hard part. Finding closed form solution.

3
The Taylor series of cos (lxz \/E) is (using CAS)

1, 1 1
—x2 ~1-- xX0— — 94 ... 3
Cos(sx \/—) o* * 156" a0+ )

3
And the Taylor series for sin (lxE \/5) is (Using CAS)

13 13
Sin(§x2 2) g 2\/5—— 2\/§+

15
LI

81 7290
5 (1
= x2 o R N - ...
¥ (3\/_ 81x\/_+7290xv_ )
1
o tes L. 4
‘/_x ( 7" * 210" ) )

Comparing (3,4) with (2) we see that (2) can now be written as

y (x) = ag cos (—xZ\/—) \/_sm (—x2\/—)

b
Or letting ¢ = —~

3 3
y (x) = ag cos (%xE \/E) + cp sin (%xi \/E)

This is the closed form solution. The constants a,,cy can be found from initial conditions.

3162 partf

Problem Find series expansion of all the solutions to the following differential equation
about x = 0. Try to sum in closed form any infinite series that appear.

(sinx)y” —2(cosx)y’ — (sinx)y =0
Solution

In standard form

’ COS X ,
y —2( . )y ~y=0

sin x
Hence the singularities are in p (x) only and they occur when sinx =0 or x = 0, £7, 27, -+
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but we just need to consider x = 0. Let us check if the singularity is removable.

x 4

1-=4+=—... 1-=4+=—...

X

. . COsX i | . !
limxp (x) = 2limx—— =2limx 23 45 =2lim 22 4;1 =2
x—0 x—0 SInx x—0 x—x—+x——~~ x—>01_x_ x=

3! 5! 3! 5!

Hence the singularity is regular. So we can use Frobenius series

]/(x) — i anxn+r
n=0

Y (x) = D (n+7r)
n=0

Yy (x) = 2 n+r)(n+r-1)a,x""?
n=0
Substituting the above in sin (x) y’” — 2 cos (x) ¥’ — sin (x) y = 0 results in

sin (x) E n+1r)(n+r-1)a,x""2-2cos (x) Z (n + 1) a,x""1 —sin (x) E a,x"" =0
n=0 n=0 n=0
Now using Taylor series for sinx, cosx expanded around 0, the above becomes

2m+1 00

2( " (2 +1)'Z(n+r)(n+r—1)anx”+r‘2
m=0
(2 )'Z(n+r)an X1
mO 2m+1 00
—mZO( " (Zmﬂ),Zan = (1)

We need now to evaluate products of power series. Using what is called Cauchy product rule,

where
f@g () = (2 bmxm) (Eanxn) =3 S o
m=0 n=0 m=0 n=0
Applying (2) to first term in (1) gives

x2ml 2 D)"m+r)(n+r-1)
n+Nn+r-1 a, A= -2 _ 2m+n+r-1
mzo( V" (2m +1)'Z( ) ) mEOnZO Qm +1)! "
(3)
Applying (2) to second term in (1) gives
D)™ (n +V) _
n+r-1 _ 2m+n+r 1 4
2 (2 ),E(n+r)ax mz:()nz%) TG (4)
Applying (2) to the last term in (1) gives
E( ) x2m i n+r _ i i 1) In x2mn+r+l (5)
D T TIPS I U T T
Substituting (3,4,5) back into (1) gives
E E D" m+r)(n+r- 1)a o1
o m+1)! "
i ( 1) (1’1+7’) x2m+n+r—1
m=0n=0 (2171)' n
— i i ( 1) n 2m+n+r+l =0
== 2m+ 1)'
We now need to make all x exponents the same. This gives
E E D)"n+r)(n+r- 1)[1 -l
—_= @2m+1)! "
1" (n+r) Dy
) m+n+r—1
I3
( 1) Gn—2 2m+n+r 1 _
3 G =0 ©)

The first step is to obtain the indicial equation. As the nature of the roots will tell us
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how to proceed. The indicial equation is obtained from setting n = m = 0 in (6) with the
assumption that gy # 0. This results in
-D"n+r)(n+r- 1)a amensrd 2(—1)m (n+ r)a
(2m +1)! " (2m)! "
(rn(r—-1)ag—2rag =0
uo(rz—r—Zr) =0

yem+n+r=1 —

Since ay # 0 then we obtain the indicial equation (quadratic in r)
?-3r=0
r(r-3)=0
Hence roots are
=3
=0

(it is always easier to make r; > r,). Since r{ —r, = 3 is now an integer, then this is case II

part (b) in textbook, page 72. In this case, the two linearly independent solutions are
y1 () = 23D, = Y a3
n=0 n=0

Y2 (%) = kyy (0) In (x) + 22 2 b, x" = ky; () In (x) + Y, b,x"
n=0 n=0

Where k is some constant. Now we will find y;. From (6), where now we set r = 3

$HV 02 o

e o+ 1) n
[e¢] o m
-2 E E (_1) (1’1 + 3) a, 2m+n+2
m=0n=0 (zm)!
— i i (_1)’” In-2 x2m+n+2 =0
== (2m+1)!

Form=0,n=1

D" (n+3)(n+2) (-1)" (n+3)
amrn 2 (W““) =0
(4)(8)ay =2 (4ay) = 0
a, =0
For m = 0,n > 2 we obtain recursive equation
nm+3)n+2)a,-2(m+3)a,—a,,=0

4. = ) _ )
" m+3)(n+2)-2m+3) nm+3)

Hence, form=0,n=2
_ "%
ap = 10
Form=0,n=3
—a;

= :O
43 n(n+3)

Form=0,n=4

_ T g
a4_m_%
Form=0,n=5
as =0
Form=0,n=6
—0y —dy —ay

= 56+3) 6(6+3)(280) 15120
Form=0,n=7,a,=0and form=0,n=8
- 1
%87 8(8+3) 1330560 °
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And so on. Since y; (x) = Zanx”+3, then the first solution is now found. It is
n=0

Y1 (%) = apx® + ayx* + a,x° + azx® + ag X’ + asx® + agx® + azx'0 + agx!t + -

a a a
=g +0- 200+ 0+ —=x7 +0 - ——22 + 0 + 1
¥ 10" 280" 15120" 1330560 0"
2 X x® x8
=ap® |1 - =+ — - + —
10 T 280 15120 © 1330560

The second solution can now be found from

Yo =ky; (x) In (x) + Y, b,x"
n=0

(7)

I could not find a way to convert the complete solution to closed form solution, or even

find closed form for y; (x). The computer claims that the closed form final solution is

y(x) =y, (x) +y2 (%)
= ag cos (x) + by (—'VC082 x—1+cosxIn (COS (x) + VcosZ x — 1))

Which appears to imply that (7) is cos (x) series. But it is not. Converting series solution to
closed form solution is hard. Is this something we are supposed to know how to do? Other

by inspection, is there a formal process to do it?
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3.1.7 key solution of selected problems
3.1.71 section 3 problem 8

Problem Statement: How many terms are needed in the Taylor series solution to y"”’ = z3y,

y(0) =1, y'(0) =0, y”(0) = 0 are needed to evaluate [ y(z)dz correct to 3 decimal places?
0
Solution: Let

oo
y=7 anz"

n=0

o0
y/ — 2 :nanxn—l

n=0

o0 o0 o0
= nn — n — apxr’ T = = anT = an .
7 1 2 " n—3 3 3 " n n n+3
n=0 n=0 n=0

Shift indices by letting n — (n — 6) in the RHS:

oo oo
E anxn+3 — § an_ﬁxn—ii
n=0 n=>6

Zn(n—l)(n—Z)anxnf?’ =023 40-27240-27'+3-2-1-aza’ +4-3-2-auz’
n=0
(e o]
+ 5-4-3-asz® + Z n(n —1)(n — 2)a,z" 3
n=6
From here,

a3 =0, as4=0, a5=0

2" nn—1)(n—2)a, — a,_¢} =0 for n=6,7,8, ...

The recurrence relation becomes:

Solution to D.E. becomes:

o0 oo
1
— n _ 2 n
Y= E apr" =ag+a;-r+ax-T —0—;:6[7”(”71)(”72)(171,630]

n=0
y0)=ag=1==>aqp=1

1
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Yy (0)=a;=0==>a; =0
y"(O):2-a2=0:=>a2:0

> 1
y(r) =1+ Z:G —n(n “T(n = 2) Ap—gr"

1 o 1
/0 V@ =lo4 D o T - (=9

n+1](1)

> 1
= G D D™

1 1 1

=1 1
+7-6-5-4( )+13~12-11-10(6--4

1) + ...

1 1
= 1 —_— - vee
* 810 T 2,059,200

1
/ y(x)dz ~ 14 0.00119 4 4.856 x 1077
0

So the 2nd non-zero term is required. All other terms are below the specified tolerance of
0.001.
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3.1.7.2 section 3 problem 6
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J o
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o

I
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)
— ; Yy B e gy | R, W
Zhon (n-)x" = ox 2 nd X" r TE dux FO
h=2 n =y S

f
pm=_n- <

ol - , R —
e Q’VH’ z} (ﬂf\*'!) 9( + 2 , (‘“41’1"’7 )CI“ KX —O
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o
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3.1.7.3 section 3 problem 4

b

Ayt = o L]

&'n&»ALf X = O 3 - efsff’[é%(,] g/':f )

_)(9\ Lb()()‘: - é%F ];'/xj I/Lo"}” Malgj’té, am“" X s =0
=7 T0 0 15 on IN“’LJ,ULV‘ Sm),d\a/ !’()m;f?: |

b xmo with bok

2 %ﬂz + b’ %f% - e (+)+4° g’ =

= dy - Xy ("é’) U =0
: ﬂ{ﬁ_ - e c 01/ o
tott) = A, ) -epl
UJ/L(;L[;;h(; N 5 E(T ;O Y o

)(':199 N Y‘E/Ula,r’ SIVL&UZ&/" Fo,njf ()]C
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3.1.7.4 section 3 problem 24

1 Closed form of Problem 3.24e

In problem 3.24e, we find Frobenius series solutions

z) = Z apz"te (1)
n=0

for a =0, % and recurrence relation on the coefficients:
—a,
(n+a+3)2n+2a+3)

For each «, a; = as = 0, so only the ag; survive. Rewriting the recurrence relation:

an+3 =

—asg —azg

(3k+3+a)(6k+3+2a)  9(k+1+a/3)(2k+1+2a/3)

To identify a closed-form sum, we need to find the general form of the coefficients as,. Towards this
end, consider the case @ = 0. Now

—1/9 _ (=1/9)* (=1/9)*

A3k+3 =

O R 2k — 1) T T k(1) - (2k— )2k —3) T T T 'L 2k — i
Now note that (2h) (25)!
(2k — ' = (21 = 2k ki = k!l (2k — DIl = 277 (2k)!,
” (~1/9)" _ (~2/9)"
Uk = o0k(2k) ™ T 2k M
Therefore,

o]

Z 2/9 S i

k=

s/z\/_/g = aoz (25)!

where z := £%/21/2/3. We recognize the remaining series as the Taylor series for cos 2, so
2
yo(z) = ag cos z(x) = ag cos <§.’L’3/2> .

For a =5,
A3k+3 = ok = ~ :
9(k+3/2)(2k+2) 9(k+1)(2k+3)

Following the same argument as before,

_ (=1/9)¢
age = mao

This is the same as before, but divided by 2k 4 1, so

2/9 3 V2 3/2
Y3/ (x agz k1)) k= agsin (?I .

Therefore, the general solution is

y(x) = yo(x) + ys/2(x) = ¢y cos (?13/2> + ¢y 8in <\g§x3/2> .
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2 Closed form of Problem 3.24f
Problem 3.24f asks us to solve (sinz)y” — 2(cosz)y’ — (sinx)y = 0. Dividing by sinz,
y" —2(cotx)y —y =0,

so x = 0 is a regular singular point (cot x is not analytic at = 0, but z cot x is). Thus, we can look for
a Frobenius series solution.
Expanding sin z and cos :

N - 2m+1 S n+oa—2 — (-1 2m - nta—1
0= (Z ﬁx ) Z(n +a)(n+a—1ax -2 (Z ((Qm))' T ) Z(n + a)a,x

m=0 n=0 m=0 n=0
- (_1)771 2m+1> - n+a
— xT an
> | >
<’m—0 (2m + 1) n=0

The lowest order is x*!:
0 =ala —1)ag — 2aag = a(a — 3)ay,

so a = 0,3. We are in case II(b) on page 72.
Let @ = 0. Then

O=<m27(2(m+ 2’"“)%71 n—1)a,z" 2—2(2

/—\

) S

m=0 n=0
S _1)m 2m+1 - n
- 7T apr”.
(;) (2m + 1)! ;
We solve order-by-order:
.1'010172611:>al:07
' 0=2ay — 2 2a0 — ap = GQZf%
k k-1
o 2020+ 1) _ 2( +1 (—1)k—t-1
2k k—20 k é
0= -1 2 - - N
) 2 G e - Z LD B 7 T et
k1 k+1 & -
_ 20(2¢ 20 (—1)k*
2k+1 . 0= —1)* é+17 _9 k £+17 B =)
’ ;( ) (2k — 20 + 3)! Z k— 20+ 21" ;0(%_2“ 1)1

where k > 1. From the 2% terms, we see that as,,; depends only on ay,as, ..., az,—1. As a; =0, it is a
simple (strong) induction to show that each ag,1 = 0.
We use the 22#*1 terms for k = 1 to see that

0= (0ay— 2a; + 22 2 (0a0 - 24y + 2 Lot lay) = L, 2
= (0ap — =as + —ay | — ag — =ag + —ay | — [ —ap + =a ag=—= | =ag — =as | .
0= g2t T 0= 502+ 704 g o+ a2 4 1\l — 3%
As ay = f%ao, we see that ay = 24 We notice a pattern that these coefficients are starting to look

like those in the Taylor series eXpELIlblOIl of yo(z) = ag cosz, which we now verify by plugging into the
ODE:

(sinx)yg (z) — 2(cos x)yy(x) — (sinz)yo(z) = —agsinx cos x + 2ag cos xsinx — agsinz cosz = 0.

2
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To find the other solution, we use reduction of order: look for a solution of the form y3(x) = v(x) cosx
(we keep the o = 3 subscript to remind us that we expect the Taylor series of our solution to start at
the z3-term). Plugging into the ODE:

(sinz)(v"(x) cos z — 20" (z) sinz — v(x) cosx) — (2 cos z)(v'(x) cos & — v(z) sinx) — (sinx)(v(z) cosz) = 0.
Simplifying,

(sinz cosz)v"(z) — 20 (z) =0 = ¥'(2) = c1tan’ 2z = v(x) = ¢;(tanx — ) + .

We set ¢ = 0, since this corresponds to yo(x). Then y3(z) = c1(tanz — z) cosx = ¢i(sinx — x cos x).
The full solution is therefore

y(x) = cocosx + ¢i(sinx — x cos x).
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3.2 HW2

3.21 problem 3.27 (page 138)

Problem derive 3.4.28. Below is a screen shot from the book giving 3.4.28 at page 88, and
the context it is used in before solving the problem

Example 5 Local behavior of solutions near an irregular singular point of a general nth-order
Schrodinger equation. In this example we derive an extremely simple and important formula for
the leading behavior of solutions to the nth-order Schrodinger equation
d"y
dx"

= Q(x)y (3.4.27)

near an irregular singular point at x,.

The exponential substitution y = ¢® and the asymptotic approximations d*S/dx* « (S')* as
x =X, for k=2, 3, ..., n give the asymptotic differential equation (S')" ~ Q(x) (x = x,). Thus,
S(x) ~ @ [* [Q(t)]"'" dt (x — x,), where w is an nth root of unity. This result determines the n
possible controlling factors of y(x).

The leading behavior of y(x) is found in the usual way (see Prob. 3.27) to be

3x) ~ QI explo [ [ dr}, X+ X (3.428)

If xo # o0, (3.4.28) is valid if |(x — x,)'Q(x)| — 00 as x — x,. If X = 00, then (3.4.28) is valid if
| x"Q(x)| = oo as x — co. This important formula forms the basis of WKB theory and will be
rederived perturbatively and in much greater detail in Sec. 10.2. If Q(x) < 0, solutions to (3.4.27)
oscillate as x — oo; the nature of asymptotic relations between oscillatory functions is discussed
in Sec. 3.7.

Here are some examples of the application of (3.4.28):

(a) For y" = y/x%, y(x) ~ ex*4e* 273 (x » 0+).
(b) For y” = xy, y(x) ~ cx™ 13e3***** (x - + 0), where @® = 1.
(¢) For d*y/dy* = (x* + sin x)y, y(x) ~ cx~ 32" (x - + a0}, where w = +1, *i.

Solution
For n'* order ODE, S (x) is given by
S50~ [ Quyrdr
And (page 497, textbook)
S1(x) ~ 12—_nn In(Q(x)) +c¢ (10.2.11)

Therefore
y(x) ~exp (S +S1)

X 1 1-n
~exp(cuf Qb7 di + 71n(Q(x))+c)
1-n X 1
~clQ@I exp(w [ Q7 )
Note: I have tried other methods to proof this, such as a proof by induction. But was not

able to after many hours trying. The above method uses a given formula which the book
did not indicate how it was obtained. (see key solution)

3.2.2 Problem 3.33(b) (page 140)

Problem Find leading behavior as x — 0" for x*y”” - 3x2y’ + 2y = 0
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Solution Let
Y@ = e
y =S¢
Yy’ =565+ (S)% S
Y =5"e5+ 5”55 +25'S"eS + ()%
Hence the ODE becomes
¥ [§7 +35'S" +(8')°] - 322" = 2 (1)
Now, we define S (x) as sum of a number of leading terms, which we try to find
5(x) = So(x) + 51 (x) + S (x) + -+

Therefore (1) becomes (using only two terms for now S = Sy + Sy)

1244 ” ’ 3 3 /7 2
(So + 511" +3{(So + 81) (So + S1)} +{(So + S} — 5180+ 1) = -
4

(57 + 877} +3{(So +S0) (S + 7)) + (S5 + 1) - % (Sh+57) = —xi
3
{s67+ 877} +3{sysh + Sgsy + SySp) + {(56)3 +3(5)° 81 +38; (sg)z} -S{s+sil=-5
2)
Assuming that Sj >> S, 57" >»> 577, (56)3 >> 3 (86)2 S] then equation (2) simplifies to
77 ey ’ 3 3 4 2
S§"+355S5 +(So) - 35~ -

3 3 3
Assuming (86) > 507, (56) >> 35S, (S’O) > %56 (which we need to verify later), then
the above becomes

3 2
So) ~-—
( 0) x4
VeriﬁcatiodE
1
-2\3
Since S; ~ (x—f) = % then 5§ ~ LZ and S ~ % Now we need to verify the three

x3 x3 x3
assumptions made above, which we used to obtain S;,.

(86)3 >> 5p7

1 1

Yes.

Yes.

2When carrying out verification, all constant multipliers and signs are automticaly simplified and removed
going from one step to the next, as they do not affect the final result.
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Yes. Assumed balance ise verified. Therefore

2
(5) ~ !
So~ a)x%1

Where w® = -2. Integrating

~wfx3dx
wax_gdx

~ -3wx3

Where we ignored the constant of integration since subdominant. To find leading behavior,
we go back to equation (2) and now solve for S;.

2
A
Moving all known quantities (those which are made of Sy and its derivatives) to the RHS
and simplifying, gives

(S5 + 577} +3[SySh+ Sy'Sh +SySh) + {(86)3 +3(55) 51+ 35 (53)2} - % 156+ 51 =

38,

st} + 355t + Sy5o) + {3 (55" 51+ 355 (51)°) - 2t ~ =57~ 3555+ 55;

Now we assume the following (then will verify later)

3 (56)2 1>>3S] (Si)2
3 (S(’))2 1>> S
2
3(Sp) S>> sys;
2
3(56) 1> 50'S]
2
3 (S{)) 1> S5YS)
Hence
3 (50)" 51— Sk ~ Sy - 355 + (3)
But

-4
5o~ wx3
’ 2 2 2
(So) ~ @W°X3
-7
Sy ~—swx’
3
28 1o
S/// ~ — WX 3
9

Hence (3) becomes
-4

Sy ., 35 28 10 4 , 7 4 3wx3
3(a) x3)S 2 Nga)xS +3 ga) x3x3 |+ 2

= 28 -1 1 10
Bw2x3 S) - 3x 28] ~ 5 wx 3 +4w?x 3 +3wx’3

-11 -10
For small x, x 3 S’ >> x257 and x 3 >> x5 , then the above simplifies to

-8 11
Bw?x3 S) ~ 4aw?x3
S|~ ilx

3

-1

Sl ~ §1DX

Where constant of integration was dropped, since subdominant.
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-4 2 -8 -7 1

-2 = -z 1 1
: : . /7 /7 144 /7 144 1244
Verification Using S~ x 3, (SO) ~x3,5) -x3,8] ~ ;,Sl ~ ;'Sl ~ 3

3 (56)2 S} > 35, (S{)2

81 41
X3 =3>x3 —
X x
=8 =7
X3 3> x3
Yes.
3(S; 2S’ > S
0) °1 1
81 1
X3 —>> —
x x
1

> —
x2

=
wioo| =

Yes.
2
3(Sp) S1>> S7S;

81 1 =
X3 —>> —x3

X x

-8 =7

X3 3> x3

Yes.

3 S’ZS’ > S5
0) °1 0°1
81 71
X3 —>>x3 —
x X

-8 -7
X3 3> x3
Yes
4 2 /7 iaeld
3 (50) S1>> 578
81 1 =
X3 —>> —x3
x x
-8 =7
X3 >»>x3

Yes. All verified. Leading behavior is

y (x) - eSO(x)+51(x)

14
= exp (cwx3 + glnx)

-1

4 _2
3 pLwx 3

=X
I now wanted to see how Maple solution to this problem compare with the leading behavior
near x = 0. To obtain a solution from Maple, one have to give initial conditions a little
bit removed from x = 0 else no solution could be generated. So using arbitrary initial

conditions at x = 1L a solution was obtained and compared to the above leading behavior.
Another problem is how to select ¢ in the above leading solution. By trial and error a
constant was selected. Here is screen shot of the result. The exact solution generated by
Maple is very complicated, in terms of hypergeom special functions.

ode :=x"4*diff (y(x),x$3) -3*x~2xdiff (y(x),x)+2xy(x);

pt:=1/100:

ic:=y(pt)=500,D(y) (pt)=0, (DEG2) (y) (pt)=0:

sol:=dsolve({ode,ic},y(x)):

leading:=(x,c)->x"(4/3)*exp(c*x~(-1/3));

plot([leading(x,.1) ,rhs(sol)],x=pt..10,y=0..10,color=[blue,red],
legend=["leading behavior","exact solution"],legendstyle=[location=top]);
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leading behavior exact solution

107

3.2.3 problem 3.33(c) (page 140)

Problem Find leading behavior as x — 0% for " = \/xy
Solution
Let y (x) = ¢°®. Hence
y (x) = eSoW
¥ (x) = Spe%o
Y’ = Sfe% + (56)2 %0
= (s -+ (55)") e
Substituting in the ODE gives

S+ () = Vx

Assuming S{ ~ (56)2 then (1) becomes
2
Sy ~=(Sh)

dz 1
= —z?. Hence —= = -1 or

dx z

L Int tin in gi
vl egrating again gives

Let Sj = z then the above becomes z’

1 1
--=-x+corz=—.Hence 5 =
z x+cq

So(x) ~In|x +c1| + ¢y

Verification

SézL(s(f))z_; g — L

x+ep’ B (x+c1)2’ 0 (x+c1)2
1
Sy > x2
1
> x2
(x+¢q)
Yes for x — 0*.
2 1
(S{)) >3 x2
1 1
> x2
(x+¢q)
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Yes for x — 0. Verified. Controlling factor is

y (x) ~ eSO(x)

~ eln|x+c1|+c2

~ Ax+ B

3.2.4 problem 3.35
Problem: Obtain the full asymptotic behavior for small x of solutions to the equation
Xy + 2x+ 1)y — 2 (eé +1)y =0
Solution
Let y (x) = ™. Hence
y (x) = e%o®
¥ (x) = Spe%o
Y’ = Sfe% + (S())Z e%
= (s + (55)") e
Substituting in the ODE gives
2 (sg; ; (56)2) €50 1 (2x +1) Spe%0 — 2 (ef? i 1) ¢S = 0
2 (sg,' + (56)2) +(2x+1)S) - x2 (e§ + 1) =0

2 2
x2 (S(’)’ + (S(’)) ) +(2x +1) S = x? (ex + 1)
., N2 (2x+1) , 2
St +(S6) Sy =er +1

Assuming balance

S ~ *ex

1
Where 1 was dropped since subdominant to ex for small x.

2 2 1 12
Verification Since (Sf)) ~ ex then Sy ~ ex and 55 ~ —ex, hence

2
4 ’7
(50) > S
2 11
ex =>> €
x

1
ex >» =
X

Yes, As x — 0F

(S’ )2 - (2x -;21) So

2 (2x+1)

1
ex >» ex

12
1 2x+1)
ex >>

x2

1 2 1
ex > — + —
X X
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Yes as x — 0*. Verified. Hence both assumptions used were verified OK. Hence

2
S ~ *ex

1
SONife?cdx

Since the integral do not have closed form, we will do asymptotic expansion on the integral.
1 1

—ex

! x
Rewriting feidx as f(e—z) (—xz) dx. Using fudv =uv— fvdu, where u = —x?,dv = 7> gives
—X

1
feidx=uv—fvdu

1 1
= —x2ex — f—erxdx

1
du = -2x and v = ex, hence

1 1
= —x%ex + 2fxe§dx (1)
1 1 1
Now we apply integration by parts on [xexdx = xf—; (—x3) du = [ f—; (—x3) du, where
1
x 1
u=-x3,dv= f—;cz, hence du = —3x%,v = e, hence we have

1
ferdx = Uv - fvdu
1 1
= —x3ex + foZexdx
Substituting this into (1) gives
1 1 1 1
fede = —x%x +2 (—x3e§ + f3x2e§dx)
1 1 1
= —x2%ex — 2x%ex + 6f3xzexdx

And so on. The series will become
1 1 1 1 1 1
fexdx = —x%ex — 2x3ex + 6xter + 24x%ex + -+ + nly"tlex + -

1
= —ex (x2 +2x3 +6xt + -+l )

Now as x — 0%, we can decide how many terms to keep in the RHS, If we keep one term,

then we can say
1
So ~ J_rfede

1

26;

~ *X
For two terms
1

Sop~ =+ feﬁl?dx ~ +ex (x2 + 2x3)

And so on. Let us use one term for now for the rest of the solution.
1

26;

SONix

To find leading behavior, let

S (x) = So (x) + Sy (x)
Then y (x) = e5®™*+51®) and hence now
¥ (1) = (Sp (x) + 51 (x)) €051

2
Yy’ (x) = ((50 + 51)’) e50*51 + (Sg + 51)” €501
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Substituting into the given ODE gives

2 [((50 #5)) + (S + 51)”] £ x+1)(So () + 51 () - 22 (e N 1) -
2| (854 51)"+ S+ 50" |+ @x 1) (S50 + 51 @) - (ef +1)=0
% [(56)2 +(81) + 25681 + (8¢ + s;')] £ Qx+1)Sh () +2x+1) S, () - x (ex n 1)
x2(85)° +32(81)” + 2228481 + 328 + 2287 + (2x +1) Sy (x) + (2x +1) 8} () = x (65 . 1)

2 2 1
But x? (S(’)) ~ x? (ex + 1) since we found that Sj ~ ex. Hence the above simplifies to

2
x2(S1) +2x28)Sq + x22S[ + x2S} + (2x +1) Sf (x) + (2x +1) S (x) =

,\2 sr er o (2x+1) (2x+1) ,
(S5)" +28481 + S + S + =58 (x) + —5—51 (x) =0 (2)
Now looking at Sy + (Zx;rl)S(’) (x) terms in the above. We can simplify this since we know
1
Sy =ex,5) = —%ei This terms becomes
1 11 1 1
(2x+1) 1 —ex +2xer +ex 2xex  2ex
—;e x? - x? RS
Therefore (2) becomes
1
2 2 +1 —2ex
(1) + 25057 + 57 + Zr Vs ()~
(s1)° ) Sy (x+1) 207
1 X + —Zex
+ 257 + S7 (x) ~
s, 5 ey W~ g
5] s" 2x +1 -2
( ) 1 ( X )S/ ( ) ~
ex ex xzex X
Assuming the balance is
Sy~ L
L

Hence
Si(x) ~=-In(x)+c

Since ¢ subdominant as x — 0* then

S1(x) ~ =In(x)

Verification

=>> -
X

Yes, for x — 0*

Yes.
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(2x+1)

S>> ————51(x)
x2ex

1 @x+1)1

- >> — =

X x2ex

1 1

- > —

X x3ex

Yes. All assumptions verified. Hence leading behavior is
y (x) ~ exp (So (x) + 51 (x))

1
~ exp (ixzeﬁ -In (x))

1 5 L 5 L
~ (exp (x eX) + exp (—x EX))

1 1
For small x, then we ignore exp (—xzei) since much smaller than exp (xzeE). Therefore

1 , 1
y(x) ~ ;exp (x ex)

3.2.5 problem 3.39(h)

3
problem Find leading asymptotic behavior as x — oo for y’ =¢ ry

solution Let y (x) = ™. Hence
y (x) — eSO(x)
¥ (x) = Spe%o

1 — Q1,50 /250
Yy’ =5ye0 +(S;) e

2
= (S(’)’ + (56) )eSO
Substituting in the ODE gives

(56’ + (56)2) 50 = ¢3¢
S+ (s5) =
Assuming (S(’))2 >> S the above becomes
(55)" ~ e
Sy ~ ie_;_x

3
So ~ ife_zdx

. . d 2 3 32 . .
Integration by parts. Since —e? = e 2, then we rewrite the integral above as

_3 3 _3 (2x?
fezxdx:f—e% * dx
2x2 3

3 3 212

. . 3 = = 4
And now apply integration by parts. Let dv = ae Fov=eru=— - du = 3% hence

e_%dx = [uv] - | vdu
J J

222 _3 4 _3
= —e¢ 2 —f—xe 2e(dx
3 3

Hence

Ignoring higher terms, then we use

2x2 3
SO ~ +——¢ 2x
3
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Verification
2
(56) >> S

32 3 _3
(e Zx) 3> ——e =

2x

_3 3 _3

e r>> —¢ X
2x2

Yes, as x — oo. To find leading behavior, let
S(x) = So(x) + 51 (x)
Then y (x) = e5™*+51%) and hence now
Y () = (Sp (x) + Sy (x)" €501
2 7"
Y’ () = ((So+S1)') €051 + (Sg + 5y)” e50+%1
3
Using the above, the ODE y” = ¢ ry now becomes
’ 2 7’ —é
((So+51)) +(SO+SI) =e x
2 _3
(Sh+S;) +Sy+Sy =e
2 2 _3
(Sh)" +(S5) +2S4S; + Sy + Sy = e
2 _3
But (Sf)) ~ e x hence the above simplifies to
2
(S1)" +28S1 + Sy +S7 =0
Assuming (2565’1) >> S the above becomes
2
(S5) +2S4S7+ Sy =0
2
Assuming 25(S5] >> (Si)
25051 +S0 =0
Sy
25§

/
SlN

Sy~ —% In ()

3
But Sj ~ e 2r, hence the above becomes

1 _3
Sl~—§ln(e 2x)+c
~—+cC

4x
Verification

(254S7) > sy

3e 2 3
3 P 5s
For large x the above simplifies to
1 1
275

Yes.
(28481) > (1)

2 _2i 3 >> -3 :
¢ 4x2 42
3

3e 2x
2 x?

S ——
16x*
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For large x the above simplifies to

1 1
— > —
X2 x4

Yes. All verified. Therefore, the leading behavior is

y(x) ~ exp (Sp (x) + 51 (x))

+2x _2_ 11 ( 23)+
exp 36 2ne c

3 2x° _3
~ cedx exp (+%e Zr) (1)
Check if we can use 3.4.28 to verify:
3
lim [x"Q (x)| = lim [x%e *[ — o0
X—00 X—00

We can use it. Lets verify using 3.4.28
1-n X 1
¥ ~clQEI= exp(w [ QI di)

3

Where w? =1. For n =2,Q(x) = ¢ *, the above gives

1-2 1
314 Y1372
y(x)wc[e x] exp[a)f [e t] dt]
-1
Y r 3
~c[e x] exp(a)f e tht)
3 _3
~ cetx exp (a) fxe tht) (2)
We see that (1,2) are the same. Verified OK. Notice that in (1), we use the approximation

3
for the e 2xdx = 2—e 2 we found earlier. This was done, since there is no closed form
solution for the integral.

QED.

3.2.6 problem 3.42(a)

Problem: Extend investigation of example 1 of section 3.5 (a) Obtain the next few cor-
rections to the leading behavior (3.5.5) then see how including these terms improves the
numerical approximation of y (x) in 3.5.1.

Solution Example 1 at page 90 is xy” +y’ = y. The leading behavior is given by 3.5.5 as
(x = o0)

-1

1
y(x) ~ cxt e¥? (3.5.5)

-1

Where the book gives ¢ = %nT on page 91. And 3.5.1 is

0 n

X
S Y

To see the improvement, the book method is followed. This is described at end of page 91.
This is done by plotting the leading behavior as ratio to y (x) as given in 3.5.1. Hence for
the above leading behavior, we need to plot

(3.5.1)

133 Zx%
SZxte
y ()
We are given Sy (x), Sq (x) in the problem. They are

1

S (x) = 2x2

1
Si(x) = —Zlnx+c
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Hence
-1
Sp(x)=x2
-1 _3
56, = 73( 2
11
St (x) =—=—
1 (x) iy
S (1) = — )
X) = —
1 4x2

We need to find S; (x), S3 (x), --- to see that this will improve the solution y (x) ~ exp (Sg + S; + Sy + -

as x — xo compared to just using leading behavior y (x) ~ exp (Sy + S1). So now we need to
find S, (x)

Let y (x) = ¢°, then the ODE becomes
x(S7+(8))+8 =1
Replacing S by Sy (x) + S1 (x) + S, (x) in the above gives
" 12 1 , 1
(SO+51+SZ> +[(SO+51+52)] +;(So+sl+52) ~ —

1
st +s7+sy}+[(Sh+Sy+ Sé)]z 3 (So+57+53) ~

RNIPRIPR

g +sy+sy}+ {[55]2 +254S] + 2545} + [53]2 +28,S} + [55]2} + ;1? {Sp+51+85) ~
Moving all known quantities to the RHS, these are Sy, S, [S(’)]z ,25051, 50,51, [S’l]z then the

above reduces to

(sy]+ {+2sgs; +2515) + [55]2} + 31? (s3] ~ j—c — sy -8y = [se] — 2841 - ;1?56 - j—csg ~[si]

Replacing known terms, by using (1) into the above gives

{sy)+ {25655 +2515) + [sg]z} + j—c s} ~

1,13 1 [?1]2 2(?1) 11 1(71) 1({ 11 11\
—+x2-——|x2| -2x2)[-——=|-=(x2|-=(-—==|-|-—=
x 2 4?2 4x] x x\ 4x 4x

Simplifying gives
(57)+ {2shsy + 2515 + [s5] | + Lglotolei Lol (3,11 11
X x 2 4x? 2 42 1622
Hence
” v mrer Tl 1o 11
(sy]+ {25052 28185 +[53] } b {5}~ e
Lets assume now that
25, ~ -11_6% @
Therefore
11
52 32 Spx?
1 1
32 (x_?l) x?
1 3
~N ——X2

We can now verify this before solving the ODE. We need to check that (as x — o)
25055 => Sy
25(55 >=> 2515,

25355 >> [Sé]z

1
25(55 >> ;Sé
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-5
Where S7 ~ x 2, Hence
25455 =>> Sy
T >
X2 (x 2 ) > x2
=S
X2 3> x2

Yes.
25355 => 25!S)

X
)
X2 >> x2

2 5> (1) (+)

2
25355 >> [Sé]
-3
X2 > (xT)
3

Yes
2

X2 s> x

Yes
25055 => ;sg
1 =3
X723 —x2
x
=S
X723 x72
Therefore we can g ahead and solve for S, using (2)

Yes. All assumptions are verified.
25455 L1
072 16x?

