
University Course

ECE 719
Optimal Systems

University of Wisconsin, Madison
Spring 2016

My Class Notes

Nasser M. Abbasi

Spring 2016

Contents

1 Introduction 1
1.1 syllabus . 2
1.2 References . 3
1.3 Organization . 4
1.4 Cardinal rules . 5

2 Class notes 7
2.1 Lecture 1. Tuesday, January 19, 2016 . 10
2.2 Lecture 2. Thursday, January 21, 2016 . 12
2.3 Lecture 3. Tuesday, January 26, 2016 . 14
2.4 Lecture 4. Thursday, January 28, 2016 . 18
2.5 Lecture 5. Tuesday, February 2, 2016 . 20
2.6 Lecture 6. Thursday, February 4, 2016 . 23
2.7 Lecture 7, Tuesday, February 9, 2016 . 25
2.8 Lecture 8. Thursday, February 11, 2016 . 27
2.9 Lecture 9. Tuesday, February 16, 2016 . 31
2.10 Lecture 10. Thursday, February 18, 2016 (Exam 1) 33
2.11 Lecture 11. Tuesday, February 23, 2016 . 34
2.12 Lecture 12. Thursday, February 25, 2016 . 36
2.13 Lecture 13. Tuesday, March 1, 2016 . 39
2.14 Lecture 14. Thursday, March 3, 2016 . 43
2.15 Lecture 15. Tuesday, March 8, 2016 . 46
2.16 Lecture 16. Thursday, March 10, 2016 . 48
2.17 Lecture 17. Tuesday, March 15, 2016 . 52
2.18 Lecture 18. Thursday, March 17, 2016 . 55
2.19 Lecture 19. Tuesday, March 22, 2016 (No class) 58
2.20 Lecture 20. Thursday, March 24, 2016 (No class) 59
2.21 Lecture 21. Tuesday, March 29, 2016 . 60
2.22 Lecture 22. Thursday, March 31, 2016. Second midterm exam 63
2.23 Lecture 23. Tuesday, April 5, 2016 . 64
2.24 Lecture 24. Thursday, April 7, 2016 (No class) 67
2.25 Lecture 25. Tuesday, April 12, 2016 . 68
2.26 Lecture 26. Thursday, April 14, 2016 . 70
2.27 Lecture 27. Tuesday, April 19, 2016 . 75
2.28 Lecture 28. Thursday, April 21, 2016 . 86
2.29 Lecture 29. Tuesday, April 26, 2016 . 89
2.30 Lecture 30. Thursday, April 28, 2016 . 91
2.31 Lecture 31. Tuesday, May 3, 2016 . 93
2.32 Lecture 32. Thursday, May 5, 2016 . 94

3 Handouts 95
3.1 Real analysis. January 21, 2016 . 96
3.2 Positive-Definite Matrices. January 26, 2016 97
3.3 Coercivity Theorem. January 27, 2016 . 98
3.4 Hessian Theorem. February 8, 2016 . 99
3.5 Proof of Hessian theorem. February 8, 2016 100
3.6 Handout circuit. February 23, 2016 . 101
3.7 Handout Newton. February 26, 2016 . 102
3.8 Handout polytopes, march 3 2016 . 103
3.9 Sector patrol. March 8, 2016 . 108
3.10 Handout Extreme. March 15, 2016 . 109

iii

Contents CONTENTS

4 HWs 111
4.1 HW 1 . 112
4.2 HW 2 . 125
4.3 HW 3 . 137
4.4 HW 4 . 156
4.5 HW 5 . 213
4.6 HW 6 . 242
4.7 HW 7 . 269
4.8 HW special problem . 293

5 study notes 309
5.1 Some HOWTO questions . 310
5.2 Some things to remember . 311
5.3 Example using conjugate directions . 313
5.4 collection of definitions . 318
5.5 Summary of iterative search algorithms . 320

iv

Chapter 1

Introduction

Instructor web page: Professor B Ross Barmish

1

http://directory.engr.wisc.edu/ece/Faculty/Barmish_B/

1.1. syllabus CHAPTER 1. INTRODUCTION

1.1 syllabus

Barmish

ECE 719 - Handout Syllabus
Course Description

Audience: This course is intended for graduate students interested in the systems sci-
ences. The course concentrates on finite-dimensional parameter optimization methods
with examples in the context of static and dynamic systems. Coverage of the material
will be suitable for students both inside and outside ECE.

Prerequisites: ECE 334 or consent of instructor.

Topics: Preliminaries; Formulation of parameter optimization problems for static and
dynamic systems; Common sense optimization; Existence and uniqueness; Convex opti-
mization; Optimal gain control and other dynamic systems problems; Line search meth-
ods; Steepest descent, Newton-Raphson and conjugate direction algorithms; Convergence
issues; Linear Programming with control applications; Discrete-time dynamic program-
ming; Optimization of Linear Quadratic Regulators; Identification and Kalman filtering
in an optimization context.

Lectures: Professor B. R. Barmish

Grading: The grade will be based on three midterm tests @ 25%, homework and a
special problem (25%). The instructor may exercise discretion up to 10% in each of the
grading categories.

Some Initial References

D. P. Bertsekas, Convex Analysis and Optimization, Athena Scientific, Belmont, 2003.

S. Boyd and C. Barratt, Linear Controller Design, Limits of Performance, Prentice-
Hall, New York, 1991.

S. Boyd and L. Vandenberghe, Introduction to Convex Optimization With Engineering
Applications, Stanford University, 1999.

E. K. P. Chong and S. H. Zak, Introduction to Optimization, Wiley-Interscience, New
York, 2001.

R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, New York, 1980.

D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, New
York, 1968.

J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.

R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

2

1.2. References CHAPTER 1. INTRODUCTION

1.2 References

Barmish

ECE 719 - Handout Syllabus
Course Description

Audience: This course is intended for graduate students interested in the systems sci-
ences. The course concentrates on finite-dimensional parameter optimization methods
with examples in the context of static and dynamic systems. Coverage of the material
will be suitable for students both inside and outside ECE.

Prerequisites: ECE 334 or consent of instructor.

Topics: Preliminaries; Formulation of parameter optimization problems for static and
dynamic systems; Common sense optimization; Existence and uniqueness; Convex opti-
mization; Optimal gain control and other dynamic systems problems; Line search meth-
ods; Steepest descent, Newton-Raphson and conjugate direction algorithms; Convergence
issues; Linear Programming with control applications; Discrete-time dynamic program-
ming; Optimization of Linear Quadratic Regulators; Identification and Kalman filtering
in an optimization context.

Lectures: Professor B. R. Barmish

Grading: The grade will be based on three midterm tests @ 25%, homework and a
special problem (25%). The instructor may exercise discretion up to 10% in each of the
grading categories.

Some Initial References

D. P. Bertsekas, Convex Analysis and Optimization, Athena Scientific, Belmont, 2003.

S. Boyd and C. Barratt, Linear Controller Design, Limits of Performance, Prentice-
Hall, New York, 1991.

S. Boyd and L. Vandenberghe, Introduction to Convex Optimization With Engineering
Applications, Stanford University, 1999.

E. K. P. Chong and S. H. Zak, Introduction to Optimization, Wiley-Interscience, New
York, 2001.

R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, New York, 1980.

D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, New
York, 1968.

J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.

R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, 1970.

3

1.3. Organization CHAPTER 1. INTRODUCTION

1.3 Organization

Barmish

ECE 719 – Handout Organization

• Lectures

B. R. Barmish
Office: 3613 Engineering Hall
E-mail: barmish@engr.wisc.edu
Office Hours: Wednesday 1:00-3:00 PM

• Textbook

None: Lecture Notes and Readings

• Grading

Per Handout Syllabus

• Test Scheduling Information

First Midterm Test: Thursday, February 18, 2016
Second Midterm Test: Thursday, March 31, 2016
Third Midterm Test: Thursday, May 5, 2016
Midterms held in class period unless rescheduled; see below.

• Course Schedule Information

No Office Hours during Spring Recess and Wednesday, April 6, 2016
Reserved Time @ 6 PM on Wednesdays February 17, March 30 and May 4.
Times above for Make-up Lectures or Midterm Test Rescheduling.

• Discussion of Prerequisites

• Discussion of Matlab

• Discussion of Homework and Grading

4

1.4. Cardinal rules CHAPTER 1. INTRODUCTION

1.4 Cardinal rules

Barmish

ECE 719 – Handout Cardinal
Use of References and the Cardinal Rule

Some Comments on the References: There are a number of good
books on the reference list for ECE 719. I recommend the book by Chong
and Zak in that it covers many of the topics in this course and is well
written. The books by Rockafellar and Bertsekas tell you everything you
ever wanted to know about convexity. Rockafellar covers the material in
greater depth but is more time consuming to read. This course covers
finite-dimensional optimization. The reader who is interested in a lu-
cid presentation of infinite-dimensional analogues of many of these results
should consult the book by Luenberger. The book by Fletcher provides a
concise summary of classical numerical algorithms used in iterative opti-
mization. For the uninitiated, I would recommend the well-written text-
book by Nocedal and Wright on numerical optimization. For the reader
interested in optimization with a control-theoretic slant, the book by Boyd
and Baratt is nice to read.

The Cardinal Rule: In homework assignments, students should only
rely on results given in class, basic mathematical facts, assigned readings
and results developed in previous homework sets. That is, one should not
pull results out of reference books on optimization and cite them in order
to attain the result being sought. To this end, the course instructor will
serve to interpret what mathematical facts qualify as “basic.”

5

1.4. Cardinal rules CHAPTER 1. INTRODUCTION

6

Chapter 2

Class notes

Local contents
2.1 Lecture 1. Tuesday, January 19, 2016 . 10
2.2 Lecture 2. Thursday, January 21, 2016 . 12
2.3 Lecture 3. Tuesday, January 26, 2016 . 14
2.4 Lecture 4. Thursday, January 28, 2016 . 18
2.5 Lecture 5. Tuesday, February 2, 2016 . 20
2.6 Lecture 6. Thursday, February 4, 2016 . 23
2.7 Lecture 7, Tuesday, February 9, 2016 . 25
2.8 Lecture 8. Thursday, February 11, 2016 . 27
2.9 Lecture 9. Tuesday, February 16, 2016 . 31
2.10 Lecture 10. Thursday, February 18, 2016 (Exam 1) 33
2.11 Lecture 11. Tuesday, February 23, 2016 . 34
2.12 Lecture 12. Thursday, February 25, 2016 . 36
2.13 Lecture 13. Tuesday, March 1, 2016 . 39
2.14 Lecture 14. Thursday, March 3, 2016 . 43
2.15 Lecture 15. Tuesday, March 8, 2016 . 46
2.16 Lecture 16. Thursday, March 10, 2016 . 48
2.17 Lecture 17. Tuesday, March 15, 2016 . 52
2.18 Lecture 18. Thursday, March 17, 2016 . 55
2.19 Lecture 19. Tuesday, March 22, 2016 (No class) 58
2.20 Lecture 20. Thursday, March 24, 2016 (No class) 59
2.21 Lecture 21. Tuesday, March 29, 2016 . 60
2.22 Lecture 22. Thursday, March 31, 2016. Second midterm exam 63
2.23 Lecture 23. Tuesday, April 5, 2016 . 64
2.24 Lecture 24. Thursday, April 7, 2016 (No class) 67
2.25 Lecture 25. Tuesday, April 12, 2016 . 68
2.26 Lecture 26. Thursday, April 14, 2016 . 70
2.27 Lecture 27. Tuesday, April 19, 2016 . 75
2.28 Lecture 28. Thursday, April 21, 2016 . 86
2.29 Lecture 29. Tuesday, April 26, 2016 . 89
2.30 Lecture 30. Thursday, April 28, 2016 . 91
2.31 Lecture 31. Tuesday, May 3, 2016 . 93
2.32 Lecture 32. Thursday, May 5, 2016 . 94

7

CHAPTER 2. CLASS NOTES

Summary table

These are my class lecture notes written from the lectures of ECE 719 optimal systems
course given by Professor B. Ross Barmish at University of Wisconsin, Madison in Spring
2016. Any errors in these notes, then all blames to me and not to the instructor.

date event Topic

1 Tuesday, 1/19/2016 First class Introduction, handouts

2 Thursday,
1/21/2016

Multilinear Tractable, Farming example, Multilinear, det(M)
example

3 Tuesday, 1/26/2016 Real analysis Reader on Farming, level sets, Pareto, Existence
of optimal, real analysis, B-W, sub-sequences

4 Thursday,
1/28/2016

Quadratic
forms

Coercivity, classical existence theorem, Quadratic
forms, starting convex sets

5 Tuesday, 2/2/2016 Mixtures Polytope, Mixtures, Extreme points, Started con-
vex functions, maximum of collection of convex
functions is convex function. epi graph.

6 Thursday, 2/4/2016 Convex Convex functions, properties, indexed collection,
Hessian theorem: 𝐽(𝑢) is convex i�, the Hessian is
positive semi-definite.

7 Tuesday, 2/9/2016 Hessian Bridging lemma. Proof of Hessian theorem for
𝑛 > 1. Strong local minimum theorem.

8 Thursday,
2/11/2016

optimal gain optimal gain problem.

9 Tuesday, 2/16/2016 Gradient Gradient based optimization

10 Thursday,
2/18/2016

Exam 1

11 Tuesday, 2/23/2016 Steepest Handout amplifier. Finish Steepest descent. Start
on Newton-Raphson

12 Thursday,
2/26/2016

Convergence Handout Newton. Derivation of step size for
Newton-Raphson. Super-linear convergence.

13 Tuesday, 3/1/2016 Gradient direc-
tion

Gradient direction, quadratic convergence, mu-
tually conjugate vectors, quadratic convergence
theorem

14 Thursday, 3/3/2016 LP Starting linear programming

15 Tuesday, 3/8/2016 LP patrol sector problem, mechanics of LP

16 Thursday,
3/10/2016

LP Squeeze method, basic and feasible solutions

17 Tuesday, 3/15/2016 LP simplex optimality theorem, extreme point theorem, unit
simplex, mechanism of simplex

18 Thursday,
3/17/2016

Complete LP Tableau method with optimality

19 Tuesday, 3/22/2016 No class. Thanks giving

20 Thursday,
3/24/2016

No class. Thanks giving

21 Tuesday, 3/29/2016 LP in control Example using LP in control, minimum fuel. End-
ing LP, starting dynamic programming, review.

22 Thursday,
3/31/2016

Exam 2

23 Tuesday, 4/5/2016 Dynamic pro-
gramming

First example in dynamic programming, trip from
NY to San Francisco. Toll fee optimization.

24 Thursday, 4/7/2016 No class

25 Tuesday, 4/12/2016 D.P. and spe-
cial problem

describe special problem. Dynamic programming.

8

CHAPTER 2. CLASS NOTES

26 Thursday,
4/14/2016

D.P. LQR example. Oil and real estate example

27 Tuesday, 4/19/2016 D.P. and LQR LQR using D.P., long example

28 Thursday,
4/21/2016

D.P. floor func-
tion

D.P. examples for variation of dynamic program-
ming

29 Tuesday, 4/26/2016 Steady state Finish Floor problem. Start on steady state, itera-
tive method

30 Thursday,
4/28/2016

Steady state,
Riccati

Closed form, guess method, infinite time LQR,
Riccati.

31 Tuesday, 5/3/2016 Review of
course

Special problem review, class review and prep for
final exam

32 Thursday, 5/5/2016 Final exam Exam

9

2.1. Lecture 1. Tuesday, January 19, 2016 CHAPTER 2. CLASS NOTES

2.1 Lecture 1. Tuesday, January 19, 2016

This course is on finite dimensional optimization, which means having finite number of
parameters. We now went over the syllabus. Here is a summary:

1. Convex sets and functions

2. How to certify your solution?

3. Linear programming.

4. Dynamic programming (at end of course)

5. Three exams and a final special project/problem.

Homeworks will be graded using E,S,U grades. Most will get S, few will get E. Matlab will
be used.

Cardinal rule Develop an answer using given material in class only. Can use other basic
things like Laplace transform, etc...

A wise person once said: “Fundamental di�culties are invariant under reformulation”.

2.1.1 Objective functions, constraints and variables

In a problem, identify the objective function, constraints and variables. Optimization
problems from di�erent fields can be formulated into a common framework for solving
using optimization methods.

Ingredients in this case: Set 𝑈 ⊆ ℜ𝑛, the constraint set. Problem has 𝑛 parameters (the
decision variables). Therefore 𝑢 ∈ 𝑈. One dimensional problem has 𝑛 = 1. An example is
to find optimal resistor value where 𝑈 = 100⋯200 Ohms. For 𝑛 = 2, an example is to find

two resistors 𝑢 =

⎡
⎢⎢⎢⎢⎢⎣
𝑢1
𝑢2

⎤
⎥⎥⎥⎥⎥⎦ with 100 ≤ 𝑢1 ≤ 200 and 300 ≤ 𝑢2 ≤ 400.

Reader Often we describe 𝑈 graphically in ℜ𝑛. Typically for only 𝑛 = 1, 2, 3. Do this for
the above example.

400

300

100 200

u1

u2

set U

Figure 2.1: Set 𝑈 with constraints

Reader design a bandpass filter with passband from 𝜔1 to 𝜔2 with 𝜔1, 𝜔2 > 0. Describe
graphically the set 𝑈.

ω2

ω1

set U

Figure 2.2: Lecture one, set𝑈 second diagram

Reader Often 𝑈 is sphere in ℜ𝑛 described by
𝑛
�
𝑖=0
�𝑢𝑖 − 𝑢𝑖,0�

2
≤ 𝑅 where 𝑢𝑖,0 are coordinates

of center of sphere.

10

2.1. Lecture 1. Tuesday, January 19, 2016 CHAPTER 2. CLASS NOTES

Reader Suppose we are designing an input voltage 𝑢 (𝑡) on 𝑡 ∈ [0, 1] such that ∫
1

0
𝑢2 (𝑡) 𝑑𝑡 ≤ 5.

This does not fit in above framework. This is function space problem.

An important class of 𝑈: A generalization of rectangle in 2D to hypercube in ℜ𝑛 with
�𝑢𝑖 − 𝑢𝑖,0� ≤ 𝑟𝑖 for 𝑖 = 1⋯𝑛.

Reader For 𝑛 = 3 and 𝑢0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑢1,0
𝑢2,0
𝑢3,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and 𝑟1 = 1, 𝑟2 = 2, 𝑟3 = 3, then sketch 𝑈.

2.1.2 Constrained and Unconstrained problems

Unconstrained problem is one when we say 𝑈 = ℜ𝑛. There are no constraints on 𝑈. These
are easier to solve than constrained problems. In practice, there will always be constraints.
𝑈 is sometimes called the set of decision variables, or also called the input. The other
criteria, is the objective function 𝐽 (𝑢), or more formally 𝐽 ∶ ℜ𝑛 → ℜ. The objective function
𝐽 (𝑢) is obtained from your goals.

Example we want to go from 𝐴 to 𝐵 in least time. Often the selection of 𝐽 (𝑢) is not straight
forward. Selection of 𝐽 (𝑢) can be di�cult in areas such as social or environmental science.

In stock markets, 𝐽(𝑢) is given and we just use it. Example is 𝐽(𝑢) = 𝑢2 + 6𝑢 + 𝑒−𝑢 in ℜ𝑛.
Often we test the algorithm first in ℜ1 or ℜ2 before going to higher dimensions. In ℜ4 an
example is

𝐽(𝑢) = 𝑢1𝑢2 − 3𝑢1𝑢3𝑢4 + 6𝑢2𝑢3 − 6𝑢1 − 4𝑢2 − 𝑢3𝑢4 + 12

This has 16 vertices.

Reader Can you find max 𝐽(𝑢) subject to 𝑈 described by |𝑢𝑖| ≤ 𝑖 using common sense?

Answer It will be on the vertices of hypercube.

In VLSI, with hundreds of resistors, there are 2𝑛 vertices, so the problem becomes compu-
tationally harder to solve very quickly. To proof that the optimal value is at a vertex, the
idea is to freeze all other variables except for one at a time. This gives a straight line in
the free variable. Hence the optimal is at ends of the line.

min here

max here

J(u)

ui

The main case problem: Find 𝑢∗ that minimizes 𝐽 (𝑢) with the constraints 𝑢 ∈ 𝑈. 𝑢∗ might
not exist. When it exists, then

𝐽 (𝑢∗) = 𝐽∗ = min
𝑢∈𝑈

𝐽 (𝑢)

When we begin, we do not know if 𝑢∗ exist. We write

𝐽 (𝑢∗) = inf
𝑢∈𝑈

𝐽 (𝑢)

Example 𝑈 = ℜ𝑛, 𝐽 (𝑢) = 𝑒−𝑢. So 𝑢∗ do not exist. We do not allow 𝑢∗ to take values ±∞. But
we allow 𝐽 (𝑢∗) itself to become ±∞. For example, if 𝐽 (𝑢) = 𝑢2 then 𝑢∗ = 0.

11

2.2. Lecture 2. Thursday, January 21, 2016 CHAPTER 2. CLASS NOTES

2.2 Lecture 2. Thursday, January 21, 2016

2.2.1 Existence of optimal solution, explicit and implicit 𝐽(𝑢)
Tractability. 𝑈 ⊆ ℜ𝑛, the decision variables. 𝐽 ∶ ℜ𝑛 → ℜ. Problem: find 𝑢∗ such that
𝐽 (𝑢∗) = inf𝑢∈𝑈 𝐽 (𝑢).

𝑢∗, when it exists, is called the optimal element. We do not allow 𝑢∗ = ±∞, but allow
𝐽 (𝑢∗) = ±∞. For example. 𝐽 (𝑢) = 1

𝑢 on 𝑈 = (0,∞). We say sup𝑢∈𝑈 𝐽 (𝑢) = 𝐽∗ = 0 but 𝑢∗ = ∞
do not exist. Hence 𝐽∗ is a limiting supremum value. Another example is 𝐽 (𝑢) = −𝑢 on ℜ.
Therefore 𝐽∗ = −∞ but 𝑢∗ do not exist.

Reader: We can consider max𝑢∈𝑈 𝐽 (𝑢) ≡ sup𝑢∈𝑈 𝐽 (𝑢). Note that

max
𝑢∈𝑈

𝐽 (𝑢) = −min
𝑢∈𝑈

𝐽 (𝑢)

But 𝑢∗min ≠ 𝑢∗max.

Some problems will be tractable and some are not. Some problems will not have defined
algorithms and some might not have certified algorithms. Some problems have algorithms
but are not tractable. NP hard problems can be either tractable or not tractable. What
about stochastic problems? If 𝑢 is random variable, we can not write 𝐽 (𝑢). But instead we
work with ̃𝐽 (𝑢) = 𝐸 (𝐽 (𝑢)) where 𝐸 is expectation. So now ̃𝐽 (𝑢) fits in the frameworks we
used earlier.

We also need to make distinction between explicit and implicit 𝐽 (𝑢). When we write 𝐽 (𝑢) =
𝑢21 + 𝑒𝑢2 cos 𝑢1 + 𝑢2, then 𝐽 (𝑢) here is explicit. But if we have a circuit as below, where
𝐽 (𝑢) = 𝑉𝑜𝑢𝑡, then here 𝐽 (𝑢) is implicit, since we have to solve the complicated RLC circuit
to find 𝐽 (𝑢), so we implicitly assume 𝐽 (𝑢) exists.

J(u) = Vout

load
complicated RLCVin

Figure 2.3: Complicated RLC

2.2.2 Farming problem

First detailed example Optimal farming example. Let 𝑦 (𝑘) be the annual crop value where
𝑘 is the year. This is the end of year value of the crop. At end of year, we use some of this
to invest and the rest we keep as profit. Let 𝑢 (𝑘) ∈ [0, 1] be the fraction of 𝑦 (𝑘) invested
back. Therefore (1 − 𝑢 (𝑘)) is the fraction of 𝑦 (𝑘) which is taken out as profit. Dynamics of
the problem are: 𝑦 (𝑘 + 1) = 𝑦 (𝑘) if we invest nothing (i.e. 𝑢 = 0). But if we invest, then

𝑦 (𝑘 + 1) = 𝑦 (𝑘) + 𝜔 (𝑘)
amount invested

�����������𝑢 (𝑘) 𝑦 (𝑘)

Where 𝜔 (𝑘) is an independent and identically distributed (i.i.d.) random variable which
depends on the weather and other variables. Let 𝐸 (𝜔 (𝑘)) = 𝜛. We have 𝑁 years planning
horizon. What about 𝐽 (𝑢)? If we model things as a convex problem, we can solve it, but if
we do not, it becomes hard to solve.

𝐽 (𝑢) = 𝐸 �𝑦 (𝑘) +
𝑁−1
�
𝑘=0
𝑦 (𝑘) (1 − 𝑢 (𝑘))� (1)

The set 𝑈 here is {𝑢 (0) , 𝑢 (1) ,⋯ , 𝑢 (𝑁 − 1)}. In this example 𝐽 (𝑢) is implicit. We need to
make 𝐽 (𝑢) explicit. Let us now calculate 𝐽 (𝑢) for 𝑁 = 2

𝑦1 = 𝑦0 + 𝜔0𝑢0𝑦0
= 𝑦0 (1 + 𝜔0𝑢0)

12

2.2. Lecture 2. Thursday, January 21, 2016 CHAPTER 2. CLASS NOTES

In class, we assumed that 𝑦0 = 1. But will keep it here as 𝑌, which is the initial conditions.

𝑦1 = 𝑌 (1 + 𝜔0𝑢0) (2)

Now for the second year, we have

𝑦2 = 𝑦1 + 𝜔1𝑢1𝑦1
= 𝑦1 (1 + 𝜔1𝑢1)

Substituting (2) into the above gives

𝑦2 = 𝑌 (1 + 𝜔0𝑢0) (1 + 𝜔1𝑢1)
= 𝑌 + 𝑌𝜔0𝑢0 + 𝑌𝜔1𝑢1 + 𝑌𝜔0𝜔1𝑢0𝑢1

Therefore from (1) we have for 𝑁 = 2

𝐽 (𝑢) = 𝐸 �𝑦2 +
1
�
𝑘=0
𝑦𝑘 (1 − 𝑢𝑘)�

= 𝐸

⎛
⎜⎜⎜⎜⎜⎝

𝑦

���𝑌 + 𝑌𝜔0𝑢0 + 𝑌𝜔1𝑢1 + 𝑌𝜔0𝜔1𝑢0𝑢1
2

+ �𝑌 (1 − 𝑢0) + 𝑦1 (1 − 𝑢1)�

⎞
⎟⎟⎟⎟⎟⎠

= 𝐸 (𝑌 + 𝑌𝜔0𝑢0 + 𝑌𝜔1𝑢1 + 𝑌𝜔0𝜔1𝑢0𝑢1 + [𝑌 (1 − 𝑢0) + 𝑌 (1 + 𝜔0𝑢0) (1 − 𝑢1)])
= 𝐸 (𝑌 + 𝑌𝜔0𝑢0 + 𝑌𝜔1𝑢1 + 𝑌𝜔0𝜔1𝑢0𝑢1 + 𝑌 − 𝑌𝑢0 + 𝑌 − 𝑌𝑢1 + 𝑌𝜔0𝑢0 − 𝑌𝜔0𝑢0𝑢1)

= 𝑌 �3 + 𝜛𝑢0 + 𝜛𝑢1 + 𝜛2𝑢0𝑢1 − 𝑢0 − 𝑢1 + 𝜛𝑢0 − 𝜛𝑢0𝑢1�

= 𝑌 �3 + 2𝜛𝑢0 + 𝑢1 (𝜛 − 1) + 𝜛2𝑢0𝑢1 − 𝑢0 − 𝜛𝑢0𝑢1�

= 𝑌 �3 + 𝑢0 (2𝜛 − 1) + 𝑢1 (𝜛 − 1) + 𝑢0𝑢1 �𝜛2 − 𝜛��

Reader Use syms to find 𝐽 (𝑢) for 𝑁 = 4.

If we want maximum profit, then common sense says that 𝜛 should be large (good weather).
Then 𝑢∗ = (1, 1). This says 𝑢0 = 1 and 𝑢1 = 1. In other words, we invest everything back into
the crop each year. The above was obtained by maximizing term by term since all terms
are positive. If 𝜛 < 1

2 (bad weather), then 𝑢∗ = (0, 0) and all coe�cients are negative.

In the above, 𝐽 (𝑢) is multilinear function in 𝑢0, 𝑢1. If all 𝑢𝑘 are held constant except for one
at a time, then 𝐽 (𝑢) becomes linear in the free parameter. In HW 1, we need to proof that
extreme point of a multilinear function is at a vertex. So for this problem, the possible
solutions are (0, 0) , (0, 1) , (1, 0) , (1, 1).

Reader Is there a value of 𝜛 that gives (1, 0) and (0, 1)?

For arbitrary 𝑁 there are 2𝑁 vertices in hypercube for a multilinear 𝐽 (𝑢) where 𝑢 ∈ ℜ𝑛.So for
large 𝑛, a multilinear problem is much harder to solve than a convex optimization problem.
Even simple problems demonstrate intractability. Let 𝑀 = 𝑁 × 𝑁 matrix. Let each every
𝑚𝑖𝑗 be known within bounds 𝑚−

𝑖𝑗 ≤ 𝑚𝑖𝑗 ≤ 𝑚+
𝑖𝑗 . The question is: What are the bounds on the

determinant of matrix 𝑀?

Reader ponder this question in the context of multilinear problem. To determine this for
small 𝑛 in Matlab, here is some code for 𝑛 = 4 (uses allcomb which is a file exchange file)� �

1 a = repmat({[-1 1]},16,1);
2 v = allcomb(a{:});
3 r = arrayfun(@(i) det(reshape(v(i,:),4,4)),1:size(v,1));
4 max(r)
5 min(r)� �

˙

Running the above gives
ans =

16

ans =
-16

13

2.3. Lecture 3. Tuesday, January 26, 2016 CHAPTER 2. CLASS NOTES

2.3 Lecture 3. Tuesday, January 26, 2016

2.3.1 Multilinear functions, level sets, contours

Today will be on multilinear functions, then back to infimum of 𝐽 (𝑢). Then we will go over
real analysis to see when a min is reached. We need to find first if there exists a minimum
before starting to search for it. For the farming problem we looked at, say 𝜛 = 2. We want
to look at contours in ℜ2 and ℜ3. Try first in ℜ2.

Reader Obtain level sets, contour lines, defined as Λ𝛾 = �𝑢 ∶ 𝐽 (𝑢) = 𝛾�. In words, contour
line is curve of equal values of 𝐽 (𝑢). For farming problem, show contour lines of 𝐽 (𝑢) looks
like

1

1
u∗

u(0)

u(1)

Figure 2.4: Level sets

For 𝜛 = 2, and using results from last lecture, where we had

𝐽 (𝑢) = 𝑌 �3 + 𝑢0 (2𝜛 − 1) + 𝑢1 (𝜛 − 1) + 𝑢0𝑢1 �𝜛2 − 𝜛��

Where 𝑌 = 𝑦 (0) = 1, the above becomes

𝐽 (𝑢) = 3 + 𝑢0 (2𝜛 − 1) + 𝑢1 (𝜛 − 1) + 𝑢0𝑢1 �𝜛2 − 𝜛� (1)

Reader Use Matlab syms to obtain 𝐽 (𝑢) for any 𝑁

Answer Below is a function which generates 𝐽 (𝑢) for any𝑁. Function called nma_farm(N,y0),
takes in 𝑁, which is how many years and 𝑦 (0), the initial value. 𝜔0 below is 𝜛, the mean
of the 𝜔 random variable).� �

1 function nma_farm(N,initial)
2 %reader anwer for farming problem, lecture 1/21/16, ECE 719
3 %N is number of years
4 %Initial, is y(0). See class notes for ECE 719 for
5 %description of the problem. Second lecture.
6 %Nasser M. Abbasi
7

8 y = []; w=[]; u=[];
9 idx = [];
10 syms y(idx) w(idx) u(idx)
11 tot = 0;
12

13 for k = 0:N-1 %main loop
14 tot = tot + Y(k)*(1-u(k));
15 end
16 J = Y(N)+ tot;
17

18 for i = 0:N %use mean
19 J = subs(J,w(i),'w0');
20 end
21

22 J=subs(J,y(0),initial);

14

2.3. Lecture 3. Tuesday, January 26, 2016 CHAPTER 2. CLASS NOTES

23 expand(J)
24

25 %--------------------------
26 % recursive function internal function
27 function r = Y(k)
28 if k ==0
29 r = y(0);
30 else
31 r = Y(k-1)*(1+w(k-1)*u(k-1));
32 end
33 end
34

35 end� �
Here are example run outputs
>> nma_farm(2,1)
2*w0*u(0) - u(1) - u(0) + w0*u(1) + w0^2*u(0)*u(1) - w0*u(0)*u(1) + 3

>> nma_farm(4,1)
4*w0*u(0) - u(1) - u(2) - u(3) - u(0) + 3*w0*u(1) + 2*w0*u(2)
+ w0*u(3) + 3*w0^2*u(0)*u(1) + 2*w0^2*u(0)*u(2) + w0^2*u(0)*u(3)
+ 2*w0^2*u(1)*u(2) + w0^2*u(1)*u(3) + w0^2*u(2)*u(3) -
w0*u(0)*u(1) - w0*u(0)*u(2) - w0*u(0)*u(3) - w0*u(1)*u(2) -
w0*u(1)*u(3) - w0*u(2)*u(3) - w0^2*u(0)*u(1)*u(2) -
w0^2*u(0)*u(1)*u(3) + 2*w0^3*u(0)*u(1)*u(2) - w0^2*u(0)*u(2)*u(3)
+ w0^3*u(0)*u(1)*u(3) - w0^2*u(1)*u(2)*u(3) + w0^3*u(0)*u(2)*u(3)
+ w0^3*u(1)*u(2)*u(3) - w0^3*u(0)*u(1)*u(2)*u(3) +
w0^4*u(0)*u(1)*u(2)*u(3) + 5
>> nma_farm(5,1)

5*w0*u(0) - u(1) - u(2) - u(3) - u(4) - u(0) + 4*w0*u(1)
+ 3*w0*u(2) + 2*w0*u(3) + w0*u(4) + 4*w0^2*u(0)*u(1) +
3*w0^2*u(0)*u(2) + 2*w0^2*u(0)*u(3) + 3*w0^2*u(1)*u(2) +
w0^2*u(0)*u(4) + 2*w0^2*u(1)*u(3) + w0^2*u(1)*u(4) +
2*w0^2*u(2)*u(3) + w0^2*u(2)*u(4) + w0^2*u(3)*u(4) - w0*u(0)*u(1)
- w0*u(0)*u(2) - w0*u(0)*u(3) - w0*u(1)*u(2) - w0*u(0)*u(4)
- w0*u(1)*u(3) - w0*u(1)*u(4) - w0*u(2)*u(3) - w0*u(2)*u(4)
- w0*u(3)*u(4) - w0^2*u(0)*u(1)*u(2) - w0^2*u(0)*u(1)*u(3) +
3*w0^3*u(0)*u(1)*u(2) - w0^2*u(0)*u(1)*u(4) - w0^2*u(0)*u(2)*u(3)
+ 2*w0^3*u(0)*u(1)*u(3) - w0^2*u(0)*u(2)*u(4) - w0^2*u(1)*u(2)*u(3)
+ w0^3*u(0)*u(1)*u(4) + 2*w0^3*u(0)*u(2)*u(3) - w0^2*u(0)*u(3)*u(4)
- w0^2*u(1)*u(2)*u(4) + w0^3*u(0)*u(2)*u(4) + 2*w0^3*u(1)*u(2)*u(3)
- w0^2*u(1)*u(3)*u(4) + w0^3*u(0)*u(3)*u(4) + w0^3*u(1)*u(2)*u(4)
- w0^2*u(2)*u(3)*u(4) + w0^3*u(1)*u(3)*u(4) + w0^3*u(2)*u(3)*u(4)
- w0^3*u(0)*u(1)*u(2)*u(3) - w0^3*u(0)*u(1)*u(2)*u(4)
+ 2*w0^4*u(0)*u(1)*u(2)*u(3) - w0^3*u(0)*u(1)*u(3)*u(4)
+ w0^4*u(0)*u(1)*u(2)*u(4) - w0^3*u(0)*u(2)*u(3)*u(4)
+ w0^4*u(0)*u(1)*u(3)*u(4) - w0^3*u(1)*u(2)*u(3)*u(4) +
w0^4*u(0)*u(2)*u(3)*u(4) + w0^4*u(1)*u(2)*u(3)*u(4)
- w0^4*u(0)*u(1)*u(2)*u(3)*u(4) + w0^5*u(0)*u(1)*u(2)*u(3)*u(4) + 6

At 𝑢∗ = (𝑢0, 𝑢1) = (1, 1) then (1) becomes

𝐽∗ = 3 + (4 − 1) + (2 − 1) + (4 − 2)
= 9

Reader Look at 𝐽 (𝑢) in ℜ3 for the farming problem. Today’s topic: When does the optimal
element 𝑢∗ exist?

15

2.3. Lecture 3. Tuesday, January 26, 2016 CHAPTER 2. CLASS NOTES

2.3.2 Pareto optimality

When we have more than one objective function, 𝐽𝑖 (𝑢) ∶ 𝑈 ⊆ ℜ𝑛 → ℜ, for 𝑖 = 1⋯𝑚. We call
𝑢∗ ∈ 𝑈 a Pareto optimal, if the following holds: Given any other 𝑢 ∈ 𝑈, we can not have the
following two relations be true at the same time:

1. 𝐽𝑖 (𝑢) ≤ 𝐽𝑖 (𝑢∗) , 𝑖 = 1⋯𝑚

2. 𝐽𝑘 (𝑢) < 𝐽𝑘 (𝑢∗) for some 𝑘.

This is related to e�ciency in economics. So something that is not Pareto optimal, can be
eliminated.

Reader Say 𝑈 = (0,∞), 𝐽1 (𝑢) = 𝑢 + 1, 𝐽2 (𝑢) =
1

𝑢+1 , describe the set of Pareto optimal
solutions.

Reader By creating 𝐽 (𝑢) = 𝛼1𝐽1 (𝑢) + 𝛼2𝐽2 (𝑢), with 𝛼𝑖 ≥ 0, show the solution (optimal 𝐽 (𝑢)),
depends on 𝛼𝑖 which reflects di�erent utility functions.

2.3.3 compact and bounded sets, open and closed sets

Now we will talk about existence of optimal element 𝑢∗. We will always assume that 𝐽 (𝑢) is
continuous function in 𝑢 ∈ 𝑈. Two di�erent conditions on the set 𝑈 can be made

1. Is the set compact?

2. Is the set Unbounded?

In both cases, we still want conditions on 𝐽 (𝑢) itself as well. We begin with the definition of

𝐽∗ = inf
𝑢∈𝑈

𝐽 (𝑢)

Remember that we do not allow 𝑢 = ±∞, but 𝐽∗ can be ±∞.

Example 𝐽 (𝑢) = −𝑢 on ℜ. Then 𝐽∗ = −∞, but there is no optimal element 𝑢∗ = −∞. But it is
always true that there is a sequence �𝑢𝑘�

∞

𝑘=1
= 𝑢𝑘 such that 𝐽 �𝑢𝑘� → 𝐽∗ even though there is

no 𝑢∗ element. We write

lim
𝑘→∞

𝐽 �𝑢𝑘� = 𝐽∗

A bad set 𝑈 is often one which is not closed. Example is of a gas pedal which when pressed
to the floor will cause the car to malfunction, but the goal is to obtain the shortest travel
time, which will require one to press the gas pedal to the floor in order to obtain the highest
car speed.

This shows that there is no optimal 𝑢∗ but we can get as close to it as we want. This is an
example of a set 𝑈 that is not closed on one end. We always prefer to work with closed
sets. An open set is one such as 𝑈 = (0, 𝜋4], and a closed set is one such as 𝑈 = �0, 𝜋4 �.

Definition of continuity If 𝑢𝑘 → 𝑢0 then 𝐽 �𝑢𝑘� → 𝐽 (𝑢0), we write 𝐽 �𝑢0� = lim𝑘→∞ 𝐽 �𝑢𝑘�. This
is for every sequence 𝑢𝑘.

Equivalent definition: There is continuity at 𝑢0 if the following holds: Given any 𝜀 ≥ 0
there exists 𝛿 such that �𝐽 (𝑢) − 𝐽 �𝑢0�� < 𝜀, whenever �𝑢 − 𝑢0� < 𝛿.

Closed sets Includes all its limit points. Examples:

1. [0, 1] is closed set.

2. [0, 1) not closed. Because we can approach 1 as close as we want, but never reach it.

3. [0,∞) is closed. Since it includes all its limit points. Remember we are not allowed
to use 𝑢∗ = ∞.

4. ℜ is closed and open at same time.

A set can be both open and closed. ℜ is such a set. To show a set is closed, we need to
show that the limit of any sequence is also in the set.

16

2.3. Lecture 3. Tuesday, January 26, 2016 CHAPTER 2. CLASS NOTES

The intersection of closed sets remains closed, but the union can be an open set. This
is important in optimization. If 𝑈𝑖 represent constraint sets, then the intersection of the
constraints remain a closed set. Closed sets also contain its boundaries.

Now we will talk about boundness of set. A set is bounded if we can put it inside a sphere
of some radius. We always use the Euclidean norm. If a set is bounded, using one norm,
then it is bounded in all other definitions of norms. There is more than one definition of a
norm. But we will use Euclidean norm.

We like to work with compact sets. A Compact set is one which is both bounded and
closed. These are the best for optimization.

2.3.4 B-W (The Bolzano-Weierstrass) theorem

Each bounded sequence in ℜ𝑛 has a convergent sub-sequence. This is useful, since it says
if the sequence is bounded, then we can always find at least one sub-sequence in it, which
is convergent. For example 𝑢𝑘 = cos 𝑘. This does not converge, but is has a subsequence in
it which does converge. The same for 𝑢𝑘 = (−1)𝑘.

17

2.4. Lecture 4. Thursday, January 28, 2016 CHAPTER 2. CLASS NOTES

2.4 Lecture 4. Thursday, January 28, 2016

2.4.1 Existence of optimal solutions

We will spend few minutes to review existence of optimal solutions then we will talk about
computability and convexity. We know now what 𝐽 (𝑢) being continuous means. Closed
sets are very important for well posed optimization problems. Typical closed set is 𝑢 ≤ 𝑘,
where 𝑘 is constant. If the function 𝐽 (𝑢) where 𝑢 ∈ 𝑈, is a continuous function, then the set
𝑈 must be closed.

Reader Give a proof.

We talked about 𝑈 being closed and bounded (i.e. compact). Compact sets are best for
optimization. We talked about sequence �𝑢𝑘�

∞

𝑘=1
= 𝑢𝑘 and a subsequence in this sequence

�𝑢𝑘𝑖�
∞

𝑖=1
= 𝑢𝑘𝑖. If 𝑢𝑘 converges to 𝑢∗ then we say lim𝑘→∞ �𝑢𝑘 − 𝑢∗� = 0. Finally, we talked about

Bolzano-Weierstrass theorem.

2.4.2 Classical existence theorem

Suppose 𝐽 ∶ 𝑈 → ℜ is continuous and assume 𝑈 is compact (i.e. bounded and closed) and
non-empty, then there exists an optimal element 𝑢∗ ∈ 𝑈 such that 𝐽 (𝑢∗) = 𝐽∗ = min𝑢∈𝑈 𝐽 (𝑢).
This does not say that 𝑢∗ is unique. Just that it exists.

Proof Let 𝑢𝑘 ∈ 𝑈 be a sequence such that 𝐽 �𝑢𝑘� → 𝐽∗, then by Bolzano-Weierstrass 𝑢𝑘𝑖 be a
convergent subsequence with limit 𝑢∗ ∈ 𝑈.

Reader Show that 𝐽 �𝑢𝑘𝑖� also converges to 𝐽∗. Note: 𝐽 �𝑢𝑘𝑖� is sequence of real numbers,
which converges to a real number 𝐽∗.

Example 𝑢𝑘 = (−1)𝑘. Let 𝐽 (𝑢) = 𝑒−𝑢2 then 𝐽 (𝑢) converges, but 𝑢𝑘 does not. Hence we need to
look for subsequence 𝑢𝑘𝑖 in 𝑢𝑘. Now, by continuity, 𝐽 (𝑢∗) = lim𝑖→∞ 𝐽 �𝑢𝑘𝑖� = 𝐽∗.

There are many problems where the set is open, as in unconstrained problems. These are
called open cone problems.

2.4.3 Coercive functions and Coercivity theorem

Coercive function Suppose 𝑈 ⊂ ℜ𝑛 and 𝐽 ∶ 𝑈 → ℜ̸. We say that 𝐽 is positive coercive if

lim
‖𝑢‖→∞

𝐽 (𝑢) = ∞ (*)

Initially, think of 𝑈 as the whole ℜ𝑛 space. So 𝐽 (𝑢) blows up at ∞. Note: there is a type
of uniform continuity implied by Eq (*). What Eq (*) means is that given any 𝛾 ⋙ 0,
arbitrarily large, there exists radius 𝑅 such that 𝐽 (𝑢) > 𝛾, whenever ‖𝑢‖ > 𝑅. This basically
says that for a Coercive function we can always find a sphere, where all values of this
function are larger than some value for any ‖𝑢‖ > 𝑅. This is useful, if we are searching for
a minimum, in that we can obtain a cut o� on the values in 𝑈 to search for.

Example 𝐽 (𝑢) = 𝑢2 is positive coercive, but 𝐽 (𝑢) = 𝑒𝑢 is not (since we can’t find a sphere to
limit values within it to some number), since as 𝑢 → −∞, the function 𝑒𝑢 does not blow up.

𝐽 (𝑢) = 𝑎𝑢2 + 𝑏𝑢 + 𝑐

Is coercive only when 𝑎 > 0. The most famous coercive function is the positive definite
quadratic form. Let 𝐴 be 𝑛 × 𝑛 symmetric and positive definite matrix and let 𝑏 ∈ ℜ𝑛. Let
𝑐 be any real number, then 𝐽 (𝑢) = 𝑢𝑇𝐴𝑢 + 𝑏𝑇𝑢 + 𝑐 is coercive. This is essential to quadratic
programming.

Why is 𝑢𝑇𝐴𝑢 + 𝑏𝑇𝑢 + 𝑐 coercive? From matrix algebra, if 𝐴 is 𝑛 × 𝑛 symmetric and 𝑥 ∈ ℜ𝑛,

then 𝜆min ‖𝑥‖
2 ≤ 𝑥𝑇𝐴𝑥 ≤ 𝜆max ‖𝑥‖

2. For 𝑥, 𝑦 ∈ ℜ𝑛, by Schwarz inequality, ��𝑥, 𝑦��2 ≤ ⟨𝑥, 𝑥⟩ �𝑦, 𝑦�
or 𝑥𝑇𝑦 ≤ ‖𝑥‖ �𝑦�, to establish 𝐽 (𝑢) = 𝑢𝑇𝐴𝑢+𝑏𝑇𝑢+𝑐 notice then 𝐽 (𝑢) ≥ 𝜆min (𝐴) ‖𝑢‖

2−‖𝑏‖ ‖𝑢‖+𝑐.
Since 𝐴 is positive definite, then 𝜆min (𝐴) > 0 (smallest eigenvalue must be positive). So
this is the same as scalar problem 𝑎𝑢2 + 𝑏𝑦 + 𝑐. Hence 𝐽 (𝑢) is coercive function in 𝑢.

18

2.4. Lecture 4. Thursday, January 28, 2016 CHAPTER 2. CLASS NOTES

Reader What if we have a physical problem, leading to 𝑢𝑇𝐴𝑢 + 𝑏𝑇𝑢 + 𝑐, but 𝐴 is not
symmetric, what to do? Solution: We can always work with the symmetrical part of 𝐴 using
𝑢𝑇𝐴𝑢 = 1

2𝑢
𝑇 �𝐴 + 𝐴𝑇� 𝑢, hence we work with

𝐽 (𝑢) =
1
2
𝑢𝑇 �𝐴 + 𝐴𝑇� 𝑢 + 𝑏𝑇𝑢 + 𝑐

Instead.

2.4.4 Convex sets and Coercivity theorem

Coercivity theorem Suppose 𝐽 ∶ 𝑈 → ℜ is a continuous function and coercive. And 𝑈 ⊆ ℜ𝑛

is closed. Then an optimal element 𝑢∗ ∈ 𝑈 exist minimizing 𝐽 (𝑢). Reader Consider the
maximization problem instead of minimization.

Now we start on a new topic: Convexity. Toward finding optimal. A set 𝑈 ⊆ ℜ𝑛 is said
to be convex set if the following holds: For any 𝑢0, 𝑢1 ∈ 𝑈, and 𝜆 ∈ [0, 1] then it follows
that 𝜆𝑢0 + (1 − 𝜆) 𝑢1 ∈ 𝑈. In words, this says that all points on the straight line between any
points in the set, are also in the set. Examples:

convex convex
not convex

Figure 2.5: Convex sets

Reader If 𝑈1, 𝑈2 are both convex then show the intersection is also convex.

What about countable intersections ∩∞
𝑖=1𝑈𝑖 ?

Answer Yes. Example 𝑈𝑖 = �𝑢 ∈ ℜ𝑛 ∶ ‖𝑢‖ ≤ 𝑒−𝑖�. The union is not a convex set.

Constraints using OR are union. So harder to work with OR constraints, since union of
convex sets is not convex.

Reader Describe all possible convex sets on ℜ1.

Reader Suppose 𝑈𝑖 is defined by set of inequalities 𝑎𝑇𝑖 𝑢 ≤ 𝑏𝑖, 𝑖 = 1⋯𝑚, these are intersec-
tions of sets. This is used in Linear programming.

interesection of constraints

Figure 2.6: Intersection of constraints

19

2.5. Lecture 5. Tuesday, February 2, 2016 CHAPTER 2. CLASS NOTES

2.5 Lecture 5. Tuesday, February 2, 2016

Back to the most important topic in optimization, which is convexity. We want to build on
convex sets.

Definition A set 𝑈 ⊆ ℜ𝑛 is convex if the following holds: Given any 𝑢0, 𝑢1 ∈ 𝑈 and 𝜆 ∈ [0, 1],
then 𝑢𝜆 = (1 − 𝜆) 𝑢0 + 𝜆𝑢1 is also in 𝑈. We will discuss convex function also soon.

Reader Show that the set {𝑢 ∈ ℜ𝑛, ‖𝑢‖ ≤ 𝑟} is convex.

Answer: Let ‖𝑢1‖ ≤ 𝑟, ‖𝑢2‖ ≤ 𝑟. Then ‖(1 − 𝜆) 𝑢1 + 𝜆𝑢2‖ ≤ ‖(1 − 𝜆) 𝑢1‖ + ‖𝜆𝑢2‖ by triangle
inequality. Hence

‖(1 − 𝜆) 𝑢1 + 𝜆𝑢2‖ ≤ (1 − 𝜆) ‖𝑢1‖ + 𝜆 ‖𝑢2‖

If some center point, say �̂� is given, then {𝑢 ∶ ‖𝑢 − �̂�‖ ≤ 𝑟} is convex set. The translation

𝑢 + �̂� is also convex set. Other norms on ℜ𝑛 are important. ‖𝑢‖1 =
𝑛
�
𝑖=1
|𝑢𝑖| and ‖𝑢‖∞ =

max {|𝑢1| , |𝑢2| ,⋯ , |𝑢𝑛|}.

Reader In ℜ2, sketch unit ball {𝑢 ∶ ‖𝑢‖ ≤ 𝑟} using norms ‖𝑢‖1 and ‖𝑢‖∞

1

1

−1

−1

L1 norm

1

1

−1

−1

L∞ norm

Figure 2.7: 𝐿1 and 𝐿∞ norms

Reader Do the above for ℜ3.

Reader Suppose 𝑈 is convex, and 𝑢0, 𝑢1,⋯ , 𝑢𝑚 ∈ 𝑈 and 𝜆0, 𝜆1,⋯ , 𝜆𝑚 ≥ 0 with
𝑚
�
𝑖=1
𝜆𝑖 = 1,

then show that
𝑚
�
𝑖=1
𝜆𝑖𝑢𝑖 ∈ 𝑈. (See HW 2). For three points, 𝑢0, 𝑢1, 𝑢2, then

𝑚
�
𝑖=1
𝜆𝑖𝑢𝑖 is the

mixture, which is convex set between all the three points:

u0

u2u1

The set of
all points
λ0u

0 +
λ1u

1 + λ2u
2

2.5.1 Polytope

In words, these are flat sided shapes, which are convex. Let 𝑣1, 𝑣2,⋯ , 𝑣𝑚 ∈ ℜ𝑛 be given. We
call set 𝑈 a polytope generated by 𝑣𝑖 if 𝑈 is a set of mixtures of 𝑣𝑖. That is,

𝑈 = �
𝑚
�
𝑖=1
𝜆𝑖𝑣𝑖 ∶ 𝜆𝑖 ≥ 0 and

𝑚
�
𝑖=1
𝜆𝑖 = 1�

The following are some illustration. Given these points

20

2.5. Lecture 5. Tuesday, February 2, 2016 CHAPTER 2. CLASS NOTES

v1 v2

v3

v4
v5

v7
v6

The generated polytope is

v1 v2

v3

v4
v5

v7
v6

Notice that the points 𝑣6, 𝑣7 are redundant and have not been used. In higher dimensions,
it will be harder to know which are the vertices of the extreme points.

Extreme points Let 𝑈 ⊆ ℜ𝑛 be convex set. A point 𝑢 ∈ 𝑈 is said to be an extreme point if
the following holds: 𝑢 can not be written as a convex combination of other points 𝑢0, 𝑢1,⋯.
Examples:

All boundary
points are
extreme points

All points on this
edge are points

2.5.2 Convex functions

So far we talked about convex sets. Now we will talk about convex functions. 𝐽 (𝑢) ∶ ℜ𝑛 → ℜ
is said to be convex function is the following is satisfied. Given any 𝑢0, 𝑢1 ∈ 𝑈 ⊆ ℜ𝑛 and
𝜆 ∈ [0, 1] then

𝐽 �(1 − 𝜆) 𝑢0 + 𝜆𝑢1� ≤ (1 − 𝜆) 𝐽 �𝑢0� + 𝜆𝐽 �𝑢1�

In words, it means the function value 𝐽 (𝑢) between 2 points, is always below the straight
cord points joining 𝐽 �𝑢0� and 𝐽 �𝑢1�

u0 u1uλ

J(uλ)

J(u)

u

For example, the following is not a convex function.

21

2.5. Lecture 5. Tuesday, February 2, 2016 CHAPTER 2. CLASS NOTES

J(u)

u

But the above is convex over some regions. But overall, it is not a convex function. We can
not use this definition to check if a function is convex for higher dimensions. In that case,
we have to use the Hessian to check.

Reader A function 𝐽 (𝑢) is concave if −𝐽 (𝑢) is convex. Example: 𝑒𝛼𝑢 is convex. Any linear
function is convex function. 𝑎𝑇𝑢 + 𝑏 is convex. Also − log (𝑢) is a convex function. And
𝐽 (𝑢) = 𝑎𝑢2 + 𝑏𝑢 + 𝑐 with 𝑎 > 0 is a convex function. What about the following?

max {𝐽1, 𝐽2} = max �(𝑎1)𝑇 𝑢 + 𝑏1, (𝑎2)𝑇 𝑢 + 𝑏2�
Is it convex function? The pointwise maximum of two or more convex functions is a convex
function.

J(u)

u

J1

J2

Max of J1, J2 is convex function

Reader Suppose 𝐽𝑖 ∶ ℜ𝑛 → ℜ are convex functions, not necessarily linear, for 𝑖 = 1,⋯𝑚 ,
then 𝐽 (𝑢) = max {𝐽1 (𝑢) ,⋯ , 𝐽𝑚 (𝑢)} is convex function. Hint, use (1 − 𝜆) 𝐽 (𝑢)+𝜆𝐽 (𝑢) = (1 − 𝜆)max (⋯)+
⋯.

Next is to connect convex functions to convex sets.

22

2.6. Lecture 6. Thursday, February 4, 2016 CHAPTER 2. CLASS NOTES

2.6 Lecture 6. Thursday, February 4, 2016

2.6.1 Convex functions and convex sets

An interpretation of convex function in 1D is bowl shaped. But pictures are only for low
dimensions. Convex applications have taken o� in the last 15 years. For example, CVX
software. Why is convex so great? There are useful properties of convex functions

1. Every local minimum is also global. This is important, since once we converge to a
minimum, we can stop, as there will not be any better.

2. If the objective function is strict convex, then the minimum found is unique. If it
is not strict convex, then there are other minimums of the same value, hence the
minimum is not unique.

3. In quadratic programming, positive definite is the same as convex.

Reader Suppose 𝑈 ⊆ ℜ𝑛 is convex set, and 𝐽 ∶ 𝑈 → ℜ is convex function. Then show the
set of minimizer elements 𝑈∗ = �𝑢 ∈ 𝑈, 𝐽 (𝑢) = min𝑢∈𝑈 𝐽 (𝑢)� is a convex set.

Other nice properties of convex functions is that point wise maximum of convex functions
is also a convex function. The maximum over an indexed collection is also a convex
function. Let 𝐼 be a set, perhaps uncountable, for each 𝑖 ∈ 𝐼, suppose we have a convex
function 𝐽𝑖 ∶ ℜ𝑛 → ℜ is convex. Let 𝐽 (𝑢) = sup𝑖∈𝐼 𝐽𝑖 (𝑢) and assume 𝐽 (𝑢) < ∞.

Reader Show that 𝐽 (𝑢) is convex function. Example: 𝐽𝑞 (𝑢) = 6𝑢2 + �6𝑞 − cos 𝑞� + 𝑒−𝑞. Where
�𝑞� ≤ 1. Then 𝐽 (𝑢) = max�𝑞�≤1 𝐽𝑞 (𝑢).

2.6.2 convex functions and convex sets relation

Given 𝐽 ∶ ℜ𝑛 → ℜ, define 𝑒𝑝𝑖𝐽 as set

�(𝑢, 𝑣) ∈ ℜ𝑛+1 ∶ 𝑣 ≥ 𝐽 (𝑢)�

𝐽 (𝑢) is convex function and 𝑒𝑝𝑖𝐽 is a convex set. See HW2 𝑒𝑝𝑖 problem.

2.6.3 Criterion for convexity, Gradient and Hessian

Begin with 𝐽 ∶ ℜ𝑛 → ℜ. How to check 𝐽 (𝑢) is convex? We assume 𝐽 (𝑢) is twice di�erentiable,
called 𝐶2. And also assume 𝑈 is open and convex set.

Definition: Gradient ∇𝐽 (𝑢) = � 𝜕𝐽
𝜕𝑢1

𝜕𝐽
𝜕𝑢1

⋯ 𝜕𝐽
𝜕𝑢𝑛
�
𝑇
∈ ℜ𝑛.

The Hessian

∇ 2𝐽 (𝑢) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝐽2

𝜕𝑢21

𝜕2𝐽
𝜕𝑢1𝜕𝑢2

⋯ 𝜕2𝐽
𝜕𝑢1𝜕𝑢𝑛

𝜕2𝐽
𝜕𝑢2𝜕𝑢1

𝜕𝐽2

𝜕𝑢22
⋯ 𝜕2𝐽

𝜕𝑢2𝜕𝑢𝑛

⋮ ⋮ ⋱ ⋮
𝜕2𝐽

𝜕𝑢𝑛𝜕𝑢1
𝜕2𝐽

𝜕𝑢𝑛𝜕𝑢2
⋯ 𝜕𝐽2

𝜕𝑢2𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Reader Why the Hessian is always symmetric? (Order of di�erentiation does not matter).

Positive definite Hessian is the same as saying second derivative is greater than zero.

2.6.4 Hessian theorem

Suppose 𝐽 ∶ ℜ𝑛 → ℜ is 𝐶2. Then 𝐽 is convex function in 𝑈 i� ∇ 2𝐽 (𝑢) is positive semi-definite
matrix for all 𝑢 ∈ 𝑈.

Proof We first proof for 𝑛 = 1. Su�ciency: Suppose ∇ 2𝐽 (𝑢) ≥ 0 for all 𝑢 ∈ 𝑈, (i.e. this is the
same as saying 𝜕2𝐽

𝜕𝑢2 > 0, and let 𝑢0, 𝑢1 be given in 𝑈. We need to show that for 𝜆 ∈ [0, 1],

23

2.6. Lecture 6. Thursday, February 4, 2016 CHAPTER 2. CLASS NOTES

that 𝐽 �𝜆𝑢0 + (1 − 𝜆) 𝑢1� ≤ 𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�. We write

𝐽 �𝑢𝜆� = 𝐽 �𝑢0� +�
𝑢𝜆

𝑢0
𝐽′ (𝜉) 𝑑𝜉

Since 𝐽′ (𝜉) non-decreasing and 𝐽′′ (𝜉) > 0, so the above can be upper bounded as

𝐽 �𝑢𝜆� ≤ 𝐽 �𝑢0� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢0� (1)

Similarly,

𝐽 �𝑢1� = 𝐽 �𝑢𝜆� +�
𝑢1

𝑢𝜆
𝐽′ (𝜉) 𝑑𝜉

𝐽 �𝑢1� ≥ 𝐽 �𝑢𝜆� + 𝐽′ �𝑢𝜆� �𝑢1 − 𝑢𝜆�

𝐽 �𝑢𝜆� ≤ 𝐽 �𝑢1� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢1� (2)

Therefore 𝜆
(1)
�𝐽�𝑢𝜆� + (1 − 𝜆)

(2)
�𝐽�𝑢𝜆� using (1) and (2) gives

𝜆𝐽 �𝑢𝜆� + (1 − 𝜆) 𝐽 �𝑢𝜆� ≤ 𝜆 �𝐽 �𝑢0� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢0�� + (1 − 𝜆) �𝐽 �𝑢1� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢1��

Hence

𝐽 �𝑢𝜆� ≤ 𝜆 �𝐽 �𝑢0� + 𝑢𝜆𝐽′ �𝑢𝜆� − 𝑢0𝐽′ �𝑢𝜆�� + �𝐽 �𝑢1� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢1�� − 𝜆 �𝐽 �𝑢1� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢1��

Therefore

𝐽 �𝑢𝜆� = 𝜆𝐽 �𝑢0� + 𝜆𝑢𝜆𝐽′ �𝑢𝜆� − 𝜆𝑢0𝐽′ �𝑢𝜆� + 𝐽 �𝑢1� + 𝑢𝜆𝐽′ �𝑢𝜆� − 𝑢1𝐽′ �𝑢𝜆� − �𝜆𝐽 �𝑢1� + 𝜆𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢1��

= 𝜆𝐽 �𝑢0� + 𝜆𝑢𝜆𝐽′ �𝑢𝜆� − 𝜆𝑢0𝐽′ �𝑢𝜆� + 𝐽 �𝑢1� + 𝑢𝜆𝐽′ �𝑢𝜆� − 𝑢1𝐽′ �𝑢𝜆� − 𝜆𝐽 �𝑢1� − 𝑢𝜆𝜆𝐽′ �𝑢𝜆� + 𝑢1𝜆𝐽′ �𝑢𝜆�

= 𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1� − 𝜆𝑢0𝐽′ �𝑢𝜆� + 𝑢𝜆𝐽′ �𝑢𝜆� − 𝑢1𝐽′ �𝑢𝜆� + 𝑢1𝜆𝐽′ �𝑢𝜆�

= �𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�� + 𝜆𝐽′ �𝑢𝜆� �𝑢1 − 𝑢0� + 𝐽′ �𝑢𝜆� �𝑢𝜆 − 𝑢1�

But 𝑢𝜆 = 𝜆𝑢0 + (1 − 𝜆) 𝑢1, hence the above becomes

𝐽 �𝑢𝜆� ≤ �𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�� + 𝜆𝐽′ �𝑢𝜆� �𝑢1 − 𝑢0� + 𝐽′ �𝑢𝜆� �𝜆𝑢0 + (1 − 𝜆) 𝑢1 − 𝑢1�

= �𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�� + 𝜆𝐽′ �𝑢𝜆� �𝑢1 − 𝑢0� + 𝐽′ �𝑢𝜆� �𝜆𝑢0 + 𝑢1 − 𝜆𝑢1 − 𝑢1�

= �𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�� + 𝜆𝐽′ �𝑢𝜆� �𝑢1 − 𝑢0� + 𝐽′ �𝑢𝜆� �𝜆𝑢0 − 𝜆𝑢1�

= �𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�� + 𝜆𝐽′ �𝑢𝜆� �𝑢1 − 𝑢0� − 𝜆𝐽′ �𝑢𝜆� �𝑢1 − 𝑢0�

= 𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1�

Hence we showed that 𝐽 �𝑢𝜆� ≤ 𝜆𝐽 �𝑢0� + (1 − 𝜆) 𝐽 �𝑢1� . Same idea can be used to estab-
lish necessity. We now establish ∇ 2𝐽 (𝑢) > 0 and convexity next time. We carry this to 𝑛
dimensions.

24

2.7. Lecture 7, Tuesday, February 9, 2016 CHAPTER 2. CLASS NOTES

2.7 Lecture 7, Tuesday, February 9, 2016

For 𝑛 = 1, Let 𝐽 ∶ 𝑈 → ℜ𝑛, where 𝑈 is open set (so that we can di�erentiate on it), and

convex set. Let 𝐽 is 𝐶2. 𝐽 is convex i� 𝑑2𝐽
𝑑𝑢2 ≥ 0 for all 𝑢 ∈ 𝑈. We are trying to establish the

Hessian theorem. Now we want to show the above for 𝑛 > 1. We start with the bridging
lemma, which will use to proof the Hessian theorem.

2.7.1 The Bridging Lemma

Given 𝐽 ∶ 𝑈 → ℜ𝑛, and 𝑈 is convex set, we want to know if 𝐽 is a convex function. The
lemma says that 𝐽 is convex i� the following condition holds:

Given any 𝒖 ∈ 𝑈, 𝒛 ∈ ℜ𝑛, then the function ̃𝐽 (𝜆) = 𝐽 (𝒖 + 𝜆𝒛) is convex on the set Λ =
{𝒖, 𝜆𝒛 ∈ 𝑼}. Notice that the function ̃𝐽 (𝜆) is scalar valued. It depends on scalar 𝜆. Hence
we say ̃𝐽 (𝜆) + ℜ → ℜ. This lemma says that the function ̃𝐽 (𝜆) is convex in any direction
we move to from 𝒖 in the direction of 𝒛 within the set 𝑈 i� 𝐽 is convex function.

convex set U

~u

λ1~z

λ2~z

J̃(λ) = J(~u+ λ~z)

Bridging
lemma: function
J̃ is convex in
any direction, iff
J is convex.

Figure 2.8: Bridging lemma

Proof See also the handout. Necessity: Assume 𝐽 is convex function. We must show that ̃𝐽
is convex function. Pick 𝒛 ∈ ℜ and 𝜆 ∈ [0, 1] and any scalars 𝛼0, 𝛼1 ∈ Λ. We must show that

̃𝐽 �𝜆𝛼0 + (1 − 𝜆) 𝛼1� ≤ 𝜆 ̃𝐽 �𝛼0� + (1 − 𝜆) ̃𝐽 �𝛼1�

Indeed, from ̃𝐽 (𝜆) + 𝐽 (𝒖 + 𝜆𝒛), then
̃𝐽 �𝜆𝛼0 + (1 − 𝜆) 𝛼1� + 𝐽 �𝒖 + �𝜆𝛼0 + (1 − 𝜆) 𝛼1� 𝒛� (1)

+ 𝐽 �𝜆 �𝒖 + 𝛼0𝒛� + (1 − 𝜆) �𝒖 + 𝛼1𝒛�� (2)

Reader Going from (1) to (2) above is just a rewriting and manipulation only. Now since
𝐽 is assumed convex, then

𝐽 �𝜆 �𝒖 + 𝛼0𝒛� + (1 − 𝜆) �𝒖 + 𝛼1𝒛�� ≤ 𝜆𝐽 �𝒖 + 𝛼0𝒛� + (1 − 𝜆) 𝐽 �𝒖 + 𝛼1𝒛�

Therefore (1) becomes
̃𝐽 �𝜆𝛼0 + (1 − 𝜆) 𝛼1� ≤ 𝜆𝐽 �𝒖 + 𝛼0𝒛� + (1 − 𝜆) 𝐽 �𝒖 + 𝛼1𝒛�

≤ 𝜆 ̃𝐽 �𝛼0� + (1 − 𝜆) ̃𝐽 �𝛼1�

Hence ̃𝐽 is convex function. QED. Now to proof su�ciency. Assume that ̃𝐽 is convex, we
need to show that this implies that 𝐽 is convex on 𝑈. Since ̃𝐽 then

̃𝐽 �(1 − 𝜆) 𝛼0 + 𝜆𝛼1� ≤ (1 − 𝜆) ̃𝐽 �𝛼0� + 𝜆 ̃𝐽 �𝛼1�

= (1 − 𝜆) 𝐽 �𝑢 + 𝛼0𝑧� + 𝜆𝐽 �𝑢 + 𝛼1𝑧� (3)

But
̃𝐽 �(1 − 𝜆) 𝛼0 + 𝜆𝛼1� = 𝐽 �𝑢 + �(1 − 𝜆) 𝛼0 + 𝜆𝛼1� 𝑧� (4)

= 𝐽 �(1 − 𝜆) �𝑢 + 𝛼0𝑧� + 𝜆 �𝑢 + 𝛼1𝑧�� (5)

Where the main trick was going from (4) to (5) by just rewriting, so it match what we have
in (3). Now replacing (5) into LHS of (3) we find

𝐽 �(1 − 𝜆) �𝑢 + 𝛼0𝑧� + 𝜆 �𝑢 + 𝛼1𝑧�� ≤ (1 − 𝜆) 𝐽 �𝑢 + 𝛼0𝑧� + 𝜆𝐽 �𝑢 + 𝛼1𝑧�
25

2.7. Lecture 7, Tuesday, February 9, 2016 CHAPTER 2. CLASS NOTES

Let �𝑢 + 𝛼0𝑧� ≡ 𝑢0, 𝑢 + 𝛼1𝑧 ≡ 𝑢1, both in 𝑈, then the above becomes

𝐽 �(1 − 𝜆) 𝑢0 + 𝜆𝑢1� ≤ (1 − 𝜆) 𝐽 �𝑢0� + 𝜆𝐽 �𝑢1�

Hence 𝐽 is convex function. QED. Now the bridging lemma is proved. we use it to proof
the Hessian theorem.

2.7.2 The Hessian Theorem, strong local minimum

Let 𝐽 = 𝑈 → ℜ, where 𝑈 is open set in ℜ𝑛. Hessian theorem says that 𝐽 is convex function
on 𝑈 i� ∇ 2𝐽 (𝑢) is PSD (positive semi-definite) evaluated at each 𝑢 ∈ 𝑈.

Reader Suppose ∇ 2𝐽 (𝑢) is PSD, does this imply strict convexity on 𝐽 (𝑢)? Answer: No. Need
an example.

See handout Hessian for proof.

Algorithms We will now start new chapter. Looking at algorithms to find optimal of 𝐽 (𝑢).
Preliminaries: Begin with 𝐽 ∶ ℜ𝑛 → ℜ.

Strong local minimum 𝑢∗ is strong local minimum if there exists 𝛿 > 0 such that 𝐽 (𝑢∗) < 𝐽 (𝑢)
for all 𝑢 such that ‖𝑢∗ − 𝑢‖ < 𝛿.

We say 𝑢∗ is global minimum if 𝐽 (𝑢∗) ≤ 𝐽 (𝑢) for all 𝑢. Henceforth, 𝐽 (𝑢) is 𝐶2. From under-
graduate calculus, 𝑢∗ is strong local minimum if the following is satisfied: (for 𝑛 = 2)

1. 𝜕𝐽
𝜕𝑢1
�
𝑢∗
= 0, 𝜕𝐽

𝜕𝑢2
�
𝑢∗
= 0

2. 𝜕2𝐽
𝜕𝑢21
�
𝑢∗
> 0, � 𝜕

2𝐽
𝜕𝑢21
� � 𝜕

2𝐽
𝜕𝑢21
� − � 𝜕2𝐽

𝜕𝑢1𝜕𝑢2
�
2
> 0

For 𝐽 ∶ ℜ𝑛 → ℜ, in other words, in higher dimensions, define gradient

(∇𝐽 (𝑢))𝑇 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝐽
𝜕𝑢1
𝜕𝐽
𝜕𝑢2
⋮
𝜕𝐽
𝜕𝑢𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Normally we consider gradient as column vector. Then we say that a point 𝑢∗ ∈ ℜ𝑛 is
strong local min. if ∇𝐽 (𝑢) = 0, and ∇ 2𝐽 (𝑢) > 0.

Proof: Suppose 𝑢∗ is strong local min. Then looking at neighborhood of 𝑢∗, let 𝑣 ∈ ℜ𝑛 be
arbitrary. Look at 𝐽 (𝑢∗ + 𝑣) and expand in Taylor series.

𝐽 (𝑢∗ + 𝑣) = 𝐽 (𝑢∗) + ∇𝐽 (𝑢∗) 𝑣 + 𝑣𝑇∇ 2𝐽 (𝑢) 𝑣 + 𝐻.𝑂.𝑇 �𝑂 �‖𝑣‖3��

Since 𝑢∗ is strong local min. then ∇𝐽 (𝑢∗) = 0. Hence 𝐽 (𝑢∗ + 𝑣) = 𝐽 (𝑢∗) + 𝑣𝑇∇ 2𝐽 (𝑢) 𝑣 + 𝐻.𝑂.𝑇.
Since 𝐽 (𝑢∗ + 𝑣) > 𝐽 (𝑢∗) (since strong local minimum), then this implies that

𝑣𝑇∇ 2𝐽 (𝑢) 𝑣 > 0

Since 𝑣𝑇∇ 2𝐽 (𝑢) 𝑣 dominate over 𝐻.𝑂.𝑇.. This complete the proof.

26

2.8. Lecture 8. Thursday, February 11, 2016 CHAPTER 2. CLASS NOTES

2.8 Lecture 8. Thursday, February 11, 2016

Reminder, test 1 next Thursday Feb. 18, 2016. Up to and including HW 3. Today’s lecture
on gradient based optimization. We developed two conditions. 𝑢∗ is strong local minimum
when ∇𝐽 (𝑢∗) = 0 and ∇ 2𝐽 (𝑢∗) < 0.

2.8.1 gradient based optimization and line searches

We mention line searches. It is about optimization for one variable functions only. There
will be reading assignment on line search. Some methods used are

1. Golden section.

2. Fibonacci.

3. Bisection

And more.

2.8.2 Optimal gain control problems, Lyapunov equation

We will now set up application areas. Optimal gain control and circuit analysis problems.
In general we have

�̇� = 𝐴𝑥 + 𝐵𝑢

Where �̇� is 𝑛×1,𝐴 is 𝑛×𝑛, 𝐵 is 𝑛×𝑚 and 𝑢 is 𝑚×1. System has 𝑛 states. 𝑢 is the input. This
can be voltage or current sources. 𝑢 is the control and 𝑥 is the state. We want to select 𝑢
so that 𝑥 (𝑡) behaves optimally. Classical setup is to use state feedback

𝑢 = 𝑘𝑥 + 𝑣

Where 𝑘 is 𝑚×𝑛 is called the feedback gain matrix and 𝑣 is extra input but we will not use
it. It is there for extra flexibility if needed. We use optimization to determine 𝑘. Entries of
𝑘𝑖𝑗 are our optimization variables.

∑
x

K

+
v u

Figure 2.9: State feedback

Often, with 𝑢 = 0, the system �̇� = 𝐴𝑥 may be unstable or have overshoot. We will set
up a performance objective aimed at reducing or eliminating the badness of the original
response (with no feedback control). Let

𝐽 (𝑘) = �
∞

0

‖𝑥‖2

�����������𝑥𝑇 (𝑡) 𝑥 (𝑡)𝑑𝑡

In the above, 𝐽 (𝑘) is implicit function of 𝑘. This cost function was found to work well in
practice. We now want to make 𝐽 (𝑘) explicit in 𝑘. We can solve for 𝑥 (𝑡) from

�̇� = (𝐴 + 𝐵𝑘) 𝑥
𝑥 = 𝑥 (0) 𝑒(𝐴+𝐵𝑘)𝑡

Then 𝐽 (𝑘) = ∫
∞

0
𝑥𝑇 (0) 𝑒(𝐴+𝐵𝑘)

𝑇𝑡𝑑𝑡. But this is not practical to use. This is not closed form and
hard to compute. So how can we come up with closed form for 𝐽 (𝑘) which is easier to work

27

2.8. Lecture 8. Thursday, February 11, 2016 CHAPTER 2. CLASS NOTES

with? Let us look at the closed loop. Let 𝑣 = 0 and we have

�̇� = 𝐴𝑥 + 𝐵𝑘𝑥
= (𝐴 + 𝐵𝑘) 𝑥
= 𝐴𝑐𝑥

Where 𝐴𝑐 is the closed loop system matrix. Let us find a matrix 𝑃 if possible such that

𝑑 �𝑥𝑇 (𝑡) 𝑃𝑥 (𝑡)� = −𝑥𝑇 (𝑡) 𝑥 (𝑡)

So that now

𝐽 (𝑘) = �
𝑏

𝑎
𝑥𝑇 (𝑡) 𝑥 (𝑡) 𝑑𝑡

= −�
𝑏

𝑎
𝑑 �𝑥𝑇 (𝑡) 𝑃𝑥 (𝑡)�

= �
𝑎

𝑏
𝑑 �𝑥𝑇 (𝑡) 𝑃𝑥 (𝑡)�

= 𝑥𝑇 (𝑎) 𝑃𝑥 (𝑎) − 𝑥𝑇 (𝑏) 𝑃𝑥 (𝑏)

Can we find 𝑃?

𝑑 �𝑥𝑇𝑃𝑥� = 𝑥𝑇𝑃�̇� + �̇�𝑇𝑃𝑥 ?= −𝑥𝑇𝑥

= 𝑥𝑇𝑃 (𝐴𝑐𝑥) + (𝐴𝑐𝑥)
𝑇 𝑃𝑥 ?= −𝑥𝑇𝑥

= 𝑥𝑇𝑃 (𝐴𝑐𝑥) + �𝑥𝑇𝐴𝑇
𝑐 � 𝑃𝑥

?= −𝑥𝑇𝑥

Bring all the 𝑥 to LHS then

𝐴𝑇
𝑐 𝑥 + 𝑃𝐴𝑐 = −𝐼

Where 𝐼 is the identity matrix. This is called the Lyapunov equation. This is the equation
to determine 𝑃. Without loss of generality, we insist on 𝑃 being symmetric matrix. Using
this 𝑃, now we write

𝐽 (𝑘) = �
∞

0
𝑥𝑇 (𝑡) 𝑥 (𝑡) 𝑑𝑡

= −�
∞

0
𝑑 �𝑥𝑇𝑃𝑥�

= 𝑥𝑇𝑃𝑥�0
∞

= 𝑥𝑇 (0) 𝑃𝑥 (0) − 𝑥𝑇 (∞) 𝑃𝑥 (∞)

For stable system, 𝑥 (∞) → 0 (remember that we set 𝑣 = 0, so there is no external input,
hence if the system is stable, it must end up in zero state eventually). Therefore

𝐽 (𝑘) = 𝑥𝑇 (0) 𝑃𝑥 (0)

With 𝑘 satisfying

𝐴𝑇
𝑐 (𝑘) 𝑥 + 𝑃𝐴𝑐 (𝑘) = −𝐼

Example Let 𝑦′′ = 𝑢. Hence 𝑥′1 = 𝑥2, 𝑥′2 = 𝑢. Note, this is not stable with 𝑢 = 0. Using linear
state feedback,

𝑢 = 𝑘𝑥

𝑢 = �𝑘1 𝑘2�

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦

28

2.8. Lecture 8. Thursday, February 11, 2016 CHAPTER 2. CLASS NOTES

Hence

𝑥′ = 𝐴𝑥 + 𝐵𝑢
= 𝐴𝑥 + 𝐵𝑘𝑥
= (𝐴 + 𝐵𝑘) 𝑥

⎡
⎢⎢⎢⎢⎢⎣
𝑥′1
𝑥′2

⎤
⎥⎥⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴

�������⎡
⎢⎢⎢⎢⎢⎣
0 1
0 0

⎤
⎥⎥⎥⎥⎥⎦ +

𝐵
⏞⎡⎢⎢⎢⎢⎢⎣
0
1

⎤
⎥⎥⎥⎥⎥⎦

𝑘

���������
�𝑘1 𝑘2�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
0 1
0 0

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
0 0
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦

=

𝐴𝑐
���������⎡
⎢⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦

For stable closed loop, we need 𝑘1 < 0, 𝑘2 < 0 by looking at characteristic polynomial roots.
Now we solve the Lyapunov equation.

𝐴𝑇
𝑐 𝑃 + 𝑃𝐴𝑐 = −𝐼

⎡
⎢⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦

𝑇 ⎡⎢⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0 𝑘1
1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎥⎦

Solving for 𝑃 gives

𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝑘22−𝑘1+𝑘
2
1

2𝑘1𝑘2
− 1
2𝑘1

− 1
2𝑘1

1−𝑘1
2𝑘1𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎦

With 𝑥 (0) =

⎡
⎢⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎥⎦, then

𝐽 (𝑘) = 𝑥 (0)𝑇 𝑃𝑥 (0)

= �1 1�

⎡
⎢⎢⎢⎢⎢⎢⎣

𝑘22−𝑘1+𝑘
2
1

2𝑘1𝑘2
− 1
2𝑘1

− 1
2𝑘1

1−𝑘1
2𝑘1𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎥⎦

=
𝑘21 + 𝑘22 − 2𝑘1 − 2𝑘2 + 1

2𝑘1𝑘2

Here is Matlab script to generate the above� �
1 syms k1 k2 p11 p12 p21 p22;
2 Ac = [0 1;k1 k2];
3 P = [p11 p12;p21 p22];
4 eq = Ac.'*P+P*Ac==-eye(2);
5 sol = solve(eq,{p11,p12,p21,p22});
6 P = subs(P,sol)
7 x0 = [1;1];
8 J = simplify(x0'*P*x0)� �

˙
Let 𝑘1 = 𝑘2 = 𝑘 < 0, we obtain

𝐽 (𝑘) =
2𝑘2 − 4𝑘 + 1

2𝑘2
As 𝑘 → −∞ then 𝐽∗ → 1. Therefore 𝐽∗ can never get to zero. This means there is no 𝑘∗1, 𝑘∗2
such that ∇𝐽 (𝑘∗) = 0. Set 𝑘 is not compact. Not coercive either. This is ill posed problem.

29

2.8. Lecture 8. Thursday, February 11, 2016 CHAPTER 2. CLASS NOTES

This can be remedied by changing the control to

𝐽 (𝑘) = �
∞

0
𝑥𝑇𝑥𝑑𝑡 + 𝜆�

∞

0
𝑢𝑇𝑢𝑑𝑡

30

2.9. Lecture 9. Tuesday, February 16, 2016 CHAPTER 2. CLASS NOTES

2.9 Lecture 9. Tuesday, February 16, 2016

2.9.1 keywords for next exam 1

1. Common sense optimization. Farming problem. Explicit vs. Implicit.

2. Minimizing 𝐽 (𝑢), inf, sup

3. We want to know ahead of time if minimum can be attained. 𝐽∗ but 𝑢∗ might not
exist.

4. Multilinear function. 𝑢∗ is at a vertex. But they grow as 2𝑛 where 𝑛 is number of
variables.

5. When can we be sure 𝑢∗ exist? if the set is compact, we talked about W-B theory,
which is used to show 𝑢∗ exist always for compact sets. If the set is not compact but
coercive, then we can compact it.

6. Convex sets and convex functions. For convex sets, when we find 𝑢∗ then the local
minimum is also a global minimum.

7. Special case of convex sets is polytope. Polyhedron is a polytope but can be un-
bounded.

8. Strong local minimum is when ∇𝐽 (𝑢) = 0 and ∇ 2𝐽 (𝑢) > 0. To test for convexity, find
the Hessian. If the Hessian is semi positive definite, then it is convex.

9. Optimal gain control, Lyapunov equation.

10. If there are proofs, they will be simple, such as show the sum of two convex functions
is also convex function.

2.9.2 Gradient based optimization

Starting new chapter. Gradient based optimization. Many algorithms involve line searches.
In other words, optimization in ℜ𝑛 is often solved by performing many optimization (line
searches) in ℜ.

Optimization algorithm: Starting with 𝒖𝑘 and direction 𝒗 we study 𝐽 �𝒖𝑘 + ℎ𝒗� where ℎ is
the step size. This is called line search. ℎ ∈ [0, ℎmax]. We want to use optimal step size ℎ∗.
Once found, then

𝒖𝑘+1 = 𝒖𝑘 + ℎ∗𝒗

Reader Read and learn about line search. Bisection, Golden section, Fibonacci and many
more. We will not cover this in this course. We also want to minimize the number of
function evaluations, since these can be expensive.

One way to do line search, is to do ℎ = 0 𝛿 ℎmax and then evaluate 𝐽 (ℎ) and pick the
minimizing ℎ∗. For stopping criteria, we can check for the following

1. �𝑢𝑘+1 − 𝑢𝑘� ≤ 𝛿

2. �𝐽 �𝑢𝑘+1� − 𝐽 �𝑢𝑘�� ≤ 𝛿

3. �
𝐽�𝑢𝑘+1�−𝐽�𝑢𝑘�

𝐽�𝑢𝑘+1�
� ≤ 𝛿

4. �∇𝐽 �𝑢𝑘�� ≤ 𝛿

We also need to pick a starting point for the search. This is 𝒖0. What if we do not know
where to start? We can pick multiple starting locations. And pick the best result obtained.

Reader Find min‖𝒗‖=1 𝐽 (𝒖 + 𝒗). Show optimal 𝒗 is

𝑣∗ =
−∇𝐽 (𝑢)
‖∇𝐽 (𝑢)‖

31

2.9. Lecture 9. Tuesday, February 16, 2016 CHAPTER 2. CLASS NOTES

This is called myopic local terrain. Gets us to local minimum. The steepest descent algo-
rithm is the following:

1. Select 𝑢0 (starting point)

2. Find step size ℎ

3. Iterate. While �∇𝐽 �𝑢𝑘�� > 𝛿 then 𝑢𝑘+1 = 𝑢𝑘 − ℎ
∇𝐽 (𝑢)
‖∇𝐽 (𝑢)‖

4. Update counter and go back to step 3 above.

See my class study notes for detailed algorithm of all search methods we did in this course.

Later we will study conjugate gradient methods.

Example: Let 𝑢0 = [1, 1]. Let ℎ = 0.1. Let 𝐽 (𝑢) = 𝑢21 + 2𝑢22 − 6𝑢1𝑢2 + 2𝑢1 + 𝑢2 + 4. Then

∇𝐽 (𝑢) =

⎡
⎢⎢⎢⎢⎢⎣
2𝑢1 − 6𝑢2 + 2
6𝑢2 − 6𝑢1 + 1

⎤
⎥⎥⎥⎥⎥⎦

So ∇𝐽 �𝑢0� =

⎡
⎢⎢⎢⎢⎢⎣
−2
1

⎤
⎥⎥⎥⎥⎥⎦ and �∇𝐽 �𝑢

0�� = 1

√5
. Hence

𝑢1 = 𝑢0 − ℎ

⎡
⎢⎢⎢⎢⎢⎣
−2
1

⎤
⎥⎥⎥⎥⎥⎦
1

√5

=

⎡
⎢⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎥⎦ − 0.1

⎡
⎢⎢⎢⎢⎢⎣
−2
1

⎤
⎥⎥⎥⎥⎥⎦
1

√5

=

⎡
⎢⎢⎢⎢⎢⎣
1.0894
0.95528

⎤
⎥⎥⎥⎥⎥⎦

Reader Find 𝑢2.

32

2.10. Lecture 10. Thursday, February 18, . . . CHAPTER 2. CLASS NOTES

2.10 Lecture 10. Thursday, February 18, 2016 (Exam 1)

Exam 1

33

2.11. Lecture 11. Tuesday, February 23, 2016 CHAPTER 2. CLASS NOTES

2.11 Lecture 11. Tuesday, February 23, 2016

Watch for HW4 going out today. Implementation of steepest descent with optimal step
size. See handout circuit for 2 stage amplifier.

2.11.1 Steepest descent

As the number of stages increases it becomes harder to analytically determine the optimal
capacitance of each stage to produce maximum power. For two stages, by direct circuit
analysis we obtain

𝐽 (𝑢) = (11 − 𝑢1 − 𝑢2)
2 + (1 + 𝑢1 + 10𝑢2 − 𝑢1𝑢2)

2

Where 𝑢𝑖 is capacitance. There are two optimal values, they are 𝑢∗ = (10, 1) which is a
maximum and 𝑢∗ = (13, 4) which is a minimum. There is also a minimum at (7, −2).

Geometric insight on what might go wrong with steepest descent: Gradient algorithms
work best from a far but as they get close to the optimal point, there are better algorithms
such as the generalized Newton Raphson method which works best when close to the
optimal point. If the step size ℎ is big, we approach the optimal fast, but because the step
size is large, we can overshoot and will end up oscillating around the optimal point. If ℎ
is too small, the search will become very slow. Hence we use steepest descent but with
optimal step size, where the step size is calculated at each step. Ingredients of the steepest
descent algorithm are:

1. Initial guess 𝑢0

2. maximum step size 𝐻. Here we have ℎ𝑘 which is the step size used at each iteration.

3. Iteration step. When at 𝑢𝑘 define ̃𝐽 (ℎ) = 𝐽

⎛
⎜⎜⎜⎜⎜⎝𝑢

𝑘 − ℎ
∇𝐽 �𝑢𝑘�

�∇𝐽 �𝑢𝑘��

⎞
⎟⎟⎟⎟⎟⎠ and carry a line search

to find optimal ℎ which minimized ̃𝐽 (ℎ), then ℎ𝑘 = ℎ∗

4. 𝑢𝑘+1 = 𝑢𝑘 − ℎ𝑘
∇𝐽�𝑢𝑘�

�∇𝐽�𝑢𝑘��

5. Stopping criteria. Decide how to stop the search. �∇𝐽 �𝑢𝑘�� ≤ 𝜀

Reader: Consider oscillation issue.

Convergence result. From Polak. Let 𝐽 (𝑢) be smooth and di�erentiable. Let 𝑢∗ be strong
local minimum. Assume constant 0 ≤ 𝑚 ≤ 𝑀 s.t.

𝑚𝑢𝑇𝑚 ≤ 𝑢𝑇∇ 2𝐽 (𝑢) 𝑢 ≤ 𝑀𝑢𝑇𝑀

In neighborhood of 𝑢∗. This criteria says that there is a good convexity and a bad convexity.
What does this mean? We’ll say more about this. In the neighborhood of 𝑢∗ let 𝜃 = 𝑚

𝑀 .
Interpretation:

good for steepest descent

bad for steepest descent

J(u)

θ = 1

θ small

small θ is better for steepest descent

Figure 2.10: Steepest descent diagram

Define 𝐸 = 𝐽 �𝑢0� − 𝐽 (𝑢∗) then Polak says

34

2.11. Lecture 11. Tuesday, February 23, 2016 CHAPTER 2. CLASS NOTES

0 ≤ 𝐽 �𝑢𝑘� − 𝐽 (𝑢∗) ≤ 𝐸𝜃𝑘

Best case is when 𝐸 is small and 𝜃 is small. This is local result.

2.11.2 Classi�cations of Convergence

Convergence can be

1. Linear

2. Quadratic

3. Superlinear

These are the three convergence types we will cover. The second algorithm has quadratic
convergence, which is the generalized Newton-Raphson method. We will start on this now
but will cover it fully next lecture.

The idea is to approximate 𝐽 (𝑢) as quadratic at each step and obtain ℎ𝑘. By assuming 𝐽 (𝑘)
is quadratic locally, we approximate 𝐽 (𝑢) using Taylor and drop all terms after the Hessian.
Now we find where the minimum is and use the step size to find 𝑢𝑘+1. More on this next
lecture.

35

2.12. Lecture 12. Thursday, February 25, . . . CHAPTER 2. CLASS NOTES

2.12 Lecture 12. Thursday, February 25, 2016

2.12.1 Quadratic optimization, superlinear convergence

We will start the class with a reader problem. Consider

𝐽 (𝑢) =
1
2
𝑢𝑇𝐴𝑢 + 𝑏𝑇𝑢 + 𝑐 (1)

∇𝐽 (𝑢) = 𝐴𝑢𝑘 + 𝑏 (2)

with 𝐴 being symmetric positive definite (PSD) matrix. This is classic quadratic objective
function. You can take a complete course on quadratic optimization. The global optimal
is at the solution for ∇𝐽(𝑢) = 0. Hence we write

∇𝐽(𝑢) = 0
𝐴𝑢∗ + 𝑏 = 0

𝑢∗ = −𝐴−1𝑏 (3)

Note that since 𝐴 is PSD (the Hessian is PSD), then we know that 𝐽 (𝑢) is convex. Hence the
local minimum is also a global minimum. Now we imagine we are doing steepest descent
on this function and we are at iterate 𝑢𝑘 with optimal step size, which we can make as large
as we want. Hence we need to optimize

̃𝐽 (ℎ) = 𝐽 �𝑢𝑘 − ℎ [∇𝐽 (𝑢)]�

for ℎ. Notice we did not divide by ‖∇𝐽 (𝑢)‖ here, since the step size is free to be as large as
needed. Expanding the above using (2) gives

̃𝐽 (ℎ) = 𝐽 �𝑢𝑘 − ℎ �𝐴𝑢𝑘 + 𝑏��

= 𝐽 �(𝐼 − ℎ𝐴) 𝑢𝑘 − ℎ𝑏�

Using (1) for RHS of the above gives

̃𝐽 (ℎ) =
1
2
�(𝐼 − ℎ𝐴) 𝑢𝑘 − ℎ𝑏�

𝑇
𝐴�(𝐼 − ℎ𝐴) 𝑢𝑘 − ℎ𝑏� + 𝑏𝑇 �(𝐼 − ℎ𝐴) 𝑢𝑘 − ℎ𝑏� + 𝑐

The above is quadratic in ℎ. The optimal ℎ we are solving for. Simplifying gives

̃𝐽 (ℎ) =
1
2
�𝐴𝑢𝑘 + 𝑏�

𝑇
𝐴�𝐴𝑢𝑘 + 𝑏� ℎ2 − �𝐴𝑢𝑘 + 𝑏�

𝑇
�𝐴𝑢𝑘 + 𝑏� ℎ + constant terms

To find optimal ℎ, then
𝑑 ̃𝐽 (ℎ)
𝑑ℎ

= 0

�𝐴𝑢𝑘 + 𝑏�
𝑇
𝐴�𝐴𝑢𝑘 + 𝑏� ℎ − �𝐴𝑢𝑘 + 𝑏�

𝑇
�𝐴𝑢𝑘 + 𝑏� = 0

ℎ∗ =
�𝐴𝑢𝑘 + 𝑏�

𝑇
�𝐴𝑢𝑘 + 𝑏�

�𝐴𝑢𝑘 + 𝑏�
𝑇
𝐴�𝐴𝑢𝑘 + 𝑏�

In practice, we would need to check 𝑑2 ̃𝐽(ℎ)
𝑑ℎ2 also to make sure ℎ is minimizer.

Reader Why does it take multiple iterations to get the common sense answer 𝑢∗ = −𝐴−1𝑏?

For quadratic objective function 𝐽 (𝑢) we can obtain 𝑢∗ in one step, using 𝑢∗ = −𝐴−1𝑏. This
is the idea behind the generalized Newton-Raphson method. 𝐽 �𝑢𝑘� is approximated as
quadratic function at each step, and ℎ∗ is found from above. To elaborate, expanding by
Taylor

𝐽 �𝑢𝑘 + Δ𝑢� = 𝐽 �𝑢𝑘� + ∇𝐽 �𝑢𝑘�
𝑇
Δ𝑢 +

1
2
Δ𝑢𝑇∇ 2𝐽 �𝑢𝑘� Δ𝑢 + 𝐻𝑂𝑇

We approximate as quadratic by dropping higher order terms and optimize for Δ𝑢 (same
as ℎ used earlier), and here ∇ 2𝐽 �𝑢𝑘� is same as the 𝐴 above also. Therefore we find

Δ𝑢∗ = − �∇ 2𝐽 �𝑢𝑘��
−1
∇𝐽 �𝑢𝑘�

This converges in one step Δ𝑢∗ if 𝐽 (𝑢) was actually a quadratic function. Notice that Newton
method is expensive if used repeatedly, as it requires finding Hessian at each step and also

36

2.12. Lecture 12. Thursday, February 25, . . . CHAPTER 2. CLASS NOTES

finding the inverse of it. The algorithm is: Initialize 𝑢0. Then iterate, where

𝑢𝑘+1 = 𝑢𝑘 − �∇ 2𝐽 �𝑢𝑘��
−1
∇𝐽 �𝑢𝑘� (4)

Then check for convergence. If Hessian fails to be PSD, in this case 𝐽 �𝑢𝑘+1� can end up

increasing not decreasing. How to stop? We can try more iterations to see if 𝐽 �𝑢𝑘� will
decrease again.

Example Let

𝐽 (𝑢) = (11 − 𝑢1 − 𝑢2)
2 + (1 + 10𝑢2 + 𝑢1 − 𝑢1𝑢2)

2

Pick 𝑢0 = (18, 3) then

∇𝐽 �𝑢0� =

⎡
⎢⎢⎢⎢⎢⎣
40
100

⎤
⎥⎥⎥⎥⎥⎦

∇ 2𝐽 �𝑢0� =

⎡
⎢⎢⎢⎢⎢⎣
10 44
44 130

⎤
⎥⎥⎥⎥⎥⎦

We see here that ∇ 2𝐽 �𝑢0� is not PSD (determinant is negative). Now we do the iterate
equation (4), obtaining

𝑢1 = 𝑢0 −

⎡
⎢⎢⎢⎢⎢⎣
10 44
44 130

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
40
100

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
18
3

⎤
⎥⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎣
10 44
44 130

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
40
100

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
19.3
1.8

⎤
⎥⎥⎥⎥⎥⎦

If we look at the contour plot, we will see this point made 𝐽 (𝑢) larger (away from optimal)
but if we let it iterate more, it will turn and move back to the optimal point.

u∗

u0

u1

optimal If Hessian not
PSD, we can end
up moving away
from u0

Figure 2.11: Hessian and optimal solution diagram

Now we will start on the third algorithm. Conjugate gradient algorithms (CG) are family
of algorithms with property of superlinear convergence. It also has quadratic convergence.

2.12.2 Quadratic convergence

Quadratic convergence says the following: If 𝐽 (𝑢) is positive definite quadratic form, the
iterate 𝑢𝑘 → 𝑢∗ completes in finite number of steps 𝑁. This means if we give the algorithm a
quadratic form function, it will converge in 𝑁 steps to the optimal. The di�erence between
this and Newton-Raphson, is that there is no Hessian to be calculated using this algorithm
as the case was with Newton-Raphson. The conjugate direction algorithms work well from
far away and also when close to the optimal point. (note: Steepest descent worked well from
a far, but not when getting close to the optimal point 𝑢∗). The CG algorithms also have
the property of superlinear convergence. This property do not apply to steepest descent.

37

2.12. Lecture 12. Thursday, February 25, . . . CHAPTER 2. CLASS NOTES

2.12.3 Superlinear convergence

What is superlinear convergence? A sequence �𝑢𝑘� in ℜ𝑛 is said to converge super-linearly

to 𝑢∗ if the following holds: Given any 𝜃 ∈ (0, 1], then �𝑢𝑘−𝑢∗�
𝜃𝑘

→ 0. The important part of this
definition is that the above should go to zero for any 𝜃 ∈ (0, 1] and not some 𝜃. Examples

below illustrate this. Let �𝑢𝑘� = 1
𝑘 . Hence the sequence is �1, 12 ,

1
3 ,⋯�. Clearly this sequence

goes to 𝑢∗ = 0. Does it converge super-linearly to 𝑢∗? Applying the definition

�1𝑘 − 0�
𝜃𝑘

=
1
𝑘𝜃𝑘

If we can find one 𝜃 that do not converge to zero, then we are done. Trying 𝜃 = 3
4 , then

the above becomes 4𝑘

𝑘3𝑘
which do not go to zero as 𝑘 → ∞. Hence this is not superlinear.

How about �𝑢𝑘� = 1
𝑘2 . This is still not superlinear. Similarly �𝑢𝑘� = 1

𝑘𝑚 . What about �𝑢𝑘� = 1
𝑒𝑘
.

Here we get

�1𝑘 − 0�
𝜃𝑘

=
𝑒−𝑘

𝜃𝑘

Trying 𝜃 = 1
2 gives

2𝑘

𝑒𝑘
which is not superlinear (do not go to zero for large 𝑘). But if 𝜃 = 2

3 it

will converge. But it has to converge for all 𝜃, so 1
𝑒𝑘
is not superlinear. How about �𝑢𝑘� = 1

𝑒𝑘2

here we find it is superlinear. We obtain 𝑒−𝑘2

𝜃𝑘
and this goes to zero for any 𝜃. To show this,

use log on it and simplify. (Reader).

Next time we will go over conjugate direction algorithm in more details.

38

2.13. Lecture 13. Tuesday, March 1, 2016 CHAPTER 2. CLASS NOTES

2.13 Lecture 13. Tuesday, March 1, 2016

2.13.1 Conjugate direction algorithms

Today lecture will be devoted to conjugate direction (C.D.) algorithms. We will start
by remembering that there are many C.D. algorithms. From last lecture, be aware of:
Superlinear convergence and quadratic convergence. The quadratic convergence concept
is that on a P.S.D. (positive symmetric definite) form, the algorithm will converge in 𝑛
steps or less (where 𝑛 is the size 𝐴). Using exact arithmetic (not counting for floating point
errors). We will proof this today. We will some preliminaries, then go over ingredients and
go over examples, then go over properties of conjugate gradient.

Preliminaries: Let 𝐴𝑛×𝑛 be positive definite symmetric, then the pair of vectors 𝑢, 𝑣 are said
to be mutually conjugate w.r.t. 𝐴 if

𝑢𝑇𝐴𝑣 = 0

This is generalization of orthogonality. Because we can take 𝐴 = 𝐼𝑛 which is PSD.

Reader A set of distinct mutually conjugate vectors always exist for 𝐴. These are the
eigenvectors of 𝐴. The proof starts with writing 𝐴𝑣 = 𝜆1𝑣 and 𝐴𝑢 = 𝜆2𝑢, then applying
𝑢𝑇𝐴𝑣 = 0.

We will use this set of vectors as search directions. We will generate these vectors on the
fly during the search and do line search along these directions. So instead of using ∇𝐽 (𝑢)
as the direction we did line search on when using steepest descent, we will now use the
conjugate vectors instead.

Properties: Suppose 𝑣0, 𝑣1,⋯ , 𝑣𝑛−1 is a set of mutually conjugate vectors w.r.t 𝐴. (𝐴 is PSD).
First step is to show these vectors are linearly independent.

Lemma: 𝑣𝑖 are linearly independent. Proof: Suppose
𝑛−1
�
𝑖=0
𝛼𝑖𝑣𝑖 = 0 (1)

For scalars 𝛼𝑖. We must show that all 𝛼𝑖 = 0. Let use consider 𝛼𝑘. If we can show that 𝛼𝑘 = 0
for any 𝑘, then we are done. Multiply (1) by �𝑣𝑘�

𝑇
𝐴. Then

�𝑣𝑘�
𝑇
𝐴
𝑛−1
�
𝑖=0
𝛼𝑖𝑣𝑖 = 0

𝑛−1
�
𝑖=0
𝛼𝑖 �𝑣𝑘�

𝑇
𝐴𝑣𝑖 = 0

By mutual conjugate property, then all terms above vanish except 𝛼𝑘 �𝑣𝑘�
𝑇
𝐴𝑣𝑘. Hence

𝛼𝑘 �𝑣𝑘�
𝑇
𝐴𝑣𝑘 = 0

But 𝐴 is PSD and 𝑣𝑘 ≠ 0, therefore 𝛼𝑘 = 0 is only choice. QED. We have proved that
𝑣0, 𝑣1,⋯ , 𝑣𝑛−1 are linearly independent So we can expand any vector 𝑢 ∈ ℜ𝑛 using these as
basis vectors

𝑢 =
𝑛−1
�
𝑖=0
𝑎𝑖𝑣𝑖 (2)

Let us find the coe�cients 𝑎𝑖. Premultiply by �𝑣𝑘�
𝑇
𝐴 both sides

�𝑣𝑘�
𝑇
𝐴𝑢 =

𝑛−1
�
𝑖=0
𝑎𝑖 �𝑣𝑘�

𝑇
𝐴𝑣𝑖

As before, by mutual conjugate, the RHS becomes 𝑎𝑘 �𝑣𝑘�
𝑇
𝐴𝑣𝑘. Solving for 𝑎𝑘 gives

𝑎𝑘 =
�𝑣𝑘�

𝑇
𝐴𝑢

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

39

2.13. Lecture 13. Tuesday, March 1, 2016 CHAPTER 2. CLASS NOTES

Hence (2) becomes

𝑢 =
𝑛−1
�
𝑖=0

�𝑣𝑖�
𝑇
𝐴𝑢

�𝑣𝑖�
𝑇
𝐴𝑣𝑖

𝑣𝑖

This gives any vector 𝑢 in terms of set of vectors 𝑣𝑖 that are linearly independent

Conjugate directions algorithm ingredients are:

1. Initially given 𝑢0. The starting guess vector

2. Iterative step 𝑢𝑘: Generate 𝑣𝑘 a mutual conjugate vector to previous 𝑛 − 1 vectors 𝑣𝑖.
For 𝑣0 use −∇𝐽 (𝑢). Same as steepest descent.

3. Form line search with Max step 𝐻. To minimize ̃𝐽 (ℎ) = 𝐽 �𝑢𝑘 + ℎ𝑣𝑘�. Notice there we
used + sign and not − as with steepest descent. The direction takes care of the sign
in this case.

4. Stopping criteria.

Example: Fletcher Reeves.

𝑣0 = −∇𝐽 (𝑢)

𝑣𝑘+1 = −∇𝐽 �𝑢𝑘+1� +
�∇𝐽 �𝑢𝑘+1��

2

�∇𝐽 �𝑢𝑘��
2 𝑣𝑘

Reader Normalize above for implementation.

Reader What is 𝐴 above? Where are these 𝑣𝑘 vectors mutually conjugate? 𝐴 is the Hessian.
Note: These algorithms (C.D.) converge for convex 𝐽 (𝑢). If 𝐽 (𝑢) is not convex or we do not
know, we need to put conditions to make sure it is converging.

For Polyak-Ribieve, see homework.

2.13.2 Quadratic convergence theorem

Consider quadratic form

𝐽 (𝑢) =
1
2
𝑢𝑇𝐴𝑢 + 𝑏𝑇𝑢 + 𝑐

With 𝐴 = 𝐴𝑇 and positive definite 𝑛 × 𝑛 matrix. Let 𝑣0,⋯ , 𝑣𝑛+1 be mutually conjugate w.r.t.
𝐴. Let step size be as large as we want. The conjugate direction algorithm converges to
optimal 𝑢∗ = −𝐴−1𝑏 in 𝑛 steps or less

Proof

Let 𝑢𝑘 be the 𝑘𝑡ℎ iterate. If 𝑢𝑘 = 𝑢∗ and 𝑘 ≤ 𝑛 then we are done. Without loss of generality,
assume 𝑢𝑘 ≠ 𝑢∗. We must show that 𝑢𝑛 = 𝑢∗. We first find ℎ𝑘, the step size at iterate 𝑘. From

̃𝐽 (ℎ) = 𝐽 �𝑢𝑘 + ℎ𝑣𝑘�

=
1
2
�𝑢𝑘 + ℎ𝑣𝑘�

𝑇
𝐴�𝑢𝑘 + ℎ𝑣𝑘� + 𝑏𝑇 �𝑢𝑘 + ℎ𝑣𝑘� + 𝑐

This is quadratic in ℎ.

̃𝐽(ℎ) =
1
2
(𝑣𝑘)𝑇𝐴𝑣𝑘ℎ2 + �(𝑣𝑘)𝑇𝐴𝑢𝑘 + 𝑏𝑇𝑣𝑘� ℎ +

constant term

���������������1
2
𝑢𝑘𝐴𝑢𝑘 + 𝑐

Now taking derivative gives

𝑑 ̃𝐽 (ℎ)
𝑑ℎ

= �𝑣𝑘�
𝑇
𝐴𝑣𝑘ℎ + ��𝑣𝑘�

𝑇
𝐴𝑢𝑘 + 𝑏𝑇𝑣𝑘�

40

2.13. Lecture 13. Tuesday, March 1, 2016 CHAPTER 2. CLASS NOTES

Setting this to zero and solving for ℎ gives

ℎ∗ = −
�𝑣𝑘�

𝑇
𝐴𝑢𝑘 + 𝑏𝑇𝑣𝑘

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

= −
�𝑣𝑘�

𝑇
�𝐴𝑢𝑘 + 𝑏�

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

(3)

Hence

𝑢𝑛 = 𝑢0 + ℎ0𝑣0 +⋯+ ℎ𝑛−1𝑣𝑛−1

= 𝑢0 +
𝑛−1
�
𝑘=0
ℎ𝑘𝑣𝑘

Using (3) in the RHS of above, replacing each ℎ𝑘 with the optimal ℎ at each iterate gives

𝑢𝑛 = 𝑢0 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
�𝐴𝑢𝑘 + 𝑏�

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘

= 𝑢0 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝑏

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝐴𝑢𝑘

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘

Replacing 𝑢𝑘 in the second term above in the RHS with 𝑢0 +
𝑘−1
�
𝑖=0
ℎ𝑖𝑣𝑖 gives

𝑢𝑛 = 𝑢0 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝑏

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘 −
𝑛−1
�
𝑘=0

�𝑣𝑘�
𝑇
𝐴�𝑢0 +

𝑘−1
�
𝑖=0
ℎ𝑖𝑣𝑖�

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

𝑣𝑘 (4)

But

�𝑣𝑘�
𝑇
𝐴�𝑢0 +

𝑘−1
�
𝑖=0
ℎ𝑖𝑣𝑖� = �𝑣𝑘�

𝑇
𝐴𝑢0 +

𝑘−1
�
𝑖=0
ℎ𝑖 �𝑣𝑘�

𝑇
𝑣𝑖

= �𝑣𝑘�
𝑇
𝐴𝑢0

Since all terms in
𝑘−1
�
𝑖=0
ℎ𝑖 �𝑣𝑘�

𝑇
𝑣𝑖 vanish by mutual conjugate property. Using this to simplify

(4) gives

𝑢𝑛 = 𝑢0 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝑏

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝐴𝑢0

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘

= 𝑢0 −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
�𝐴𝑢0 + 𝑏�

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘

Reader �𝑣𝑘�
𝑇
𝐴𝑢0 is expansion of 𝑢0. Using this in the above reduces it to

𝑢𝑛 = −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝑏

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘

Insert 𝐴𝐴−1 into the above gives

𝑢𝑛 = −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎝
�𝑣𝑘�

𝑇
𝐴𝐴−1𝑏

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎠ 𝑣

𝑘

= −
𝑛−1
�
𝑘=0

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

��𝑣𝑘�
𝑇
𝐴� �𝐴−1𝑏�

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
𝑣𝑘

= −𝐴−1𝑏

But −𝐴−1𝑏 = 𝑢∗. QED.

Following some extra remarks added later from An introduction to optimization by Ching

41

2.13. Lecture 13. Tuesday, March 1, 2016 CHAPTER 2. CLASS NOTES

and Zak, 1996:

1. Conjugate direction algorithms solve quadratics of 𝑛 variables in 𝑛 steps

2. Algorithm does not require calculation of Hessian.

3. Algorithm requires no matrix inverse and no storage for the 𝐴𝑛×𝑛 matrix.

4. C.D. Algorithms perform better than steepest descent but not as well as Newton-
Raphson (when close to optimal).

5. For quadratic 𝐽 (𝑢) = 1
2𝑥

𝑇𝐴𝑥 − 𝑥𝑇𝑏, the best direction at each step is the mutually
conjugate direction w.r.t. 𝐴.

See Example 10.1, page 133 of the above text for illustrations how to determine each of 𝑣𝑖
vectors for given 𝐴 matrix.