111

Sy~ ===

2 32428

111

——= =

32x2 1
X 2
11

29 3

32 1

Hence
11
Sz ~ E$

The leading behavior now is
y(x) ~ exp(So + 51 + 52)

2% 11 + +1 L
~ €X X2 ——=—1INnNXxX—+7cC —
P 1 16 vx

Now we will find S;. From
x(S7+(8))+8 =1

[ S =Y

Replacing S by Sq + S; + S, + S3 in the above gives
2
(So+S1+52+53)" +[(So+ S1+ S+ S3) | +—(So+Sy+5,+55) ~ —

St + 7+ 55+ 5y} +[(Sh+ S +sg+sg)]2+j—c(s'o+sg 85+ 85) ~

Hence
[St+ 7 +5y+55}+

{[56]2 +25)8! + 25,8} + 25, S} + [5;]2 + [sg]2 + 25,8} + 25,84 + 25554 + [sg]z}

+)1—C[56+s'1+55+sg|~;
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Moving all known quantities to the RHS gives
{syh+ {25653 + 2515, + 2555, + [sg]z} o1 {ss)
x
1 7’ ’’ /7 ’ 2 el el el ’ 2 ’ 2 1 4 1 ’ 1 4
~ - S{-57-8) - [S6] - 25085 - 25485 - 2818 - [s1] - [S5] - 56— =81 -5}
Now we will simplify the RHS, since it is all known. Using

-1

Spx) =x2
2
s -
— 3
S// — 73
0= X
11
St(x)=—=-
1 () 4x
11

2
[Si (x)] T 1622
1

T =g

, 11
S5 (x) = —3—2—§
X2
7’ 2 1
[S:00] = 102423
, 31
52 (x) = 6_4_5
X2
-1 11 11
st =2(x7)(42) -1
4 x 2x§
2535 =2(x7) -5 =12
002 = <X a5 3|7 12
32x§ 16x?2
) 11 11 1
25182 = 2(——;) (—3—2—§J = 5
X2 64x2

Hence (3) becomes

2 1
{sg]+{2sg)sg+2s;sg+25§sg+[sg]}+;[sg]~
1,1 1 31 111 1 1 .
X 2x§ 4x2 64x§ X 2x§ 16x2 64x; 16 x2  1024x3 x; 4 x2
Simplifying gives
32 1 ]

{syl+ {256S§ + 2584 + 25585 + [sg]z} i1 (s3] ~ _[ - 3
* 1024yz 102

Let us now assume that
5655 >> 5155
5055 >=> 5,55
2
5055 >> [sg]
1
SHSL > — 16!
0°3 X [ 3]

’rQ/ ’7
5553 >> 5%

80
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Therefore, we end up with the balance

257" 2 1 )
0°3 ™~ — 5 3
L024ys  1024x
32 1
Sé ~ = 5 + 3 /]
1024128, 1024750
32 1
~ - 5,y T )
1024x2 (x 2 ) 1024x3 (x 2 )
1,1 J
~ — —2 —5
32 0payz

Hence

S 1 2 2
37 qo2a \3222 T ¥

Where constant of integration was ignored. Let us now verify the assumptions made

5055 >=> 5155

So>> 5]
Yes.
5055 >> 5555
So>> S
Yes
S0S3 >> [sg]z
Sy >> S5
Yes.

1
565 3> — (s3)

1
Sp>> -
x
-1 1

X2 > —
X

Yes, as x — oo, and finally

el 7
5055 => S5

_71 ( 1 + 1 > 5 + 1
X2 o —— 7t 3
32x° 1 0p4xz 2048x2 16X
(32vx+1)  128yx+5

1024x3 > 7
2048x2

Yes, as x — oo. All assumptions verified. The leading behavior now is

y(x) ~exp(Sg+ S1+ Sy +S3)

11 11 1 2 32
~exp(2x2—Zlnx+c+1—6$+@(@+?))
~cx%exp(2x%+li+i(i+¥))

16 % 1024 \32:2 " %

Now we will show how adding more terms to leading behavior improved the y (x) solution
exp(Sg+S51+52+S3)

y()
and this in turn approached the ratio 1 sooner than just using

for large x. When plotting the solutions, we see that approached the ratio
exp(So+S51+S2)
y()

. So the effect of adding more terms, is that the solution becomes more accurate

1 sooner than
exp(50+51)

y(x)
for larger range of x values. Below is the code used and the plot generated.
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ClearAlll[y, x];

|

SO[x ] :=
sOsl[x ] :=
SO@sls2[x ] :=

s0sl1s2s3[x_] :=

Exp[2x% - iLog[x]]]

.
B

1
Exp[2x5— iLog[x] + 1 ]]

16 Sqrt[x]

y[x, 300]

.
3

_iLog[X]+L . +L(2 +3;2')]]

16 Sqrt[x] 1024 \ 32 x2

.
b

y[x, 300]

y[x , max_] :=Sum[ x~n/ (Factorial[n]~2), {n, @, max}];

LogLinearPlot [Evaluate[ {s@s1[x], s@s1ls2[x], s@sls2s3[x]}], {x, 1, 30},
PlotRange » All, Frame - True, GridLines -» Automatic, GridLinesStyle -» LightGray,
PlotLegends » {"exp (S0+S1)", "exp (SO+S1+S2)", "exp (SO+S1+S2+S3)"},

FrameLabel » { {None, None},

"Showing improvement as more terms are added"}},

PlotStyle » {Red, Blue, Black}, BaseStyle -» 14]

1.001

0.987

0.961

0.94

0.92}

Showing improvement as more terms are added

— exp(S0+S1)

— exp(S0+S1+S2)

— exp(S0+S1+S2+S3)
1 10 20
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3.2.7 problem 3.49(c)

Problem Find the leading behavior as x — oo of the general solution of y” + xy = x

Solution This is non-homogenous ODE. We solve this by first finding the homogenous
solution (asymptotic solution) and then finding particular solution. Hence we start with

Yy +xy, =0
x = oo is ISP point. Therefore, we assume v, (x) = ¢ and obtain
S”+ () +x=0
Let
S(x)=Sy+S;+ -
Therefore (1) becomes
2
(Sg+Sy+-+)+(Sh+Sy+-) =—x
2 2
(Sy+87 +-) + ([sg,] +25p8; +[s1] + ) - x

2
Assuming [Sé] >> S we obtain

Where w = +i

Verification

Yes, as x — co. Hence

Now we will find S;. From (2), and moving all known terms to RHS
2 2
(7 +-)+ (25653 f[si] + ) ~ == 8§ - [51]
Assuming
25451 > S7

25(S] >> [Si]z

2
Then (3) becomes (where S}y ~ w+/x, [56] ~ —x,5( ~ %a)%)
2
28485 ~ —x - S = [Sh]
2
o esi=s)
! 284
1
- (—x)

. . 11
Verification (where S ~ -=)
— 1 4 x2

4 4 x2
! > !
— il
x2 x?

83
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Yes, as x — o

25057 >> [Si]z

&)
> | —
4x

1
S ——
16x2

= =
[NTPSN R TR R

Yes, as x — oco. All validated. We solve for S,
, 1
51 ~ _4_x
S L Inx +
~-—=Inx+c
Y
yy, is found. It is given by
Y (x) ~ exp (So (x) + 51 (x))

3 3 1
~ exp (waz ~1 Inx + c)
-1 3 3
~ CX4 exp (Ea)x2)
Now that we have found y;, we go back and look at
Yy +xy =x°

And consider two cases (a) y” ~ x> (b) xy ~ x°. The case of y”’ ~ xy was covered above.
This is what we did to find y;, (x).

case (a)

y;]/ ~ x5

, 1

]/pNgx
1

ypNEx

4

3

Where constants of integration are ignored since subdominant for x — co. Now we check
if this case is valid.

5
Xyp KX

1
X—x3 <« x°

20
<< ¥

No. Therefore case (a) did not work out. We try case (b) now
5

Xy, ~ X
Yp ~ x*
Now we check is this case is valid.
y) <X
12x% << x°
Yes. Therefore, we found
Yp ~ x*

Hence the complete asymptotic solution is
Yy (x) ~ yp, (x) + y, (x)

-1 3 3
~ X% exp waz) + x4
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3.2.8 key solution of selected problems

3.2.8.1 section 3 problem 27

! Ju”ja !i)l 4’ \ ,é/mc L/( = @)(}i) U b{uj XC) ;LS,P
v d Jd

C Mssaee Q6D 0 b it )15}]’%’1

; ped
Leks do 3'°-oder case )$+ o

S ES T

Cu(x)q g {xp b(ﬂ)( S

)0\.

g™
0
!

:%’ief)_‘ J u x+ @ )

‘7§
(¢
I

"= im+(394’355{

~J

J
]
(T/a/ LH\J, omm,aml éa ance (g

Vo) K

= S w@ujﬁ wz@)“
AR e
= G wlaw] i+,
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3.2.8.2 section 3 problem 33 b

NEEP 548: Engineering Analysis 11 2/6/2011
Problem 3.33: Bender & Orszag

Instructor: Leslie Smith

1 Problem Statement

Find the leading behavoir of the following equation as x — 0%:

2ty — 327y +2y =0 (1)

2 Solution

Need to make the substitution: y = 5@

y/ _ SIES(I)

y// — S”BS(I) + (S/)2€S(z)

y/// _ S///gS(z) + Ssllsles(l') + (51)365(1)

After substituting and diving through by y, one obtains,

. 3 2
3
S///_,’_BS//S/J’_(S/) _ ﬁsl+ﬁ ~ 0 (2)

Typically, $” << (5')? = $" << (S')%. Similarly, assume S << (5')3
With these assumptions, 2 becomes:

3 2
N3 /
(S =25~
which is still a difficult problem to solve. Therefore, also want to assume (S")% >> %S’ asx — 0T,
Then,
(S ~ = "
o4
S~ wa 3 r— 0t
w = (—2)/3
So(x) ~ —3wz /3 z— 0"
g 411)m 7/3
28w
S~ 10/3
9
1
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Now, check our assumptions,

(8)3 ~ —22712/3 5> 38272 ~ —3wz 193 z— 0"

()% ~ —22712/3 55 § 28_“’36710/3 v -0t

% —12/3 ver | —dw? —~11/3 +

(8" ~ =2z >>SS~T;E x—0 v
Now estimate the inegrating function C'(x) by letting,
S(x) = So(x) + C(x) 3)
and substitute this into 2.

3 2

Sy 4+ C" 4350 +C") (S +C) + (9 +C) =5 (S, +C) + 5 =0 (4)

term 1 term 2

term 1: (SVS! +C"S! + S/C"+ C"C")

term 2: (S1)3 + (C')% + 3(S")2C" + 3(S")(C")?
From here, notice that we have already balanced the terms (57)? and ;—42., so they are removed
at this point. Now we make the following assumptions:

S>>, S>>, SV >>C" as  x—07"
These assumptions result in,

35, 3C

Sy +380S) +3(S,)C" ~ Sty wo0f

Insert the value of S, found in the previous step,

287“’1,710/3 A1 4 3020830 ~ S 10/3 4 307 6/3

In keeping with the dominant balance idea, it is clear that the middle two terms dominate, thus
leading to the following simplified relation,

3wla 830" ~ d?g 13 x— 0T
4

C'~ =gt x— 0"
3
4

Cr~ gln(aﬁ) r—0F

Then C” ~ %496_2, C" o~ %x_3 and once again, check assumptions made,
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4
Sl ~ w3 >> O ~ gxfl z— 0" v
—4 : —4
Sy ~ ?x_wd >> 0" ~ ?x_Q z—0F v
Sy’ ~ %wa—m/g >>C" ~ g:z:_?’ r—0f v

With the appearance of the In(x) term, we have likely found the leading behavior already. However,
lets find D, the third term, just to check.

Substitute y = e(Se+tCo+D) then divide by ,

y' =18, + Cj + DJelSHCtD)
y// _ [Sg + C(/)/ + D//]e(SO+CO+D) n [SZ) + C(l, + D/]2€(SO+CO+D)
y/// _ [S(/)// + O(/)// + D///]e(SO+CO+D) + 3[5(/)/ + C(/)/ + D//] [Sé + C(/) + D/]e(SO+C”+D) + [S(/) + C; + D/]Be(SO+CO+D)

And...here we go...

S+ OV + D 4-3(SY8) + SuCl + S + CUlS, + CoCh + CoD + DSl + DXC + DD

+ 655D + B[(SYCY + (S))° D' + (C))* S, +H(CH* D" + (DYS] + (DY2€]) + (S5
—_——

Unknown balance
3
O+ D - D184 4 D)+ =0

Assumptions: S, >> C! >> D', S/ >> C/ >> D", S/ >> C/ >> D" all as x — 0" and remove
previously balanced terms,

S 4357C! 4+ 3C"S! 4+ 3(S))°D' ~ =3(C!)S,  x—0T

Subbing in the previously found values for S,, C,,

w103 B w100 s 107 g2 83y N%&ﬂﬂ/
9
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—3w228/3D" ~ 35_101,—10/3
9
35 5
D~ 22 —-2/3
27w
35 1. 3
~ 22 (Va3 d
w3 T
So since /3 — 0 as x — 01, the leading order behavior is

1 4
Y~ exp[—%x71/3 + gln(x) + d]

x— 0T
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3.2.8.4 section 3 problem 35

Some notes on BO 3.35 (to get the leading behavior):

e a consistent balance at lowest order seems to be

(S)) ~exp(2/x), x—0

e taking the square root and integrating leads to

So ~ j:/ 4cxp(1/s)ds
1

e then change variables s = 1/t to find

(1/2) 1
SON:t/ exp(t)(— t—2>dt
1

e integration by parts gives
(1/x)
S, ~ Fa? exp(1/z) + +a, + :F/ 5 exp(t)dt
1
~ Fa?exp(1/z)

and subdominant terms have been dropped. [Why are these terms subdominant and
why is this the only consistent integration by parts?]
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3.2.8.5 section 3 problem 42a
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3.3 HW3

3.3.1 problem 9.3 (page 479)

problem (a) show that if a(x) < 0 for 0 < x <1 then the solution to 9.1.7 has boundary

layer at x = 1. (b) Find a uniform approximation with error O (¢) to the solution 9.1.7 when
a(x) <0for 0 <x <1 (c) Show that if a (x) > 0 it is impossible to match to a boundary layer
atx=1

solution

3.3.1.1 Parta

Equation 9.1.7 at page 422 is

ey’ +a(x)y +bx)yx)=0 (9.1.7)
y(0)=A
y(1)=8B

For 0 < x < 1. Now we solve for y;, (x), but first we introduce inner variable . We
assume boundary layer is at x = 0, then show that this leads to inconsistency. Let & = fp

be the inner variable. We express the original ODE using this new variable. We also need

to determine p. Since % = %Z—i then % = jTZE_p' Hence % = e‘pd%
d? _dd
dx2  dxdx
—|ep d P d
=77 g v 3
2
= g_zpd_
dé&?
Py _ oy
Therefore S =€ 7’@ and (9.1.7) becomes
d? d
EE_Zpd—EZ + a(x) s‘f’é +y=0
2 d
51‘2Pd—;; +a(x) 8‘7”% +y=0

The largest terms are [51‘2”, S‘V], therefore balance gives 1 —2p = —p or p = 1. The ODE
now becomes

dy dy
-1 -1 _
e Jiz +a(x)e e +y=0 1)

Assuming that
Yin (0) = D3 €"Yn = Yo + €Y1 + %y + -
n=0
And substituting the above into (1) gives
el (y{)’ +eyy + ) +a(x)et (y(’) + ey + ) + (yo +eyp + -

Collecting powers of O (5‘1) terms, gives the ODE to solve for yi' as

SN—
Il

0 (1A)

Yo ~ ~a (0¥
In the rapidly changing region, because the boundary layer is very thin, we can approximate
a(x) by a(0). The above becomes

yo ~ —a(0)yg
But we are told that a (x) < 0, so a(0) <0, hence —a(0) is positive. Let —a(0) = n?, to make

it more clear this is positive, then the ODE to solve is

Yo ~ 1*yq
The solution to this ODE is

C
Yo (&) ~ n—;€n25 +C,
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Using y (0) = A, then the above gives A = % +CrorC,=A- % and the ODE becomes

C C
Yo (&) ~ n—;enzé + (A - n—;)

~ %(e”25—1) +A

We see from the above solution for the inner layer, that as £ increases (meaning we are
moving away from x = 0), then the solution v, (£) and its derivative is increasing and not
decreasing since y; (&) = C1e"*¢ and vy (&) = Cyn2e™t.

But this contradicts what we assumed that the boundary layer is at x = 0 since we expect
the solution to change less rapidly as we move away from x = 0. Hence we conclude that
if a (x) <0, then the boundary layer can not be at x = 0.

Let us now see what happens by taking the boundary layer to be at x =1. We repeat the

same process as above, but now the inner variable as defined as

_1-x
&= o
We express the original ODE using this new variable and determine p. Since Z—Z = g—ZZ—i
dy _d _ d o d
then % = % (—e7P). Hence o= (—e7P) PR
> d d
dx®  dxdx
d d
= —e7P) — —cP) —
(cenge) (e ]
2
= g_zpd—
dé?
Therefore Py _ E‘Zde—y and equation (9.1.7) becomes
a2 a2 q e
@y 9
ce 2F’E—a(x)e F’g +y=0
d? d
51‘27’é —a(x) S‘P% +y=0
The largest terms are {51—2P,5—P}, therefore matching them gives 1 -2p = —p or
p=1
The ODE now becomes
e‘ldz—y—a(x)e‘ld—y+ =0 (2)
dé2 i
Assuming that
Yin(0) = D3 €™ = Yo + €Y1 + €2y + -+
n=0
And substituting the above into (2) gives
el (y6’ +ey] + ) —a(x)e™! (y’o + ey + ) + (yo + ey + ) =0 (2A)

Collecting O (5‘1) terms, gives the ODE to solve for yi' as
Yo ~a(x)yo

In the rapidly changing region, @ = a(1), because the boundary layer is very thin, we
approximated a (x) by a(1). The above becomes

a4 4
Yo ~ Yy

But we are told that 2 (x) < 0, so @ < 0, and the above becomes

i 4
Yo ~ AYp
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The solution to this ODE is
C
Yo (&) ~ =+ C,
o
Using

yx=1)=y(E=0)
=B

Then (3) gives B = % +CyorCy,=B- % and (3) becomes

Yo (&) ~ gty (B - g)
a a

~%(ea5—1)+3

(3)

(4)

From the above, v} (£) = -C1¢* and y{ (£) = C;ae*. We now see that as that as & increases
(meaning we are moving away from x = 1 towards the left), then the solution yq () is
actually changing less rapidly. This is because a < 0. The solution is changing less rapidly
as we move away from the boundary layer as what we expect. Therefore, we conclude that
if 2 (x) < 0 then the boundary layer can not be at x = 0 and has to be at x =1.

3.31.2 Partb

To find uniform approximation, we need now to find y** (x) and then do the matching.
Since from part(a) we concluded that v;, is near x =1, then we assume now that y°* (x) is

near x = 0. Let

Your (0) = Y, €Yy = Yo + €Y1 + 2yp + -

n=0
Substituting this into (9.1.7) gives

f(y(')' +ey) + ety + ) + a(x) (y6 +ey] + e2yh + ) +b(x) (yo + ey + Yy + ) =0

Collecting terms of O (1) gives the ODE

a(x)yo+b(x)yy=0

The solution to this ODE is
b(s)

Yo (x) = Cze_£ T
Applying y (0) = A gives

1 b(s)

A= c23‘£ 0"
= CzE

Where E is constant, which is the value of the definite integral E = e_L

solution y* (x) can now be written as
b(s)

Yo" () = Ee_£ O
We are now ready to do the matching.
lim 4 (£) ~ lim y** (x)

lim G (eaé - 1) +B ~ lim ée_L
E

E—o00 (¥ x—0
But since @ = a (1) < 0 then the above simplifies to
C A
——L4B=2
a(l) E

C, =-a (1)(% —B)
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Hence inner solution becomes

—a(1) (g—B

a()
~ (B - %) ("2 -1) +B

~ B ("M —1) - g ("M -1) + B

~ (B - %) ("M -1) + B

Y (&) ~ ) ("M -1) + B

The uniform solution is

Yuniform (x) ~ yi" (CS) + yout (x) - ymatch

yll’l yOMt
X b(s)
(B2 (e 1)+ B4 Ao b4
E E E
Or in terms of x only
A = A W4 A
Yuniform (x) ~ (B - E) (eg( ) £ — 1) + B+ Ee o _ E

3.3.1.3 Partc

We now assume the boundary layer is at x =1 but a (x) > 0. From part (a), we found that
the solution for yg' (£) where boundary layer at x =1 is

yo(é)N%(6“5—1)+B

But now a = (1) > 0 and not negative as before. We also found that 33" (x) solution was
* )

A —£ ds
out — a(s)
Yo" (x) e
Lets now try to do the matching and see what happens
lim 4™ (&) ~ lim y° (x)
E—o00 x—0
C A _[FH9
Jim =L (e 1) + B+ 0(e) ~ lim Ze b 0% 400
E— o0 —
lim C e 1 A B
im — |~ =-
oo \a a E

Since now « > 0, then the term on the left blows up, while the term on the right is finite.
Not possible to match, unless C; = 0. But this means the boundary layer solution is just

a constant B and that % = B. So the matching does not work in general for arbitrary
conditions. This means if a (x) > 0, it is not possible to match boundary layer at x =1.

3.3.2 problem 9.4(b)

Problem Find the leading order uniform asymptotic approximation to the solution of

ey’ + (1 + x2) y -y (x) =0 1)
y(0) =1
y=1

For 0 < x <1 in the limit as ¢ — 0.

solution

Since a (x) = (1 + xz) is positive, we expect the boundary layer to be near x = 0. First we
find y* (x), which is near x = 1. Assuming

Your (0) = Y, €Yy = Yo + €Y1 + 2yp + -
n=0
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And substituting this into (1) gives
€ (yé’ + ey + &2y + ) + (1 + xz) (y6 +ey) + e2yh + ) -x° (yo +eyy + ey, + ) =0
Collecting terms in O (1) gives the ODE
(14) s~ <6

3

, ¥3 o - . J _:;2 dx -3
The ODE becomes v ~ myo with integrating factor y =e (+%) To evaluate f @dx,
let u = x?, hence Z—z = 2x and the integral becomes
—x3 ux du 1 u
T dx=- | === _C d
f(1+x2)x Trw2x 2J a+0™
But
u 1
= 1-
J ™ J ™
=u-In(l+u)

But u = x%, hence
3

f(l_-i-—xxz)dx = _71 (x2 —ln(l +x2))

Therefore the integrating factor is y = exp (_?13@ + éln (1 + xz)). The ODE becomes

d
ix (1yo) =0

Hyo ~ €

1 1
Your (X) ~ cexp (Ex2 -3 In (1 + xz))

-1
~ ce%xzeln(1+x2) 2

2

V1 + x2

To find ¢, using boundary conditions y (1) =1 gives
1 e
=C—
V2

1

c=V2e2

~ C

Hence
xz—l
2

out €
(x) ~ V2
70 V1 4 x2

Now we find ¥ (x) near x = 0. Let & = gip be the inner variable. We express the original

ODE using this new variable and determine p. Since Z—Z = Z—Zj—i then Z—Z = Z—Ze‘p. Hence
i = —Pi
dx dé
@ dd
dx2  dxdx
= ((_‘_pi g_pi
as ag
2
dé?
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Therefore e~ d;; and ey’ + (1 + xz) v’ — %y (x) = 0 becomes
dzy dy 3
ee™ a2 (1 + (E€P) )E pdé &P’y =0

@y dy
1-2 2,.2p) o~ 3.3py, —
€ Pd£2+(1+§ ep)s Pdg—é ePy=0
The largest terms are I 1=2p P ] therefore matching them gives 1-2p = —p or p = 1. The
ODE now becomes
42
12 (1 + &% 2)

T - &% =0 2)

dcf
Assuming that

Yin () = D €™ = Yo + €Yy + €2y + -+

n=0
And substituting the above into (2) gives
-1 (yé’ +eyy + ) + (1 + 5252) el (y() + eyl + ) —&3¢8 (yo +eyp + ) =0 (2A)

Collecting terms in O (e‘l) gives the ODE

Yo (&) ~ —y5 (&)
The solution to this ODE is

Yo' (&) ~ c1+ e 3)
Applying v (0) =1 gives
l=c+0c
c1=1-0¢

Hence (3) becomes
Yo (&) ~ (1 =cp) + cpe™®
~1+c, (e“E -~ 1) (4)
Now that we found y,,; and y;,, we apply matching to find ¢, in the y;, solution.
hm y (&) ~ hm y"”t (x)

x2-1

hml+cz( ) lim V2 ¢z

E—o0 x—0t A\ /1 + x2

2

2 ez2
1-cy ~ lim

e x—0* V1 _|_ x2

\F f /—
~ — 111m
e x—0t 1 + xZ

Hence
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Therefore the y (&) becomes

3/6”(5)~1+[1_\/g](e—5_1)
ety Ees
_g_ﬁ(_g_
e
Al

~ 0.858 + 0.142¢7¢

Therefore, the uniform solution is

Yuniform ™~ Yin () + Your (%) = Yimaten + O (€) (4)

Where y,,q10, i Y, (x) at the boundary layer matching location. (or y,,; at same matching
location). Hence

Ymatch ~ 1- Co

e

2

~ _

e
Hence (4) becomes

Yout
’ N ymatch

_z 2
ylmiform ~e ( \/7) [ \/—\/1-’_—362 E

Ne—;[ \/7)+\/_\/1+_x+0(8)

This is the leading order uniform asymptotic approximation solution. To verify the result,
the numerical solution was plotted against the above solution for ¢ = {0.1,0.05,0.01}. We
see from these plots that as ¢ becomes smaller, the asymptotic solution becomes more
accurate when compared to the numerical solution. This is because the error, which is
O (¢), becomes smaller. The code used to generate these plots is

eps =0.1;
sol = NDSolve[{1/1@0y "' [x] + (1+x72) y'[x] -x*3y[x] =0, y[@] =1, y[1] =1}, y, {X, 0, 1}];
pl = Plot [Evaluate[y[x] /. sol], {x, @, 1}, Frame » True,

FrameLabel -» {{"y (x)", None}, {"x", Row[{"numberical vs. asymptotic for eps =", eps}]1}},
GridLines -» Automatic, GridLinesStyle - LightGray] ;

. sqrt[2] Exp["zz'l] .

mysol[x , eps_] -Exp[—] [1 S rt[

eps Exp[1] ]] Sqrt[l + x"2]

p2 = Plot [mysol[x, eps], {x, ©, 1}, PlotRange » All, PlotStyle » Red];
Show[Legended[p1l, Style["Numerical"™, Red]], Legended[p2, Style["Asymtotic", Blue]]]

The following are the three plots for each value of ¢
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1.00

0.98
0.96
~ 0.94
x
Out[6]= > O 92
0.90

0.88

0.86],
0.0

numberical vs. asymptotic for eps =0.1

0.2 0.4 0.6 0.8

numbencal vs. asymptoﬂc for eps 005

Numerical
Asymptotic

1.00
0.98
0.96
~ 0.94
k)
ouliz= > 5 go
0.90

0.88

0.86

W

Numerical
Asymptotic

0.0

numbencal vs. asymptonc for eps 001

1.00
0.98
0.96

— 0.94

=

>0.92
0.90

out[17)=

0.88F

0.86f

7

Numerical
Asymptotic

0.0

1.0

To see the effect on changing ¢ on only the asymptotic approximation, the following
plot gives the approximation solution only as ¢ changes. We see how the approximation
converges to the numerical solution as ¢ becomes smaller.

In[236]:=

Out[236]=

Plot [ {mysol[x,

BaseStyle » 14]

.1], mysol[x,
PlotLegends -» {"€=0.1",
FrameLabel -» {{"y (x)",

.05], mysol[x,
"e-0.05", "

None}, {"x",

011}, {x,
€=0.01"}, Frame »

Asymptotlc solution as eps changes

1.00¢
0.98¢
0.96¢
= 0.94¢
> 0.92¢
0.90¢
0.88¢
0.86¢

L

3.3.3 problem 9.6

Problem Consider initial value problem

2\,
y’=(1+ﬁ)y -2y +1
112
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With y(1) = 1 on the interval 0 < x < 1. (a) Formulate this problem as perturbation
problem by introducing a small parameter ¢. (b) Find outer approximation correct to
order ¢ with errors of order ¢2. Where does this approximation break down? (c) Introduce
inner variable and find the inner solution valid to order 1 (with errors of order ¢). By
matching to the outer solution find a uniform valid solution to y (x) on interval 0 < x <1.
Estimate the accuracy of this approximation. (d) Find inner solution correct to order ¢
(with errors of order ¢2) and show that it matches to the outer solution correct to order «.

solution

3.3.3.1 Parta

Since 11% is relatively small compared to all other coefficients, we replace it with ¢ and the
ODE becomes

€
y’—(1+;)yz+2y:1 (1)

3.3.3.2 Partb

Assuming boundary layer is on the left side at x = 0. We now solve for y,,; (x), which is the
solution near x = 1.

Your (¥) = 25 €'Y = Yo + ey + %Yy + -+
n=0
Substituting this into (1) gives

2
(vo +evi + 2y + ) - (1 + x—gz) (vo+eyr + €2yp + ) +2(yo + eyy + e2yp + ) =1
Expanding the above to see more clearly the terms gives
€
(vo +evs + ey + ) - (1 + ;)(y% + & (2yom1) + €2 (2yova +13) + ) +2(vo + ey + Eyp + ) =1

2)
The leading order are those terms of coefficient O (1). This gives

Yo~ Y5 +2yo ~1
With boundary conditions y (1) = 1.

dy
d—;~y3—2y0+1

This is separable

For yp # 1. Integrating

dyo - M
f(yo—l)z fd

-1
Yo—1
(yo-1)(x+C) ~ -1

yONx+C

~x+C

+1 (3)
To find C, from y (1) =1, we find
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This is only possible if C = co. Therefore from (2), we conclude that

The above is leading order for the outer solution. Now we repeat everything to find y$" (x).
From (2) above, we now keep all terms with O (¢) which gives

1
Y1~ 2yoy1 + 2yq ~ ;y%

But we found y, (x) ~ 1 from above, so the above ODE becomes

1
i+~
1

/
Y1 2

Integrating gives
1
~—-——+C
1 (x) x

The boundary condition now becomes y; (1) = 0 (since we used y (1) =1 earlier with y).
This gives

0= ! +C
1
C=1
Therefore the solution becomes
1
i () ~1--

Therefore, the outer solution is

Your (X) ~ Yo + €yq
Or

y(x)~1+e(1—j—()+0(62)

Since the ODE is i’ - (1 + %) y? + 2y =1, the approximation breaks down when x < +/¢ or

x < —. Because when x < Ve, the x% will start to become large. The term )% should remain
small for the approximation to be accurate. The following are plots of the y, and v, + €y
solutions (using ¢ = 11%) showing that with two terms the approximation has improved for
the outer layer, compared to the full solution of the original ODE obtained using CAS.
But the outer solution breaks down near x = 0.1 and smaller as can be seen in these plots.
Here is the solution of the original ODE obtained using CAS
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eps = —
PS = Teo’
, eps
ode =y'[Xx] == (1+ —2) y[x]"*2-2y[x] +1;
X
sol = y[x] /. First@eDSolve[{ode, y[1] =1}, y[X], X]
10x [-12-5\7 C12xP L sE K AEE

26 26 246
/6 -120x-50/6 x+6 x5 -120x* "5 +50/6 x5

Plot[sol, {x, @, 1}, PlotRange - All, Frame - True, GridLines -» Automatic, GridLinesStyle - LightGray,

FrameLabel » {{"y(x)", None}, {"x", "Exact solution to use to compare with"}}, BaseStyle - 14,
PlotStyle - Red, ImageSize - 400]

Exact solution to use to compare with

1.0F 1

0.8r 1

0.0 0.2 0.4 0.6 0.8 1.0

In the following plot, the y, and the y, + €y; solutions are superimposed on same figure, to
show how the outer solution has improved when adding another term. But we also notice
that the outer solution y, + €y; only gives good approximation to the exact solution for
about x > 0.1 and it breaks down quickly as x becomes smaller.

outerl=1;

outer2=1+eps* (1-1/x);

p2 = Plot [Callout [outerl, "y,", Scaled[0.1]], {x, @, 1}, PlotRange » All, Frame - True,
GridLines - Automatic, GridLinesStyle - LightGray,
FrameLabel » {{"y (x)", None}, {"x", "comparing outer solution yg with yg+ €y;"}},
BaseStyle -» 14, PlotStyle -» Red, ImageSize - 400] ;

p3 = Plot[Callout [outer2, "yo+ €y;", {Scaled[0.5], Below}], {x, ©.01, 1}, AxesOrigin- {0, 0}];

Show[p2, p3, PlotRange -» {{0.01, .5}, {0, 1.2}}]

comparing outer solution yy with yg+ €yq
1.2} yr ‘ ‘ ‘

1.0

0.8F \

Yo+ €)1

§ 0.61

0.0F l l l l ‘
0.0 0.1 0.2 0.3 0.4 0.5

3.3.3.3 Partc

Now we will obtain solution inside the boundary layer y;, (&) = yi* (£) + O (¢). The first step
is to always introduce new inner variable. Since the boundary layer is on the right side,

then

c X
_gl’

And then to express the original ODE using this new variable. We also need to determine
p in the above expression. Since the original ODE is y’ - (1 + ex‘z) y?> + 2y = 1, then
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dy _ dydé _ dy -

el (e77), then the ODE now becomes
dy _ €
£€ P—(1+—g€p2)y2+2y:1
d 1-2p
%5—?7—(1+é?)y2+2y—1

Where in the above y = y(£). We see that we have {s‘P, 5(1_2’7)} as the two biggest terms to

match. This means -p =1-2p or

p=1
Hence the above ODE becomes
dy 4 e\ » _
%E —(1+?)y +2y =1
We are now ready to replace y (&) with ¥ ' ¢"y, which gives

(o + ey + 2y + ) el - (1 + Z—_zl) (vo + eyy + e2yp + )2 +2(yo + ey + 2y + ) =1
-1
(y6 + ey + e2yh + ) et - (1 + 2—2) (y% +e(2y0y1) + ) +2(y0 +eyy + ey, + ) =1 (3)

Collecting terms with O (8_1) gives

1

Yo~ ¥
This is separable
Yo' ~ =&+ C

1 1

v &

1 1-C¢&
o &
¥ ~1"ec

out

Now we use matching with y,,; to find C. We have found before that yg* (x) ~ 1 therefore
lim yf)” (&) +0(e) = lin% v (x) + O ()
E—o0 xX—

e
11m7—1+0(€)

E—o0 | —

lim (-Q)+0(&7) +0() =1+ 0(e)
~C=1

Therefore

in cf
yo' (&) ~ 1+2 (4)

Therefore,
Yuniform = Yo + yf’)”t = Ymatch
Yin
Yout
= = +1 -1
1+¢&

Since Yq1c, = 1 (this is what lim,_,, y is). Writing everything in x, using & = f the above
becomes

Yuniform =
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The following is a plot of the above, using ¢ = 13—0 to compare with the exact solution.,

ylx_,eps_] :=
X + eps

pl = Plot [ {exactSol, y[x, 1/100]}, {x, ©0.02, 1}, PlotRange -» All,
Frame -» True, GridLines - Automatic, GridLinesStyle - LightGray,
FrameLabel »
{{"y(x)", None},
{"x", "Exact solution vs. uniform solution found. 9.6 part(c)"}},
BaseStyle -» 14, PlotStyle -» {Red, Blue}, ImageSize - 400,
PlotLegends -» {"exact", "uniform approximation"}]

Plot[y[x, 1/100], {x, 0, 1}, PlotRange - {{.05, 1}, Automatic}]

Exact solution vs. uniform solution found. 9.6 part(c)

1.00F

0.95¢

0.90t
g 0.85¢ — exact

0.80¢ 1 —— uniform approximation

0.75¢
0.70¢

0_65,‘ P S S VS BN SRS
0.0 0.2 0.4 0.6 0.8 1.0

3.3.3.4 Part (d)

Now we will obtain y%" solution inside the boundary layer. Using (3) we found in part (c),
reproduced here
o1

(y6 + ey + e2yh + ) et - (1 + 5_2 )(y% +e(2y0y1) + ) +2(y0 +eyy + ey, + ) =1 (3)

But now collecting all terms of order of O (1), this results in
’ 2 2
Y1~ Yo~ @Yot * 2yo~1

Using yi' found in part (c) into the above gives
2
, 2( 1 < <
- v~ 12+ ()
,_ (L) _
N\ea+9) " ™ w1y

This can be solved using integrating factor u = e
p=exp(2In&+2nl+¢&))oru= %(l + 5)2. Hence we obtain

[ e

&2 ysi tial fracti i
using partial iractions gives

i( )~
dx [Jyl #(64‘1)2
d (1 1
(a0~
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Integrating
5+ 8Py~ [ e
S+ 80~ T+
1+ y ~—E+E2C,

-+ &8%G,

N ey

Therefore, the inner solution becomes
Y (&) =y +em
& &Gy - &
= + ¢ >
1+8G 0 a+9)
To find C;,C, we do matching with with y* that we found in part (a) which is y,,; (x) ~

1+e(1—1)
X

. & E2C,-&\ 1
QLI?O(HCSQ+€(1+5)2)N}c5%1+€(1_§)

1 1 1 E2Cy—& 2C,+1
:___2 _3+"‘a.nd(7 276 2
1+6C; Cp &3 &

ave? %

Doing long division —---, hence the above

becomes

li ! ! + ! + +|eC 2Cp +1 + lim1+¢|(1 !
1m —_— — —_— ces & - & ~ |11m & —_—
E—o0 C1 (SC% gzc% 2 5 x—0 X

1 1
— ~ lim1 1--
C1+£C2 xl_I)I(l) +e( x)

Using x = &€ on the RHS, the above simplifies to

! +&eC Iim1+¢ll 1
— +¢C, ~ lim ell1-—
Cy 2 E—o0 ée

~ lim 1+ (s - 1)
E—00 <
~1l+e¢
Therefore, C; =1 and C, = 1. Hence the inner solution is
Y (E) =yo+ ey
_ 3 b &2-&
1+& 1+

Therefore

Yuniform = Yin T Yout — Ymatch
Yin Yout

_ &, erme (1L :
_1+€+e(1+£)2+1+&(1—;)—(1+&)

Writing everything in x, using & = i—c the above becomes

12

27 1
+e2 ‘2+1+e(1—;)—(1+€)

X X
:
T 1+

Yuniform =

X X- —XE &
:E+x+€(1+§)2—;+o<62)

1

The following is a plot of the above, using ¢ =

to compare with the exact solution.
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X x? - x eps eps
y[x_,eps_] := + > T
X+eps egps (1+ L) X

eps

pl = Plot [ {exactSol, y[x, 1/100]}, {x, 0.02, 1}, PlotRange -» All, Frame - True,
GridLines -» Automatic, GridLinesStyle - LightGray,
FrameLabel -» { {"y (x)", None}, {"x", "Exact solution vs. uniform solution found. 9.6 part(d)"}},
BaseStyle - 14, PlotStyle -» {Red, Blue}, ImageSize - 400,
PlotLegends » {"exact", "uniform approximation"}]

Plot[y[x, 1/100], {x, 0, 1}, PlotRange - {{.05, 1}, Automatic}]

Exact solution vs. uniform solution found. 9.6 part(d)

1.0}
0.8
X 06 — exact
>
— uniform approximation
0.4
0.2
0.0 0.2 0.4 0.6 0.8 1.0

Let us check if yypuiform () satisfies y (1) =1 or not.