42

2.14. Lecture 14. Thursday, March 3, 2016 CHAPTER 2. CLASS NOTES

2.14 Lecture 14. Thursday, March 3, 2016

2.14.1 Constraints and linear programming

We are about to enter new phase of the course with constraints and linear programming.
Until now we used iterative methods to solve unconstrained problems. These are gradient
based. Also looked at Newton-Raphson. We used steepest descent and conjugate directions.
These methods are mainly applied to problem without constraints. i.e. 𝑢 is free, where 𝑢
are the variables. But in HW4 we had problem where 𝑢 was the capacitance. This can not
be negative. But we did not account for this. When we have constraints and want to use
the above iterative methods, there are ad hoc methods to handle this, but we will not cover
these ad-hoc methods in this course, but will mention some of them.

We can check that no constraint is violated during the search and start a new search. There
are literature on what is called “projection methods” and other names.

constraint boundary

search path

Figure 2.12: Search path near constraint

One good method is called the “penalty function method”. This works as follows

̃𝐽 (𝑢) = 𝐽 (𝑢) + 𝐽𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑢)

The original objective function is 𝐽 (𝑢) and 𝐽𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑢) is function we add such that it becomes
very large when 𝑢 constraint is violated (𝑢 ∉ 𝑈). (assuming we are minimizing 𝐽(𝑢)).

This method works on many problems. For example, if we do not want 𝑢1 to be negative,
we can add

𝐽𝑝𝑒𝑛𝑎𝑙𝑡𝑦 (𝑢) = −100min (0, 𝑢1)
This way, when 𝑢1 ≤ 0, the result will be very large and positive. Hence ̃𝐽 (𝑢) will become
very large and the search will avoid this region and turn away during the line search.

But a theory with name of “Kohn Tucker” is the main way to handle such problems under
heading of “non-linear programming”.

Now we go back to linear programming which we will cover over the next 4–5 lectures.
key points of linear programming are

1. Objective function is linear in 𝑢𝑖

2. Linear inequality constraints on 𝑢𝑖

2.14.2 History of linear programming

1. Dantzing introduced simplex algorithm. Matlab linprog implements this to find
solution to L.P. problems.

2. Simplex algorithm has some problems related to what is called “klee-type patholo-
gies”. These days, L.P. have millions of variables. These days we want to solve many
large scale L.P. The “Klee-type pathologies” says that there are some bad input to
L.P. which causes it to become very slow. L.P. visits vertices of polytopes. We can
do billion and more vertices these days on the PC with no problem. 1030 vertices is
a small L.P. problem these days.

43

2.14. Lecture 14. Thursday, March 3, 2016 CHAPTER 2. CLASS NOTES

L.P. works fast by not visiting each vertex. But with some input L.P. can become
slow and force it to visit all vertices.

3. Khachian: 1970’s. Front page of NY times. Introduced ellipsoidal algorithm to solve
L.P. (Faster than L.P. on the worst case problems). But it turns out that in real world
problems, simplex was still faster, unless the problem had “Klee-type pathologies”.

4. Small. Gave a probabilistic explanation of the “magic of simplex algorithm”. Con-
sidering average probabilities. In computer science, computational complexity is
defined in terms of worst case.

5. Kharmarker, from Bell Labs. Came up with new approach. Developed scaling to L.P.

2.14.3 Polytopes

Polytopes are central to L.P since polytopes are described by constraints. See handout
“Polytopes” taken from textbook Barmish, Robust Control.

Polytope is convex hull of finite point set. These are the generators 𝑣1,⋯ , 𝑣𝑁. Polytopes
have extreme vertices. L.P. visits vertices. If the set is bounded, we call it polytope, else we
call it polyhedron. So with linear inequalities constraints and bounded, we have polytopes.

Reader A linear function 𝐽 (𝑢) = 𝑎𝑇𝑢 on polytope 𝑃 achieves its Max. or Min. at an extreme
point. We showed that the Max. of convex function is at a vertex. we can also show that
Min. of concave is at a vertex. Linear functions are both concave and convex. QED.

J(u) increasing

max

min

Figure 2.13: Increasing 𝐽(𝑢) diagram

Often we do not have list of vertices. Need to first generate them. They are generated from
the constraint inequalities.

How many vertices to search? McMullen’s Upper Bound Theorem gives us the answer.
Assuming we have 𝑚 constraints and 𝑛 variables, where 𝑚 ≥ 𝑛. Then

𝑉 (𝑚, 𝑛) =

⎛
⎜⎜⎜⎜⎜⎜⎝
𝑚 − �12 (𝑛 + 1)�

𝑚 − 𝑛

⎞
⎟⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎜⎝
𝑚 − �12 (𝑛 + 2)�

𝑚 − 𝑛

⎞
⎟⎟⎟⎟⎟⎟⎠

Example for 𝑚 = 20, 𝑛 = 10 we get 4004 vertices. So this is a small problem.

Reader Consider 𝑛 = 500,𝑚 = 2000 which is very modest in terms of current technology,
assuming it takes 1 microsecond per vertex, then it will take order of 10296 years to search
all the vertices.

44

2.14. Lecture 14. Thursday, March 3, 2016 CHAPTER 2. CLASS NOTES

Figure 2.14: Verification of number of vertices using Maple

Up to last few years, L.P. was considered a completed research. But in the last 5–10 years,
there is new L.P. research starting. Modern L.P. solvers use linear inequalities description
as input. This is expressed and formulated as 𝐴𝑥 = 𝑏. What if vertices or some vertices
generating mechanism was given as input instead of the constraints themselves? How to
convert the vertices to constraints? This is a di�cult problem.

45

2.15. Lecture 15. Tuesday, March 8, 2016 CHAPTER 2. CLASS NOTES

2.15 Lecture 15. Tuesday, March 8, 2016

2.15.1 Mechanism of linear programming

Today we will begin the mechanism of doing L.P. (linear programming). We know the
extreme points is where the optimal will occur. But searching all extreme points is not
practical for large 𝑁 as shown before. One can take a whole course just on L.P. but here
we will cover the main ideas. We basically have a linear objective function in 𝑢 and linear
constraints in 𝑢 where 𝑢 are the variables. This is called the raw L.P. formulation. This is
converted to standard form L.P. and solved using the simplex method.

LP solver
simplex

raw L.P.

create standard
form LP and
solve

x∗

solution

Figure 2.15: Simplex solver diagram

The solver finds the first vertex then in a clever way moves to another until it finds the
optimal one. The solver solves two linear programming problems and these are:

1. First finds a feasible solution (basic)

2. moves from one vertex to another.

Standard form LP is

min 𝑐𝑇𝑥
𝑠𝑡 𝐴𝑥 = 𝑏

Notice that solution might be infimum above. Example.

min 𝑥1

𝑠𝑡
𝑥2 ≤ 5
𝑥1 < 0

The solution is 𝑥1 = −∞. This is closed by unbounded.

Ingredients of Linear programming are:

1. 𝑛 > 𝑚 (number of variable is larger than number of constraints.). The matrix 𝐴 is of
order 𝑚 by 𝑛. So 𝐴 matrix is fat matrix and not thin.

2. No columns of 𝐴 can all be zeros (non-degenerate).

3. Rank of 𝐴 is 𝑚

4. 𝑏 ≥ 0

5. 𝑥 ≥ 0

What if we have some variables 𝑥𝑖 which we want to be negative? We replace 𝑥𝑖 with new
variable 𝑥𝑗 = −𝑥𝑖. Now 𝑥𝑗 ≥ 0. Now in each place we have 𝑥𝑖 which is negative and can’t use,
then we replace it with −𝑥𝑗. This is now the same as before, but 𝑥𝑖 is gone and replaced
with −𝑥𝑗 and 𝑥𝑗 is now positive. So it is standard form.

At the end, when we obtain the solution, we replace 𝑥𝑗 back to −𝑥𝑖. (what about free
variables?).

What if we have inequality in the raw L.P.? how to convert to equality for standard form?
We use Slack variables and Surplus variables .

46

2.15. Lecture 15. Tuesday, March 8, 2016 CHAPTER 2. CLASS NOTES

Example given 𝑥1 + 2𝑥2 − 𝑥3 ≤ 6, then introduce new slack variable 𝑥4 and rewrite the
constraint as 𝑥1 + 2𝑥2 − 𝑥3 + 𝑥4 = 6.

If we have constraint 𝑥1 + 2𝑥2 − 𝑥3 ≥ 6, then we need surplus variable 𝑥4. Rewrite as
𝑥1+2𝑥2 −𝑥3 −𝑥4 = 6. Once we solve the LP problem and obtain 𝑥∗, we need to recover from
this solution the actual variables of the raw LP (these are the 𝑢 variables) and these do
not contain any slack nor surplus variables.

2.15.2 Example, the sector patrol problem

See also handout sector patrol. The objective function is 𝐸 (𝑇) =
𝑢1
3
10+

𝑢2
3
5 = 𝑢1

30+
𝑢2
15 . Constraints

are 𝑢1 ≥ 0, 𝑢2 ≥ 0 and

2𝑢1 + 2𝑢2 ≥ 4
2𝑢1 + 2𝑢2 ≤ 10

And as per handout, we need to add this constraint in order to obtain a realistic solution

𝑢2 ≥ 1.5𝑢1
The above is the raw LP. Convert to standard form, using 𝑥 as variables. It becomes

2𝑥1 + 2𝑥2 − 𝑥4 = 4
2𝑥1 + 2𝑥2 + 𝑥3 = 10

−1.5𝑥1 + 𝑥2 − 𝑥5 = 0

Where 𝑥3, 𝑥4, 𝑥5 above were added to make it standard form. Writing it as 𝐴𝑥 = 𝑏, the
constraint equation is (we put the slack variables first by convention)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 0 0
2 2 0 −1 0
−1.5 1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
4
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

And 𝑐𝑇𝑥 becomes (this is the objective function, notice we added the slack and surplus
variables to it, but they are all zeros).

� 1
30

1
15 0 0 0�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Reader find common sense solution working in 𝑢1, 𝑢2 domain. (will do this next lecture).

2.15.3 Basic and Feasible solutions

We will define two solutions: The basic solution, and basic feasible solution.

A vector 𝑥 is said to be basic solution if it solves 𝐴𝑥 = 𝑏 and the non-zeros elements of 𝑥
correspond to the linearly independent columns of 𝐴.

Reader Is there a basic infeasible solution?

47

2.16. Lecture 16. Thursday, March 10, 2016 CHAPTER 2. CLASS NOTES

2.16 Lecture 16. Thursday, March 10, 2016

Recall, the standard LP problem is

min 𝑐𝑇𝑥
𝑠𝑡 𝐴𝑥 = 𝑏

We talked about transforming the problem from raw LP to standard LP. The patrol sector
problem, solved using common sense graphical approach is given below

2

2

5

5

u2 = 1.5u1

2u1 + 2u2 = 10

2u1 + 2u2 = 4

feasible

u1

u2

Figure 2.16: Patrol problem

The optimal 𝑢∗ has to be at one of the vertices of the feasible region. It will be at the vertex
shown

2

2

5

5

feasible

u1

u2

u∗ = (0.8, 1.2)
optimal

Figure 2.17: Patrol problem solution

Using Matlab, the above is solved as follows

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 0 0
2 2 0 −1 0
−1.5 1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
4
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

And 𝑐𝑇𝑥 becomes (this is the objective function, notice we add the slack and surplus
variables to it, but they are all zeros).

� 1
30

1
15 0 0 0�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The code is� �
1 f=[1/30,1/15,0,0,0];
2 A=[2,2,1,0,0,;
3 2,2,0,-1,0,;
4 -1.5,1,0,0,-1];

48

2.16. Lecture 16. Thursday, March 10, 2016 CHAPTER 2. CLASS NOTES

5 b=[10,4,0];
6 [X,FVAL,EXITFLAG,OUTPUT]=linprog(f,[],[],A,b,zeros(size(f)),[])� �

Result of above run
Optimization terminated.
X =
0.799999999994766
1.20000000008299
5.99999999984448
1.55520543353025e-10
9.08450336982967e-11
FVAL =
0.106666666672025
EXITFLAG =
1
OUTPUT =
iterations: 7
algorithm: 'interior-point-legacy'
cgiterations: 0
message: 'Optimization terminated.'
constrviolation: 8.88178419700125e-16
firstorderopt: 5.07058939341966e-12

In the above, we only need to map 𝑥(1) to 𝑢1 and 𝑥(2) to 𝑢2 to read the result. We see that
Matlab result matches the graphical solution.

definition For LP, we say 𝒙 is feasible if 𝒙 satisfies the constraints.

For example, for the sector patrol, let 𝑈 be the feasible set in ℜ2 (raw LP). However, in
standard LP, the feasible set is in ℜ5.

Reader Obtain feasible set in ℜ5. Obtain feasible point with either 𝑥3, 𝑥4, 𝑥5 nonzero.

Basic solution A vector 𝑥 is basic solution if the non-zero components of 𝑥 corresponds to
the linearly independent columns of 𝐴. We do not require feasibility to be basic solution).

The di�erence in LP and standard 𝐴𝒙 = 𝒃 solution we have seen before many times in
linear algebra, is that in LP, we want to solve 𝐴𝒙 = 𝒃 but with 𝒙 ≥ 0 and at same time
have 𝒙 be optimal. This what makes LP di�erent from standard methods of solving this
problem.

The algorithm takes a solution which is feasible and makes it feasible basic solution. Then
after that, we move from one basic feasible solution to another basic feasible solution while
at the same time making 𝐽 (𝑢) smaller until it reaches the optimal value.

Reader LP has at least one basic solution.

𝐴 has 𝑚 linearly independent columns, since it has rank 𝑚.

𝐴𝒙 = 𝒃

�𝐴𝑏𝑎𝑠𝑖𝑐 𝐴𝑛𝑜𝑡𝑏𝑎𝑠𝑖𝑐�

⎡
⎢⎢⎢⎢⎢⎣
𝑥𝑏𝑎𝑠𝑖𝑐
𝑥𝑛𝑜𝑡𝑏𝑎𝑠𝑖𝑐

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
𝑏𝑏𝑎𝑠𝑖𝑐
𝑏𝑛𝑜𝑡𝑏𝑎𝑠𝑖𝑐

⎤
⎥⎥⎥⎥⎥⎦

2.16.1 Linear programming feasible and basic solutions

Theorem Suppose LP has feasible solution, then it has a basic feasible solution. Remember:
𝒙 is feasible if it is in the feasible region (satisfies constraints), and 𝒙 is basic solution if
the non-zero elements of 𝒙 correspond to linearly independent columns of 𝐴.

Proof say 𝒙 is feasible. Let 𝑎1, 𝑎2,⋯ , 𝑎𝑝 denote columns of 𝐴 corresponding to nonzero
entries of 𝒙. Without loss of generality, say the first 𝑝 columns of 𝐴. (we can always rearrange
𝐴 to make it so). There are two cases:

49

2.16. Lecture 16. Thursday, March 10, 2016 CHAPTER 2. CLASS NOTES

case one The 𝑎𝑖 above are linearly independent. We are done. 𝑥 is therefore basic by
definition.

case two The 𝑎𝑖 are linearly dependent. Therefore there exist scalars 𝑦𝑖, not all zero, such
that ∑𝑝

𝑖=1 𝑦𝑖𝑎
𝑖 = 0. (this is the definition of linearly dependent columns).

Now we do the squeezing process. For 𝜀 > 0 define vector 𝜂𝜀 with components

𝜂𝜀 =
𝑥𝑖 − 𝜀𝑦𝑖 for 𝑖 ≤ 𝑝
0 𝑖 > 𝑝

Reader 𝜂𝜀 is feasible for small 𝜀. Hence

𝐴𝜂𝜀 = 𝐴𝒙 − 𝜀𝐴

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑦1
𝑦2
⋮
𝑦𝑝
0
⋮
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let 𝜀 = min �𝑥𝑖𝑦𝑖 ; 𝑦𝑖 > 0�. Reader 𝜂
𝜀 is basic and has at least one more zero entry than 𝒙.

So now 𝒙 has 𝑝 − 1 columns of 𝐴 corresponding to non-zero entries in 𝒙. Continuing this
process, we keep finding other basic feasible solutions.

example

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 1 2 0
1 1 1 2 1
2 −1 1 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3
4
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let starting 𝒙 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
1
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is feasible since it satisfies 𝐴𝒙 = 𝒃 with 𝒙 ≥ 0. But not basic, since

the last 3 columns are not linearly independent. (the last three columns of 𝐴. Since these
are the ones that correspond to non-zero elements of 𝒙. we now write

𝑦3𝑎3 + 𝑦4𝑎4 + 𝑦5𝑎5 = 0

Where 𝑎3, 𝑎4, 𝑎5 represent the last three columns of 𝐴 and 𝑦𝑖 are the scalars we want to
solve for. Solving, gives

𝑦3 = 2
𝑦4 = −1
𝑦5 = 0

Hence, first find 𝜀 = min �𝑥𝑖𝑦𝑖 ; 𝑦 > 0�, which we find to be 𝜀 = 1
2 . Now we find

𝒙𝑛𝑒𝑤 = 𝜂𝜀 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1 − 𝜀𝑦1
𝑥2 − 𝜀𝑦2
𝑥3 − 𝜀𝑦3
𝑥4 − 𝜀𝑦4
𝑥5 − 𝜀𝑦5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 − 1
2
(0)

0 − 1
2
(0)

1 − 1
2
(2)

1 − 1
2
(−1)

1 − 1
2
(0)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
3
2
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Since now 𝑎4, 𝑎5 are linearly independent (these are the fourth and fifth columns of 𝐴) and
these correspond to the non zero of the new 𝒙 = 𝜂𝜀, then the new 𝒙 is basic and feasible.

50

2.16. Lecture 16. Thursday, March 10, 2016 CHAPTER 2. CLASS NOTES

So we have started with feasible solution, and from it obtained a basic feasible solution.
This is not the final optimal solution 𝒙 but we repeat this process now.

51

2.17. Lecture 17. Tuesday, March 15, 2016 CHAPTER 2. CLASS NOTES

2.17 Lecture 17. Tuesday, March 15, 2016

If we have a feasible solution, we can obtain a basic feasible solution from it using the
squeezing method. We have not talked about optimality yet. The next thing to consider
is optimality. We will proof if we have an optimal feasible solution, then by obtaining a
basic solution from it, the basic solution will remain optimal. This is called the optimality
theorem. Then we will talk about extreme points.

2.17.1 Optimality theorem

If an optimal feasible solution exist, then an optimal feasible and basic solution exist as
well.

Proof Suppose 𝒙 is optimal and feasible. If 𝒙 is basic, we are done. If not, now we need to
do the squeeze process to make it basic, but now we have to do the squeeze making sure
it remains optimal. Say 𝑎1, 𝑎2,⋯ , 𝑎𝑝 are the columns associated with non-zero entries in 𝒙.
As before, we way, WLOG these are the first 𝑝 columns in 𝐴. Hence there exist scalars 𝑦𝑖,
not all zero, such that ∑𝑝

𝑖=1 𝑦𝑖𝑎
𝑖 = 0. Define 𝜂𝜀 for scalar 𝜀 such that

𝜂𝜀 =
𝑥𝑖 − 𝜀𝑦𝑖 for 𝑖 ≤ 𝑝
0 𝑖 > 𝑝

Reader For small 𝜀, say |𝜀| ≤ 𝛿, then 𝜂𝜀 is still feasible. Claim: For 𝜀 suitable small, 𝜂𝜀
is optimal. It su�ce to show that 𝑐𝑇𝑦 = 0 with 𝑦𝑖 = 0 for 𝑖 > 𝑝. This being the case, then
𝑐𝑇𝜂𝜀 = 𝑐𝑇𝒙 = 𝐽∗. By contradiction: Say 𝑐𝑇𝑦 ≠ 0. Let 𝜀 = 𝛿𝑠𝑔𝑛 �𝑐𝑇𝑦�. Let us show that 𝜂𝜀 is
better than 𝒙. This contradicts optimality. Now

𝑐𝑇𝜂𝜀 = 𝑐𝑇 �𝑥 − 𝜀𝑦�

= 𝑐𝑇𝑥 − 𝑐𝑇 �𝛿𝑠𝑔𝑛 �𝑐𝑇𝑦�� 𝑦

= 𝑐𝑇𝑥 − 𝛿𝑠𝑔𝑛 �𝑐𝑇𝑦� �𝑐𝑇𝑦�

= 𝐽∗ − 𝛿 �𝑐𝑇𝑦�
< 𝐽∗

This contradicts optimality. QED.

Now we will talk about extreme points. Extreme points and basic feasible solution are the
same thing.

2.17.2 The extreme point theorem

Let 𝑃 = {𝑥 ∈ ℜ𝑛, 𝑥 ≥ 0,𝐴𝑥 ≤ 𝑏}. This polyhedron is the feasible set. The set of extreme points
of 𝑃 are the basic feasible solution.

Proof See handout extreme send today. We need to get to the first feasible solution. This
can be hard to obtain. Once we find a feasible solution, then we use it to find the first basic
feasible solution, and from them we repeat the process (using the squeeze method). As we
move from one basic feasible solution to another, we do this by making 𝐽 (𝑢) smaller.

Example Consider LP with constraints

𝑥𝑖 ≥ 0, 𝑖 = 1, 2, 3
2𝑥1 + 3𝑥2 = 1

𝑥1 + 𝑥2 + 𝑥3 = 1

Note that 𝑥1 + 𝑥2 + 𝑥3 = 1 is common in LP optimization. It is called unit simplex. Here is
a plot of the above.

52

2.17. Lecture 17. Tuesday, March 15, 2016 CHAPTER 2. CLASS NOTES

Out[430]=

2 x1 + 3 x2 ⩵ 1
x1 + x2 + x3 ⩵ 1

Figure 2.18: Unit simplex

Reader Plane for 2𝑥1 + 3𝑥2 = 1 intersect the unit simplex else no feasible region exist. So

there are two basic feasible solutions at �0, 13 ,
2
3
� and �12 , 0,

1
2
�. These are the two red points

shown in the above plot.

2.17.3 Mechanism the simplex method

We will use the sector patrol problem to show the mechanisms of simplex.

𝐴𝑥 = 𝑏

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 0 0
2 2 0 −1 0
−1.5 1 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

10
4
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Step 1. Form partial tableau.

�𝐴 𝑏� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 0 0 10
2 2 0 −1 0 4
−1.5 1 0 0 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟1
𝑟2
𝑟3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We need to identify an identify matrix. By row operations we obtain
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟1
−𝑟2
−𝑟3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 2 1 0 0 10
−2 −2 0 1 0 −4
1.5 −1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟′1
𝑟′2
𝑟′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

Now we can read out 𝒙1 and we see that 𝑥3 = 10, 𝑥4 = −4, 𝑥5 = 0. These are the entries in 𝑥
which corresponds to the columns of the unit matrix inside 𝐴. All other entries in 𝑥 are
assumed zero. Hence

𝒙1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
10
−4
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note this is not feasible but basic. Now we go to next step. We have to remove an entry
from 𝑥1 and move in its place another entry. Let us pick 𝑥3 to kick out and move in 𝑥1. By

53

2.17. Lecture 17. Tuesday, March 15, 2016 CHAPTER 2. CLASS NOTES

row operations applied to (1) we obtain
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟′1
2

𝑟′2 + 2𝑟′′1
𝑟′3 − 1.5𝑟′′1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1
2 0 0 5

0 0 1 1 0 6
0 −2.5 −0.75 0 1 −7.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑟′′1
𝑟′′2
𝑟′′3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Hence the new identity matrix is 𝑎1, 𝑎4, 𝑎5 and therefore 𝑥1 = 5, 𝑥4 = 6, 𝑥5 = −7.5, These are
the entries in 𝑥 which corresponds to the columns of the unit matrix inside 𝐴. All other
entries in 𝑥 are assumed zero. Hence

𝒙2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
0
0
6

−7.5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This is the second basic 𝒙 we found.

Reader Find basic solution via pivoting row operations. Now we want to redo the above,
with feasibility in mind which we did not consider above when moving elements out and
selecting which one to move in.

Example

𝐴𝑥 = 𝑏

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 4 3 2
0 1 0 2 −1 2
0 0 1 −1 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�𝐴 𝑏� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 4 3 2 1
0 1 0 2 −1 2 2
0 0 1 −1 2 1 3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Now we need to start with feasible solution. Last example we did not care about this, but
now we need the first solution to be feasible. Here 𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 3 (read out, from
the identity matrix, since the first three columns are linearly independent). We we use the
squeeze process, to decide which one to kick out and which to move in. Let us for now
choose arbitrarily 𝑥4 (fourth column) to move in and we have to kick out a column. Need
𝜀∗ to decide.

𝜀∗ = min�
1
4
,
1
2�

=
1
4

Hence it is the first column to kick out. Remember that when doing the above to determine
which 𝑥 to kick out, we only divide by those entries in the column which are positive. If
there is a negative entry, then do not use it. That is why in the above, we did not write

𝜀∗ = min �14 ,
1
2 ,

3
−1�. We will continue next lecture.

54

2.18. Lecture 18. Thursday, March 17, 2016 CHAPTER 2. CLASS NOTES

2.18 Lecture 18. Thursday, March 17, 2016

Class planning:

1. special problem towards end of course

2. Test 2 after spring break. Up to and including LP.

3. HW 6 will be send soon, due right after spring break.

Exercise to do

A good exercise, to be done by hand, is the following: For the sector
patrol problem which we considered in class, solve the Phase One LP to
obtain a basic feasible solution.
Then, use this first basic feasible solution as a starting point for the
original LP and solve it via a sequence of tableau. Since you already know
the answer, you will get feedback whether your calculations produce the
right result.

2.18.1 Simplex method examples

We still need to know how to find first feasible solution. In the following example

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 b

1 0 0 2 4 6 4
0 1 0 1 2 3 3
0 0 1 −1 2 1 1

A solution which is basic and feasible is 𝑥1 = 4, 𝑥2 = 3, 𝑥3 = 1 and all others 𝑥𝑖 = 0, 𝑖 = 4⋯6.

𝑥 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4
3
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This was just read out from the identity matrix in the first 3 columns above. Let us now
assume we want fourth column to be in the basis. We have to remove one of the current
columns in the basis in order to let another column in. min �42 ,

3
1� = 2. This means the first

row is the pivot row. Notice we do not consider 1
−1 when doing the minimum operation.

Any negative value in a column is bypassed. Now we know that first row is pivot row and
that we want fourth column in. This is all what we need to go to the next step. We know
need to normalize entry (1, 4) to one. (before it was 2). After normalizing the pivot row
(by dividing the whole row by 2) we obtain

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 b
1
2 0 0 1 2 3 2
0 1 0 1 2 3 3
0 0 1 −1 2 1 1

Only now we start applying row operations, with row one as pivot row, we make all other
entries in fourth column below (1, 4) zero, This gives the following

55

2.18. Lecture 18. Thursday, March 17, 2016 CHAPTER 2. CLASS NOTES

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 b

𝑟1
1
2 0 0 1 2 3 2

𝑟2−𝑟1 −1
2 1 0 0 0 0 1

𝑟3 + 𝑟1
1
2 0 1 0 4 4 3

Now that we have a new identity matrix, we read out the new solution which is 𝑥2 = 1, 𝑥4 =
2, 𝑥3 = 3 and all other 𝑥 entries zero.

𝑥 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
3
2
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

We will now revisit this, with optimality in mind. This means we need to know which
column to bring into the basis. The question is, which 𝑥𝑖 to bring in. Set up this tableau1

𝐴

���⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋯ 0 𝑎 (1,𝑚 + 1) ⋯ 𝑎 (1, 𝑛)
⋮ ⋱ ⋮ ⋮ ⋱ ⋯
0 ⋯ 1 𝑎 (𝑚,𝑚 + 1) ⋯ 𝑎 (𝑚, 𝑛)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑏

�����������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦 (1, 0)
𝑦 (2, 0)
⋮

𝑦 (𝑚, 0)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Therefore, the current feasible and basic solution is 𝑥1 = 𝑦 (1, 0) , 𝑥2 = 𝑦 (2, 0) ,⋯ , 𝑥𝑚 = 𝑦 (𝑚, 0).
All other 𝑥𝑖 = 0. We need now to do a feasibility preserving perturbation.

Allow 𝑥𝑚+1, 𝑥𝑚+2,⋯ , 𝑥𝑛 to be part of the solution.

𝑥1 +

we allow this in

�����������������𝑛
�

𝑖=𝑚+1
𝑎 (1, 𝑖) 𝑥𝑖 = 𝑦 (1, 0)

𝑥2 +
𝑛
�

𝑖=𝑚+1
𝑎 (2, 𝑖) 𝑥𝑖 = 𝑦 (2, 0)

⋮

𝑥𝑚 +
𝑛
�

𝑖=𝑚+1
𝑎 (𝑚, 𝑖) 𝑥𝑖 = 𝑦 (2, 0)

Now 𝑥 = �𝑥1 𝑥2 ⋯ 𝑥𝑚 0 ⋯ 0�
𝑇
is still feasible, but no longer basic. We know that

𝐽 = 𝑐𝑇𝑥, hence

𝐽 = 𝑐1 �𝑦(1, 0) −
𝑛
�

𝑖=𝑚+1
𝑎(1, 𝑖)𝑥𝑖� + 𝑐2 �𝑦(2, 0) −

𝑛
�

𝑖=𝑚+1
𝑎(2, 𝑖)𝑥𝑖� +⋯ + 𝑐𝑚 �𝑦(𝑚, 0) −

𝑛
�

𝑖=𝑚+1
𝑎(𝑚, 𝑖)𝑥𝑖� + 𝑐𝑚+1𝑥𝑚+1 +⋯+ 𝑐𝑛𝑥𝑛

Hence

𝐽 =

current 𝐽0value

�������������𝑚
�
𝑖=1
𝑐𝑖𝑦(𝑖, 0) −𝑐1

𝑚
�
𝑖=1
𝑎(1, 𝑖)𝑥𝑖 − 𝑐2

𝑚
�
𝑖=1
𝑎(2, 𝑖)𝑥𝑖 −⋯ − 𝑐𝑚

𝑚
�
𝑖=1
𝑎(𝑚, 𝑖)𝑥𝑖 + 𝑐𝑚+1𝑥𝑚+1 +⋯+ 𝑐𝑛𝑥𝑛

Therefore

𝐽 = 𝐽0 − (−𝑐𝑚+1 + 𝑐1𝑎 (1,𝑚 + 1) + 𝑐2𝑎 (2,𝑚 + 1) +⋯ + 𝑐𝑚𝑎 (𝑚,𝑚 + 1)) 𝑥𝑚+1 − (−𝑐𝑚+1 + 𝑐1𝑎 (2,𝑚 + 1) +⋯ + 𝑐𝑚𝑎 (𝑚,𝑚+)) 𝑥𝑚+2 −⋯ − (−𝑐𝑛 + 𝑐1𝑎 (1, 𝑛) + 𝑐2𝑎 (2, 𝑛) +⋯ + 𝑐𝑚𝑎 (𝑚, 𝑛)) 𝑥𝑛
Define cost coe�cients, for 𝑗 = 𝑚 + 1,⋯ , 𝑛

𝑟𝑗 = 𝑐𝑗 −
𝑚
�
𝑖=1
𝑐𝑖𝑎(𝑖, 𝑗)

1in class, we used 𝑦 (1,𝑚 + 1) etc.. for entries in 𝐴 matrix. I changed it in these notes to 𝑎 (1,𝑚 + 1) etc...
not to confuse myself with the RHS 𝑦 (1, 0), etc.. entries in the 𝑏 vector.

56

2.18. Lecture 18. Thursday, March 17, 2016 CHAPTER 2. CLASS NOTES

Hence

𝐽 = 𝐽0 +
𝑛
�

𝑗=𝑚+1
𝑟𝑗𝑥𝑗

To minimize 𝐽 we need to pick the most negative 𝑟𝑗. This tells us which 𝑥𝑗 we need to bring
into the basis in order to reduce 𝐽. Now we add extra row (last row) which is 𝐽 (𝑢) to the
table, to keep cost in it. Here is the table with the cost coe�cient row added

𝐴

���⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 ⋯ 0 𝑎 (1,𝑚 + 1) ⋯ 𝑎 (1, 𝑛)
⋮ ⋱ ⋮ ⋮ ⋱ ⋯
0 ⋯ 1 𝑎 (𝑚,𝑚 + 1) ⋯ 𝑎 (𝑚, 𝑛)
0 0 0 𝑟𝑚+1 ⋯ 𝑟𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

𝑏

�����������⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑦 (1, 0)
𝑦 (2, 0)
⋮
−𝐽0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

state street vendor example Selling rings and bracelets. Ring has 3 oz. gold., 1 oz. silver.
Bracelet has 1 oz. gold, 2 oz. silver. Profit on ring is $4 and profit on bracelet is $5. Initially
we have 8 oz. gold and 9 0z silver. How many rings and bracelets to produce to maximize
profit? This is the heart of many production problems. Note: we need integer LP to solve
this. But if the quantities are very large, it will make little di�erence. So for now we can
ignore the issue of integer programming.

𝑢1 = number of rings

𝑢2 = number of bracelets

𝐽 (𝑢) = 4𝑢1 + 5𝑢2
Since we want to maximize this, then

𝐽 (𝑢) = −4𝑢1 − 5𝑢2
With 𝑢𝑖 ≥ 0. Constraints are 3𝑢1 + 𝑢2 ≤ 8 and 𝑢1 + 2𝑢2 ≤ 9. We convert to standard LP with
slack variables and make the first table

𝑥1 𝑥2 𝑥3 𝑥4 𝑏

row 1 3 2 1 0 8
row 2 1 2 0 1 9

𝐽 (𝑢) −4 −5 0 0 0

The first basic feasible solution is 𝑥3 = 8, 𝑥4 = 9. To decide which column to bring in, we
see the most negative is column 2 (last row is −5). To find the pivot row, we see it is first

row since min �82 ,
9
2� = {4, 4.5} = 4. Now we do the first stage.

Reader obtain the following

𝑥1 𝑥2 𝑥3 𝑥4 𝑏

row 1 2.5 0 1 −0.5 3.5
row 2 0.5 1 0 0.5 4.5

𝐽 (𝑢) −1.5 0 0 2.5 22.5

Hence 𝑥2 = 4.5, 𝑥3 = 3.5. Since there is still a negative entry in the last row we need to
repeat the process again. We Keep doing this until there are no negative entries in the last
(third) row.

Now we will now talk about how to find the first basic feasible solution. There are two
cases. If the number of slack variables is 𝑚 then first basic feasible solution can be read out.
This means there is no phase one LP. Case two. The number of slack variables is 𝑧 < 𝑚.
Now we need to solve the first phase LP. Then use its result to solve second phase LP. In
phase one, we introduce new artificial variables 𝑦𝑖 as many as 𝑚 − 𝑧 and new artificial cost
function 𝐽 �𝑦� which we want to minimize to zero.

See HW6, first problem for an example of how to solve first phase LP.

57

2.19. Lecture 19. Tuesday, March 22, . . . CHAPTER 2. CLASS NOTES

2.19 Lecture 19. Tuesday, March 22, 2016 (No class)

No class.

58

2.20. Lecture 20. Thursday, March 24, . . . CHAPTER 2. CLASS NOTES

2.20 Lecture 20. Thursday, March 24, 2016 (No class)

No class.

59

2.21. Lecture 21. Tuesday, March 29, 2016 CHAPTER 2. CLASS NOTES

2.21 Lecture 21. Tuesday, March 29, 2016

Coming up soon is the special problem. It is like one HW but can count up to two HW’s
weight. Note: Possible rescheduling for April 6, 2016 remain in place.

2.21.1 Second exam keywords

1. Test two will be more application oriented.

2. local minimum. Strong and weak. We had su�cient conditions. Gradient, Hessian.

3. If we have convexity, we can do much better. If not, we need iterative algorithms.
Line search is central to iterative search. Step size, optimal step size.

4. we looked at steepest descent with and without optimal step size. For simple problems
we can easily find optimal step size.

5. We talked about convergence for iterative algorithms. For steepest descent we talked
about 𝐸𝜃𝑘.

6. We talked about generalized Newton-Raphson. We talked about quadratic conver-
gence. Conjugate direction method has quadratic convergence (we proved this). It will
converge in 𝑁 steps or less, where 𝑁 is A matrix size. Newton-Raphson will converge
in one step for quadratic function. We also talked about superlinear convergence.

7. This brought us to the end of iterative algorithms. Then we went to Linear program-
ming. The number of vertices is large. So trying to check them all is not possible.
Polytope is central to LP. The basic theory of LP

(a) Feasible solutions

(b) Basic solutions

(c) basic and feasible solutions

(d) The method of squashing using 𝜂𝜖

(e) Basic feasible ⇔ extreme points.

(f) Relative cost coe�cients.

8. Then we talked about simplex algorithm.

Now we will start on today lecture. Often a problem is given to you, but it is not an LP
problem. Sometimes it is not obvious how to convert it to an LP problem. Sometime
we need algebra or cleaner reformulation of the problem to make it an LP problem. For
example, in HW6, we had a min-max problem but it is was possible to convert it to an LP
problem. See key solution for HW6.

2.21.2 Application of Linear programming to control problems

Another application area for LP is control. Example is the minimum fuel problem. In this,
we want to go from some state to final state with minimum control e�ort. The control
e�ort is generic name which can mean many things depending on the problem itself. We
also want to do this in minimal time. We begin with the discrete state equation

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘)

With 𝑥(0) given as the initial state. In the above, 𝑥 is an 𝑛 × 1 vector, and 𝐴 is 𝑛 × 𝑛 and 𝐵
is 𝑛 × 𝑚 where 𝑚 is number of inputs, and 𝑢 is 𝑚 × 1 input vector.

We want to select 𝑢(𝑘) sending 𝑥(0) to some target 𝑥∗ at some future time 𝑘 = 𝑁. With 𝑁
being minimal, and control e�ort minimum. Assume for now that 𝑢 is scalar, which means
one input, then an energy measure is

𝑁−1
�
𝑘=0

|𝑢(𝑘)|2

60

2.21. Lecture 21. Tuesday, March 29, 2016 CHAPTER 2. CLASS NOTES

On the other hand, a peak measure is

max{𝑢(𝑘), 𝑘 = 0,… ,𝑁 − 1}

But we will consider the fuel measure given by
𝑁−1
�
𝑘=0

|𝑢(𝑘)|

We will use fuel measure in the LP problem. The constraint is

|𝑢(𝑘)| ≤ 𝑈 (∗)

Which says that control is bounded. Note that is (𝐴, 𝐵) is controllable, we can get from
initial state to final state in one step if we want, but the e�ort will be very large. We also
want 𝑥(𝑁) = 𝑥∗. The above two are the constraints in this problem. The objective function
is

𝐽(𝑢) =
𝑁−1
�
𝑘=0

|𝑢(𝑘)|

Therefore

𝑥(1) =𝐴𝑥(0) + 𝐵𝑢(0)
𝑥(2) =𝐴2𝑥(0) + 𝐴𝐵𝑢(0) + 𝐵𝑢(1)
𝑥(3) =𝐴3𝑥(0) + 𝐴2𝐵𝑢(0) + 𝐴𝐵𝑢(1) + 𝐵𝑢(2)

⋮

𝑥(𝑁) =𝐴𝑁𝑥(0) +
𝑁−1
�
𝑘=0

𝐴𝑁−1−𝑘𝐵𝑢(𝑘)
�����������������������������������
𝑥∗This is the linear constraint

Now we rewrite the constraint |𝑢(𝑘)| ≤ 𝑈 as

𝑢(𝑘) = 𝑢𝑝(𝑘) − 𝑢𝑛(𝑘)

with 𝑢𝑝(𝑘), 𝑢𝑛(𝑘) being positive. The objective function becomes (where we now put 𝑁 as
parameter, to say this is for a specific value of 𝑁

𝐽𝑁(𝑢) =
𝑁−1
�
𝑘=0

|𝑢(𝑘)|

=
𝑁−1
�
𝑘=0

𝑢𝑝(𝑘) + 𝑢𝑛(𝑘)

Equation ∗ above becomes

𝑢𝑝(𝑘) ≤ 𝑈
𝑢𝑛(𝑘) ≤ 𝑈

So minimizing 𝐽𝑁(𝑢) is now an LP problem in 2𝑁 raw variables (we still need to add the
needed slack variables). So by doubling the number of variables, we were able to convert
this control problem to an LP problem. Let

𝑁∗ = inf{𝑁 ∶ 𝐿𝑃𝑁 feasible}

Reader Argue that 𝑙∞ measure also lead to an LP problem. 𝑙∞ measure is max{𝑢(0), 𝑢(1), … }.

Example Let 𝐴 =

⎛
⎜⎜⎜⎜⎜⎝
1 1 − 𝑒−𝑇

0 𝑒−𝑇

⎞
⎟⎟⎟⎟⎟⎠ where 𝑇 = 1 is the sample time. And let 𝐵 =

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠. The bound

on 𝑢(𝑘) = 1. This means 𝑈 = 1. Let 𝑥(0) =

⎛
⎜⎜⎜⎜⎜⎝
−40.91
43.50

⎞
⎟⎟⎟⎟⎟⎠ and let the target 𝑥∗ =

⎛
⎜⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎟⎠. Find 𝑢

∗ and

𝑁∗. Running LP for di�erent values of 𝑁 from 1, … , 4 we find the first feasible solution at

61

2.21. Lecture 21. Tuesday, March 29, 2016 CHAPTER 2. CLASS NOTES

𝑁 = 4. These is the resulting optimal e�ort 𝑢(𝑘)

𝑢(0) = −0.3009
𝑢(1) = −1
𝑢(2) = −0.2999
𝑢(3) = −1

And the corresponding optimal objective function 𝐽∗ = 2.6008. In the above, we have
priorities on minimal time first.

2.21.3 Starting dynamic programming

Now we will start on the next topic, which is dynamic programming. This involves dis-
crete decisions. In this course we will cover only discrete dynamic programming and not
continuous dynamic programming. We will be making sequential decisions in time. For
example, if 𝑢(𝑘) = {−1, 0, 1} then the decision tree will look like

u

1

0

−1

1

0

−1

1

0

−1

. . .

Figure 2.19: decision tree

We will get tree with potentially large number of branches. Combinatories arise. We get the
curse of dimensionality problem again. For dynamic programming, Bellman is considered
the person who originated the subject.

62

2.22. Lecture 22. Thursday, March 31, . . . CHAPTER 2. CLASS NOTES

2.22 Lecture 22. Thursday, March 31, 2016. Second
midterm exam

Exam.

63

2.23. Lecture 23. Tuesday, April 5, 2016 CHAPTER 2. CLASS NOTES

2.23 Lecture 23. Tuesday, April 5, 2016

For steepest descent problem, with optimal step size, max is 1, need to use ‖𝑢𝑘+1 − 𝑢𝑘‖ ≤ 1.

Next we will have special problem. Expect it next week.

Back to dynamic programming. Bellman secret is simple but theory is powerful. Main
things to take from this course are

1. Linear programming.

2. Iterative solutions to optimization problems

3. dynamic programming

2.23.1 First dynamic programming problem, trip from NY to SFO

Suppose we want to take trip from NY to San Francisco, such that the total toll is minimum.
We also must go west at each step we take once we start from NY. Not allowed to go east
direction, even if the cost might be lower.

This diagram shows the possible routes and the cost (toll) for each segment.

NY

DTW

ORD

NSH
8

9

6

NO

4

9

GTY
2

8

12

2

PHX

3

3

6

PTY
5

3

DEN

3

SLC

1

4

2

6

BUTE

SNY

6

LV
5

2

4
6

SFO

SEA

PORT

5

7

3

5

8

4

2

Figure 2.20: NY to SF tree one

Dynamic programming is now used to find optimal route in the above problem. (i.e. the
route with least toll (cost) from NY to SFO). Dynamic programming is based on what if
decisions. Instead of starting from NY and trying every possible route, we instead start
backwards, and ask, what if we were in PORT, which route would we take?

Clearly the only route PORT to SFO with cost of 5 exist. Then we ask, what if we were in
LV, which route would we take? we see it is LV to SFO with cost of 3. Then we ask what if
we were in SNY? Then since LV had cost 3, then the route SNY→ LV→ SFO would be
the one to take, with cost of 2 + 3 = 5. Each time we find the cost from one city to SFO, we
label the city with this cost. We keep moving back to the east, doing the same. When we
arrive all the way to JFK, then we see that the lowest cost is

𝐽∗ = JFK→ NO→ PHX→ LV→ SFO

The following diagram shows the route above, with the cost of moving from each city to
SFO given next to each city name on the diagram.

64

2.23. Lecture 23. Tuesday, April 5, 2016 CHAPTER 2. CLASS NOTES

NY

DTW

ORD

NSH
8

9

6

NO

4

9

GTY
2

8

12

2

PHX

3

3

6

PTY
5

3

DEN

3

SLC

1

4

2

6

BUTE

SNY

6

LV
5

2

4

6
SFO

SEA

PORT

5

7

3

5

8

4

8

9

11

9

13

15

11
8

3

5
6

11

19

5

5

2

Figure 2.21: NY to SF tree two

If we were to solve the above problem using direct evaluation the number of computations is
of order (assuming even 𝑛 is (𝑛−1)!𝑛!

𝑛
2 !
𝑛
2 !

while with dynamic programming method as explained

above, it is 𝑛2

2 + 𝑛. For 20 cities, this given 220 for dynamic programming compare to over
one million computation for the direct approach (trying all the possible routes).

We will only consider discrete dynamic programming. This is an optimization problem.
The variables are not continuous. The variable take in discrete fixed values of choices
each time. These applications are useful for integrate programming problems. An integer
programming problem is much harder than continuous ones with much larger complexity.

When we are given an integer programming problem which is hard, we can try to ap-
proximate it to continuous programming problem and solve it more easily that way. For
example

min
𝑥
𝑐𝑇𝑥 subject to 𝐴𝑥 = 𝑏

where 𝑥 is allowed to be integers, is a hard problem. But if we relax it and allow 𝑥 to take
any value so that the problem becomes continuous, then it will become much easier to
solve using Linear Programming.

There are papers written on when we can approximate integer programming problems as
continuous.

We will be making sequential decisions. 𝑢0, 𝑢1, … , 𝑢𝑁−1 i.e. 𝑁 decisions where 𝑢 ∈ ℝ𝑛. If we
are given a problem which is not sequential, we can treat it as one for this purpose. For
example, the car toll problem above, we formulate it to sequential but we did not have to
do this. But the final answer 𝐽∗ should come out the same no matter how it was formulated
of course.

There will be states 𝑥(𝑘), 𝑘 = 0, 1, … ,𝑁 where 𝑥(𝑁) is the terminal state. The constraints are
state dependent. Because it depends on where we are when making the decision. For the
car toll problem above, the decision depended on which city we were in. We denote the
decision as 𝑢(𝑘) ∈ Ω and the state equation is

𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘), 𝑘)

and the objective function is

𝐽(𝑢) =
𝑁−1
�
𝑘=0

𝐽(𝑥(𝑘), 𝑢(𝑘), 𝑘)
�����������������������

stage cost

+ 𝜓(𝑥(𝑁))���������
terminal cost

The terminal cost, is a cost applied once we reach the terminal state.

65

2.23. Lecture 23. Tuesday, April 5, 2016 CHAPTER 2. CLASS NOTES

2.23.2 Subproblem in dynamic programming

Now we need to define a subproblem. Notion of subproblem: Will begin at 𝑘 = 𝐿 and will
be in state 𝑥(𝐿). The cost when in state 𝐿 is therefore

𝐽𝐿(𝑢) =
𝑁−1
�
𝑘=𝐿

𝐽(𝑥(𝑘), 𝑢(𝑘), 𝑘) + 𝜓(𝑥(𝑁))

Suppose 𝑢∗ is the optimal decision when we are at state 𝑥(𝑘). Let 𝑥∗𝑘 be the optimal trajectory
from 𝑥(𝑘). i.e. 𝑥∗(𝑘) is corresponding state path beginning at given 𝑥(0). Hence

𝑥∗(𝑘 + 1) = 𝑓(𝑥∗(𝑘), 𝑢∗(𝑘), 𝑘), 𝑘 = 0, 1, … ,𝑁 − 1

2.23.3 Bellman principle of optimality

If the subproblem begins at 𝑥(𝐿) = 𝑥∗(𝐿) i.e. we being subproblem along optimal trajectory
of the original problem, then 𝑢∗(𝐿), 𝑢∗(𝐿 + 1), … , 𝑢∗(𝑁 − 1) is optimal for the subproblem.

What all this means, is that if the subproblem is optimal, then its trajectory has to be
part of the overall problem optimal trajectory. An optimal subproblem, can not become
sub-optimal when viewed as part of the main problem.

66

2.24. Lecture 24. Thursday, April 7, 2016 . . . CHAPTER 2. CLASS NOTES

2.24 Lecture 24. Thursday, April 7, 2016 (No class)

No class.

67

2.25. Lecture 25. Tuesday, April 12, 2016 CHAPTER 2. CLASS NOTES

2.25 Lecture 25. Tuesday, April 12, 2016

The first part of the lecture was on describing the special problem we have to do. This
is described in the special problem HW itself included in HW chapters, under special
problem.

2.25.1 Dynamic programming state equation

Now we go back to dynamic programming. The state equation is

𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘) , 𝑢 (𝑘) , 𝑘) 𝑘 = 0, 1,⋯𝑁 and 𝑢 (𝑘) ∈ Ω𝑘

And the objective function is

𝐽 = Ψ (𝑥 (𝑁)) +
𝑁−1
�
𝑘=0

𝐽𝑘 (𝑥 (𝑘) , 𝑢 (𝑘))

Where Ψ(𝑥 (𝑁)) is the cost of the terminal stage.

N0 1 . . . k . . .
L

terminal stage

x(k)x(k − L) x(N)

x(N − 1)

We always start from this stage,
and move left, using the Ballman
dynamic equations

initial state

Figure 2.22: Showing dynamic programming block diagram

2.25.2 Subproblems and principle of optimality (POO)

A subproblem is defined at intermediate point.

P.O.O. (principle Of optimality): if initial state of a subproblem is on the optimal trajectory
of original problem, then the subproblem is also optimal.

Proof by contradiction Let

𝑢 (𝑘) =

⎧⎪⎪⎨
⎪⎪⎩

𝑢∗ (𝑘) 𝑘 = 0,⋯ , 𝐿 − 1
𝑢∗𝑛𝑒𝑤 (𝑘) 𝑘 = 𝐿,⋯𝑁 − 1

Plug the above in the original problem. We will get a suboptimal solution.

Translating POO. to dynamic programming.

𝐼 (𝑥 (𝑁 − 1) , 1) = min
𝑢(𝑁−1)∈Ω𝑁−1

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cost of one step

�����������������������������𝐽 (𝑥 (𝑁 − 1) , 𝑢 (𝑁 − 1)) + Ψ (𝑥 (𝑁))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

The above is the optimal cost with one step to terminal stage. This is similar to what we
did for the routing problem from NY to San Francisco before. The above is when we are
standing in Portland and looking for the last step to take to San Francisco.

To minimize the above, we have to express everything in the same state 𝑥 (𝑁 − 1). So we
write the above, using the state equation, as

𝐼 (𝑥 (𝑁 − 1) , 1) = min
𝑢(𝑁−1)∈Ω𝑁−1

�𝐽 (𝑥 (𝑁 − 1) , 𝑢 (𝑁 − 1)) + Ψ �𝑓 (𝑥 (𝑁 − 1) , 𝑢 (𝑁 − 1))�� (1)

68

2.25. Lecture 25. Tuesday, April 12, 2016 CHAPTER 2. CLASS NOTES

Now we find 𝑢∗ (𝑁 − 1) of the above, using
𝑑𝐼 (𝑥 (𝑁 − 1) , 1)
𝑑𝑢 (𝑁 − 1)

=
𝑑

𝑑𝑢 (𝑁 − 1)
𝐽 (𝑥 (𝑁 − 1) , 𝑢 (𝑁 − 1)) + Ψ �𝑓 (𝑥 (𝑁 − 1) , 𝑢 (𝑁 − 1))� = 0

And solve for 𝑢 (𝑁 − 1) using standard calculus. Once we find 𝑢∗ (𝑁 − 1) , we plug it back
into (1) and obtain

𝐼∗ (𝑥 (𝑁 − 1) , 1) = 𝐽 (𝑥 (𝑁 − 1) , 𝑢∗ (𝑁 − 1)) + Ψ �𝑓 (𝑥 (𝑁 − 1) , 𝑢∗ (𝑁 − 1))�

Notice now there is no min𝑢(𝑁−1)∈Ω𝑁−1 since we already done this. We now apply POO.
again to find cost from stage 𝑁 − 2

𝐼 (𝑥 (𝑁 − 2) , 2) = min
𝑢(𝑁−2)∈Ω𝑁−2

{𝐽 (𝑥 (𝑁 − 2) , 𝑢 (𝑁 − 2)) + 𝐼∗ (𝑥 (𝑁 − 1) , 1)}

Notice the di�erence now. For all stages back, beyond 𝑁 − 1, we use the cost found from
the ahead stage, which is 𝐼∗ (𝑥 (𝑁 − 1) , 1) in the above case. We now repeat the process, and
find optimal 𝑢∗ (𝑥 (𝑁 − 2) , 2). See HW 7, problem 2 for detailed example how to do this.
More generally,

𝐼 (𝑥 (𝐿) , 𝑁 − 𝐿) = min
𝑢(𝐿)∈Ω𝐿

{𝐽 (𝑥 (𝐿) , 𝑢 (𝐿)) + 𝐼∗ (𝑥 (𝐿 + 1) ,𝑁 − 𝐿 − 1)}

The above is called the dynamic programming equation.

69

2.26. Lecture 26. Thursday, April 14, 2016 CHAPTER 2. CLASS NOTES

2.26 Lecture 26. Thursday, April 14, 2016

2.26.1 Stages in dynamic programming

At stage 𝐿 the optimal cost from stage 𝐿 with 𝑁 − 𝐿 steps to go is

𝐼 (𝑥𝐿, 𝑁 − 𝐿) = min
𝑢(𝑁−𝐿)∈Ω𝐿

{𝐽 (𝑥𝐿, 𝑢 (𝐿)) + 𝐼 (𝑥𝐿+1, 𝑁 − (𝐿 + 1))}

With appropriate initialization.

Some comments: The trickiest part is how to use this equation. Must be careful. Think of
𝑢 (𝐿) as feedback. We call the optimal 𝑢∗ (𝐿) .

Warning. There is a constraint on 𝑢. Do not use derivative to find optimal without being
careful about the limits and constraints. For example, if |𝑢 (𝐿)| ≤ 1 and we have quadratic
form. We will now use an example to show how to use these equations. Let

𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘 (1)

Where 𝑢𝑘 is free to take any value. Let the objective function be

𝐽 (𝑥𝑘, 𝑢𝑘) =
𝑁−1
�
𝑘=0

(𝑥𝑘+1 − 𝑢𝑘)
2 + 𝑢2𝑘 (2)

Reflecting a simple tracking mechanism. We always start at 𝑥 (𝑁 − 1) with one stage to go.
Hence the optimal cost from 𝑥𝑁−1 with one step to go is

𝐼 (𝑥𝑁−1, 1) = min
𝑢(𝑁−1)∈Ω1

{𝐽 (𝑥𝑁−1, 𝑢𝑁−1) + Ψ (𝑥𝑁)}

Ψ (𝑥𝑁) is the terminal cost. Let us now remove it from the rest of the computation to
simplify things. We also replace 𝐽 in the above from (2) and obtain

𝐼 (𝑥𝑁−1, 1) = min
𝑢(𝑁−1)

��𝑥((𝑁−1)+1) − 𝑢𝑁−1�
2
+ 𝑢2𝑁−1�

= min
𝑢(𝑁−1)

�(𝑥𝑁 − 𝑢𝑁−1)
2 + 𝑢2𝑁−1�

= min
𝑢(𝑁−1)

�(𝑥𝑁 − 𝑢𝑁−1)
2 + 𝑢2𝑁−1�

We want everything in terms of 𝑥𝑁−1. So we use (1) to write 𝑥𝑁 = 𝑥𝑁−1 − 𝑢𝑁−1 and plug it
back in the last equation above to obtain

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1

�(𝑥𝑁−1 − 𝑢𝑁−1 − 𝑢𝑁−1)
2 + 𝑢2𝑁−1�

= min
𝑢𝑁−1

�(𝑥𝑁−1 − 2𝑢𝑁−1)
2 + 𝑢2𝑁−1� (3)

Only now to take derivative, in order to find 𝑢∗𝑁−1. therefore

𝑑𝐼 (𝑥𝑁−1, 1)
𝑢𝑁−1

= 0

2 (𝑥𝑁−1 − 2𝑢𝑁−1) (−2) + 2𝑢𝑁−1 = 0

𝑢∗𝑁−1 =
2
5
𝑥𝑁−1

Now that we found the optimal 𝑢∗𝑁−1 we go back to (3) and replace 𝑢𝑁−1 in (3) by 𝑢∗𝑁−1.
Hence

𝐼 (𝑥𝑁−1, 1) = �𝑥𝑁−1 − 2 �
2
5
𝑥𝑁−1��

2

+ �
2
5
𝑥𝑁−1�

2

=
1
5
𝑥2𝑁−1

Now we backup one step. We need to find

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2

{𝐽 (𝑥𝑁−2, 𝑢𝑁−1) + 𝐼 (𝑥𝑁−1, 1)} (4)

Notice that we used 𝐼 (𝑥𝑁−1, 1) in place of what we had before, which was the terminal cost
Ψ(𝑥 (𝑁)). Since now we are two steps behind. All the work before was for finding optimal
𝐼 (𝑥𝑁−1, 1). So now (4) becomes

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2

�𝐽 (𝑥𝑁−1, 𝑢𝑁−1) +
1
5
𝑥2𝑁−1� (5)

70

2.26. Lecture 26. Thursday, April 14, 2016 CHAPTER 2. CLASS NOTES

But from (2)

𝐽 (𝑥𝑁−1, 𝑢𝑁−2) = (𝑥𝑁−1 − 𝑢𝑁−2)
2 + 𝑢2𝑁−2

Hence (5) becomes

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2

�(𝑥𝑁−1 − 𝑢𝑁−2)
2 + 𝑢2𝑁−2 +

1
5
𝑥2𝑁−1�

We need to use the state equation 𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘 to rewrite 𝑥𝑁−1 in the above, since we want
everything in 𝑁 − 2 terms. Therefore the above becomes

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2

�((𝑥𝑁−2 − 𝑢𝑁−2) − 𝑢𝑁−2)
2 + 𝑢2𝑁−2 +

1
5
(𝑥𝑁−2 − 𝑢𝑁−2)

2�

= min
𝑢𝑁−2

�
26
5
𝑢2𝑁−2 −

22
5
𝑢𝑁−2𝑥𝑁−2 +

6
5
𝑥2𝑁−2� (6)

Now we take derivative, to find 𝑢∗𝑁−2

𝑑𝐼 (𝑥𝑁−2, 2)
𝑢𝑁−2

= 0

52
5
𝑢𝑁−2 −

22
5
𝑥𝑁−2 = 0

𝑢∗𝑁−2 =
11
26
𝑥𝑁−2

Now that we found the optimal 𝑢∗𝑁−2, we go back to (6) and replace 𝑢𝑁−2 there with 𝑢∗𝑁−2

𝐼 (𝑥𝑁−2, 2) =
26
5 �

11
26
𝑥𝑁−2�

2

−
22
5 �

11
26
𝑥𝑁−2� 𝑥𝑁−2 +

6
5
𝑥2𝑁−2

=
7
26
𝑥2𝑁−2

Reader Carry out one more stage and obtain 𝐽∗ = (𝑥 (0) , 3)

Answer

𝐼 (𝑥𝑁−3, 3) = min
𝑢𝑁−3

{𝐽 (𝑥𝑁−3, 𝑢𝑁−3) + 𝐼 (𝑥𝑁−2, 2)}

= min
𝑢𝑁−3

�𝐽 (𝑥𝑁−3, 𝑢𝑁−3) +
7
26
𝑥2𝑁−2�

But from (2) 𝐽 (𝑥𝑁−3, 𝑢𝑁−3) = (𝑥𝑁−2 − 𝑢𝑁−3)
2 + 𝑢2𝑁−3, hence the above becomes

𝐼 (𝑥𝑁−3, 3) = min
𝑢𝑁−3

�(𝑥𝑁−2 − 𝑢𝑁−3)
2 + 𝑢2𝑁−3 +

7
26
𝑥2𝑁−2�

We need to use the state equation 𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘 to rewrite 𝑥𝑁−2 in the above, since we want
everything in 𝑁 − 3 terms. Therefore the above becomes

𝐼 (𝑥𝑁−3, 3) = min
𝑢𝑁−3

�((𝑥𝑁−3 − 𝑢𝑁−3) − 𝑢𝑁−3)
2 + 𝑢2𝑁−3 +

7
26
(𝑥𝑁−3 − 𝑢𝑁−3)

2�

= min
𝑢𝑁−3

�
137
26
𝑢2𝑁−3 −

59
13
𝑢𝑁−3𝑥𝑁−3 +

33
26
𝑥2𝑁−3� (7)

Now we take derivative, to find 𝑢∗𝑁−3

𝑑𝐼 (𝑥𝑁−3, 3)
𝑢𝑁−3

= 0

274
26

𝑢𝑁−3 −
59
13
𝑥𝑁−3 = 0

𝑢∗𝑁−3 =
59
137

𝑥𝑁−3

Replace this back in (7)

𝐼 (𝑥𝑁−3, 3) =
137
26 �

59
137

𝑥𝑁−3�
2

−
59
13 �

59
137

𝑥𝑁−3� 𝑥𝑁−3 +
33
26
𝑥2𝑁−3

=
40
137

𝑥2𝑁−3

71

2.26. Lecture 26. Thursday, April 14, 2016 CHAPTER 2. CLASS NOTES

Let us do one more one, 𝑁 = 4.

𝐼 (𝑥𝑁−4, 4) = min
𝑢𝑁−4

{𝐽 (𝑥𝑁−4, 𝑢𝑁−4) + 𝐼 (𝑥𝑁−3, 3)}

= min
𝑢𝑁−4

�𝐽 (𝑥𝑁−4, 𝑢𝑁−4) +
40
137

𝑥2𝑁−3�

But from (2) 𝐽 (𝑥𝑁−4, 𝑢𝑁−4) = (𝑥𝑁−3 − 𝑢𝑁−4)
2 + 𝑢2𝑁−4, hence the above becomes

𝐼 (𝑥𝑁−4, 4) = min
𝑢𝑁−4

�(𝑥𝑁−3 − 𝑢𝑁−4)
2 + 𝑢2𝑁−4 +

40
137

𝑥2𝑁−3�

We need to use the state equation 𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘 to rewrite 𝑥𝑁−3 in the above, since we want
everything in 𝑁 − 4 terms. Therefore the above becomes

𝐼 (𝑥𝑁−4, 4) = min
𝑢𝑁−4

�((𝑥𝑁−4 − 𝑢𝑁−4) − 𝑢𝑁−4)
2 + 𝑢2𝑁−4 +

40
137

(𝑥𝑁−4 − 𝑢𝑁−4)
2�

= min
𝑢𝑁−4

�
725
137

𝑢2𝑁−4 −
628
137

𝑢𝑁−4𝑥𝑁−4 +
177
137

𝑥2𝑁−4� (8)

Now we take derivative, to find 𝑢∗𝑁−4

𝑑𝐼 (𝑥𝑁−4, 4)
𝑢𝑁−4

= 0

1450
137

𝑢𝑁−4 −
628
137

𝑥𝑁−4 = 0

𝑢∗𝑁−4 =
314
725

𝑥𝑁−4

Therefore (8) becomes

𝐼 (𝑥𝑁−4, 4) =
725
137 �

314
725

𝑥𝑁−4�
2

−
628
137 �

314
725

𝑥𝑁−4� 𝑥𝑁−4 +
177
137

𝑥2𝑁−4

=
217
725

𝑥2𝑁−4

A table of the summary

𝐿 𝐼 (𝑥𝑁−𝐿, 𝐿)

1 0.2 𝑥2𝑁−1

2 0.2692 𝑥2𝑁−2

3 0.29197 𝑥2𝑁−3

4 0.29931 𝑥2𝑁−4

So for 𝑁 = 4

𝐿 𝐼 (𝑥4−𝐿, 𝐿)

1 0.2 𝑥23
2 0.2692 𝑥22
3 0.29197 𝑥21
4 0.29931 𝑥20

Using 𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘 to write everything in terms of 𝑥0

𝐿 𝐼 (𝑥4−𝐿, 𝐿)

1 0.2 (((𝑥0 − 𝑢0) − 𝑢1) − 𝑢2)
2

2 0.2692 ((𝑥0 − 𝑢0) − 𝑢1)
2

3 0.29197 𝑥21 (𝑥0 − 𝑢0)
2

4 0.29931 𝑥20

So total cost is

𝐼 = 0.2 (((𝑥0 − 𝑢0) − 𝑢1) − 𝑢2)
2 + 0.2692 ((𝑥0 − 𝑢0) − 𝑢1)

2 + 0.29197 𝑥21 (𝑥0 − 𝑢0)
2 + 0.29931 𝑥20

This example is special case of LQR. What happens in this example above, or more

72

2.26. Lecture 26. Thursday, April 14, 2016 CHAPTER 2. CLASS NOTES

generally when 𝑁 → ∞ ? As 𝑁 → ∞ we will see later that the feedback gains become time
invariant. This is called steady state LQR and will we arrive at the Riccati equations.

2.26.2 Allocation problem, applying DP to investment problem

Next example is allocation problem We will do it in two steps. We can solve this without
using D.P. but will use D.P. to illustrate the method. Consider two investments.

1. Invest $1 in real estate, with return of $2.

2. Invest $1 in oil, with return of $4.

Let say with start with fixed amount of money 𝑘 dollars. We have constraint: 𝑏𝑟 is maximum
allowed amount of investment in real estate, 𝑏𝑜 is the maximum amount allowed for oil
investment. To avoid trivial solution, assume also that 𝑏𝑟+𝑏𝑜 > 𝑘. Let 𝑢𝑟 the amount invested
in real estate, and let 𝑢𝑜 amount invested in oil.

Common sense solution is 𝑢∗0 = 𝑘 − 𝑏𝑜 and 𝑢∗1 = 𝑏𝑜 since investment in oil has higher return.
𝑢1 is investment in oil, and 𝑢0 is investment in real estate. Let do this using D.P. The
objective function is

𝐽 (𝑢) = 2𝑢0 + 4𝑢1
And the state equation is (we only have two states 𝑥1, 𝑥0)

𝑥1 = 𝑥0 − 𝑢0
Initial state is 𝑥0 = 𝑘 which is the money we have at the start. There are two stages. Hence
𝑁 = 2. We start with

𝐼 (𝑥𝑁−1, 1) = 𝐼 (𝑥1, 1)
= max

𝑢1∈Ω1
{𝐽 (𝑢)}

i.e. we assume we have one stage to go, and that we have made initial investment in real
estate and now we are making investment in oil. Hence

Ω1 = [0⋯min {𝑏𝑜, 𝑥1}]
Hence 𝑢∗1 = min {𝑏𝑜, 𝑥1} and

𝐼 (𝑥1, 1) = 4min {𝑏𝑜, 𝑥1}
Now backup one step.

𝐼 (𝑥0, 2) = max
𝑢0∈Ω0

{𝐽 (𝑢) + 𝐼 (𝑥1, 1)}

= max
𝑢0∈Ω0

{2𝑢0 + 4min {𝑏𝑜, 𝑥1}}

Where Ω0 = [0⋯𝑏𝑜] . Therefore since 𝑥1 = 𝑥0 − 𝑢0 the above becomes

𝐼 (𝑥0, 2) = max
𝑢0∈Ω0

{2𝑢0 + 4min {𝑏𝑜, 𝑥0 − 𝑢0}}

Let

𝐹 (𝑢0) = 2𝑢0 + 4min {𝑏𝑜, 𝑥0 − 𝑢0}
= 2𝑢0 + 4min {𝑏𝑜, 𝑘 − 𝑢0}

Find the maximum using graphics method. This gives 𝑢∗𝑜 = 𝑘 − 𝑏𝑜 which is the same using
the common sense approach.

The following diagram shows the solution of the above using the dynamic graph method.

73

2.26. Lecture 26. Thursday, April 14, 2016 CHAPTER 2. CLASS NOTES

stage 1 (invest in real estate)

x = k

invest nothing

0
x = k

invest all we can (b0)

2b0 x = k − b0

x = k − b1

invest nothing

0
x = k − b1

Invest all we can. What is
left must be less than or
equal than b0and it can not
be larger than b0

2(k − b1)
x = 0

x = k

stage 0 (invest in oil)

invest nothing

0

2b0

2(k − b1)invest all we can (b1)

4b1

The constriants are

b0 + b1 > k

b0 ≤ k

b1 ≤ k

Note also, if we invest b1 in stage 0, what is left is k − b1 and this amount can not be larger than b0. It can only be
equal or less than b0.
The maximum path is taken by investing b1 in stage zero, and then investing what is left in stage one. This is
becuase we had to decide if 2b0 is larger than 4b1 + 2(k − b1) to decide which path to take.
It is clear than 2b1 + 2k ≥ 2b0 since k ≥ b0, hence the path selected is the one shown.
In the above, b1 is amount to invest in oil and b0 is amount to invest in real estate, and k is maximum total amount
we allowed to invest.

Figure 2.23: Solution to the oil and real estate problem using Branch and Bound
graph method

74

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

2.27 Lecture 27. Tuesday, April 19, 2016

2.27.1 LQR and dynamic programming

In the following, some of the terms were re-written with the index being as subscript, as it
is easier to see on the screen, Hence instead of 𝑥 (𝑘) as was done in the lecture, it becomes
𝑥𝑘 and 𝑢 (𝑘) becomes 𝑢𝑘 and so on.

Now we start with the state equation

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘

In the above, 𝐴 is 𝑛 × 𝑛 and 𝐵 is 𝑛 × 𝑚 where 𝑚 is the number of inputs, and 𝑢𝑘 is column
vector of size 𝑚, and similarly for 𝑥𝑘+1 and 𝑥𝑘. In continuous time, the above is

�̇� (𝑡) = 𝐴𝑥 (𝑡) + 𝐵𝑢 (𝑡)

We can also allow time varying 𝐴,𝐵 in the above, but in this discussion we assumed these
are constant matrices. The goal is to make 𝑥 (𝑘) track, or approach some desired 𝑥𝑑 (𝑘) with
as little e�ort 𝑢 (𝑘) as possible (what about also as fast as possible at same time?). 𝑢 (𝑘) is
called the control e�ort. This diagram illustrates this

k

xd(k) desired path

x(k)

actual path

0 1 N. . .

Figure 2.24: Goal is to track desired path

When 𝑥𝑑 (∞) = 0, this means we want to bring the system to stable state. We want now
to quantify the goal 𝐽 (𝑢). So the problem is to bring the state 𝑥 (𝑘) to zero using as small
e�ort 𝑢 as possible. We write the cost 𝐽 (𝑢) as

𝐽 (𝑢) =
𝑁−1
�
𝑘=0

𝑥𝑇𝑘+1𝑄𝑥𝑘+1 + 𝑢𝑇𝑘𝑅𝑢𝑘

This is just something we have to accept as given. We did not derive this, but it makes
sense. Notice for example, when 𝑥 (𝑘) is small, then 𝐽 (𝑢) is small. But from now on, we just
use the above as given. In the above, 𝑄 and 𝑅 are called weighting matrices. For example,
if 𝑢 (1) is more important than 𝑢 (2), we adjust the values in 𝑄 to reflect di�erent weights we
want to assign. In the above, 𝑄 is 𝑛 ×𝑚 and 𝑅 is 𝑚×𝑚. Both 𝑄 and 𝑅 are positive definite
and symmetric. Now we start using the Bellman dynamic equations.

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1∈Ω𝑁−1

{𝐽 (𝑥𝑁−1, 𝑢𝑁−1) ,Ψ (𝑥𝑁)}

= min
𝑢𝑁−1∈Ω𝑁−1

�𝑥𝑇𝑁𝑄𝑥𝑁 + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1� (1)

We ignore the terminal cost Ψ(𝑥𝑁) for now. Be careful with the indices. Notice in the above,
after replacing 𝐽 (𝑢), that 𝑥 has index 𝑁 and the 𝑢 has the 𝑁 − 1 index on it. This is due to
how 𝐽 (𝑢) is given to us to use, which has 𝑥𝑘+1 in it already. EQ (1) is our starting point. Now
we start applying the dynamic equations recursively. First , we replace the state equation
in the above and obtain

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1∈Ω𝑁−1

�(𝐴𝑥𝑁−1 + 𝐵𝑢𝑁−1)
𝑇𝑄 (𝐴𝑥𝑁−1 + 𝐵𝑢𝑁−1) + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1� (2)

Notice that now all indices on 𝑥 are𝑁−1, this is because the state equation being 𝑥𝑘+1 = 𝐴𝑥𝑘+
𝐵𝑢𝑘. Notice that (2) is quadratic in 𝑢𝑁−1. This is important. Doing one more simplification

75

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

on (2) gives (where the leading min𝑢𝑁−1∈Ω𝑁−1 is now removed, just to make the equations
fit), but it is assumed to be on each equation on what follows

𝐼 (𝑥𝑁−1, 1) = �(𝐴𝑥𝑁−1)
𝑇 + (𝐵𝑢𝑁−1)

𝑇�𝑄 (𝐴𝑥𝑁−1 + 𝐵𝑢𝑁−1) + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1
= �𝑥𝑇𝑁−1𝐴𝑇 + 𝑢𝑇𝑁−1𝐵𝑇�𝑄 (𝐴𝑥𝑁−1 + 𝐵𝑢𝑁−1) + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1
= �𝑥𝑇𝑁−1𝐴𝑇𝑄 + 𝑢𝑇𝑁−1𝐵𝑇𝑄� (𝐴𝑥𝑁−1 + 𝐵𝑢𝑁−1) + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1
= �𝑥𝑇𝑁−1𝐴𝑇𝑄 + 𝑢𝑇𝑁−1𝐵𝑇𝑄� (𝐴𝑥𝑁−1) + �𝑥𝑇𝑁−1𝐴𝑇𝑄 + 𝑢𝑇𝑁−1𝐵𝑇𝑄� (𝐵𝑢𝑁−1) + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1
= 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1 + 𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐵𝑢𝑁−1 + 𝑢𝑇𝑁−1𝐵𝑇𝑄𝐵𝑢𝑁−1 + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1
= �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐵𝑢𝑁−1 + 𝑢𝑇𝑁−1𝑅𝑢𝑁−1� + 𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐵𝑢𝑁−1 + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1
= 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐵𝑢𝑁−1� + �𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1�

= 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + �(𝑄𝐵𝑢𝑁−1)
𝑇 �𝑥𝑇𝑁−1𝐴𝑇�

𝑇
�
𝑇

� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + �(𝑄𝐵𝑢𝑁−1)
𝑇 (𝐴𝑥𝑁−1)�

𝑇
� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + ��𝑢𝑇𝑁−1 (𝑄𝐵)
𝑇� (𝐴𝑥𝑁−1)�

𝑇
� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + �𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝑇� (𝐴𝑥𝑁−1)�
𝑇
� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝑇𝐴𝑥𝑁−1�
𝑇
� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

But 𝑄𝑇 = 𝑄 and the above becomes

𝐼 (𝑥𝑁−1, 1) = 𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1�
𝑇
�

+ 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1 (2)

Using

𝐻 =
1
2
�𝐻 + 𝐻𝑇�

On the middle term �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 + �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1�
𝑇
�, where 𝐻 = 𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1 re-

duces (2) to

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1∈Ω𝑁−1

�𝑢𝑇𝑁−1 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + 2 �𝑢𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1� (3)

The above is in the form 𝐼 = 𝑎1𝑢2 + 2𝑎2𝑢 + 𝑎3, therefore it is quadratic in 𝑢𝑁−1. Taking
derivative w.r.t. 𝑢𝑁−1 since this is what we are minimizing 𝐼 with respect to, we obtain from
(3)

𝜕𝐼 (𝑥𝑁−1, 1)
𝜕𝑢𝑁−1

= 0

0 = 2 �𝐵𝑇𝑄𝐵 + 𝑅� 𝑢𝑁−1 + 2 �𝐵𝑇𝑄𝐴𝑥𝑁−1�

𝑅 is positive definite, and 𝑄 is positive definite. Solving for 𝑢𝑁−1 gives

𝑢∗𝑁−1 = − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
�𝐵𝑇𝑄𝐴𝑥𝑁−1�

= − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇𝑄𝐴𝑥𝑁−1 (4)

Reader �𝐵𝑇𝑄𝐵 + 𝑅� is the Hessian. Show it is positive definite matrix. Since the Hessian
is P.D., then 𝑢∗𝑁−1 is global min. Eq (4) is linear feedback on state (𝑁 − 1). i.e. we write

𝑢∗ (𝑁 − 1) = 𝐾 (𝑁 − 1) 𝑥 (𝑁 − 1)

Where 𝐾 (𝑁 − 1) is called the gain matrix which is

𝐾 (𝑁 − 1) = − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇𝑄𝐴

In all the expressions below, we see the term �𝐵𝑇𝑄𝐵 + 𝑅� repeating. So to simplify things
and make the equations smaller, let

Φ = 𝐵𝑇𝑄𝐵 + 𝑅

Hence

𝐾 (𝑁 − 1) = −Φ−1𝐵𝑇𝑄𝐴
76

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

And therefore

𝑢∗𝑁−1 = �−Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1

= − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇𝑄𝐴𝑥𝑁−1

Now we go back to (3) and replace the 𝑢𝑁−1 in that expression with 𝑢∗𝑁−1 we found in (4).
(we remove the min𝑢𝑁−1∈Ω𝑁−1 we had in (3), since it is now the minimum)

𝐼∗ (𝑥𝑁−1, 1) = 𝑢∗𝑇𝑁−1Φ𝑢∗𝑁−1 + 2 �𝑢∗𝑇𝑁−1𝐵𝑇𝑄𝐴𝑥𝑁−1� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= ��−Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1�
𝑇
Φ�−Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1

+ 2 ��−Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1�
𝑇
�𝐵𝑇𝑄𝐴𝑥𝑁−1� + 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= −𝑥𝑇𝑁−1 �Φ−1𝐵𝑇𝑄𝐴�
𝑇
Φ�−Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1 − 2𝑥𝑇𝑁−1 �Φ−1𝐵𝑇𝑄𝐴�

𝑇
�𝐵𝑇𝑄𝐴𝑥𝑁−1�

+ 𝑥𝑇𝑁−1𝐴𝑇𝑄𝐴𝑥𝑁−1

= 𝑥𝑇𝑁−1 ��Φ−1𝐵𝑇𝑄𝐴�
𝑇
�𝐵𝑇𝑄𝐴� − 2 �Φ−1𝐵𝑇𝑄𝐴�

𝑇
�𝐵𝑇𝑄𝐴� + 𝐴𝑇𝑄𝐴� 𝑥𝑁−1

= 𝑥𝑇𝑁−1 ��𝐵𝑇𝑄𝐴�
𝑇
�Φ−1�

𝑇
�𝐵𝑇𝑄𝐴� − 2 �𝐵𝑇𝑄𝐴�

𝑇
�Φ−1�

𝑇
�𝐵𝑇𝑄𝐴� + 𝐴𝑇𝑄𝐴� 𝑥𝑁−1

= 𝑥𝑇𝑁−1 �(𝑄𝐴)
𝑇 𝐵 �Φ−1�

𝑇
�𝐵𝑇𝑄𝐴� − 2 (𝑄𝐴)𝑇 𝐵 �Φ−1�

𝑇
�𝐵𝑇𝑄𝐴� + 𝐴𝑇𝑄𝐴� 𝑥𝑁−1

= 𝑥𝑇𝑁−1 �𝐴𝑇𝑄𝑇𝐵 �Φ−1�
𝑇
�𝐵𝑇𝑄𝐴� − 2𝐴𝑇𝑄𝑇𝐵 �Φ−1�

𝑇
�𝐵𝑇𝑄𝐴� + 𝐴𝑇𝑄𝐴� 𝑥𝑁−1

But 𝑄 = 𝑄𝑇 and �Φ−1�
𝑇
= Φ−1. Note that Φ is the Hessian matrix, and it is positive

definite, and assumed symmetric. That is why �Φ−1�
𝑇
= Φ−1. But we did not proof this. It

was a reader to show this is positive definite. The above therefore becomes

𝐼∗ (𝑥𝑁−1, 1) = 𝑥𝑇𝑁−1 �𝐴𝑇𝑄𝐵Φ−1𝐵𝑇𝑄𝐴 − 2𝐴𝑇𝑄𝑇𝐵Φ−1𝐵𝑇𝑄𝐴 + 𝐴𝑇𝑄𝐴� 𝑥𝑁−1

= 𝑥𝑇𝑁−1 �𝐴𝑇𝑄 − 𝐴𝑇𝑄𝐵Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1

= 𝑥𝑇𝑁−1𝐴𝑇𝑄�𝐼 − 𝐵Φ−1𝐵𝑇𝑄𝐴� 𝑥𝑁−1

= 𝑥𝑇𝑁−1𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴𝑥𝑁−1

Let

𝑀𝑁−1 = 𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴

Then

𝐼∗ (𝑥𝑁−1, 1) = 𝑥𝑇𝑁−1𝑀𝑁−1𝑥𝑁−1

Now that we found 𝐼∗ (𝑥𝑁−1, 1), we go back one more step

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2∈Ω𝑁−2

{𝐽 (𝑥𝑁−2, 𝑢𝑁−2) + 𝐼∗ (𝑥𝑁−1, 1)}

= min
𝑢𝑁−2∈Ω𝑁−2

�𝑥𝑇𝑁−1𝑄𝑥𝑁−1 + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2 + 𝐼∗ (𝑥𝑁−1, 1)�

= min
𝑢𝑁−2∈Ω𝑁−2

�𝑥𝑇𝑁−1𝑄𝑥𝑁−1 + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2 + 𝑥𝑇𝑁−1𝑀𝑁−1𝑥𝑁−1�

= min
𝑢𝑁−2∈Ω𝑁−2

�𝑥𝑇𝑁−1 (𝑄 +𝑀𝑁−1) 𝑥𝑁−1 + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2� (6)

Think of (𝑄 +𝑀𝑁−1) as the new 𝑄 matrix at stage 𝑁 − 2. We need to replace everything to
be at 𝑁 − 2 stage, using the state equation 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 then

𝑥𝑁−1 = 𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2

Hence (6) becomes

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2∈Ω𝑁−2

�(𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2)
𝑇 (𝑄 +𝑀𝑁−1) (𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2) + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2�

As above, remove min𝑢𝑁−2∈Ω𝑁−2 in what follows so that equations fit on the page and let

𝑄′ = 𝑄 +𝑀𝑁 − 1

77

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

Then

𝐼 (𝑥𝑁−2, 2) = �(𝐴𝑥𝑁−2)
𝑇 + (𝐵𝑢𝑁−2)

𝑇�𝑄′ (𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2) + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2
= �(𝐴𝑥𝑁−2)

𝑇𝑄′ + (𝐵𝑢𝑁−2)
𝑇𝑄′� (𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2) + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2

= (𝐴𝑥𝑁−2)
𝑇𝑄′ (𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2) + (𝐵𝑢𝑁−2)

𝑇𝑄′ (𝐴𝑥𝑁−2 + 𝐵𝑢𝑁−2) + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2
= (𝐴𝑥𝑁−2)

𝑇𝑄′𝐴𝑥𝑁−2 + (𝐴𝑥𝑁−2)
𝑇𝑄′𝐵𝑢𝑁−2 + (𝐵𝑢𝑁−2)

𝑇𝑄′𝐴𝑥𝑁−2 + (𝐵𝑢𝑁−2)
𝑇𝑄′𝐵𝑢𝑁−2+ (2.1)

𝑢𝑇𝑁−2𝑅𝑢𝑁−2
= 𝑥𝑇𝑁−2𝐴𝑇𝑄′𝐴𝑥𝑁−2 + 𝑥𝑇𝑁−2𝐴𝑇𝑄′𝐵𝑢𝑁−2 + 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2 + 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐵𝑢𝑁−2 + 𝑢𝑇𝑁−2𝑅𝑢𝑁−2
= 𝑢𝑇𝑁−2 �𝐵𝑇𝑄′𝐵 + 𝑅� 𝑢𝑁−2 + 𝑥𝑇𝑁−2 �𝐴𝑇𝑄′𝐴� 𝑥𝑁−2 + 𝑥𝑇𝑁−2𝐴𝑇𝑄′𝐵𝑢𝑁−2 + 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2 (7)

But

𝑥𝑇𝑁−2𝐴𝑇𝑄′𝐵𝑢𝑁−2 + 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2 = �𝑢𝑇𝑁−2 �𝑥𝑇𝑁−2𝐴𝑇𝑄′𝐵�
𝑇
�
𝑇
+ 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2

= �𝑢𝑇𝑁−2 ��𝐴𝑇𝑄′𝐵�
𝑇
𝑥𝑁−2��

𝑇
+ 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2

= �𝑢𝑇𝑁−2 �(𝑄′𝐵)𝑇𝐴𝑥𝑁−2��
𝑇
+ 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2

= �𝑢𝑇𝑁−2 �𝐵𝑇 (𝑄′)𝑇𝐴𝑥𝑁−2��
𝑇
+ 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2

But 𝑄′ = (𝑄′)𝑇 since symmetric2 then the above becomes

𝑥𝑇𝑁−2𝐴𝑇𝑄′𝐵𝑢𝑁−2 + 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2 = �𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2�
𝑇
+ 𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2

= 2 �𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2� (8)

Using 𝐻 = 1
2
�𝐻 + 𝐻𝑇�. Replacing (8) into (7) gives

𝐼 (𝑥𝑁−2, 2) = 𝑢𝑇𝑁−2 �𝐵𝑇𝑄′𝐵 + 𝑅� 𝑢𝑁−2 + 𝑥𝑇𝑁−2 �𝐴𝑇𝑄′𝐴� 𝑥𝑁−2 + 2 �𝑢𝑇𝑁−2𝐵𝑇𝑄′𝐴𝑥𝑁−2� (9)

We now find 𝑢∗𝑁−2

𝜕𝐼 (𝑥𝑁−2, 2)
𝜕𝑢𝑁−2

= 0

0 = 2𝑢𝑁−2 �𝐵𝑇𝑄′𝐵 + 𝑅� + 2𝐵𝑇𝑄′𝐴𝑥𝑁−2

Hence

𝑢∗𝑁−2 = �− �𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴� 𝑥𝑁−2

Where 𝑄′ = 𝑄 +𝑀𝑁−1. Hence

𝐾 (𝑁 − 2) = − �𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴

= − �𝐵𝑇 (𝑄 +𝑀𝑁−1) 𝐵 + 𝑅�
−1
𝐵𝑇 (𝑄 +𝑀𝑁−1) 𝐴

Now we go back to 𝐼 (𝑥𝑁−2, 2) and replace 𝑢𝑁−2 with 𝑢∗𝑁−2 we just found. From (9)

𝐼∗ (𝑥𝑁−2, 2) = �− �𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2�

𝑇
�𝐵𝑇𝑄′𝐵 + 𝑅� �− �𝐵𝑇𝑄′𝐵 + 𝑅�

−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2� +

𝑥𝑇𝑁−2 �𝐴𝑇𝑄′𝐴� 𝑥𝑁−2 + 2 ��− �𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2�

𝑇
𝐵𝑇𝑄′𝐴𝑥𝑁−2�

= �𝐵𝑇𝑄′𝐴𝑥𝑁−2�
𝑇
�𝐵𝑇𝑄′𝐵 + 𝑅�

−1
�𝐵𝑇𝑄′𝐵 + 𝑅� �𝐵𝑇𝑄′𝐵 + 𝑅�

−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2+

𝑥𝑇𝑁−2 �𝐴𝑇𝑄′𝐴� 𝑥𝑁−2 − 2 ��𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2�

𝑇
𝐵𝑇𝑄′𝐴𝑥𝑁−2

= �𝐵𝑇𝑄′𝐴𝑥𝑁−2�
𝑇
�𝐵𝑇𝑄′𝐵 + 𝑅�

−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2 + 𝑥𝑇𝑁−2 �𝐴𝑇𝑄′𝐴� 𝑥𝑁−2

− 2 �𝐵𝑇𝑄′𝐴𝑥𝑁−2�
𝑇
�𝐵𝑇𝑄′𝐵 + 𝑅�

−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2

= 𝑥𝑇𝑁−2 �𝐵𝑇𝑄′𝐴�
𝑇
�𝐵𝑇𝑄′𝐵 + 𝑅�

−1
𝐵𝑇𝑄′𝐴𝑥𝑁−2 + 𝑥𝑇𝑁−2 �𝐴𝑇𝑄′𝐴� 𝑥𝑁−2

= 𝑥𝑇𝑁−2 ��𝐴𝑇𝑄′𝑇𝐵� �𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴 + �𝐴𝑇𝑄′𝐴�� 𝑥𝑁−2

Reader Argue that 𝐼∗ (𝑥𝑁−2, 2) looks like

𝐼∗ (𝑥𝑁−2, 2) = 𝑥𝑇𝑁−2𝑀𝑁−2𝑥𝑁−2

Reader Find 𝑀𝑁−2

2Need proof

78

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

𝑀𝑁−2 = �𝐴𝑇𝑄′𝑇𝐵� �𝐵𝑇𝑄′𝐵 + 𝑅�
−1
𝐵𝑇𝑄′𝐴 + �𝐴𝑇𝑄′𝐴�

= �𝐴𝑇 (𝑄 +𝑀𝑁 − 1)
𝑇 𝐵� �𝐵𝑇 (𝑄 +𝑀𝑁 − 1) 𝐵 + 𝑅�

−1
𝐵𝑇 (𝑄 +𝑀𝑁 − 1)𝐴

+ �𝐴𝑇 (𝑄 +𝑀𝑁 − 1)𝐴�

But 𝑀𝑁 − 1 = 𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴, hence

𝑀𝑁−2 = �𝐴𝑇 �𝑄 + �𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴��
𝑇
𝐵� �𝐵𝑇 (𝑄 +𝑀𝑁 − 1) 𝐵 + 𝑅�

−1
𝐵𝑇

�𝑄 + �𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴��𝐴 + �𝐴𝑇 �𝑄 + �𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴��𝐴�

But Φ = 𝐵𝑇𝑄𝐵 + 𝑅, hence the above becomes

𝑀𝑁−2 = �𝐴𝑇 �𝑄 + �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇�𝑄𝐴��

𝑇
𝐵� �𝐵𝑇 (𝑄 +𝑀𝑁 − 1) 𝐵 + 𝑅�

−1
𝐵𝑇 �𝑄 + �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�

−1
𝐵𝑇�𝑄𝐴��𝐴 + �𝐴𝑇 �𝑄 + �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�

−1
𝐵𝑇�𝑄𝐴��𝐴�

Summary

𝑢∗𝑁−𝑖 = 𝐾𝑁−𝑖𝑥𝑁−𝑖

𝐼∗ (𝑥𝑁−𝑖) = 𝑥𝑇𝑁−𝑖𝑀𝑁−𝑖𝑥𝑁−𝑖

Reader Find a formula for 𝐾 (𝑁 − 3).

The expression for 𝐾𝑁−𝑖 is

𝐾𝑁−1 = − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇𝑄𝐴

𝐾𝑁−2 = − �𝐵𝑇 (𝑄 +𝑀𝑁−1) 𝐵 + 𝑅�
−1
𝐵𝑇 (𝑄 +𝑀𝑁−1) 𝐴

= − �𝐵𝑇𝑄𝐵 + 𝑅 + 𝐵𝑇𝑀𝑁−1𝐵�
−1
�𝐵𝑇𝑄𝐴 + 𝐵𝑇𝑀𝑁−1𝐴�

Where 𝑀𝑁−1 = 𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴 and Φ = 𝐵𝑇𝑄𝐵 + 𝑅, hence

𝐾𝑁−2 = − �𝐵𝑇𝑄𝐵 + 𝑅 + 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴�𝐵�
−1

�𝐵𝑇𝑄𝐴 + 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵Φ−1𝐵𝑇�𝑄𝐴�𝐴�

= − �𝐵𝑇𝑄𝐵 + 𝑅 + 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇�𝑄𝐴�𝐵�

−1

�𝐵𝑇𝑄𝐴 + 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇�𝑄𝐴�𝐴�

The final optimal cost will be

𝐽∗ = 𝑥𝑇0𝑀0𝑥0

2.27.2 Example LQR using dynamic programming

Reader Let 𝐴 =

⎛
⎜⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎟⎠ , 𝐵 =

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠ ,𝑄 =

⎛
⎜⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎟⎠ and 𝑅 = 1, the weight on input. For 𝑁 = 3,

find 𝐾 (2) , 𝐾 (1) , 𝐾 (0) solving for LQR problem. We will get optimal gain 𝐾 (𝑖) and these
will not be the same. We do not like time varying gains, as in this case. We like the gain
matrix to be constant, as it is easier to manger and more safe to use. If we make 𝑁 very
large, then gain will become constant. We start from very large 𝑁 and go back to zero.

Solution

79

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

𝑁 = 3,

𝐾 (𝑁 − 1) = − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇𝑄𝐴

𝐾 (2) = −

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠ + 1

⎞
⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎟⎠

= − (2 + 1)−1 �−1 4�

=
−1
3
�−1 4�

= �1
3

−4
3
�

Hence

𝐾 (2) = �1
3

−4
3
� = �0.33333 −1.333 3�

Will do things from now on using the state equations directly, as it seems easier. Starting
again

𝐼 (𝑥 (3 − 1) , 1) = min
𝑢(2)

{𝐽 (𝑥2, 𝑢2)}

𝐼 (𝑥2, 1) = min
𝑢2

�𝑥𝑇3𝑄𝑥3 + 𝑢𝑇2𝑅𝑢2�

But 𝑥3 = 𝐴𝑥2 + 𝐵𝑢2 from state equation, hence the above becomes

𝐼 (𝑥2, 1) = min
𝑢2

�(𝐴𝑥2 + 𝐵𝑢2)
𝑇𝑄 (𝐴𝑥2 + 𝐵𝑢2) + 𝑢𝑇2𝑅𝑢2�

= min
𝑢2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠ 𝑥2 +

⎛
⎜⎜⎜⎜⎜⎝
0

1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢2

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝
2 1

1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠ 𝑥2 +

⎛
⎜⎜⎜⎜⎜⎝
0

1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢2

⎞
⎟⎟⎟⎟⎟⎠ + 𝑢

𝑇
2 (1) 𝑢2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= min
𝑢2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0

𝑢2

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝
2 1

1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0

𝑢2

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ + 𝑢

2
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= min
𝑢2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

𝑥11 − 2𝑥21
𝑢2 − 𝑥11 + 3𝑥21

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝
2 1

1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

𝑥11 − 2𝑥21
𝑢2 − 𝑥11 + 3𝑥21

⎞
⎟⎟⎟⎟⎟⎠ + 𝑢

2
2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= min
𝑢2

�(𝑥11 − 2𝑥21) (𝑢2 + 𝑥11 − 𝑥21) + (2𝑢2 − 𝑥11 + 4𝑥21) (𝑢2 − 𝑥11 + 3𝑥21) + 𝑢22�

= min
𝑢2

�2𝑢22 − 2𝑢2𝑥11 + 8𝑢2𝑥21 + 2𝑥211 − 10𝑥11𝑥21 + 14𝑥221 + 𝑢22�

= min
𝑢2

�3𝑢22 − 2𝑢2𝑥11 + 8𝑢2𝑥21 + 2𝑥211 − 10𝑥11𝑥21 + 14𝑥221�

Hence
𝜕𝐼 (𝑥2, 1)
𝜕𝑢2

= 0

0 = 6𝑢2 − 2𝑥11 + 8𝑥21

0 = 6𝑢2 + �−2 8�

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

0 = 6𝑢2 + �−2 8� 𝑥1

𝑢∗2 = −
1
6
�−2 8� 𝑥1

= �2
6

−8
6
� 𝑥1

Therefore

𝑢∗2 = �
1
3

−4
3
�

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

And

𝐾 (2) = �1
3

−4
3
� = �0.33333 −1.333 3�

80

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

Which is the same as above using − �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇𝑄𝐴.

Now we find 𝐼∗ (𝑥2, 1) by using 𝑢∗2 found above back in 𝐼 (𝑥2, 1)

𝐼∗ (𝑥2, 1) =

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢2

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢2

⎞
⎟⎟⎟⎟⎟⎠ + 𝑢

𝑇
2 (1) 𝑢2

=

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠ �

1
3

−4
3
�

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

𝑇

⎛
⎜⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠ �

1
3

−4
3
�

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝�

1
3

−4
3
�

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

𝑇

�1
3

−4
3
�

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝
𝑥11 − 2𝑥21
5
3𝑥21 −

2
3𝑥11

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11 − 2𝑥21
5
3𝑥21 −

2
3𝑥11

⎞
⎟⎟⎟⎟⎟⎠

+ 𝑥11 �
1
9
𝑥11 −

4
9
𝑥21� − 𝑥21 �

4
9
𝑥11 −

16
9
𝑥21�

= (𝑥11 − 2𝑥21) �
4
3
𝑥11 −

7
3
𝑥21� + �

1
3
𝑥11 −

4
3
𝑥21� �

2
3
𝑥11 −

5
3
𝑥21�

+ 𝑥11 �
1
9
𝑥11 −

4
9
𝑥21� − 𝑥21 �

4
9
𝑥11 −

16
9
𝑥21�

=
5
3
𝑥211 −

22
3
𝑥11𝑥21 +

26
3
𝑥221

We have to convert this to 𝑥𝑇1𝑥1 to be able to use it in the next stage since we need to apply
the state equation to it. We see that

5
3
𝑥211 −

22
3
𝑥11𝑥21 +

26
3
𝑥221 = �𝑥11 𝑥21�

⎛
⎜⎜⎜⎜⎜⎝
𝑐11 𝑐12
𝑐12 𝑐22

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

Solving gives

⎛
⎜⎜⎜⎜⎜⎝
𝑐11 𝑐12
𝑐12 𝑐22

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

5
3 −22

6
−22

6
26
3

⎞
⎟⎟⎟⎟⎟⎠, hence

𝐼∗ (𝑥2, 1) = 𝑥𝑇2

⎛
⎜⎜⎜⎜⎜⎝

5
3 −22

6
−22

6
26
3

⎞
⎟⎟⎟⎟⎟⎠ 𝑥2

Now we find 𝐼 (𝑥 (𝑁 − 2) , 2) = 𝐼 (𝑥 (3 − 2) , 2) = 𝐼 (𝑥1, 2)

𝐼 (𝑥1, 2) = min
𝑢1

{𝐽 (𝑥1, 𝑢1) + 𝐼∗ (𝑥2, 1)}

= min
𝑢3

�𝑥𝑇2𝑄𝑥2 + 𝑢𝑇1𝑅𝑢1 + 𝐼∗ (𝑥2, 1)�

81

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

But 𝑥2 = 𝐴𝑥1 + 𝐵𝑢1 from state equation, hence the above becomes

𝐼 (𝑥1, 2) = min
𝑢3

�(𝐴𝑥1 + 𝐵𝑢1)
𝑇𝑄 (𝐴𝑥1 + 𝐵𝑢1) + 𝑢𝑇1𝑅𝑢1 + 𝐼∗ (𝑥2, 1)�

=

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0

1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢1

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝
2 1

1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0

1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢1

⎞
⎟⎟⎟⎟⎟⎠ + 𝑢

2
1

+ 𝑥𝑇2

⎛
⎜⎜⎜⎜⎜⎝

5
3 − 22

6
− 22

6
26
3

⎞
⎟⎟⎟⎟⎟⎠ 𝑥2

Now we have to use the state equations in 𝐼∗ (𝑥2, 1) to update the last term above, this is
important, since everything should be at the same state

𝐼 (𝑥1, 2) = 3𝑢21 − 2𝑢1𝑥11 + 8𝑢1𝑥21 + 2𝑥211 − 10𝑥11𝑥21 + 14𝑥221

+

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0

1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢1

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝

5
3 − 22

6
− 22

6
26
3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0

1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢1

⎞
⎟⎟⎟⎟⎟⎠

= 3𝑢21 − 2𝑢1𝑥11 + 8𝑢1𝑥21 + 2𝑥211 − 10𝑥11𝑥21 + 14𝑥221
⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0

𝑢1

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝

5
3 − 22

6
− 22

6
26
3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0

𝑢1

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

= 3𝑢21 − 2𝑢1𝑥11 + 8𝑢1𝑥21 + 2𝑥211 − 10𝑥11𝑥21 + 14𝑥221
26
3
𝑢21 −

74
3
𝑢1𝑥11 +

200
3
𝑢1𝑥21 +

53
3
𝑥211 −

286
3
𝑥11𝑥21 +

386
3
𝑥221

=
35
3
𝑢21 −

80
3
𝑢1𝑥11 +

224
3
𝑢1𝑥21 +

59
3
𝑥211 −

316
3
𝑥11𝑥21 +

428
3
𝑥221

Now we take derivative to find optimal 𝑢∗1
𝜕𝐼 (𝑥1, 2)
𝜕𝑢1

= 0

0 =
70
3
𝑢1 −

80
3
𝑥11 +

224
3
𝑥21

𝑢∗1 =
3
70 �

80
3
𝑥11 −

224
3
𝑥21�

=
8
7
𝑥11 −

16
5
𝑥21

= �8
7 −16

5
�

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

Hence

𝑢∗1 = �
8
7 −16

5
�

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

And

𝐾 (1) = �8
7 −16

5
� = �1.1429 −3.2�

Therefore, we find 𝐼∗ (𝑥1, 2) using 𝑢∗1

𝐼∗ (𝑥1, 2) =

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢

∗
1

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢

∗
1

⎞
⎟⎟⎟⎟⎟⎠ + 𝑢∗𝑇1 (1) 𝑢∗1

82

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

But 𝑢∗1 = �
8
7 −16

5
�

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠, hence the above becomes

𝐼∗ (𝑥1, 2) =

⎛
⎜⎜⎜⎜⎜⎝
𝑥11 − 2𝑥21
1
7𝑥11 −

1
5𝑥21

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝
2 1

1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11 − 2𝑥21
1
7𝑥11 −

1
5𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝�

8
7 − 16

5
�

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

𝑇

� 8
7 − 16

5
�

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

= (𝑥11 − 2𝑥21) �
15
7
𝑥11 −

21
5
𝑥21� − �

1
5
𝑥21 −

1
7
𝑥11� �

9
7
𝑥11 −

12
5
𝑥21�

+ 𝑥11 �
64
49
𝑥11 −

128
35

𝑥21� − 𝑥21 �
128
35

𝑥11 −
256
25

𝑥21�

=
178
49

𝑥211 −
82
5
𝑥11𝑥21 +

478
25

𝑥221

We have to write the above as 𝑥𝑇𝐶𝑥 in order to update the state the next stage. As before,
we solve for 𝐶 from

178
49
𝑥211 −

82
5
𝑥11𝑥21 +

478
25

𝑥221 = �𝑥11 𝑥21�

⎛
⎜⎜⎜⎜⎜⎝
𝑐11 𝑐12
𝑐12 𝑐22

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

= 𝑐11𝑥211 + 2𝑐12𝑥11𝑥21𝑐22𝑥221

Hence 𝑐11 =
178
49 , 𝑐22 =

478
25 , 𝑐12 = −

82
10 , therefore

𝐼∗ (𝑥1, 2) = �𝑥11 𝑥21�

⎛
⎜⎜⎜⎜⎜⎝

178
49

82
10

82
10

478
25

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

Now we back one more final step to find 𝐾 (0). We find 𝐼 (𝑥 (𝑁 − 3) , 3) = 𝐼 (𝑥 (0) , 3)

𝐼 (𝑥0, 3) = min
𝑢0

{𝐽 (𝑥0, 𝑢0) + 𝐼∗ (𝑥1, 2)}

= min
𝑢0

�𝑥𝑇1𝑄𝑥1 + 𝑢𝑇0𝑅𝑢0 + 𝐼∗ (𝑥1, 2)�

But 𝑥1 = 𝐴𝑥0 + 𝐵𝑢0 from state equation, hence the above becomes

𝐼 (𝑥0, 3) = min
𝑢0

�(𝐴𝑥0 + 𝐵𝑢0)
𝑇𝑄 (𝐴𝑥0 + 𝐵𝑢0) + 𝑢𝑇0𝑅𝑢0 + 𝐼∗ (𝑥1, 2)�

=

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢0

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢0

⎞
⎟⎟⎟⎟⎟⎠ + 𝑢

2
0

+ 𝑥𝑇1

⎛
⎜⎜⎜⎜⎜⎝

178
49

82
10

82
10

478
25

⎞
⎟⎟⎟⎟⎟⎠ 𝑥1

Now we have to use the state equations in 𝐼∗ (𝑥1, 2) to update the last term above, this is
important, since everything should be at the same state

𝐼 (𝑥0, 3) =

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0

𝑢0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝
2 1

1 2

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0

𝑢0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠ + 𝑢

2
0

+

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0

𝑢0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝

178
49

82
10

82
10

478
25

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝
1 −2

−1 3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
0

𝑢0

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

= (𝑥11 − 2𝑥21) (𝑢0 + 𝑥11 − 𝑥21) + 𝑢20 + (2𝑢0 − 𝑥11 + 4𝑥21) (𝑢0 − 𝑥11 + 3𝑥21)

+ (𝑥11 − 2𝑥21) �
41
5
𝑢0 −

1119
245

𝑥11 +
4247
245

𝑥21� +

�
478
25

𝑢0 −
273
25

𝑥11 +
1024
25

𝑥21� (𝑢0 − 𝑥11 + 3𝑥21)

=
553
25

𝑢20 −
596
25

𝑢0𝑥11 +
2248
25

𝑢0𝑥21 +
10 232
1225

𝑥211 −
70 132
1225

𝑥11𝑥21 +
125 208
1225

𝑥221

83

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

Now we take derivative to find optimal 𝑢∗0
𝜕𝐼 (𝑥0, 3)
𝜕𝑢0

= 0

0 = 2
553
25

𝑢0 −
596
25

𝑥11 +
2248
25

𝑥21

Hence

𝑢∗0 =
596
603

𝑥11 −
2248
603

𝑥21

Therefore

𝑢∗0 = �
596
603 −2248

603
�

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠ = �0.98839 −3.728�

⎛
⎜⎜⎜⎜⎜⎝
𝑥11
𝑥21

⎞
⎟⎟⎟⎟⎟⎠

And

𝐾 (0) = �0.988 39 −3.728�

Matlab dlqr gives a slightly di�erent result and the signs are switched. This needs to be
looked at it more. Let us verify 𝐾 (1) using the Bellman dynamic equations we derived
earlier which is

𝐾 (1) = − �𝐵𝑇𝑄𝐵 + 𝑅 + 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇�𝑄𝐴�𝐵�

−1

�𝐵𝑇𝑄𝐴 + 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇�𝑄𝐴�𝐴� (10)

Let Δ = 𝐵𝑇 �𝐴𝑇𝑄�𝑄−1 − 𝐵 �𝐵𝑇𝑄𝐵 + 𝑅�
−1
𝐵𝑇�𝑄𝐴� , hence

𝐾 (1) = − �𝐵𝑇𝑄𝐵 + 𝑅 + Δ𝐵�
−1
�𝐵𝑇𝑄𝐴 + Δ𝐴�

We already found 𝐾 (1) = �1.1429 −3.2� using the direct method. Just need to verify using

the dynamic equations found.

Δ =
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

−1

−
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ + 1

⎞
⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇
⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
1 −1
−1 4

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

2
3 − 1

3
− 1
3

1
3

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 −1
−1 4

⎞
⎟⎟⎟⎟⎠

= �− 11
3

26
3
�

Hence (10) becomes

𝐾 (1) = −

⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠ + 1 + �− 11

3
26
3
�
⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎝
2 1
1 2

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠ + �− 11

3
26
3
�
⎛
⎜⎜⎜⎜⎝
1 −2
−1 3

⎞
⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

= − �− 8
7

16
5
�

= �1.142 9 −3.2�

Which matches the direct method used above. Similar results are obtained using Matlab.
Matlab has the signs reversed, this needs to be investigated to find out why.
>> A=[1,-2;-1,3];
>> B=[0;1];
>> Q=[2,1;1,2];
>> R=1;
>> [k,s,e]=dlqr(A,B,Q,R)
k =
-1.3195 3.6050
s =
7.0346 -10.3887
-10.3887 28.3824
e =
0.2679
0.1270

In Mathematica:

84

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

1 ssm = StateSpaceModel[{{{1, -2}, {-1, 3}}, {{0}, {1}}}];
2 q = {{1, -2}, {-1, 3}};
3 r = {{1}};
4 DiscreteLQRegulatorGains[ssm, {q, r}, 1.0]
5 {{-1.44328, 3.8633}}

˙

Next we will talk about variations of dynamic programming. Floor and ceiling. We might
want to optimize for maximum of some variable. For economy, this could be ceiling of
unemployment. We can modify the dynamic equations to handle these problems. Floor
and ceiling violate the additive process we used in D.P. but we can still manage to use the
dynamic equations with some modifications.

85

2.28. Lecture 28. Thursday, April 21, 2016 CHAPTER 2. CLASS NOTES

2.28 Lecture 28. Thursday, April 21, 2016

2.28.1 Variations of dynamic programming, �oor and ceiling

Today’s lecture is on variations of dynamic programming. Many integer programming
problem can be cast as D.P. The emphasis will be heuristics more than proofs.

One such variation is when the objective function is in terms of the floor or ceiling of
variable. Another variation is steady state (this is when the number of stages becomes very
large and goes to infinity).

Floor and ceiling To begin, say that 𝑥𝑘 is scalar. We are interested in the floor of 𝑥𝑘. This
is min𝑘 𝑥𝑘. We can also talk about ceiling. This is max𝑘 𝑥 (𝑘). More formally

𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘)

Where 𝑢 (𝑘) ∈ Ω. We introduce a monitoring function 𝑔 (𝑥 (𝑘)). Therefore, the floor problem
can be stated as

max
𝑢𝑘∈Ω𝑘

min
𝑘=1⋯𝑁

𝑔 (𝑥𝑘)

For example, the ceiling problem could be to minimize the maximum of unemployment,
stated as

min
𝑢𝑘∈Ω𝑘

max
𝑘=1⋯𝑁

𝑔 (𝑥𝑘)

Modeling our D.P. analysis Assume we are doing the floor problem now. Then we write

𝐼 (𝑥𝑁−1, 1) = max
𝑢𝑁−1∈Ω𝑁−1

𝑔 (𝑥𝑁)

And for the ceiling

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1∈Ω𝑁−1

𝑔 (𝑥𝑁)

From now on, we continue with the ceiling problem. For the next stage we obtain

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2∈Ω𝑁−2

�max �𝑔 (𝑥𝑁) , 𝐼∗ (𝑥𝑁−1, 1)��

And the recursion formula becomes

𝐼 (𝑥𝐿, 𝑁 − 𝐿) = min
𝑢𝐿∈Ω𝐿

�max �𝑔 (𝑥𝐿+1) , 𝐼∗ (𝑥𝐿+1, 𝑁 − 𝐿 − 1)��

When applying the above, we see one di�erence from previous examples of D.P., now
we have Ω𝐿 which might depends on 𝑢𝐿−1, 𝑢𝐿−2,⋯. Now we will go over one example. A
simplified economy model example. Let 𝑁 be the years of horizon planning. Let 𝑦𝑘 be the
national income for the 𝑘 year. Let 𝑐𝑘 be the consumer expenditure. Let 𝐼𝑘 be the business
investment. And let 𝑢𝑘 be the government expenditure. The constraint is

𝑁−1
�
𝑘=0

𝑢𝑘 ≤ 𝑈

Where 𝑈 is the budget given and 𝑢𝑘 ≥ 0. Hence in a given year we have

86

2.28. Lecture 28. Thursday, April 21, 2016 CHAPTER 2. CLASS NOTES

𝑦𝑘 = 𝑐𝑘 + 𝐼𝑘 + 𝑢𝑘−1 (1)

𝑐𝑘 = 𝛼𝑦𝑘−1 (2)

Where 𝛼 is propensity factor to consume.

𝐼𝑘 = 𝛽 (𝑐𝑘 − 𝑐𝑘−1) (3)

Reader Eliminate 𝑐𝑘, 𝐼𝑘 from (1,2,3) to obtain

𝑦𝑘 = �1 + 𝛽� 𝛼𝑦𝑘−1 − 𝛼𝛽𝑦𝑘−2 + 𝑢𝑘−1 (4)

Our goal is to control the output 𝑦𝑘 using the input 𝑢𝑘.