Yuniform (1) = ! + 1-¢ -e¢+0 (82)

e+1 1 2
e (1 + —)
&
1-e3-3e%+¢
(e + 1)2
Taking the limit ¢ — 0 gives 1. Therefore y,piform (¥) satisfies y (1) =1.

3.3.4 problem 9.9

problem Use boundary layer methods to find an approximate solution to initial value
problem

ey’ +a(x)y +b(x)y=0 1)
y(0)=1
y(0)=1

And a > 0. Show that leading order uniform approximation satisfies y(0) = 1 but not
v’ (0) = 1 for arbitrary b. Compare leading order uniform approximation with the exact
solution to the problem when a (x), b (x) are constants.

Solution

Since a (x) > 0 then we expect the boundary layer to be at x = 0. We start by finding y,,; (x).

Yout (X) = D €y = Yo + €Y1 + E2yp + -+
n=0

Substituting this into (1) gives

€(y6/+€y’1’+52yél+ ...)+a(y(’)+€yi +52yé+ ...)+b(y0+€y1 +€2y2+ ) =0

Collecting terms with O (1) results in

ayo ~ —byo
dyo b
Pr
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This is separable

b (x)
hl |y0| ~ — de'FC
_ [P 4
yo ~ Ce ‘[ a(s)
Now we find y;,. First we introduce interval variable
X
&= 7
nce W _ ddE oy dy L)
And transform the ODE. Since pollrs then = déé P. Hence S =€ Pdg
d? _dd
dx2  dxdx
d d
= P — P
[z ()
2
= g‘zpd_
d&?
Py _p,dly
Therefore S =€ pde and the ODE becomes
d? d
gg—zpé +a(d) %ﬁ +b(E)y=0

ey +ae Py +by =0

Balancing 1 - 2p with —p shows that

p=1

Hence
ey +acly +by =0
Substituting y;, = Z:’:O "y, = Yo + €yy + €2y, + -+ in the above gives
et (yé’ + ey + &2y + ) +ae™! (y6 +ey) + e2yh + ) + b(yo + ey + Yy + ) =0
Collecting terms with order O (6_1) gives
Yo ~ ~Yo
Assuming z = y; then the above becomes z’ ~ —az or g—z ~ —az. This is separable. The

. . dz
solution is -~ —adé& or

3
In|z| ~—f a(s)ds + Cq
0

>~ C1€_ lf a(s)ds

Hence

3
d]/o Cle_ 1; a(s)ds

—_—~

d&
d]/o ~ (Cle—g a(s)ds) A&

Integrating again

. 3 M
v~ | (cle 5“(5)ds)dn+cz
0

Applying initial conditions at y (0) since this is where the y;, exist. Using y;, (0) =1 then
the above becomes

1:C2

. & M
ve' ~f (Cle £a(s)ds)dn+1
0
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To apply the second initial condition, which is y’ (0) = 1, we first take derivative of the
above w.r.t. &

y(,) ~ Cle—gg a(s)ds

Applying y; (0) =1 gives
1= C]
Hence

. s M
vo' ~1+J; e ga(s)dsdr]

Now to find constant of integration for y** from earlier, we need to do matching.

lim y* ~ lim y3“

-0 x—0
o X b(s)
. - _ d ) O]
lim 1+ f e L a(s) sdﬂ ~ lim Ce -g a5®
£{—o00 0 x—0

d
On the LHS the integral l;é e_£ a(s)dsdr] since a > 0 and negative power on the exponential.

So as £ — oo the integral value is zero. So we have now
b(s)

1 ~ limce k %

x—0

X b(s) 0 b(s)

Let lim,_, e_£ " — E, where E is the value of the definite integral Ce_j «® . Another
constant, which if we know a (x), b (x) we can evaluate. Hence the above gives the value of
C as

1

E
The uniform solution can now be written as

Yuniform = Yin T Yout — Ymatch
b(s)

E 1 _fos)
1+ f e b O 2w g
0 E
& ul X b(s)
_ f E_L a(s)dsdr2 + %E_JL ﬁds (2)
0

Finally, we need to show that yypiform (0) = 1 but not y/ ... (0) = 1. From (2), at x = 0
which also means & = 0, since boundary layer at left side, equation (2) becomes

Lo s
Yuniform 0)=0+ E lime o)
x—0

X b(s)

But we said that lim,_, e_£ a©" = E, therefore

Yuniform (O) =1

Now we take derivative of (2) w.r.t. x and obtain

d(r: - [lat)s ld (- LOPN
’ — _ a(s)
Yuniform (x) dx (j(; e d’?) + E dx (6

_ e_f a@ds 1 b(x) - I %ds
Ea(x)
And at x = 0 the above becomes

1b(0)

yuniform( ) = Ea (0)

The above is zero only if b(0) = 0 (since we know a(0) > 0). Therefore, we see that
(0) #1 for any arbitrary b (x). Which is what we are asked to show.

’
yuniform

Will now solve the whole problem again, when a,b are constants.

ey +ay’ +by=0 (1A)
y(0)=1
y'(0)=1

And a > 0. And compare leading order uniform approximation with the exact solution to
the problem when a(x),b(x) are constants. Since a4 > 0 then boundary layer will occur at
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x =0. We start by finding v, (x).

Yout (X) = D] €y = Yo + €y + €2y + -+
n=0

Substituting this into (1) gives
€ (y()’ +eyy + 2y + ) + a(y6 +ey] + e2yh + ) + b(yo + ey + ey, + ) =0

Collecting terms with O (1) results in

ayo ~ —byo
dyo b
ax T

This is separable
d b
f Yo o Zix
Yo a

In |y0| ~ —Zx +C

b
ygut ~ Cle 2%

Now we find y;,,. First we introduce internal variable & = eii’ and transform the ODE as we
did above. This results in

e (yf{ + ey + 2y + ) +ae! (y{J +ey) + e2yh + ) + b(yo + ey + ey, + ) =0
Collecting terms with order O (5‘1) gives
Yo ~ —aYo
Assuming z = y; then the above becomes z’ ~ -az or Z—z ~ —az. This is separable. The

. . dz
solution is -~ —ad& or

In|z| ~ —a& + E;
z ~ Eje%

Hence

Integrating again
. -1\ .
Yo ~ Eq (—)e_ag +Ep
a

Applying initial conditions at y(0) since this is where the y;, exist. Using y;, (0) = 1 then
the above becomes

-1
1:E1(—)+E2
a
ﬂ(Ez—l):El

Hence the solution becomes
Yo ~ (1 -E)e ™ + E, (1B)

To apply the second initial condition, which is y"(0) = 1, we first take derivative of the
above wurt. &

yo~—-a(l- E,) e

Hence y’ (0) =1 gives
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1=-a(1-Ey
1=-a+akE,
_1+a
27 g

And the solution y;, in (1B) becomes

) 1+a . 1+a
Mo~ (1 - e +
Yo ( 1 ) 1
~ __1 e_ag + ]ﬁ
a a

(1+a)— e
a

Now to find constant of integration for y** (x) from earlier, we need to do matching.

lim yf' ~ lim y§“
o0 x—0

1+4a)—e% b
lim LD i ce
E—00 a x—0
1+a
~ Cl
a

Hence now the uniform solution can be written as

Yuniform (x) ~ Yin t Yout — Ymatch

Yin
Yout
x

r /—/‘
(1+a)—e": +1+a _b,

e a
a a
a

X
Q+a) e"¢ 1+4+a _ b, 1+a
~ — —+ e a —

a a a
g
e ¢ 1+4a _b,
~ — + —e a
a a

1 b
NE((l+a)ea -e e)

(2A)

Now we compare the above, which is the leading order uniform approximation, to the
exact solution. Since now a,b are constants, then the exact solution is

Yexact (x) = AeM¥ + Beto*

(3)

Where A;, are roots of characteristic equation of ¢y” + ay’ + by = 0. These are A = 2—: +

%\/az —4¢b. Hence

-a 1
A = ?a + E\/az —4¢eb
-a 1
Ay = ?a - E‘Vaz —4¢b
Applying initial conditions to (3). y(0) =1 gives
1=A+B
B=1-A

And solution becomes ., (x) = Ae™* + (1 — A) e"2*. Taking derivatives gives

yg‘xact (x) = A/\leAlx + (1 - A) AZEAZX

Using v’ (0) =1 gives
1=AL+(1-A)A,
1=AA =)+ A,
1-4,

A=
A=Ay

123



3.3. HW3

CHAPTER 3. HWS

1-A,
A=Az

Therefore, B=1 -

Yexact (x) =

b x
While the uniform solution above was found to be %((1 +a)e oF —e e

and the exact solution becomes

L= e (i 1%\
A=Ay A=Ay

_1-4A ot 4 (A= A7) —(1-1y) oo
-4, M- A,

Sl T PR (LS Sl I PO
A —Ap A=Ay

(4)

¢ Here is a plot

of the exact solution above, for ¢ = {1/10,1/50,1/100}, and for some values for a,b such as
a=1,b =10 in order to compare with the uniform solution. Note that the uniform solution
is O(e). As € becomes smaller, the leading order uniform solution will better approximate
the exact solution. At ¢ = 0.01 the uniform approximation gives very good approximation.
This is using only leading term approximation.

ClearAll[x, y]

eps=1/10; a=1; b = 10;

mySol =1/a ((1+a) xExp[-b/ax] - Exp[-ax/eps]);

sol = y[x] /. FirsteDSolve[{epsy"''[x] +ay'[X] +by[X] ==

% e (5Cos[5V3 x] +2V/3 sin[5V3 x])

> y[e] =

> y'[0] =1}, y[x], x]

Plot[{sol, mySol}, {x, @, 1}, PlotRange -» All, PlotStyle » {Blue, Red}, PlotLegends -» {"Exact", "approximation"},

Frame - True, FrameLabel » {{"y(x)", None}, {"x", Row[{"Exact vs. approximation for e
BaseStyle - 14, GridLines - Automatic, GridLinesStyle - LightGray]

Exact vs. approximation for € :%

1.0F
0.8f
0.6F

0.2F
0.0}

— Exact
— approximation

-0.2t L

0.2

ClearAll([x, y]
eps=1/50; a=1; b =10;

sol = y[x] /. FirsteDSolve[{epsy''[x] +ay'[x] +by[x] =

0.6

0.8

> y[@] =1,y'[0] =1}, y[x],

=", eps}l}},

X]

Plot[{sol, mySol}, {x, @, 1}, PlotRange -» All, PlotStyle -» {Blue, Red}, PlotLegends -» {"Exact", "approximation"},
Frame - True, FrameLabel » {{"y(x)", None}, {"x", Row[ {"Exact vs. approximation for e
BaseStyle - 14, GridLines - Automatic, GridLinesStyle - LightGray]

1
50

Exact vs. approximation for € :;_o

ey e e 5
* 25@"25’5\'5”‘726 /5 er—25—5x51x+256(—25~5v5)x+26 /5 ef—25¢5\5;x

T

T

T

— Exact
| — approximation

0.2

0.4

0.6

0.8
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ClearAll[x, y]

eps=1/100; a=1; b = 10;

sol =y[x] /. FirsteDSolve[{epsy''[x] +ay'[x] +by[x] =0, y[@0] =1, y'[@] =1}, y[X], X]

Plot[{sol, mySol}, {x, @, 1}, PlotRange -» All, PlotStyle » {Blue, Red}, PlotLegends -» {"Exact", "approximation"},
Frame - True, FrameLabel » {{"y(x)", None}, {"x", Row[{"Exact vs. approximation for e =", eps}]1}},
BaseStyle -» 14, GridLines -» Automatic, GridLinesStyle - LightGray]

1%99 59 ¢ -50-10V15 | x _ 17\/E eusede\rds ) x Seeuse.mv’ﬁ Jx o 17@ e(-50+10V15 ) x

Exact vs. approximation for € :WWE

< [ 1 — Exact
0.4} 1 — approximation

0.0 0.2 0.4 0.6 0.8 1.0

3.3.5 problem 9.15(b)

Problem Find first order uniform approximation valid as ¢ = 0" for 0 <x <1

ey’ + (x2 + 1) Yy —x3y =0 1)
y(0)=1
y1) =1

Solution

Since a (x) = (xz + 1) is positive for 0 < x <1, therefore we expect the boundary layer to be
on the left side at x = 0. Assuming this is the case for now (if it is not, then we expect not
to be able to do the matching). We start by finding v, (x).

Yout (X) = D €y = Yo + €y + €2y + -+
n=0

Substituting this into (1) gives

e(y(')’ +ey) + 2yl + ) + (x2 +1) (y{) +eyy + ey + ) -x3 (yo +eyy + ey, + ) =0 (2)

Collecting terms with O (1) results in

(22 +1)yh ~ 2yq

dyo X
ax " (@+1)”

3

This is separable.

d 3

W [ g
Yo (x2 + 1)

X
In |yo| ~fx—1+x2dx

Hence

V1 4 x2

Applying 3" (1) =1 to the above (since this is where the outer solution is), we solve for C

1
Ce2
~ —



3.3. HW3 CHAPTER 3. HWS

Therefore

\/E ez2
€1 + x2

Now we need to find 43*!. From (2), but now collecting terms in O (¢) gives

vy + (22 +1) y; - 2Py (3)
In the above yj is known.

And

v ) = \/Eer(x4+x2+3)

(1 + x2)2
Hence (3) becomes

(@ +1)y; - Py -y

2

2,5 (vh 4 22
(x2+1)y’1wx3y1—\/gxez (x +x5+3)

(l + xz)E

2

) 3 \/E 27 (x4 +x% + 3)
- myl "V 7

(1 + x2)2

I =

- x o 21 2 =2
Integrating factoris u = e (@) 2 gzt - (1 + x2)2 e 2, hence the above becomes

2

. 1242 )
%((l+x2)%e;yl)w—\/§(l+x); xe2(x +x7+3)

(1+2)
\/Exz(x‘1 +x? +3)
¢ (1+22)
Integrating gives (with help from CAS)
(1+x2)% szl(x)“—\/7f x* +x? +3dx
1 + x2
4 2
) _\/7‘[1_ 1+x2 3" (1+x2)2 1 +x2dx
2 3x 7x arctan (x)
o EP_4O+ﬂf+8@+ﬂY@ 8 ]+C1
Hence
x2 x2
2 ez 3x 7x arctan (x) ez
out( ) — .= - + — +C
¥ e@+ﬁﬁpl4@+ﬂf 8(1+x2) 8 ] 1@+ﬂﬁ

Now we find C; from boundary conditions y; (1) = 0. (notice the BC now is y; (1) = 0 and
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not 1, (1) =1, since we used y; (1) =1 already).

1

1
2 e2 3 7 arctan (1)) e2
- 1- + -9 =C
‘ﬁ 1( 41+1)7% 8(1+1) 8 ! !

1+1)2 1+1)2
1 1
2 e2 3 7 9 e2
-——[1-=+ tan(1)| = C;—
e\/E( 16 16 8arcan()) N
Simplifying
1
3 7 9 2
1-—+ ———arctan(l —
TRET 8arcan() \/5
2(5 9
Clz\/;(:l—garctan(l))
2(5 9
Cl—\/;(:fg—z”)
= 0.31431
Hence

NI

Y~ - 2_ce? x - * L —2arctan(x) +\/E(§—2 )e—
“J(1+x2) 4(1+x2)2 8(1+x2) 8 4 3 (1+x2)

~ %L §—2n)— X - 3« + 7 —2arctan(x)
a1+2) 8(1+2?) 8

N\/gi E—zn—x+ 3 __ +2arctan(x)
e Ja+v)t 41+22) 8(1+a2) 8

Hence

yout (x) yout + Sy

3x 7x 9
-x+ - + — arctan (x)

em \[/7“2[4 2" 4(1+x2)2 s(+x) 8

+0 (82)

2 6? 1+ E - 271 X+ x 7 + garctan @ ||l+0 (52)
e VI +22 4 32 si+2) 8(1+2?) 8
(3A)

Now that we found 3 (x), we need to find ™ (x) and then do the matching and the find
uniform approximation. Since the boundary layer at x = 0, we introduce inner variable
= gip and then express the original ODE using this new Variable We also need to

determine p in the above expression. Since j—z = Z—ZZ—i then j—z dg“’ 7. Hence di = e‘F’%
> dd
dx®  dxdx
d d
= P — P
[l
2
= g_zpd_
dé?
Therefore Z ‘ZPdéz and the ODE ey” + (x + 1) ¥’ — x*y = 0 now becomes
dy dy 3
-2 - -
e PE + ((56”) +1) p£ -(&ePy'y=0

d? d
el‘zf’d—; + (ézep + s"”) % - &Py =0

The largest terms are [el‘zf’, e’ ], therefore matching them gives p = 1. The ODE now
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becomes
d*y dy
-1 2 -1 3,3, _
& @4‘(584‘6 )E—ésy—o

Assuming that

Yin () = D €™ = Yo + €Yy + €2y + -+
n=0

And substituting the above into (4) gives

(4)

el (y()’ + eyl + ) + (525 + s‘l) (y() +eyh + ) — &3¢3 (yo + ey + ) =0 (4A)
Collecting terms in O (e‘l) gives
Yo = Yo
Letting z = y;, the above becomes
dz
T
d
L
z
Injz| - =& +C4
z - Cie¢
Hence
dyO —-&
% C1€
Yo - C1 fe_‘fdcf + C2
- —Cle_5 +C, (5)
Applying boundary conditions i (0) =1 gives
1 = _Cl + C2
C2 = 1 + Cl
And (5) becomes
Yo (&) » =Cie e + (1 +Cy)
~1+C(1-¢7) (6)
We now find . Going back to (4) and collecting terms in O (1) gives the ODE
el
This is the same ODE we solved above. But it will have different B.C. Hence
it~ —Cae™ +Cy
Applying boundary conditions yi" (0) = 0 gives
0= —C3 +Cy
C3 = C4
Therefore
yi' = ~Cse™ + Cs
- C3 (1 - E_é)
Now we have the leading order y™
Y (E) =Yg + eyt
=1+C(1-¢%)+eCs(1-¢%)+0(e2) (7)
Now we are ready to do the matching between (7) and (3A)
lim1+Cy(1-¢¢)+eCy(l-e¢) ~
lim1+Cy(1-e)+eCa1-e)
2
y 2 ez 1+ 5 9 . 3x 7x +9 ——
im4/- el=—=mn- - — arctan
20 ¥ e V1 442 4 32 ai+2) 8(1+2?) 8
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Or
2 2
1+C+eC \/El' ez + 2 lim ez >_ + 5 & + 0 arctan (x)
eCy ~ 4/=lim —elim - ——=T-X - -
! 3 e x>0 /1 + y2 e x=0+/1+42(4 32 4 (1 " X2)2 8 (1 + xz) 8
v
But lim,_,q \/% — 1, lim,_, 4(:—#)2 — 0 lim,_,q 8(17—:(2) — 0 therefore the above becomes
1+C1+SC3 \/7 \/7 (Z_in)

Hence

2
1+C1:\/;

This means that
yin &) ~1+C; (1 - e“z) +eCy (1 _ e—é)

~1 +[\/g—1)(1 —e¢) +€\/E(Z - 32271)(1—e—5)
Therefore

Yuniform(x) ™~ yi" (5) + y"”t (x) = Ymatch

~1+[\/g—1](1—e—5)+e\/g(2—39—2n)(1—e—5)

xZ
2 ez 1+ 5 9 N 3x 7x +9 —
- - —T—x - — arctan (x
e\1+x2 4 32 4(1+x2)2 8(1+12) 8

(Ve (mn)]

Or (replacing & by f and simplifying)

2 2(5 9
~ + —- — R _—_
Yuniform(x) 1 [\/; 1} (1 e ) e ((_\/7 (4 3 )

2
+ 2_c¢ 1+ >_ X+ 3 7 +9acta (%)
- el--—=mn- - — arctan
€ V1 + x2 4 32 4(1+x2)2 8(1+x2) 8

Or

2 o« o [2(5 9
Yuniform(x) ™~ — Z€L’+€~—e € 1_3_2
2

2 e2 14 5 9 N 3x 7x N 9 arctan (x)
- ———T-X - —arctan
eviv2| (%2 T ye) 8(1+a?) 8

To check validity of the above solution, the approximate solution is plotted against the nu-

merical solution for different values of ¢ = {0.1,0.05,0.01}. This shows very good agreement
with the numerical solution. At ¢ = 0.01 the solutions are almost the same.
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ClearAll[x, y, €];
€ =0.01;

2
r= J—;
Exp[1]

ode=ey''[x]+ (X*+1)y'[x] -x’y[x] =0;
sol = FirsteNDSolve[{ode, y[O] =1, y[1] =1}, y, {x, 0, 1}];
pl = Plot [Evaluate[y[x] /. sol], {x, @, 1}];

mysol[x_, € ] :=

} ) Exp[ <
-r‘Exp[—x] +Exp[—x] -sr‘(;-%n) +r£ (1+e[%-%7r-x+4(:’—)(2)2-8(:—)(2)+§ArcTan[x]]];
€ € + X + X
\/11—X2

p2 = Plot [ {Evaluate[y[x] /. sol], mysol[x, €]}, {x, @, 1}, Frame -» True, PlotStyle » {Red, Blue},
FrameLabel -» {{"y(x)", None}, {"x", Row[ {"Comparing numerical and apprxoimation, using € = ", Nee}]}}, GridLines - Automatic,
GridLinesStyle - LightGray, PlotLegends -» {"Approximation", "Numerical"}, BaseStyle - 14, ImageSize - 400]

—
X
=
= >

Out[145]

—
<
=
Out[153]= >

—
<
=
Out[161]= >

1.00}

0.98

0.96}

0.94

0.92f

0.90

0.88}

0.86

1.00
0.98
0.96
0.94
0.92
0.90
0.88
0.86

1.00
0.98
0.96
0.94
0.92
0.90
0.88
0.86

Comparing numerical and apprxoimation, using € = 0.1

— Approximation
— Numerical

Comparing numerical and apprxoimation, using € = 0.05

T T T T T T T =

— Approximation
— Numerical

LB L e e s B e e B L B

©
o

Comparing numerical and apprxoimation, using € = 0.01

T T T T T T T T T T ]

f 1 —— Approximation
; 1 — Numerical

I 1 1 1 1 I

0.0
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3.3.6 problem 9.19

Problem Find lowest order uniform approximation to boundary value problem
ey” + (sinx)y’ + ysin (2x) =
y(0)=m
y(n) =
Solution

We expect a boundary layer at left end at x = 0. Therefore, we need to find Yy (&), (x),
where ¢ is an inner variable defined by & = giﬂ

left right
boundary boundary
layer layer
I
! |
| — |

¢

' |
' |
| outer region

|
' |
| 1

LN

matching at these locations

Finding y™ (&)
At x = 0, we introduce inner variable & = 1 and then express the original ODE using this
new variable. We also need to determine p in the above expression. Since Zi Z{ ff then
dy _dy Ly
prialrd P. Hence — _Epd(
> dd
dx®  dxdx
= g‘Pi g_pi
aé aé
2
ag?

2
Therefore ZTZ e T Z and the ODE ¢y” + (sinx)y’ + ysin (2x) = 0 now becomes

dzy dy

“2p__J i PY) ¢ P —L i Py =

ge Ji2 + (sin (&eP)) e ac +sin (2&eP)y =0
2

el=2 ng + (sin (E€P)) €™ pj—g +sin (2&eP)y =0

3
Expanding the sin terms in the above, in Taylor series around zero, sin(x) = x — = + -+

gives .
@Y ( (&eb)’ )_y ( ety ]
+ | &eP - + - P 2&eP +-ly=0

d&? 3! d& 3!
12 _ . =
pdéz (5 ‘ + ) ac (25 3 + y=0
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Then the largest terms are {51‘27",1}, therefore 1 -2p =0 or

1
P=3

The ODE now becomes

Y+ (5— il + ~-~)y’ +(25\/_' (2:¥%) + ]3/ =0

3!

Assuming that

yleft (x) = Ee”yn =yo+ ey + Yy + -

n=0

Then (1) becomes

3

(2ve)

(y6/+€yi,+ )+(5_% + ) (y6+€y’1 + )+[25\/E_ 3 + "'](]/0+€y1 + )

Collecting terms in O (1) gives the balance

vy (&) ~ =&y (&)
Yo (0)=m

Assuming z =y, then

_&2
Therefore y; ~ C1e 2 . Hence

£
Yo (&) ~ le ez ds+C,
0

With boundary conditions vy (0) = 7. Hence
T = CZ

And the solution becomes
. -
vt (&) ~ Cq f e2ds+m
0
Now we need to find y** (x). Assuming that

YU = L€ = Yo+ ey + 7Y + o
n=0

Then ey” + (sinx)y’ + ysin (2x) = 0 becomes
€ (yf)’ +eyy + ) + sin (x) (y6 +eyp + ) + sin (2x) (yo +eyp + ) =0
Collecting terms in O (1) gives the balance
sin (x) v (x) ~ —sin (2x) yo (x)
J .
dyo _51‘n (2x)dx
Yo sin (x)
sin (2x)
In Jyo| ~ _f sin (x) dx
~ f 2sinxcosx
sin (x)

X

~ —f2(zosxdx

~ =2sinx + Cs

132
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Hence
ygut (x) ~ Ae—ZSinx
Yo(m) =0

Therefore A =0 and 33" (x) = 0.Now that we found all solutions, we can do the matching.
The matching on the left side gives

(11_{{)10 yz‘n (5) — }Cl_r)% yout (x)

£ 2 _
lim C, f €2 ds + 7 = lim Cse™251¥
0

-0 x—0

T
Jlim clf eTds+7=0 3)
—00 0

But

¢ =2 T 3
fo e?2 ds—\/;erf(ﬁ)

And lim,_,, erf(—) =1, hence (3) becomes

v
Cl\/§+ﬂ:0
2

C1:—T( —
Tt

= -\2n (4)

Therefore from (2)

) & =2
Y () ~ -2 f e T ds+7 5)
0
Near x = m, using 1 = HS—_px Expansion y™ (17) ~ Yo (17) + €y (17) +0 (82) gives p = % Hence

O(1) terms gives

vi (1) ~ v (n)
Yo (0)=0
n -2

yi (17) ~ Df ez2ds
0
And matching on the right side gives
lim 3™ (17) = lim 1" (x)

— 2
lim D e%ds =0
=c0 0
D=0 (6)
Therefore the solution is
y(x) ~ yin (&) + yin (77) T ymatch

& =2

~—V27If e2ds+m+0

0

~ \2m Ef(f)

~ T — nerf(\/%_g) (7)

The following plot compares exact solution with (7) for ¢ = 0.1,0.05. We see from these
results, that as ¢ decreased, the approximation solution improved.
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In371= ClearAll[x, €, y]

mySol[x_, €] :=Pi-PiEr'F[ -l ],‘
2¢

€ =0.1;

ode=ey'"'[x] +Sin[x]y'[x] +y[x] Sin[2x] == O;

sol = NDSolve[{ode, y[@] =7, y'[n] =0}, y, {X, 0, n}];

Plot [ {mySol[x, €], Evaluate[y[x] /. sol]}, {x, @, Pi}, Frame - True,
FrameLabel » {{"y(x)", None}, {"x", Row[{"Numerical vs. approximation for e=", €}]}}, GridLines - Automatic,
GridLinesStyle - LightGray, BaseStyle -» 16, ImageSize -» 500, PlotLegends -» {"Approximation", "Numerical"},
PlotStyle -» {Red, Blue}, PlotRange -» All]

Numerical vs. approximation for €=0.1

T T T T

X 5l — Approximation
oufz= = 2T | pp .
L — Numerical

00 05 10 15 20 25 30

Numerical vs. approximation for €=0.05

3.0F |

2.0f |

x 1 5: — Approximation
= 1.9¢

Out[54]= .
— Numerical

0.5F

0.0 0.5 1.0 1.5 2.0 25 3.0
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3.3.7 key solution of selected problems
3.3.71 section 9 problem 9

Problem 9.9 asks us to use boundary layer theory to find the leading order solution to the initial
value problem ey”(z) 4+ ay'(x) + by(z) = 0 with y(0) = 3/(0) = 1 and a > 0. Then we are to compare
to the exact solution. The problem is ambiguous as to whether a and b are functions or constants.
For clarity’s sake, we assume a and b are constants, but all the following work can be generalized for
nonconstant a and b as well.

Since a > 0, the boundary layer occurs at = 0, where the initial conditions are specified. We set
x = e£&,! and then in the inner region,

20(6) + 24h€) + byn(€) = . R

Thus, to leading order, y!’ (£) ~ —ayl,(£), which has solution 3;,(¢) = Cy + Cie™*. Solving for Cy and
C1, we see that y(0) =1 = Cy+ C; =1, and

Y@ =1= ¢y =¢= —aCi=¢c = C,=—¢/a=0(e).
=0 £=0

This means that Cie™% = O(e) shouldn’t appear at this order in the expansion, and C; = 0. We
should throw this information out because we have already thrown out information at O(g) in solving
the equation, and we have no guarantee that the O(e) value for C} is actually correct to O(g).

So there is no boundary layer at leading order! The inner solution yi,(z) = Cy = 1 does not change
rapidly, and it will cancel when we match, just leaving the outer solution. This is okay and happens
occasionally when you get lucky.

In the outer region, we have Yoy ~ —%yout, SO Your(x) = Cebz/a 4 O(e). Matching to the inner
solution, C' = 1, 50 Yunitorm (z) = €*/* + O(). We note that ¥}, (0) = —2 # 1 in general.

Although the problem does not ask for it, we can also go to the next order in our asymptotic
expansion. And even though no boundary layer appeared at leading order, one will appear at O(g).

Going back to the inner region, let yi,(£) = Yo(€) + eY1(€) + O(e?). We already computed that
Yo(€) = 1. Now looking at (1) at O(1), Y//(€) +a¥{(€) +bYp(€) = 0 — Y{'(€)+a¥{(€) = b. Solving,
Y1(€) = Cp 4 C3e — L& We have initial conditions Y1(0) = 0, but since 3/(0) = 1 was not satisfied,
we note that ¥/(0) = 1. Thus, C; + C5 = 0 and —aC3 — 2 =1, so

1 b 1 b
Os=———-— and Co=-C3=-+—.
a a a a
Therefore,
Yn(§) =1+¢ 1,2 (1—e) - 95 +0(e?)
" a a2 ’ a ’
so

ac

Yn(z) =1+¢ ((2 + a%) (1 el — Qg) L OE).

Turning to the outer solution, let yout(z) = yo(x) + eyi(x) + O(e?). We already found that yo(z) =
e~b#/a_ At order €, the outer equation reads:

b 1 —bx/a
Yo (%) + ayi (@) + byi(2) = 0 = yi(2) + —wn(@) = — e/,

"'We know that we can use ¢ instead of ? for some unknown constant p because a is positive near zero, and p # 1 only
occurs when a(z) — 0 at the boundary layer.
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Therefore,
(x) = Coetole — Zetale
a

and .
Your () = 70/ 4 ¢ (<C4 - a) e*bz/“> + O(£%).
Now we match. As x — 0+, the outer solution goes to
Yous(x) ~ 14 Cye + O(e?),

while as £ — oo, the inner solution approaches

a a?

%4m~1+(1+b)5+0@%

where I have cheated slightly.? Matching,

and thus,

1 b x 1 b
—bx/a —bx/a —ax/e 2
yuniform(x) =e€ / +e (((a + (12> - a) € fa _ (a + a2> (& / ) + 0(8 )

Let us now graphically compare the asymptotic solutions accurate to O(1) and O(e) with the exact
solution:

1 —(a a?—4be/e)x/2 —(a/e+Va?—4be/e)x/2 —(a/e+VaZ—dbe/e)x/2

o (8) = e (—ae I VETRER]2 _ el R 12 4 /T Tl ,
2v/a? — 4be

_~_a67(a/57\/a274b5/5)x/2 + 2€ef(a/67\/a274b5/5)93/2 + mef(a/afJM/a)x/Z) ]

For simplicity, take a = b = 1.

2T ignored the term which was linear in &, which blows up as &€ — co. This term came from ignoring the outer expansion,
which changes on the same order, and is called a secular term. This occurs because we ignored the outer expansion, as is
conventional when working with the boundary layer, but the outer solution, when Taylor expanded about zero, matches
this term exactly at order z, and so we do not have any problems. The outer solution changes at a slow rate compared to
&, and so the appearance of two time scales in the boundary layer causes problems with the match (which I swept under
the rug by cheating). This problem is therefore far better suited for multiscale methods, which form the subject matter
of Chapter 11.
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For the first graph, e = 0.1:

0.0 0.2 0.4 0.8 0.3 1.0

The blue curve represents the exact solution, the orange curve the uniform solution to leading order, and
the green curve the uniform solution accurate to O(e). We see that the differences between the curves
remains small always, and that the higher order approximation is much closer to the exact solution. The
leading order solution never differs by more than about 0.1 = ¢, while the next order solution differs
from the exact solution by a much smaller amount (approximately O(e?)).

Now let € = 0.05:

1.0

0.8

0.4 -

0.0 0.2 0.4 0.8 0.8 1.0

The color scheme is the same as before. We notice that the same qualitative observations from before
hold for this graph as well. The difference between the orange and blue curves is even half as much, in
good agreement with our O(g) error estimation. This also validates our conclusion that the boundary
layer only appears at O(e). It is somewhat more difficult to verify pictorially that the error for the green
curve is O(g%), but it is also clear that the error in this plot is less than in the first plot, and by a greater
factor than two.