Reader Let 𝑧𝑘 = 𝑦𝑘 − 𝑦𝑘−1

Therefore, now

𝑦𝑘−2 = 𝑦𝑘−1 − 𝑧𝑘−1
Substituting the above in (4) gives

𝑦𝑘 = �1 + 𝛽� 𝛼𝑦𝑘−1 − 𝛼𝛽 �𝑦𝑘−1 − 𝑧𝑘−1� + 𝑢𝑘−1
= 𝛼𝑦𝑘−1 + 𝛼𝛽𝑧𝑘−1 + 𝑢𝑘−1

We have state equation

𝑦𝑘+1 = 𝛼𝑦𝑘 + 𝛼𝛽𝑧𝑘 + 𝑢𝑘
Next we want state equation for 𝑧𝑘

Reader

𝑧𝑘+1 = (𝛼 − 1) 𝑦𝑘 + 𝛼𝛽𝑧𝑘 + 𝑢𝑘
Now define state 𝑥1 (𝑘) = 𝑦𝑘 and 𝑥2 (𝑘) = 𝑧𝑘, hence the state equation in matrix form becomes

𝑥𝑘+1 =

⎛
⎜⎜⎜⎜⎜⎝
𝛼 𝛼𝛽

𝛼 − 1 𝛼𝛽

⎞
⎟⎟⎟⎟⎟⎠ 𝑥𝑘 +

⎛
⎜⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢𝑘

We want to maximize the floor of the national income 𝑦𝑘 using D.P. To illustrate two stages,
i.e. 𝑁 = 2, let 𝑈 = 1 dollar, and let 𝛼 = 𝛽 = 1

2 Hence
⎛
⎜⎜⎜⎜⎜⎝
𝑥1 (𝑘 + 1)
𝑥2 (𝑘 + 1)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1
2

1
4

−1
2

1
4

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1 (𝑘)
𝑥2 (𝑘)

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
1
1

⎞
⎟⎟⎟⎟⎟⎠ 𝑢𝑘

Monitor function is 𝑔 (𝑥 (𝑘)) = 𝑥1 (𝑘)

Begin with one stage to go

𝐼 (𝑥 (1) , 1) = max
𝑢(1)∈Ω1

𝑥1 (2) (5)

We know 𝑢 (1) ≤ 1 − 𝑢 (0)

Hence (5) becomes

𝐼 (𝑥 (1) , 1) = max
𝑢(1)∈[0⋯1−𝑢(0)]

�
1
2
𝑥1 (1) +

1
4
𝑥2 (1) + 𝑢 (1)�

The minimizer is 𝑢∗ (1) = 1 − 𝑢 (0), therefore

𝐼∗ (𝑥 (1) , 1) =
1
2
𝑥1 (1) +

1
4
𝑥2 (1) + 1 − 𝑢 (0)

Now we go back one more step

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈Ω0

min �𝑔 (𝑥 (1) , 𝐼 (𝑥 (1) , 1))�

87

2.28. Lecture 28. Thursday, April 21, 2016 CHAPTER 2. CLASS NOTES

Where Ω0 = [0… 1] since we have one dollar to start with. Hence

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈[0…1]

min�𝑥1 (1) ,
1
2
𝑥1 (1) +

1
4
𝑥2 (1) + 1 − 𝑢 (0)�

Back everything to get an equation in 𝑢 (0)

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈[0…1]

min�
1
2
𝑥1 (0) +

1
4
𝑥2 (0) + 𝑢 (0) ,

1
2 �

1
2
𝑥1 (0) +

1
4
𝑥2 (0) + 𝑢 (0)� +

1
4 �
−
1
2
𝑥1 (0) +

1
4
𝑥2 (0) + 𝑢 (0)� 1 − 𝑢 (0)�

This reduces to

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈[0…1]

min {𝐴 + 𝑢 (0) , 𝐵}

Where

𝐴 =
1
2
𝑥1 (0) +

1
4
𝑥2 (0) + 𝑢 (0)

𝐵 =
1
8
𝑥 (0) +

3
16
𝑥2 (0) + 1 −

1
4
𝑢 (0)

Hence the function to minimize is

𝐹 (𝑢 (0)) = min {𝐴 + 𝑢 (0) , 𝐵}

Consider case when 𝐴 ≥ 𝐵 and case 𝐴 < 𝐵.

Reader work out the di�erent cases.

88

2.29. Lecture 29. Tuesday, April 26, 2016 CHAPTER 2. CLASS NOTES

2.29 Lecture 29. Tuesday, April 26, 2016

2.29.1 Detailed example for a �oor problem

We will start today with one more dynamic problem which will be useful for HW problem.
Then we will start on steady state. Example is a floor problem.

𝑥1 (𝑘 + 1) = min {𝑥1 (𝑘) , 𝑥2 (𝑘)} + 𝑢 (𝑘)
𝑥2 (𝑘 + 1) = 𝑥1 (𝑘) 𝑢 (𝑘)

And initial state is

𝑥1 (0) = 1
𝑥2 (0) = −1

And

𝐽 = min
𝑘=1,2

𝑥2 (𝑘)

With |𝑢 (𝑘)| ≤ 𝑀. One step to go is

𝐼 (𝑥 (1) , 1) = max
𝑢(1)∈Ω1

{min 𝐽}

= max
𝑢(1)∈Ω1

𝑥2 (2)

= max
|𝑢(1)|≤𝑀

𝑥1 (1) 𝑢 (1)

Hence 𝑢∗ = 𝑀 sign(𝑥1 (𝑥)), therefore

𝐼∗ (𝑥 (1) , 1) = 𝑀 𝑎𝑏𝑠 (𝑥1 (1))

With two steps

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈Ω0

{min {𝐽 (𝑥 (1) , 𝐼 (𝑥 (1) , 1))}}

= max
𝑢(0)∈Ω0

min {𝑥2 (1) ,𝑀 |𝑥1 (1)|}

= max
𝑢(0)∈Ω0

min {𝑥1 (0) 𝑢 (0) ,𝑀 |min {𝑥1 (0) , 𝑥2 (0)} + 𝑢 (0)|}

= max
𝑢(0)∈Ω0

min {𝑢 (0) ,𝑀 |𝑢 (0) − 1|}

Where 𝐹 (𝑢) = min {𝑢 (0) ,𝑀 |𝑢 (0) − 1|}. Consider the case 0 < 𝑀 ≤ √2 and case 𝑀 > √2. See
key solution for HW 7 for the solution.

We now start talking about steady state. Notion of functional equations., then iterative
solution to steady state problem, then Riccati equation. We begin with

𝑥𝑘+1 = 𝑓 (𝑥𝑘, 𝑢𝑘)

With a constraint on 𝑢𝑘 given by 𝑢𝑘 ∈ Ω𝑘. The branch cost is

𝐽 = Ψ (𝑥𝑁) +
𝑁−1
�
𝑘=0

𝐽𝑘 (𝑥𝑘, 𝑢𝑘)

Then let 𝑁 → ∞. We are hoping to get 𝐽𝑁 and obtain 𝑢∗𝑁 = 𝑢∗0, 𝑢∗1,⋯ , 𝑢∗𝑁−1 optimal controls
at each stage. Notice that when 𝑁 changes, then the whole sequence 𝑢∗𝑁 changes also, and
not just one term. We now ask, does 𝐽𝑁 converge? does 𝑢∗𝑁 converge? To make sense of the
above, we remove the terminal cost Ψ(𝑥𝑁) from this analysis. We also want Ω𝑘 to be fixed
for any 𝑁. This means we have the same constraints all the time.

If steady state solution exist, then it satisfies

𝐼 (𝑥) = min
𝑢∈Ω

�𝐽 (𝑥, 𝑢) + 𝐼 �𝑓 (𝑥, 𝑢)�� (1)

This is a functional equation. Solving it means finding 𝑢∗. The solution 𝑢∗ in (1) is a
function of 𝑥. i.e.. 𝑢 at state 𝑥 is a feedback. Say 𝑢∗ = 𝜎 (𝑥). Substitute this in (1) gives

𝐼 (𝑥) = min
𝑢∈Ω

�𝐽 (𝑥, 𝜎 (𝑥)) + 𝐼 �𝑓 (𝑥, 𝜎 (𝑥))��

We do not know 𝐼 (𝑥) here. Before, we knew 𝐼, but now we do not know 𝐼. So we have a
function space issue to find 𝐼 (𝑥).

89

2.29. Lecture 29. Tuesday, April 26, 2016 CHAPTER 2. CLASS NOTES

Example

𝐽 (𝑥, 𝑢) = 𝑥2 + 𝑥𝑢 + 𝑢2

𝑓 (𝑥, 𝑢) = 𝑥𝑢 + 𝑥 + 𝑢
𝑥 (𝑘 + 1) = 𝑥 (𝑘) 𝑢 (𝑘) + 𝑥 (𝑘) + 𝑢 (𝑘)

Let 𝑢 be free variable with no constraints. Hence (1) becomes

𝐼 (𝑥) = min
𝑢
�𝑥2 + 𝑥𝑢 + 𝑢2 + 𝐼 (𝑥𝑢 + 𝑥 + 𝑢)�

2.29.2 Functional equations in dynamic programming

This is a functional equation since 𝐼 (𝑥), appears on both sides of the equation. There are
two famous methods to solve functional equations. The first is the iterative method. Begin
with initial 𝐼𝑜 (𝑥), then 𝐼𝑘+1 (𝑥) = min𝑢(𝑘) �𝐽 (𝑥, 𝑢) + 𝐼𝑘 �𝑓 (𝑥, 𝑢)��. We get sequence of solutions
of 𝑢 (𝑘) and 𝐼 (𝑥 (𝑘)) and check for convergence.

Example

𝐽 (𝑥, 𝑢) = 𝑢2 + (𝑥 − 𝑢)2

𝑥 (𝑘 + 1) = 𝑥 (𝑘) − 𝑢 (𝑘)

𝐼0 (𝑥) = 0, hence

𝐼1 (𝑥) = min
𝑢
�𝑢2 + (𝑥 − 𝑢)2�

𝑑
𝑑𝑢 = 0 gives 𝑢

∗ = 𝑥
2 , hence 𝐼

∗
1 (𝑥) =

𝑥2

4 +
𝑥2

4 =
𝑥2

2 . Next stage becomes

𝐼2 (𝑥) = min
𝑢
�𝑢2 + (𝑥 − 𝑢)2 + 𝐼∗1�

= min
𝑢

⎧⎪⎨
⎪⎩𝑢

2 + (𝑥 − 𝑢)2 +
(𝑥 − 𝑢)2

2

⎫⎪⎬
⎪⎭

𝑑
𝑑𝑢 = 0 gives 𝑢

∗ = 3
5𝑥, hence 𝐼

∗
1 (𝑥) =

3
5𝑥

2.

Reader Continue this process. Does it converge? It will converge eventually leading to
𝑢∗ → 𝑘𝑥

90

2.30. Lecture 30. Thursday, April 28, 2016 CHAPTER 2. CLASS NOTES

2.30 Lecture 30. Thursday, April 28, 2016

The special problem will be returned next Tuesday.

2.30.1 Steady state and functional equations

The plan for today: we have been talking about steady state. This lead to functional
equations in D.P. so far, we talked about iterative solution. Today we will talk about
closed form solution. Analogy between di�erential equations and functional equations. In
di�erential equations, the iterative method is called Picard iterations method.

For linear state equations, we can get closed form solution for the functional equation.
We start with a guess of the solution with a parameter to find. Now we will use our main
example to illustrate this.

𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘
𝐽 = �𝑢2𝑘 + (𝑥𝑘+1 − 𝑢𝑘)

2

Notice the cross term with 𝑥 and 𝑢 in it. Now we guess a form for 𝐼. Let 𝐼 = 𝑝𝑥2 and then
we try to find 𝑝. First write 𝐽 above so that all indices are the same with the help of the
state equation. This will reduce the chance of error later on

𝐽 = �𝑢2𝑘 + ((𝑥𝑘 − 𝑢𝑘) − 𝑢𝑘)
2

=�𝑢2𝑘 + 𝑥2𝑘 + 4𝑢2𝑘 − 4𝑥𝑘𝑢𝑘
=�𝑥2𝑘 + 5𝑢2𝑘 − 4𝑥𝑘𝑢𝑘

Consider

𝐼 (𝑥) = min
𝑢∈Ω

�𝐽 (𝑥, 𝑢) + 𝐼 �𝑓 (𝑥, 𝑢)��

𝑝𝑥2 = min
𝑢∈Ω

��5𝑢2 + 𝑥2 − 4𝑥𝑢� + 𝑝 (𝑥 − 𝑢)2� (1)

𝑑 �5𝑢2 + 𝑥2 − 4𝑥𝑢� + 𝑝 (𝑥 − 𝑢)2

𝑑𝑢
= 0

0 = 2𝑢 − 4 (𝑥 − 2𝑢) − 2𝑝 (𝑥 − 𝑢)

Solving gives 𝑢∗ = 2+𝑝
5+𝑝𝑥. Substitute back in (1)

𝑝𝑥2 = �5𝑢2 + 𝑥2 − 4𝑥 �
2 + 𝑝
5 + 𝑝

𝑥�� + 𝑝 �𝑥 − �
2 + 𝑝
5 + 𝑝

𝑥��
2

And obtain an equation in 𝑝 and solve for 𝑝. We find roots are 𝑝 = 0.302 and 𝑝 = −3.3.
If everything was done correct, there should be a positive root. Always pick the positive
one. This is special case of LQR. In LQR there is no cross term between 𝑥, 𝑢. While in the
above there was. Reader For 𝑥 (0) = 1 find 𝐽∗.

Example Consider

𝑥 (𝑘 + 1) = 𝑥 (𝑘) + 2𝑢 (𝑘)

With constraint 𝑢 (𝑘) ∈ [−1, 1]

𝐽 =
∞
�
𝑘=0

𝑒𝑥(𝑘+1)

Guess 𝐼 = 𝑎𝑒𝑥 then

𝐼 (𝑥) = min
𝑢∈[−1,1]

�𝑒𝑥+2𝑢 + 𝑎𝑒𝑥+2𝑢�

Reader 𝑢∗ = −1

Therefore

𝑎𝑒𝑥 = �𝑒𝑥−2 + 𝑎𝑒𝑥−2�

Solving gives

𝑎 =
1

𝑒2 − 1
> 0

91

2.30. Lecture 30. Thursday, April 28, 2016 CHAPTER 2. CLASS NOTES

For LQR, the steady state is given by

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘)

𝐽 =
∞
�
𝑘=0

𝑥𝑇 (𝑘 + 1)𝑄𝑥 (𝑘 + 1) + 𝑢𝑇 (𝑘) 𝑅𝑢 (𝑘)

Where 𝑄,𝑅 are weight matrices and are positive definite symmetric. 𝐼 should be quadratic
in the state 𝑥 (𝑘).

𝐼 (𝑥) = min
𝑢
𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢

Guess 𝐼 = 𝑥𝑇𝑃𝑥 and now solve for 𝑃, this leads to Riccati matrix equation.

𝐼 (𝑥) = min
𝑢
�𝑥𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢 + (𝐴𝑥 + 𝐵𝑢)𝑇 𝑃 (𝐴𝑥 + 𝐵𝑢)� (2)

Taking gradient w.r.t. 𝑢 and setting to zero, gives

2𝑅𝑢 + 2𝐵𝑇𝑃𝐵𝑢 + 2𝐵𝑇𝑃𝐴𝑥 = 0

𝑢∗ = − �𝑅 + 𝐵𝑇𝑃𝐵�
−1
𝐵𝑇𝑃𝐴𝑥

Back to (2) we find

𝑥𝑇𝑃𝑥 = 𝑥𝑇𝑄𝑥 + �− �𝑅 + 𝐵𝑇𝑃𝐵�
−1
𝐵𝑇𝑃𝐴𝑥�

𝑇
𝑅 �− �𝑅 + 𝐵𝑇𝑃𝐵�

−1
𝐵𝑇𝑃𝐴𝑥�

+ �𝐴𝑥 + 𝐵 �− �𝑅 + 𝐵𝑇𝑃𝐵�
−1
𝐵𝑇𝑃𝐴𝑥��

𝑇
𝑃 �𝐴𝑥 + 𝐵 �− �𝑅 + 𝐵𝑇𝑃𝐵�

−1
𝐵𝑇𝑃𝐴𝑥��

Solving to 𝑃, we obtain the Riccati matrix equation

𝑃 = 𝐴𝑇𝑃𝐴 − 𝐴𝑇𝑃𝐵 �𝑅 + 𝐵𝑇𝑃𝐵�
−1
𝐵𝑇𝑃𝐴 + 𝑄

In Matlab, use dare() to solve this for 𝑃.

Remarks Are we sure the solution exist? i.e. does there exist positive definite 𝑃 that satisfies
the Riccati equation above? Yes, a solution exist if (𝐴, 𝐵) is controllable system. Notice that
the Riccati equation is not linear in 𝑃. This is solved numerically. Consider the special
case of LQR with one state and one input. Hence everything is scalar. We obtain

𝑝 = 𝑎2𝑝 − 𝑎𝑝𝑏
1

𝑟 + 𝑏2𝑝
𝑏𝑝𝑎 + 𝑞

Solving for 𝑝, show that there is solution 𝑝 > 0. Assume 𝑏 > 0 for controllability.

92

2.31. Lecture 31. Tuesday, May 3, 2016 CHAPTER 2. CLASS NOTES

2.31 Lecture 31. Tuesday, May 3, 2016

This is the last lecture. Final exam is next lecture. Review of special problem and results
obtained by di�erent reports. General approaches to solving the special problem included:
Cluster analysis, noisy gradient and random search.

2.31.1 Final review for �nal exam

We talked about steady state. Quadratic regulator has no cross coupling terms between 𝑥
and 𝑢

𝐽 =
∞
�
𝑘=0

𝑥𝑇 (𝑥 + 1)𝑄𝑥 (𝑘 + 1) + 𝑢𝑇𝑅𝑢

For general regulator, one can get a cross term as in 𝐽 = 𝑎𝑥2 + 𝑏𝑥𝑢 + 𝑐𝑢 but we did not
discuss this.

Test 3, will have 4 questions on dynamic programming. With dynamic programming, one
can solve the problem using the Bellman equations or using the graphical method. If there
are finite stages, and the state 𝑥 is discrete 𝑥 (𝑘 + 1) = 𝑓 (𝑥 (𝑘) , 𝑢 (𝑘)) and if 𝑢 is discrete, then
a graphical method can be used. If there are constraints, this will reduce the size of the
tree more.

Course review

We can take an integer linear programming problem, which is hard to solve and treat
it as continuous problem under special conditions and solve it much easier. We did not
discuss non-linear programming and kuhn-Tucker conditions. But for many non-linear
programming problem, it is possible to use the penalty method. There is also large scale
linear programming, where sparsity becomes important. Also parallel programming be-
come important for these problems. For dynamic programming, most of the books are on
continuous time, and very few discusses discrete dynamic programming problems.

93

2.32. Lecture 32. Thursday, May 5, 2016 CHAPTER 2. CLASS NOTES

2.32 Lecture 32. Thursday, May 5, 2016

Final exam

94

Chapter 3

Handouts

Local contents
3.1 Real analysis. January 21, 2016 . 96
3.2 Positive-Definite Matrices. January 26, 2016 . 97
3.3 Coercivity Theorem. January 27, 2016 . 98
3.4 Hessian Theorem. February 8, 2016 . 99
3.5 Proof of Hessian theorem. February 8, 2016 . 100
3.6 Handout circuit. February 23, 2016 . 101
3.7 Handout Newton. February 26, 2016 . 102
3.8 Handout polytopes, march 3 2016 . 103
3.9 Sector patrol. March 8, 2016 . 108
3.10 Handout Extreme. March 15, 2016 . 109

95

3.1. Real analysis. January 21, 2016 CHAPTER 3. HANDOUTS

3.1 Real analysis. January 21, 2016

Barmish

ECE 719 – Handout Real Analysis
Real Analysis Preliminaries

There are just few concepts from real analysis which will be used in ECE
719. The concepts below will be discussed in class. If supplementation of
lecture material is needed, an elementary introduction to the ideas below
can be found in the textbooks by Lang or Roydon. Alternatively, another
resource is http://mathworld.wolfram.com/ClosedSet.html

Continuity: A function J : Rn → R is said to be continuous at the
point u0 if limk→∞ J(u

k) = J(u0) for all sequences {uk}∞k=1 which converge
to u0. If J is continuous at every point u ∈ Rn, then we simply say that
J is continous. (Examples and discussion in class.)

Closedness: A set U in Rn is said to be closed if it contains all its
limit points; i.e., if {uk}∞k=1 is a sequence of points in U converging to
some point u0, then it follows that u0 ∈ U . (Examples and discussion in
class.)

Boundedness: A set U in Rn is said to be bounded if there exists some
β > 0 such that ||u|| < β for all u ∈ U . (The choice of norm above does
not matter; discussion and examples in class.)

Compactness: A set U in Rn is said to be compact if it is closed and
bounded. (Discussion and examples in class.)

Reader: Given a function J : Rn → R, what does it mean when we
say that J is bounded on U?

Bolzano-Weierstrass Theorem: Suppose {uk}∞k=1 is a sequence of points
in in a compact set U . Then there exists a subsequence {uki}∞i=1 of {uk}∞k=1

which converges to some point u∗ ∈ U .

Lemma (Proof in class): Suppose U is a compact set in Rn and the
function J : Rn → R is continuous. Then it follows that J is bounded
on U .

96

3.2. Positive-Definite Matrices. January . . . CHAPTER 3. HANDOUTS

3.2 Positive-De�nite Matrices. January 26, 2016

ECE 719 – Handout PD Matrices
Positive Definite Matrices

Definitions: An n× n matrix A is said to be positive-definite if

xTAx > 0

for all vectors x 6= 0. We call A positive-semidefinite if

xTAx ≥ 0

for all vectors x.

Discussion: Define negative-definiteness and negative-semidefiniteness.

Sylvester’s Theorem: A square matrix A is positive-definite if and only
if all the leading principal minors of A are positive.

Discussion: Application of Sylvester’s Theorem for negative-definitess.
Beware of a common pitfall!

Examples: In class.

97

3.3. Coercivity Theorem. January 27, 2016 CHAPTER 3. HANDOUTS

3.3 Coercivity Theorem. January 27, 2016

Barmish

ECE 719 – Handout Coercivity Theorem

We now provide a result on existence of an optimal element in the absence
of a compactness assumption on U .

Theorem: Suppose J : U → R is continuous and (positively) coercive
and U ⊆ Rn is non-empty and closed. Then an optimal element u∗ ∈ U

exists which minimizes J .

Proof: Select any point u0 ∈ U . Now, by coercivity, there exists some
radius R > 0 such that

J(u) > J(u0)

for all u ∈ U with ||u|| > R. Hence,

inf
u∈U

J(u) = inf
u∈U,||u||≤R

J(u).

Notice that the new constraint set on the right hand side above, described
by u ∈ U and ||u|| ≤ R, is the intersection of the closed set U and the
compact set given by ||u|| ≤ R. Hence, this set is compact. Now using the
previous existence theorem, an optimal element u∗ ∈ U exists minimizing
the objective function J(u).

Reader: For maximization problems, define negative coercivity and note
that a similar result holds.

98

3.4. Hessian Theorem. February 8, 2016 CHAPTER 3. HANDOUTS

3.4 Hessian Theorem. February 8, 2016

Barmish

ECE 719 – Handout Hessian Theorem
A Criterion for Convexity

The result below will be proven in class. It is often quite helpful in deciding if a function
is convex.

Hessian Theorem: Assume U ⊆ Rn is open and convex and that the
function J : U → R is twice continuously differentiable. Define the n× n

Hessian matrix ∇2J(u) with (i, j)-th entry

[∇2J(u)]i,j =
∂2J

∂ui∂uj
.

Then J is convex on U if and only if ∇2J(u) is positive semi-definite for
all u ∈ U .

Reader: Provide a counterexample to show that the theorem cannot be
strengthened to assure equivalence between strict convexity and positive-
definiteness of the Hessian.

99

3.5. Proof of Hessian theorem. February . . . CHAPTER 3. HANDOUTS

3.5 Proof of Hessian theorem. February 8, 2016

Barmish

ECE 719 – Handout Proof of Hessian Theorem

Preamble: Before proving the theorem, we review two results. The first, already covered
in class, is for n = 1. That is, we already know that convexity of J on U = (α, β) is
equivalent satisfaction of the condition

d2J

dt2
≥ 0.

The second result, to be proven in class, is for the n-dimensional case: It will be shown
that that J(u) is convex on the open convex set U if and only if the following condition
is satisfied: Given any point u ∈ U and any direction z ∈ Rn, the function

J̃(λ) = J(u+ λz)

is convex for λ in the set
Λz = {λ : u+ λz ∈ U}.

Proof of Hessian Theorem: Using the result for n = 1, we know that for u ∈ Rn, the
function J(u) is convex if and only if

d2J(u+ λz)

dλ2
≥ 0

for all z ∈ Rn and all λ ∈ Λz. Taking the first derivative above and using the chain rule,
we have

d

dλ
J(u+ λz) =

∂J

∂u1
|
u+λz

z1 +
∂J

∂u2
|
u+λz

z2 + · · ·+ ∂J

∂un
|
u+λz

zn

Similarly, by differentiating once again, we obtain

d2

dλ2
J(u+ λz) =

n∑
i=1

n∑
j=1

∂2J

∂ui∂uj
|
u+λz

zizj

= zT∇2J(u+ λz)z.

Now, to complete the proof, we observe the following: Satisfaction of the necessary and
sufficient convexity condition

zT∇2J(u+ λz)z ≥ 0

for all admissible (u, z, λ) triples is equivalent to

zT∇2J(u)z ≥ 0

for all u ∈ U . Now, this condition is equivalent to the requirement that∇2J(u) is positive
semi-definite for all u ∈ U .

100

3.6. Handout circuit. February 23, 2016 CHAPTER 3. HANDOUTS

3.6 Handout circuit. February 23, 2016

ECE 719 - Handout Circuit

XXXXXXXXXX
XXXXXXX

XX

101

3.7. Handout Newton. February 26, 2016 CHAPTER 3. HANDOUTS

3.7 Handout Newton. February 26, 2016

Barmish
ECE 719 - Handout Newton

102

3.8. Handout polytopes, march 3 2016 CHAPTER 3. HANDOUTS

3.8 Handout polytopes, march 3 2016

A Primer on Polytopes and Polygons

8.3.2. Polytopes and Polygons

A polytopeP in Rk is the convex hull of a finite set of points{p1, p2, . . . , pm}. We
write

P = conv{pi}
and call{p1, p2, . . . , pm} theset of generators. Note that the set of generators can be
highly nonunique. For example, in Figure 8.3.3, the pointsp3, p5 andp7 are optional

p1

p4

p5

p2

p6

p7

p8

p3

Figure 8.3.3. Polytope inR2

for inclusion in a generating set forP. The extreme point concept, covered in the next
subsection, enables us to identify a unique set of generators.

In the sequel, it is important to make a distinction between polytopes inR2 and
polytopes inRk with k > 2. When manipulating value sets, we work with polytopes
in the two-dimensional complex planeC, which we identify withR2 whenever con-
venient. Henceforth, we refer to a polytope inR2 as apolygon. According to this
convention, both polytopes and polygons are automatically convex. We make note of
this point because many authors make a distinction between a polygon and a convex
polygon. For example, according to some authors, a star-shaped figure can be a poly-
gon without necessarily being a convex polygon.

8.3.3. Extreme Points

SupposeP = conv{pi} is a polytope inRk. Then a pointp ∈ P is said to be an
extreme pointof P if it cannot be expressed as a convex combination of two distinct
points inP. That is, there does not existpa, pb ∈ P with pa 6= pb andλ ∈ (0,1) such
thatλ pa+(1−λ)pb = p. For example, in Figure 8.3.4, the extreme points arep1, p2,
p3, p4 andp5. Although the interior pointp6 might be included in a generating set, it

ECE 719 - Handout Polytopes

103

3.8. Handout polytopes, march 3 2016 CHAPTER 3. HANDOUTS

p6

p5

p4

p3

p2

p1

Figure 8.3.4. Polytope inR3

is not an extreme point. Given a finite set of generators{pi} for a polytopeP, the set
of extreme points is a subset of the set of generators. Furthermore, the set of extreme
points can be called aminimal generating setin the sense that any other generating set
contains the set of extremes.

In many applications, generators or extreme points of a polytope are specified im-
plicitly rather than explicitly. A prime example occurs in the theory of linear program-
ming where polytopes are described by a set of linear inequalities in the matrix form
Ax≤ b.

8.3.4. Convex Combination Property

Given a polytopeP = conv{p1, p2, . . . , pm}, every pointp∈ P can be expressed as
a convex combinationof the pi ; that is, there exist real scalarsλ1,λ2,. . .,λm ≥ 0 such
that

p =
m

∑
i=1

λi p
i

and
m

∑
i=1

λi = 1.

In the sequel, it is sometimes convenient to describe the constraint set forλ using the
notation

Λ = {λ ∈ Rm : λi ≥ 0 for i = 1,2, . . . ,m and
m

∑
i=1

λi = 1}.

For such cases,Λ is called aunit simplex.

104

3.8. Handout polytopes, march 3 2016 CHAPTER 3. HANDOUTS

Primer on Polytopes and Polygons

To illustrate the notion of convex combinations, consider the polygonP in Fig-
ure 8.3.3. Observe thatP is the union of three triangles given byP1 = conv{p1, p6, p8},
P2 = conv{p1, p2, p6} andP3 = conv{p2, p4, p6}. Now, any pointp∈ P1 can be ex-
pressed as a convex combinationλ1p1 + λ6p6 + λ8p8. For example, a point such as
p7 might be obtained withλ1 = λ6 = λ8 = 1/3, a point such asp3 is generated with
λ1 6= 0, λ8 6= 0 andλ6 = 0 and finally, an extreme point such asp6 is obtained with
λ6 = 1 andλ1 = λ8 = 0. To conclude, we observe that the description of a pointp∈ P
as a convex combination of extreme points is nonunique. For example, a point such as
p7 can be expressed as a convex combination ofp1, p6 andp8 or p2, p6 andp8.

The fact that we can describe every pointp∈ P in Figure 8.3.3 as a convex combi-
nation of three or less extreme points is not particular to the example at hand. In fact,
Cartheodory’s Theorem tells us: Every point in a polytopeP ⊂ Rk is expressible as a
convex combination ofk+1 extreme points at most; e.g., see Rockafellar (1970).

8.3.5. Edges of a Polytope

Given any two pointsxa andxb in Rk, we denote the straight line segment joining
these points by[xa,xb]. Notice that every pointx∈ [xa,xb] can be expressed uniquely
as a convex combination ofxa andxb; that is,

x = λxa +(1−λ)xb

for some uniqueλ ∈ [0,1]. Furthermore, ifxa = xb, [xa,xb] degenerates to apointwhich
is viewed as a special case of a line.

We now consider lines of the form[pi1, pi2], wherepi1 and pi2 are extremes of a
given polytopeP andpi1 6= pi2. We say that[pi1, pi2] is anedgeof P if the following
condition holds: Given anypa, pb ∈ P with pa, pb 6∈ [pi1, pi2], it follows that[pa, pb]∩
[pi1, pi2] = φ . In two or three dimensions, the edges of a polytope are apparent by
inspection. For example, in Figure 8.3.3, edges of the polytopeP are[p1, p2], [p2, p4],
[p4, p6], [p6, p8] and[p8, p1] and in Figure 8.3.4, the edges of the polygonP are[p1, p2],
[p1, p3], [p1, p4], [p1, p5], [p2, p3], [p2, p5], [p3, p4] and[p4, p5].

8.3.6. Operations on Polytopes

In this subsection, we provide a number of basic facts about operations on poly-
topes.

LEMMA 8.3.7 (Direct Sum for Two Polytopes):Given two polytopesP1 = conv{p1,i1}
andP2 = conv{p2,i2} in Rk, the direct sum

P1 + P2 = {p1 + p2 : p1 ∈ P1; p2 ∈ P2}

is a polytope. Moreover,

P1 + P2 = conv{p1,i1 + p2,i2}.

105

3.8. Handout polytopes, march 3 2016 CHAPTER 3. HANDOUTS

REMARKS 8.3.8 (Direct Sum for Polytope and Point): For the special case whenP2

consists of a single point,P1 + P2 corresponds to a translation ofP. In the lemma
below, we provide another useful characterization ofP1 + P2.

LEMMA 8.3.9 (Another Direct Sum Description):Given two polytopesP1 = conv{p1,i}
andP2 in Rk, it follows that

P1 + P2 = conv
⋃

i

(p1,i + P2).

EXAMPLE 8.3.10 (Illustration of Direct Sum): To illustrate formation of the direct sum
via application of the lemma above, suppose thatP1 = conv{2+2 j,4−2 j,6+6 j}and
P2 is the unit square in the complex plane. Then, the lemma leads to the direct sum,
which is shown in Figure 8.3.5.

2 Re

Im

P1+P2

Boundary of

p1,2 +P2

p1,1+P2

P1 +P2

p1,3 +P2

5

6 j

6

−2 j

3

2 j

Figure 8.3.5. Formation of Direct Sum in Example 8.3.10

EXERCISE 8.3.11 (Less Restriction onP2): Argue that Lemma 8.3.9 remains valid
whenP2 is an arbitrary convex set which is not necessarily polytopic. Illustrate by
considering Example 8.3.10 withP2 being the unit disc rather than the unit square.
Sketch the resulting direct sumP1 + P2.

106

3.8. Handout polytopes, march 3 2016 CHAPTER 3. HANDOUTS

A Primer on Polytopes and Polygons

P1∩P2

p̂a

p̂b

P2

P1

Figure 8.3.6. New Extreme Points Created by Intersection

LEMMA 8.3.12 (Intersection of Two Polytopes):Let P1 and P2 be two polytopes in
Rk. Then it follows thatP1

⋂

P2 is a polytope.

REMARKS 8.3.13 (Intersection): IfP1 andP2 are polytopes,P1
⋂

P2 may have extreme
points which are not extreme points of eitherP1 or P2; e.g., in Figure 8.3.6, the points
p̂a and p̂b are extreme points ofP1

⋂

P2 but are not extreme points ofP1 or P2.

LEMMA 8.3.14 (Multiplication of a Scalar and a Polytope):Given a polytopeP =
conv{pi} and a real scalarα, it follows that the set

αP = {α p : p∈ P}

is a polytope. Moreover,
αP = conv{α pi}.

LEMMA 8.3.15 (Convex Hull of a Union): Given any two polytopesP1 = conv{p1,i1}
andP2 = conv{p2,i2} in Rk, it follows that conv(P1

⋃

P2) is a polytope with generating
set{p1,i1}⋃ {p2,i2}.

REMARKS 8.3.16 (Loss of Extreme Points): Given two polytopesP1 and P2, the
geometry associated with formation of conv(P1

⋃

P2) is depicted in Figure 8.3.7. Note
that some of the extreme points ofP1 andP2 are no longer extremes of conv(P1

⋃

P2).

LEMMA 8.3.17 (Affine Linear Transformation of a Polytope): Suppose thatP =
conv{pi} is a polytope inRk1 and T : Rk1 → Rk2 is an affine linear transformation.

107

3.9. Sector patrol. March 8, 2016 CHAPTER 3. HANDOUTS

3.9 Sector patrol. March 8, 2016

ECE 719 - Handout Sector Patrol

Thus far, our sector patrol optimization problem is described by the non-negativity con-

straints

u1 ≥ 0, u2 ≥ 0,

the perimeter constraints

2u1 + 2u2 ≤ 10,

2u1 + 2u2 ≥ 4

and the objective function

J(u) =
u1

30
+

u2

15
.

We found the optimum (minimizer) to be

(u∗
1, u

∗
2) = (2, 0).

Reader: Suppose the model, based on traffic analysis, is enhanced to include constraint

u2 ≥ 1.5u1.

Carry out a simple graphical analysis in the (u1, u2) plane to obtain optimum

(u∗
1, u

∗
2) = (0.8, 1.2).

108

3.10. Handout Extreme. March 15, 2016 CHAPTER 3. HANDOUTS

3.10 Handout Extreme. March 15, 2016

Barmish

ECE 719 – Handout Extreme

We begin with a standard form LP and want to establish the following: A vector x is an
extreme point of the constraint set if and only if x is basic and feasible.

To establish sufficiency, we assume x is basic and feasible. We must show x is extreme.
Without loss of generality, say x1, x2, . . . , xm are the potentially non-zero components
of x. Hence, with ai being the i-th column of A, we have

x1a
1 + x2a

2 + · · ·+ xma
m = b.

Now proceeding by contradiction, say x is not extreme. Then, there exist two points v0, v1 ∈
P , different from x, and λ ∈ (0, 1) such that

x = (1− λ)v0 + λv1. (∗)

Since, v1 and v2 are feasible, their components are non-negative. Using this non-negativity,
the fact that (∗) holds and the fact that xi = 0 for i > m, it follows that for i > m,

v1i = 0 = v2i

for i > m. Furthermore, by feasibility of v1 and v2, we also have

v11a
1 + v12a

2 + · · ·+ v1ma
m = b; v21a

1 + v22a
2 + · · ·+ v2ma

m = b.

Therefore, from the equations above,

(v11 − x1)a1 + (v12 − x2)a2 + · · ·+ (v1m − xm)am = 0.

Now, by linear independence of columns a1, a2, . . . , am, the equality above forces x = v1.
By a similar argument, we also get x = v2. We have now contradicted the fact that the vi

differ from x.

To establish necessity, we now assume x is extreme and must show x is basic and feasi-
ble. Again proceeding by contradiction, without loss of generality, say x1, x2, . . . , xk are
the non-vanishing components of x and assume that the corresponding columns of A,
a1, a2, . . . , ak, are linearly dependent. Now, pick vector y with first k components, not
all zero, and satisfying

y1a
1 + y2a

2 + . . . yka
k = 0

and last n−k components yi being zero. Now, since xi > 0 for i ≤ k, using the definition
of y, the two points v1 = x+ εy and v2x− εy are feasible for suitably small ε > 0. Noting
that x can be expressed as the convex combination

x =
1

2
v1 +

1

2
v2,

we have contradicted the extremality of x.

109

3.10. Handout Extreme. March 15, 2016 CHAPTER 3. HANDOUTS

110

Chapter 4

HWs

Local contents
4.1 HW 1 . 112
4.2 HW 2 . 125
4.3 HW 3 . 137
4.4 HW 4 . 156
4.5 HW 5 . 213
4.6 HW 6 . 242
4.7 HW 7 . 269
4.8 HW special problem . 293

111

4.1. HW 1 CHAPTER 4. HWS

4.1 HW 1

4.1.1 Problem 1

problem description

Barmish

ECE 719 – Homework Multilinear

Suppose U is a hypercube in Rn and J : U → R is multilinear function.
Argue that the maximum of J(u) over U is attained at a vertex of U .
Remarks: If your argument involves working with one coordinate at a
time, I suggest you review your solution to this problem to see if it is
consistent with your solution to the next problem called “Homework Mul-
tilinear Revisited.” Also note that the minumum of J is also attained at
a vertex.

solution

A multilinear function 𝑓 (𝑥1,⋯ , 𝑥𝑛) is one which is linear with respect to each of its inde-
pendent variables taken one at a time. In other words, when fixing all the independent
variables except for one, then it reduces to a linear function in the one variable which is
free to change. For an example, for 𝑛 = 2,

𝑓 �𝑥, 𝑦� = 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑥𝑦

is a multilinear function in 𝑥, 𝑦. When fixing 𝑥 to some specific value 𝑥0 in ℜ, the above
becomes

𝑓 �𝑥, 𝑦��
𝑥=𝑥0

= 𝑎𝑥0 + 𝑏𝑦 + 𝑐𝑥0𝑦

= 𝑦 (𝑏 + 𝑐𝑥0) + 𝑎𝑥0
= 𝐴𝑦 + 𝐵

Where all the constants 𝑎, 𝑏, 𝑐, 𝑥0 have been combined into 𝐴 and 𝐵. Similarly when fixing
𝑦 = 𝑦0, then

𝑓 �𝑥, 𝑦��
𝑦=𝑦0

= 𝐶𝑥 + 𝐷

A linear function has it extreme values at the start or at the end of its allowed range of
values (The function can be either increasing or decreasing or a constant), this shows
that 𝑓 (𝑥1,⋯ , 𝑥𝑛) will have its extreme values at one end of the boundaries of each of its
variables 𝑥1,⋯ , 𝑥𝑛.

To illustrate what was said so far, taking 𝑛 = 2 and fixing 𝑥 = 𝑥0, then the function will be
𝑓 �𝑥, 𝑦��

𝑥=𝑥0
and when fixing 𝑦 = 𝑦0 the function will be 𝑓 �𝑥, 𝑦��

𝑦=𝑦0

x0 x

y

function multilinear
f(x, y) when x is fixed
to x0

y0

x

y

function multilinear
f(x, y) when y is fixed
to y0

f(x, y)
f(x, y)

domain of f(x, y)

To show that the extreme points must be at a "corner" or a vertex, is now straight forward.
From the above, the extreme value of the multilinear function must be on an edge. But
on any edge, only one of the coordinates is free to change while all the others are fixed.
Therefore on any edge of the hypercube (when in higher dimensions) the multilinear
function is linear in only one of the parameters at an edge. Hence the function must
be either increasing or decreasing on that edge (or be constant). Therefore the function
extreme values on the edge is where the edge starts or ends, which is a vertex node. This
is illustrated by this diagram for the ℜ2case.

112

4.1. HW 1 CHAPTER 4. HWS

x

y

f(x, y) at
one edgef(x, y)

x1

y0

x0

y1

f(x, y) at
another edge

f(x, y) at vertex
has an extreme
value

domain of f

The following illustrates the case for ℜ3 by showing few edges and (the function value
𝑓 �𝑥, 𝑦, 𝑧� is hard to show here, since we would need fourth dimension).

x

y

z

on this edge,
y, z are fixed,
but x is free
to change

on this edge,
x, z are fixed,
but y is free
to change

on this edge,
x, y are fixed,
but z is free
to change

This process carry over to higher dimensions hypercube.

113

4.1. HW 1 CHAPTER 4. HWS

4.1.2 Problem 2

problem description

Barmish

ECE 719 – Homework “Multilinear Revisited”

For the three-variable multilinear function

J(u) = 8u1u2u3 − 4u1u2 − 4u1u3 − 4u2u3 + 2u1 + 2u2 + 2u3 − 1

with constraints |ui| ≤ 1 for i = 1, 2, 3, let

u0 = (1, 1, 1)

be an initial guess for the minimizer. Now carry out a sequence of one-
variable optimizations beginning with u1 and obtain successive refinements
of the solution; i.e., hold u2 = u3 = 1 and optimize u1 to obtain û1. Then
with u1 = û1 and u3 = 1 held fixed, optimize u2. Continue this process
to optimize u3. Finally, begin additional one-variable optimization cycles
by returning to u1, etc. Does this process converge to a minimizer u∗?
Discuss.

solution

The function 𝐽 (𝑢) is defined on a cube. Since it is multilinear in 𝑢1, 𝑢2, 𝑢3, the minimizer
point must be at one of the 8 vertices of the cube as shown in problem one. The optimization
method the problem asks to perform does not converge to a minimizer 𝑢∗ in general. And it
does not in this problem. The value of 𝐽 at each corner are1 as shown below

u1

u2

u3

J7 = 9

J1 = 1J2 = −3

J3 = −3

J5 = 9J6 = −27

J4 = 9

J8 = −3

In the first stage, we select between 𝐽1 and 𝐽2, (this is the result of fixing 𝑢2 = 𝑢3 = 1 and
optimizing 𝐽 (𝑢) to find �̂�1). We find that 𝐽2 wins, since it is smaller. Then we select between
𝐽2 and 𝐽7 and find that 𝐽2 still wins. Then we select between 𝐽2 and 𝐽4, and find that 𝐽2 also
wins. So at the end of the first phase we mark 𝐽2 as the winner (the minimum so far).

Now we go back to 𝐽1 but select the second edge leaving this node, and select between 𝐽1
and 𝐽8, and find that 𝐽8 wins. Now we select between 𝐽8 and 𝐽7, and find that 𝐽8 wins. Then
select between 𝐽8 and 𝐽5, and 𝐽8 still wins. This ends the second phase.

Between 𝐽8 = −3 and 𝐽2 = −3 (winner of phase one), there is a tie so far.

We go back to 𝐽1 (this is the final stage) and now take the third edge leaving this node, and
select between 𝐽1 and 𝐽3. 𝐽3 wins. Then select between 𝐽3 and 𝐽4 and 𝐽3 wins. Then select
between 𝐽3 and 𝐽5 and 𝐽3 = −3 still is the winner.

From vertex 𝐽1 we have followed this algorithm over all the three edges leaving it, and
found that overall minimum is 𝐽 (𝑢) = −3. If we continue this process, it will just repeat all

1small matlab script in the appendix

114

4.1. HW 1 CHAPTER 4. HWS

over.

But 𝐽 (𝑢) = −3 is not the correct value for the global minimum, since the global minimum
is at vertex 𝐽∗6 = −27, which we never got the chance to compare with due to the nature
of how this algorithm works. If, for example, 𝐽7 had been smaller than 𝐽2, say −4, then we
would had the chance to select 𝐽7 and then compare 𝐽6 with 𝐽7 to find that it is the overall
minimum. So this algorithm is not guaranteed to converge to the global minimum in general.

Here is the decision tree used for the above process.

J1

J1

J2

J2

J7

J2

J4

J7

J∗
6

winner of
first stage

J1

J1

J8

J8

J7

J8

J5

J7

J∗
6

winner of
second stage

J1

J1

J3

J3

J4

J3

J5

J4

J∗
6

winner of
third stage

We see that the global minimum at vertex 𝐽6 = −27 was not visited. Wrong turn was taken
in each stage.

4.1.2.1 Appendix

This appendix can be skipped. It shows the basic calculations for the first phase for
illustration, and Matlab code used. Starting at (1, 1, 1), and fixing 𝑢2 = 𝑢3 = 1.

u1

u2

u3

(1, 1, 1)

(−1,−1,−1)

on this edge u2 = 1
and u3 = 1 but u1

is free to change

Hence on the first edge above, we have

𝐽 (𝑢1, 𝑢2, 𝑢3) = 8𝑢1𝑢2𝑢3 − 4𝑢1𝑢2 − 4𝑢1𝑢3 − 4𝑢2𝑢3 + 2𝑢1 + 2𝑢2 + 2𝑢3 − 1

Fixing 𝑢2 = 𝑢3 = 1 gives

𝐽 (𝑢1, 1, 1) = 8𝑢1 − 4𝑢1 − 4𝑢1 − 4 + 2𝑢1 + 2 + 2 − 1
= 2𝑢1 − 1

This is minimum when 𝑢1 = −1. Hence �̂�1 = −1. Now we see that on the above edge, 𝐽 is
smaller on vertex (−1, 1, 1) than on (1, 1, 1). Now we look at the next edge, where 𝑢1 = −1
and 𝑢3 = 1

u1

u2
u3

(−1, 1, 1)

on this edge u3 = 1
and u1 = −1 but
u2 is now free to
change

115

4.1. HW 1 CHAPTER 4. HWS

Fixing 𝑢3 at 1 and 𝑢1 = �̂�1 = −1 then

𝐽 (�̂�1, 𝑢2, 𝑢3) = 𝐽 (−1, 𝑢2, 1)
= 8�̂�1𝑢2𝑢3 − 4�̂�1𝑢2 − 4�̂�1𝑢3 − 4𝑢2𝑢3 + 2�̂�1 + 2𝑢2 + 2𝑢3 − 1
= −8𝑢2 + 4𝑢2 + 4 − 4𝑢2 − 2 + 2𝑢2 + 2 − 1
= 3 − 6𝑢2

Hence 𝐽 (�̂�1, 𝑢2, 1) is minimum when 𝑢2 = 1. Therefore �̂�2 = 1. This tells us that 𝐽 at ver-
tex (−1, 1, 1) is smaller than on (−1, 1, −1). Traveling down the edge between (−1, 1, 1) and
(−1, 1, −1), which is done by fixing 𝑢2, 𝑢1 and changing 𝑢3 gives

u1

u2u3

(−1, 1, 1)

on this edge u2 = 1
and u1 = −1 but
u3 is now free to
change

Now we need to find �̂�3
𝐽 (�̂�1, �̂�2, 𝑢3) = 𝐽 (−1, 1, 𝑢3)

= 8�̂�1�̂�2𝑢3 − 4�̂�1�̂�2 − 4�̂�1𝑢3 − 4�̂�2𝑢3 + 2�̂�1 + 2�̂�2 + 2𝑢3 − 1
= −8𝑢3 + 4 + 4𝑢3 − 4𝑢3 − 2 + 2 + 2𝑢3 − 1
= 3 − 6𝑢3

This is minimum at 𝑢3 = 1, Therefore �̂�3 = 1. This means that 𝐽 is still smallest at vertex
(−1, 1, 1). We have so far visited 3 edges, and looked at 4 vertices and found that 𝐽 is smallest
at (−1, 1, 1).

𝐽 (−1, 1, 1) = 8𝑢1𝑢2𝑢3 − 4𝑢1𝑢2 − 4𝑢1𝑢3 − 4𝑢2𝑢3 + 2𝑢1 + 2𝑢2 + 2𝑢3 − 1
= −8 + 4 + 4 − 4 − 2 + 2 + 2 − 1
= −3

Here is a diagram to illustrate what we did so far

(1, 1, 1)

we visited these 4 edges and
found that J = −3 is
smallest on this vertex

we now need to start
on this side of the cube

We now repeat the process starting from (1, 1, 1). Fixing 𝑢1 = 1, 𝑢3 = 1, but vary 𝑢2. The
calculation is similar to the above, and will not be shown. A small Matlab script is given
below that was used to verify the results.� �

1 function nma_HW1_problem2_ECE719
2 %function to evaluate J at corner of the cube and do
3 %some syms caluclations.
4 %1/22/16
5

6 syms u1 u2 u3;
7 J = 8*u1*u2*u3-4*u1*u2-4*u1*u3-4*u2*u3+2*u1+2*u2+2*u3-1;
8

9 %first find J value at all the corners, the coordinates are
10 a = {[-1 1] [-1 1] [-1 1]};

116

4.1. HW 1 CHAPTER 4. HWS

11 coords = allcomb(a{:});
12

13 %function to evalute J at each coordinate
14 f = @(c)subs(J,{u1,u2,u3},c);
15

16 %print values at each corner of the cube
17 vpa(arrayfun(@(i) f(coords(i,:)),1:length(coords),'Uni',false))
18

19 J0 = subs(J,{u2,u3},{1,1});
20 u1Hat = getuHat(J0,u1)
21 J0 = subs(J,{u1,u3},{u1Hat,1});
22 u2Hat = getuHat(J0,u2)
23 J0 = subs(J,{u1,u2},{u1Hat,u2Hat});
24 u3Hat = getuHat(J0,u3)
25

26 end
27

28 function uHat = getuHat(J0,u)
29 uHat = 1;
30 u0 = subs(J0,u,-1);
31 if u0<subs(J0,u,1)
32 uHat = -1;
33 end
34 end� �

Output of the above is
>> nma_HW1_problem2_ECE719
[-27.0, 9.0, 9.0, -3.0, 9.0, -3.0, -3.0, 1.0]
u1Hat =
-1
u2Hat =
1
u3Hat =
1

4.1.3 Problem 3

problem description

Barmish

ECE 719 – Homework Quotient

Suppose U ⊂ Rn is a hypercube and let

J(u) .=
N(u)

D(u

where N(u) and D(u) are multilinear functions with D(u) non-vanishing
on U . Argue that the maximum of J(u) over U is achieved by an extreme
point of U . (Note: The same result holds for the minimum).

solution

Since 𝑁 (𝑢) is multilinear, its maximum and minimum values will be on a vertex. Similarly
for 𝐷 (𝑢). Therefore, we only need to compare the ratios 𝑁(𝑢)

𝐷(𝑢) on the vertices to find the

largest ratio. For example, for 𝑛 = 2, we look at the four ratios, 𝑁1𝐷1 ,
𝑁2
𝐷2
, 𝑁3𝐷3 ,

𝑁4
𝐷4
. Where 𝑁𝑖

means the value of 𝑁 (𝑢) at vertex 𝑖, and similarly for 𝐷𝑖.

Since one of these 𝑁𝑖 will be the largest value that 𝑁 (𝑢) can take, and one of these 𝐷𝑖

117

4.1. HW 1 CHAPTER 4. HWS

values will be the smallest 𝐷 (𝑢) can take, then the maximum of 𝐽 (𝑢) = 𝑁(𝑢)
𝐷(𝑢) will be one of

these four values.

It can not be at any other 𝑢𝑖 location. Proof by contradiction: Let us assume there is a point
somewhere else in the domain of 𝐽 (𝑢), say an internal point 𝑢𝑖 where

𝑁𝑖
𝐷𝑖

was the largest.

This would imply that 𝑁𝑖 is so large as to make 𝑁𝑖
𝐷𝑖

larger than any value at the vertices
regardless of what 𝐷𝑖 happened to be at 𝑢𝑖, which means that 𝑁𝑖 is the maximum of 𝑁 (𝑢),
but this is not possible since the maximum of 𝑁 (𝑢) must be at a vertex.

Or it could mean that 𝐷𝑖 is so small such that 𝑁𝑖
𝐷𝑖

is larger than any value at the vertices
regardless of what 𝑁𝑖 happened to be, which means that 𝐷𝑖 is the minimum of 𝐷 (𝑢), but
this is also not possible, since the minimum of 𝑁 (𝑢) is at a vertex. Therefore the maximum
of 𝐽 (𝑢) must be at a vertex and can not be at any other point.

4.1.4 Problem 4

problem description

Barmish

ECE 719 – Homework Ladder

For the ladder network below with n = 9 and input voltage Vin = 1, use symbolic ma-
nipulation in Matlab to find the output voltage Vout(R) as a function of the Ri.

For resistor values with bounds 90 ≤ Ri ≤ 110 for i = 1, 2, . . . , 9, find the maximum
value of the output voltage Vout(R).

...

...