137




3.3. HW3 CHAPTER 3. HWS

3.3.7.2 section 9 problem 15

@}

/ E){ﬂvm‘ptﬂ A [
L@lté Mﬂl’ %0 ‘Hu /wn’olams %K
83 + (X&ﬂ’)g - )g%wo Ej((a):g/(,-)cj
FKP{ﬁI’ o Iou-nc[agr Za,?/(/ U~ X=0, [‘/Lzbf
_ = / v Y '
g gy
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3.3.7.3 section 9 problem 19

Here is an outline for the solution to BO 9.19.

The boundary value problem is

ey’ + sin(z)y’ + 2sin(x) cos(z)y =0, y(0)=m, y(r)=0

using sin(2z) = 2sin(x)cos(z). Our heuristic argument based on the 1D advection-
diffusion equation suggests a boundary layer on the left at x = 0. An outer expansion
Yout(z) ~ Yo(2) + ey1 (z) + O(€?) gives

o) : gy ~—2cos(x)yo

with solution

Yo(z) ~ Aexp[—2sin(z)]
which cannot satisfy y(7) = 0 unless A = 0 (see below).

For the inner solution near x = 0 let & = x/e?. The expansion yi, (&) ~ o (&)+ey1(£)+0(e2)
leads to p = 1/2 and

O(1): yu (&) ~—€y,(§), y(€=0)=m
with solution

3
Yo(§) ~ 7+ C/O exp(—t2/2)dt

¢/V2 P
Yo (&) ~7T+\/§C/O exp(—sz)ds:7r+\/§C§erf(§/\/§).

On the other side near =, let n = (7 — z)/eP. The expansion yi, (1) ~ yo(n) + ey1(n) +
O(€?) leads to p = 1/2 and

OM): yg(n) ~nyo(n), yn=0)=0
using sin(m — €/2n) = sin(e'/?n) ~ /2y for ¢'/?n — 0. Then
7
o) ~ D [ exp(e? /2t
0

Now matching

gll)rgc Yin (5) = igr[l) Yout (I)

nlinc}o yin(n) = zh_I)I}r yout(x)

gives A= D =0 and C = —v/27. Thus we obtain

y(z) ~ 7 — m erf(z/V2e).
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3.3.7.4 section 9 problem 4b

NEEP 548: Engineering Analysis 11 2/27/2011
Problem 9.4-b: Bender & Orszag

Instructor: Leslie Smith

1 Problem Statement

Find the boundary layer solution for

e + (@2 + 1)y —2Py=0 (1)

2 Solution

We can expect a boundary layer at x = 0.

2.1 Outer Solution

(2 + 1)y, — 2y, = 0

3
// i f—
yo_<x2+1>yo*0

This is in a form that we can find an integrating factor for,

C X 1 2 2 2 1/2, —x2/
= - = —— — = (x - 0T /2
1L = exp </ 25 1dx) exp { 2 (In[x* +1] — x )} (x*+1)"=e

— [po(a® +1)7 27/ =0

Yo = C1 (;1:2 + 1)’1/26”2/2

B.C.: y(1)=1 = 1=0C1(2)"Y2e!/?2 — () = /2e"'/2. Therefore, the outer solution is:

Yo = \/5671/2(332 + 1)71/26’,%2/2 (2)
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2.2 Inner Solution

Define £ = x/e such that when z ~ ¢, E~1

Oy _ dydg
Or  df dx
Py _1dy
02 €2de?
Plug this into the D. E. to get,
1d7y 2 dy Y 20
ed§2+€d§+ed£ ¢ =0

The let the inner solution take the form,

Yin = Yo(§) + ey1 (&) + y2() + ..

Balance terms, order by order,

1

0(—): Yo + Yo =0
€
O(1):  yi+y1=0

To the lowest order,

Yin ¥ =0 let 2=y,

= Inz=—-£+Cy
Iny., = —&+Cy
Yin = Cze™*
Yin = C3e* + Cy

We can solve for one of the constants by imposing the boundary conditions, y;,(0) =1 = 1 =

—Cs3+Cy = Cy=1+0Cs

ym:1+0(176_5)

The other constant we get by matching the ‘outer’ and ‘inner’ solutions:

(4)
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lim y, = lim y;,
z—0 {—o0

lin%) V2e 12 (2% + 1)71/2€‘T2/2 = lim [1 +C(1 — &%)
z—

£—o00

V2e 2 =1+4+C
= C=+V2e12-1

Note: Ymaten = \/56_1/2

Ytot = Yin + Yout — Ymatch (5)
Yiot = \/5671/2(1,2 + 1)71/261:2/2 + efx/c(l _ \/5671/2) (6)
3
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3.3.7.5 section 9 problem 6

Here is an outline for the solution to BO 9.6.

Write the equation as

Y=+ -2y+1, y(1)=1

and we want to solve this on 0 < z < 1. For the outer solution, the expansion yout(z) ~
Yo(x) + ey1 (x) + O(€2) gives

0(1) : y(/) ~ (yo - 1)27 yo(l) =1

O(e): yi~2yotn +yo2 > —=2y1, 31(1) =0
with solutions

Yo(2) ~1, yi(z) ~1—a”!
valid away from zero. So Yout(x) ~ 1+ ¢(1 —271) + O(e2).

For the inner solution let & = z/¢P. The expansion yout(€) ~ Yo (&) + €y1 (€) 4+ O(€?) leads
to € x € (so we take & = € for convenience). The biggest terms are:

O(e™h): y,~yle?
with solution

yo(é) ~ 5(1 - Ag)il'

Now matching
lim y,(§) + O(e) = lim yo () + O(e)
§—o0 z—0
. _ —1 1
513205(1 AE)T + 0(e) ili»nol + O(e)

lim —A™ '+ 0™ ) + O(e) = ,lii% 14+ 0(e)

£—00
gives A = —1 with matching region ¢ < z < 1.
The next-order problem is
O(1): yy ~ys+2y0y1& > = 2yo + 1.
Use y,(§) from above and the integrating factor method to find

y1() ~ €1+ 62+ 01+ €)%

Now matching
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lim y,(8) + ey1 (€) + O(e”) = lim yo () + ey (z) + O(¢?)

£—o00

Jdim £(1+ O '+ e<cg2(1 +6)72 -1+ 5)2> +0(e%) = lim 1+ e(1 - xl) +0(€?)

51350 Tlf_l - €<C’§2(1 +&6)2 -1+ 5)2) +O0(?) = lim 1+€— ; + O(€%)

lim 1 — ¢4+ 0(E2) +eC+ 0 1) +0(?) = lir% 14+e— 5 + O(é?)
z—

£—o0

and so we choose C' = 1.
Question for you: what is the matching region? (I think €'/? <« z < 1). Is this correct?

Now we form the uniform approximation ¥ ~ ¥in + Yous — Ymatch + O(€2):

y~ltel—a ) +E(1+67" +e<£2(1+5)2 —5(1+£)2> - (1 +e— 5) +0(e?)

with & = x/e and simplify. Notice that there is no singularity at = 0 the solution is
uniformly valid on 0 < x < 1.

More questions for you: Does the solution above satisfy the initial condition y(1) = 17
If not, can you add an O(€?) correction so that y(1) = 1?7 Will you still have a solution
uniformly valid to O(e?)?

I encourage you to make plots so that you can visualize the solution!
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3.4 HWH4

3.4.1 problem 10.5 (page 540)

problem Use WKB to obtain solution to

ey +a(x)y +b(x)y=0 (1)

with a(x) >0,y (0) = A,y (1) = B correct to order ¢.
solution
Assuming

1 (o)

y(x) ~ exp (— ), "8, (x)) 5—0

5n:O

Therefore

v 0~ 5 505 wen 5 30, )
n=0 n=0

1o 1 1 2N
v @~ 5 nz:;) 8"S! (x) exp (5 Zf) o"S,, (x)) + (5 ,Zf) 5"S;, (x)) exp (5 Zﬁ 5"S,, (x))

Substituting the above into (1) and simplifying gives (writing = instead of ~ for simplicity
for now)

5"S! (x) +b =0

Onlm

€ [— D018y (%) + 5"5' (x) }

~ E 8"Sy (%) + — (E 8"y, (x) E o"S;, (x))

Expanding gives

5", (x) +b =0
0

Oﬂlm

g (S5 + 0687 + 625y + )
+ % ((Sh+ 068 + 628 +-+-) (Sp + 8S; + 628 + ---))

ShH+0S+0%Sh+ ) +b=0
+5( )

Oﬂl&

Simplifying

(gsg + €Sy + 65y + )

2
(52 (s6) + 38 (ShS7) + ¢ (25655 N (51)2) N )
+ (gsg) +aS| +adS; + ) +b=0 (1A)

2
The largest terms in the left are % (56) and gSf). By dominant balance these must be equal

in magnitude. Hence é = O(%) or g = O(1). Therefore 6 is proportional to ¢ and for

simplicity ¢ is taken as equal to 6, hence (1A) becomes
(S + &Sy + 25y + -+
# (e (50)" + 2558 + ¢ (2583 + (51)) + )
+ (ae‘156 +aS} + aeSh + ) +b=0
Terms of O (5‘1) give
(85)° +as5 =0 )
And terms of O (1) give
Sy +25,51+aS1+b=0 (3)
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And terms of O (¢) give
2
2548y +aSy+ (S5) +S7 =0
2
(s7)" + sy

2 sy

(4)
Starting with (2)

Sy (Sp+a)=0
There are two cases to consider.

case 1 S; = 0. This means that Sy (x) = ¢y. A constant. Using this result in (3) gives an
ODE to solve for S; (x)

aS1+b=0
b
e
X b (t)
S ~—f AP
! oa®) !

Using this result in (4) gives an ODE to solve for S, (x)

) (_tw)
Sé _ a(x) a(x)

a(x)

) (@ ~ b(x)u'(x))
20 \dw 2@
- a(x)

PR @l (@) | o @bk)
_ 20 20 2(x)
- a(x)

a(x)b’ (x) - b* (x) —a’ () b (x)

- a3 (x)

Therefore

Y g (OB (H) = (t) —a’ () b(t)
S, = f dt+c
o a3 (t) ?
For case one, the solution becomes

1 (o)
@)~ exp (3 0, (x)) 50

1
~exp|-
e

(SO (x) + €51 (x) + €25, (x))) e — 0"

~ exp %SO (x) + 51 (x) + &Sy (x))

x x (1) — B2 () —
~ exp %co—f @dt+c1+ej; ahb - ) b(t)dt+cz)

o a(t) a(t)
b (t) a()b’ () -b>(t)-b(t)
~ Ciexp (—J; mdt +¢€ j: &0 dt) (5)

1
Where C; is a constant that combines all ez©""2 constants into one. Equation (5) gives
the first WKB solution of order O (¢) for case one. Case 2 now is considered.

case 2 In this case Sj = —a, therefore

X
soz—f a (t)dt + ¢
0

Equation (3) now gives
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Sy +25,S1+aS1+b=0
—-a’ —2aS7+aS]+b=0

-aSi=a"-b
b-a

S) =
1 a
b a
Si=—--—
170 a4

Integrating the above results in
* b (t)
S L
= 7o n(a)+c
S, (x) is now found from (4)

2
(S5)" +sy
Sp=-—tf o
(a + ZS(’))
(b—a’)2 (b_a')’
+
_ a a
(a+2(-a))
R+@)-2ba’ | V-a"  ab-@)
- _ a? + a a?
—a
D+ (@) -2ba’ +ab’ - aa” - a'b - ()
= po
_DP?-2ba’ +ab' —aa” - a'b
= po

Hence

g = fx P -2b6)a’ () +a)b () —a(t)a” (t)—a’ ()b () b+ c
2= J a3 (t) 2
Therefore for this case the solution becomes

1 [o¢]
Yz (x) ~ exp 5 E o"S, (x)) 5—0
n=0

~ exp % (SO (x) + €51 (x) + €25, (x))) e— 0"

~ exp %SO (x) + S1 (x) + &Sy (x))

Or
-1 Y b (#)
Yz (x) ~ exp (? fo a(t)dt + co) exp (fo mdt —1In(a) + cl)
YR (=2 a’ ) +a()b () —at)a” (t)—a’ ()b (b
exp (e j(; 20 dt + cz)

Which simplifies to

C, -1 *b(t) P2 (t) =2b(Ha () +at)l (t)—a(t)a” (t)—a’ (t)b(?)
2 () ~ 7exp(?fo a@at+ [ [ dt)

. mdt+e . 20

(6)
Where C, is new constant that combines ¢, c1, c, constants. The general solution is linear
combinations of yq,y,

v (x) ~ Ay (x) + By, (x)
Or

< b (1) ()Y ()~ B2 () — a’ (B)b(t)
L mdt + E'J(‘) a3 (t) dt)
C o 00, SR (1) 2 () (1) + a®)b () —al)a” B —a Db )

2 (Tf a(t)dt+f0 f dt)

+—=—exp —dt+¢
a 0 a(t) 0 a3 (t)

y(x) ~ Cyexp (—
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Now boundary conditions are applied to find C;,C,. Using y(0) = A in the above gives

Cy
A= C1 + W (7)

And using y (1) = B gives

1b() La®)b () -b* () -a’ ()b (D)
Bzclexp( j;a(t) +£j; &0 dt)

C, -1 ! ( ) L) -20()a’ ) +a®)b (H—a@®)a” () —a’ ()b ()
+mexp(?£ ﬂ(t)dt‘i'f () +€f a3(t) dt)

Neglecting exponentially small terms involving e < the above becomes

B=C; eXp( f ﬁdt) ( fla(t)b’ () -0 (t) -’ (t)b(t)dt)
0

(t) a(t)
C, (fl b(t) ) ( fl P -2000a’ () +a®)b ) —a@®)a’ (t)—a (t)b(t) )
+ — —dt dt] (8
a0 P\, 2 : =0 ©
To simplify the rest of the solution which finds Cy, C,, let
1b(t)
Z] = —dt
! f a (t)
f a(t)b' (1) - () -a’ (f)b(t)
=27, =10
L2 (20 a’ () +a(t)b' (t)—a(t)a” (t)—a" ()b (t)
23 = f 3 dt
0 a’ (t)
Hence (8) becomes
B = Cie™#1e%2 + &ezle“’Z3 (8A)
a(1)
From (7) C; = a(0) (A — Cy). Substituting this in (8A) gives
o ey 1(0)(A=Cy)
B — C1€ Zle°22 . (1) 1 21 823
o ey (0) a(0)
= Cie #1162 + —— Ae*1e%8 — ——=(C¢*1e"3
a (1) a(t)
_ a(0) ) a(0)
B=Cyle e - D2 reens | + AT r1pe%s
' a (D) a (1)
a(0)
o _ B-A (Dezle‘%
= a(0)
e 216822 ( )ezleé23
_a(l)B- Aa(0)ene* ©)
T a(l) e #etz2 — g (0) eP1et7
Using (7), now C, is found
A=Cy+ 20 O)
a(1) B - Aa(0)e*1e=3 C,
= +
a(l)e#e?2 — g (0)e%ef? g (0)
3 a (1) B — Aa(0)e*1e%3
C2=0a(0) (A a(l)e2e%2 — g(0) 3216523) 19

The constants C;,C,, are now found, hence the solution is now complete.

Summary of solution

y(x) ~ Cyexp (— . mdt + ¢ A0

+&eXp(_?1 fx“(t)dHf" mdt f" b2 () - 2b(H) a’ (t)+a(t)b'(t)—u(t)a”(t)—a’(t)b(t)dt)
0

fx b(t) fx a)b () =b>(t) —a’ (H)b(t) dt)
0

a(x) (t) a3 (t)
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Where
C = a(1) B—- Aa(0)e*1e=
L (1) e 21et22 — a (0) e71e%8
a(1) B— Aa(0)e=1e=
C,=a(0)[A-
2=4a( )( a (1) e ?1et?2 — g (0) e?1e%
And

1b(t)
Z1 = fo mdt
a(t)b’ () -b*(t)-a’ (t)b(t)
2= fo 0
L2 -2b(t)a’ () +a ()b (t)—a(t)a” (t)—a’ () b(t)
Z3 = j[; 70 dt

3.4.2 problem 10.6

problem Use second order WKB to derive formula which is more accurate than (10.1.31)

for the n'" eigenvalue of the Sturm-Liouville problem in 10.1.27. Let Q(x) = (x + n)4 and
compare your formula with value of E, in table 10.1

solution

Problem 10.1.27 is

Y +EQ(Xx)y=0
With Q(x) = (x + 7'()4 and boundary conditions y (0) = 0,y (7) = 0. Letting
1
E=-
€
Then the ODE becomes

ey’ (x) + (x + n)4 y(x)=0 (1)
Physical optics approximation is obtained when A — oo or ¢ — 0*. Since the ODE is linear,

and the highest derivative is now multiplied by a very small parameter ¢, WKB can be
used to solve it. Assuming the solution is

y(x) ~ exp (% ;:;J(S”Sn (x)) 5—0
Then

1 & 1 &
Y (x) ~ exp (5 D.0"S, (x)) (5 D, 0ms;, (x))
n=0 n=0
17 1 - 61’[5 1 - 61’[5/ 2 1 - 6”5 1 . 6115//
y (x) ~ €Xp (S,E) n(x)) (Sngo n(x)) + exp (Syg n(x)) (Sé n (X))

Substituting these into (1) and canceling the exponential terms gives
2
1 (o8]
€ ((5 D6, (x)) E Sy, (x)] ~=(x+mn)
n=0

= (S +0S; + 6255 + ---) (Sp + 6S; + 62 + ---) + g (g +6S¢ + 8255 + ) ~ = (x + m)*

o]

2 2
. ((56) +5(2518) + 02 (25655 + () ) n ) # 2 (SY 4057 + 0287 4 ) ~ = (x4
2
(55 (50)" + 5 (25155) + e (25483 + (5) ) + ) + (556 + 25 + ) N )
The largest term in the left side is 5 (S’) . By dominant balance, this term has the same

order of magnitude as right side — (x + 7)*. Hence 6? is proportional to ¢ and for simplicity,
6 can be taken equal to /¢ or

6=+e
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Equation (2) becomes
((56)2 +VE(255p) + ¢ (25655 N (56)2) n

Balance of O (1) gives

(S6) ~ -G+ m)*
And Balance of O (\/E) gives

25155 ~ =Sy
Balance of O (¢) gives
28485 + (S1)" ~ -8y

Equation (3) is solved first in order to find S (x). Therefore

Sy ~ i (x + 1)
Hence

So (x) ~ iij:(t+n)2dt+ci
x

t3
~ ii(— + 7t + nzt) +C=*
3 0

3
x
~iz(§+nx2+n2x)+ci

S1 (x) is now found from (4), and since S = +2i (x + 1) therefore

15//
Sh~—=0
Vo o2s;
1+2i(x+7)
2 4i(x + 1)
1
X+ T
Hence
x ]
S;(x) ~— —dt
Ot+7'(
T+ x
w2
T

S, (x) is now solved from from (5)
2
2585 +(S7)" ~ -SY
2
)
2 28},

. 1
Since S| ~ ——, then S ~ —— and the above becomes
X+ 2

(x+71)
S (_;)Z
(x+1)? xX+7

%2 2 (ii (x+ 7'()2)
1 1
@’
+2i (x + 7)°
~ +] 1
T (x+n)t

Hence

SZNil(j; (t+n) dt)+k—

( )+ki
(7Z+x)
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Therefore the solution becomes

y (@) ~ exp(&(

~ exp ($50 (¥) + 51 (x) + VeS, (x))

and the above becomes

So (x) + VeSy (x) + ¢S, (x)))

ButE— -, hence \/_— 7

1
y () ~ exp («/Eso (x) + Sy (%) + @sz (x))

Therefore
3 11/(1 1
y(x) ~ exp (iz\/f(% + X% + nzx) +C*-In (R—H) +i—— (— - —3) + ki)

Tt

Which can be written as
T+ x\! . X3 11(1 1
v~ (5] con( (VB (5 e ne ) 5 (- )
T+ x\1 , X3 11(1 1
_C( - ) eXp(—l(\/E(§+T(x2+T(2x) Tg(ﬁ—m)))

Where all constants combined into +C. In terms of sin/cos the above becomes

A 3 11(1 1
"7 cos (\/E(x— +ma? + nzx) +—= (—3 —3))
x 3 VE3\T  (m+%)

B sin (\/E © + 1x® + nzx) —1 (l - %)) (8)

TT+X

y(x) ~

+

Boundary conditions y (0) = 0 gives

0~ A 0+ L1 ! + Bsin |0 + L1/ !
~ Acos — |=-= sin —|=-=
NE\T w8 VE3\m® m8

~ A

Hence solution in (8) reduces to
B 3 11(1 1
n Sin\/Ex—+nx2+n2x =
X 3 3
Applying B.C. y (1) = 0 gives

B 3 11/(1 1
0~ — Sin(\/E(%+nn2+n2n)+——(———3))

y(x) ~

T+ T

<5 V(5] (55

For non trivial solution, therefore
vE ZT(3 +LL—nn n=1,23,
"\3 VE, \2473) R

Solving for /E,,. Let \/E,, = x, then the above becomes

(L) + (<L) = wnm
3 U
1
2 _ -
7 +— 56 = 0
Solving using quadratic formula and taking the positive root, since E, > 0 gives

x = («/‘ 2V18m2n2 — +67m) n=1,2,3,

28n3

vVE, =553 (\/_\/18712712 49 + 67171)
2
E, = (x/EVlSnZnZ —49+ 67'm)

Table 10.1 is now reproduced to compare the above more accurate E,. The following table
shows the actual E,, values obtained this more accurate method. Values computed from
above formula are in column 3.

X
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sol = x /. Last@Solve [x2 - ——xn
7 pi?
3noas VL -49+18n2 52
V2
14 3

lam[n_] := (Evaluatee@sol) "2

+ - =09, X]
8Pi”6

nPoints = {1, 2, 3, 4, 5, 10, 20, 40};
book = {0.00188559, 0.00754235, 0.0169703, 0.0301694, 0.0471397, 0.188559, 0.754235, 3.01694};

exact = {0.00174401, 0.00734865, 0.0167524, 0.0299383, 0.0469006, 0.188395, 0.753977, 3.01668};
hw = Table [Ne (lam[n]), {n, nPoints}];
data = Table[{nPoints[[i]], book[[i]], hw[[i]], exact[[i]]}, {i, 1, Length[nPoints]}];
data = Join[{{"n", "E, using S@+S1 (book)", "E, using S©+S1+S2 (HW)", "Exact"}}, data];

Style[Grid[data, Frame -» All], 18]

n [E, using S@+S1 (book) |E, using S@+S1+S2 (HW) Exact
1 0.0018856 0.0016151 0.001744
2 0.0075424 0.00728 0.0073487
3 0.01697 0.016709 0.016752
4 0.030169 0.029909 0.029938
5 0.04714 0.046879 0.046901
10 0.18856 0.1883 0.1884
20 0.75424 0.75398 0.75398
40 3.0169 3.0167 3.0167

The following table shows the relative error in place of the actual values of E, to better
compare how more accurate the result obtained in this solution is compared to the book

result

data = Table[{nPoints[[i]],

100 + Abs@ (exact[[1]] - book [[i]]) /exact[[i]],
100+ Abs@ (exact[[1]] - hw[[i]]) /exact[[i]]}, {i, 1, Length[nPoints]}];
data = Join[{{"n", "E, using S@+S1 (book) Rel error", "E, using S0+S1+S2 (HW) Rel error"}}, data];

Style[Grid [data, Frame - All], 18]

n [E, using S@+S1 (book) Rel error |E, using S0+S1+S2 (HW) Rel error
1 8.1181 7.3927

2 2.6359 0.9343

3 1.3007 0.2576

4 0.77192 0.098497

5 0.5098 0.045387

10 0.087051 0.051101

20 0.034219 0.00021643

40 0.0086187 0.000055619

The above shows clearly that adding one more term in the WKB series resulted in more

accurate eigenvalue estimate.
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3.5 HW)S

NE548 Problem: Similarity solution for the 1D homogeneous heat equation

Due Thursday April 13, 2017

1. (a) Non-dimensionalize the 1D homogeneous heat equation:

ou(z,t)  0%u(x,t)
at | ox? (1)

with —oco < z < 00, and u(x,t) bounded as x — +oo.

(b) Show that the non-dimensional equations motivate a similarity variable & = z/t/2.
(c) Find a similarity solution u(x,t) = H (&) by solving the appropriate ODE for H ().

(d) Show that the similarity solution is related to the solution we found in class on 4/6/17
for initial condition

u(z,0) =0, x<0 u(z,0)=C, z>0.
solution

3.5.1 Parta

Let x be the non-dimensional space coordinate and f the non-dimensional time coordinate.

Therefore we need
x

=l
Il

ly
t
to
u

Ug

I
1l

u

Where [ is the physical characteristic length scale (even if this infinitely long domain, [,
is given) whose dimensions is [L] and £, of dimensions [T] is the characteristic time scale
and 7 (X, f) is the new dependent variable, and u, characteristic value of u to scale against
(typically this is the initial conditions) but this will cancel out. We now rewrite the PDE

:9;; = (;22 in terms of the new dimensionless variables.
ou_ oudn i
Jt — Ju Jt Jt
Jn 1
T (1)
And
ou _ dudn ox
dx ~ on Jx dx
on 1
~ % ox lo
And
J%u %1
a2 "o @
Substituting (1) and (2) 1nt0 — = v& > gives

on 1 %1
u
Yt MM

an_ (k)2
o \"B) o

12
The above is now non-dimensional. Since v has units [

= ] and 2 2 also has units [ ] therefore

to . . . .
the product v% is non-dimensional quantity.
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If we choose t, to have same magnitude (not units) as I3, i.e. t, = I3, then ;—2 =1 (with units
0

[Lzz]) and now we obtain the same PDE as the original, but it is non-dimensional. Where

now i = i (£, %).

3.5.2 Part (b)

I Will use the Buckingham 7 theorem for finding expression for the solution in the form
il in this PDE, the

u(x,t) = f (&) where & is the similarity variable. Starting with % = 2t
diffusion substance is heat with units of Joule . Hence the concentration of heat, which

Ix2’
is what u represents, will have units of [u] = é (heat per unit volume). From physics, we
expect the solution u (x,t) to depend on x,t,v and initial conditions 1, as these are the
only relevant quantities involved that can affect the diffusion. Therefore, by Buckingham
theorem we say

u=f(xtv,u) 1)
We have one dependent quantity u and 4 independent quantities. The units of each of the
above quantities is

J
[u] = I3

[x] =L

[tI=T

L2
[v] = T

/
[0l = 75
Hence using Buckingham theorem, we write
[u] = [x"ttveud] (2)

We now determine a,b, c,d, by dimensional analysis. The above is

ber(e] 4]
(1) = (1) (1) 1)

Comparing powers of same units on both sides, we see that

d=1
b-c=0
a+2c—3d=-3
From second equation above, b = ¢, hence third equation becomes
a+2c-3d=-3
a+2c=0
Since d = 1. Hence
a
=3
a
b=-=
2

Therefore, now that we found all the powers, (we have one free power a2 which we can set
to any value), then from equation (1)
[u] = [x”tbvcug]
L i = x*th°
Uo
Therefore # is function of all the variables in the RHS. Let this function be f (This is the
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same as H in problem statement). Hence the above becomes

0= o)
f

Since a is free variable, we can choose

(2)

(3)

(4)

a=1
And obtain
X
= (%)
In the above \/iv_t is now non-dimensional quantity, which we call, the similarity variable
X
T

2
Notice that another choice of 2 in (2), for example a = 2 would lead to & = % instead of

&= it but we will use the latter for the rest of the problem.

\/_

3.5.3 Part (c)
Using u = f (£) where & = \/iv_t then
Ju _df &
It dEdt
_df9 (L)

- dE It \\ut
__Ldfp x
248 | o

814_@%

g_déc?x
_df&(x)
"~ dE dx Vot
Cdf 1

_%\/ﬁ

And

And
Pu 9 (df 1
Tﬂ‘ﬁ(%ﬁ)
1 9 (df
‘max(dé)
1 (d*fos
- 7@ 5)
1 (d?f 1
‘m(dézm)
_1d%f
T utde2
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Hence the PDE % vﬁ becomes
1df _ 1
2dé& \/—t; ~Votde
142 f 1 x d f
tae "2 o %
@f L x df
dé? - 24\fJprdé
But \/i_t = &, hence we obtain the required ODE as
PFE) 1,4fE)
dgz 2 dg B
[+ Ef =0
We now solve the above ODE for f (£). Let f” = z, then the ODE becomes
z' + gz =0

& &
Integrating factor is yu = el 29 = % , hence

d
e (n) =
p =0
z= cle%
Therefore, since f’ =z, then
_52
fr=cet

Integrating gives

3.5.4 Part (d)

For initial conditions of step function

0 x<0
LA T

The solution found in class was

u(x, t)_g gerf(\/%) 1)

£ Vit ¢Z 4z The solution found in part (c) earlier is

Where erf (

x )_
4ut

Sl

& 82

ﬂ@=ﬁL€T$+Q

Let s = \/Zz, then g = \/Z, when s =0,z=0and whens =§&,z =

becomes

therefore the integral

\/_’

£ = clx/z_;f‘_@ e dz + ¢

<

But % “[;‘f e Pz = erf( hence L\f e Pz = £ erf ) and the above becomes

(7
f@=QWM%Vﬂ+Q

=3 erf(i) + ¢y
V4

159

W)



3.5. HW) CHAPTER 3. HWS

X

Vo’

Since & = then above becomes, when converting back to u (x, )

u(x,t)=cs erf( ) +cy (2)

x
Vvt
Comparing (1) and (2), we see they are the same. Constants of integration are arbitrary
and can be found from initial conditions.
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3.6 HW6

3.6.1 Problem 1

1. Use the Method of Images to solve

ou 0%u
E:VW‘FQ(CU,IS), $>0

u(0,t) =1, u(xz,0) = 0.

()
u, (0,t) = A(1), u(x,0) = f(x).

Note, I will use k in place of v since easier to type.

3.6.1.1 Part (a)

2
% :k%+Q(x,t)
x>0
u(0,t)=0
u(x,0)=0

Multiplying both sides by G (x, t; xo, ;) and integrating over the domain gives (where in the
following G is used instead of G (x,t; x, ty) for simplicity).
f Gu, dtdx = f ki, G didx + f f QG dtdx 1)
x=0+"t=0 x=0 v t=0 x=0 v t=0
For the integral on the LHS, we apply integration by parts once to move the time derivative
from u to G

f Gu, dtdx = f [uGl;_, dx ~ f Gu dtdx
x=0 v t=0 x=0 x=0 v t=0

And the first integral in the RHS of (1) gives, after doing integration by parts two times

f KinG dtdx = [ (Gl dt - f f ki, G, dtdx
x=0Y =0 t=0 = x=0 Y =0

=), [uxG]j’:Odt—( ft y [uG, ], dt - fx By ft . kuG,, dtdx)
= f ([uxG];O:O - [qu];o:O) dt + f f kqux dtdx
=0 x=0vt=0

= [ G -uGI dt + f kuG,, ddx
t=0 = x=0Yt=0

. f UG, — 1G] dt + f f kuG,, dtdx
#=0 = x=0 v =0
Hence (1) becomes

f [uG], dx— f f Gy dtdx = f [1,G —~ uG,]™ dt+ f f kuG,,, dtdx+ f f GQ dtdx
x=0 - x=0 Y =0 t=0 = x=0 Y =0 x=0 Y =0
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Or
f f Gyt — kG, dtdx = — f [uGI, dx - f UGy — w,GI™  dt + f f GQ dtdx
x=0 v t=0 x=0 t=0 x=0 v t=0
(2)
We now want to choose G (x, t; xy, fy) such that
—Gyu — kuGy, = 6 (x — x) 0 (t — tg)

—Giu = kuGy, + 6 (x — x) 0 (t — tg) (3)

This way, the LHS of (2) becomes u (xy, fy). Hence (2) now becomes

00 t

00 to 0
U (xg, fg) = — f [uG]” dx - f UGy — G dt + f GQ dtdx (4)
=0 - t=0 = x=0vt=0

We now need to find the Green function which satisfies (3). But (3) is equivalent to solution
of problem of

-G = kuG,,
G(x,0) =5 (x —x0) 5 (t— to)
—0o <X <o

G(x,t;x9,t9) =0 t>t
G (o00,t;x9,t9) =0
G (x, to; xo, to) = 6 (x = xp)
But the above problem has a known fundamental solution which we found, but for the

forward heat PDE instead of the reverse heat PDE. The fundamental solution to the forward
heat PDE is

1 ~(x - xp)’
G(x,t) = ex 0<ty<t
= e p( 4k (E—ty) 0
Hence for the reverse heat PDE the above becomes
1 —(x- xo)2
G(x,t) = ex 0O<t<t 5
©0= Tk on p(4k(to—t) " )

The above is the infinite space Green function and what we will use in (4). Now we go back
to (4) and simplify the boundary conditions term. Starting with the term 4 :J [uG]Z, dx.
Since G (x, 00;x(,ty) = 0 then upper limit is zero. At t = 0 we are given that u (x,0) = 0,
hence this whole term is zero. So now (4) simplifies to

1 (X, ty) = — f MG, — 1, GI™ dt + f f GQ dtdx (6)
t=0 x=0vt=0

We are told that u(0,t) = 0. Hence
[uGy — u,G] ) = (u (00, 1) Gy (00, 1) — 11, (00, 1) G (00, 1)) = (u (0, 1) G, (0, £) — u, (0,£) G (0, 1))
= (1 (00,t) Gy (00,1) — U, (00,£) G (00, 1)) + u, (0,£) G(0, t)
We also know that G (+oo,t;xy,t)) = 0, Hence G(c0) = 0 and also G, (o0) = 0, hence the
above simplifies
[qu - uxG];o:O = Uy (O/ t) G (0/ t)
To make G (0,t) = 0 we place an image impulse at —x; with negative value to the impulse
at xy. This will make G at x = 0 zero.

e
|
|
|
|

H‘
|
o
g Y

Therefore the Green function to use is, from (5) becomes

2 2
L fexp [0 ) o [ZE 0<t<t
Vi G\ P\ % Go-n )" P2k t-0 <t<tp

162

G(x,t) =



3.6. HW6 CHAPTER 3. HWS

Therefore the solution, from (4) becomes
wtot = [ ( ( (X—xo)z) _ eXp(—(x +%0)°
x=0 Y ¢=0 \/47Tk (to 4k (ty — t) 4k (to - t)

Switching the order of x, t; with x, t gives
L) = f"" ff 1 [eXp[— (xo - x)zJ Cex ( (xg + x)*
x9=0 Y tg=0 VATk (t — to) 4k (t - tg) 4k (t — t;)

Notice, for the terms (x; — x)z, (xg + x)z, since they are squared, the order does not matter,
so we might as well write the above as

]) Q(x,t) dtdx  (7)

))Q(xoffo) dtodxy  (8)

u(x,t) =

f [ ( <x-x0>2)_ex (—<x+xo>2
x0=0 \/47’(’( (t — tO 4k (t - to) 4k (t - to)

3.6.1.2 Part (b)

))Q(XOJO) dtodxy  (8)

2
% :k% +Q(x, 1)
x>0
u(0,t) =1
u(x,0) =

Everything follows the same as in part (a) up to the point where boundary condition terms
need to be evaluated.

00 t 00 t
1 (X, tg) = — f (WG], d - f | [MG, —,GI™  dt + f f " GO dtdx (4)
x=0 t=0 x=0 v t=0
Where

L o (— (x = xp)°
\/47'(k (to - t) 4k (to - t)

Starting with the term f(x; [uG];_, dx. Since G (x,00;xq, tp) = 0 then upper limit is zero. At
o =

G(x, ) = ] 0<t<t (5)

t = 0 we are given that u (x,0) = 0, hence this whole term is zero. So now (4) simplifies to

o) = — " G, — u,GIZ _dt B ooG dtd 6

(o, to) ftzo[” 1 GI™ +fx=0ft:O Q dtdx (6)

Now
[qu—uxG];o:O:(u(oo,t)Gx(oo,t)—ux(oo,t)G(oo,t))—(u(O,t)Gx(O,t)—ux(O,t)G(O,t))

We are told that u(0,f) = 1, we also know that G (xoo,t;xg,t7) = 0, Hence G(oo,t) = 0 and
also G, (o0,t) = 0, hence the above simplifies

[uG, —u,GI ) = =G, (0,8) +u, (0,5) G (0, 1)

To make G (0) = 0 we place an image impulse at —x; with negative value to the impulse at
xo. This is the same as part(a)

e
|
|
|
|

H‘
|
o
5 Y

3 1 —(x —xp) (x + xp)
G(x, t) = W(GXI} (m)—exp [m]) 0<t< to

Now the boundary terms reduces to just
[uG, - u,GI_ = -G, (0,1)

We need now to evaluate G, (0,t), the only remaining term. Since we know what G (x, t)
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from the above, then

LTSRS S ful Gt )P _(x_x0)2]+2(x+x0)ex (—(x+xo)2))
ox T ke =D\ 2k (k- C\ak(b—b) ) ak(to—t) T\ dk(to—b)

And at x = 0 the above simplifies to

G,(0,t) = ! 0 ex % )+ %0 ex (——x% ))
S kg —n) \2k (b =) P \Ak(tg— 1)) " 2k (b —t) T \Ak(ty— 1)

- s e (s
T Vark =0 \kto—D P\ k(o - t)

Hence the complete solution becomes from (4)
00 to 00 to
U (xg, £g) = — f [uG], dx - f UGy — G dt + f f GQ dtdx
=0 = £=0 = x=0 Y =0

t 0o £
=— ["-c.onar+ [ [ 60 dax
t=0 x=0 v t=0

Substituting G and G, in the above gives

B to 1 Xo _x2
u (xg, tp) = j;_ TG D (k(to — t) (—4k(t0 — t))) dt
f f ( ( (x—xo)z)_eX (—(x+x0)2
x=0J1=0 \/4nk (fo— D) akto-0 ) “Plakt,-n

Switching the order of x, t, with x, ¢

)] Q(x, t) dtdx

ulx t)_ft : ( T ex (_—xz))dt
" Jigmo VARK (E = o) \K (t — to) Plac =) /)"0
+fxo=ofto:o Vark (t - ty) (eXp(4k(t—fo)) - [4k(t_to) Q (xo, t) dtodxy (7)

But

ft L ( a exp (_—xz))dt = erfc (i)
=0 VAT (E— ) \k(E—1tg) — \4k(t—ty))) " ° 2VE

Hence (7) becomes

[ f ( ((xo >2] o (—(xo+x>2
(=0 \/4nk(t_t0 4k (t—to) PUak (= 1)

The only difference between this solution and part(a) solution is the extra term erfc (i

u(x,t) = erfc( ) )) Q (xq, to) dtodxg

2Vt )

due to having non-zero boundary conditions in this case.

3.6.1.3 part(c)

du d%u
o7 —kW‘FQ(X,f)
x>0
0
1 (0,1) _A®
dx

u(x,0) = f(x)
Everything follows the same as in part (a) up to the point where boundary condition terms
need to be evaluated.

00 to 00 to
U (xg, fg) = — f [uG]” dx - f UGy — u, G dt + f f GQ dtdx (4)
x=0 t=0 x=0 v t=0

Starting with the term f uG];’i0 dx. Since G (x, 00;x, tp) = 0 then upper limit is zero. At
t =0 we are given that u (x 0) = f (x), hence

fx 6] = f 0 G, 0)d
:f _f ()G (x,0)dx
x=0
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Looking at the second term in RHS of (4)

[uGy — u, G ) = (u (00, ) G, (00, 1) — 1y (00,£) G (00, 1)) = (1 (0, 1) G, (0, £) — 1, (0,£) G (0, £))
We are told that u,(0,¢t) = A(t), we also know that G (xoo,t;xq,t9) = 0, Hence G(co,t) =0
and also G, (co,t) = 0. The above simplifies

MG, — 1,GI™ = = (0,) G, (0,)) = A(B) G (0, 1) 5)
We see now from the above, that to get rid of the 1 (0,t) G, (0, t) term (since we do not know
what u(0,t) is), then we now need
G,(0,0)=0
This means we need an image at —x;, which is of same sign as at +x; as shown in this
diagram

|
et
|
|
|
|
INCONNN N
S I

g Y

Which means the Green function we need to use is the sum of the Green function solutions
for the infinite domain problem

_ 1 ~ (= %) ~ (v + x0)”
G (X, t) = m [exp(m] + exp (m)] 0<t< to (6)

The above makes G, (0,t) = 0 and now equation (5) reduces to

[uG, - u,G] = A() G(0,1)

0 g ol ol )
4tk (tg — t) 4k (tg— 1) 4k (to — 1)

A bolagts) i)
e 3¢ - X -
Tkt -b \ Nakto-n) " “Plakto - 1)
A(t) ( -x3 )
= exp
V Ttk (to - t) 4k (to - t)
We now know all the terms needed to evaluate the solution. From (4)

u(xo,to):—f:—f(x)G(x,O)dx— :OA(t)G(O t)dt+f f GQ dtdx 7)

Using the Green function we found in (6), then (7) becomes

00 1 (X - 2 B ’
u (xg, tg) = fxzof(x) Nrr=en (exp ((JiTt;CO)] + exp (%t:()))] dx

[ el )
W (o — 1)

f f ( ( (x - xo)z] + oxp (— (x + xo)2
=0 tOW 4k (tg— 1) 4k (tg— 1)

Changing the roles of x,t and xg, t, the above becomes

Jous

_ 2
u(x,t) = \/47-[_kf f(xg) (exp( (x Zk x) )+exp(%))dxo
f Al ( —x? )dt
o Nk (t =ty to 4k(t—tg)) °
o — (o = x)° — (xp + 1)
+ fx0=0 ﬁozo \/‘W—to) (exp [m) + exp (W—to))) Q (xg, to) dtodxg
Summary

u(x,t) =

1
A=A+ A
Varkt ! 2 :
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Where
~ N2 3 2
A = o Of (x0) [exp [—(xikt X ) + exp (—(xz(ik: Y ]) dxg
A (to) —x2 )
B2 = f w/r(t_to (4k(t—t0) dto

(xp — x)z —(xp + x)2
= ( [ (k) ) ' exp(m]) Qv fo) diao

Where A; comes from the initial conditions and A, comes from the boundary conditions

and Az comes from for forcing function. It is also important to note that A; is valid for
only ¢ > 0 and not for t = 0.

Az =

3.6.2 Problem 2

2. (a) Solve by the Method of Characteristics:

2 2
gtgiggxg’ x>0, t>0
ou(z,0) 0u(0,t)

u(m,O):f(x), ot :g(.ZL'), O _h(t)

(b) For the special case h(t) = 0, explain how you could use a symmetry argument to help
construct the solution.

(c) Sketch the solution if g(x) = 0, h(t) = 0 and f(z) =1 for 4 <z <5 and f(z) =0
otherwise.

3.6.2.1 Part (a)

The general solution we will use as starting point is
u(x,t)=F(x—ct)+G(x+ct)

Where F (x — ct) is the right moving wave and G (x + ct) is the left moving wave. Applying
u(x,0) = f (x) gives

f(x)=F(x)+G(x) (1)
And

Qu(x,t): dF c?(x—ct‘)+ dG  Jd(x+ct)
Jat d(x—ct) Jt d(x+ct) ot
= —cF’" +cG’

Hence from second initial conditions we obtain
g(x) ==cF' +cG (2)

Equation (1) and (2) are for valid only for positive argument, which means for x > ct.
G (x + ct) has positive argument always since x > 0 and t > 0, but F(x - ct) can have

negative argument when x < ct. For x < ct, we will use the boundary conditions to define
F (x — ct). Therefore for x > ct we solve (1,2) for G, F and find

Frmch) = of ke~ OHtg<s> ds (2A)
G(x+ct):%f(x+ct)+%£x+€tg(s)ds (2B)

This results in
u(x,t):f(x+Ct)-2|_f(x_Ct)+%]:::tg(s)ds x>t 3)

The solution (3) is only valid for arguments that are positive. This is not a problem for
G (x + ct) since its argument is always positive. But for F (x - ct) its argument can become
negative when 0 < x < ct. So we need to obtain a new solution for F (x — ct) for the case
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when x < ct. First we find %ﬁ’ﬂ

du(x,t)  dF  d(x—ct) N dG  Jd(x+ct)
dx d(x—ct) OJx d(x+ct) OJx
_ dF (x — ct) N dG (x + ct)
d(x —ct) d(x +ct)

Hence at x =0
_dF(—ct) dG(ct)
=Tt ae
dF (—ct) dG (ct)

d (—ct) =) - d (ct)

Let z = —ct, therefore (4) becomes, where t = _TZ also

(4)

dF (z) h(—E) ~ dG (-z) 2 <0
dz c d(-z)
dF (z) z\ dG(-2)
dz h( c) " dz z<0
To find F (z), we integrate the above which gives
LACP f h(—f)ds +f 4G (5) 4o
0 ds 0 C 0 ds

Z

F@—Hm:f

0
Ignoring the constants of integration F (0), G (0) gives

F(z) = f:h(—;)d5+G(—Z) (4A)

Replacing z = x — ct in the above gives

F(x—ct):fx_Cth(—g)ds+G(ct—x)
0

h(—;)ds +G(=2)-G(0)

Letr = —; then when s = 0, » = 0 and when s = x — ¢t then r = —x_TCt = CtT_x And % = —%.
Using these the integral in the above becomes
ct—x
F(x—ct) :f () (~cdr) + G (ct %)
0
:—cf () dr + G (ct - x) (5)
0

The above is F (-) when its argument are negative. But in the above G (ct - x) is the same as
we found above in (2b), which just replace it argument in 2B which was x + cf with cf — x
and obtain

1 1 ct—x
G(ct—x):zf(ct—x)+zj(; g(s)ds x <ct

Therefore (5) becomes

=2 1 1 pet=x
F(x—ct)=—c h(r)ydr+ =f (ct —x) + — g (s)ds x < ct (7)
0 2 2c 0
Hence for x < ct
u(x,t)=F(x—ct)+G(x+ct) (8)

But in the above G (x + ct) do not change, and we use the same solution for G for x > ct
which is in (2B), given again below

G(x+ct):%f(x+ct)+%j:+dg(s)ds 9)

Hence, plugging (7,9) into (8) gives
ct=x

- 1 1 ct—x 1 1 x+ct
u(x,t):—cj; h(s)ds+§f(ct—x)+§j; g(s)ds+§f(x+ct)+5j; g (s)ds x < ct

ct—x

:—chTh(S)ds+f(Ct_x);f(x-i_Ct)+2lc( Ot_xg(S)ds+f0x+Ctg(s)ds)
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The above for x < ct. Therefore the full solution is

(x+ch)+f(x—ct) =~ 1 pxtct
. x %J,Z_CL& g(s)ds x> ct 0)
b= -2 - 1 t— +ct
—c£ Ch(S)ds+w+z(f xg(S)ds+£x Cg(S)ds) x <ct

3.6.2.2 Part(b)

From (10) above, for % (t) = 0 the solution becomes

h hasiie Laz e I :Ctg (s)ds x> ct o
u xl = ct—x X+Ci Cl—X X+C
flet)+flcret) );f(+t)+%(£t g(S)ds+£+tg(S)ds) x < ct

The idea of symmetry is to obtain the same solution (1) above but by starting from
d’Almbert solution (which is valid only for positive arguments)

flx+ct)+ f(x

2
But by using f,., g.s in the above instead of f,g, where the d’Almbert solution becomes
valid for x < ct when using f,.;, Qext

fext (x+ct) + fext (x—ct) N 1 x+ct
2 2c x—ct

Then using (1A) and (2) we show it is the same as (1). We really need to show that (2)
leads to the second part of (1), since (1A) is the same as first part of (1).

_ 1 x+ct
u(x,t) = ct) + % f g(s)ds x> ct (1A)
x—ct

u(x,t) =

Gt () s x <ct P)

The main issue is how to determine f,,, g.,; and determine if they should be even or odd
extension of f,g. From boundary conditions, in part (a) equation (4A) we found that

Z
F@ = [ n(-3)ds+G(-2
0 c
But now % () = 0, hence
F(z) = G(=2) (3)
Now, looking at the first part of the solution in (1). we see that for positive argument the

solution has f (x — ct) for x > ct and it has f (ct — x) when x < ct. So this leads us to pick f,y
being even as follows. Let

z=x—ct
Then we see that
fx—ct)=f(=(x—ct)
f@)=f(-2)

Therefore we need f,,; to be an even function.

] f@) z>0
fext(z)—{f(_z) 2 <0

But since F (z) = G(-z) from (3), then g,,; is also even function, which means

] 5@ z>0
Sext (Z) - { g(—Z) 2<0

Now that we found f,,, ..+ extensions, we go back to (2). For negative argument
X +ct) + x—ct) 1 et
fext( ) fext( )+_f gext(S)dS x < ct
2 2c x—ct

Since f,.;, gt are even, then using g, (z) = g (—z) since now z < 0 and using f,; (z) = f (-z)
since now z < 0 the above becomes

flere) +fG=ch) 1
2 2c x—ct
But f (= (x +ct)) = f (x + ct) since even and f (- (x — ct)) = f (ct — x), hence the above becomes

u(x,t) —— f(x+Ct);f(Ct—X) +Zlc(j:ictg(_s)ds_i_‘[:H—Ctg(s)ds) v <ot

u(x,t) =

u(x,t) =

Qext (8)ds x<ct

168



3.6. HW6 CHAPTER 3. HWS

Let r = —s, then d—: = -1. When s = x —ct, r = ¢t — x and when s = 0,7 = 0. Then the first
integral on the RHS above becomes

i) = LD TEZD L L7 ginan+ [T go)
2 2c ct—x 0
_fxtet)+flet-x) 1 ct—x x+ct
= 5 +£( . g(r)dr+](; g(s)ds)

Relabel r back to s, then

u (x, t) — f(x + Ct) ;f(ct - x) + zlc (j:t—xg(s) s+ Ox+ctg(s) ds) v <ot (5)

Looking at (5) we see that this is the same solution in (1) for the case of x < ct. Hence (1A)
and (5) put together give

w % fx+:tg(s) ds x > ct
u(x,t) = - 1( peter et .
gt (o @as+ o) x<et

Which is same solution obtain in part(a).

3.6.2.3 Part(c)
For g(x) =0,h(t) = 0 and f (x) as given, the solution in equation (10) in part(a) becomes

flx+ct)+f(x—ct) x> ct
u(x,t) =

)2 (10)
fct x);—f(x+ct) Y <ct
A small program we written to make few sketches important time instantces. The left
moving wave G (x + ct) hits the boundary at x = 0 but do not reflect now as the case with

Dirichlet boundary conditions, but instead it remains upright and turns around as shown.

time = 0.00 time = 0.25 time = 0.40

1.0 1.0 1.0

0.8 0.8 0.8

0.6 0.6 0.6

0.4 0.4 0.4

0.2 0.2 0.2

00 2 4 6 8 10 2 (%0 2 4 6 8 10 72| %0 2 4 6 8 10 12
time = 0.55 time = 0.59 time = 0.80

1.0 1.0 1.0

0.8 0.8 0.8

06 06 06

04 0.4 0.4

0.2 0.2 0.2

00 2 4 6 8 10 72 | %0 2 4 6 8 10 72 %0 2 4 6 ] 10 12
time = 1.20 time = 2.50 time = 3.90

1.0 1.0 1.0

0.8 08 08

0.6 0.6 0.6

04 04 0.4

0.2 0.2 0.2

00 2 4 6 8 10 2 (%0 2 4 6 8 10 720 2 4 6 8 10 12
time = 4.20 time = 5.40 time = 7.00

1.0 1.0 1.0

0.8 0.8 0.8

0.6 06 06

04 04 0.4

0.2 0.2 0.2

00 2 4 6 8 10 72 |00 2 4 6 ] 10 72| %0 2 4 6 8 10 12
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4.1 question asked 2/7/2017

Book at page 80 says "it is usually true that 5" <« (S’)Z" as x — xo. What are the exceptions
to this? Since it is easy to find counter examples.

For y” = /xy, as x — 0*. Using y (x) = ¢50® and substituting, gives the ODE
2
Sy +(S6) =V (1)

If we follow the book, and drop S relative to (5')* then

3
So, lets check the assumption. Since S; = a)ix_i. Therefore (ignoring all multiplicative

constants)

So « (56)2

1 2 1
—3<<<JC2
x4

No. Did not check out. Since when x — 0* the LHS blow up while the RHS goes to zero.
So in this example, this "rule of thumb" did not work out, and it is the other way around.
Assuming I did not make a mistake, when the book says "it is usually true", it will good to
know under what conditions is this true or why did the book say this?

This will help in solving these problem.
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4.2 note on Airy added 1/31/2017

Note on using CAS for working with book AiryAl/AiryBlI

terms

CAS such as Mathematica or Maple can actually handle very large numbers. It is possible to calculate
individual terms of the Airy series given by the book (but no sum it). Calculating individual terms, up to
10 million terms for x=1,100 and x=10000 is shown below as illustration. It takes few minutes to do each
term

define small function to calculate one term

bookAi[x_Integer, n_Integer] :=
- 3n . 3n+1
32 X EX X

-33 .
9" Factorial[n] Gamma[n +2 /3] 9" Factorial[n] Gamma[n +4 /3] ’

This is for x=1, N=10,000,000

iz - bookAi[1, 10000000] // N
oua= 5.7642115 x 197140856542

This is for x=100, N=10,000,000

bookAi[100, 10000000] // N

ou4= 5.7583009 x 19789856542

This is for x=10,000 and N=10,000,000

G
i

Timing [bookAi[10000, 10000000] // N]
ous- {582.3829332, 5.167240 x 1972086342}
The above took 582 seconds to complete! The largest number it can handle on my PC is

$MaxNumber

ouel= 1.605216761933662 x 191 355718576299609

Let compare the above to Gamma[10,000,000]

g}~ Gamma [10 000 000.0]
ourgl= 1.2024234 x 1055657052

injo- Gamma[10000000.0] < $MaxNumber

ouel= True

We see that Gamma[10,000,000] is much less than the largest number it can handle. Here is Gamma

Printed by Wolfram Mathematica Student Edition
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2 | airy.nb

for 10 billion

in[i0p= Gamma [ 10 000 000 000.0]

outf10]= 2.3258 x 1995657055176

And 10 billion Factorial

nii1= Factorial [10000000000.0]

outf= 2.3258 x 199°657055186

So CAS can handle these terms. But not the complete series summation as given in

the book

Printed by Wolfram Mathematica Student Edition
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4.3 note pl added 2/3/2017

Current rules I am using in simplifications are
1. S{>> S
2
2. S4S; > (S4)
3. S>> 5,

4. (Sp)" > SE,") (the first is power, the second is derivative order).

Verify the above are valid for x — 0* and well for x — co. What can we say about (S’)
compared to (S")*?

4.3.1 problem (a), page 88

11_1
Y _Fy

Irregular singular point at x — 0*. Let y = ¢ and the above becomes

v (x) = eSO(x)
¥ (x) = Spe’
2
Y’ = Sfe% + (56) e%
2
= (56’ + (56) )650
2
Substituting back into %y = x°y gives
2
(Sf)’ + (56) )es = x S50
2
Sy +(Sh) =2
Before solving for Sy, we can do one more simplification. Using the approximation that

2
(56) 3> S for x — xg, the above becomes
2
(5o ~

Now we are ready to solve for S,
5

Sp ~ wx 2

5
So~w | x 2dx
3

=
N

To find leading behavior, let
S (x) = So (x) + 51 (x)
Then y (x) = e5™*+51®) and hence now
Y () = (Sp (x) + Sy (1) €501

2
y// (X) — ((SO + Sl),) eS0+51 4 (SO + Sl)// S0+51
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2
Using the above, the ODE ;—xzy = x°y now becomes

2
((SO + Sl)') e%0+51 4 (S + S;)” €50751 ~ x75e50+51
/ 2 7
((SO + Sl) ) + (SO + Sl) ~ x‘5
2
(Sh+S1) +S§ +Sy ~x®
2 2
(Sh)" +(S1)” +28p87 +Sg + Sy ~ x5
5 2
But S = wx 2, found before, hence (56) = x° and the above simplifies to
2
(S1)" +28S; + Sy +S7 =0
2
Using approximation S;S] >> (Si) the above simplifies to
25051 +S5 +S7 =0
Finally, using approximation S{ 3> S/, the above becomes
25051+ S5 =0

sy
25},

S|~

1 ’

11 5
S, ~ —— 2 4+
i > lnx c

Si~ 2 Inx+c
Hence, the leading behavior is
y (x) = eSO(x)+Sl(x)
2 85
=exp|--wx 2+ -Inx+c
[t gmeed
5 2 3
= cx4 exp (—a)gx 2)
To verify, using the formula 3.4.28, which is
1-n X 1
y(x) ~cQ2n exp (a) f Q(H)n dt)

In this case, n = 2, since the ODE y” = x°y is second order. Here we have Q (x) = x™°
therefore, plug-in into the above gives

y(x)~c (x‘5)14;2 exp (a) fx (1,“5)E dt)

il ]
|

5
~ CX4 exp (—a) X

(1)

M

(2)

Comparing (1) and (2), we see they are the same.

4.3.2 problem (b), page 88
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Irregular singular point at x — +o0. Let y = ¢%® and the above becomes
y (x) — eSO(x)
Yy (x) = Spe™
2
Y’ = Sfe% + (56) %
2
= (st + (s5)") e
2\’ 2
Yy = (sg +(S6) ) e% + (sg +(S5) )S(’)eSO
3
= (S5 +2505) % + (S5S + (50) ) e
3
= (sg' +384Sy + (Sh) )eSO
Substituting back into y"”’ = xy gives
3
(S{)” +3S)S¢ + (S(’)) )350 = x50
77 1 Qr ’ 3
Before solving for Sy, we can do one more simplification. Using the approximation that

3
(S(’)) >> S for x — xg, the above becomes
3
35Sy +(Sh) ~ x

3
In addition, since S; >> Sj then we can use the approximation (86) >> 53S; and the
above becomes
3
() ~=

1
S) ~ wx3
So~w f x%dx
Sp ~ w%xé
To find leading behavior, let
S (x) = So (x) + 51 (x)
Then y (x) = e5™*+51®) and hence now
Y () = (So () + 51 (x) 50+
v () = (S0 + 1)) e%0%51 + (S + ;)" 5o+t
So+ 1) eS0¥St 4 (S + Sy) S0t
56)2 + (51)2 + 2565’1) €505t + (Sf + Sy ) S0+t

(
(56)2 + (51)2 £ 2SI+ S + 51’) S50+51
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We can take the third derivative
2 2 !
Y (x) ~ ((56) +(S7)" + 25485 + Sp + 53’) eS0*S1

+ ((56)2 + (s;)2 +25)8, + Sy + s;’) (So + Sy) eSo+S1

~ (254Sy +2S;SY + 2SSy +25Sy + " + S7) €50+t
+((Sh)"+ (55)" + 25085 + S + 1) (5 + 5¢) e

~ (254Sy +28;SY +2S7S; +25Sy + " + S7) €50+t
+((50)+ 35 (50)"+ 2(S5)” 51 + 8655 + Shst ) et

+ (Si (56)2 + (53)3 + 256 (Si)z + 5156' + 5'153') £S0+51

~ (254Sy +2S;SY + 2SSy +28Sy + S’ + S7) €50+t
n [(56)3 38y (51)" +3(p) 81+ Sy + S8y +(81) + 187 + s'ls;']eswsl
~ (35656’ +38]SY + 3548, + 35Sy + Sy + 577 + (S5) + 385 (51)” +3(55) 8 + (53)3) £So+S1
~ ((56)3 (S1) +385 (1) +3(S5)° St + 39Sy + 381y +3SYS] + 3548y + Sy + S;“) £50+51
Lets go ahead and plug-in this into the ODE
(S6) + (51) +385 (S1)" +3(S5)” S +3SySy +3S1SY +3S(S; +3S,SY + Sy + Sy ~ x
Now we do some simplification. (56)3 >> S(” and (51)3 >> S1”, hence above becomes
(85) + (S1) +385 (S1)" +3(S)” S +3SpSy +3S1Sy +38(S; +3S4Sy ~ x
Also, since Sy >»> 57 then 35(Sy >> 35,57
3 3 2 2
(Sh) + (1) +3S5(S5) +3(Sh)" S5 +3S4Sy +381Sy +3SS} ~ x
Also, since (sg))2 3> S(f then 3 (56)2 S, > 3575
3 3 2 2
(Sh) +(S5) +3S5(Sh)" +3(Sh)" S5 +3S4Sy +3S;S7 ~ x
Also since ) > S/ then 3 (sg))2 S; > 35187
(56)3 + (sg)3 +38) (s;)2 +3 (sgj)2 S, +35)Sy ~ x

1 3
But 5j ~ x3 hence(56) ~ x and the above simplies to

(s;)3 +38) (53)2 +3 (56)2 St +35,Sy =0

Using 35, (5’1)2 > (51)3 since Sj >> S/ then

385 (81)" +3(Sp) 8 +388 =0

Using 3 (S(’))2 S1>> S (Si)z since (56)2 >> S then

3(Sp) Sy +38485 =0

No more simplification. We are ready to solve for S;.
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) —Srgn
(S0)
-Sy
S0
Hence
Sy
Sl ~ — —,d
50
~-InSj+c

1
Since S) ~ x3then the above becomes

1
Si~—-Inx3 +¢

S 1l +
~ —-—=1INnx C
173

Hence, the leading behavior is

Yy (x) = eSO(x)+Sl(X)

4 1
= exp (w1x3 ~3 Inx + c)
1 3 ¢
= ox3 exp (a)ZxB) 1)
To verify, using the formula 3.4.28, which is
1-n X 1
y@ ~cQ exp(w [ Qe d)

In this case, n = 3, since the ODE y”” = xy is third order. Here we have Q (x) = x, therefore,
plug-in into the above gives

Y () ~ ()5 exp (a) f )3 dt)
~ cx__31 exp (a)gxg)

Comparing (1) and (2), we see they are the same.
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4.4 note added 1/31/2017

This note solves in details the ODE

Xy’ (x) =y (x)

Using asymptoes method using what is called the dominant balance submethod where it
is assumed that y (x) = e5%,

441 Solution

x = 0 is an irregular singular point. The solution is assumeed to be y (x) = ¢5%). Therefore
y =5 and i’ = §”¢5®) + (5')?¢5® and the given ODE becomes
B(S7+(5)%) =1 1)

Assuming that
5 (x) ~ cx®
Hence S” ~ cax*~!. and (1) becomes
x3 (cacx”“1 + (cx“)z) ~1
Caxa+2 + C2x2a+3 ~1

-3 .
Term cax®*? > c2x***3 hence we set a = - to remove the subdominant term. Therefore

the above becomes, after substituting for the found «
x—0
—_——
-3 1 1
—CX2 +¢° ~
2

2=1
-3

Therefore ¢ = +1. The result so far is S’ (x) ~ cx 2. Now another term is added. Let
-3

S (x)~cx2 + A(x)

-5
Now we will try to find A (x). Hence S” (x) ~ _?gcx? +A’ and x° (S” + (S’)Z) =1 now becomes

-3 5 3 2
x3(70x2 +A’+(cx2 +A) ~1

— -5 -3
X3 (7cx7 + A +c2x 3+ A2+ 2Acx7 |~ 1

-3 1 3
(7CX2 +xX3A" + 2+ x3A%2 + 2Acx2 | ~ 1

Since ¢? = 1 from the above, then

-3 1 3

S+ XA+ x3A% +2Acx2 ~ 0
Dominant balance says to keep dominant term (but now looking at those terms in A only).
From the above, since A 3> A? and A 3> A’ then from the above, we can cross out A2 and
A’ resulting in

-3 1 3

?ch +2Acx2 ~ 0

Hence we just need to find A to balance the above

-3 1 3

—cx2 +2Acx2 ~ 0
3 3 1
2Acx2 ~ —cx2

cx 2cx

3

A~—

4x
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We found A (x) for the second term. Therefore, so far we have

-3
S(x)=cx2 + —
(x) =cx o

13
S(x) = —2cx2 +L—Llnx+C0

But Cy can be dropped (subdominant to Inx when x — 0) and so far then we can write the
solution as

y(x) = SOW ()

(o)
— eS(x) E anxnr
n=0

13 —
= exp (—2cx 2 +-1In x) Z a,x™
4 n=0
-1 3 ®

2cx 2 5
= 20x2 53 Eanxnr

n=0

2c o0 3
N nr+-—
=e Vx Z a,x 4

Since ¢ = +1. We can now try adding one more term to S(x). Let

3 3
S"(x)=cx2 + — +B(x)
4x

Hence

, —3 =5 3 ,
S :?sz —E-FB (X)

And x° (S” + (S’)z) ~ 1 now becomes
-3

2
-3 = 3 B3 3
Pll=cx2 - +B ®)|+|cx2 + —+Bx)| |~1
2 4x? 4x

5( 3, L R R
X F_Ex + 2cBx +§Bx +B-+B|~1

=203 33
2 — Ex + 2cBx2 + Esz +x°B2+ 3B’ | ~1

3 3 3
—Ex + 2cBx2 + EBXZ +x3B2+x°B’ ~ 0

From the above, since B (x) 3> B?(x) and B (x) >> B’ (x) and for small x, then we can cross
out terms with B? and B’ from above, and we are left with
3 3 3 .,
——x+2cBx2 + —Bx* -~ 0
16

3 3
3 3 3 3 3
Between 2cBx2 and EBxZ, for small x, then 2cBx2 >> EBxZ, SO we can cross out EBx2 from

above

3 3
——x+2cBx2 -0

16
3 3
2cBx?2 - —x
16
3 _1
B~ —x 2
320"
We found B (x), Hence now we have
g 33 3 _1
/ =CcxX2 +—+ —x 2
() =2+ ot
Or
403 3 1

S(x) = 2cx2 + Zlnx+ @xi +Cy

But C; can be dropped (subdominant to Inx when x — 0) and so far then we can write the
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solution as

y(x) = SOW (x)

o0
— eS(x) E anxnr
n=0

213 3 1\ &
= exp (—2cx 2 + 1 Inx + Eﬂ)%anxnr

;1 3 1 3 00
2cx 2 +—x2 =
—¢ 2cx tiek xi Zanxnr
n=0

;1 3 1 0 3

—2cx 2 +—x2 nr+=

=e 16c ‘an 4
n=0

Forc=1
;1 3 1 o 3
" (x) — e—Zx 2 +1—6x2 Z ananZ
n=0
Forc=-1
"71 3 % o 3
yz (x) — er —EX E anxﬂi’-{—z
n=0
Hence
y(x) ~ Ay; (x) + By, (x)
Reference

1. Page 80-82 Bender and Orszag textbook.

2. Lecture notes, Lecture 5, Tuesday Janurary 31, 2017. EP 548, University of Wisconsin,
Madison by Professor Smith.

3. Lecture notes from http:/www.damtp.cam.ac.uk/
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4.5 note p3 figure 3.4 in text (page 92) reproduced in
color

figure 3.4 in text (page 92) was not too clear (it is black and white in my text book that | am using). So |

reproduced it in color. This type of plot is needed to check what happens with the improvement in

approximation for problem 3.42 (a) as more terms are added to leading behavior.

It is done in Wolfram Mathematica. Used 300 terms to find y(x). We see the red line, which is leading

behavior/y(x) ratio going to 1 for large x as would be expected.

leading([x] :=1/2 Pi~(-1/2) x~(-1/4) Exp[2 x*(1/2)];

yIx_, max_] := Sum[x~n/ (Factorial[n]~2), {n, @, max}];

LogLinearPlot [Evaluate[{leading[x] /y[x, 3@@], y[x, 1] /y[x, 3@0]}], {x, 0.001, 70000},
PlotRange - All, Frame - True, GridLines - Automatic, GridLinesStyle - LightGray,
PlotLegends » {"leading behavior/y(x)", "truncated Taylor/y(x)"}, FrameLabel -

{{None, None}, {"x", "Reproducing figure 3.4 in text book"}}, PlotStyle - {Red, Blue}]

Reproducing figure 3.4 in text book

151 1
101 . .
— leading behavior/y(x)
Out
— truncated Taylor/y(x)
051 J
0.0 J

I I
0.01 1 100 100

Printed by Wolfram Mathematica Student Edition
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4.6

note p4 added 2/15/17 animations of the solutions
to ODE from lecture 2/9/17 for small parameter

These are small animations of the solutions to the 2 ODE’s from lecture 2/9/17 for the small parameter.
Nasser M. Abbasi
2/20/2017, EP 548, Univ. Wisconsin Madison.

Manipulate|
Labeled |

X/z

Plot[_1+—el, {x, @, 2}, PlotRange » {{0, 1.1}, {0, 1}},
-l+ez
GridLines - Automatic, GridLinesStyle - LightGray, PlotStyle - Red] )
Row[{"solution to ", TraditionalForm[ey''[x] -y'[x] ==0]}], Top] )
{{z, 0.1, "e"}, .1, 0.001, -0.001, Appearance - "Labeled"}

]

€ {] 0.1

solution to ey’ (x) -y (x) =0

08r
06
04+

0.2

For eps*y’+y=0 ode, we notice global variations showing up in frequency as well as in amplitude as
eps become very small

Printed by Wolfram Mathematica Student Edition
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2 | p4.nb

Manipulate[
Labeled |

X

Sin
Plot[—ﬁ, {x, @, 2}, PlotRange - {{0, 2}, {-10, 18}},
Sin[ -2
vz
GridLines - Automatic, GridLinesStyle - LightGray, PlotStyle -» Red],
Style[Row[ {"solution to ", TraditionalForm[zy''[x] +Y[X] ==©]}], 16], Top],
{{z, 0.01, "€"}, 0.01, 0.0001, -0.0001}

]

€4

solution to ©.01y” (x) +y(x) =0

101

-10%

Printed by Wolfram Mathematica Student Edition

First animation

second animation
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4.7 note p5 added 2/15/17 animation figure 9.5 in text
page 434

Animation of figure 9.5

Nasser M. Abbasi, Feb 2017, EP 548 course
Animation of figure 9.5 in text page 434, compare higher order boundary layer solutions

This is an animation of the percentage error between boundary layer solution and the
exact solution for ey,+(1+x)y,+y=0 for different orders. Orders are given in text up y0,y1,y2,y3. We
see the error is smaller when order increases as what one would expect.

The percentage error is largest around x=0.1 than other regions. Why? Location of matching between
yin and yout. Due

to approximation made when doing matching? But all boundary layer solutions underestimate the exact
solution since error is negative.

The red color is the most accurate. 3rd order.