+

-

Rn

Rn-1

Rn-2

VoutVin

R1

R5

R3

R2

R6

R4

solution

Vin

+

R1 R4 R7

R8R5R2

R9R3 R6I1 I2 I3
Vout

The total network resistance (Input impedance) is

𝑍𝑖𝑛 = 𝑅1 + 𝑅2 + 𝑅3‖ (𝑅4 + 𝑅5 + 𝑅6‖ (𝑅7 + 𝑅9 + 𝑅8))

Using 𝑋‖𝑌 = 𝑋𝑌
𝑋+𝑌 since in parallel the above become

𝑍𝑖𝑛 = 𝑅1 + 𝑅2 +
𝑅3 (𝑅4 + 𝑅5 + 𝑅6‖ (𝑅7 + 𝑅9 + 𝑅8))
𝑅3 + (𝑅4 + 𝑅5 + 𝑅6‖ (𝑅7 + 𝑅9 + 𝑅8))

= 𝑅1 + 𝑅2 +
𝑅3 �𝑅4 + 𝑅5 +

𝑅6(𝑅7+𝑅9+𝑅8)
𝑅6+(𝑅7+𝑅9+𝑅8)

�

𝑅3 + �𝑅4 + 𝑅5 +
𝑅6(𝑅7+𝑅9+𝑅8)
𝑅6+(𝑅7+𝑅9+𝑅8)

�

The above is the overall ladder network resistance. Let 𝑋 = 𝑅4+𝑅5+
𝑅6(𝑅7+𝑅9+𝑅8)
𝑅6+(𝑅7+𝑅9+𝑅8)

to simplify
the equation

𝑍𝑖𝑛 = 𝑅1 + 𝑅2 +
𝑋𝑅3
𝑅3 + 𝑋

118

4.1. HW 1 CHAPTER 4. HWS

The output impedance is

𝑍𝑜𝑢𝑡 = 𝑅3‖ (𝑅4 + 𝑅5 + 𝑅6‖ (𝑅7 + 𝑅9 + 𝑅8))

=
𝑋𝑅3
𝑅3 + 𝑋

Hence 𝑉𝑜𝑢𝑡 is now found, using 𝑉𝑖𝑛 = 1, from
𝑉𝑜𝑢𝑡
𝑉𝑖𝑛

=
𝑍𝑜𝑢𝑡
𝑍𝑖𝑛

𝑉𝑜𝑢𝑡 =
𝑋𝑅3
𝑅3+𝑋

𝑅1 + 𝑅2 +
𝑋𝑅3
𝑅3+𝑋

=
𝑋𝑅3

𝑅1 (𝑅3 + 𝑋) + 𝑅2 (𝑅3 + 𝑋) + 𝑋𝑅3

=
𝑋𝑅3

𝑋 (𝑅1 + 𝑅2 + 𝑅3) + 𝑅1𝑅3 + 𝑅2𝑅3

Since 𝑉𝑜𝑢𝑡 multilinear function in 𝑅𝑖, 𝑖 = 1⋯9, the maximum and minimum will occur
at the end range values of each resistance, which is 90 and 110. so there are 29 di�erent
cases to check. A small script is below which calculate these vertex values and shows the
maximum 𝑉𝑜𝑢𝑡 found. The maximum is

𝑉𝑜𝑢𝑡max = 0.3147 volt

Using 𝑅1 and 𝑅2 at 90 ohm, and the rest of the resistors using 110 ohm.� �
1 function nma_HW1_problem4_ECE719
2 %function to evaluate Vout at corners of the R^9
3 %Nasser M. Abbasi
4 %1/23/16
5

6 a = repmat({[90 110]},9,1);
7 v = allcomb(a{:});
8 r = arrayfun(@(i) vOut(v(i,:)),1:size(v,1));
9

10 %done. Now print min and max, and the vertix at each
11 [maxValue,indx] = max(r);
12 fprintf('max is %f at U=\n',maxValue);
13 v(indx,:)
14

15 [minValue,indx] = min(r);
16 fprintf('min is %f at U=\n',minValue);
17 v(indx,:)
18

19 end
20 function r = vOut(R)
21 %evaluate objective function at vertex. See HW
22 X = R(4)+R(5)+R(6)*(R(7)+R(9)+R(8))/(R(6)+(R(7)+R(9)+R(8)));
23 r = X*R(3)/(X*(R(1)+R(2)+R(3))+R(1)*R(2)+R(2)*R(3));
24 end� �

Which generates when run:
>> nma_HW1_problem4_ECE719
max is 0.314732 at U=
90 90 110 110 110 110 110 110 110
min is 0.225627 at U=
110 110 90 90 90 90 90 90 90

4.1.5 Problem 5

problem description

119

4.1. HW 1 CHAPTER 4. HWS

Barmish

ECE 719 – Homework Common Sense

For constraint set U ⊆ Rn and J : U → R suppose that for k = 1, 2, . . . , n,
the following condition is satisfied: With all ui frozen except for i = k,
the resulting one variable J function is minimized over U by uk = u∗k,
independently of the frozen values of the remaining ui.

(a) Argue that u∗ = (u∗1, u
∗
2, . . . , u

∗
n) minimizes J(u) over U with all ui

being allowed to vary simultaneously.

(b) Give an example with n = 2 for which the result in Part (a) ap-
plies.

(c) Give an example with n = 2 for which the result in Part (a) does
not apply.

solution

4.1.5.1 Part(a)

Since 𝑢∗𝑘 minimizes 𝑓 (𝑢) when all 𝑢𝑖 are fixed except for 𝑢𝑘, then this is the same as saying

that solving for 𝜕𝑓
𝜕𝑢𝑘

= 0 gives 𝑢∗𝑘. Since this is the necessary condition for an extreme point
from unconstrained calculus (we still need to check the Hessian for 𝑢∗𝑘 being the minimum
or the maximum, but we are told here it is a minimizer).

But 𝜕𝑓
𝜕𝑢𝑘

is partial derivative of 𝑓 (𝑢) w.r.t. to 𝑢𝑘 when all other 𝑢𝑖 are fixed (by definition).
For ℜ𝑛 this carries over and becomes the gradient. Therefore

∇𝑓 = 0
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓
𝜕𝑢1
𝜕𝑓
𝜕𝑢2
⋮
𝜕𝑓
𝜕𝑢𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

Leads to minimum being at

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑢∗1
𝑢∗2
⋮
𝑢∗𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

since we are told that each 𝜕𝑓
𝜕𝑢𝑘

= 0 results in 𝑢∗𝑘 as the

solution.

4.1.5.2 Part(b)

An example where the above applies is 𝐽 �𝑥, 𝑦� = 𝑥𝑦 on 𝑈 = [0, 1] Since

∇𝑓 = 0
⎛
⎜⎜⎜⎜⎜⎜⎝

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
𝑦
𝑥

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎟⎠

Hence a minimizer is 𝑢∗ =

⎛
⎜⎜⎜⎜⎜⎝
𝑥 = 0
𝑦 = 0

⎞
⎟⎟⎟⎟⎟⎠ and 𝐽 (𝑢

∗) = 0 is the global minimum.

4.1.5.3 Part(c)

An example where part (a) does not apply is 𝐽 �𝑥, 𝑦� = 𝑥𝑦 on 𝑈 = [−1, 1]. Now 𝑢∗ =

⎛
⎜⎜⎜⎜⎜⎝
0
0

⎞
⎟⎟⎟⎟⎟⎠ is

not the minimizer, since if 𝑥 = −1 and 𝑦 = 1 or if 𝑥 = 1 and 𝑦 = −1, we find 𝐽 (𝑢∗) = −1 < 0.
120

4.1. HW 1 CHAPTER 4. HWS

The following is a plot of 𝐽(𝑥, 𝑦) = 𝑥𝑦 of di�erent sets of constraints to illustrate part(b) and
(c).

1

y

0.5
01

part(a). min J(u)=0 at (0,0)

0.8
x

0.60.40.20

1

0.8

0.6

0.4

0

0.2

-1

part(b). min J(u)=0 at (-1,1) and at (1,-1) not at (0,0)

-0.50
y

0.51-1
0

x

1

0

-0.5

1

0.5

-1

4.1.6 HW 1 key solution

Barmish

ECE 719 – Solution Multilinear

Let J∗ denote the maximum value and take the hypercube U described
by u−i ≤ u ≤ u+

i for i = 1, 2, . . . , n and let u∗ be an optimal element. We
begin with the first coordinate. If u∗1 equals either u−1 or u+

1 , we let ũ∗1 = u∗1
and we proceed to the second coordinate. Otherwise, we define the one
variable function

J1(u1)
.= J(u1, u

∗
2, u

∗
3, . . . , u

∗
n).

For this single variable case, since J1 is linear, it maximized with u1 equal
to either u−1 or u+

1 . Let ũ∗1 denote this optimal scalar and note that

J(ũ∗1, u
∗
2, u

∗
3, . . . , u

∗
n) ≥ J(u∗) = J∗

Next we consider the second coordinate u∗2 and repeat the argument above;
i.e., If u∗2 equals either u−2 or u+

2 , we let ũ∗2 = u∗2 and proceed to the third
coordinate. Otherwise, we define the one variable function

J2(u2)
.= J(ũ∗1, u2, u

∗
3, . . . , u

∗
n).

and again using the linearity, this function is maximized with u2 equal to
either u−2 or u+

2 . With ũ∗2 being this optimal scalar, we now have

J(ũ∗1, ũ
∗
2, u

∗
3, . . . , u

∗
n) ≥ J(u∗) = J∗.

By continuing in this manner, we can perturb all coordinates to their ex-
treme values while assuring that the function value for J does not decrease.
Letting ũ∗ denote the final vector obtained, we have

J(ũ∗) ≥ J(u∗) = J∗.

Hence, we have substituted u∗ with another vector ũ∗ which is a vertex
and also maximizes J . In other words, the maximum of J is attained at a
vertex.

121

4.1. HW 1 CHAPTER 4. HWS

Barmish

ECE 719 – Solution Multilinear Revisited

Fixing u2 = u3 = 1, we obtain the single variable function

J(u1, 1, 1) = 2u1 − 1

which is minimized with u1 = −1. Hence the next solution is

u1 = (−1, 1, 1)

with associated cost
J(u1) = −3.

For the next step, we minimize the single variable function

J(−1, u2, 1) = −6u2 + 3

and obtain u2 = 1 as the minimizer. Hence u2 = u1 and we obtain cost
given by

J(u2) = J(u1) = −3.

By continuing the iteration we see that

uk = u1; J(uk) = −3

for all k ≥ 3. That is, the algorithm gets stuck at (−1, 1, 1) whereas the
optimal element, obtainable via substitution of vertices, is

u∗ = (−1,−1,−1)

with associated optimal cost

J∗ = J(u∗) = −27.

This example shows one potential pitfall associated with the solution of
an n-variable problem via a sequence on one-dimensional optimizations.
Notice for the multilinear case above, each new iterate is a “nearest vertex
neighbor” of its predecessor.

122

4.1. HW 1 CHAPTER 4. HWS

Barmish

ECE 719 – Solution Quotient

Given any arbitrary u0 ∈ U , it suffices to show that

J(v) ≤ J(u0)

for some vertex (extreme point) v of U . Indeed, letting

γ0
.= J(u0),

we form the function

J̃(u) .= N(u)− γ0D(u)

and note that it is multilinear with J̃(u0) = 0. Noting that D(u) is non-
vanishing on U ,it must have one sign. Now, there are two cases to consider:

Case 1: D(u) > 0 on U . In view of multilinearity of J̃ on the hypercube U ,
it follows that there is an optimal minimizing element minimizing J̃ which
corresponds to some vertex v ∈ U . That is,

J̃(v) ≤ J̃(u)

for all u ∈ U . In particular, we have

J̃(v) ≤ J̃(u0).

Recalling J̃(u0) = 0, it follows that

J̃(v) ≤ 0.

Dividing by D(v) > 0, we obtain

J(v) ≤ γ0 = J(u0)

as required.

Case 2: When D(u) < 0 on U . In view of multilinearity of J̃ on the
hypercube U , it follows that there is an optimal minimizing element max-
imizing J̃ which corresponds to some vertex v ∈ U . That is,

J̃(v) ≥ J̃(u)

for all u ∈ U . In particular, we have

J̃(v) ≥ J̃(u0).

Recalling J̃(u0) = 0, it follows that

J̃(v) ≥ 0.

Now, dividing by the negative quantity D(v), the inequality above reverses
to become

J(v) ≤ γ0 = J(u0)

as required.

2

123

4.1. HW 1 CHAPTER 4. HWS

Barmish

ECE 719 – Solution Ladder

For the ladder network with n = 9, the solution of the circuit equation is

Vout(R) =
N(R)

D(R)

where
N(R) = R3R6R9

and

D(R) = R2R4R6 + R6R3R8 + R3R9R1 + R6R8R1 + R3R7R2 + R7R4R2 + R9R6R1 + R4R8R2

+R4R9R1 + R3R8R2 + R3R6R4 + R6R7R2 + R8R4R1 + R3R6R9 + R7R4R1 + R9R4R2

+R6R4R1 + R6R7R1 + R6R8R2 + R9R6R2 + R3R7R1 + R3R8R1 + R3R9R2 + R3R6R1

+R6R3R2 + R3R7R4 + R3R8R4 + R3R9R4 + R3R7R6 + R5R7R1 + R5R7R2 + R5R8R1

+R5R8R2 + R9R5R1 + R9R5R2 + R6R5R1 + R6R5R2 + R3R7R5 + R3R8R5 + R3R9R5

+R3R6R5.

Now, from Homework Quotient, we know the maximum is attained in the
vertices of the hypercube. Hence Ri can only take values {90, 110}. Now
by exhaustive search of the 29 vertices, we obtain V ∗

out ≈ 0.0350, with the
choice of R∗ = (90, 90, 110, 90, 90, 110, 90, 90, 110).

Barmish

ECE 719 – Solution Common Sense

(a) Given any u0 = (u0
1, u

0
2, ..., u

0
n) ∈ U , it suffices to show that

J(u∗) ≤ J(u0).

Indeed, with
û∗,1 .= (u∗1, u

0
2, ..., u

0
n),

it follows, from the definition of u∗1, that

J(û∗,1) ≤ J(u0).

Similarly, for
û∗,2 .= (u∗1, u

∗
2, u

0
3, ..., u

0
n),

we have
J(û∗,2) ≤ J(û∗,1) ≤ J(u0).

Continuing the same reasoning, one arrives at

J(u∗) ≤ J(û∗,n−1) ≤ ... ≤ J(û∗,1) ≤ J(u0),

i.e., u∗ minimizes J(u) over U .

(b) Let U = [−1, 1] × [−1, 1], and J(u) = u2
1 + u2

2. For u1 fixed, u∗2 = 0;
For u2 fixed, u∗1 = 0. The minimum of J(u) is also attained at u∗ = (0, 0).

(c) Let U = [−1, 1] × [−1, 1], and J(u) = u1u2. For u1 fixed, u∗2 is ei-
ther +1 or −1, dependent on the value of u1. For u2 fixed, u∗1 is either +1
or −1, dependent on the value of u2. This violates the assumption on u∗i
in part (a).

124

4.2. HW 2 CHAPTER 4. HWS

4.2 HW 2

4.2.1 Problem 1

problem description

Barmish

ECE 719 – Homework Epigraph

Give a function J : Rn → R, we recall that its epigraph is the a set in Rn+1

given by
epi J = {(u, α) ∈ Rn+1 : α ≥ J(u)}.

Now prove that J is a convex function if and only if epi J is a convex set.

solution The following diagram illustrates epi 𝐽 for 𝑛 = 1. In words, it is the set of all
points above the curve of the function 𝐽 (𝑢)

J(u)

u

The set epiJ

This is an i� proof, hence we need to show the following

1. Given 𝐽 is convex function, then show that epi 𝐽 is a convex set.

2. Given that epi 𝐽 is a convex set, then show that 𝐽 is a convex function.

Proof of first direction We pick any two arbitrary points in epi 𝐽, such as 𝑝0 = (𝑢0, 𝑦0) and
𝑝1 = (𝑢1, 𝑦1). To show epi 𝐽 is a convex set, we need now to show that any point on the
line between 𝑝0, 𝑝1 is also in epi 𝐽. The point between them is given by 𝑝𝜆 = �𝑢𝜆, 𝑦𝜆� where
𝜆 ∈ [0, 1]. The following diagram helps illustrates this for 𝑛 = 1.

u0 u1uλ

p0 = {u0, y0}

p1 = {u1, y1}

J(u0)

J(u1)

J(uλ)

pλ

We need to
show that pλ
is also in epi J

u

J(u)

The point 𝑝𝜆 is given by

�𝑢𝜆, 𝑦𝜆� = (1 − 𝜆) 𝑝0 + 𝜆𝑝1
= (1 − 𝜆) �𝑢0, 𝑦0� + 𝜆 �𝑢1, 𝑦1�

= �(1 − 𝜆) 𝑢0 + 𝜆𝑢1, (1 − 𝜆) 𝑦0 + 𝜆𝑦1�

Therefore 𝑦𝜆 = (1 − 𝜆) 𝑦0 + 𝜆𝑦1. Since 𝑝0, 𝑝1 are in epi 𝐽, then by the definition of epi 𝐽, we
know that 𝑦0 ≥ 𝐽 �𝑢0� and 𝑦1 ≥ 𝐽 �𝑢1�. Therefore we conclude that

𝑦𝜆 ≥ (1 − 𝜆) 𝐽 �𝑢0� + 𝜆𝐽 �𝑢1� (1)

But since we assumed 𝐽 is a convex function, then we also know that (1 − 𝜆) 𝐽 �𝑢0�+𝜆𝐽 �𝑢1� ≥
𝐽 �𝑢𝜆� where 𝑢𝜆 = (1 − 𝜆) 𝑢0 + 𝜆𝑢1. Therefore (1) becomes

𝑦𝜆 ≥ 𝐽 �𝑢𝜆�

125

4.2. HW 2 CHAPTER 4. HWS

This implies the arbitrary point 𝑝𝜆 is in epi 𝐽.

We now need to proof the other direction. Given that epi 𝐽 is a convex set, then show that
𝐽 is a convex function. Since epi 𝐽 is a convex set, we pick two arbitrary points in epi 𝐽,
such as 𝑝0, 𝑝1. We can choose 𝑝0 = �𝑢0, 𝐽 �𝑢0�� and 𝑝1 = �𝑢1, 𝐽 �𝑢1��. These are still in epi 𝐽,
but on the lower bound, on the edge with 𝐽 (𝑢) curve.

u0 u1uλ

p0 = {u0, y0}

p1 = {u1, y1}

J(u0)

J(u1)

J(uλ)

pλ = {uλ, yλ}

u

J(u)

uλ = (1 − λ)u0 + λu1

Since 𝑝0, 𝑝1 are two points in a convex set, then any point 𝑝𝜆 on a line between them is
also in epi 𝐽 (by definition of a convex set). And since 𝑝𝜆 = (1 − 𝜆) 𝑝0 + 𝜆𝑝1 this implies

𝑝𝜆 = �𝑢𝜆, 𝑦𝜆�

= �(1 − 𝜆) 𝑝0 + 𝜆𝑝1�

= �(1 − 𝜆) �𝑢0, 𝐽 �𝑢0�� + 𝜆 �𝑢1, 𝐽 �𝑢1���

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
(1 − 𝜆) 𝑢0 + 𝜆𝑢1,

𝑦𝜆

���������������������������(1 − 𝜆) 𝐽 �𝑢0� + 𝐽 �𝑢1�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(1)

Since 𝑝𝜆 is in epi 𝐽 then by definition of epi 𝐽

𝑦𝜆 ≥ 𝐽 �𝑢𝜆� (2)

But from (1) we see that 𝑦𝜆 = (1 − 𝜆) 𝐽 �𝑢0� + 𝐽 �𝑢1�, therefore (2) is the same as writing

(1 − 𝜆) 𝐽 �𝑢0� + 𝐽 �𝑢1� ≥ 𝐽 �𝑢𝜆� (3)

But 𝑢𝜆 = (1 − 𝜆) 𝑢0 + 𝜆𝑢1, hence the above becomes

(1 − 𝜆) 𝐽 �𝑢0� + 𝐽 �𝑢1� ≥ 𝐽 �(1 − 𝜆) 𝑢0 + 𝜆𝑢1�

But the above is the definition of a convex function. Therefore 𝐽 (𝑢) is a convex function.
QED.

4.2.2 Problem 2

problem description

Barmish

ECE 719 – Homework Unique Minimum

Suppose J : Rn → R is strictly convex. Then prove the following: If a
minimizing element u∗ ∈ Rn exists, it must be unique.

solution Let 𝑢∗0 and 𝑢∗1 be any two di�erent minimizing elements in ℜ𝑛 such that
𝐽 �𝑢∗0� < 𝐽 �𝑢∗1�. We will show that this leads to contradiction. Since 𝑢∗0 is a minimizer, then
there exists some 𝑅 > 0, such that all points 𝑢 that satisfy ‖𝑢∗ − 𝑢‖ ≤ 𝑅 also satisfy

𝐽 �𝑢∗0� ≤ 𝐽 (𝑢)

126

4.2. HW 2 CHAPTER 4. HWS

u∗
0

u∗
1

all points u
here satisfy
J(u∗

0) ≤ J(u)

R

We will consider all points along the line joining 𝑢∗0, 𝑢∗1, and pick one point 𝑢𝜆 that satisfies
�𝑢∗ − 𝑢𝜆� ≤ 𝑅, where 𝜆 ∈ [0, 1] is selected to make the convex mixture 𝑢𝜆 = (1 − 𝜆) 𝑢∗0 + 𝜆𝑢∗1
satisfied. Therefore any 𝜆 ≤ 𝑅

�𝑢∗0−𝑢
∗
1�
will put 𝑢𝜆 inside the sphere of radius 𝑅.

u∗
0

u∗
1R

uλ = (1− λ)u∗
0 + λu∗

1

Hence now we can say that

𝐽 �𝑢∗0� ≤ 𝐽 �𝑢𝜆� (1)

But given that 𝐽 (𝑢) is a strict convex function, then

𝐽(𝑢𝜆) < (1 − 𝜆) 𝐽 �𝑢∗0� + 𝜆𝐽 �𝑢∗1� (2)

Since we assumed that 𝐽 �𝑢∗0� < 𝐽 �𝑢∗1�, then if we replace 𝐽 �𝑢∗1� by 𝐽 �𝑢∗0� in the RHS of (2),
it will change from < to ≤ resulting in

𝐽(𝑢𝜆) ≤ (1 − 𝜆) 𝐽 �𝑢∗0� + 𝜆𝐽 �𝑢∗0�

𝐽(𝑢𝜆) ≤ 𝐽 �𝑢∗0� (3)

We see that equations (3) and (1) are a contradiction. Therefore our assumption is wrong
and there can not be more than one minimizing element and 𝑢∗0 must be the same as 𝑢∗1.

4.2.3 Problem 3

problem description

Barmish

ECE 719 – Homework Global Minimum

Preamble: Suppose J : Rn → R. A point u∗ ∈ Rn is said to be a
local minimum of J if there exists some suitably small δ > 0 leading to
satisfaction of the following condition:

J(u∗) ≤ J(u)

for all u such that ||u − u∗|| < δ. Said another way, u∗ is a mini-
mizing element over a suitably small open neighborhood. For the case
when J(u∗) ≤ J(u) for all u, we call u∗ a global minimum of J .

The Homework Problem: Suppose J : Rn → R is convex. Prove
that every local minimum of J is a global minimum.

solution We are given that 𝐽 (𝑢∗) ≤ 𝐽 (𝑢) for all 𝑢 such that ‖𝑢∗ − 𝑢‖ < 𝛿. Let us pick any
arbitrary point 𝑢1, outside ball of radius 𝛿. Then any point on the line between 𝑢∗ and 𝑢1
is given by

𝑢𝜆 = (1 − 𝜆) 𝑢∗ + 𝜆𝑢1

In picture, so far we have this setup

127

4.2. HW 2 CHAPTER 4. HWS

u∗

u1

uλ

J(u∗) ≤ J(u)
inside this ball of
radius δ

We now need to show that 𝐽 (𝑢∗) ≤ 𝐽 �𝑢1� even though 𝑢1 is outside the ball. Since 𝐽 is a
convex function, then

𝐽 �𝑢𝜆� ≤ (1 − 𝜆) 𝐽 (𝑢∗) + 𝜆𝐽 �𝑢1� (1)

We can now select 𝜆 to push 𝑢𝜆 to be inside the ball. We are free to change 𝜆 as we want
while keeping 𝑢1 fixed, outside the ball. If we do this we then we have

𝐽 (𝑢∗) ≤ 𝐽 �𝑢𝜆�

u∗

u1

uλ

J(u∗) ≤ J(uλ)
inside this ball of
radius δ

Hence (1) becomes

𝐽 (𝑢∗) ≤ (1 − 𝜆) 𝐽 (𝑢∗) + 𝜆𝐽 �𝑢1� (2)

Where we replaced 𝐽 �𝑢𝜆� by 𝐽 (𝑢∗) in (1) and since 𝐽 (𝑢∗) ≤ 𝐽 �𝑢𝜆� the ≤ relation remained
valid. Simplifying (2) gives

𝐽 (𝑢∗) ≤ 𝐽 (𝑢∗) − 𝜆𝐽 (𝑢∗) + 𝜆𝐽 �𝑢1�

𝜆𝐽 (𝑢∗) ≤ 𝜆𝐽 �𝑢1�

For non-zero 𝜆 this means 𝐽 (𝑢∗) ≤ 𝐽 �𝑢1�. This completes the proof, since 𝑢1 was arbitrary
point anywhere. Hence 𝑢∗ is global minimum. QED

4.2.4 Problem 4

problem description

Barmish

ECE 719 – Homework Multiple Combinations

For a convex function J : Rn → R, prove the following condition is satis-
fied: Given any points u1, u2, ..., uN ∈ Rn and any scalars λ1, λ2, ..., λN ≥ 0
such that

N∑
i=1

λi = 1,

it follows that

J

 N∑
i=1

λiu
i

 ≤
N∑

i=1
λiJ(ui).

solution

We need to show that 𝐽 �
𝑁
�
𝑖=1
𝜆𝑖𝑢𝑖� ≤

𝑁
�
𝑖=1
𝜆𝑖𝐽 �𝑢𝑖� where

𝑁
�
𝑖=1
𝜆𝑖 = 1. Proof by induction. For 𝑁 = 1

128

4.2. HW 2 CHAPTER 4. HWS

and since 𝜆1 = 1, then we have

𝐽 �𝑢1� = 𝐽 �𝑢1�

The case for 𝑁 = 2 comes for free, from the definition of 𝐽 being a convex function

𝐽 �(1 − 𝜆) 𝑢1 + 𝜆𝑢2� ≤ (1 − 𝜆) 𝐽 �𝑢1� + 𝜆𝐽 �𝑢2� (A)

By making (1 − 𝜆) ≡ 𝜆1, 𝜆 ≡ 𝜆2, the above can be written as

𝐽 �𝜆1𝑢1 + 𝜆2𝑢2� ≤ 𝜆1𝐽 �𝑢1� + 𝜆2𝐽 �𝑢2�

We now assume it is true for 𝑁 = 𝑘 − 1. In other words, the inductive hypothesis below is
given as true

𝐽 �
𝑘−1
�
𝑖=1
𝜆𝑖𝑢𝑖� ≤

𝑘−1
�
𝑖=1
𝜆𝑖𝐽 �𝑢𝑖� (*)

Now we have to show it will also be true for 𝑁 = 𝑘, which is

𝑘
�
𝑖=1
𝜆𝑖𝐽 �𝑢𝑖� = 𝜆1𝐽 �𝑢1� + 𝜆1𝐽 �𝑢1� +⋯ + 𝜆𝑘𝐽 �𝑢𝑘�

= (1 − 𝜆𝑘) �
𝜆1

(1 − 𝜆𝑘)
𝐽 �𝑢1� +

𝜆1
(1 − 𝜆𝑘)

𝐽 �𝑢1� +⋯ +
𝜆𝑘−1

(1 − 𝜆𝑘)
𝐽 �𝑢𝑘−1� +

𝜆𝑘
(1 − 𝜆𝑘)

𝐽 �𝑢𝑘��

= (1 − 𝜆𝑘) �
𝜆1

(1 − 𝜆𝑘)
𝐽 �𝑢1� +

𝜆1
(1 − 𝜆𝑘)

𝐽 �𝑢1� +⋯ +
𝜆𝑘−1

(1 − 𝜆𝑘)
𝐽 �𝑢𝑘−1�� + 𝜆𝑘𝐽 �𝑢𝑘�

= (1 − 𝜆𝑘) �
𝑘−1
�
𝑖=1

𝜆𝑖
(1 − 𝜆𝑘)

𝐽 �𝑢𝑖�� + 𝜆𝑘𝐽 �𝑢𝑘� (1)

Now we take advantage of the inductive hypothesis Eq. (*) on 𝑘 − 1, which says that

𝐽 �
𝑘−1
�
𝑖=1

𝜆𝑖
(1−𝜆𝑘)

𝑢𝑖� ≤
𝑘−1
�
𝑖=1

𝜆𝑖
(1−𝜆𝑘)

𝐽 �𝑢𝑖�. Using this in (1) changes it to ≥ relation

𝑘
�
𝑖=1
𝜆𝑖𝐽 �𝑢𝑖� ≥ (1 − 𝜆𝑘) 𝐽 �

𝑘−1
�
𝑖=1

𝜆𝑖
(1 − 𝜆𝑘)

𝑢𝑖� + 𝜆𝑘𝐽 �𝑢𝑘� (2)

We now take advantage of the case of 𝑁 = 2 in (A) by viewing RHS of (2) as (1 − 𝜆𝑘) 𝐽 �𝑢1�+

𝜆𝑘𝐽 �𝑢2�, where we let 𝑢1 ≡
𝑘−1
�
𝑖=1

𝜆𝑖
(1−𝜆𝑘)

𝑢𝑖, 𝑢2 ≡ 𝑢𝑘. Hence we conclude that

(1 − 𝜆𝑘) 𝐽 �
𝑘−1
�
𝑖=1

𝜆𝑖
(1 − 𝜆𝑘)

𝑢𝑖� + 𝜆𝑘𝐽 �𝑢𝑘� ≥ 𝐽 �(1 − 𝜆𝑘)
𝑘−1
�
𝑖=1

𝜆𝑖
(1 − 𝜆𝑘)

𝑢𝑖 + 𝜆𝑘𝑢𝑘� (3)

Using (3) in (2) gives (the ≥ relation remains valid, even more now, since we replaced
something in RHS of (2), by something smaller)

𝑘
�
𝑖=1
𝜆𝑖𝐽 �𝑢𝑖� ≥ 𝐽 �(1 − 𝜆𝑘)

𝑘−1
�
𝑖=1

𝜆𝑖
(1 − 𝜆𝑘)

𝑢𝑖 + 𝜆𝑘𝑢𝑘�

= 𝐽 ��
𝑘−1
�
𝑖=1
𝜆𝑖𝑢𝑖� + 𝜆𝑘𝑢𝑘�

Hence
𝑘
�
𝑖=1
𝜆𝑖𝐽 �𝑢𝑖� ≥ 𝐽 �

𝑘
�
𝑖=1
𝜆𝑖𝑢𝑖�

QED.

4.2.5 Problem 5

problem description

129

4.2. HW 2 CHAPTER 4. HWS

Barmish

ECE 719 – Homework Hessian

For u ∈ Rn, define
J(u) = −(u1u2u3 · · ·un)

1/n.

Prove that J(u) is convex on the positive orthant; i.e., the set defined
by ui > 0 for i = 1, 2, ..., n.

solution

Assuming 𝐽 (𝑢) is twice continuously di�erentiable (𝐶2) in 𝑢1, 𝑢2,⋯ , 𝑢𝑛, then if we can show
that the Hessian ∇ 2𝐽 (𝑢) is positive semi-definite on 𝑢𝑖 > 0, then this implies 𝐽 (𝑢) is convex.
The first step is to determined ∇ 2𝐽 (𝑢).

𝜕𝐽
𝜕𝑢𝑖

= −
1
𝑛
(𝑢1𝑢2⋯𝑢𝑛)

1
𝑛−1

𝑛
�

𝑘=1,𝑘≠𝑖
𝑢𝑘 =

1
𝑛

𝐽 (𝑢)
(𝑢1𝑢2⋯𝑢𝑛)

𝑛
�

𝑘=1,𝑘≠𝑖
𝑢𝑘 =

1
𝑛
𝐽 (𝑢)
𝑛
�
𝑘=1
𝑢𝑘

𝑛
�

𝑘=1,𝑘≠𝑖
𝑢𝑘

=
1
𝑛
𝐽 (𝑢)
𝑢𝑖

And

𝜕2𝐽
𝜕𝑢2𝑖

=
1
𝑛

� 1
𝑛
𝐽(𝑢)
𝑢𝑖
�

𝑢𝑖
−
1
𝑛
𝐽 (𝑢)
𝑢2𝑖

=
1
𝑛2
𝐽 (𝑢)
𝑢2𝑖

−
1
𝑛
𝐽 (𝑢)
𝑢2𝑖

=
1
𝑛
𝐽 (𝑢)
𝑢2𝑖

�
1
𝑛
− 1�

And the cross derivatives are
𝜕2𝐽

𝜕𝑢𝑖𝜕𝑢𝑗
=

𝜕
𝜕𝑢𝑗

�
1
𝑛
𝐽 (𝑢)
𝑢𝑖

�

=
1
𝑛

1
𝑛
𝐽(𝑢)
𝑢𝑗

𝑢𝑖

=
1
𝑛2
𝐽 (𝑢)
𝑢𝑖𝑢𝑗

Therefore

∇ 2𝐽 (𝑢) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑛2

𝐽(𝑢)
𝑢21
(1 − 𝑛) 1

𝑛2
𝐽(𝑢)
𝑢1𝑢2

⋯ 1
𝑛2

𝐽(𝑢)
𝑢1𝑢𝑛

1
𝑛2

𝐽(𝑢)
𝑢2𝑢1

1
𝑛2

𝐽(𝑢)
𝑢22
(1 − 𝑛) ⋯ 1

𝑛2
𝐽(𝑢)
𝑢2𝑢𝑛

⋮ ⋯ ⋱ ⋮
1
𝑛2

𝐽(𝑢)
𝑢𝑛𝑢1

1
𝑛2

𝐽(𝑢)
𝑢𝑛𝑢2

⋯ 1
𝑛2

𝐽(𝑢)
𝑢2𝑛
(1 − 𝑛)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now we need to show that ∇ 2𝐽 (𝑢) is positive semi-definite. For 𝑛 = 1, the above reduces to

∇ 2𝐽 (𝑢) =
𝐽 (𝑢)
𝑢21

(1 − 1) = 0

Hence non-negative. This is the same as saying the second derivative is zero. For 𝑛 = 2

∇ 2𝐽 (𝑢) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
4 𝐽 (𝑢)

1−2
𝑢21

1
𝑢1𝑢2

1
4 𝐽 (𝑢)

1
𝑢2𝑢1

1
4 𝐽 (𝑢)

1
4 𝐽 (𝑢)

1−2
𝑢22

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
𝑢21

1
4 𝐽 (𝑢)

1
𝑢1𝑢2

1
4 𝐽 (𝑢)

1
𝑢2𝑢1

1
4 𝐽 (𝑢)

−1
𝑢22

1
4 𝐽 (𝑢)

⎞
⎟⎟⎟⎟⎟⎟⎠

The first leading minor is −1
4𝑢21
𝐽 (𝑢), which is positive, since 𝐽 (𝑢) < 0 and 𝑢𝑖 > 0 (given). The

second leading minor is

Δ2 =
�
�

−1
𝑢21

1
4 𝐽 (𝑢)

1
𝑢1𝑢2

1
4 𝐽 (𝑢)

1
𝑢2𝑢1

1
4 𝐽 (𝑢)

−1
𝑢22

1
4 𝐽 (𝑢)

�
�
= 0

130

4.2. HW 2 CHAPTER 4. HWS

Hence all the leasing minors are non-negative. Which means ∇ 2𝐽 (𝑢) is semi-definite. We
will look at 𝑛 = 3

∇ 2𝐽 (𝑢) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−2
𝑢21

1
9 𝐽 (𝑢)

1
𝑢1𝑢2

1
9 𝐽 (𝑢)

1
𝑢1𝑢3

1
9 𝐽 (𝑢)

1
𝑢2𝑢1

1
9 𝐽 (𝑢)

−2
𝑢22

1
9 𝐽 (𝑢)

1
𝑢2𝑢3

1
9 𝐽 (𝑢)

1
𝑢3𝑢1

1
9 𝐽 (𝑢)

1
𝑢3𝑢2

1
9 𝐽 (𝑢)

−2
𝑢23

1
9 𝐽 (𝑢)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The first leading minor is −2
9𝑢21
𝐽 (𝑢), which is positive again, since 𝐽 (𝑢) < 0 for 𝑢𝑖 > 0 (given).

And the second leading minor is 1
27 𝐽

2 𝑢2

𝑢21𝑢
2
2

which is positive, since all terms are positive. The third leading minor is

Δ3 =
�
�
�

−2
𝑢21

1
9 𝐽 (𝑢)

1
𝑢1𝑢2

1
9 𝐽 (𝑢)

1
𝑢1𝑢3

1
9 𝐽 (𝑢)

1
𝑢2𝑢1

1
9 𝐽 (𝑢)

−2
𝑢22

1
9 𝐽 (𝑢)

1
𝑢2𝑢3

1
9 𝐽 (𝑢)

1
𝑢3𝑢1

1
9 𝐽 (𝑢)

1
𝑢3𝑢2

1
9 𝐽 (𝑢)

−2
𝑢23

1
9 𝐽 (𝑢)

�
�
�
= 0

Hence non-of the leading minors are negative. Therefore ∇ 2𝐽 (𝑢) is semi-definite. The same
pattern repeats for higher values of 𝑛. All leading minors are positive, except the last
leading minor will be zero.

4.2.5.1 Appendix

Another way to show that ∇ 2𝐽 (𝑢) is positive semi-definite is to show that 𝑥𝑇 �∇ 2𝐽 (𝑢)� 𝑥 ≥ 0
for any vector 𝑥. (since ∇ 2𝐽 (𝑢) is symmetric).

𝑥𝑇 �∇ 2𝐽 (𝑢)� 𝑥 = �𝑥1 𝑥2 ⋯ 𝑥𝑛�

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑛
𝐽(𝑢)
𝑢21

� 1
𝑛
− 1� 1

𝑛2
𝐽(𝑢)
𝑢1𝑢2

⋯ 1
𝑛2

𝐽(𝑢)
𝑢1𝑢𝑛

1
𝑛2

𝐽(𝑢)
𝑢2𝑢1

1
𝑛
𝐽(𝑢)
𝑢22

� 1
𝑛
− 1� ⋯ 1

𝑛2
𝐽(𝑢)
𝑢2𝑢𝑛

⋮ ⋯ ⋱ ⋮
1
𝑛2

𝐽(𝑢)
𝑢𝑛𝑢1

1
𝑛2

𝐽(𝑢)
𝑢𝑛𝑢2

⋯ 1
𝑛
𝐽(𝑢)
𝑢2𝑛

� 1
𝑛
− 1�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑥1
𝑥2
⋮
𝑥𝑛

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Now the idea is to set 𝑛 = 1, 2, 3,⋯ and show that the resulting values ≥ 0 always. For
𝑛 = 1, we obtain 0 as before. For 𝑛 = 2, let

Δ = �𝑥1 𝑥2�

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
𝑛
𝐽(𝑢)
𝑢21
� 1
𝑛 − 1�

1
𝑛2

𝐽(𝑢)
𝑢1𝑢2

1
𝑛2

𝐽(𝑢)
𝑢2𝑢1

1
𝑛
𝐽(𝑢)
𝑢22
� 1
𝑛 − 1�

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎟⎠. Expanding gives

Δ = �𝑥1
1
𝑛
𝐽(𝑢)
𝑢21
� 1
𝑛 − 1� + 𝑥2

1
𝑛2

𝐽(𝑢)
𝑢2𝑢1

𝑥1
1
𝑛2

𝐽(𝑢)
𝑢1𝑢2

+ 𝑥2
1
𝑛
𝐽(𝑢)
𝑢22
� 1
𝑛 − 1��

⎛
⎜⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎟⎠

= 𝑥21
1
𝑛
𝐽 (𝑢)
𝑢21

�
1
𝑛
− 1� + 𝑥1𝑥2

1
𝑛2
𝐽 (𝑢)
𝑢2𝑢1

+ 𝑥2𝑥1
1
𝑛2
𝐽 (𝑢)
𝑢1𝑢2

+ 𝑥22
1
𝑛
𝐽 (𝑢)
𝑢22

�
1
𝑛
− 1�

= 𝑥21
1
2
𝐽 (𝑢)
𝑢21

�
1
2
− 1� + 𝑥1𝑥2

1
4
𝐽 (𝑢)
𝑢2𝑢1

+ 𝑥2𝑥1
1
4
𝐽 (𝑢)
𝑢1𝑢2

+ 𝑥22
1
2
𝐽 (𝑢)
𝑢22

�
1
2
− 1�

The RHS above becomes, and by replacing 𝐽 (𝑢) = −√𝑢1𝑢2 for 𝑛 = 2

−
1
4
𝑥21
𝐽 (𝑢)
𝑢21

+ 𝑥1𝑥2
1
2
𝐽 (𝑢)
𝑢2𝑢1

−
1
4
𝑥22
𝐽 (𝑢)
𝑢22

=
1
4
𝑥21
√𝑢1𝑢2
𝑢21

− 𝑥1𝑥2
1
2
√𝑢1𝑢2
𝑢2𝑢1

+
1
4
𝑥22
√𝑢1𝑢2
𝑢22

=

⎛
⎜⎜⎜⎜⎜⎝
1

√4
(𝑢1𝑢2)

1
4

𝑢1
𝑥1 −

1

√4
(𝑢1𝑢2)

1
4

𝑢2
𝑥2

⎞
⎟⎟⎟⎟⎟⎠

2

Where we completed the square in the last step above. Hence 𝑥𝑇 �∇ 2𝐽 (𝑢)� 𝑥 ≥ 0. The same
process can be continued for 𝑛 higher. Hence ∇ 2𝐽 (𝑢) is positive semi-definite.

131

4.2. HW 2 CHAPTER 4. HWS

4.2.6 HW 2 key solution

Barmish

ECE 719 – Solution Epigraph

We want to show that J is a convex function if and only if epi J is a convex
set. To establish necessity, we assume convexity of J and must show epi J
is a convex set. Indeed, let (u0, α0) and (u1, α1) be two points in epi J

and, for λ ∈ [0, 1], consider the convex combination

(1− λ)(u0, α0) + λ(u1, α1) = ((1− λ)u0 + λu1, (1− λ)α0 + λα1)

To complete the proof of necessity, we must show this combination is
in epi J . Indeed, using the convexity of J we have

J((1− λ)u0 + λu1) ≤ (1− λ)J(u0) + λJ(u1).

Now using the fact that

α0 ≥ J(u0); α1 ≥ J(u1),

we have
J((1− λ)u0 + λu1) ≤ (1− λ)α0 + λα1.

Hence,
((1− λ)u0 + λu1, (1− λ)α0 + λα1) ∈ epi J.

To establish sufficiency, we assume epi J is a convex set and must show J

is a convex function. Indeed, for any two points u0, u1 and λ ∈ [0, 1],
with α0 = J(u0) and α1 = J(u1), we have two points (u0, α0) and (u1, α1)
in the epigraph. By convexity of the epigraph we have

((1− λ)u0 + λu1, (1− λ)α0 + λα1) ∈ epi J.

Therefore
(1− λ)α0 + λα1 ≥ (1− λ)J(u0) + λJ(u1).

Substituting for α0, α1 above then yields the desired result.

Barmish

ECE 719 – Solution Unique Minimum

With J being strictly convex, either no minimizer exists (for example, con-
sider the function J(u) = e−u with u ∈ R) or the minimum is unique. To
consider the case of uniqueness, suppose at least one minimizer u∗ exists.
We claim there can be no other minimizer. Proceeding by contradiction,
suppose ũ is a second minimizer. So we have J(u∗) = J(ũ) = J∗. Now
define

û .=
1

2
u∗ +

1

2
ũ.

Now, by strict convexity of J , with λ = 1/2, we have

J(û) = J(
1

2
u∗ +

1

2
ũ) <

1

2
J(u∗) +

1

2
J(ũ) = J∗.

This contradicts the optimality of u∗. That is, we have found another
element with a lower J value.

132

4.2. HW 2 CHAPTER 4. HWS

Barmish

ECE 719 – Solution Global Minimum

Assume J is convex and u∗ is a local minimum. We must show that u∗ is
also a global minimum. Proceeding by contradiction, suppose that J(û) <
J(u∗). That is, say u∗ is a local minimum but not a global minimum. Now
for positive integers k, define the sequence of points

uk =
1

k
û + (1− 1

k
)u∗

and note that convexity assures that

J(uk) ≤ 1

k
J(û) + (1− 1

k
)J(u∗),

and using the fact that J(û) < J(u∗), the inequality above becomes

J(uk) < J(u∗)

for all k. Also notice that this sequence converges to u∗. Hence, no matter
how small a neighborhood we take around u∗, there is a point in it with
a smaller J value. This contradicts the assumption that u∗ is a local
minimum.

133

4.2. HW 2 CHAPTER 4. HWS

134

4.2. HW 2 CHAPTER 4. HWS

Barmish

ECE 719 – Solution Hessian

To show that
J(u) = −(u1u2 · · ·un)

1
n

is convex on the positive orthant, we compute its Hessian. Indeed, taking
two derivatives, we obtain

Hii =
∂2J

∂u2
i

= −(n− 1)J(u)

n2u2
i

for diagonal terms of the Hessian and

Hij =
∂2J

∂ui∂uj
=

J(u)

n2uiuj

for off-diagonal terms. Now, for arbitrary x ∈ Rn, we consider the
quadratic form

xT∇2J(u)x =
∑
i,j

Hijxixj

=
∑
i6=j

xixjJ(u)

n2uiuj
−

∑
i

(n− 1)J(u)x2
i

n2u2
i

=
∑
i,j

xixjJ(u)

n2uiuj
−

∑
i

J(u)x2
i

nu2
i

.

Now defining the real numbers

αi =
xi

ui

for i = 1, 2, . . . , n and noting that J(u) < 0 over the positive orthant, to
establish positive semi-definiteness of the Hessian, it suffices to show that

n
∑
i

α2
i ≥

∑
i,j

αiαj

Now recognizing that the right hand side is

∑
i,j

αiαj = (
∑
i

αi)
2,

135

4.2. HW 2 CHAPTER 4. HWS

positive semi-definiteness is equivalent to

n
∑
i

α2
i ≥ (

∑
i

αi)
2 (∗)

To establish (∗), let

α =
1

n

∑
i

αi

and observe that

0 ≤
∑
i

(αi − α)2

=
∑
i

α2
i − 2α

∑
i

αi + nα2

=
∑
i

α2
i − nα2

=
∑
i

α2
i −

1

n
(
∑
i

αi)
2.

Now, inequality (∗) immediately follows.

2

136

4.3. HW 3 CHAPTER 4. HWS

4.3 HW 3

4.3.1 Problem 1
problem description

Barmish

ECE 719 – Homework Hyperplane

Given a continuously differentiable convex function J and any pair of
points u1, u2 in Rn, prove that the inequality

J(u2) ≥ J(u1) + [∇J(u1)]T (u2 − u1)

must hold.

solution

Since 𝐽 (𝒖) is a convex function 𝐽 ∶ ℜ𝑛 → ℜ, then by definition of convex functions we write

𝐽 �(1 − 𝜆) 𝒖1 + 𝜆𝒖2� ≤ (1 − 𝜆) 𝐽 �𝒖1� + 𝜆𝐽 �𝒖2�

Where 𝜆 ∈ (0, 1). Rewriting the above as follows

𝐽 �𝒖1 − 𝜆𝒖1 + 𝜆𝒖2� ≤ 𝐽 �𝒖1� − 𝜆𝐽 �𝒖1� + 𝜆𝐽 �𝒖2�

𝐽 �𝒖1 + 𝜆 �𝒖2 − 𝒖1�� − 𝐽 �𝒖1� ≤ 𝜆 �𝐽 �𝒖2� − 𝐽 �𝒖1��

Dividing both sides by 𝜆 ≠ 0 gives

𝐽 �𝒖1 + 𝜆 �𝒖2 − 𝒖1�� − 𝐽 �𝒖1�
𝜆

≤ 𝐽 �𝒖2� − 𝐽 �𝒖1�

Taking the limit 𝜆 → 0 results in

lim
𝜆→0

𝐽 �𝒖1 + 𝜆 �𝒖2 − 𝒖1�� − 𝐽 �𝒖1�
𝜆

≤ lim
𝜆→0

𝐽 �𝒖2� − 𝐽 �𝒖1�

But lim𝜆→0
𝐽�𝒖1+𝜆�𝒖2−𝒖1��−𝐽�𝒖1�

𝜆 = 𝜕𝐽(𝒖)
𝜕�𝒖2−𝒖1�

�
𝒖1
= �∇𝐽 �𝒖1��

𝑇
�𝒖2 − 𝒖1� (appendix below shows how

this came about). Therefore the above becomes

�∇𝐽 �𝒖1��
𝑇
�𝒖2 − 𝒖1� ≤ 𝐽 �𝒖2� − 𝐽 �𝒖1�

𝐽 �𝒖2� ≥ 𝐽 �𝒖1� + �∇𝐽 �𝒖1��
𝑇
�𝒖2 − 𝒖1�

QED.

4.3.1.1 Appendix

More details are given here on why

lim
𝜆→0

𝐽 �𝒖1 + 𝜆 �𝒖2 − 𝒖1�� − 𝐽 �𝒖1�
𝜆

= �∇𝐽 �𝒖1��
𝑇
�𝒖2 − 𝒖1�

Let 𝒖2 − 𝒖1 = 𝒅. This is a directional vector, its tail starts at 𝒖1 going to tip of 𝒖2 point.

Evaluating lim𝜆→0
𝐽�𝒖1+𝜆𝒅�−𝐽�𝒖1�

𝜆 is the same as saying

𝜕𝐽 (𝒖)
𝜕𝒅

�
𝒖1
= lim

𝜆→0

𝐽 �𝒖1 + 𝜆𝒅� − 𝐽 �𝒖1�
𝜆

=
𝑑
𝑑𝜆
𝐽 �𝒖1 + 𝜆𝒅��

𝜆=0

137

4.3. HW 3 CHAPTER 4. HWS

Using the chain rule gives
𝑑
𝑑𝜆
𝐽 �𝒖1 + 𝜆𝒅��

𝜆=0
= �∇𝐽 �𝒖1 + 𝜆𝒅��

𝑇 𝑑
𝑑𝜆

�𝒖1 + 𝜆𝒅��
𝜆=0

= �∇𝐽 �𝒖1 + 𝜆𝒅��
𝑇
𝒅�

𝜆=0

= �∇𝐽 �𝒖1��
𝑇
𝒅

Replacing 𝒖2 − 𝒖1 = 𝒅, the above becomes

lim
𝜆→0

𝐽 �𝒖1 + 𝜆 �𝒖2 − 𝒖1�� − 𝐽 �𝒖1�
𝜆

=
𝜕𝐽 (𝒖)

𝜕 �𝒖2 − 𝒖1�
�
𝒖1

= �∇𝐽 �𝒖1��
𝑇
�𝒖2 − 𝒖1�

Where ∇𝐽 �𝒖1� is the gradient vector of 𝐽 (𝒖) evaluated at 𝒖 = 𝒖1.

4.3.2 Problem 2

problem description

Barmish

ECE 717 – Homework Eigenvalue

Let M(q) be an n×n symmetric matrix with entries Mi,j(q) which depend
convexly on a vector q ∈ Rn. Show that the largest eigenvalue of M(q),
call it λmax(q), also depends convexly on q.

solution

Since each 𝑚𝑖𝑗 �𝑞� is convex function in 𝑞, then

𝑚𝑖𝑗 �(1 − 𝛼) 𝑞1 + 𝛼𝑞2� ≤ (1 − 𝛼)𝑚𝑖𝑗 �𝑞1� + 𝛼𝑚𝑖𝑗 �𝑞2� (1)

For 𝛼 ∈ [0, 1] . We also know by Rayleigh quotient theorem which applies for symmetric
matrices that largest eigenvalue of a symmetric matrix is given by

𝜆max = max
𝑥∈ℜ𝑛,‖𝑥‖=1

𝑥𝑇𝑀𝑥

Therefore, evaluated at point 𝑞𝛼 = (1 − 𝛼) 𝑞1 + 𝛼𝑞2, the above become

𝜆max �(1 − 𝛼) 𝑞1 + 𝛼𝑞2� = max
‖𝑥‖=1

𝑛
�
𝑖,𝑗
𝑚𝑖𝑗 �(1 − 𝛼) 𝑞1 + 𝛼𝑞2� 𝑥𝑖𝑥𝑗 (2)

Applying (1) in RHS (2) changes = to ≤ giving

𝜆max �(1 − 𝛼) 𝑞1 + 𝛼𝑞2� ≤ max
‖𝑥‖=1

𝑛
�
𝑖,𝑗
�(1 − 𝛼)𝑚𝑖𝑗 �𝑞1� + 𝛼𝑚𝑖𝑗 �𝑞2�� 𝑥𝑖𝑥𝑗

= max
‖𝑥‖=1

⎛
⎜⎜⎜⎜⎝

𝑛
�
𝑖,𝑗
(1 − 𝛼)𝑚𝑖𝑗 �𝑞1� 𝑥𝑖𝑥𝑗 +

𝑛
�
𝑖,𝑗
𝛼𝑚𝑖𝑗 �𝑞2� 𝑥𝑖𝑥𝑗

⎞
⎟⎟⎟⎟⎠

= (1 − 𝛼)
⎛
⎜⎜⎜⎜⎝max
‖𝑥‖=1

𝑛
�
𝑖,𝑗
𝑚𝑖𝑗 �𝑞1� 𝑥𝑖𝑥𝑗

⎞
⎟⎟⎟⎟⎠ + 𝛼

⎛
⎜⎜⎜⎜⎝max
‖𝑥‖=1

𝑛
�
𝑖,𝑗
𝑚𝑖𝑗 �𝑞2� 𝑥𝑖𝑥𝑗

⎞
⎟⎟⎟⎟⎠ (3)

Since

max
‖𝑥‖=1

𝑛
�
𝑖,𝑗
𝑚𝑖𝑗 �𝑞1� 𝑥𝑖𝑥𝑗 = 𝜆max �𝑞1�

And

max
‖𝑥‖=1

𝑛
�
𝑖,𝑗
𝑚𝑖𝑗 �𝑞2� 𝑥𝑖𝑥𝑗 = 𝜆max �𝑞2�

Then (3) becomes

𝜆max �(1 − 𝛼) 𝑞1 + 𝛼𝑞2� ≤ (1 − 𝛼) 𝜆max �𝑞1� + 𝛼𝜆max �𝑞2�

This is the definition of convex function, therefore 𝜆max is a convex function in 𝑞.

138

4.3. HW 3 CHAPTER 4. HWS

Note: I tried also to reduce this to a problem where I could argue that the pointwise
maximum of convex functions is also a convex function to solve it. I could not get a clear
way to do this, so I solved it as above. I hope I did not violate the cardinal rule by using
𝜆max = max𝑥∈ℜ𝑛,‖𝑥‖=1 𝑥𝑇𝑀𝑥.

4.3.3 Problem 3

problem description

Barmish

ECE 717 – Homework Polytope

Let U be a polytope in Rn with generators u1, u2, ..., um. We often de-
scribe U by writing

U = conv{u1, u2, ..., um}
and say the U is the convex hull of the ui. Show that U is compact.

solution

set G that contains
the generator
elements
{u1, u2, . . . , um}

ui

convex Hull(G)

This is the convex hull of G, which is
the set U = conv(G) that contains all
points generated by convex
combinations of the generator points

We need to show U is compact

To show 𝑈 is bounded, a proof by induction is used. From the definition of constructing 𝑈

𝑈 = �𝑥 ∈ ℜ𝑛 ∶ 𝑥 =
𝑚
�
𝑖=1
𝜆𝑖𝑢𝑖�

Where ∑𝑚
𝑖=1 𝜆𝑖 = 1 and 𝜆𝑖 ≥ 0.

For 𝑚 = 1, 𝑥 = 𝜆𝑢1. So 𝑈 contains just one element 𝑢1. Since 𝜆 = 1 and 𝑢1 is given and
bounded, then this is closed and bounded set with one element. Hence compact. Now we
assume 𝑈 is compact for 𝑚 = 𝑘 − 1 and we need to show it is compact for 𝑚 = 𝑘. In other
words, we assume that each 𝑥∗ ∈ 𝑈 generated using

𝑥∗ =
𝑘−1
�
𝑖=1
𝜆𝑖𝑢𝑖

Is such that ‖𝑥∗‖ < ∞ and 𝑥∗ ∈ 𝑈. Now we need to show that 𝑈 is bounded when generator
contains 𝑘 elements. Now

𝑥 =
𝑘
�
𝑖=1
𝜆𝑖𝑢𝑖

= 𝜆1𝑢1 + 𝜆2𝑢2 +⋯+ 𝜆𝑘−1𝑢𝑘−1 + 𝜆𝑘𝑢𝑘

Multiply and divide by (1 − 𝜆𝑘)

𝑥 = (1 − 𝜆𝑘) �
𝜆1𝑢1

(1 − 𝜆𝑘)
+

𝜆2
(1 − 𝜆𝑘)

𝑢2 +⋯+
𝜆𝑘−1𝑢𝑘−1

(1 − 𝜆𝑘)
+

𝜆𝑘
(1 − 𝜆𝑘)

𝑢𝑘�

= (1 − 𝜆𝑘) �
𝑘−1
�
𝑖=1

𝜆𝑖
(1 − 𝜆𝑘)

𝑢𝑖 +
𝜆𝑘

(1 − 𝜆𝑘)
𝑢𝑘�

= (1 − 𝜆𝑘) �
𝑘−1
�
𝑖=1

𝜆𝑖
(1 − 𝜆𝑘)

𝑢𝑖� + 𝜆𝑘𝑢𝑘

But ∑𝑘−1
𝑖=1

𝜆𝑖
(1−𝜆𝑘)

𝑢𝑖 = 𝑥∗ which we assumed in 𝑈. Hence the above becomes

𝑥 = (1 − 𝜆𝑘) 𝑥∗ + 𝜆𝑘𝑢𝑘

139

4.3. HW 3 CHAPTER 4. HWS

Since 𝑢𝑘 is element in the generator set 𝐺 and it is in 𝑈 by definition, then the above is
convex combination of two elements in 𝑈. Hence 𝑥 in also in 𝑈 (it is on a line between
𝑥∗ and 𝑢𝑘, both in 𝑈). Therefore 𝑈 is closed and bounded for any 𝑚 in the generator set.
Hence 𝑈 is compact.