First animation

ine4s= Clear ["Global™ +"];
yout[x_] :=2/ (1+x);
yin[x_, eps_] :=
Plot[2 - Exp[-X/ eps], {X, ©, 1}, AxesOrigin » {0, 1}, PlotStyle - Black];
pl = Plot[yout[x], {x, @, 1}, PlotStyle - Blue];
combine[x_, eps_] := Plot[yout[x] - Exp[-X / eps], {x, @, 1}, PlotStyle » {Thick, Red},
AxesOrigin -» {0, 1}, GridLines - Automatic, GridLinesStyle -» LightGray];
Animate
Grid[{{TraditionalForm|
NumberForm[eps, {Infinity, 4}] HoldForm[y''[x] + (1+x)y'[x]+y[x] =0]]},
{Show [
Legended [combine [x, eps], Style["combinbed solution", Red]],
Legended[pl, Style["Outer solution", Blue]],
Legended [yin[x, eps], Style["Inner solution", Black]]
» PlotRange -» {{0, 1}, {1, 2}}, ImageSize - 400]
}}]s {eps, @.001, .1, .00001} ]

Printed by Wolfram Mathematica Student Edition
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2 | p5.nb

second animation, y0 vs. exact

ns1= Clear ["Global™ %"1];
yout[x_] :=2/ (1+x);
sol =
yI[x] /. FirsteDSolve[{ey"' ' [x] + (1+X)y'[x] +Yy[x] =0, y[@] =1, y[1] =1}, y[x], X];
exact[x_, e_] := Evaluate@sol;
yin[x_, eps_] :
Plot[2 - Exp[-Xx/ eps], {x, @, 1}, AxesOrigin » {0, 1}, PlotStyle -» Black];
pl = Plot[yout[x], {Xx, @, 1}, PlotStyle -» Blue];
combine[x_, eps_] := Plot[yout[x] - Exp[-Xx / eps], {X, @, 1}, PlotStyle » {Thick, Red},
AxesOrigin - {0, 1}, GridLines - Automatic, GridLinesStyle - LightGray];
Animate [
Grid[{
{TraditionalForm|
NumberForm[e, {Infinity, 4}] HoldForm[y''[x] + (1+x)y"'[x]+y[x] =0]]},
{Row[{"exact solution ", TraditionalForm[sol]}]},
{Show[
Legended [combine[Xx, €], Style["Boundary layer solution, zero order", Red]],
Legended [Plot [Evaluatee@exact[x, €], {x, @, 1}, AxesOrigin » {0, 0}, PlotStyle - Blue],
Style["Exact analytical solution", Blue]]
, PlotRange -» {{0, 1}, {1, 2}}, ImageSize - 400]
}}]s (e, @0.0001, .1, .00001} ]

Printed by Wolfram Mathematica Student Edition
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p5.nb | 3

add more terms

ineop= Clear["Global™ %"];
sol =
yIx] /. First@eDsolve[{ey"''[x] + (1+x)y'[x] +Yy[X] =0, y[0] =1, y[1] = 1}, y[x], X];
exact[x_, e_] := Evaluate@sol;

boundary@[x_, eps_] := ( -Exp[-x/ eps] );

1+Xx
boundaryl[x_, eps_] :

2 2 1 1 , 3
( —Exp[-x/eps]) + eps S + (— (x/eps)” - —) Exp[-Xx/eps]|;
1+Xx (1+x) 2 (1+x) 2 2

2
boundary2[x_, eps_] := (— - Exp[—x/eps]) +
1+X

2 1 1 , 3
eps (1 )3—2(1+X)+(;(x/eps) —;] Exp[-x/eps]| +
+X
2 6 1 1 1 s 3 , 21
eps - - -|[=(x/eps)*-— (x/eps)?+ —| Exp[-x/eps]|;
(1+x)® 2(1+x)® 4(1+x) (8 4 4
boundary3([x_, eps_] := ( 2 —Exp[—x/eps]) +
1+Xx
2 1 1 , 3
eps (1 )3—2(1”() +(;(x/eps) —;] Exp[-x/eps]| +
+X
2 6 1 1 1 s 3 , 21
eps - - —(—(x/eps) - — (x/ eps) +—) EXp[-Xx/eps]| +
(1+x)® 2(1+x)® 4(1+x) (8 4 4
eps3[ 30 3 1 5
- - - +
(1+x)7 2(1+x)® 4(1+x)® 16 (1+x)

1 s 3 . 21 , 1949
[-(xlePS) - (x/eps)"+— (x/eps)” - Exp[-Xx/eps]|;
48 16 8

Printed by Wolfram Mathematica Student Edition
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4 | p5.nb

In[67):= Animate[
ex = exact[x, €];
Grid[{
{Style[

"percentage relative error, exact vs. boundary layer for different order", 14]},
{show|[

boundary3[x, €] - ex

Legended [Plot [100 * [ ), {x, 0, 1},
ex

PlotStyle -» {Thick, Red}, AxesOrigin -» {0, 1}, GridLines - Automatic,
GridLinesStyle - LightGray, PlotRange - {Automatic, {-4, .5}}, Frame - True,
Epilog » Text[Style[Row[{"e = ", NumberForm[e, {Infinity, 4}]}], 16], {.8, -3}] ] B
Style|["Boundary layer 3™ order error", Red]],
boundary2[x, €] - ex

Legended [Plot [160 * [
ex

AxesOrigin -» {0, 1}, GridLines - Automatic, GridLinesStyle - LightGr‘ay] )
Style["Boundary layer 2" order error", Black]],
boundaryl[x, €] - ex

), {x, 0, 1}, PlotStyle -» {Thick, Black},

Legended [Plot [100 * [ ), {x, @, 1}, PlotStyle » {Thick, Blue},

ex
AxesOrigin - {0, 1}, GridLines - Automatic, GridLinesStyle - LightGray] 5

Style["Boundary layer 1% order error”, Blue]],

boundary@[x, €] - ex

Legended [Plot 100 « [ ), {x, @, 1}, PlotStyle » {Thick, Magenta},
ex

AxesOrigin - {0, 1}, GridLines - Automatic, GridLinesStyle - LightGray] )
Style["Boundary layer © order error", Magenta]]
» PlotRange » {{@, 1}, {-4, .5}}, ImageSize - 400]
}}]5 {e, @.001, .1, .0001} ]

Printed by Wolfram Mathematica Student Edition
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p5.nb | 5

: 3 PEEIE]

percentage relative error, exact vs. boundary layer for different order

T T T T T T

Out[67]= Boundary layer 3" order error
Boundary layer 2"¢ order error
Boundary layer 15t order error

Boundary layer © order error

Printed by Wolfram Mathematica Student Edition

Animation of figure 9.5 in text page 434, compare higher order boundary layer solutions

This is an animation of the percentage error between boundary layer solution and the
exact solution for ey” + (1 + x)y” + y = 0 for different orders. Orders are given in text up
y0,y1,y2,y3. We see the error is smaller when the order increases as what one would expect.

The percentage error is largest around x = 0.1 than other regions. Why? Location of
matching is between y;, and y,,;. Due to approximation made when doing matching? But
all boundary layer solutions underestimate the exact solution since error is negative.

The red color is the most accurate. 3rd order.

First animation
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second animation

third animation

Veps Jl ﬂzuj

0.0559 (" (x) = (1+x) ¥ (x) = y({x) =©)

combinbed solution
Outer solution
Inner solution

et —

0.0177 (y” (x) + {1+ x) ¥'{(X) + y(x) =)
x

exact solution

Boundary layer solution, zero order
Exact analytical solution

bl

percentage relative error, exact vs. boundary layer for

Boundary
Boundary
-2 Boundary
Boundary
-3 €=0.0656 1
4
00 02 04 06 08 10

different order

layer 37 order error
layer 2™ order error
st

layer 15t order error

layer @ order error
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4.8 note p7 added 2/15/17, boundary layer problem
solved in details

This note solves
e () +1+x)y () +yx)=0
y(0)=1
y1)=1

Where ¢ is small parameter, using boundary layer theory.

4.8.0.1 Solution

Since (1 + x) > 0 in the domain, we expect boundary layer to be on the left. Let y,,, (x) be
the solution in the outer region. Starting with y (x) = ™ ¢"y, and substituting back into
the ODE gives
s(y{)' + eyl + ) +(1+x) (y’o + ey + ) + (yo +eyp + ) =0
O(1) terms
Collecting all terms with zero powers of ¢
I+x)yy+yo=0

The above is solved using the right side conditions, since this is where the outer region is
located. Solving the above using v, (1) =1 gives

out —
Yo© (¥) = 1+x

Now we need to find y;, (x). To do this, we convert the ODE using transformation & = i—c

dy _ dyds _ dy1 d =14 Tp; £ =
Hence - = EEZ— e Hence the operator e This means the operator 3 =
1d 1d 1 4
(ZE) (ZE) = G The ODE becomes
1 d%y (&) 1dy (&)
e~ 2 +(1+ 55)2? +y(&)=0

1y”+(1+cf)y’+y:0
€ €
Plugging y (£) = X", €"y (£) into the above gives
1 1
(Y6 ey + )+ (; - 5) (vo+evi+-)+(vo+rey+-)=0

1 1
- (y{)’ + eyy + ) + - (yE) + Yy + ) + 5(% + eyp + ) + (yo +eyp + ) =0

Collecting all terms with smallest power of ¢ , which is ¢! in this case, gives

1 //+1 /_0
E]/o 63/0—

Yo +Yo=0
Let z = y;, the above becomes
Z’+z=0
d(e*z) =0
efz=c
z=cet
Hence v} (&) = ce¢. Integrating
Yo (&) = —cet + ¢ (1A)
Since c is arbitrary constant, the negative sign can be removed, giving
i) = e+ (1A)

This is the lowest order solution for the inner yi” (£). We have two boundary conditions,
but we can only use the left side one, where y;, (£) lives. Hence using yq (£ = 0) =1, the
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above becomes
l=c+
ci=1-c¢
The solution (1A) becomes
Yo(&) =ce*+(1~-0)
=1+4c (6‘5 - 1)
Let ¢ = Ay to match the book notation.
Yo (&) =1+ Ag (et -1)
To find Ay, we match y' (£) with y3* (x)

s Aol -1)= Jip
1-Ag=2
Ay=-1
Hence
vg @ =2-¢*
O (¢) terms

We now repeat the process to find yli” (&) and y‘{“t (x). Starting with y*“ (x)
E(yE)’ + eyl + ) +(1+x) (3/6 +ey) + ) + (]/0 +eyp + ) =0
Collecting all terms with ¢! now
eyg + (L +x)ey; +ey; =0
o +A+x)y;+y; =0

2
But we know yo = —, from above. Hence y; = and the above becomes

(1+x)°
4
l+x0)yj+y=——=
Yi+th (1 4 X)3
’ Y1 4

+ =-
N T T aey

In(1+x) = 1 4 x and the above becomes

d 4

1
Integrating factor u = el Tt = ¢

— (1) = -n T
d 4
— (0 +x =-
7+ 91) (1+x)°
Integrating
4
A+x)y = —f(1+x)3dx+c
-2 +c
(1+x)
Hence
2 c

yl(x): (1+x)3 +1+x

Applying y (1) = 0 (notice the boundary condition now becomes y (1) = 0 and not y (1) =1,
since we have already used y (1) = 1 to find leading order). From now on, all boundary
conditions will be y (1) = 0.
0= 2 L
a+1)7> 1+1

c=-=
2
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Hence
2 1 1

1+x° 20 +2x)

y1(x) =

Now we need to find ¥ (£). To do this, starting from

1 1
- (yé’ +eyy + ) + (E +§) (y6 +eyp + ) + (yo + ey + ) =0

1 44 /17 1 / / / /
z (yo teyr + ) +3 (yo Teypt ) + 5(]/0 tey+ ) + (yo teyt ) =0
But now collecting all terms with O (1) order, (last time, we collected terms with O (8_1) ).
WA+ &+ Yo =0
Yi + Y1 =&~ Yo (1)
But we found y/' earlier which was
Y& =1+ Ay (e -1)
Hence y} = —Age ¢ and the ODE (1) becomes
vy +y; = EApe ™t - (1 + A (3‘5 - 1))

We need to solve this with boundary conditions 1, (0) = 0. (again, notice change in B.C. as
was mentioned above). The solution is

1
1 (&) ==&+ Ay (5 - 55%—5) + A (1-e)

=&+ A (5 - %gze—é) - Ay (5 -1)

Since A; is arbitrary constant, and to match the book, we can call A, = —A; and then
rename A, back to A; and obtain

1
O (e RV )

This is to be able to follow the book. Therefore, this is what we have so far

— qout . out
Your = yO + €Y1

_2 2 1
T1vx \@+x? 20+
And
Yy =y + ey’
=(1+A0(e“5—1))+e(—£+A0(5—%526“5)+A1(6‘5—1))

ja 1 ja
= Aoe_% —&e— €A1 - AO + eAle_é + £€AO - 55281408_g +1
To find Ay, A, we match y;, with y,,;, therefore
éh_{g, Yin = }Cii%yout
Or

1 .
lim (1406_5 - 58 - €A1 - AO + eAle_E + ESAO - 55261403_9 + 1) =

E—o00

) 2 2 1

lim +¢ 5~

=01+ x ((1+x) 2(1+x))
Which simplifies to

2 2 1
—Ee—eA1 - Ag+éeAp+1 =1 + -
te—edy=Ap+eedy 501 + x g((1+x)3 2(1+x))
X

It is easier now to convert the LHS to use x instead of £ so we can compare. Since & = >
then the above becomes

2 2 1
-x—eA; - Ay +xAg+1=1i + -
xmedi = Ao X 501 +x e((1+x)3 2(1+x))
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Using Taylor series on the RHS
1-Ag-x+Agx+Aje =lim2(1-x+22 + )
x—0
+2€(1—x+x2+ ---)(1—x+x2+ ---)(1—x+x2+ ---)—%(l—x+x2+ )

Since we have terms on the the LHS of only O(1),0 (x), O (¢), then we need to keep at
least terms with O (1), 0 (x),O(¢) on the RHS and drop terms with O (xz) ,O(ex),0 (52) to
be able to do the matching. So in the above, RHS simplifies to

—x—eAl—AO+xAO+1:2(1—x)+25—§
—x—eAl—A0+xA0+1:2—2x+26—§

3
—€A1—A0+x(A0—1)+1=2—2x+EE

Comparing, we see that
Ag-1=-2
Ag=-1
We notice this is the same Ay we found for the lowest order. This is how it should always

come out. If we get different value, it means we made mistake. We could also match
—Ap +1 =2 which gives Ay = -1 as well. Finally

3
—€A1:§€
3

Ay =-=
L)

So we have used matching to find all the constants for y;,. Here is the final solution so far

Yo A
—_——
(x) = 2 +¢ 2 - !
Jout = T v 0?20+

Yo Y1
—T N

Yin (&) =1+ A (6_'5 - 1) +¢€ (—cf + Ay (5 - %523—5) + Aq (e—é — 1))

=1-(e*-1)+¢ (—5 - (g - %5%—5) - g (e —1))

3 3 1
=56 et —28— Eee“E + Eézee‘é +2

. . X
In terms of x, since Since & = " the above becomes

(%) 3 e_z 2x 3 e_f + ! xze_'E +2
. = —c — £ — — —ge ¢ ——e ¢
Yin 2 2 2%

3 i (1x*> 3
=2-2x+=-e+e ¢ |z——-=e-1

2 2¢e 2
Hence
Yuniform = Yin + Yout — Ymatch
Where
Ymatch = (hm Yin
c—00
2-2x+ >
=2-2x+ =¢
2
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Hence
2 2+3+_§ 122 3 1)+ 2 + 2 ! 2 2x+3s
. — — — e|l—— — —¢ — & — — — —
Yuniform TrETeE T2 T+x \q+x° 20+% 2

xf1x%2 3 n 2 s 2 1
= ¢|l—— — —¢€ — > -
2¢  2° T+x \@+x° 20+%

2 _£+1x2 1), 2 1 3 _x
= —e ¢ ——ep ¢ & — ——p ¢
1+x 2 ¢ 1+x)° 20+x) 2

Which is the same as

2 _5+1x2_.é+ 2 1 3
. — —¢ e - -
Yuniform =\ 775 P (1+x) T2(0+x0 2
3 .1
& —x2,-¢
) (1+x) 2(1+x) 2°¢ +256)

3 —&
T+x ) ((1+x) 2(1+x) (52__) ) (1)

Comparing (1) above, with book result in first line of 9.3.16, page 433, we see the same
result.

4.8.0.2 References
1. Advanced Mathematica methods, Bender and Orszag. Chapter 9.
2. Lecture notes. Feb 16, 2017. By Professor Smith. University of Wisconsin. NE 548
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4.9 note p9. added 2/24/17, asking question about
problem in book

How did the book, on page 429, near the end, arrive at A; = —¢ ? I am not able to see it.
This is what I tried. The book does things little different than what we did in class. The
book does not do

lim y™ ~ lim y*
E— 00 x—0

But instead, book replaces x in the y* (x) solution already obtained, with &¢, and rewrites
y°" (x), which is what equation (9.2.14) is. So following this, I am trying to verify the book
result for A; = —e, but do not see how.  Using the book notation, of using X in place of
&, we have

Yi(X) = (A + Ag) (1-e7X) —eX

Which is the equation in the book just below 9.2.14. The goal now is to find A;. Book
already found A, = e earlier. So we write
Y1(X)

: _ X\ _ ~ 10Ut
}}520(A1+A0)(1 e X) = eX ~ ot ()

X e2x2
li —eX)—eX ~ - —
X1330(,41+AO)(1 eX) —eX e(l eX+— )

So far so good. But now the book says "comparing Y7 (x) when X — oo with the second
term in 9.2.14 gives A; = —e". But how? If we take X — co on the LHS above, we get

. eX?
)}lm (Aj+Ap) —eX ~ell—eX+——— -

2!
But Ay =e, so
. eX?
lim Aj+e—-eX ~e—ecX+e— — -
X—00 21
. eX?
lim A; —eX ~ —ecX +e—— — -+
X—0 21
How does the above says that A; = —e ? If we move —eX to the right sides, it becomes
eX?
Al NEX—EEX'F@T — e

2

X
A ~e(X—eX)+e€7—m

I do not see how A; = —e. Does any one see how to get A; = —e?

Let redo this using the class method

Y1(X)

3 _»X) _ ~ i out
)}1_{1(}0 (A1+A0)(1 e ) eX chl_r%y (x)

2
li —eX)—eX ~ 1 _ R
Jim (A1 + Ap) (1 e ) eX xl_r)%e(l X+ T )

lim A; +e—eX ~e

X—00

lim A1 ~ eX

X—>o00
How does the above says that A; = —¢? and what happend to the limy_,, of X which
remains there?
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4.10 note pll. added 3/7/17, Showing that scaling for
normalization is same for any n

This small computation verifies that normalization constant for the S-L from lecture
3/2/2017 for making all eigenfunction orthonormal is the same for each n. Its numeri-
cal value is 0.16627. Here is the table generated for n =1,2, ..., 6.

ClearAll[n, c, y, m];

3 V32
lam[n_1] := n x| — H
- 7 n?

3 3
yIn_, x_1 1= — Sin['\flam[n] [%_%]]j

X+ T
kil 4
data = Tal:}le[{rnJ rec/f. Last@Solve[I (y[m, x]}*2 (x+ax) dx=1, C]j r, N@r‘}, {m, 1, 6}]3
a

Grid[Join[{{"n", "c(n)", "numerical c(n)"}}, data], Frame » All]

n|c(n} |numerical c{n)
[6
A 7
1. 77 8.16627
[e
v 7
][ - 0.16627
=
| &
\ 7
3| 55 0.16627
n
7
a| L 0.16627
[6
7
5| 5> 0.16627
T
|7 )
6|y 8.16627
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411 note pl12. added 3/8/17, comparing exact solution
to WKB solution using Mathematica

Comparing Exact to WKB solution
for ODE in lecture 3/2/2017

by Nasser M. Abbasi EP 548, Spring 2017.

This note shows how to obtain exact solution for the ODE given in lecture 3/2/2017, EP 548, and to
compare it to the WKB solution for different modes. This shows that the WKB becomes very close to
the exact solution for higher modes.

Obtain the exact solution, in terms of Bessel] functions

6= ClearAll[n, c, y, m, lam];
9n~2
49 Pin4

c= L ; (xnormalization value found for WKBx)
7Pi”3

sin[n (x"3+3x"2Pi+3Pir2x) / (7Pi"2)];

lam[n_] := [ ),' (xeigenvalues from WKB solutionx)

n_,x_]:=c
yin, x| Pi+x

(*WKB solution foundx)

Find exact solution

nis- ode =y ' ' [x] +1am (x+Pi) ~4 y[x] = @;
(solExact =y[x] /. FirsteDSolve[{ode, y[0O] == O}, y[X], x]) // TraditionalForm

Out[19)//TraditionalForm=

1

o r(%)m[-ﬂ[ lar; 7r3)J_L[(lamx“+4lamnx3+6]amn2x2+4lam7r3x+lam7r“)3/4]_

3 Vlam

[\/lam ”3)J [(lamx4 +4lamzrxd + 6 lam 7% X2 + 4 lam 7 x + lam7r4)3/4]]
1
3 5

J

1
6

3 vlam

Make function which normalizes the exact solution eigenfunctions and plot each

mode eigenfunction with the WKB on the same plot

Printed by Wolfram Mathematica Student Edition
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2 | p12.nb

inies;= compare [modeNumber_] :=
Module[{solExactl, int, cFromExact, eigenvalueFromHandSolution, flip},

eigenvalueFromHandSolution = 1lam[modeNumber];

solExactl = solExact /. lam » eigenvalueFromHandSolution;

int = Integrate[solExact1”2 % (x+Pi)~4, {x, @, Pi}];

cFromExact = First@NSolve[int == 1, C[1]];

solExactl = solExactl /. cFromExact;

If [modeNumber > 5, flip = -1, flip = 1];

Plot[ {y [modeNumber, x], flip * solExactl}, {x, 0, Pi},
PlotStyle -» {Red, Blue}, Frame -> True, FrameLabel » {{"y(x)", None},

{"x", Row[ {"Comparing exact solution with WKB for mode ", modeNumber}]}},

GridLines -» Automatic, GridLinesStyle - LightGray, BaseStyle - 12, ImageSize - 310,
FrameTicks - { {Automatic, None}, {{e, Pi/4, Pi/2, 3 /4Pi, Pi}, None}}

]
]

Generate 4 plots, for mode |, up to 6

These plots show that after mode 5 or 6, the two eigenfunctions are almost exact

Printed by Wolfram Mathematica Student Edition
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CHAPTER 4. STUDY NOTES

nee;= plots = Table[compare[n], {n, 6}];
Grid[Partition[plots, 2]]

Comparing exact solution with WKB for mode 1

0.03F
0.021
x
=
0.01F
0.00 \
0 I I ax n
4 2 4
X
Comparing exact solution with WKB for mode 3
0.04 -
0.021
£
ou7)= > 0.00 t
-0.02+
0 I z‘[ ax -
4 2 4
X
Comparing exact solution with WKB for mode 5
0.04
0.02F
g
> 0.00
-0.02+
-0.04 = . . . .
0 I I 3n T
4 2 4
X

y(x)

y(x)

0.04F
0.03}
0.02}
0.01}

p12.nb | 3

Comparing exact solution with WKB for mode 2

0.00

-0.01¢
-0.02¢

-0.03f,

Vi
0 s b 3 T
4 2 4
X

Comparing exact solution with WKB for mode 4

0.04

0.021

0.00

AWN

-0.02¢

VY

b
4 2 4

X

Comparing exact solution with WKB for mode 6

0.04 -

0.02 | A /\

0.00 f
-0.02
-0.04 t. . . . .

0 I I 3 T
4 2 4
X

Printed by Wolfram Mathematica Student Edition
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4 | pi2.nb

Generate the above again, but now using relative error between the exact and

WKB for each mode, to make it more clear

inies;= compareError [modeNumber_] :=
Module[(solExactl, eigenvalueFromHandSolution, int, cFromExact, flip},

eigenvalueFromHandSolution = 1lam[modeNumber];

solExactl = solExact /. lam - eigenvalueFromHandSolution;

int = Integrate[solExact12 % (x+Pi)~4, {x, @, Pi}];

cFromExact = First@NSolve[int == 1, C[1]];

solExactl = solExactl /. cFromExact;

If [modeNumber > 5, flip = -1, flip = 1];

Plot[ 100 » Abs[ (flip « solExactl - y [modeNumber, x]) ], {x, @, Pi}, PlotStyle -

{Red, Blue}, Frame -> True, FrameLabel » {{"relative error percentage"”, None},
{"x", Row[ {"Absolute error. Exact solution vs WKB for mode ", modeNumber}]}},

GridLines - Automatic, GridLinesStyle - LightGray, BaseStyle » 12, ImageSize - 310,
FrameTicks - { {Automatic, None}, {{e, Pi/4, Pi/2, 3 /4Pi, Pi}, None}},
PlotRange -» {Automatic, {0, 0.3}}

]
1

neo= plots = Table [compareError[n], {n, 10}]; (*let do 10 modesx)
Grid[Partition[plots, 2]]

Absolute error. Exact solution vs WKB for mode 1 Absolute error. Exact solution vs WKB for mode 2

0.30 0.30
S 3
8 0.25F 8 0.25¢
g 5
o 0.20f © 0.20F
(4] []
[oN [o%
5 0.15F 5 0.15}F
5 E
o 0.10f o 0.10}
= =
®© (]
) 0.05} ® 0.05}

S T e S ra——

4 2 4 4 2 4
X X
Absolute error. Exact solution vs WKB for mode 3 Absolute error. Exact solution vs WKB for mode 4

0.30 0.30
(] (]
g 0.25} g 0.25}
C C
8 0.20} 8 0.20f
[ [
Q. [e%
5 0.15 5 0.15}
o 0.10 o 0.10]
2 g
‘E‘j 0.05 g 0.05}

0.00 0.00 5 ‘E ﬁ an rr

4 2 4
X X

Printed by Wolfram Mathematica Student Edition
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out[69)=

relative error percentage relative error percentage

relative error percentage

pl2.nb | 5
Absolute error. Exact solution vs WKB for mode 5 Absolute error. Exact solution vs WKB for mode 6
0.30 0.30
(]
0.25F D 0.25}
c
0.20f 8 0.20}
[
[e%
0.15F 5 0.15¢
0.10f o 0.10f
=
0.05} < 0.05}
0.00 . = = e n 0.00 5 - - s rr
4 2 4 4 2 4
X X
Absolute error. Exact solution vs WKB for mode 7 Absolute error. Exact solution vs WKB for mode 8
0.30 0.30
(]
0.25F S 0.25}
C
0.20} 8 020!
[]
[o%
0.15F 5 0.15¢
0.10} o 0.10}
=
o /\/WWW % o /\/\/\/WVV\/
0.00 5 - - o " 0.00 5 = - iz rr
4 2 4 4 2 4
X X
Absolute error. Exact solution vs WKB for mode 9 Absolute error. Exact solution vs WKB for mode 10
0.30 0.30
(]
0.25F & 0.25f
C
0.20f 8 0.0}
g
0.15F 5 0.15¢
0.10f o 0.10f
=
0.00 ! ! - : 0.00 : . . :
pi pig 3 i s 3
0 4 2 4 m 0 4 2 4 Tt
X X

Printed by Wolfram Mathematica Student Edition
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412 Convert ODE to Liouville form

Handy image to remember. Thanks tojhttp://people.uncw.edu/hermanr/mat463/0DEBook/
Book/SL.pdf

to turn it into Sturm-Liouville form.
In summary;,

Equation (6.1),
as(z)y" + a1 (2)y’ + ao(z)y = (=), (6.7)
can be put into the Sturm-Liouville form
= (s +ataty = Fla), (6.8)
where
plz) = (?.Jr zztj} !
o(z) = pla) 22
F(z) = p{.ﬂ%. (6.9)
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4.13. note p13. added 3/15/17, solving...

4.13 note pl13. added 3/15/17, solving

e?y”(x) = (a + x + x*)y(x) in Maple

[ Define the ODE
> assume (a>0 and 'real');
ode:=epsilon”*2*diff (y(x) ,x$2)=(x"2+a*x) *y (x) ;

2
ode = € [((i.ixzy(X)j =(a~x +x%) y(x)

[ Solve without giving any B.C.

> sol:=dsolve(ode,y(x)) ;
4e] 7111 (at2x?) 3
— _ 1 a~ —4ace A1 1 (a~ X 2 € "
sol == y(x)=_CI hypergeom( 16 < }, [ 5 ], 2 c ] e + C2 (a
1 al—12 311 (aet2n)?) -3
oL oar —lle 2| L Aa~ X 2 €
+2x) hypergeom( 16 p ] [ 5 ] 4 p ) e

['Solve with one B.C. at infinity given
> sol:=dsolve({ode,y(infinity)=0},y(x))
2
1 e’ —12¢ ]

sol = y(x) = lim [— [_CZ (a~+2 _a) hypergeom(

1 (a~+2 a)2jh o eom( 1 a~2—4e] [L]
4 € yperg 6 € [l2)a4
(h er eom( - @ [i} 1 (a~+2 a)zjj + C2 (a~+2x) hyper eom(
yperg T < Fl2b3 c _ yperg
2 ) 1 x(a~+x)
R a~—12€][i]i(a~+2x)jez c )
|16 e Jl24 €
Now solve giving B.C. at -infinity
> sol:=dsolve({ode,y(-infinity)=0},y(x))
2 2
. L 1 a"—12¢| 311 (-a~+2 a) ) o
sol = y(x) }}mw [[hypergeom( T }, [ 5 ], 4 c (-a
1 al—4 1] 1 (a4207) 3
1 a"—4¢ 111 (a~ X 2 €
+27a)7C2hypergeom( "6 c ],[2 ], 4 c )e )

2 2
_ a—4e|[1] 1 (-a~+2 a) _
(hypergeom( 16 < R [ 2 }, 4 c ]] + C2 (a~+2x) hypergeom(
2 2 1 x(a~+x)
1 e’ —12¢ [i]i(a~+2x} j627e J
16 € 124 €

[ Now solve by giving both B.C.at both ends
> sol:=dsolve({ode,y(infinity)=0,y(-infinity)=0},y(x))

sol ==y(x) =0

205



4.13. note p13. added 3/15/17, solving... CHAPTER 4. STUDY NOTES

206



Chapter 5

Exams

Local contents

5.1 Exam 1. . . . e e e e e e
..........................................

207



5.1. Exam 1 CHAPTER 5. EXAMS

51 Exam1

51.1 problem 3.26 (page 139)

Problem Perform local analysis solution to (x -1)y” —xy’ + y = 0 at x = 1. Use the result
of this analysis to prove that a Taylor series expansion of any solution about x = 0 has an
infinite radius of convergence. Find the exact solution by summing the series.

solution

Writing the ODE in standard form

y' (@) +a(x)y (x)+b(x)y(x)=0 1)
X 1
" — "+ =0 2
y (- 1)3/ (- )3/ (2)
Where a (x) = ,b(x) = —=. The above shows that x =1 is singular point for both a (x)

(x 1)
and b (x). The next step is to classify the type of the singular point. Is it regular singular

point or irregular singular point?

hm(x 1)a(x)—11m(x 1)m

=-1
And

hm(x 1) b(x)—hm(x 1) (1—1)

=0

Because the limit exist, then x =1 is a regular singular point. Therefore solution is assumed

to be a Frobenius power series given by
v = Ya, (-1
Substituting this in the original ODE (x _” ;()) Yy —xy’ +y =0 gives
v @ =N+ na, -1

n=0

Yy (x) = i m+ry(n+r-1)a, (x- 1ymr-2
n=0

In order to move the (x —1) inside the summation, the original ODE (x -1)y"” —xy" +y =0
is first rewritten as

x-Dy"-x-1)y -y +y=0 (3)

Substituting the Frobenius series into the above gives

(x-1) i m+r)(m+r-1a,(x-1)"?
n=0

—(x-1) f] (n+7)a,(x-1)"""1
n=0

- i (n+r)a, (x— 1)”+r_l
n=0

+ )4, (k=1 =0
n=0
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i m+ry(n+r-1)a, (x_l)n+r—1

n=0

- i n+r)a,(x-1)""
n=0
- i (n+7)a,(x-1)"""
n=0

+ Ean(x—l)”w =0
n=0

Adjusting all powers of (x—1) to be the same by rewriting exponents and summation
indices gives

i n+r)(n+ r_1)un (x_l)n+r—1

n=0

—~ i m+r-1)a,  (x-1)"""

n=1

- i (nm+r)a,(x- 1)
n=0

+ )y (X - "t =0
n=1

Collecting terms with same powers in (x —1) simplifies the above to

f} (n+)(+r-1)-m+n)a,(x-1)"""- io] m+r-2a, (x-1)"""1=0 ()
n=0 n=1

Setting n = 0 gives the indicial equation
(n+ry(m+r-1)-(m+r)ay=0
(Nr-1)-ra =0

Since ay # 0 then the indicial equation is

N@r-1)-r=0

?-2r=0

r(r=2)=0
The roots of the indicial equation are therefore
r=2
=0

Each one of these roots generates a solution to the ODE. The next step is to find the
solution y; (x) associated with » = 2. (The largest root is used first). Using r = 2 in equation
(4) gives

i ((n+2)(n+1)-(n+2)a, (x— 1)n+1 - i na, 1 (x - 1)n+1 ~0
n=0 n=1

i n(n+2)a,(x-1""- f] na, 1 (x-1)"" =0 (5)
n=0 n=1

At n > 1, the recursive relation is found and used to generate the coefficients of the
Frobenius power series

n(n+2)a,—-na, =0
n
nm+2)

ay Ap—1

Few terms are now generated to see the pattern of the series and to determine the closed

form. Forn=1

1
a = 5(10

Forn=2
2 21 1

=50+ T 83 T 2™
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Forn=3
3 31 1
BT 334221512707 0™
Forn=4
4 11 1
U @127 660 " 360™

And so on. From the above, the first solution becomes

v () = Y a, (x—1)""?

n=0
a1+ -1+ (- D +as (x - 1) +a, (x = 1)° + -

:(x—l)z(ao+a1(x—1)+a2(x—1)2+a3(x—1)3+a4(x—1)4+---)

1 1 1 1
= (x-1) (ao + 3% (x-1)+ 1—2110(x—1)2 + @uo(x—l)?’ + 360 (x-1)*+ )

:ao(x—1)2(1+%(x—1)+11—2(x—1)2+61—O(x—1)3+31ﬁ(x_1)4+...) (6)

To find closed form solution to y; (x), Taylor series expansion of ¢* around x =1 is found
first

N e 2 ¢ 3, ¢ 4 € 5
efze+te(x-1)+=-(x-1) +§(x—1) +I(x—1) +§(x—1) + -

2
~ D+ 12 1P S e e (=1 4 -
~e+e(x 1)+2(x 1) +6(x 1) +24(x 1) +120(x 1) +
N 1 2 1 3,1 g 1 5
~e(1+(x 1)+2(x 1)+6(x 1)+24(x 1)+120(x 1) +

Multiplying the above by 2 gives
X~ 2 1 3 1 4 1 5
2e ~e(2+2(x 1)+ (x-1) +3(x 1) +12(x 1) +60(x 1) + )
Factoring (x - 1)2 from the RHS results in
1 1 1
. B 2 i T T
2e ~e(2+2(x 1)+ ((x-1) (1+3(x 1)+12(x 1) +60(x 1) + )) (6A)

Comparing the above result with the solution y; (x) in (6), shows that the (6A) can be
written in terms of y; (x) as

2" :e(2+2(x—1)+(x—1)2(y1—(x)))

ap (x —1)*
Therefore
2¢% = e(2+2(x—1)+ yl—(x))
4o
261 =242 (x—1) + 1Y
ao
y1 (%)
ag

201 -2 -2(x-1) =

Solving for y; (x)
y1 (x) = ag (Ze"‘1 —2-2(x- 1))
= a (281 -2 -2x +2)
= a (Ze"‘1 -~ 2x)

ZQO
= —e¥ —2apx
e

2ag

Let = C; and —24( = C,, then the above solution can be written as

e
Y1 (x) = Cie* + Cox

Now that y; (x) is found, which is the solution associated with r = 2, the next step is to find

the second solution v, (x) associated with r = 0. Since r, —r; = 2 is an integer, the solution

can be either case II(b) (i) or case II (b) (i) as given in the text book at page 72.

From equation (3.3.9) at page 72 of the text, using N = 2 since N = r, — r; and where
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p (x) = —x and g (x) =1 in this problem by comparing our ODE with the standard ODE in
(3.3.2) at page 70 given by
p) . q()
+ 2
(x — xp) (x —xp)
Expanding p (x), g (x) in Taylor series
pe) = 2P (x-1)"

n=0

yll +

q(x) =Y, 9, (x-1)"
n=0

Since p (x) = —x in our ODE, then p, = -1 and p; = -1 and all other terms are zero. For
g (x), which is just 1 in our ODE, then gy =1 and all other terms are zero. Hence

po=-1
p1=-1
qo=1
N=2
r=20

The above values are now used to evaluate RHS of 3.3.9 in order to find which case it is.
(book uses a for r)
N-1

Oay == 35 [(r+ ) pnok + an-k ] (3.3.9)
k=0

Since N = 2 the above becomes
1
0ay = = 3, [(r + k) poci + Gok ]
k=0

Using r = 0, since this is the second root, gives
1

0, = = Y (kpaot + q2-x) a
k=0

= — ((0p2=0 + G2-0) @0 + (p2-1 + 92-1) m1)
= —((0p2 + 32) a0 + (p1 + 71) 1)
=—(0+g2)ap— (p1 + @) &y
Since g, = 0,p; = -1,4; =1, therefore
0a, =-(0+0)ag—(-1+1)ay
=0
The above shows that this is case II () (ii), because the right side of 3.3.9 is zero. This

means the second solution y, (x) is also a Fronbenius series. If the above was not zero, the
method of reduction of order would be used to find second solution.

Assuming y, (x) = ¥, b, (x —1)"", and since r = 0, therefore
Yo () = D b, (x=1)"
n=0

Following the same method used to find the first solution, this series is now used in the
ODE to determine b,,.

Y (x) = inbn (x-1)"" = inbn (x-1)"" = f} (1 +1) by (x=1)"
n=1

n=0 n=0
o0

V) = Dm0+ Dby (=1 = Y+ Dby (=1 = Y041 (14 Dby (x—1)
n=0

n=1 n=0
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The ODE (x-1)y” - (x-1)y’ -y’ + y = 0 now becomes

(x—l)f:(n+1)(n+2)bn+2(x—1)'1

n=0

=) Y (14 D) by (21"
n=0
=30+ Dby (-1
n=0

+ 3,0, (x-1)"=0
n=0

Or
X (1 +1) (1+2) by (="
n=0
=)+ Dby (=1
n=0
=Y 1+ D) by (x-1)"
n=0
+ 3,0, (x-1)"=0
n=0
Hence

300 01+ Dbyer (6=1)" = Yy (6= 1" = 3 014 D by (6= 1"+ 3 b, (6= 1" =0

n=1 n=1 n=0
n =0 gives

-n+1)b,y1+b,=0

-by+by=0

by =bo

n=0

n > 1 generates the recursive relation to find all remaining b, coeflicients

(n) (1’1 +1)bn+1 _nbn - (n +1)bn+1 + bn =0

(m)(n+1)byq —(n+1)b, 41 =nb, - b,
by (M) (n+1)-(m+1))=b,(n-1)
(n-1)

b1 = "+ 1) = (n+1)

Therefore the recursive relation is

b1 = n_:_ll
Few terms are generated to see the pattern and to find the closed form solution for v, (x).
Forn=1
1 1
by=b==2b
2 =015 = 5%
Forn=2
b, 11 1
by=—==—==by=-b
73 732% 6"
Forn=3
by 11 1
by=—==—--by=—
YT3+1 460 240
Forn =4
by 11 1
b= 101 "5 T 1™
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And so on. Therefore, the second solution is

Y2 (¥) = Db, (x - 1)
n=0
=Dy +by (x=1) + by (x=1)* + -

3 1 2 1 3 1 4 1 5
—b0+b0(x 1)+2b0(x ].) +6b0(x 1) +24b0(x 1) +120b0(x 1) +

1 1 1 1
:b0(1+(x—1)+§(x—1)2+8(x—1)3+ﬂ(x—1)4+ﬁ(x—l)5+---) (7A)

The Taylor series for ¢* around x =1 is

¥ D+ e+ -1 e e e (r— 1P 4
ef=e+e(x 1)+2(x 1) +6(x 1) +24(x 1) +120(x 1) +
e+ (=)t S @12+ 2 =1+ = (= 1) + — (x=1)° + (7B)
xe X 5 (x o TR 20 *
Comparing (7A) with (7B) shows that the second solution closed form is

X

e
Y2 (x) = bo;
Let b?o be some constant, say Cs, the second solution above becomes
Y2 (x) = Cae?
Both solutions y; (x),y, (x) have now been found. The final solution is
y () =y1(0) + 12 (x)
11(%) 12()
= C16¥ + Cyx + Cge*
= Cye® + Cox
Hence, the exact solution is
y(x) = Ae* + Bx (7)
Where A, B are constants to be found from initial conditions if given. Above solution is
now verified by substituting it back to original ODE
y =Ae"+B
Yy’ = Ae*
Substituting these into (x —1)y” —xy’ +y = 0 gives
(x—=1)Ae* —x(Ae*+B)+ Ae* +Bx =0
xAe* — Ae* —xAe* —xB+ Ae* + Bx =0
-Ae* —xB+ Ae* + Bx =0
0=0
To answer the final part of the question, the above solution (7) is analytic around x = 0

with infinite radius of convergence since exp (-) is analytic everywhere. Writing the solution
as

o xn
y(x) = (AE E) + Bx
n=0
The function x have infinite radius of convergence, since it is its own series. And the
exponential function has infinite radius of convergence as known, verified by using standard

ratio test

n+1n!

(n+ 1|

= A lim

n—-oo

1m| |:
n—oolp +1

1
n—00

xn! |
(n+1)!

For any x. Since the ratio is less than 1, then the solution y (x) expanded around x = 0 has
an infinite radius of convergence.
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5.1.2 problem 9.8 (page 480)

Problem Use boundary layer to find uniform approximation with error of order O (52) for
the problem ¢y” +y' +y = 0 with y(0) = ¢,y (1) = 1. Compare your solution to exact solution.
Plot the solution for some values of ¢.

solution

ey +y +y=0 (1)

Since a (x) =1 > 0, then a boundary layer is expected at the left side, near x = 0. Matching
will fail if this was not the case. Starting with the outer solution near x = 1. Let

Y (x) = Y My, (%)
n=0
Substituting this into (1) gives
e(vy +eyy + ey + )+ (Yo +eyi+ s+ )+ (Yo + ey + 22+ ) =0 (2)

Collecting powers of O (50) results in the ODE

Yo ~ Yo
d
Yo gy
Yo
In |y0| ~-x+Cy
yg" () ~ Cre* + 0 (e) (3)
C; is found from boundary conditions y (1) = 1. Equation (3) gives
1= Cle_l
C1 =e

Hence solution (3) becomes
Y3 (x) ~ el
y§" (x) is now found. Using (2) and collecting terms of O (51) gives the ODE
Vi+ty1~ Yo (4)
But
Vo () = i
vy (x) = et
Using the above in the RHS of (4) gives
it~ e

The integrating factor is ¢*, hence the above becomes

dd_x (ylex) ~ —ptplx
d
© ()~

1-x

Integrating both sides gives
et ~ —ex + Cy

A () ~ —xel~ 4 G (5)

Applying boundary conditions y (1) = 0 to the above gives
0=-1+Cye!
Cr=e

Hence the solution in (5) becomes

Y3 (x) ~ —xel™ + el 7¥

~(1-x)el™
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Therefore the outer solution is

Y () =yo + ey
=l +e(l-x)el™ (6)

Now the boundary layer (inner) solution y™ (x) near x = 0 is found. Let & = gip be the inner

variable. The original ODE is expressed using this new variable, and p is found. Since

d dy d& d dy _ . . . od pd
Y= Y% then L = 27, The differential operator is - = &7 — therefore
<

dx — dE dx dx  dg
> d d
dx?  dxdx
d d
=|e?P— P—
(5 dé) (8 dé)
2
= g_zpd—
dé?
2 2
Hence ZTZ = e‘zf’% and ¢y” +y" +y = 0 becomes
N AV
8(8 ZP@)'FE p£+y=0
ey + &Py +y =0 (7A)
The largest terms are {51‘ZV,S‘P }, balance gives 1 —2p = —p or
p=1
The ODE (7A) becomes
ey +ely +y=0 (7)

Assuming that solution is

Yin (0) = D", = Yo + €Yy + 2yp + -

n=0
Substituting the above into (7) gives
et (yé’ +eyf + ) +e! (y(’J +eyp + ) + (yo +eyp + ) =0 (8)
Collecting terms with O (e‘l) gives the first order ODE to solve
Yo ~ Yo
Let z = y;, the above becomes
zZ'~ -z
d
L
In |Z| ~ —5 + C4
z ~ Cyqe¢
Hence
Yo ~ Cye™
Integrating

W@~ Cy [etdsCs
~ —Cge™* + Cs 9)
Applying boundary conditions y (0) = e gives
e=-C4+Cs
Cs=e+Cy
Equation (9) becomes
Yo (&) ~ —Cye™® + e+ Cy
~Cy(l-e)+e (10)

The next leading order y (£) is found from (8) by collecting terms in O (eo), which results
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in the ODE
Y1 Y1~ Yo
Since ' (&) ~ Cy4 (1 - e‘é) + e, therefore yj ~ C4e7¢ and the above becomes
Yy +yy ~ —Cae®
The homogenous solution is found first, then method of undetermined coefficients is used
to find particular solution. The homogenous ODE is

Yin ™~ Yin
This was solved above for /', and the solution is
Y1~ —Cse* +Cg

To find the particular solution, let Yip ~ A&e ¢, where & was added since e™¢ shows up in
the homogenous solution. Hence

Yip ~ Ae — Age®
Y1y ~ —Ae" — (Ae“E - Aée“f)
~ —2Ae™¢ + Aée~¢
Substituting these in the ODE y{, +y}, ~ —C4e™¢ results in

Lp
—2Ae™ + Aée™¢ + Ae~t — Ale ¢ ~ —Cyet
—A = —C4
A = C4

Therefore the particular solution is
y1p ~ Cye®
And therefore the complete solution is
V(&) ~ Y+ Yy
~ —Cse™¢ + Cg + Cy&e™¢
Applying boundary conditions y (0) = 0 to the above gives
0=-C5+Cg
Ce=Cs
Hence the solution becomes
Y (&) ~ —Cse™® + C5 + Cy&e™¢
~Cs (1) + Cyée* 11)
The complete inner solution now becomes
y"E) ~ i + eyt
~ Cy (1 - e‘é) +e+e (C5 (1 - e“f) + C4£e‘5) (12)

There are two constants that need to be determined in the above from matching with the
outer solution.

Ehm yin (5) ~ llII(l) yout (x)
i —e¢¢ _ < ‘ &) ~ Ti 1-x _ 1-x
511_)r1(r>10C4(1 e )+e+s(C5(l e )+C4Ee ) chl_r)r(l)e +e(l-x)e

Cy+e+eCs~e+ee

The above shows that

C5:€
Cit+e=e
C4:O

This gives the boundary layer solution " () as
Y (&) ~ e+ ce (1 - e‘g)
~ e(l +£(1 —e‘é))
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. X .
In terms of x, since & = = the above can be written as

Y (x) ~ e (1 +e (1 -~ e_g))
The uniform solution is therefore
Yanitorm (0) ~ ¥ () + ¥ (X) = Yymate
v out
~ e(l + 8(1 —e_iﬁ')) +el*+ el —x)el™ —(e+ ce)

X
~e+ee(1 -e 5) +el ™ 4+ (e —ex)el™ — (e + ce)
1-%
~e+ec—ce ¢ +el™ el —exel™ —e— e
1-%
~ —ge € +el T + el — exel ™™

1
~ el (—ee_? +1+¢e— ex)

1
Yuniform (x) ~ el (1 + & (1 -X - 6_5))
With error O (62).

The above solution is now compared to the exact solution of ¢y” +y" +y = 0 with y(0) =
e,y (1) = 1. Since this is a homogenous second order ODE with constant coefficient, it is
easily solved using characteristic equation.

eA2+A1+1=0

The roots are

-b N Vb2 - 4ac

A=—+
2a 2a
_—1+\/1—4€
2T 2¢

Therefore the solution is
y (x) = AeM¥ + Be'2*

-1 Vl1-4e -1 Vi-4e
:Ae(Z+ 2¢e )x+B€(z_ 2¢e )x

- \/1—4sx - —V1-4¢
= Ae2e 2 ~ 4 Be2ceg 2¢

_x ( Viae _@x)

X

=e2 [Ae 2 "+ Be z

Applying first boundary conditions y (0) = e to the above gives
e=A+B
B=e-A

Hence the solution becomes

o Vi Vit
y(x) =e2 [Ae 2 Tte-Ae = x)

-Xx V1-4e 1- V1-4¢ —V1-4¢
—e2 |Ae 2c T4 T2 Y — Ae 2 *

- 1—4£x —\/1—4sx 1- 1—4sx
=e2 |Ale 2¢ " —¢ 2¢ +e 2 (13)
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Applying second boundary conditions y (1) =1 gives

-1 V1-4e -V1-4¢ 1- 1-4¢
1=c2|Ale 26 —¢ 2 +e 2

1 V1-4e -V1-4e 1- 1-4¢
e = Ale 22 —e¢ 2¢ +e 2¢
1 1- 1-4¢
e2e —e 2¢
A=
1-4¢ -V1-4e
e 26 —ep 2

(14)

¢ -X eﬂ — el_ 2¢ \/1—4&'x —V1-4¢ 1— 1-4e¢
exac - N -
X) = e2¢ e 2 —e 2 +e 2¢
Y (x) 1-4e -Vi-ge
e 28 —p 2
In summary
exact solution asymptotic solution

e 2 — 2¢

1 1-4¢
-x 2 _, 1777 1-4¢ —V1-4¢ V14 1
e2e [[L] (g 2c Y _ e 2 x + el 2 ¥ el_x + gel_x (1 —x—e ¢

) + O(Ez)

The following plot compares the exact solution with the asymptotic solution for ¢ = 0.1

Exact solution vs. two terms asymptotic € = 0.1

3.0

|

Exact solution]

Asymptotic

X 20
>‘ L

1.0

00 0.2 04 06 0.8

The following plot compares the exact solution with the asymptotic solution for ¢ = 0.01.
The difference was too small to notice in this case, the plot below is zoomed to be near

x=0
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Exact solution vs. two terms asymptotic € = 0.01

2.7+ Exact solution
Asymptotic
2.6r J
X 2.5+ ,
>
2.4+ )
2.3r J
0.00 0.05 0.10 0.15 0.20

X

At ¢ = 0.001, the difference between the exact and the asymptotic solution was not no-
ticeable. Therefore, to better compare the solutions, the following plot shows the relative
percentage error given by

exact uniform
y -y

100 Yo

exact

For different «.

Percentage relative error between exact solution and asymptotic solution

10+ .
€=0.1
8F €=0.05 ,
I €=0.01 |
S 6 -
()
s
>
g |
o [ |
x|
2, -
o\ |
0.0 0.2 0.4 0.6 0.8 1.0

Some observations: The above plot shows more clearly how the difference between the
exact solution and the asymptotic solution became smaller as ¢ became smaller. The plot
also shows that the boundary layer near x = 0 is becoming more narrow are ¢ becomes
smaller as expected. It also shows that the relative error is smaller in the outer region
than in the boundary layer region. For example, for ¢ = 0.05, the largest percentage error
in the outer region was less than 1%, while in the boundary layer, very near x = 0, the
error grows to about 5%. Another observation is that at the matching location, the relative
error goes down to zero. One also notices that the matching location drifts towards x = 0
as ¢ becomes smaller because the boundary layer is becoming more narrow. The following
table summarizes these observations.
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€ % error near x = 0 | apparent width of boundary layer
01 |10 0.2
0.05 |5 0.12
0.01 0.02
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5.1.3 problem 3

Problem (a) Find physical optics approximation to the eigenvalue and eigenfunctions of
the Sturm-Liouville problem are A — oo

—y” = A (sin (x) + 1)2 y
y(0)=
y(m) =
(b) What is the integral relation necessary to make the eigenfunctions orthonormal? For

some reasonable choice of scaling coefficient (give the value), plot the eigenfunctions for
n=>5,n=20.

(c) Estimate how large A should be for the relative error of less than 0.1%

solution

51.31 Parta

Writing the ODE as
Yy’ + A(sin (x) + 1)2y =0
Let]

Then the given ODE becomes
€2y’ (x) + (sin (x) + 1)*y (x) = 1)

Physical optics approximation is obtained when A — oo which implies ¢ — 0*. Since the
ODE is linear and the highest derivative is now multiplied by a very small parameter ¢,
WKB can therefore be used to solve it. WKB starts by assuming that the solution has the
form

y(x) ~ exp (% i o"S,, (x)) 6—0
n=0

Therefore, taking derivatives and substituting back in the ODE results in

v 0 ~exp (3 B, 0) (5 S ors00)

n=0 n=0

o o 2 o [oe]
Yy’ (x) ~ exp (1 E o"s,, (x)) (1 E oSy, (x)) + exp (1 Z o"S,, (x)) (1 Z oSy (x))
o n=0 0 n=0 g n=0 o n=0

Substituting these into (1) and canceling the exponential terms gives
1 (&)
211 = 5ns’
€ [( ; 2% e

Z—z(sams; + ) (S +0S] + ) +

f] o"S! (x)) ~ —(sin (x) + 1)

| M —

- (s + 08y + ++) ~ = (sin (x) + 1)°

2
5 ((55)" o (@sist) + ) + S (85 + 01 + ) ~ = (sin @) +17

N

&2 262 € 5
(52 (so) + 5155+ ) + (gsg + 28 + ) ~ —(sin (x) +1) (2)

2, \2
The largest term in the left side is ;—2 (56) . By dominant balance, this term has the same

order of magnitude as the right side — (sin (x) + 1)%. This implies that 62 is proportional to
¢2. For simplicity (following the book) 6 can be taken as equal to ¢

O0=¢

Using the above in equation (2) results in

((56)2 +2¢8,S) + ) + (eSg + €28y + ) ~ — (sin (x) + 1)°

1= % could also be used. But the book uses &2.
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Balance of O (1) gives

2 . 2

(Sh) ~ - (sin (x) +1) (3)

Balance of O (¢) gives

25,8} ~ -SY (4)
Equation (3) is solved first in order to find S (x).

S ~ +i(sin (x) +1)

Hence

Sow)~jﬁjr(ﬁna)+Ddt+Ci

~ i (t = cos (), + C*

~ +i(1+x-cos(x))+C* (5)
51 (x) is now found from (4) and using Sj = +icos (x) gives
15y
Sl ~—=——
L oasy

1 =+icos(x)
~ T 2%i(sin(x) +1)
1 cos(x)
T T2 () +1)
Hence the solution is

S1(x) ~ —% In (1 + sin (x)) (6)

Having found Sj (x) and S; (x), the leading behavior is now obtained from
1 [ee]
y () ~ exp|= 218", <x>)
n=0

1
~ exp E(So(x)+-651(x»-+-~)

~ exp %SO (x)+S1 (%) + )

The leading behavior is only the first two terms (called physical optics approximation in
WKB), therefore

1
Y () ~ exp (;so (@) +51 (x))

~ exp (ié (1+x-cos(x))+C*- % In (1 + sin (x)))

1 ,
~ ————exp (ii 1+ x—cos(x)+ Ci)
€

V1 +sinx

Which can be written as

exp (é (14 x —cos (x))) - exp (_?l (I +x-cos (x)))

C C
(x) ~ —— —_—
Y V1 +sinx V1 +sinx

In terms of sin and cos the above becomes (using the standard Euler relation simplifications)

1 (1 + x—cos(x))
I3

(x)~Lcos( )+Lsin(1(l +x—cos(x)))
Y V1 +sinx V1 +sinx €

Where A, B are the new constants. But A = giz, and the above becomes

A B .
y(x) ~ Tsmx cos (\/X(l +x — cos (x))) + \/ﬁ sin (‘/Z(l +Xx —cos (X))) (7)

Boundary conditions are now applied to determine A, B.

y(0)=0
y(n) =0
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First B.C. applied to (7) gives (where now ~ is replaced by = for notation simplicity)
0= Acos (\/X(l — Cos (0))) + Bsin (\/X(l — cos (0)))

0 = Acos(0) + Bsin (0)
0=A

Hence solution (7) becomes

y(x) ~ \/% sin (\/X (1 +x—cos (x)))

Applying the second B.C. y(nr) = 0 to the above results in

0= \/X(1+n—cos(n)))

B :
—m sin (
0= Bsin(ﬁ(l +7'(+1))
- Bsin ((2 +70) «/Z)
Hence, non-trivial solution implies that
Q2+ ) VA, = nn n=1,2,3, -
\//\—n __nm

2+ T

The eigenvalues are

n272

- 2+ 71)2

Hence A, ~ n? for large n. The eigenfunctions are

n=1,2,3

Y (x) ~ \/:m sin (\/_ (1+x—cos (x))) n=1,2,3,:--

The solution is therefore a linear combination of the eigenfunctions

y®~2wm

~ E —— sin (\/—(1 + X — CoS (x))) (7A)

This solution becomes more accurate for large A or large n.

51.3.2 Partb

For normalization, the requirement is that

weight
—_—

[0 e + =1
0

Substituting the eigenfunction y, (x) solution obtained in first part in the above results in

7T B . ,
j; (msm (\/_(1+x COS(X)))) (sin(x) +1)"dx ~ 1

The above is now solved for constant B,. The constant B, will the same for each n for
normalization. Therefore any n can be used for the purpose of finding the scaling constant.
Selecting n =1 in the above gives

2
1+ x—-cos (x)))) (sin (x) + 1)2 dx ~1

[ =z
sin
0 1+sinx 2+m

mo1
Bzf Treme ™ (2—7:71 @ +x_cos(x))) (sin () + 1) dx ~1
0

B? fn sin® (ﬁ (1 +x—cos (x))) (sin (x) + 1) dx ~ 1 (8)
0

i - _
Letting u = Cyw (1 + x — cos(x)), then

du s
E = ZT (1 + sin (X))
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When x =0, then u = ﬁ(l+0—cos(0)):Oandwhenx:nthenu: ﬁ(l+n—cos(7z)):

e (2 + 1) = @, hence (8) becomes

. 1
But sin® (1) = 5~ 5 Cos2u, therefore the above becomes

24m_, (71 1
B f ———=cos2u|du=1
TC 0 2 2

12+m 2( sin2u)”
— B4 lu-
0

NI

2 m 2
2+7'(B2 7_(_sin27'( B O_Sino _q
2n 2 2
2+
"2 =1
27
B2 = 2
247
Therefore
3 2
"N 7w+2
= 0.62369

Using the above for each B, in the solution obtained for the eigenfunctions in (7A), and
pulling this scaling constant out of the sum results in
2 & 1

77+2r§1\/1+sinx

nm
VA, = =1,2,3,--
"o24m "

The following are plots for the normalized y, (x) for n values it asks to show.

ynormalized ~

sin (VA, (1 +x - cos (x))) (9)
Where

¥n(x) for n =5 Yn(x) for n =20

nnnn
SRV R

y(x)
y(x)

>N
X N|3F
ol
=1
o
>N

The following shows the y(x) as more eigenfunctions are added up to 55.
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sum of first 5 eigenfunction

2.0r
1.5¢
= 10r =
> >
0.5 /-\
0.0 - \//\
s i 3
0 " 2 T" T
X
sum of first 25 eigenfunction
10t
8,
—~ 6 —
X X
= =
4 L
2 L
0 L
g s 3
0 2 2 T" s
X
sum of first 45 eigenfunction
20+
15F
% 10t E
> >
5,
0 L
n s 3
0 2 > Tn T
X
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sum of first 15 eigenfunction

6 L
5 L
4k
3 L
2 L
1E
0 L
b iy 3
0 2 2 T" T
X
sum of first 35 eigenfunction
15F
10F
5,
0 L
n s 3
0 2 2 T" s
X
sum of first 55 eigenfunction
25F
20t
15F
10F
5,
0 L
n 3 3
0 2 2 Tn T
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51.3.3 Partc

Since approximate solution is
1 [o¢]
Y (x) ~ exp (5 Z oS, (x)) 0—0
n=0

~ exp (%SO (x) + 51 (x) + 65, (x) + ) (1)

And the physical optics approximation includes the first two terms in the series above,
then the relative error between physical optics and exact solution is given by 6S, (x). But
0 = ¢. Hence (1) becomes

1
Y (x) ~ exp (ESO (x) + 51 (x) + S, (x) + )

Hence the relative error must be such that

€S, ()], < 0.001 (1A)

Now S, (x) is found. From (2) in part(a)

&2

52
&2 2 , ,
5 ((56) +6(2575) + 0 (25655 +(%1) )+ ) +

((56)2 + & (287Sp) + €2 (25655 + (53)2) + ) + (eSy + €28y + €38y + ) ~ = (sin (x) + 1)°

(Sh+ 08, + 628y +++) (Sp + 687 + 628y + ) + gg (S§ + 0S8y + 628y + ) ~ = (sin (x) +1)*
2

2 (Sg +6Sy + 6255 +---) ~ — (sin (x) +1)?

A balance on O (62) gives the ODE to solve to find S,
el 4 2 ’’
But

So ~ i (1 +sin(x))

( ,)2N (_1 cos (x) )2

! 2 (sin (x) + 1)
cos? (x)

(1 + sin (x))2

1d cos (x)
2dx ((1 + sin (x)))

1
4
Sy ~

1 1
2 \1 + sin (x)
Hence (2) becomes

2505) ~ — (s;)2 -8y

((s;)2 N s'l')

25},

(l cos?(x) +1( 1 ))
4 (14sin(x))? 2 \1+sin(x)

+2i (1 + sin (x))

1(1 COSZ(X) + 1 ( 1 ))
4 4 (sin(x)-;-l)2 2 \ 1+sin(x)
- 2(sin (x) +1)

.1 ( cos2(x)+2(1+sin(x)) )

8 P

(sin(x)+1)
2 (sin (x) + 1)
. i cos? (x) + 2 (1 + sin (x))

8 A + sin (x))°

Sy~ —
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Therefore
5, () ~ +z f cos? (1) +2(1 +sm(t))d
8 Jo 1 + sin (1)
] X t X 1
([ O [ L) ®
o (1+sin (¥)° 0 (1+sin(d))
L (lCOS (?) dt, Iused a lookup integration rule from tables which says f cos (f) (a + sint)" dt =
+sm
B0 cosP™L (t) (a + sint)", therefore using this rule the integral becomes, where now m =
-3,p=2,a=1,
f‘ cos? t b = 1 ( cos® t )x
0 (1+sin i,‘)3 -3\ +sin t)3
1 ( cos® x 1)
-3 (1 +sin x)
1 ( cos® x )
—|1-
"3 (1 + sin x)
And for [ e ())de, half angle substitution can be used. I do not know what other
+sin(x

substitution to use. Using CAS for little help on this, I get

f" 1 dt—( cost 1 cost )x
0 (1+sint)? 3(1 +sint)> 31+sint .

B COS X 1 cosx 1 1
" 3@ +siny? 3l+sinx) |3 3
B 2 COS X 1 cosx
3 3(1+sjnx)2 31+sinx
Hence from (
Sz(x)~+—(1(1— cos® (x) )+ (%_ cosx 2_1 cos x ))
8\3 (1 +s1n(x)) 3 3(1+sinx)® 31+sinx
. (1 1 cos3(x) +4 2cosx 2 cosx )
813 3¢ 1+s1n(x)) 3 3(1+sinx)2 31 +sinx
. i ( cos® (x) 2cosx 2cosx )
24 (1 + sin (x))3 (1 + sin x)2 1+sinx
Therefore, from (1A)
leSy (x)lmaX <0.001
i cos? (x) 2.Cos X 2.cos X
gﬂ - . 3 - , 2 1+ sinx <0.001
(1 + sin (x)) (1 + sinx) i
1 cos? (x) 2cosx 2cosx
ﬁ € - . 3 - . 2_1+Sinx 30001
(1 + sin (x)) (1 +sinx) i
o1 cos® (x) 3 _ 2cosx - 2co§x < 0.024 @
(1 + sin (x)) (1 +sinx)® 1+sinx -—
cos3(x) _ 2cosx 2cosx

The maximum value of (1 - ) between x = 0 and x = 7t is now

(1+sin(x))3 (l+sinx)2  1+sinx
found and used to find ¢. A plot of the above shows the maximum is maximum at the end,

at x = 7 (Taking the derivative and setting it to zero to determine where the maximum is
can also be used).
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Cos[x]3 a 2Cos[x] 2Cos[x] .
(Lesinix])®  (esinix))? Lesinpd)’
Plot [myResult, {x, @, Pi}, PlotRange -» All, Frame - True, GridLines - Automatic, GridLinesStyle - LightGray,
FrameLabel » {{"s,(x)", None}, {"x", "Finding where maximum S, (x) is, part(c)"}}, PlotStyle - Red, BaseStyle - 14,
FrameTicks -» {Automatic, {{@, Pi/4, Pi/2, 3/4Pi, Pi}, None}}, ImageSize - 400]

myResult = (1

Finding where maximum S;(x) is, part(c)

10
8

6

S2(x)

S
ISYSRS
IS

Therefore, at x = 7

(1 ~ cos® x 4- 2cosx - ZCOfsx ) _ (1_ cos® () 4 2CosT - 2(:0537'(
(1 +sinx) (1 +sinx)” 1+sinx _ (1 + sinm) (1 +sinm)” 1l+sinm
=10
Hence (2) becomes
10e < 0.024
€ <0.0024
But since A = :—2 the above becomes
L <0.0024
i
VU o
VA > 416.67
Hence
A >17351.1

2.2
To find which mode this corresponds to, since A,, = ﬁ, then need to solve for n
+7

n2m?

173511 = -
2+ mn)

= (17351.1) (2 + 7)?

_ \/ (17351.1) (2 + 1)

72

= 215.58

Hence the next largest integer is used

n =216

To have relative error less than 0.1% compared to exact solution. Therefore using the result
obtained in (9) in part (b) the normalized solution needed is

216 nmn
normallzed (
~ 4/ sin 1+ x-cos (x)))
T+ 2 \/1 +sinx

The following is a plot of the above solution adding all the first 216 modes for illustration.
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inj42)= ClearAll[x, n, lam]

2 1 . pnPi
mySol[x_, max_] :=Sqrt[ ] Sum[ 51n[ (1+x—Cos[x])], n, 1, max}];
Pi+2 Sqrt[1 + Sin[x]] 2+Pi

In[4 p[n_]1 :=Plot[mySol[x, n], {x, @, Pi}, PlotRange » All, Frame - True,
FrameLabel » {{"y (x)", None}, {"x", Row[{"y,(x) for n =", n}]1}}, BaseStyle - 14, GridLines - Automatic,
GridLinesStyle - LightGray, ImageSize -» 600, PlotStyle - Red,

FrameTicks - { {Automatic, None}, {{0, Pi/4, Pi/2, 3/4Pi, Pi}, None}}, PlotRange - All]

n7i= p[216]

yn(x) for n =216
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5.2 Exam 2

5.21 problem 3

3. Here we study the competing effects of nonlinearity and diffusion in the context of
Burger’s equation

8u+ 8u_ 0%u
ot " Yor ~ Vox2

which is the simplest model equation for diffusive waves in fluid dynamics. It can be solved
exactly using the Cole-Hopf transformation

(3a)

u= —21/% (30)

¢

as follows (with 2 steps to achieve the transformation (3b)).

(a) Let u = 1, (where the subscript denotes partial differentiation) and integrate once
with respect to x.

(b) Let v = —2v1n(¢) to get the diffusion equation for ¢.

(¢) Solve for ¢ with ¢(z,0) = ®(z), —00 < & < co. In your integral expression for ¢, use
dummy variable 7 to facilitate the remaining parts below.

(d) Show that

O(z) = exp[;—yl / F(a)da]

where u(z,0) = F(z), with z, arbitrary which we will take to be positive for convenience
below (z, > 0).

(e) Write your expression for ¢(x,t) in terms of

(w—m)?
2

fonant) = [ Fl@)dat

o

(f) Find ¢4 (z,t) and then use equation (3b) to find u(z,1).

5.2.1.1 Part (a)

du du d%u

E + ua = VW (1)
Let
U= —ZV%
X
_9 (-2vIng) (1A)
dx
5.21.2 Part(b)
Let
Y =-2ving (2)
Hence (1A) becomes
_9
"%
We now substitute the above back into (1) noting first that
du_ 09y
Jt  Jt dx
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Interchanging the order gives

(3)

du  d Iy
It~ Ix ot
_d
=55
And
Ju  d Iy
dx ~ Jdx dx
=
And
Pu
W = Yy
Hence the original PDE (1) now can be written in term of ¢ as the new dependent variable
as
d
xﬁbt + be (¢xx) = V’vaxx
But

14
Yy (wxx) = 2 9x (Iabazc)

Using the above in (3), then (3) becomes
d 14
%wt + E% (wyzc) = Vyax

d 10 d
2V 335 W) gy () =0

J 1,
% (lzbt + E'va - Wvax) 0

Therefore

1 2
I;Dt"'iwx_mrbxx =0

But from (2) iy = —2vIn ¢, then using this in (4), we now rewrite (4) in terms of ¢
J 1(0 2o
T (—21/ In cp) t5 (8_9( (—21/ In q))) e (—21/ In ¢) =0

(2)+ (_2&)2 2 (2%) =

o) 2\ TTax T
2
—2v%+2v2 (%) +2v2% (%):

2
But % (ﬂ) = Pu_ 0x hence the above becomes

o) 0 ¢
2
—2v%+2v2 (¢—x) + 212 (gi)ﬂ_qb_%) =0

¢ ¢ ¢?
2 2
—21/@ + 212 (%) + 21/2% -~ 2v2¢—’2‘ =0
¢ ¢ ¢ ¢
—ZVCE + 21/2% =0
¢ ¢
¢ ¢
Since ¢ # 0 identically, then the above simplifies to the heat PDE
¢t = 1/(pxx
¢ (x,0) = @ (x)
—00 <X < 00
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5.2.1.3 Part (c)

Now we solve (5) for ¢ (x,t) and then convert the solution back to u (x, t) using the Cole-
Hopf transformation. This infinite domain heat PDE has known solution (as ¢ (+oo, ) is

bounded which is

on=[ o)

521.4 Part(d)

Now

1

Vanvt

4ut

exp [

D (x) = ¢ (x,0)

But since u (x,t) = aix (—21/ In (p), then integrating

fxu(a,t)da =-2ving

X0

_1 X
Ing = Ef u(a, t)da

X0

¢ (x,t) = exp (

X0

Hence at £ = 0 the above becomes

¢ (x,0) = exp (% fxu(a,O)da)

X

_1 X
:exp(gf F(a)da)

X0

(=)

(6)

Jor

(7)

%fxu(a,t)da)

Where F (x) = u(x,0). Hence from the above, comparing it to (6) we see that

5.2.1.5 Part(e)

D (x) = exp (;—i fo(a)da)

(8)

2
From (6), we found ¢ (x, t) = f_oo O] (17) \/4% exp (_(Z?) )dn. Plugging (8) into this expression

gives

(p (x/ t) =

Let

Hence (9) becomes

Vq;a;‘]i:eXp(éé\[:Pfa)da)exp[:izigﬁi]dn
R Y
@ﬁiexp ;—11/ foF(a)dm@”dn )
fsz(a) dat d ;tfl)z =f(nx1)
o 1 )
¢“”:fmvﬁae” dn (10)
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5.21.6 Part(f)
From (10)

ip [~ 1 9 ( f<wf>)
L = — e 2 dn
Jx —0co V47U)t dx

00 J ~f(naxt)
:f ;(gf(n,x,t)g va )dr[

-0 VATt
2
n x - ~flnxt)
f F(a)da+( ’7) ]e 2v ]dr]
X0

2t

_ f‘” ' |2
-0 VATVt Jx

Using Leibniz integral rule the above simplifies to

so_ (=1 (lrn)
— = e 2 |d 11
Ix —oo 4nvt( t 1 a1
But
O
u=-2v—
¢

Hence, using (10) and (11) in the above gives

00 x— _f( ’X’t)

oo Vanvt
u=-2v

o 1 Lot
f e 2 dn

—oo Vamut

Hence the solution is
00 (x—r]) ()

—e 2 dn
—— —0 t
u(x,t) =-2v — o)
f_ e 2v dT]

Where
2
x-1)

2t

f(n,x,t) = an(a)da+ (
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5.2.2 problem 4

4. (a) Use the Method of Images to solve

ou 0%

T << >

5 V8x2—|—Q(x,t), 0<z<L, t>0
ou

u(z,0) = f(x), %(O,t) =0, u(L,t)=A

(b) For A = 0, compare your expression for the solution in (a) to the eigenfunction solution.

5.2.2.1 Part(a)

u 2%u
§=UW+Q(x,t) (1)
0<x<L
t>0
Initial conditions are

u(x,0) = f(x)
Boundary conditions are
du(0,t)
Ix
u(l,t)y=A

Multiplying both sides of (1) by G (x,t; xo, ty) and integrating over the domain gives (where
in the following G is used instead of G (x, t; x, ty) for simplicity).