4.3.4 Problem 4

problem description

Barmish

ECE 717 – Homework Maximum

Let P be a polytope in Rn with generators v1, v2, ..., vN and assume J(u)
is convex. Prove that the maximum of J subject to u ∈ P is attained at
one of the generators.

Note: this type of result does not hold for the minimum as evidenced
by the simple example J(u) = u2 on [−1, 1].

solution

set G that contains
the generator
elements
{v1, v2, . . . , vN}

ui

polytope(G)

This is the polytope set P = {u1, . . . , uM} which
is the set that contains all points generated by
convex combinations of the extreme points subset
of the generator points in set G. The extreme
points are subset of the generators v1, . . . , vk for
k ≤ N . The rest of the generator points are not
used and are redundant

extreme point ∈ P .
This point must be
one of the
generators vi ∈ G

J(u) convex function

we need to show
J∗ = maxuJ(u) is at one of
the generators. In
otherwords, u∗ = vi for
some i ∈ 1 . . . N .

These points are
from G but not
used to generate
P . These are not
extreme points.

The extreme points of 𝑃 are subset of 𝐺. They are the points used to generate 𝑃. The set 𝑃
is compact (by problem 3) and convex set (by construction, since it is convex combinations
of its extreme points). If we can show that 𝐽∗ is at an extreme point of 𝑃, then we are done,
since an extreme point of 𝑃 is in 𝐺.

Let 𝑢∗ ∈ 𝑃 be the point where 𝐽 (𝑢) is maximum. 𝑢∗ is a convex combinations of all extreme
points of 𝑃, (these are also subset from 𝐺 but they can be the whole set 𝐺 also if there
were no redundant generators), Therefore

𝑢∗ =
𝑘
�
𝑖=1
𝜆𝑖𝑣𝑖

where 𝑘 ≤ 𝑁 and 𝑣𝑖 ∈ 𝐺. If it happens that all points in 𝐺 are extreme points of 𝑃, then
𝑘 = 𝑁. Therefore

𝐽∗ = 𝐽 (𝑢∗) = 𝐽 �
𝑘
�
𝑖=1
𝜆𝑖𝑣𝑖�

Where ∑𝑘
𝑖=1 𝜆𝑖 = 1 and 𝜆𝑖 ≥ 0. But 𝐽 is convex function (given). Hence by definition of

140

4.3. HW 3 CHAPTER 4. HWS

convex function

𝐽∗ = 𝐽 �
𝑘
�
𝑖=1
𝜆𝑖𝑣𝑖� ≤

𝑘
�
𝑖=1
𝜆𝑖𝐽 �𝑣𝑖� (1)

The above is generalization of 𝐽 �(1 − 𝜆) 𝑢1 + 𝜆𝑢2� ≤ (1 − 𝜆) 𝐽 �𝑢1� + 𝜆𝐽 �𝑢2� applied to convex

mixtures. Now we look at 𝐽 �𝑣𝑖� term in the above. We pick the maximum of 𝐽 over all 𝑣𝑖.
There must be a point in 𝐺 where 𝐽 (𝑣) is largest. We call this value 𝐽∗𝐺. This is the value of
𝐽 where it attains its maximum over generator elements 𝑣𝑖 ∶ 𝑖 = 1⋯𝑘. Eq (1) becomes

𝐽∗ ≤
𝑘
�
𝑖=1
𝜆𝑖𝐽∗𝐺

Where we replaced 𝐽 �𝑣𝑖� by one value, the maximum 𝐽∗𝐺. But 𝐽∗𝐺 does not depend on 𝑖 now,
and can take it outside the sum

𝐽∗ ≤ 𝐽∗𝐺 �
𝑘
�
𝑖=1
𝜆𝑖�

But
𝑘
�
𝑖=1
𝜆𝑖 = 1 by definition. Therefore the above becomes

𝐽∗ ≤ 𝐽∗𝐺
We now see that the maximum of 𝐽 (𝑢) over 𝑃 is smaller (or equal) than the maximum of
𝐽 (𝑢) over the generator set 𝐺. Hence a maximum occurs at one of the extreme points 𝑣𝑖,
since these are by definition taken from 𝐺. which is what we are asked to show.

4.3.5 Problem 5

problem description

Barmish

ECE 717 – Homework Optimal Gain

In this homework problem, we consider a modification of the optimal gain
scenario defined in class. Now, the performance index includes weighting
not only on the state x(t) but also on the on the control u(t). That is, we
consider

J =
∫ ∞
0

xT (t)x(t) + λuT (t)u(t)dt

where λ > 0 is a given weighting factor.

(a) Generalizing upon the approach taken in class, find an expression for
the performance J(K) and the associated Lyapunov function which must
be satisfied.

(b) Now, using the result from Part (a), we revisit the double integra-
tor problem from class with weighting λ = 1, initial condition given
by x1(0) = 1, x2(0) = 0 and feedback K = [k1 k2] to be found by optimiza-
tion. Assuming the two feedback gains are equal (that is, k1 = k2 = k),
find the optimum k = k∗, the associated cost J∗ and verify that your con-
troller stabilizes the system.

(c) Consider the scenario in Part (b) with the following change: Instead
of taking initial condition x(0) as given, assume that each of its compo-
nents x1(0) and x2(0) are independent random variables which are uni-
formly distributed over [−1, 1]. Now find the optimal gain k = k∗ mini-
mizing J(K) and the associated optimal cost J∗.

solution

141

4.3. HW 3 CHAPTER 4. HWS

4.3.5.1 Part (a)

∑
x

K

+
v u

Let us look at the closed loop. Let 𝑣 = 0 and we have, since 𝑢 (𝑡) = 𝑘𝑥 (𝑡)

�̇� = 𝐴𝑥 + 𝐵𝑘𝑥
= (𝐴 + 𝐵𝑘) 𝑥
= 𝐴𝑐𝑥

Where 𝐴𝑐 is the closed loop system matrix. Since 𝐽 (𝑘) = ∫
∞

0
𝑥𝑇 (𝑡) 𝑥 (𝑡) +𝜆𝑢𝑇 (𝑡) 𝑢 (𝑡) 𝑑𝑡, where

𝑢 (𝑡) = 𝑘𝑥 (𝑡), then

𝐽 (𝑘) = �
∞

0
𝑥𝑇𝑥 + 𝜆 (𝑘𝑥)𝑇 (𝑘𝑥) 𝑑𝑡

= �
∞

0
𝑥𝑇𝑥 + 𝜆𝑥𝑇 �𝑘𝑇𝑘� 𝑥𝑑𝑡

Let us find a matrix 𝑃, if possible such that

𝑑 �𝑥𝑇𝑃𝑥� = − �𝑥𝑇𝑥 + 𝜆𝑥𝑇 �𝑘𝑇𝑘� 𝑥�

Can we find 𝑃? Since

𝑑 �𝑥𝑇𝑃𝑥� = 𝑥𝑇𝑃�̇� + �̇�𝑇𝑃𝑥

Then we need to solve

𝑥𝑇𝑃�̇� + �̇�𝑇𝑃𝑥 = − �𝑥𝑇𝑥 + 𝜆𝑥𝑇 �𝑘𝑇𝑘� 𝑥�

𝑥𝑇𝑃 (𝐴𝑐𝑥) + (𝐴𝑐𝑥)
𝑇 𝑃𝑥 = − �𝑥𝑇𝑥 + 𝜆𝑥𝑇 �𝑘𝑇𝑘� 𝑥�

𝑥𝑇𝑃 (𝐴𝑐𝑥) + �𝑥𝑇𝐴𝑇
𝑐 � 𝑃𝑥 = − �𝑥𝑇𝑥 + 𝜆𝑥𝑇 �𝑘𝑇𝑘� 𝑥�

Bring all the 𝑥 to LHS then

𝑥𝑇𝑥 + 𝜆𝑥𝑇 �𝑘𝑇𝑘� 𝑥 + 𝑥𝑇𝑃 (𝐴𝑐𝑥) + �𝑥𝑇𝐴𝑇
𝑐 � 𝑃𝑥 = 0

𝜆 �𝑘𝑇𝑘� + 𝑃𝐴𝑐 + 𝐴𝑇
𝑐 𝑃 = −𝐼

Hence the Lyapunov equation to solve for 𝑃 is

𝜆 �𝑘𝑇𝑘� + 𝑃𝐴𝑐 + 𝐴𝑇
𝑐 𝑃 = −𝐼

Where 𝐼 is the identity matrix. This is the equation to determine matrix 𝑃. Without loss of
generality, we insist on 𝑃 being symmetric matrix. Using this 𝑃, now we write

𝐽 (𝑘) = �
∞

0
𝑥𝑇𝑥 + 𝜆 (𝑘𝑥)𝑇 (𝑘𝑥) 𝑑𝑡

= −�
∞

0
𝑑 �𝑥𝑇𝑃𝑥�

= 𝑥𝑇𝑃𝑥�0
∞

= 𝑥𝑇 (0) 𝑃𝑥 (0) − 𝑥𝑇 (∞) 𝑃𝑥 (∞)

For stable system, 𝑥 (∞) → 0 (since we set 𝑣 = 0, there is no external input, hence if the
system is stable, it must end up in zero state eventually). In part (b) we check for 𝑘 range
so that the roots are in the left hand side. Therefore

𝐽 (𝑘) = 𝑥𝑇 (0) 𝑃 (𝑘) 𝑥 (0)

With 𝑃 (𝑘) satisfying solution of Lyapunov equation found above.

142

4.3. HW 3 CHAPTER 4. HWS

4.3.5.2 Part(b)

For 𝑘 = �𝑘1 𝑘2� , 𝑥 (0) =

⎡
⎢⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎥⎦ and system 𝑦′′ = 𝑢. Hence 𝑥′1 = 𝑥2, 𝑥′2 = 𝑢. Since

𝑢 = �𝑘1 𝑘2�

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦

The system �̇� = 𝐴𝑥 + 𝐵𝑢 becomes

𝑥′ = 𝐴𝑥 + 𝐵𝑢
= 𝐴𝑥 + 𝐵𝑘𝑥
= (𝐴 + 𝐵𝑘) 𝑥

⎡
⎢⎢⎢⎢⎢⎣
𝑥′1
𝑥′2

⎤
⎥⎥⎥⎥⎥⎦ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐴

�������⎡
⎢⎢⎢⎢⎢⎣
0 1
0 0

⎤
⎥⎥⎥⎥⎥⎦ +

𝐵
⏞⎡⎢⎢⎢⎢⎢⎣
0
1

⎤
⎥⎥⎥⎥⎥⎦

𝑘

���������
�𝑘1 𝑘2�

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦

=

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
0 1
0 0

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
0 0
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦

=

𝐴𝑐
���������⎡
⎢⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦

For stable system, we need 𝑘1, 𝑘2 < 0 from looking at the roots of the characteristic equation.
Now we solve the Lyapunov equation.

𝜆 �𝑘𝑇𝑘� + 𝑃𝐴𝑐 + 𝐴𝑇
𝑐 𝑃 = −𝐼

𝜆 �𝑘1 𝑘2�
𝑇
�𝑘1 𝑘2� +

⎡
⎢⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦

𝑇 ⎡⎢⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎥⎦

𝜆

⎡
⎢⎢⎢⎢⎢⎣
𝑘1
𝑘2

⎤
⎥⎥⎥⎥⎥⎦ �𝑘1 𝑘2� +

⎡
⎢⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
0 𝑘1
1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑝11 𝑝12
𝑝21 𝑝22

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎥⎦

𝜆

⎡
⎢⎢⎢⎢⎢⎣
𝑘21 𝑘1𝑘2
𝑘1𝑘2 𝑘22

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
𝑘1𝑝12 𝑝11 + 𝑘2𝑝12
𝑘1𝑝22 𝑝21 + 𝑘2𝑝22

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣

𝑘1𝑝21 𝑘1𝑝22
𝑝11 + 𝑘2𝑝21 𝑝12 + 𝑘2𝑝22

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

𝑘1 �𝑝12 + 𝑝21 + 𝜆𝑘1� 𝑝11 + 𝑘1𝑝22 + 𝑘2𝑝12 + 𝜆𝑘1𝑘2
𝑝11 + 𝑘1𝑝22 + 𝑘2𝑝21 + 𝜆𝑘1𝑘2 𝜆𝑘22 + 2𝑝22𝑘2 + 𝑝12 + 𝑝21

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−1 0
0 −1

⎤
⎥⎥⎥⎥⎥⎦

Hence we have 4 equations to solve for 𝑝11,𝑝12, 𝑝21,𝑝22. (but we know also that 𝑝12 = 𝑝21).
Now let 𝜆 = 1 per the problem, and we obtain the four equations from above as

𝑘21 + 𝑘1𝑝12 + 𝑘1𝑝21 = −1
𝑝11 + 𝑘1𝑘2 + 𝑘1𝑝22 + 𝑘2𝑝12 = 0
𝑝11 + 𝑘1𝑘2 + 𝑘1𝑝22 + 𝑘2𝑝21 = 0
𝑘22 + 2𝑝22𝑘2 + 𝑝12 + 𝑝21 = −1

Solution is (Using Matlab syms).� �
1 clear;
2 syms k1 k2 p11 p12 p21 p22;
3 k = [k1,k2];
4 A = [0,1;0,0];
5 B = [0;1];
6 Ac = A+B*k;
7 P = [p11 p12;p21 p22];
8 lam = 1;
9 eq = lam*(k.')*k + (Ac.')*P + P*Ac == -eye(2);
10 sol = solve(eq,{p11,p12,p21,p22});
11 P = simplify(subs(P,sol))
12 x0 = [1;0];

143

4.3. HW 3 CHAPTER 4. HWS

13 J1 = simplify(x0'*P*x0)� �
˙

Gives
P =
[-(k1^3 - k1^2 + k1 - k2^2)/(2*k1*k2), -(k1^2 + 1)/(2*k1)]
[-(k1^2 + 1)/(2*k1), -(- k1^2 + k1*k2^2 + k1 - 1)/(2*k1*k2)]
J1 =
-(k1^3 - k1^2 + k1 - k2^2)/(2*k1*k2)

𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 𝑘1−𝑘21+𝑘
3
1−𝑘

2
2

2𝑘1𝑘2
− 𝑘21+1

2𝑘1

− 𝑘21+1
2𝑘1

− 𝑘1+𝑘1𝑘22−𝑘
2
1−1

2𝑘1𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Hence

𝐽 (𝑘) = 𝑥𝑇 (0) 𝑃 (𝑘) 𝑥 (0)

= �1 0�

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 𝑘1−𝑘21+𝑘
3
1−𝑘

2
2

2𝑘1𝑘2
− 𝑘21+1

2𝑘1

− 𝑘21+1
2𝑘1

− 𝑘1+𝑘1𝑘22−𝑘
2
1−1

2𝑘1𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎥⎦

Therefore

𝐽 (𝑘) = − 1
2𝑘1𝑘2

�𝑘31 − 𝑘21 + 𝑘1 − 𝑘22�

For 𝑘1 = 𝑘2 = 𝑘, the above becomes

𝐽 (𝑘) = −
�𝑘3 − 2𝑘2 + 𝑘�

2𝑘2

= −
�𝑘2 − 2𝑘 + 1�

2𝑘
Or

𝐽 (𝑘) = − 1
2𝑘
(𝑘 − 1)2

Now we find the optimal 𝐽∗. Since

𝑑𝐽 (𝑘)
𝑑𝑘

=
(𝑘 − 1)2

2𝑘2
−
(2𝑘 − 2)
2𝑘

Then 𝑑𝐽(𝑘)
𝑑𝑘 = 0 gives

𝑘 = 1, −1

Since 𝑘 must be negative for stable system, we pick

𝑘∗ = −1

And

𝑑2𝐽 (𝑘)
𝑑𝑘2

=
(𝑘 − 1)2

𝑘3
−
2 (1 − 𝑘)
𝑘2

−
1
𝑘

At 𝑘∗ = −1
𝑑2𝐽 (𝑘)
𝑑𝑘2

= 1 > 0

Hence this is a minimum. Therefore

𝐽∗ = −
1
2𝑘
(𝑘 − 1)2�

𝑘=−1

Hence

𝐽∗ = 2

𝐽∗ do not get to zero. (same as in the class problem we did without 𝜆𝑢𝑇𝑢 term. I thought
we will get 𝐽∗ = 0 now since this I thought it was the reason for using 𝜆𝑢𝑇𝑢. I hope I did
not make mistake, but do not see where if I did. Below is a plot of 𝐽 (𝑘).� �

144

4.3. HW 3 CHAPTER 4. HWS

1 clear k;
2 close all;
3 reset(0);
4 set(groot,'defaulttextinterpreter','Latex');
5 set(groot, 'defaultAxesTickLabelInterpreter','Latex');
6 set(groot, 'defaultLegendInterpreter','Latex');
7 f=@(k) (-1./(2*k).*(k-1).^2)
8 k=-4:.1:4;
9 plot(k,f(k));
10 text(-1,f(-1),'o','color','red')
11 title('$J(k)$ cost function and location of optimal k');
12 xlabel('k'); ylabel('$J(k)$');
13 grid;� �

˙

k

-4 -2 0 2 4

J
(k

)

-6

-4

-2

0

2

4

6

8

o

J(k) cost function and location of optimal k

At 𝑘 = 1 then 𝐽 (1) = 0, but we can not use 𝑘 = 1 since this will make the system not stable.
The system now using 𝑘∗ = −1 becomes

⎡
⎢⎢⎢⎢⎢⎣
𝑥′1
𝑥′2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
0 1
−1 −1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦

To verify it is stable. Since

|(𝜆𝐼 − 𝐴𝑐)| = 𝜆2 + 𝜆 + 1

The roots are

−
1
2
±
1
2
𝑖√3

Hence the system is stable since real part of roots are negative. If we had used 𝑘 = 1, the
roots will be −0.618, 1.618, and the system would have been unstable.

4.3.5.3 Part(c)

From last part, we obtained 𝑃

𝑃 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 𝑘1−𝑘21+𝑘
3
1−𝑘

2
2

2𝑘1𝑘2
− 𝑘21+1

2𝑘1

− 𝑘21+1
2𝑘1

− 𝑘1+𝑘1𝑘22−𝑘
2
1−1

2𝑘1𝑘2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

When 𝑘1 = 𝑘2 = 𝑘 the above becomes

𝑃 =

⎡
⎢⎢⎢⎢⎢⎣

−𝑘+2𝑘2−𝑘3

2𝑘2 − 𝑘2+1
2𝑘

− 𝑘2+1
2𝑘

1−𝑘−𝑘3+𝑘2

2𝑘2

⎤
⎥⎥⎥⎥⎥⎦

145

4.3. HW 3 CHAPTER 4. HWS

Now since 𝑥 (0) is random variable, then

𝐽 (𝑘) = 𝐸 �𝑥𝑇 (0) 𝑃𝑥 (0)�

= 𝐸

⎛
⎜⎜⎜⎜⎜⎝�𝑥1 (0) 𝑥2 (0)�

⎡
⎢⎢⎢⎢⎢⎣

−𝑘+2𝑘2−𝑘3

2𝑘2 − 𝑘2+1
2𝑘

− 𝑘2+1
2𝑘

1−𝑘−𝑘3+𝑘2

2𝑘2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑥1 (0)
𝑥2 (0)

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

= 𝐸 �−
1
2𝑘2

�𝑘3𝑥21 (0) + 2𝑘3𝑥1 (0) 𝑥2 (0) + 𝑘3𝑥22 (0) − 2𝑘2𝑥21 (0) − 𝑘2𝑥22 (0) + 𝑘𝑥21 (0) + 2𝑘𝑥1 (0) 𝑥2 (0) + 𝑘𝑥22 (0) − 𝑥22 (0)��

(1)

Let 𝐸 (𝑥1 (0)) = �̄�1 and 𝐸 (𝑥2 (0)) = �̄�2 Then

𝐽 (𝑘) = −
1
2𝑘2

�𝑘3�̄�21 + 2𝑘3�̄�1�̄�2 + 𝑘3�̄�22 − 2𝑘2�̄�21 − 𝑘2�̄�22 + 𝑘�̄�21 + 2𝑘�̄�1�̄�2 + 𝑘�̄�22 − �̄�22�

But 𝐸 (𝑥1 (0)) = 0, hence �̄�1 = 0 and similarly �̄�2 = 0, but �̄�21 =
1
3 since

�
1

−1
𝑥2𝑝 (𝑥) 𝑑𝑥 =

1
2 �

1

−1
𝑥2𝑑𝑥 =

1
2 �
𝑥3

3 �
1

−1
=
1
3

Similarly �̄�22 =
1
3 and �̄�1�̄�2 = 0 (since i.i.d, then 𝐸 (𝑥1 (0) 𝑥2 (0)) = 𝐸 (𝑥1 (0)) 𝐸 (𝑥2 (0)) = 0. Using

these values of expectations, Eq (1) becomes

𝐽 (𝑘) = −
1
2𝑘2 �

𝑘3
1
3
+ 𝑘3

1
3
− 2𝑘2

1
3
− 𝑘2

1
3
+ 𝑘

1
3
+ 𝑘

1
3
−
1
3�

Or

𝐽 (𝑘) = −2𝑘3+3𝑘2−2𝑘+1
6𝑘2 (2)

To find the optimal:

𝑑𝐽 (𝑘)
𝑑𝑘

= −
1
3
−

1
3𝑘3

+
1
3𝑘2

𝑑𝐽(𝑘)
𝑑𝑘 = 0 gives 3 roots. The only one which is real and negative (the other two are complex)
is

𝑘∗ = −1.325

At this 𝑘∗, we check 𝑑2𝐽(𝑘)
𝑑𝑘2 and find it is 0.611 > 0, hence 𝐽 is minimum at 𝑘∗. The value 𝐽∗ at

𝑘∗ is found to be from substituting 𝑘∗ in (2)

𝐽∗ = 1.28817

Out[262]=

-4 -2 0 2 4

-1

0

1

2

3

4

5

K

J(
k)

J(k) plot for part (c). J*=1.28817 at k=-1.325

We now check if the system is stable. (it should be, since 𝑘∗ < 1). The system now is
⎡
⎢⎢⎢⎢⎢⎣
𝑥′1
𝑥′2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0 1
𝑘1 𝑘2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0 1
−1.325 −1.325

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦

Hence

|(𝜆𝐼 − 𝐴𝑐)| = 𝜆2 + 1.325𝜆 + 1.325

146

4.3. HW 3 CHAPTER 4. HWS

The roots are

−0.6625 ± 𝑖0.941

The system is stable since real part of roots are negative. The following is the step response
for system in part(b) and part(c) to compare.� �

1 %show step responses
2 close all;
3 figure();
4 close all
5 A = [0 1;-1 -1];
6 B = [1;0]
7 sys = ss(A,B,[1 0],[0])
8 step(sys)
9 hold on;
10
11 A = [0 1;-1.325 -1.325];
12 B = [1;0]
13 sys = ss(A,B,[1 0],[0])
14 step(sys)
15 legend('part(b) step response','part(c) step response')
16 xlabel('time');
17 ylabel('y(t)');
18 grid� �

˙

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

part(b) step response

part(c) step response

Step Response

time (seconds)

y(
t)

147

4.3. HW 3 CHAPTER 4. HWS

4.3.6 HW 3 key solution

, f ,1perp laq€

u') 'V J(u')
A S S u r n ' n 6 5 C o n V e x Q o d

f (ut) \ t J tu ') , [ut-

, \ € (o , r) l e t A t brlfr,dolh

r t

So iuL rtiQ

1) ' , u 2 € E n , b h o , l

Jnde ed for. aq ,\ € (tt , ') , D€ have

f (C , -))u ' * ^u ') (0 - r)5 {u ') ' A 5 (u)

:)

3 (u ' r ; (u ' - u ' I - 5 { u ' l

A

5 rn ce the obo)vg Q ot 6,5 n(qu /

lr on rt

@'- ?) ') ' vJ ' fu ')
ond obtG ro

h a t i s r

(5(u') - 5(u')

U{u) v u{u') + (u'- u' f trvfu')

148

4.3. HW 3 CHAPTER 4. HWS

Barmish

ECE 719 – Solution Eigenvalue

With M(q) being an n × n symmetric matrix having entries which are
convex in q, a counterexample can be given. Reader: If you proved this
case, you should identify where in proof you are in error. Hint: Consider
a 2× 2 matrix, and notice xTM(q)x may not be convex with negative xi.
Henceforth, we assume M(q) is linear in q. This makes xTM(q)x linear
and hence convex. Now, we want to show that the maximum eigenvalue

J(q) .= λmax[M(q)]

is a convex function of q. To establish this desired convexity, we first
view X = {x ∈ Rn : ||x|| = 1} as an index set. Now, we define an indexed
collection of convex functions as follows: For each x ∈ X , let

Jx(q)
.= xTM(q)x.

Since this function is linear, hence convex, in q, Jx is convex. Recalling
from matrix algebra that

λmax[M(q)] = max
||x||=1

xTM(q)x,

it follows that
J(q) = max

x∈X
Jx(q)

Now, using the class result that the supremum over an indexed collection
of convex functions is convex, we conclude that J(q) is convex.

149

4.3. HW 3 CHAPTER 4. HWS

S o l u L l 0 o P o l y t , o p €

t r i t ,h U' co nv {r ' , L l ' , (1 , . . , ,u*J

d)

| (t tr ,\,ut11 :
i""r

fn= f , t ,

Ta5,o
WqnL to shgud U r i cornpct t ' .

Bou n d ed *re5; t F o t o n y u e u r L c r r t L €

t) ; ? J ' j \ i , o t) " ' ,
L ' . t l t t

lt -,(

O

L rna',x ll ?J' ll
[- - r J 3 n n

rfi: f Ul,) nna,* i l u't l
\ r - : r

t ' J
(^

u :

[- lenL€, 1u

(l ?L'i l

J 3 " t

: c Q a x l t u l t l t s o
J 3 m

u n d lo, th rs ;eL.

Uqrr re p

n o r m b o

150

4.3. HW 3 CHAPTER 4. HWS

C losedn esr 5u ppose {uoi;,, u a sL6*rt(e

i t We rnust, sh oq-l ̂t f e UL o

LE
CIa'

" (

J

l i ,

b;

h,
)pi

\ b ,

Sel ect cL

^o''l
u,3 oJ

E
v

t0 U conu.rd'nd

Jndeed , sg LDr r

I t? =) p, i . LLL
t

rlu 2 I;--
i - - t

bo . rnd

I

\ b , , e A ' t) : r \ r r ,

c o m p a c L (F I r s a o o r r o
o(te%aenLe5 Surn* , , rJ to

Lhe ftrn cLttt) JtU , f r, rr

a enc€

,f. f1r,l
Iio,* J

ob

t

t '

C o c o ? a L t o e s s o { A ,

CoOt n,Ll..l)

s e/6

of

Lh ab sror€ |Jb . l i,

Hen c €,

)

R ec^de,:
Nc. ,b r te thob

{or I c ,nd the

J t r l l S u m r L o

A r)
I r . n , L

one

Lo Soilg L

Lhul'

\ n (, A ,

{ r rs t

,J)

I
r { A , L
I

' t
I

7\ L
\tr/

'ff)

m
(-r

(/
i t t

We oot^> c lo,

LLr =

t h i r 00 i g

b t>0,

e s t c b l r l

f o l l t r w 5

To

Y t D 5 , l b, . t ' I

BOt Z CAA.I- lrrl (r?r Sk(aSS)

9,.1
(u s ' n

C o o

thaL
' lJEi

- LlnrL

151

4.3. HW 3 CHAPTER 4. HWS

l , V i
= lrrrl 1J"

! J c t

' l , T - . E) v t , j l o '
L J d

d , ,

$ ' n w J 1 . l) = t . \ r u ' r s c v c o n L t n u , u j f e n 6 1 r . ' o o l A ,
J , ,

the I r mrL c,bo,r g be r orng J

l ,m J (rn')
trJ dg

=
J (l-,)

LLr =

d)

J
J ' t '

In oLhe r wordr i)r e U

\-
(/.,

So lul ruC Mo x rcn D co

\ A J c t h 0 ' C o n v [v ' , v l , V u J , s r e c e
€ V € r 1 t e Q c c ^ n b e a X p r e s s e d , a J (L
" C o n v e x C 0 r n b r o a t t a n " o f L h e U L , (r e h a v e

ln= *oL T(u) " mc\x j (t , t , { ,)
U e ?

W l ; ' r , '
v , l

\ ,uo(q , i ry
d_ f , . , ,

\< l ; l i , ,) ,T(v ') " ' , mG) t r^ ; r r6xIsro,D
b - r r , ,] , z r ' 1 '

L t ^ t '

J) t = '
= rnax 5 (u')

t3 r i ,

5o {'he r0 arr'rr(h vclle t} S q,t a
Eenera.to(

rJ
c0 'uwr borod {0, u'*. To cbce preLe tbe p, oo,,,
bLt le O16 ue thcr t th ' ,) U?pe, bund rJ qt ta t ned. t .?- ,

P'tHH Gny tt-t N Such th or Iff
S(u iJ - V ht 1,

{-lpnce j* = 5 {vr) , ih at ts ,

f , ' t = ffl r4
L< r.l

U(r f ')

152

4.3. HW 3 CHAPTER 4. HWS

Barmish

ECE 719 – Solution “Lambda”

With
J(K) =

∫ ∞
0

xT (t)x(t) + λuT (t)u(t)dt,

we substitute u = Kx and obtain

J(K) =
∫ ∞
0

xT (t)[I + λKTK]x(t)dt.

Now expressing the integrand as the exact differential

xT (t)[I + λKTK]x(t) = −d(xTPx),

we substitute the dynamics into the expression above and proceed exactly
as in class. This yields Lyapunov equation

ĀTP + PĀ = −(I + λKTK)

to be solved for P .

Solu t ton Lcmbdekun Lnued)

= f ?

l
lol ';B B 3
L ' r \ b , = b ,' = f t ra ' h '

t b ' t r b

J'-A =

I + l 4 K
(. \ = t)

: [i
A + s K =

t
Lo

, E volvcilt,

Ll[7,l?fe ,
1fl.f,l

'n]

at

tft
*osb

[:E
-)

(

I
5ee n ert p1 ,

Reqd Q(' , Pla ctse LhaL so l oL t ao

&.ne rdew crpil

n oLe"[;1
t,)k x (o) '

to fol lo L^) rs [0t' x (o)

153

4.3. HW 3 CHAPTER 4. HWS

Olbn, s - (t rb) € p , r : l+ ' " , (, , ,)e , " ,E ,J
z b l

b p " r r n r b p , , = - b ' (, , 2)

O g E prrr ?,, = !-&' (, ,2)
Z

Pr + bp,z rbp*

) ?,, r h pr, = ! +t [r" per^L "f (t,z1J
2

O ??,, r 2b pr, s --(tr b) (z,z) eotry

9 2 t z f t r = - (r r h ? r (y ,) P , r : - E r t - b
T

Sobst Prz tL @)
f , = Z b - ' q J - t

q ocl J(K) =

) z rz [z -zb1
. ; l f z t z -b r - t1

= O
-7 Zfe, z ? + Li =! oo -1. fUrs, dtc,d"J

: qu ' [-qa] -k t ' ,z lau =
GI h = - , , ' n [, r r = - | $ rwJ c , suan !

a3
ob?

#,,,,

x(o) 'Q(x)

2b b ' - t
2b.

2b
rcb) =

.rtt

P,, [", x(o) - [:7
tuJ

a = O
A K

\- Chr.�,cE

5 , n c e

-3? b3 - teb
t L e q

lucol rttn.

154

4.3. HW 3 CHAPTER 4. HWS

S o l u L r o n 0 n , t r c l C o n d t L t o n

tVor^r J(X) = E N'(o) pU) y@)
\- /

= E{*^ (o) p,, * 2v, (o)/ r. (o) p,, r L:La
L r,j

a= n, E xfrc) t p,^ E "/, E L/rc) , p,^ E Y; k)
, 5 o p

Gleo thot x, b) c^.,d /,r(o) o(e o",Jot."y

diohnb u t e.A, ur?' houna
t

Ex i (o)= E ,L : (o) = + , l t ' au - r2 1 , 3

?letrcp,)
1 $6 lutroo lcrq bd'c^

u s , f f i l
5(x) . + (u - e ' - . , \ r ! (-E3r b ' -E,r)

J ' - z ? / 3 (z t /

= 2 b 3 r 3 E 2 - 2 b + |

6 E

&L dr =o) b ? - 2 , | : o
db,

f
Corn p,tu o, reo, l roob o,t b* * - 1,325

uhich lrodo Lo 5* * t,3

NoL|.. �- ('6aL J* h- roc ceo,sed q/e(-
'

Sol,.,iloq [a.^nb Ar^

155

4.4. HW 4 CHAPTER 4. HWS

4.4 HW 4

4.4.1 Problem 1

Barmish

ECE 717 – Homework Amplifier

In this homework problem, we consider the 2-stage amplifier described in
class with objective function

J(u) = (11− u1 − u2)
2 + (1 + u1 + 10u2 − u1u2)

2

to be minimized.

(a) Generate a contour plot for the region in R2 of interest described
by 0 ≤ u1 ≤ 20 and 0 ≤ u2 ≤ 15.

(b) Write your own Matlab code to implement the steepest descent al-
gorithm with fixed step size. Include your code as an appendix.

(c) Run your algorithm from a variety of initial conditions which include

u0 =

 8
12

 ,

 5
10

 ,

 12
14

 ,

 12
10

and experiment with step sizes which include h = 0.01, 0.10, 1.0 and in-
clude comments about convergence, number of iterations, stopping crite-
rion and oscillations. In each case, show the progress of your iterations by
superimposing the iterative path uk on the contour plot. Annotate your
plots with relevant comments.

(d) Notice that at the point

u0 =

 7
−2

we see ∇J(u) = 0. Might your algorithm begin with u1 ≥ 0, u2 ≥ 0 and
converge too this point? Discuss briefly.

Figure 4.1: problem 1 description

4.4.1.1 part(a)

Matlab was used to generate the contour plots. The plots generated are given below and
the source code used is listed in the appendix.

156

4.4. HW 4 CHAPTER 4. HWS

contour plot, problem 1 contour plot, filled, with colorbar problem 1

Another 3D view with contour plot, problem 13D view with contour plot, problem 1

Combined 3D view and contour plot, problem 1

Figure 4.2: Matlab output for part(a) problem 1, HW4157

4.4. HW 4 CHAPTER 4. HWS

4.4.1.2 part(b)

Matlab 2015a was used to implement steepest descent algorithm. Listing is given in the
appendix. The following is the outline of general algorithm expressed as pseudo code.0.1.2 part(b)

Matlab 2015a was used to implement steepest descent algorithm. Listing is given in the appendix. The following
is the outline of general algorithm expressed as pseudo code.

Algorithm 1 Steepest descent with fixed step size search algorithm

1: procedure S T E E P E S T _ D E S C E N T

2: . Initialization
3: h← step size
4: ε← minimum convergence limit on ‖∇J(u)‖
5: k ← 0
6: uk ← u0

7: max_iterations← max iterations allowed

8: while ‖∇J(uk)‖> ε do
9: uk ← uk − h ∇J(u

k)
‖∇J(uk)‖

10: k ← k + 1
11: . check for oscillation
12: if k ≥ max_iterations or J(uk) > J(uk−1) then
13: exit loop
14: end if
15: end while
16: end procedure

0.1.3 part(c)

In all of the following results, the convergence to optimal was determined as follows: First a maximum number
of iterations was used to guard against slow convergence or other unforeseen cases. This is a safety measure. It
is always recommended to use in any iterative method. This number was set very high at one million iterations.
If convergence was not reached by this count, the iterations stop.

The second check was the main criteria, which is to check that the norm of the gradient |∇(J(u))| has
reached a minimum value. Since |∇(J(u))| is zero at the optimal point, this check is the most common one to
use to stop the iterations. The norm was calculated after each step. When |∇(J(u))| became smaller than 0.01,
the search stopped. The value 0.01 was selected arbitrarily. All cases below used the same convergence criterion.

A third check was added to verify that the value of the objective function J(u) did not increase after each
step. If J(u) increased the search stops, as this indicates the step size taken is too large and oscillation has started.
This condition happened many times when using fixed step size, but it did not happen with optimal step size.

The relevant Matlab code used to implement this convergence criteria is the following:

1 %check if we converged or not
2 if k>opt.MAX_ITER || gradientNormTol(k)<=opt.gradientNormTol ...
3 || (k>1 && levelSets(k)>levelSets(k-1))% check for getting worst
4 keepRunning = false;
5 else
6
7 end

The result of these runs are given below in table form. For each starting point, the search path uk is plotted on
top of the contour plot. Animation of each of these is also available when running the code. The path uk shows
that search direction is along the gradient vector, which is perpendicular to the tangent line at each contour level.

6

Figure 4.3: Steepest descent with fixed step size search algorithm

4.4.1.3 part(c)

In all of the following results, the convergence to optimal was determined as follows: First
a maximum number of iterations was used to guard against slow convergence or other
unforeseen cases. This is a safety measure. It is always recommended to use in any iterative
method. This number was set very high at one million iterations. If convergence was not
reached by this count, the iterations stop.

The second check was the main criteria, which is to check that the norm of the gradient
|∇ (𝐽(𝑢))| has reached a minimum value. Since |∇ (𝐽(𝑢))| is zero at the optimal point, this
check is the most common one to use to stop the iterations. The norm was calculated after
each step. When |∇ (𝐽(𝑢))| became smaller than 0.01, the search stopped. The value 0.01 was
selected arbitrarily. All cases below used the same convergence criterion.

A third check was added to verify that the value of the objective function 𝐽(𝑢) did not
increase after each step. If 𝐽(𝑢) increased the search stops, as this indicates the step size
taken is too large and oscillation has started. This condition happened many times when
using fixed step size, but it did not happen with optimal step size.

The relevant Matlab code used to implement this convergence criteria is the following:

%check if we converged or not
if k>opt.MAX_ITER || gradientNormTol(k)<=opt.gradientNormTol ...
|| (k>1 && levelSets(k)> levelSets (k−1))% check for getting worst

keepRunning = false;
else

....
end

The result of these runs are given below in table form. For each starting point, the search
path 𝑢𝑘 is plotted on top of the contour plot. Animation of each of these is also available
when running the code. The path 𝑢𝑘 shows that search direction is along the gradient
vector, which is perpendicular to the tangent line at each contour level.

158

4.4. HW 4 CHAPTER 4. HWS

Table 4.1: Starting point [8, 12]

ℎ # steps comments

0.01 1087 Converged with no oscillation detected. Below are the last few values
of 𝐽(𝑢)
K>> levelSets(end-10:end)

40.000847560444
40.0002241269404
40.0000006868238

Below are the corresponding values of |∇ (𝐽(𝑢))|
K>> gradientNormTol(end-6:end)

0.122339282346846
0.0823426325071764
0.042343897716672

0.00234405713552924

0.1 129 Failed to converge. Oscillation started when near optimal point.
Below are the last few values of 𝐽(𝑢) that shows this.
K>> levelSets(end-10:end)

40.0906178557323
40.0146606611128
40.0906176333215

These are the corresponding values of |∇ (𝐽(𝑢))|
K>> gradientNormTol(end-6:end)

1.0342875633952
2.51122413813222
1.03429217902894
2.51122268542765

1 14 Early termination as the objective function started to increase as the
step size was large. Oscillation started early. Below are the last few
values of 𝐽(𝑢) recorded that shows this.
K>> levelSets(end-10:end)

43.8208310324077
45.023624369293
43.781716244717
45.006474191836

Below are the corresponding values of |∇ (𝐽(𝑢))|
K>> gradientNormTol(end-6:end)

18.2210845193641
16.4816791388241
18.1783873100515
16.4576741878144

159

4.4. HW 4 CHAPTER 4. HWS

Zooming to show there
are NO oscillation
close to optimal point
since step size is small

3D view of search path

Search path on top of contour plot zoom

Objective function getting smaller during search
Gradient norm approaching convergence limit

Rapid improvement
when far away Convergence slows

own near optimal

Rapid improvement
when far away

Convergence slows
own near optimal

Fixed step h = 0.01 results

Search path on top of filled contour plot

Figure 4.4: Result for using step 0.01 starting from (8, 12)160

4.4. HW 4 CHAPTER 4. HWS

Zooming to show
oscillation are starting
when getting close to
optimal point

3D view of search path

Search path on top of contour plot Search path on top of labeled contour plot

zoom

Objective function getting smaller during search
Gradient norm approaching convergence limit

Rapid improvement
when far away Convergence slows

own near optimal

Rapid improvement
when far away

Convergence slows
own near optimal

Fixed step h = 0.1 results

Figure 4.5: Result for using step 0.1 starting from (8, 12)161

4.4. HW 4 CHAPTER 4. HWS

Search path on top of contour plot,
oscillation due to large step size

zoom

Objective function progress using large fixed size Gradient norm approaching convergence limit

Rapid improvement
when far away

Fixed step h = 1 results

Search terminated early. Large step size
caused oscillation. No convergence possible

Objective function
increased due to large
fixed step size

oscillation

Rapid improvement
when far away

Norm of gradient
increased due to large
fixed step size

Figure 4.6: Result for using step 1 starting from (8, 12)

162

4.4. HW 4 CHAPTER 4. HWS

Table 4.2: Starting point [5, 10]

ℎ steps to
converge

comments

0.01 1311 Search reached optimal point (13, 4), but skipped over it and started
to oscillate back and forth around the optimal point due to using
large fixed step size. Below are the last few values of 𝐽(𝑢) recorded
showing this.
K>> levelSets(end-10:end)
.....

40.000714475783
40.0002484312073
40.0007127154844
40.0002478317567
40.0007121302667

The above shows that 𝐽(𝑢) is oscillating around 𝐽∗, while the |∇ (𝐽(𝑢))|
has not yet become small enough to stop. These are the correspond-
ing values of |∇ (𝐽(𝑢))|
K>> gradientNormTol(end-6:end)
....

0.226174843552625
0.133516310474324
0.226094172083413
0.133583571337061
0.226067390166402

Even though this test used a small step size and the algorithm con-
verged when starting from (8, 12) as shown in the earlier case, but
this time it did not converge.
This shows that the search is sensitive to the starting point when
using fixed step size. One way to correct this problem is to relax the
convergence criteria.

0.1 123 Failed to converge. Oscillation detected near optimal point. Below
are the last few values of 𝐽(𝑢) recorded showing this.
K>> levelSets(end-10:end)
.....

40.1256594812986
40.0053368705834
40.1256594634014
40.0053368695271
40.1256594618631

Below are the corresponding values of |∇ (𝐽(𝑢))|
K>> gradientNormTol(end-6:end)
....

3.06656767477006
0.61736163474876
3.06656750731774

0.617361766949031
3.06656749292543

Continued on next page

163

4.4. HW 4 CHAPTER 4. HWS

Table 4.2 – continued from previous page

1 19 Early termination due to the objective function starting to increase
since the step size was too large. Oscillation started early in the
search. Here are the last few values of 𝐽(𝑢) showing this
K>> levelSets(end-10:end)
.....

43.0823019294829
45.7913265189839
43.0266791615351
45.7622114747819

Below are the corresponding values of |∇ (𝐽(𝑢))|
K>> gradientNormTol(end-6:end)
....

16.1440020280613
17.487837406306
16.092991548592

17.4442963174089

164

4.4. HW 4 CHAPTER 4. HWS

Zooming to show search
reached optimal point,
but started to oscillate
around it.

Search path on top of contour plot zoom

Objective function getting smaller during search

Gradient norm approaching convergence limit

Rapid improvement
when far away

Convergence slows
own near optimal

 h = 0.01
results

Search path on top of filled contour plot

Optimal
point

oscillation

Oscillation around
optimal point

Zoom view of J(u) near optimal. Oscillation. No
convergence

Zoom view of gradient
norm when oscillation
starts

Figure 4.7: Result for using step 0.01 starting from (5, 10)165

4.4. HW 4 CHAPTER 4. HWS

Search path on top of contour plot

Objective function getting smaller during search

Gradient norm approaching convergence limit

Rapid improvement
when far away

Convergence slows
own near optimal h = 0.1

results

Search path on top of filled contour plot

Oscillation around
optimal point

Zoom view of J(u) near optimal. Oscillation. No convergence

Zoom view of gradient
norm when oscillation
starts

Zooming to show problem
area of oscillation and

divergence

Figure 4.8: Result for using step 0.1 starting from (5, 10)

166

4.4. HW 4 CHAPTER 4. HWS

Search path on top of contour plot

Objective function getting smaller during search

Gradient norm approaching convergence limit

Rapid improvement
when far away

Convergence slows
own near optimal h = 1

results

Search path on top of filled contour plot

Oscillation around
optimal point

Zoom view of J(u) near optimal. Oscillation. No convergence

Zoom view of gradient
norm when oscillation
starts

Zooming to show problem
area of oscillation and

divergence

Figure 4.9: Result for using step 1 starting from (5, 10)

167

4.4. HW 4 CHAPTER 4. HWS

Table 4.3: Starting point [12, 14]

ℎ steps to
converge

comments

0.01 1130 Search reached optimal point (13, 4) and did converge. No oscillation
were detected. Here are the last few values of 𝐽(𝑢) recorded
K>> levelSets(end-10:end)
.....

40.0034914479994
40.002020228495

40.0009489569455
40.0002776602642
40.0000063555764

The above shows that 𝐽(𝑢) did not oscillate and continued to be-
come smaller with each step. These are the corresponding values of
|∇ (𝐽(𝑢))| showing it reached convergence criteria and stopped.
K>> gradientNormTol(end-6:end)
....

0.167118334256662
0.127125180003955

0.0871288452215103
0.047130308356715

0.00713054850822947

0.1 131 Failed to converge due to oscillation Below are the last few values
of 𝐽(𝑢) recorded showing that it has increased.
K>> levelSets(end-10:end)
.....

40.1051079160718
40.0105348693244
40.1051060970453
40.0105346146167
40.1051057241206

The above shows that 𝐽(𝑢) started to oscillate near the optimal point
since the step size was large. These are the corresponding values of
|∇ (𝐽(𝑢))|
K>> gradientNormTol(end-6:end)
....

2.80005566566667
0.865917403257339
2.80004081985152

0.865928703656839
2.8000377762892

1 19 Early termination due to the objective function increasing since the
step size was too large. Below are the last few values of 𝐽(𝑢) recorded
showing this
K>> levelSets(end-10:end)
.....

136.072742913828
147.365512785727
125.964493512448
133.478776121489
115.810171973447
120.277823711614

Below are the corresponding values of |∇ (𝐽(𝑢))|
K>> gradientNormTol(end-6:end)
....

111.538416550055
76.4541018810368
98.2477444652928
70.7519791844584
85.8602921445108

168

4.4. HW 4 CHAPTER 4. HWS

Search path on top of contour plot

Objective function getting smaller during search

Gradient norm approaching convergence limit

Rapid improvement
when far away

Convergence slows
own near optimal h = 0.01

resultsNo Oscillation.
Converged OK

Zoom view of J(u) near optimal. converged

Zoom view of gradient
norm. No oscillation.

Zooming to show no
oscillation. Good

convergence

zoom

zoom

Figure 4.10: Result for using step 0.01 starting from (12, 14)

169

4.4. HW 4 CHAPTER 4. HWS

Search path on top of contour plot

Objective function getting smaller during search

Gradient norm approaching convergence limit

Rapid improvement
when far away Convergence slows

own near optimal

 h = 0.1
results

Oscillation started
here

Zoom view of J(u) near optimal. Oscillation detected

Zoom view of gradient
norm. Oscillation.

Zooming to show no
oscillation. Good

convergence

zoom

zoom

Showing
oscillation. No
convergence.

Figure 4.11: Result for using step 0.1 starting from (12, 14)

170

4.4. HW 4 CHAPTER 4. HWS

Search path on top of contour plot

Objective function. Oscillation detected

 h = 1

zoom
Showing

oscillation.
Starting early

Norm of gradient.

J(u) became larger
due to large step size

Gradient also
seen to
increase

Figure 4.12: Result for using step 1 starting from (12, 14)

171

4.4. HW 4 CHAPTER 4. HWS

Table 4.4: Starting point [12, 10]

ℎ steps to
converge

comments

0.01 691 Converged with no oscillation. Here are the last few values of 𝐽(𝑢)
recorded confirming this.
K>> levelSets(end-10:end)
.....

40.0046068598544
40.0028871867126
40.0015674398797
40.0006476523458
40.0001278473181
40.0000080382134

Below are the corresponding values of |∇ (𝐽(𝑢))|
K>> gradientNormTol(end-6:end)
....

0.151971746241737
0.111977272332977

0.0719799883799201
0.0319808731053423

0.00801909420920947

0.1 87 Did not converge. Oscillation was detected. Below are the last values
of 𝐽(𝑢) recorded confirming this.
K>> levelSets(end-10:end)
.....

40.0940178225724
40.0143577207974
40.0940127829831
40.0143567476265
40.0940114931914

Below are the corresponding values of |∇ (𝐽(𝑢))| showing it is diverg-
ing.
K>> gradientNormTol(end-6:end)
....

1.00986396810643
2.64564970050157
1.00989167493457
2.6456402389648

1 24 Did not converge. Oscillation was detected early in the search due
to using large step size. Below are the last few values of 𝐽(𝑢) recorded
confirming this.
K>> levelSets(end-10:end)
.....

45.2261295001543
43.5283233241446
45.2260318140989
43.5282741210766
45.2260091586802

These are the corresponding values of |∇ (𝐽(𝑢))| showing it is diverg-
ing.
K>> gradientNormTol(end-6:end)
....

16.7542019931462
17.5230111072761
16.7540613766743
17.5229596031784
16.7540287643191

172

4.4. HW 4 CHAPTER 4. HWS

Search path on top of contour plot

Objective function getting smaller during search

Gradient norm approaching convergence limit

Rapid improvement
when far away

Convergence slows
own near optimal

 h = 0.01

No Oscillation.
Converged OK

Zoom view of J(u) near optimal. converged

Zoom view of gradient
norm. No oscillation.

Zooming to show no
oscillation. Good

convergence

zoom

zoom

Optimal
point

Figure 4.13: Result for using step 0.01 starting from (12, 10)

173

4.4. HW 4 CHAPTER 4. HWS

Search path on top of contour plot

Objective function getting smaller during search

Gradient norm approaching convergence limit

Rapid improvement
when far away

Convergence slows
own near optimal

 h = 0.1

Oscillation.

Zoom view of J(u) showing oscillation

Zoom view of gradient
norm. Showing
problem due to
oscillation. Diverges.

Zooming to show
oscillation. Bad

convergence

Optimal
point

Oscillation starts near
optimal point

Figure 4.14: Result for using step 0.1 starting from (12, 10)

174

4.4. HW 4 CHAPTER 4. HWS

Search path on top of contour plot

Objective function getting smaller showing
oscillation early on

Gradient norm showing divergence

Rapid improvement
when far away

Convergence slows
own near optimal

 h =1

Oscillation.

Showing problem due
to oscillation.
Diverges.

Oscillation starts to
early due to large step
size

Figure 4.15: Result for using step 0.1 starting from (12, 10)

175

4.4. HW 4 CHAPTER 4. HWS

4.4.1.4 Part(d)

When trying di�erent values of starting points, all with 𝑢1 > 1, 𝑢2 > 0, the search did
converge to 𝑢∗ = [7, −2], but it also depended on where the search started from. When
starting close to 𝑢∗, for example, from 𝑢0 = [6.5, 1] the search did converge using fixed step
size of ℎ = 0.01 with no oscillation seen. Below shows this result

4 6 8 10 12 14 16

-2

0

2

4

6

8

10

60
60

90

90

9
0

140

14
0

14
0

200

20
0

40
0

60
0

10
00

10
00

Showing uk path on top of contour plot. Problem 1, part (b)
u0 = [6:5; 1:0], step [0:01], J(u) = 40:000, iterations [337]

convergence criteria jr(J(u))j 5 0:010
successfull completion. Converged before maximum iterations

Figure 4.16: Converging to (7, −2) using step size 0.01 starting from (6.5, 1)

However, when starting from a point too far away from (7, −2), it did not converge to (7, −2),
but instead converged to the second local minimum at 𝑢∗ = [13, 4] as seen below. In this
case the search started from [20, 20].

If the starting point was relatively close to one local minimum than the other, the search
will converge to nearest local minimum.

176

4.4. HW 4 CHAPTER 4. HWS

6 8 10 12 14 16 18 20 22
-5

0

5

10

15

20

From [20.0,20.0], step h[0.20], f(u) [40.009], step [127]

Figure 4.17: Missing 𝑢∗ = [7, −2] when starting too far it. Starting from (20, 20)
using step size 0.01

In this problem there are two local minimums, one at (7, −2) and the other at (4, 13). It
depends on the location of the starting point 𝑢0 as to which 𝑢∗ the algorithm will converge
to.

4.4.2 Problem 2

177

4.4. HW 4 CHAPTER 4. HWS

Barmish

ECE 719 – Homework Rosenbrock

For n ≥ 2, consider Rosenbrock’s Banana

J(u) =
n−1∑
i=1

100(ui+1 − u2
i)

2 + (1− ui)
2

with interesting domain

−2.5 ≤ ui ≤ 2.5; i = 1, 2, . . . , n.

This is a commonly used benchmark testing function with known global
minimum J∗ = 0 which is attained with all ui = 1. Note that this function
also has local minima.

(a) For n = 2, use the steepest descent algorithm to study the minimiza-
tion of the function above. Consider both the fixed and optimal step size
cases. Provide a simple-to-read report on the performance including com-
mentary and trajectories of the iterates uk superimposed on the contour
plot from a variety of initial conditions u0. Also indicate the line search
method which you used.

(b) Repeat the study in Part (a) for larger values of n. How large can
you push n and still achieve reasonable performance? Discuss how com-
putational effort grows as a function of n. Note that for n > 2, you need
not display trajectories and contours.

Figure 4.18: problem 2 description

Labeled 3D over contour view
100(u2 ! u2

1)
2 + (1! u1)

2

-2

-1

u2

0

1

500

500

300

300
200

200

100

-2

100

10

10

50
0

-1

u1

10
10

300200

30
0

10
0

0

20
0

10
0

10

50
0

1

1000

0

3000

2000

J
(u

1
;u

2
)

Figure 4.19: 3D view of 𝐽(𝑢)

4.4.2.1 Part(a)

The steepest descent algorithm used in the first problem was modified to support an
optimal step size. The following is the updated general algorithm expressed as pseudo
code. The optimal step line search used was the standard golden section method. (Listing
added to appendix).

178

4.4. HW 4 CHAPTER 4. HWS

Labeled 3D over contour view
100(u2 ! u2

1)
2 + (1! u1)

2

-2

-1

u2

0

1

500

500

300

300
200

200

100

-2

100

10

10

50
0

-1

u1

10
10

300200

30
0

10
0

0

20
0

10
0

10

50
0

1

1000

0

3000

2000

J
(u

1
;u

2
)

Figure 18: 3D view of J(u)

0.2.1 Part(a)

The steepest descent algorithm used in the first problem was modified to support an optimal step size. The
following is the updated general algorithm expressed as pseudo code. The optimal step line search used was the
standard golden section method. (Listing added to appendix).

1: procedure S T E E P E S T _ D E S C E N T _ O P T I M A L

2: . Initialization
3: H ← maximum step size
4: max_iterations← max iterations allowed
5: ε← minimum convergence limit on ‖∇J(u)‖
6: k ← 0
7: uk ← u0

8: while ‖∇J(uk)‖> ε do
9: . do line search

10: h∗ ← call golden_section(H,J(u)) to find optimal h∗ of function J̃(h∗) = J(uk − h∗∇J(uk))
11: uk ← uk − h∗ ∇J(u

k)
‖∇J(uk)‖

12: k ← k + 1
13: . detect oscillation
14: if k ≥ max_iterations or J(uk) > J(uk−1) then
15: exit loop
16: end if
17: end while
18: end procedure

28

Figure 4.20: Steepest descent, optimal step size algorithm

For 𝑛 = 2, the Rosenbrock function is

𝐽(𝑢) = 100 �𝑢2 − 𝑢21�
2
+ (1 − 𝑢1)

2

∇𝐽 (𝑢) =

⎡
⎢⎢⎢⎢⎢⎢⎣

𝜕𝐽
𝜕𝑢1
𝜕𝐽
𝜕𝑢2

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−400 �𝑢2 − 𝑢21� 𝑢1 − 2 (1 − 𝑢1)

200 �𝑢2 − 𝑢21�

⎤
⎥⎥⎥⎥⎥⎦

For

−2.5 ≤ 𝑢𝑖 ≤ 2.5

The steepest algorithm was run on the above function. The following is the contour plot.
These plots show the level set by repeated zooming around at (1, 1), which is the location
of the optimal point. The optimal value is at 𝑢∗ = (1, 1) where 𝐽∗ = 0.