L 00 L 00 L 00
f Gu, dtdx = f f vit, G dbdx + f QG dtdx 1)
x=0 v t=0 x=0 v t=0 x=0vt=0

For the integral on the LHS, we apply integration by parts once to move the time derivative
from u to G

=0

L 00 L L 00
f Gu, dtdx = f [uG]” dx - f Gyu dtdx (1A)
x=0 v t=0 x=0 B x=0 v =0

And the first integral in the RHS of (1) gives, after doing integration by parts two times
on it

L 00 00 L 00
f f K, G dtdx = f [1,G1"_ dt - f f i, G, dtdx
x=0 Y t=0 t=0 = x=0 Y =0
fL g (et di- [ vuc,, did
= [uxG] _ - f UGy] _ _f f VUG X
t=0 x=0 t=0 =0 x=0 Y =0
00 L 00
- f (G, - G-, ) dt + f f Gy, dtdx
t=0 = = x=0 Y =0
00 L 00
= [uxG—qu]L_0 dt+f f vuG,, dtdx
t=0 = x=0Y =0
00 L 00
=~ [ WG, -u,GI_ dt + f f G, didx (1B)
t=0 = x=0Y t=0

Substituting (1A) and (1B) back into (1) results in

L L 00 ] L 00 L 00
f UG, dx- f f G dtdx = f [1,G — uG, ] di+ f f G, dtdx+ f f GQ dtdx
x=0 - x=0 Y =0 t=0 = x=0 Y =0 x=0Y =0
Or

L 00 L 00 L 00
f f Gyt — vuGy, dtdx = — f UG, dx - f MG, — 1, GI"_, dt + f GQ dtdx

x=0 Y =0 x=0 - t=0 = x=0 Y =0
(2)
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We now want to choose G (x, t; xg, ty) such that
—Giu — vuGy, = 6 (x — xp) 0 (t — tp)
=G = vuGy, + 6 (x — x0) O (t — tg) (3)

This way, the LHS of (2) becomes just u (xg, t)). Hence (2) now (after the above choice of
G) reduces to

L £

L t
1 (xg, tg) = — f WG dx - f " [4G, - u G- dt + f " GQ dtdx )
=0 = £=0 = x=0 Y t=0

We now need to find the Green function which satisfies (3). But (3) is equivalent to solution
of problem
—Gyu = vuGy,
G(x,0) =6(x—xp)0(t—tg)
—00 < X < 00
G(x, t;x9,t9) =0 t>t
G (00, t;x0,t9) =0
G (x, to; xo, tg) = 6 (x — x0)
The above problem has a known fundamental solution which we found before, but for the

forward heat PDE instead of the reverse heat PDE as it is now. The fundamental solution
to the forward heat PDE is

—(x —xp)°

1
VA (- ty) P ( 4v (t - tp)

Therefore, for the reverse heat PDE the above becomes

G(X,t): ) OStoﬁt

—(x - xp)°

1
Varn (ty — t) b ( 4v (to— 1)

We now go back to (4) and try to evaluate all terms in the RHS. Starting with the first

G(x,t) = ) 0<t<t (5)

L 00 . e . ..
term f o [uG] =0 dx. Since G (x, o0; xg, tg) = 0 then the upper limit is zero. But at lower limit
x= =
t = 0 we are given that u (x,0) = f (x), hence this term becomes

L L
f [uG]” dx = f —1(x,0) G (x,0) dx
x=0 x=0

L
_ f “f(¥) G (x,0) dx
x=0
Now looking at the second term in RHS of (4), we expand it and find
[qu - uxG]i:O = (1/[ (L/ t) Gx (L, t) — Uy (Ll t) G (L/ t)) - (T/l (O/ t) Gx (O, t) — Uy (O/ t) G (OI t))
We are told that u, (0,t) =0 and u (L,t) = A, then the above becomes
[uG, — u,Gls_, = AG, (L, t) = 1y (L, D) G (L, £) = u (0,£) G, (0, 1) (5A)

There are still two terms above we do not know. We do not know u, (L, t) and we also do
not know u (0, t). If we can configure, using method of images, such that G(L,f) = 0 and
Gy (0,1) = 0 then we can get rid of these two terms and end up only with [uG, - u,G] =
AG, (L,t) which we can evaluate once we know what G (x, t) is.

This means we need to put images on both sides of the boundaries such that to force
G(L,t) =0 and also G, (0,f) = 0.

We see that this result agrees what we always did, which is, If the prescribed boundary
A, then we

au _
5 ox
want a—f = 0 there. And this is what we conclude here also from the above. In other words,

conditions on u are such that u = A, then we want G = 0 there. And if it is

the boundary conditions on Green functions are always the homogeneous version of the
boundary conditions given on u.
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du _
ox
oG _
oxr
u(L,t)=A
G(L,t)=0
z=0 z=1L

To force G, (0,t) = 0, we need to put same sign images on both sides of x =0. So we end

up with this

oG
52 =0
I__ I G=0
o x=0 o T =

The above makes G, (0,t) = 0 at x = 0. Now we want to make G = 0 at x = L. Then we
update the above and put a negative image at x = 2L — x; to the right of x = L as follows

0G __
e =0

But now we see that the image at x = —x( has affected condition of G =0 at x = L and will
make it not zero as we wanted. So to counter effect this, we have to add another negative
image at distance x = 2L + x( to cancel the effect of the image at x = —x;. We end up with

this setup

But now we see that the two negative images we added to the right will no longer make
G, (0,t) = 0, so we need to counter effect this by adding two negative images to the left

side to keep G, (0,t) = 0. So we end up with
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But now we see that by putting these two images on the left, we no longer have G = 0 at
x = L. So to counter effect this, we have to put copies of these 2 images on the right again

but with positive sign, as follows

=1L

AL —x9 4L+ o

S I
i

But now these two images on the right, no longer keep G, (0,f) = 0, so we have to put same

sign images to the left, as follows

And so on. This continues for infinite number of images. Therefore we see from the above,

for the positive images, we have the following sum

2
Vanr (tg— )G (x, t; xg, tg) = exp (MJ + exp(
4v (to - t)

—(x+ x0)2
4v (to - t)

—(x—-(4L-
4v (tO - t)

xo))z]

o] (x = (-4L + x))° —(x - (4L + x))?
S ETT— 40ty - )
— (x — (-4L - xp))°
+exp( 4v(t0—t) )+
Or
. ~ 1 & — (x — (4nL - x))? — (x = (—4nL + x))*
Gl tx0,to) = Van (tg — t) (nzz_oo exp( 4u(tg—t) ] " exp( 4o (tg—t) ]) (©6)

The above takes care of the positive images. For negative images, we have this sum of

images
—(x — (2L - xp))* —(x—(-2L 2
Vamn (tg — )G (x, t; xg, tg) = exp( (x4v ((to — ;)CO)) + exp (x 41)((t0 _*;)xo)) )
— (x = (2L + xo))’ — (x = (2L - xo))°
TP\ T -y )T T o
— (x = (6L - xp))* — (x = (6L + x))°
T T - )T T ma -
— (x = (6L + xp))° — (x = (-6L - xp))°
LR YT R 40 (ty - 1)
Or
(o) _ _ _ 2 — — — — 2
(7)
Hence the Green function to use is (6)+(7) which gives
_ ~ 1 s — (x - (4nL - xp))? — (x — (~4nL + x))* D
G (x,t;xp,tp) = N/ ) (n;oo exp( yRT— ] + exp( yRTI—
) 1 (i o (—(x—((4n—2)L+x0))2)+eX (—(x—((4n—2)L—xo))2))
Vi —p L, =P 4ty - 1) P 40ty 1)
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Using the above Green function, we go back to 5A and finally are able to simplify it
UGy~ Gl = AG, (LB~ uy (LD G (L, 1) ~u(0,£) G, (0, 1)

The above becomes now (with the images in place as above)
dG (L, txp, t
( . Xo, ko) ®)
x
Since now we know what G (x,t; xq, t), from (7), we can evaluate its derivative w.r.t. x.
(broken up, so it fits on one page)

[uG, - uxG]i:O =A

IG (x,t;x0,tg) & —(x - (4nL - xp)) —(x — (4nL - xy))
ox W E% 2wlte—t) ( 40 (tg — ) )
N 1 o (- (ALt ) (- (x - (~4nL + xo))z)
W A 20ty -t) 40 (ty - 1)

—(x—((@n-2)L + xp)) —(x—((@n-2)L + x))*
- Vam (to - n_E_oo 2v(tg— ) exp( 4v(ty—t) )
E - (Un-2L-x) (— (x—(@n-2)L- xo))z)
W 20 (tg— 1) 4u (tg—t)
At x = L, the above derivative becomes
IG (L, t;xo,tg) —(L - (4nL - x)) —(L - (4nL - x,))*
0x W n_z_]oo 20 (b — £) exp( 40 (tg - 1) ]

o (L (AnL+x) (— (L - (~4nL + xo))z]

W W_E_oo 2v(tg—t) 4v (tg— 1)

1 —(L-((4n-2)L + xp)) —~(L-((4n-2)L +xp))°
/ey e S8 20ty - 1) * ( 40ty - D) ]
1 o (L= ((n-2)L - xp)) exp[— (L-(4n-2)L- xo))z) ©)

VAT (tg = ) A, 20(ty - 1) 40 (tg - b

From (4), we now collect all terms into the solution
L to L b
1 (X, tg) = — f UG, dx - f MG, — 1, GI_, dt + f f GO dtdx (4)
x=0 - t=0 = x=0 v t=0

We found f [uG] dx = f b f(x) G(x,0)dx and now we know what G is. Hence we can
find G (x,0; xO, to). It | is, from (7A)

0o 2 2
G (x,0;x9,tg) = . ( > exp(_(x_(4nL_x0)) )+exp(_(x_(_4nL+x0)) )]

Varnvty S 4ut 4vt
__ 1 (i . (—(X—((471—2)L+x0))2)+ex (—(x—((4n—2>L—xo)>2))
Varnuvty e P 4ut, P 4ut,

(10)

o is. It is AW. Hence (4) becomes

JdG(L,t;xp, ¢t
wty) = [ " )G 00 by da f A2l g

Changing the roles of xy, t,

U (x, f) = f F(0) G (xp, to; %, 0) dxg f AaG(xO’tO’Lt) f . f G (g, to; %, 1) Q (X, to) dtodg
(11)

And we now know what [uG, —u G]L

dtf f G (x, £ xo, tg) Q (x, 1) dtdx
x=0

This completes the solution.

Summary
The solution is

L E9G (xg, t; L, t
1 (x, t) = f F(x0) G (xg, to; x, 0) dxg— f 296 (o to; L, )
x0=0 =0
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Where G (x, ty; x,0) is given in (10) (after changing roles of parameters):

1 &, —(xg — (4nL - x))2 —(xp — (—4nL + x))2
G (XOI to; X, 0) = \/m ( E eXp( ° At ) + eXp( . 4ut ])

Nn=—00

1 (i": exp(_(xo_((4n_2)L+x))2)+eXp(‘(xo—((47’1—2)L—X))2])

V47-Cvt N=—00 4:Ut 4:Ut
(10A)
and M is given in (9) (after also changing roles of parameters):
dG (xq, to; L, t) 2 —(L - (4nL - x)) oxn| = (L - (4nL - x))
&XO \/4711) (t — tO He—co 2v (t -1 ) 4p (t - tO)

~(L-(AnL+x) (—(L—(—4nL+x))2)

\/47w (t —to n_z_:oo 2v (t - tp) 4o (t - tp)

B 1 —(L-(4n-2)L+x)) - (—(L—((4n—2)L+x))2)

N (t —t) ns% 20 (t - to) 4o (t - tp)

$ @ @nLox) (—(L ~(Un-2L-x)") g,
\/4711) (t — tg) nEmoo 2v (t - tg) 4v (t - to)
and G (xg, ty; x, t) is given in (7A), but with roles changed as well to become
o 1 & — (xg — (4nL - x))? ~ (xg — (~4nL + x))*
G (xg, tg;x, t) = N/ TN = (n;w exp( (= t) ] + exp( Tt ]
(7AA)

[ e “Go= (Un-DL+9P) (= (xo - (@n-2)L =)
Vamo (= to) LA 40 (t— ty) p 10— 1o)

5.2.2.2 Part(b)

When A = 0, the solution in part (a) becomes

L
w@ b= [ fxo) G tox,0)dxy + f

f G (xo, t0; 1) Q diodtx,
XOZO Xp= =0
Where G (x, fg; x,0) is given in (10A) in part (a), and G (xq, to; x, t) is given in (7AA) in part
(a). Now we find the eigenfunction solution for this problem order to compare it with the

above green function images solution. Since A = 0 then the PDE now becomes

du 2%u

E—v—+Q(x f) (1)

0<x<L
t>0

Initial conditions

u(x,0)=f(x)
Boundary conditions
du (0,t)
ox
u(l,t)=0
Since boundary conditions has now become homogenous (thanks for A = 0), we can use

separation of variables to find the eigenfunctions, and then use eigenfunction expansion.
Let the solution be

Uy, (x/ t) =4ay (t) (Pn (X)

w(x,t) = D a, (1) Py (¥) (1A)
n=1
Where ¢, (f) are eigenfunctions for the associated homogeneous PDE % 3 > which can

be found from separation of variables. To find ¢, (x), we start by separation of variables.
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Let u (x,t) = X (x) T (t) and we plug this solution back to the PDE to obtain

XT' = vX"T

1 TI X//

—_ = — = —A
vT X

Hence the spatial ODE is XYH =-A or X” + AX = 0 with boundary conditions
X' (0)=0
X({L)=0

case A =0 The solution is X = ¢; + c,x. Hence X’ = ¢,. Therefore ¢, = 0. Hence X =¢; = 0.
Trivial solution. So A = 0 is not possible.

case A > 0 The solution is X = ¢; cos (\/Xx)+c2 sin (\/Xx) and X’ = —\/ch sin Ax+c2\/X cos Ax.

From first B.C. at x = 0 we find 0 = ¢,VA, hence ¢, = 0 and the solution becomes X =
1 COS (\/Zx) At x = L, we have 0 = ¢; cos (\/XL) which leads to \/XL = ng forn=1,3,5,-
or

N/ Elintd K
n - 2 L — L&y

2 -1m)\
An:( > E) n=112,3,--

Hence the X,, (x) solution is

X, (x) = ¢, cos (\/A_nx) n=1,2,3,
The time ODE is now solved using the above eigenvalues. (we really do not need to do

this part, since A, () will be solved for later, and A, (f) will contain all the time dependent
parts, including those that come from Q (x, t), but for completion, this is done)

17T
oT "
T + oA, T =0
dT
T = —U/\ndt
In|T| = oA, t + C
T = C, et

Hence the solution to the homogenous PDE is
u, (x, t) = X, Ty,

=, COS (\/Anx) eVnt

Where constants of integration are merged into one. Therefore

u(x,t) = i X, T,

n=1
= i ¢, COS (\//\_nx) eVnt (2)
n=1

From the above we see that

Pn (x) = cos (\//Tnx)

. . . . Jdu J%u . . . .
Using this, we now write the solution to — = v=—= + Q(x,t) using eigenfunction expansion
u(x,t) = 33 Ay (1) (¥) (3)
n=1

Where now A, (t) will have all the time dependent terms from Q (x,t) as well from the time
2n-1mn 2

solution from the homogenous PDE ev(TZ) t part. We will solve for A, (f) now.

In this below, we will expand Q (x,t) using these eigenfunctions (we can do this, since
the eigenfunctions are basis for the whole solution space which the forcing function is
in as well). We plug-in (3) back into the PDE, and since boundary conditions are now

2
homogenous, then term by term differentiation is justified. The PDE % = vg—xz +Q(x,t)
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now becomes
(9 (o) (92 (o) (o)
ﬁ E An (t) ¢1’l (X) = vﬁ 2 An (t) (Pn (X) + E In (t) (pn (x) (4')
n=1 n=1 n=1

Where 220:1 4, (t) ¢, (x) is the eigenfunction expansion of Q (x,t). To find g, (t) we apply
orthogonality as follows

Q1) =Y, 4n (1) Py (x)
n=1

L

[ [ o
[ enwaendr= [ (an (t)cpn(x))qu(x)dx
0 0 \n=1

L 0 L
[ on@Qundx =Y, [ 0,06, by (0
0 n=1v0

L

= [ 0068 s

L
- 2 d
T (t)j; cos (\//\_nx) b
But
j(;L cos? (\/A_nx) dx = %

Hence

L
1 ®=7 [ 0,0Q0ndr ©

Now that we found g, (t), we go back to (4) and simplifies it more
DALB () =0 Y A O P () + Y 4 (8) Py (%)
n=1 n=1 n=1

AL () §y (x) = vA, () @ (X) + q,, (£) Py (x)

But since ¢,, (x) = cos (\//\_nx) then

¢n () = = (V2,)sin (VA,x)
And

7 (x) =—-A, cos (\//\—nx)
= —Auy (x)

Hence the above ODE becomes

Anpy = —0AN Py + 4y Py
Canceling the eigenfunction ¢, (x) (since not zero) gives

Ay () +vA, () Ay =g, (F) (6)
We now solve this for A, (t). Integrating factor is

[ = exp (f v)\ndt)

— e/tnvt

Hence (6) becomes

6% (#An (t)) = gy, ()

¢
MUt A, () = f eMvig, (s)ds + C
0

!
Ay () = et [ b, (9)ds + Ceht (7)
0
Now that we found A, (f), then the solution (3) becomes
o (_(21m)’ bo(im)? _(21m)’
u(x,t) = Z[e ( 2 L) vtf e( 2 L) vqn(s)ds+Ce ( 2 L) v ¢y (%) (8)
n=1 0
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At t =0, we are given that u (x,0) = f (x), hence the above becomes

f&) =2 Cn ()
n=1
To find C, we apply orthogonality again, which gives

L ©0 L
[ F@0n@ix=Y [ Cou@ o 0dx
0 n=1v0
:CfL¢%1(x)dx

L L °
[ f@onmaxr=2c

0

2 L
C:Zj;f(x)qbn(x)dx

Now that we found C, then the solution in (8) is complete. It is

u(x,t) =D Ay (t) oy (%)
n=1

= rg (e—/\nvt f: e)ly,vsqn (S) ds + %e_/\nvt ](;Lf (x) Cf)n (x) dx) (Pn (X)

Or
o t
0t = 30, e [, 91
n=1 0
2 & o (T
. Zn}:]l(qbn et [ F 9, (x)dx)
Summary

The eigenfunction solution is

> f
ulx ) = 2(% (x) et f etnvg, (s) ds)
n=1 0
v ) (qbn (x) et fo " F 060 ) dx)
Where
¢ (x) = cos (\//\_nx) n=1,2,3,-
/\_Zn—ln2 194
L -
And

2 L
w®=7 [ 0.@Qe D

To compare the eigenfunction expansion solution and the Green function solution, we see
the following mapping of the two solutions

2o (Gue et [ £ (o) S (ute vt [ etntsg, 5)ds)

L L
f f (x0) G (xo, to; x,0) dxy + f f G (xo, to; x, 1) Q (x0, ) dtodxg
0 0o Yo

Where the top expression is the eigenfunction expansion and the bottom expression is the
Green function solution using method of images. Where G (xo, t; x, t) in above contains the
infinite sums of the images. So the Green function solution contains integrals and inside
these integrals are the infinite sums. While the eigenfunction expansions contains two
infinite sums, but inside the sums we see the integrals. So summing over the images seems
to be equivalent to the operation of summing over eigenfunctions. These two solutions in
the limit should of course give the same result (unless I made a mistake somewhere). In
this example, I found method of eigenfunction expansion easier, since getting the images
in correct locations and sign was tricky to get right.
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5.2.3 problem 5

5. This problem is a simple model for diffraction of light passing through infinitesimally
small slits separated by a distance 2a.

Solve the diffraction equation
ou i\ 0%u
T~ 1
ot 4w 0x? (1)
with initial source u(z,0) = f(z) =d0(z —a) + d(z +a), a > 0.

Show that the solution u(z,t) oscillates wildly, but that the intensity |u(z,t)|? is well-
behaved. The intensity |u(z,t)|? shows that the diffraction pattern at a distance ¢ consists
of a series of alternating bright and dark fringes with period At/(2a).

du(x,t) il 9%u(x, 1)
dt 4m Ix2
ulx,0)=fx=0(x—-a)+06(x+a)
I will Use Fourier transform to solve this, since this is for —co < x < c0 and the solution

u (x,t) is assumed bounded at +co (or goes to zero there), hence u (x, t) is square integrable
and therefore we can assume it has a Fourier transform.

1)

Let U (&, t) be the spatial part only Fourier transform of u (x, ). Using the Fourier transform
pairs defined as

U D) = F(u(x,b) = f e ) e 2

u@h =7 UEH= [ UE et
Therefore, by Fourier transform properties of derivatives
d t
?(”%u:@maugﬂ
Idx

_{9%u(x,t)
J( Ix?

):am¥U@n (2)
And

du (x,t) U (&, 1)

a — 3

7 ( ot ) ot 3)

Where in (3), we just need to take time derivative of U (¢, t) since the transform is applied

only to the space part. Now we take the Fourier transform of the given PDE and using
(2,3) relations we obtain the PDE but now in Fourier space.

AU

i

(A)anﬁfLuaﬂ

4n

=- (ﬂ) A2 E2U (&, 1)
4

= (-iAnE?) U (&, 1) (4)
Equation (4) can now be easily solved for U (¢, t) since it is separable.

U, t) .
0D - (—1/\7752) ot

Integrating
In|U (&, ) = (-iAn&?)t+C
U(E 1) = U (€ 0)el ™)

Where U (¢,0) is the Fourier transform of u (x,0), the initial conditions, which is f (x) and
is given in the problem. To go back to spatial domain, we now need to do the inverse
Fourier transform. By applying the convolution theorem, we know that multiplication in
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Fourier domain is convolution in spatial domain, therefore

FHUE ) =7 1 UE ) 0 F ! (ehme) (5)
But
FHUE, ) = uxt)
FHUE,0) = f (v
And
-1 (e—mngzt) _ f " iAmet 2 g £ (5A)

Hence (5) becomes
ul,t)=f(x)® F-1 (e—i)\mSZt)

Here, I used Mathematica to help me with the above integral (5A) as I could not find it in
tables so far2l Here is the result

Find inverse Fourier transform, for problem 5, NE 548

InverseFourierTransform[ Exp[-I lamPiz~2t], z, x, FourierParameters -> {1, -2xPi}]

]L7TX2
e lamt

V2 Vi lamt

Therefore, from Mathematica, we see that
in?
. e At
-1 (e—z)\ngzt) — (6)

- V2rvVivat
Buff]

'—L+iL
\ﬁ_\ﬁ V2

() visn(3)
=cos|—|+isin|—
4 4

i
=e

LR

Hence (6) becomes
1 a2

' (7)
et V2mAt

Now we are ready to do the convolution in (5A) since we know everything in the RHS,
hence

-1 (e—i/\n.§2t —

1 i
u(x,t)=f(x)® ———e &
e T\2mAt

779(2

1 .
= (@) + 5+ a) © e T ®
e s e'T\2mAt

Applying convolution integral on (8), which says that
fx)=g1(0)®g (x)
= f 81(2) &2 (x —2)dz

2Trying to do this integral by hand also, but so far having some difficulty..
3Taking the positive root only.
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Therefore (8) becomes

n(x 2)2

U (x, b) = f 6 (z—a)+06(z+a) ———— g —« N dz

1 7'1(95—2)2
— f GG-a)+6G+a)e 7 dz
4V2mAt

nx—z) nx—zz
—(f S(z—a)e' M dz+f S(z+a)e dz)
ZRA

But an integral with delta function inside it, is just the integrand evaluated where the delta
argument become zero which is at z = 2 and z = —a in the above. (This is called the sifting
property). Hence the above integrals are now easily found and we obtain the solution

pe) = (exp (ZM] +exp [l“(x_”)z)]
’ ei%m At At

The above is the solution we need. But we can simplify it more by using Euler relation.

1 T (xz +a% - Zxa) e (xz +a%+ Zax)
u(x,t) = —— | exp|i +expli
e'T2mAt At At

1 in (xz + az) —i27mxa . in (x2 + ﬂz) i2max
———|exp| ——F [ex exp | —— |ex
NVl R Y PA Pl MY

2

. in(x +a2) . .
Taking exp ——;— | @ common factor outside results in

iﬂ(x2+a2)

exp( M ) 2max 27xa
ux,t) = —— (eXp (1—) + exp (—1—))

Hence the final solution is

(252 - 5 eos(524) ©

u(x,t) = ni exp

Hence the real part of the solution is

m(x% + a®
R(u(x,t) = 2 Cos ( )—E COS(Znax)
e

And the imaginary part of the solution is

2, 2
2 . [m(x*+a T 2nax
i”s(u(x,t)):\/m\tsm ( T, )_Z cos( 1 t)

The g is just a phase shift. Here is a plot of the Real and Imaginary parts of the solution,
using for A = 600 X 10~ meter, a = 1000 X 10~ meter at t =1 second
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a=1000 + 10~ (-9) ;
A =600 %10" (-9);

ufx_, t_]:= ﬂit EXp[I" X +a? __] [Zﬂ’a i]

Clear[t];

Plot[Re@u[x, 1], {x, -3000 a, 3000 a}, Frame -> True,

FrameLabel » { {"u(x,t)", None}, {"x", "Real part of solution at t= 1 second"}}, BaseStyle- 12,
PlotStyle - Red, PlotTheme » "Classic"]

Real part of solution at t= 1 second

u(x,t)
=]

-200

—400}

-0.003 -0.002 -0.001 0.000  0.001 0.002  0.003

X

Plot[Im@u[x, 1], {x, -3000 a, 3000 a}, Frame -> True,
FrameLabel -» {{"u(x,t)", None}, {"x", "Imaginary part of solution at t= 1 second"}}, BaseStyle- 12,
PlotStyle -» Red, PlotTheme » "Classic"]

Imaginary part of solution at t= 1 second

400}

S

200+

S

u(x,t)
S

=200

—400f

-0.003 -0.002 -0.001 0.000  0.001 0.002 0.003

X

We see the rapid oscillations as distance goes away from the origin. This is due to the x?
term making the radial frequency value increase quickly with x. We now plot the |u (x, B,
Looking at solution in (9), and since complex exponential is +1, then the amplitude is

governed by 1/% cos (iﬂ%) part of the solution. Hence

u (x, ) = cos2 (Zm x)

At

These plots show the intensity at different time values. We see from these plots, that the
intensity is well behaved in that it does not have the same rapid oscillations seen in the
u (x,t) solution plots.

a=1000 + 10~ (-9) ;
A =600 +10" (-9);

. X 2 2ra x
intensity[x_, t_] := (Cos[— —]]
nat
p=
Plot[intensity[x, #1, {x, -3000 a, 3000 a}, Frame -> True,

FrameLabel - {{"u(x,t)", None}, {"x", Row[{" intensity |u|? of solution at t =", #, " second"}]}},
BaseStyle » 12, PlotStyle -» Red, PlotTheme » "Classic", ImageSize » 360] & /@ Range [0.002, 0.012, 0.002] ;
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intensity [uf* of solution at t =0.002 second intensity |u?> of solution at t =0.004 second
5x10% ¢ 25%108¢
4x108F 2.0x 108}
= 3x108} = 15x108}
A} Aot
7 2108} Z 1.0x108¢
1x 108} 5.0%107 L
0f OF: ‘ ‘ ‘ ‘ ‘
—0.003-0.002—0.001 0.000 0.001 0.002 0.003 —-0.003-0.002-0.001 0.000 0.001 0.002 0.003
X X
intensity |uf?> of solution at t =0.006 second intensity [u|? of solution at t =0.008 second
1.4% 108
8L
1.5x 108 | 1.2x10
1.0x 108}
= 1.0x 108t = 8.0x107F
£ £ 6.0x107}
5.0x107 | 4.0x107
2.0x 107}
—0.003-0.002—0.001 0.000 0.001 0.002 0.003 —0.003-0.002—0.001 0.000 0.001 0.002 0.003
X X
intensity [uf? of solution at t =0.01 second intensity |u|?> of solution at t =0.012 second
I1x108} 8x 107 -
8x107
6x107
’E 6x107 ’5
=4 Z 4x107
% 4x107} =
2% 1071 2x107
0 7\ L L L L L 0 7\ L L L L L
—0.003-0.002-0.001 0.000 0.001 0.002 0.003 —0.003-0.002-0.001 0.000 0.001 0.002 0.003
X X

Now Comparing argument to cosine in above to standard form in order to find the period:

2ma x
At

ft

- =2n

Where f is now in hertz, then when x = t, we get by comparing terms that

2mal
At

al
ar -t

But f = % where T is the period in seconds. Hence 2l -

- =27

f

At

1

At At
. . oo A _ . . L Aty
So period on intensity is — at x =t (why problem statement is saying period is -7).

247



5.2. Exam 2

CHAPTER 5. EXAMS

5.2.4 problem 2 (optional)

2. Consider the 1D heat equation in a semi-infinite domain:

ou 0%u >0
ot oz U7

with boundary conditions: u(0,t) = exp(—iwt) and u(z,t) bounded as x — oo. In order
to construct a real forcing, we need both positive and negative real values of w. Consider
that this forcing has been and will be applied for all time. This “pure boundary value
problem” could be an idealization of heating the surface of the earth by the sun (periodic
forcing). One could then ask, how far beneath the surface of the earth do the periodic
fluctuations of the heat propagate?

(a) Consider solutions of the form u(z, t;w) = exp(ikx) exp(—iwt). Find a single expression
for k as a function of (given) w real, sgn(w) and v real.

Write u(x,t;w) as a function of (given) w real, sgn(w) and v real. To obtain the most
general solution by superposition, one would next integrate over all values of w, —oco <

w < 00 (do not do this).

(b) The basic solution can be written as u(z, t; w) = exp(—iwt) exp(—oz) exp(io sgn(w) x).

Find o in terms of |w| and v.

(c) Make an estimate for the propagation depth of daily temperature fluctuations.

5.2.4.1 Part (a)

And x > 0,u (oo, t) bounded. Let

Hence

And

Substituting (2,3) into (1) gives

e,
ot ox?
u(0,t) = e"i@t

u (X, t) — eikxe—iwt

du (x,t)

= —jwekxpmiwt
ot v
= —iwu (x,t)
Ju(x,t) _ ikpikx pmicot
dx
2
d7u (x, t) — _[R2pikxpmiwt
dx?
= —k%u (x, 1)

—iwu (x,t) = —vk?u (x, t)

(1)

(2)

(3)

Since u,, (x,t) can not be identically zero (trivial solution), then the above simplifies to

Or

Writing

Where

—iw = —vk?

(4)



5.2. Exam 2 CHAPTER 5. EXAMS

Then (4) becomes

o @
vV
L i\ﬂ Vsgn (@) Vol

\/1_,

Since

S|
N —
N =
Il
mN
Ll

=
1
-
NI =
1
—
mN

Hence k can be written as

L V@il

G

case A. Let start with the positive root hence

¢t sgn @il
Vo

k=

Case (Al) w < 0 then the above becomes

371

@l _ % Viwl
Vv Vv
|w|

<

S
a

And the solution becomes

u (x,t) = exp (ikx) exp (—iwt)

IR o I
ol
_ 1 Vel 1 Al B
R W ) (\ﬁ w”‘)“” wr

We are told that u (oo, f) is bounded. So for large x we want the above to be bounded. The
complex exponential present in the above expression cause no issue for large x since they

are oscillatory trig functions. We then just need to worry about exp (—% %x) for large x.
This term will decay for large x since —%% is negative (assuming v > 0 always). Hence

positive root hence worked OK when @ < 0. Now we check if it works OK also when w > 0

case A2 When w > 0 then k now becomes

¢'s \sgn @il

k=
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And the solution becomes

u(x,t) = exp (ikx) exp (—iwt)

=exp|i

= exp

=exp|-— exp (—iwt)

E (wwﬂ

We are told that u (oo, f) is bounded. So for large x we want the above to be bounded. The
complex exponential present in the above expression cause no issue for large x since they

\/_

are oscillatory trig functions. We then just need to worry about exp (—773() for large x.
This term will decay for large x since — % 1//__ is negative (assuming v > 0 always). Hence

positive root hence worked OK when w > 0 as well.
Let check what happens if we use the negative root.
case B. negative root hence

¢t sgn @il
N7

k=-

Case (Al) w < 0 then the above becomes

b4 3n
4

. LT .7'[ .
.1 j= = i
Tl 2T Vel _ T yial

w:‘v“ W
:—(COS 7z+zsm T()
1 ,1) Viwl|

V*$\ﬁ
[—— \/_|+ii Vil
1

g

SERS

N
<

| —

i WN2 W

(_\/E_i_ |w|)
V2 V2 W

—_

And the solution becomes

u (x,t) = exp (tkx) exp (—iwt)

.(1 |l
=exp|i| —

)x) exp (—iwt)

= exp

] x) exp (—iwt)

b e

We are told that u (o, ) is bounded. So for large x we want the above to be bounded. The
complex exponential present in the above expression cause no issue for large x since they

1 viel
V2

is positive (assuming v > 0 always).

=exp|+

are oscillatory trig functions. We then just need to worry about exp(

L Vo
V2 Vv

Hence we reject the case of negative sign on k. And pick

¢'s vsgn (@) vial
NG

x) for large

x. This term will blow up for large x since +—

k=

(i) N
)T W
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Therefore the solution is

u(x,t; w) = exp (ikx) exp (—iwt)
(% +i%) vsgn (w)V]w]
N

= exp (i (\/%\/sgn (a))\/m + i\/%\/sgn (a))\/m )x) exp (—iwt)
= exp (z\/% Vsgn (a))\/Wx - \/%\/sgn ()V|w| x) exp (—iwt)

=expli x |exp (—iwt)

Hence

u(x, t;w) = exp (_—'Sgn\/(;‘_’)\/mx) exp (i—'sgng_)\/mx) exp (—iwt)

The general solution u (x, t) is therefore the integral over all w, hence

u(x,t‘):foo u(x, tw) do
[ e _Veen @il ) (ivsen (@il
00 2v

=) Vo exp Tx]exp(—ia)t) dw

=foo exp —Mx exp ilwx—wtn dw
oo V2v V2v

e _Vsgn(@lel ) ixl_vsgnwm _wED do
oo \V2v \2v x

5.2.4.2 Part (b)

From part (a), we found that

u(x, t;w) =exp (—%mx) exp (i%mx) exp (—iwt) 1)

comparing the above to expression given in problem which is
u(x,t) = exp (—ox) exp (iosgn (w) x) exp (—iwt) (2)

_ Vsgn(@) vl
V2

_ Vsen@)viel
o=— = (3)

Therefore, by comparing exp (-ox) to exp( x) we see that

5.2.4.3 part (c)

Using the solution found in part (a)
u(x,t; w) = exp (—ox) exp (iosgn (w)x) exp (—iwt)
To find numerical estimate, assuming @ > 0 for now
u(x, t;w) = exp (—ox) exp (iox) exp (—iwt)
= e 9" (cosox + isin ox) (cos wt — isin wt)
= e7% (cos ox cos wt —isin wt cos ox + i cos wt sin ox + sin ox sin wt)
= 7% (cos (0x) cos (wt) + sin (ox) sin (wt) + i (cos (wt) sin (ox) — sin (wt) cos (0x)))
= e 9% (cos (tw — xo) — isin (tw — x0))
Hence will evaluate
Re(u (x, t; w)) = e7°* Re (cos (fw — x0) — isin (tw — x0))
= e 9" cos (tw — x0)
I assume here it is asking for numerical estimate. We only need to determine numerical

estimate for 0. For w, using the period T = 24 hrs or T = 86400 seconds, then w = 2?7'1 is now
found. Then we need to determine v, which is thermal diffusivity for earth crust. There
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does not seem to be an agreed on value for this and this value also changed with depth
inside the earth crust. The value I found that seem mentioned more is 1.2 X 107® meter?
per second. Hence

2n
86400
O’ - —
2(12x107)
= 5.505 per meter
Therefore
Re (u (x, t; w)) = e7>2%% cos (tw — 5.505x)
Using w = B:ﬁ =7.29 x 107 rad/sec. Now we can use the above to estimate fluctuation of

heat over 24 hrs period. But we need to fix x for each case. Here x = 0 means on the earth
surface and x say 10, means at depth 10 meters and so on as I understand that x is starts at
0 at surface or earth and increases as we go lower into the earth crust. Plotting at the above
for x = 0,0.5,1,1.5,2 I see that when x > 2 then maximum value of ¢72°%* cos (fw — 5.505x)
is almost zero. This seems to indicate a range of heat reach is about little more than
2 meters below the surface of earth.

This is a plot of the fluctuation in temperature at different x each in separate plot, then
later a plot is given that combines them all.

Flucuation in temperature T at depth x =0

051

0.0

T(x,t)

0 20000 40000 60000 80000

The time in the day (in seconds)

Flucuation in temperature T at depth x = 0.5

T(x,t)
o
=
1S3

-0.02f

-0.04f

-0.06
] Il Il Il Il

0 20000 40000 60000 80000

The time in the day (in seconds)
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T(x,t)

t)

T(x

T(x,t)

T(x,t)

This plot better show the difference per depth, as it combines all the plots into one.

Flucuation in temperature T at depth x = 1

0.004 -
0.002 -
0.000
-0.002 -
-0.004 -
L L Il L L L Il L L L Il L L L Il L
0 20000 40000 60000 80000
The time in the day (in seconds)
Flucuation in temperature T at depth x = 1.5
0.0002 -
0.0001 -
0.0000
-0.0001 \
-0.0002 -
L L Il L L L Il L L L Il L L L Il L
0 20000 40000 60000 80000
The time in the day (in seconds)
Flucuation in temperature T at depth x = 2
0.000015 |-
0.000010 -
5.x1076 |
0.000000 s
-5.x1078 |
-0.000010 |-
-0.000015 |-
0 20000 40000 60000 80000
The time in the day (in seconds)
Flucuation in temperature T at depth x = 2.5
1.x10°8 |
5.x1077 |-
0 \
-5.x1077 |-
-1.x1078 |-
0 20000 40000 60000 80000

The time in the day (in seconds)
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Flucuation in temperature T at different depth x

1.0}
05
— u(0, t)
2 o0 — u(0.5, t)
Z 0
— u(1,t)
— u(1.5, t)
-5}
1.0}

1 1 1 1
20000 40000 60000 80000
The time in the day (in seconds)

ol
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