1

1

10

10

10

10 50

50 50

50

50 100

10
0

100

100

20
0

20
0

200

200 30
0

30
0

300

300

500

50
0

500

500

1000

1000

10
00

10
00

2000

20
00

3000

30
00

contour plot
100(u2 ! u2

1)
2 + (1! u1)

2

u1

-2 -1 0 1 2

u
2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Figure 4.21: Contour 𝐽(𝑢)

0.
5

0.
5

1

1

1

5

5 5

5

5

15

15

15

15

15

30

30

30

30

30

50

50

50

50

50

10
0

10
0

100

100

10
0

200 20
0

20
0

30
0

300

40
0

50
0

contour plot
100(u2 ! u2

1)
2 + (1! u1)

2

u1

-1 -0.5 0 0.5 1 1.5

u
2

-1

-0.5

0

0.5

1

1.5

2

Figure 4.22: Zooming on Contour
𝐽(𝑢)

179

4.4. HW 4 CHAPTER 4. HWS

0.5

0.
5

0.5

2.5

2.
5

2.
5

2.5

5

5

5

5

10

10

10

10

20

20

20

20

35

35

35

35

50

50

50
50

10
0

10
0

10
0

20
0

200

30
0

300

contour plot
100(u2 ! u2

1)
2 + (1! u1)

2

u1

0.2 0.4 0.6 0.8 1 1.2 1.4

u
2

-0.5

0

0.5

1

1.5

2

Figure 4.23: More zooming. Con-
tour 𝐽(𝑢)

0.3

0.
3

0.30.5

0.5

0.5

0.5

2.5

2.5

2.5

2.5

5

5

5

5

10

10

10

10

20

20

20

20
30

30

30

50

50

50

75

75

10
0

100
150

contour plot
100(u2 ! u2

1)
2 + (1! u1)

2

u1

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

u
2

0

0.5

1

1.5

Figure 4.24: More zooming. Con-
tour 𝐽(𝑢)

0.1

0.2

0.2

0.2

0.
2

0.3

0.3

0.3

0.3

0.5

0.5

0.5

0.5

1

1

1

1

2

2

2

2

3 3

3

4

4

4

8

8

8

12

12

12

20

contour plot
100(u2 ! u2

1)
2 + (1! u1)

2

u1

0.8 0.85 0.9 0.95 1 1.05 1.1

u
2

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 4.25: More zooming on Con-
tour 𝐽(𝑢)

0.1

0.1

0.
1

0.2

0.2

0.2

0.
3

0.
3

0.
3

0.
3

0.
5

0.
5

0.
5

0.
5

1

1

1

1

1.
5

1.
5

1.
5

1.
5

2

2

2

2

3

3

contour plot
100(u2 ! u2

1)
2 + (1! u1)

2

u1

0.9 0.95 1 1.05 1.1

u
2

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Figure 4.26: More zooming on Con-
tour 𝐽(𝑢)

In all of the results below, where fixed step is compared to optimal step, the convergence
criteria was the same. It was to stop the search when

‖∇𝐽(𝑢)‖ ≤ 0.001

The search started from di�erent locations. The first observation was that when using
optimal step, the search jumps very quickly into the small valley of the function moving
towards 𝑢∗. This used one or two steps only. After getting close to the optimal point, the
search became very slow moving towards 𝑢∗ inside the valley because the optimal step size
was becoming smaller and smaller.

The closer the search was to 𝑢∗, the step size became smaller. Convergence was very slow
at the end. The plot below shows the optimal step size used each time. Zooming in shows
the zigzag pattern. This pattern was more clear when using small but fixed step size. Below
is an example using fixed step size of ℎ = 0.01 showing the pattern inside the valley of the
function.

180

4.4. HW 4 CHAPTER 4. HWS

0.68 0.7 0.72 0.74 0.76 0.78

0.5

0.505

0.51

0.515

0.52

0.525

0.53

0.535

0.54

From [0.4,0.6], step h[0.01], f(u) [0.048], step [500]

Figure 4.27: Zoom view of search when inside valley, showing the small steps and
zig-zag pattern

Here is a partial list of the level set values, starting from arbitrary point from one run
using optimal step. It shows that in one step, 𝐽(𝑢) went down from 170 to 0.00038, but after
that the search became very slow and the optimal step size became smaller and the rate
of reduction of 𝐽(𝑢) decreased.

K>> levelSets
170.581669649628
0.000381971009752197
0.000380732839496915
0.000379498903384167
0.000378228775184198
0.000376972670237551
0.000375564628332407
0.00037415586062171
....

Golden section line search was implemented with tolerance of √(𝑒𝑝𝑠(double)) and used for
finding the optimal step size.
....
if opt.STEP_SIZE == −1 %are we using optimal step size ?

h = nma_golden_section(fLambda,currentPoint,...
s ,0,1, sqrt(eps('double')));

else
h = opt.STEP_SIZE; %we are using the �xed step size .

end
.....

The following plot shows how the optimal step size changed at each iteration in a typical
part of the search, showing how the step size becomes smaller and smaller as the search
approaches the optimal point 𝑢∗. The plot to the right shows the path 𝑢𝑘 taken.

181

4.4. HW 4 CHAPTER 4. HWS

iteration number

270 280 290 300 310 320 330

op
ti

m
al

st
ep

si
ze

#10!4

-5

0

5

10

15

Showing size of each optimal step found using golden section
line search at each iteration. number of steps[499]
tolerance for convergence [0.001], starting point [-2.0,0.8]

Figure 4.28: Showing how optimal
step size changes at each iteration
during typical search

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

0.
5

5

5

5

10

10

10

10

50

50

100

10
0

100

20
0

20
0

200

30
0

30
0

300

1000

10
00

starting from [-2.0,0.8], optimal step. f(u)=[0.000], step [4089], tolerance[0.001]

Figure 4.29: Typical search pattern
using optimal step size from arbi-
trary starting point

To compare fixed size step and optimal size ℎ, the search was started from the same point
and the number of steps needed to converge was recorded.

In these runs, a maximum iteration limit was set at 106.

Starting from (−2, 0.8)

step size number of iterations to converge

optimal 4089

0.1 Did not converge within maximum iteration limit

0.05 Did not converge within maximum iteration limit, but stopped closer
to 𝑢∗ than the above case using ℎ = 0.1

0.01 Did not converge within maximum iteration limit, but stopped closer
to 𝑢∗ than the above case using ℎ = 0.05

Table 4.5: comparing optimal and fixed step size. Starting from (−2, 0.8)

The following shows the path used in the above tests. The plots show that using fixed size
step leads to many zigzag steps being taken which slows the search and is not e�cient as
using optimal step size.

Using fixed size ℎ = 0.1 resulted in the search not making progress after some point due to
oscillation and would be stuck in the middle of the valley.

Following is partial list of the values of 𝐽(𝑢) at each iteration using fixed size ℎ, showing
that the search fluctuating between two levels as it gets closer to optimal value 𝑢∗ but it
was not converging.

...
0.0125058920858913
0.0123566727077954
0.0125058573101063
0.0123566379524329
0.0125058226516176
0.0123566033142948
0.0125057881100252
0.0123565687929828
0.0125057536849328
0.0123565343880989
...

Search was terminated when oscillation is detected. Search stopped far away from 𝑢∗ when
the fixed step was large. As the fixed step size decreased, the final 𝑢𝑘 that was reached was

182

4.4. HW 4 CHAPTER 4. HWS

closer to 𝑢∗ but did not converge to it within the maximum iteration limit as the case with
optimal step size.

The optimal step size produced the best result. It converged to 𝑢∗ within the maximum
iteration limit and the zigzag pattern was smaller.

-2 -1.5 -1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

0.
5

5

5
10

10

starting from [-2.0,0.8], optimal step. f(u)=[0.000], step [4089], tolerance[0.001]

Figure 4.30: path of 𝑢𝑘 using opti-
mal step starting from (−2, 0.8)

-2 -1.5 -1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

0.
5

5

5
10

10

From [-2.0,0.8], step h[0.10], f(u) [0.745], step [4999], tolerance[0.001]

Figure 4.31: path of 𝑢𝑘 using fixed
step ℎ = 0.1 starting from (−2, 0.8)

-2 -1.5 -1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

0.
5

5

5
10

10

From [-2.0,0.8], step h[0.05], f(u) [0.260], step [4999], tolerance[0.001]

Figure 4.32: 𝑢𝑘 path, fixed step
ℎ = 0.05 from (−2, 0.8)

-2 -1.5 -1 -0.5 0 0.5 1

0

0.2

0.4

0.6

0.8

1

1.2

0.
5

5

5
10

10

From [-2.0,0.8], step h[0.01], f(u) [0.013], step [4999], tolerance[0.001]

Figure 4.33: 𝑢𝑘 path, fixed step
ℎ = 0.01 from (−2, 0.8)

Starting from (−1.4, −2.2)

step size number of iterations to converge

optimal 537

0.1 Did not converge within maximum iteration limit

0.05 Did not converge within maximum iteration limit, but stopped
closer to 𝑢∗ than the above case using ℎ = 0.1

0.01 Did not converge within maximum iteration limit, but stopped
closer to 𝑢∗ than the above case using ℎ = 0.05

Table 4.6: comparing optimal and fixed step size. Starting from
(−1.4, −2.2)

The following plots show the path used in the above tests. Similar observation is seen
as with the last starting point. In conclusion: One should use an optimal step size even
though the optimal step requires more CPU time.

183

4.4. HW 4 CHAPTER 4. HWS

-1.5 -1 -0.5 0 0.5 1

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0.
5

0.
5

5

5

5

10

10

10

10 50

50

50

50 100

100

100

20
0

200

200 30
0

300

1000

10
00

2000

starting from [-1.4,-2.2], optimal step. f(u)=[0.000], step [537], tolerance[0.001]

Figure 4.34: 𝑢𝑘 path, optimal
step from at (−1.4, −2)

-1.5 -1 -0.5 0 0.5 1

-2

-1.5

-1

-0.5

0

0.5

1 0.
5

5

5 10

10

50

100

200
300

1000

10
00

2000

From [-1.4,-2.2], step h[0.10], f(u) [0.821], step [4999], tolerance[0.001]

Figure 4.35: 𝑢𝑘 path, fixed step
ℎ = 0.1 from (−1.4, −2)

-1.5 -1 -0.5 0 0.5 1

-2

-1.5

-1

-0.5

0

0.5

1 0.
5

5

5 10

10

50

100

200
300

1000

10
00

2000

From [-1.4,-2.2], step h[0.05], f(u) [0.266], step [4999], tolerance[0.001]

Figure 4.36: 𝑢𝑘 path, fixed step
ℎ = 0.05 from (−1.4, −2)

-1.5 -1 -0.5 0 0.5 1

-2

-1.5

-1

-0.5

0

0.5

1 0.
5

5

5 10

10

50

100

200
300

1000

10
00

2000

From [-1.4,-2.2], step h[0.01], f(u) [0.012], step [4999], tolerance[0.001]

Figure 4.37: 𝑢𝑘 path, fixed step
ℎ = 0.01 from (−1.4, −2.0)

4.4.2.2 Part(b)

A program was written to automate the search for arbitrary 𝑛. For example, for 𝑛 = 3

𝐽 (𝑢) = 100 �𝑢2 − 𝑢21�
2
+ (1 − 𝑢1)

2 + 100 �𝑢3 − 𝑢22�
2
+ (1 − 𝑢2)

2

∇𝐽 (𝑢) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝐽
𝜕𝑢1
𝜕𝐽
𝜕𝑢2
𝜕𝐽
𝜕𝑢3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−400 �𝑢2 − 𝑢21� 𝑢1 − 2 (1 − 𝑢1)
200 �𝑢2 − 𝑢21� − 400 (𝑢3 − 𝑢2) 𝑢2 − 2 (1 − 𝑢2)

200 �𝑢3 − 𝑢22�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

And for 𝑛 = 4

𝐽 (𝑢) = 100 �𝑢2 − 𝑢21�
2
+ (1 − 𝑢1)

2 + 100 �𝑢3 − 𝑢22�
2
+ (1 − 𝑢2)

2 + 100 �𝑢4 − 𝑢23�
2
+ (1 − 𝑢3)

2

∇𝐽 (𝑢) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝐽
𝜕𝑢1
𝜕𝐽
𝜕𝑢2
𝜕𝐽
𝜕𝑢3
𝜕𝐽
𝜕𝑢4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−400 �𝑢2 − 𝑢21� 𝑢1 − 2 (1 − 𝑢1)

200 �𝑢2 − 𝑢21� − 400 �𝑢3 − 𝑢22� 𝑢2 − 2 (1 − 𝑢2)

200 �𝑢3 − 𝑢22� − 400 �𝑢4 − 𝑢23� 𝑢3 − 2 (1 − 𝑢3)

200 �𝑢4 − 𝑢23�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The pattern for ∇𝐽(𝑢) is now clear. Let 𝑖 be the row number of ∇𝐽 (𝑢), where 𝑖 = 1⋯𝑁,
then the following will generate the gradient vector for any 𝑁

∇𝐽 (𝑢) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝐽
𝜕𝑢𝑖
𝜕𝐽
𝜕𝑢𝑖
⋮
𝜕𝐽
𝜕𝑢𝑖
𝜕𝐽
𝜕𝑢𝑖

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−400 �𝑢𝑖+1 − 𝑢2𝑖 � 𝑢𝑖 − 2 (1 − 𝑢𝑖)
200 �𝑢𝑖 − 𝑢2𝑖−1� − 400 �𝑢𝑖+1 − 𝑢2𝑖 � 𝑢𝑖 − 2 (1 − 𝑢𝑖)

⋮
200 �𝑢𝑖 − 𝑢2𝑖−1� − 400 �𝑢𝑖+1 − 𝑢2𝑖 � 𝑢𝑖 − 2 (1 − 𝑢𝑖)

200 �𝑢𝑖 − 𝑢2𝑖−1�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The program implements the above to automatically generates ∇𝐽 (𝑢) and 𝐽 (𝑢) for any 𝑁,
then perform the search using steepest descent as before. The function that evaluates 𝐽(𝑢)
is the following

184

4.4. HW 4 CHAPTER 4. HWS

� �
1 %Evaluate J(u) at u
2 function f = objectiveFunc(u)
3 u=u(:);
4 N = size(u,1);
5 f = 0;
6 for i = 1:N-1
7 f = f + 100*(u(i+1)-u(i)^2)^2 + (1-u(i))^2;
8 end
9 end� �

˙

And the function that evaluates ∇𝐽(𝑢) is the following� �
1 %---------------------
2 %Evaluate grad(J(u)) at u
3 function g = gradientFunc(u)
4 u = u(:);
5 N = size(u,1);
6 g = zeros(N,1);
7 for i = 1:N
8 if i==1 || i==N
9 if i==1
10 g(i)=-400*(u(i+1)-u(i)^2)*u(i)-2*(1-u(i));
11 else
12 g(i)=200*(u(i)-u(i-1)^2);
13 end
14 else
15 g(i) = 200*(u(i)-u(i-1)^2)-...
16 400*(u(i+1)-u(i)^2)*u(i)-2*(1-u(i));
17 end
18 end� �

˙

4.4.2.3 Results

Two runs were made. One using fixed step size ℎ = 0.01, and one using optimal step size.
Both started from the same point (−2, −2,… , −2). Each time 𝑁 was increased and the CPU
time recorded. The same convergence criteria was used: |∇ 𝐽(𝑢)| ≤ 0.0001 and a maximum
iteration limit of 106.

Only the CPU time used for the steepest descent call was recorder.� �
1
2 tic;
3 [status,pts,levelSets, gradientNormTol,steps] = ...
4 nma_steepest_descent(opt);
5 time_used = toc;
6� �

˙

A typical run is given below. An example of the command used for 𝑁 = 8 is
>> nma_HW4_problem_2_part_b([-2;-2;-2;-2;-2;-2;-2;-2])

CPU time 13.180029
successful completion. Converged before maximum iterations
Number of coordinates used 8
optimal point found is

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999

Number of steps used [13550]

185

4.4. HW 4 CHAPTER 4. HWS

The program nma_HW4_problem_2_part_b_CPU was run in increments of 20 up to𝑁 = 1000.
Here is the final result.

N, the number of coordinates

0 200 400 600 800 1000

C
P
U

ti
m
e
in

se
co
n
d
s

0

100

200

300

400

500

600
Comparing CPU time, using optimal vs. -xed step

optimal

-xed step

Figure 4.38: Comparing CPU time, optimal step and fixed step

Discussion of result The fixed step size ℎ = 0.01 was selected arbitrarily to compare
against. Using fixed step size almost always produced oscillation when the search was near
the optimal point and the search would stop.

Using an optimal step size, the search took longer time, as can be seen from the above
plot, but it was reliable in that it converged, but at a very slow rate when it was close to
the optimal point.

Almost all of the CPU time used was in the line search when using optimal search. This
additional computation is the main di�erence between the fixed and optimal step size
method.

In fixed step, |∇ 𝐽(𝑢)| was evaluated once at each step, while in optimal search, in addition
to this computation, the function 𝐽(𝑢) itself was also evaluated repeated times at each step
inside the golden section line search. However, even though the optimal line search took
much more CPU time, it converged much better than the fixed step size search did.

Using optimal line search produces much better convergence, at the cost of using much
more CPU time.

The plot above shows that with fixed step size, CPU time grows linearly with the 𝑁 while
with optimal step size, the CPU time grew linearly but at a much larger slope, indicating
it is more CPU expensive to use.

4.4.3 Source code listing

4.4.3.1 steepest descent function� �
1 function [status,pointsFound,levelSets,gradientNormTol,steps]=�...
2 nma_steepest_descent(opt)
3 % This function performs steepest descent search starting from
4 % a point looking for point which minimizes a function. Supports
5 % multi-variable function. It needs handle of the funtion and

186

4.4. HW 4 CHAPTER 4. HWS

6 % hand to the gradient. It reurns all points visited in the
7 % search. The points can then be used by client for plotting.
8 % Below is description of input and output.
9 %
10 % Typical use of this function is as follows:
11 %
12 % opt.field = ...%fill in each field of the struct.
13 % [pointsFound,levelSets,gradientNormTol,steps] = ...
14 % nma_steepest_descent(opt);
15 %
16 % [C,h] = contour(.....,levelSets);
17 %
18 % INPUT fields in opt struct are:
19 % ======
20 % u vector of coordinates starting guess
21 % MAX_ITER an integer, which is the maximium iteration
22 % allowed before giving up the search.
23 % Example 500
24 % gradientNormTol small floating point number. The tolerance
25 % to use to decide when to stop the search.
26 % Example 0.001
27 % stepSize A floating point number, which is the step
28 % size to take. If stepSize=-1 then an optimal
29 % step size is found and used at each step
30 % using golden section line search.
31 % objectiveFunc handle to the objective function which accepts
32 % a row vector, that contain [x y] coordinate
33 % of the point and returns the numerical value
34 % of objectiveFunc at this point.
35 % gradientFunc handle to the gradiant of f. Same input and
36 % output as objectiveFunc
37 % accumulate flag. If true, then all points u^k and J(u)
38 % at each are collected during search. Else
39 % they are not.
40 %
41 % OUTPUT:
42 % =======
43 % status can be 0,1 or 2.
44 % 0 means success, It converged before MAX_ITER
45 % was reached.
46 % 1 means failed, did not converge due to
47 % oscillation, which can happen when step size
48 % is too large. When oscillation detected, the
49 % search will stop.
50 % 2 means failed: did not oscillate but also
51 % did not converge before hitting MAX_ITER.
52 % Caller can try with larger MAX_ITER
53 % pointsFound n by 2 matrix, as in [x1 y1; x2 y2;]
54 % which contains coordinates of each point
55 % visited during steepestDescent the length is
56 % the same as number of points visited. This
57 % will be last point only if opt.accumlate=false
58 % levelSets vector, contains the value of the objective
59 % function at each point. Last value of J(u) if
60 % opt.accumlate=false
61 % gradientNormTol vector, contains the norm of gradient after
62 % each step. This will be last value only if
63 % opt.accumlate=false
64 % steps vector. The optimal step used at each
65 % iteration, used golden section to find optimal
66 % step size. This will be last value only
67 % if opt.accumlate=false
68 %

187

4.4. HW 4 CHAPTER 4. HWS

69 % by Nasser M. Abbasi ECE 719, UW Madison
70

71 %pre-allocate data for use in the main loop below
72 N = size(opt.u,1);
73

74 %collect data only if user asked for it.
75 if opt.accumulate
76 pointsFound = zeros(opt.MAX_ITER,N);
77 levelSets = zeros(opt.MAX_ITER,1);
78 gradientNormTol = zeros(opt.MAX_ITER,1);
79 steps = zeros(opt.MAX_ITER,1);
80 end
81

82 %function to find optimal step size at each step,
83 %This is used only if client asked for optimal
84 %step size, which is set when opt.setSize=-1
85 %This is same J tilde(u) function from class lecture notes
86 fLambda = @(lam,u,s) opt.objectiveFunc(u-lam*s);
87

88 % initialize counters before main loop
89 k = 1;
90 currentPoint = opt.u;
91 keepRunning = true;
92 status = 0;
93 steps_in_oscillation = 0;
94 last_level = 0;
95

96 while keepRunning
97 if k>1
98 last_level = current_level;
99 end
100 current_level = norm(opt.objectiveFunc(currentPoint));
101 current_grad = opt.gradientFunc(currentPoint);
102 current_grad_norm = norm(current_grad);
103

104 if opt.accumulate
105 pointsFound(k,:) = currentPoint;
106 levelSets(k) = current_level;
107 gradientNormTol(k) = current_grad_norm;
108 end
109

110 if k>1 && current_level>last_level% check for oscillation
111 if opt.stop_on_oscillation
112 steps_in_oscillation = steps_in_oscillation + 1;
113 end
114 end
115

116 % check if we converged or not
117 % Last check below can lead to termination too early for the
118 % banana function. Since at one point, J(u(k+1)) will get
119 % larger than J(u(k)) using bad step size. So it is
120 %commented out for now.
121 if k == opt.MAX_ITER || ...
122 current_grad_norm <=opt.gradientNormTol || ...
123 steps_in_oscillation>4 %let it run for 2 more steps
124 %to see the oscillation stop loop and set the
125 %status to correct reason why loop stopped.
126 keepRunning = false;
127 if steps_in_oscillation>0
128 status = 1;
129 else
130 if k == opt.MAX_ITER
131 status= 2;

188

4.4. HW 4 CHAPTER 4. HWS

132 end
133 end
134 else
135 if current_grad_norm > eps('double') %direction vector
136 s = current_grad / current_grad_norm;
137 if opt.STEP_SIZE == -1 %are we using optimal size?
138 lam = nma_golden_section(...
139 fLambda,currentPoint,s,0,1,sqrt(eps('double')));
140

141 %below for verification of golden section result
142 %using matlab fminbd. I get similar results. so
143 %this is good.
144

145 %lam=fminbnd(@(lam) fLambda(lam,currentPoint,s),0,1);
146 else
147 lam = opt.STEP_SIZE; %using the fixed step size.
148 end
149

150 %protect aginst long step,just in case?
151 %lam = min([1,lam]);
152

153 % make step towards minumum
154 currentPoint = currentPoint - lam*s;
155

156 if opt.accumulate
157 steps(k) = lam;
158 end
159

160 k = k + 1;
161 else
162 keepRunning = false; % |grad| < eps, stop.
163 end
164 end
165

166 end
167

168 %done. Chop data to correct number of steps used before returning
169 if opt.accumulate
170 pointsFound = pointsFound(1:k,:);
171 levelSets = levelSets(1:k);
172 gradientNormTol = gradientNormTol(1:k);
173 steps = steps(1:k);
174 else
175 pointsFound = currentPoint ;
176 levelSets = current_level;
177 gradientNormTol = current_grad_norm;
178 steps = k;
179 end
180

181 end� �
4.4.3.2 golden section line search� �

1 function h_optimal = nma_golden_section(f,u,s,a,b,tol)
2 % standard golden section function (see numerical recipes)
3 %converted to Matlab to use for HW 4. This finds the optimal
4 %step size to use with the steepest descent algorithm.
5 %
6 %Nasser M. Abbasi, ECE 719 spring 2016
7 %
8 %
9 %INPUT:
10 % f: The function to minimize

189

4.4. HW 4 CHAPTER 4. HWS

11 % u and s: These are specific parameters for f() used only
12 % for HW4 problem and not part of the general algorithm
13 % itself. These are used in calling f(). u is the
14 % current point and "s" is the gradiant vector. in the
15 % direction we want to minimize J(u)
16 % a: Starting search point
17 % b: ending search point.
18 % tol: tolerance to use to stop the line search. Such as 10^(-6)
19 %
20 % OUTPUT:
21 % h_optimal: This is the optimal step size h to use
22 %
23 golden_ratio = (sqrt(5)-1)/2;
24 c = b-golden_ratio*(b-a);
25 d = a+golden_ratio*(b-a);
26

27 while abs(c-d)>tol
28 fc = f(c,u,s);
29 fd = f(d,u,s);
30 if fc<fd
31 b = d;
32 d = c;
33 c = b-golden_ratio*(b-a);
34 else
35 a = c;
36 c = d;
37 d = a+golden_ratio*(b-a);
38 end
39 end
40 %done. Return the optimal step size to use.
41 h_optimal = (b+a)/2;
42 end� �

4.4.3.3 Problem 1 part a� �
1 function nma_HW4_problem_1_part_a()
2 %Plots a contour of
3 %
4 % f(u) = (11-u1-u2)^2 + (1+u1+10*u2-u1*u2)^2
5 %
6 % over range u1=0..20 and u2=0..15
7 % Matlab 2015a
8 % by Nasser M. Abbasi
9

10 close all; clc;
11 cd(fileparts(mfilename('fullpath')));
12

13 %reset(0);
14 xlimits = [-5 20]; %x limits, for plotting, change as needed
15 ylimits = [-5 15]; %y limits, for plotting, change as needed
16 myTitle = '$$(11 - u_1 - u_2)^2 +(1+ u_1+10 u_2-u_1 u_2)^2$$';
17 [u1,u2,z] = makeContourData(0.05,xlimits,ylimits);
18

19 figure(1);
20 v =[40 60 90 140 200 400 600 1000 1500 2000 3000�...
21 4000 6000 8000 10000 12000 15000 18000];
22 [C,h] = contour(u1,u2,z,v,'Linecolor',[0 0 1]);
23

24 clabel(C,h,v,'Fontsize',8,'interpreter','Latex','Color','red');
25 setMyLabels('$$u_1$$','$$u_2$$',...
26 {'\makebox[4in][c]{contour plot, default setting}',...
27 sprintf('\\makebox[4in][c]{%s}',myTitle)});
28 saveas(gcf, 'problem_1/part_a/fig1', 'pdf');

190

4.4. HW 4 CHAPTER 4. HWS

29

30 figure(11);
31 xlimits = [-5 20]; %x limits, for plotting, change as needed
32 ylimits = [-5 20]; %y limits, for plotting, change as needed
33 myTitle = '$$(11 - u_1 - u_2)^2 +(1+ u_1+10 u_2-u_1 u_2)^2$$';
34 [u1,u2,z] = makeContourData(0.1,xlimits,ylimits);
35 [C,h] = contourf(u1,u2,z,v);
36 %colorDepth = 10000;
37 %colormap(jet(colorDepth));
38

39 %colormap(parula(300));
40 colormap(hsv);
41 colorbar;
42 setMyLabels('$$u_1$$','$$u_2$$',...
43 {'\makebox[4in][c]{contour plot, filled, with colorbar}',...
44 sprintf('\\makebox[4in][c]{%s}',myTitle)});
45 %saveas(gcf, 'problem_1/part_a/fig11', 'pdf');
46 %print -painters -dpdf -r600 'problem_1/part_a/fig11.pdf'
47

48 figure(12);
49 contour3(u1,u2,z,v);
50

51

52 figure(2);
53 [u1,u2,z] = makeContourData(2,xlimits,ylimits);
54 surf(u1,u2,z);
55 colormap(hsv);
56 view([-156.5,42]);
57

58 hold on;
59 v = [200 600 1000 1500 2000 4000 6000 8000 12000];
60 [C,h] = contour(u1,u2,z,v,'Linecolor',[0 0 1]);
61 clabel(C,h,v,'Fontsize',10,'interpreter','Latex','Color','red');
62

63 setMyLabels('$$u_1$$','$$u_2$$','$$J(u_1,u_2)$$',...
64 {'\makebox[4in][c]{Labeled 3D over contour view}',...
65 sprintf('\\makebox[4in][c]{%s}',myTitle)})
66 %saveas(gcf, 'problem_1/part_a/fig2', 'pdf');
67

68 figure(3);
69 surf(u1,u2,z);
70 colormap(hsv);
71 view([154,46]);
72 hold on;
73 contour(u1,u2,z,v,'Linecolor',[0 0 1]);
74 clabel(C,h,v,'Fontsize',10,'interpreter','Latex','Color','red');
75 setMyLabels('$$u_1$$','$$u_2$$','$$J(u_1,u_2)$$',...
76 {'\makebox[4in][c]{Another 3D over contour view (no labels)}',...
77 sprintf('\\makebox[4in][c]{%s}',myTitle)})
78 %saveas(gcf, 'problem_1/part_a/fig3', 'pdf');
79

80 figure(4);
81 xlimits = [-10 30]; %x limits, for plotting, change as needed
82 ylimits = [-10 30]; %y limits, for plotting, change as needed
83 [u1,u2,z] = makeContourData(.5,xlimits,ylimits);
84

85 subplot(1,2,1);
86 v =[50 200 600 2000 4000 8000 16000 30000];
87 [C,h] = contour(u1,u2,z,v,'Linecolor',[0 0 1]);
88 grid; %get(h,'LevelList')
89

90 clabel(C,h,v,'Fontsize',8,'interpreter','Latex','Color','red');
91 setMyLabels('$$u_1$$','$$u_2$$',...

191

4.4. HW 4 CHAPTER 4. HWS

92 {'\makebox[4in][c]{contour plot (enlarged limits}',...
93 sprintf('\\makebox[4in][c]{%s}',myTitle)});
94

95 subplot(1,2,2);
96 [u1,u2,z] = makeContourData(4,xlimits,ylimits);
97 surf(u1,u2,z);
98 colormap(hsv);
99 view([154,46]);
100 hold on;
101 contour(u1,u2,z,'Linecolor',[0 0 1]);
102 setMyLabels('$$u_1$$','$$u_2$$','$$J(u_1,u_2)$$',...
103 {'\makebox[4in][c]{3D over contour view (enlarged limits)}',...
104 sprintf('\\makebox[4in][c]{%s}',myTitle)});
105 %saveas(gcf, 'problem_1/part_a/fig4', 'pdf');
106 end
107

108 %------------
109 %helper function to set plot attributes.
110 function setMyLabels(varargin)
111

112 myXlabel = varargin{1};
113 myYlabel = varargin{2};
114 if nargin ==4
115 myZlabel = varargin{3};
116 end
117 myTitle = varargin{end};
118 h = get(gca,'xlabel');
119 set(h,'string',myXlabel,'fontsize',10,'interpreter','Latex') ;
120

121 h = get(gca,'ylabel');
122 set(h,'string',myYlabel,'fontsize',10,'interpreter','Latex') ;
123

124 if nargin ==4
125 h = get(gca,'zlabel');
126 set(h,'string',myZlabel,'fontsize',10,'interpreter','Latex');
127 end
128

129 h = get(gca,'title');
130 set(h,'string',myTitle,'fontsize',10,'interpreter','Latex',...
131 'HorizontalAlignment','center') ;
132

133 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
134 end
135

136 %------------------
137 %helper function to generate Contour data
138 function [u1,u2,z] = makeContourData(del,xlimits,ylimits)
139

140 u1 = xlimits(1):del:xlimits(2);
141 u2 = ylimits(1):del:ylimits(2);
142 [u1,u2] = meshgrid(u1,u2);
143 z = (11-u1-u2).^2 + (1+u1+10.*u2-u1.*u2).^2;
144 end� �

4.4.3.4 Problem 1 part b� �
1 function nma_HW4_problem_1_part_b()
2 %finds the min value of
3 %
4 % f(u) = (11-u1-u2)^2 + (1+u1+10*u2-u1*u2)^2
5 %
6 % over range u1=0..20 and u2=0..15 using steepest descent
7 %

192

4.4. HW 4 CHAPTER 4. HWS

8 %This file is only the driver for function nma_steepestDescent.m
9 %ECE 719, Spring 2016
10 %Matlab 2015a
11 %Nasser M. Abbasi Nov 25, 2016
12

13 if(~isdeployed)
14 baseFolder = fileparts(which(mfilename));
15 cd(baseFolder);
16 end
17

18 close all;
19 %reset(0);
20 set(groot,'defaulttextinterpreter','Latex');
21 set(groot, 'defaultAxesTickLabelInterpreter','Latex');
22 set(groot, 'defaultLegendInterpreter','Latex');
23 from_pix = 100;
24 pix_count = 1;
25

26 %paramters, change as needed
27 % 'conjugate gradient'
28 METHOD = 'steepest descent'; %'steepest descent';
29 DO_GUI = false; %set to true to get input starting point
30 % from GUI
31 DO_ANIMATE = true; %set to true to see animation
32 DO_GIF = false; %set to true to make animation gif
33 DO_3D = false; %if we want to show 3D search path. Set to true
34 xlimits = [-20 20]; %x limits, for plotting
35 ylimits = [-15 15]; %y limits, for plotting
36 del = 0.05; %grid size, used for making meshgrid
37 fixed_levels = [40 60 90 140 200 400 600 1000 1500 2000 �...
38 3000 4000 6000 8000,10000 12000 15000 18000];
39 CONTOUR_LINES_AUTO = 'fix'; %set to 'auto', to see matlab contour
40 % lines, set to 'full' to see each step level set
41 % set to 'limited' to see every other level
42 % set to 'fix' to use pre-specificed
43 %
44

45 %---
46 %These are the options struct used by call to
47 % nma_steepestDescentPoints()
48 opt.u = [16.805;13.245]; %starting guess x-coord
49 opt.MAX_ITER = 10^3; %maximum iterations allowed
50

51 %step size. set to -1 to use an optimal step
52 opt.STEP_SIZE = -1;
53

54 %see function definition at end of file
55 opt.objectiveFunc = @objectiveFunc;
56

57 %see function definition at end of file
58 opt.gradientFunc = @gradientFunc;
59 opt.gradientNormTol = 0.001; %used to determine when converged
60 opt.hessian = @hessian_func; %see function definition
61 opt.accumulate = true;
62 opt.stop_on_oscillation = false;
63

64 %--
65 %data
66 u1 = xlimits(1):del:xlimits(2);
67 u2 = ylimits(1):del:ylimits(2);
68 [u1,u2] = meshgrid(u1,u2);
69 %z = 3 + (u1 - 1.5*u2).^2 + (u2 - 2).^2;
70 z = (11-u1-u2).^2 + (1+u1+10.*u2-u1.*u2).^2;

193

4.4. HW 4 CHAPTER 4. HWS

71

72 figure('Units','pixels','position',[from_pix from_pix 600 500]);
73 pix_count = pix_count+1;
74 if DO_GUI %check if GUI input is asked for, if so, wait for user
75 plot(0,0);
76 xlim(xlimits); ylim(ylimits);
77 hold on;
78 [x,y] = ginput(1);
79 opt.u=[x;y];
80 end
81

82 %mark location of starting point
83 %t = text(0.8*opt.u(1),1.1*opt.u(2),...
84 % sprintf('[%2.1f,%2.1f]',opt.u(1),opt.u(2)));
85 %t.FontSize = 8;
86 %t.Color = 'red';
87

88 %Find the minumum using Matlab build-in, in order
89 %to compare with in plot
90 optimalValue = fminsearch(opt.objectiveFunc, opt.u);
91 objectiveAtOptimal = objectiveFunc(optimalValue);
92

93 %mark location of minimum found by fminsearch on plot
94 %This min, can be different that one converged to by
95 %steepest descent! so we also plot the converged to value found
96 hold on;
97 %plot(optimalValue(1),optimalValue(2),'*r');
98

99 plot(opt.u(1),opt.u(2),'or'); %starting point
100 xlim(xlimits); ylim(ylimits);
101 grid;
102 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
103 %make the call to implement steepest descent, different m file.
104 if strcmp(METHOD,'steepest descent')
105 [status , pts,levelSets, gradientNormTol,~] = ...
106 nma_steepest_descent(opt);
107 else
108 [status,pts,levelSets, gradientNormTol,~] = ...
109 nma_fletcher_reeves(opt);
110 end
111 plot(13,4,'*r'); %known u* at top location.
112 switch status
113 case 0, status = ...
114 'successfull completion. Converged before maximum iterations';
115 case 1, status = ...
116 'failed to converge before maximum iterations due to oscillation';
117 case 2, status =
118 'failed to converge before maximum iterations';
119 end
120

121 %plot the value found by steepest descent
122 %plot(pts(end,1),pts(end,2),'ok');
123

124 %use output from above call to make the plots
125 switch CONTOUR_LINES_AUTO
126 case 'auto',
127 [C,h] = contour(u1,u2,z,'Linecolor',[0 0 1],'LineWidth',0.1);
128 case 'limited',
129 lev = round(length(levelSets)/20);
130 %[C,h] = contour(u1,u2,z,levelSets(1:lev:end),'Fill','off');
131 %[C,h] = contourf(u1,u2,z,levelSets(1:lev:end));
132 [C,h] = contour(u1,u2,z,levelSets(1:lev:end));
133 %colormap(hsv);

194

4.4. HW 4 CHAPTER 4. HWS

134 %colorbar;
135 %'Linecolor',[0 0 1],'LineWidth',.2);
136 case 'full'
137 [C,h] = contour(u1,u2,z,levelSets,'LineWidth',.2);
138 case 'fix'
139 [C,h] = contour(u1,u2,z,fixed_levels);
140 h.LineWidth = .1;
141 %h.LineColor = [190/255 190/255 190/255];
142 clabel(C,h,fixed_levels,'Fontsize',8,...
143 'interpreter','Latex','Color','blue');
144 end
145

146 %animate the steepest descent search
147 if length(pts(:,1))>1
148 filename = 'anim.gif';
149 for k=1:length(pts)-1
150 %draw line between each step
151 %skip case if 'full' mode or if too many points.
152 %if (opt.STEP_SIZE == -1 ||...
153 % strcmp(CONTOUR_LINES_AUTO,'limited') || ...
154 % strcmp(CONTOUR_LINES_AUTO,'auto')||length(pts)<100)
155 if strcmp(CONTOUR_LINES_AUTO,'full')||...
156 strcmp(CONTOUR_LINES_AUTO,'limited')
157 line([pts(k,1),pts(k+1,1)],[pts(k,2),pts(k+1,2)],...
158 'LineWidth',1,'Color','red');
159 else
160 line([pts(k,1),pts(k+1,1)],[pts(k,2),pts(k+1,2)],...
161 'LineWidth',1,'Color','red');
162 end
163 %end
164 %plot([pts(k,1),pts(k+1,1)],[pts(k,2),pts(k+1,2)],'.r');
165 if DO_ANIMATE
166 drawnow;
167 if DO_GIF
168 frame = getframe(1);
169 im = frame2im(frame);
170 [imind,cm] = rgb2ind(im,256);
171 if k ==1
172 imwrite(imind,cm,filename,'gif', 'Loopcount',0);
173 else
174 if mod(k,4)==0
175 imwrite(imind,cm,filename,...
176 'gif','WriteMode','append');
177 end
178 end
179 end
180 end
181 title(format_plot_title(...
182 ['Showing u^k path on top of contour plot.' ...
183 'Problem 1, part (b)'],...
184 opt,pts,k,status),'FontSize', 8);
185 end
186 end
187 title(format_plot_title(['Showing u^k path on top of'...
188 'contour plot. Problem 1, part (b)'],...
189 opt,pts,size(pts,1),status),'FontSize', 8);
190

191

192 figure('Units','pixels','position',[from_pix from_pix 400 300]);
193 pix_count = pix_count+1;
194

195 stairs(levelSets);
196 %stem(levelSets,'ro');

195

4.4. HW 4 CHAPTER 4. HWS

197 grid;
198 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
199 title(format_plot_title(...
200 'Showing $J(u^k)$ progress. Problem 1, part (b)',...
201 opt,pts,size(pts,1),status),'FontSize', 8);
202 xlabel('step number');
203 ylabel('value of objective function');
204

205 figure('Units','pixels','position',[from_pix from_pix 400 300]);
206 pix_count = pix_count+1;
207

208 stairs(gradientNormTol);
209 %stem(levelSets,'ro');
210 grid;
211 title(format_plot_title(...
212 'Showing $|\nabla J(u^k)|$ progress. Problem 1, part (b)',...
213 opt,pts,size(pts,1),status),'FontSize', 8);
214

215 xlabel('step number'); ylabel('Norm of gradient');
216 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
217

218 if DO_3D
219 figure('Units','pixels','position',...
220 [from_pix from_pix 400 300]);
221 pix_count = pix_count+1;
222

223 del = 1;
224 u1 = xlimits(1):del:xlimits(2);
225 u2 = ylimits(1):del:ylimits(2);
226 [u1,u2] = meshgrid(u1,u2);
227 z = (11-u1-u2).^2 + (1+u1+10.*u2-u1.*u2).^2;
228 h = mesh(u1,u2,z);
229

230 view(gca,-13.5,42);
231 set(h,'LineWidth',.25,'LineStyle','-','EdgeAlpha',.5);
232 shading(gca,'flat');
233 hold on;
234

235 %plot the optimal point found by Matlab
236 plot3(optimalValue(1),optimalValue(2),objectiveAtOptimal,...
237 'ws--', 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'r');
238

239 %plot the optimal point found by steepest descent
240 plot3(pts(end,1),pts(end,2),levelSets(end),...
241 'ws--', 'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'b');
242

243 %plot the starting point
244 plot3(pts(1,1),pts(1,2),levelSets(1),...
245 'ws--', 'MarkerEdgeColor', 'k', 'MarkerFaceColor', 'k');
246

247 if size(pts,1)>1
248 for k = 1:length(pts)-1
249 %draw line between each step
250 line([pts(k,1),pts(k+1,1)],[pts(k+1,2),pts(k+1,2)],...
251 [levelSets(k),levelSets(k+1)],'LineWidth',1);
252 drawnow;
253 end
254 end
255 xlabel('u_1');ylabel('u_2');
256 zlabel('objective function $J(u_1,u_2)$');
257

258 title(format_plot_title(...
259 '3D mesh view of the search performed. Problem 1, part (b)',...

196

4.4. HW 4 CHAPTER 4. HWS

260 opt,pts,size(pts,1),status),'FontSize', 8);
261

262 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
263 end
264 end
265

266 %-------------------------
267 %Evaluate J(u) at u
268 function f = objectiveFunc(u)
269 x = u(1);
270 y = u(2);
271 %f = 3 + (x - 1.5*y)^2 + (y - 2)^2;
272 f = (11-x-y)^2 + (1+x+10*y-x*y)^2;
273 end
274

275 %---------------------
276 %Evaluate grad(J(u)) at u
277 function g = gradientFunc(u)
278 x = u(1);
279 y = u(2);
280 %g =[2*(x-1.5*y);2*(x-1.5*y)*(-1.5)+2*(y-2)];
281 g = [-2*(11-x-y)+2*(1+x+10*y-x*y)*(1-y); ...
282 -2*(11-x-y)+2*(1+x+10*y-x*y)*(10-x)];
283 end
284 %---------------------------
285 %set title
286 function formatted_title = format_plot_title(main_title,opt,pts,k,status)
287

288 formatted_title = {sprintf('\\makebox[5in][c]{%s}',main_title),...
289 sprintf('\\makebox[5in][c]{$u^0=[%4.3f,%4.3f]$, step [$%2.2f$], $J(u)=%3.3f$, iterations [$%d$]}',...
290 opt.u(1),opt.u(2),opt.STEP_SIZE,...
291 norm(opt.objectiveFunc(pts(k,:))),k),...
292 sprintf('\\makebox[5in][c]{convergence criteria $| \\nabla(J(u)) | \\leq %1.3f $}',...
293 opt.gradientNormTol),...
294 sprintf('\\makebox[5in][c]{%s}',status)};
295 end
296

297 %---------------------
298 %Evaluate Hessian(J(u)) at u
299 function g = hessian_func(u)
300 x = u(1);
301 y = u(2);
302 %g = [2,-3;-3,13/2];
303

304 g =[2*(y - 1)^2 + 2, 2*(x - 10)*(y - 1) - 20*y - 2*x + 2*x*y;
305 2*(x - 10)*(y - 1) - 20*y - 2*x + 2*x*y,2*(x - 10)^2 + 2];
306 end� �

4.4.3.5 Problem 2 contour� �
1 function nma_HW4_problem_2_contour()
2 %Plots a contour of
3 %
4 % f(u) = 100(u2-u1^2)^2 + (1-u1)^2
5 %
6 % over range u1=-2.5..2.5
7 % Matlab 2015a
8 % by Nasser M. Abbasi
9

10

11 reset(0); close all; clear;
12 k=0;
13 myTitle = '$$100(u_2 - u_1^2)^2 +(1- u_1)^2$$';

197

4.4. HW 4 CHAPTER 4. HWS

14 makeContour(-2.5,2.5,-2.5,2.5,[1 10 50 100 200 300 �...
15 500 1000 2000 3000],myTitle);
16 k=k+1; saveas(gcf, sprintf('%d',k), 'pdf');
17 makeContour(-1,1.5,-1,2,[0.5 1 5 15 30 50 100 200 300 400 500],...
18 myTitle);
19 k=k+1; saveas(gcf, sprintf('%d',k), 'pdf');
20 makeContour(0.2,1.5,-0.5,2,[0.5 2.5 5 10 20 35 50 100 200 300],...
21 myTitle);
22 k=k+1; saveas(gcf, sprintf('%d',k), 'pdf');
23 makeContour(0.4,1.1,0,1.5,[0.2 0.3 0.5 2.5 5 10 20 30 50 ...
24 75 100 150 200],myTitle);
25 k=k+1; saveas(gcf, sprintf('%d',k), 'pdf');
26 makeContour(0.8,1.1,0.5,1.1,[0.1 0.2 0.3 0.5 1 2 3 ...
27 4 8 12 20],myTitle);
28 k=k+1; saveas(gcf, sprintf('%d',k), 'pdf');
29 makeContour(0.9,1.1,0.9,1.1,[0.01 0.05 0.1 0.2 ...
30 0.3 0.5 1 1.5 2 3],myTitle);
31 k=k+1; saveas(gcf, sprintf('%d',k), 'pdf');
32

33 figure;
34 [u1,u2,z] = makeContourData(0.3,[-2,2],[-2,2]);
35 surf(u1,u2,z);
36 colormap(hsv);
37 view([-156.5,42]);
38

39 hold on;
40 v=[10 100 200 300 500];
41 [C,h] = contour(u1,u2,z,v);
42 clabel(C,h,v,'Fontsize',10,'interpreter','Latex','Color','red');
43 setMyLabels('$$u_1$$','$$u_2$$','$$J(u_1,u_2)$$',...
44 {'\makebox[4in][c]{Labeled 3D over contour view}',...
45 sprintf('\\makebox[4in][c]{%s}',myTitle)})
46 k=k+1; saveas(gcf, sprintf('%d',k), 'pdf');
47 end
48

49 %------------
50 %helper function to set plot attributes.
51 function setMyLabels(varargin)
52

53 myXlabel = varargin{1};
54 myYlabel = varargin{2};
55 if nargin ==4
56 myZlabel = varargin{3};
57 end
58 myTitle = varargin{end};
59 h = get(gca,'xlabel');
60 set(h,'string',myXlabel,'fontsize',10,'interpreter','Latex') ;
61

62 h = get(gca,'ylabel');
63 set(h,'string',myYlabel,'fontsize',10,'interpreter','Latex');
64

65 if nargin ==4
66 h = get(gca,'zlabel');
67 set(h,'string',myZlabel,'fontsize',10,'interpreter','Latex');
68 end
69

70 h = get(gca,'title');
71 set(h,'string',myTitle,'fontsize',10,'interpreter','Latex',...
72 'HorizontalAlignment','center') ;
73

74 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
75 end
76

198

4.4. HW 4 CHAPTER 4. HWS

77 %------------------
78 %helper function to generate Contour data
79 function [u1,u2,z] = makeContourData(del,xlimits,ylimits)
80

81 u1 = xlimits(1):del:xlimits(2);
82 u2 = ylimits(1):del:ylimits(2);
83 [u1,u2] = meshgrid(u1,u2);
84 z = 100*(u2-u1.^2).^2 + (1-u1).^2;
85 end
86

87

88 %------------------
89 %helper function to generate Contour data
90 function [u1,u2,z] = makeContour(xMin,xMax,yMin,yMax,v,myTitle)
91

92 figure();
93 [u1,u2,z] = makeContourData(0.05,[xMin,xMax],[yMin,yMax]);
94 [C,h] = contour(u1,u2,z,v); grid;
95 clabel(C,h,v,'Fontsize',8,'interpreter','Latex','Color','red');
96 setMyLabels('$$u_1$$','$$u_2$$',...
97 {'\makebox[4in][c]{contour plot}',...
98 sprintf('\\makebox[4in][c]{%s}',myTitle)});
99 end� �

4.4.3.6 Problem 2 part a� �
1 function nma_HW4_problem_2_part_a()
2 %finds the min value of
3 %
4 % f(u) = 100(u2-u1^2)^2 + (1-u1)^2
5 %
6 % over range u1=-2.5..2.5
7 %
8 % This file is only the driver for function
9 % nma_steepest_descent.m Solves part (a) of problem 2
10 %
11 % ECE 719, SPring 2016
12 % Matlab 2015a
13 %Nasser M. Abbasi
14

15 if(~isdeployed)
16 baseFolder = fileparts(which(mfilename));
17 cd(baseFolder);
18 end
19

20 close all;
21 reset(0);
22 set(groot,'defaulttextinterpreter','Latex');
23 set(groot, 'defaultAxesTickLabelInterpreter','Latex');
24 set(groot, 'defaultLegendInterpreter','Latex');
25 from_pix = 100;
26 pix_count = 1;
27 %paramters, change as needed
28 % 'conjugate gradient'
29 METHOD = 'steepest descent'; %'steepest descent';
30 DO_GUI = false; %set to true to get input starting point GUI
31 DO_ANIMATE = true; %set to true to see animation of the search
32 DO_GIF = false; %set to true to make animation gif
33 %xlimits = [0 20]; %x limits, for plotting, change as needed
34 %ylimits = [-5 15]; %y limits, for plotting, change as needed
35 xlimits = [-2.5 2.5]; %x limits, for plotting, change
36 ylimits = [-2.5 2.5]; %y limits, for plotting, change
37 del = 0.01; %grid size, used for making meshgrid

199

4.4. HW 4 CHAPTER 4. HWS

38 CONTOUR_LINES_AUTO = 'fix';
39 % set to 'auto', to see matlab contour lines
40 % set to 'full' to see each step level set
41 % set to 'limited' to see every other level
42 % set to 'fix' to use pre-specificed
43 % set to 'full0', to see each level, no labels
44

45 %level set for 'fix' option
46 vFixed = [.5 10 50 100 200 300 1000 2000 3000];
47 %---
48 %These are the options struct used by call to
49 %nma_steepestDescentPoints() try [-2,.8]
50 opt.u = [1.828;-1.878]; %starting guess x-coord
51 opt.MAX_ITER = 10^6; %maximum iterations allowed
52 opt.STEP_SIZE = -1; %step size. set to -1 for optimal step
53 opt.objectiveFunc = @objectiveFunc; %see function definition
54 opt.gradientFunc = @gradientFunc; %see function definition
55 opt.hessian = @hessian_func; %see function definition
56 opt.gradientNormTol = 0.01; %used to determine when converged
57 opt.accumulate = true;
58 opt.stop_on_oscillation = false;
59

60 %--
61 %data
62 u1 = xlimits(1):del:xlimits(2);
63 u2 = ylimits(1):del:ylimits(2);
64 [u1,u2] = meshgrid(u1,u2);
65 z = 100*(u2-u1.^2).^2 + (1-u1).^2;
66

67 figure('Units','pixels','position',[from_pix from_pix 400 300]);
68 pix_count = pix_count+1;
69

70 if DO_GUI %check if GUI input is asked for, if so, wait for user
71 plot(0,0);
72 xlim(xlimits); ylim(ylimits);
73 hold on;
74 [x,y] = ginput(1);
75 opt.u=[x;y];
76 end
77

78 %mark location of starting point
79 %t = text(0.8*opt.x,1.1*opt.y,sprintf('[%2.1f,%2.1f]',opt.x,opt.y));
80 %t.FontSize = 8;
81 %t.Color = 'red';
82

83 %Find the minumum using Matlab build-in, in order to compare with
84 optimalValue = fminsearch(opt.objectiveFunc, opt.u);
85 objectiveAtOptimal = objectiveFunc(optimalValue);
86

87 %mark location of minimum found by fminsearch on plot
88 %This min, can be different that one converged to by steepest
89 %descent! so we also plot the converged to value found
90 hold on;
91 plot(optimalValue(1),optimalValue(2),'*r')
92 plot(opt.u(1),opt.u(2),'or'); %starting point
93 xlim(xlimits); ylim(ylimits);
94 %grid;
95 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
96 if strcmp(METHOD,'steepest descent')
97 [status , pts,levelSets, gradientNormTol,steps] = �...
98 nma_steepest_descent(opt);
99 else
100 [status,pts,levelSets, gradientNormTol,steps] = ...

200

4.4. HW 4 CHAPTER 4. HWS

101 nma_fletcher_reeves(opt);
102 end
103

104 %plot the value found by steepest descent
105 %plot(pts(end,1),pts(end,2),'ok');
106

107 %use output from above call to make the plots
108 switch CONTOUR_LINES_AUTO
109 case 'auto',
110 [C,h] = contour(u1,u2,z); %,'ShowText','on');
111 clabel(C,h,'Fontsize',8,'interpreter','Latex','Color','red');
112

113 case 'limited',
114 lev = round(length(levelSets)/20);
115 [C,h] = contour(u1,u2,z,levelSets(1:lev:end),...
116 'Fill','off','ShowText','off');
117 %clabel(C,h); %,'Fontsize',8,'interpreter',...
118 %'Latex','Color','red');
119 case 'full'
120 [C,h] = contour(u1,u2,z,levelSets); %,'ShowText','on');
121 clabel(C,h,levelSets,'Fontsize',8,...
122 'interpreter','Latex','Color','red');
123 case 'full0'
124 [C,h] = contour(u1,u2,z,levelSets); %,'ShowText','on');
125 case 'fix'
126 [C,h] = contour(u1,u2,z,vFixed);
127 h.LineWidth = .1;
128 h.LineColor = [190/255 190/255 190/255];
129 h.Fill='off';
130 clabel(C,h,vFixed,'Fontsize',8,...
131 'interpreter','Latex','Color','blue');
132 end
133 %animate the steepest descent search
134 hold on;
135 if length(pts(:,1))>1
136 filename = 'anim.gif';
137 for k=1:length(pts)-1
138 %draw line between each step
139 %if (opt.STEP_SIZE == -1 || ...
140 %strcmp(CONTOUR_LINES_AUTO,'limited') || ...
141 % strcmp(CONTOUR_LINES_AUTO,'auto')||length(pts)<100)
142 % line([pts(k,1),pts(k+1,1)],[pts(k,2),pts(k+1,2)],...
143 %'LineWidth',1');
144 %end
145 plot([pts(k,1),pts(k+1,1)],[pts(k,2),pts(k+1,2)],'-r');
146 %plot(pts(k,1),pts(k,2),'.');
147 if DO_ANIMATE
148 drawnow;
149 if DO_GIF
150 frame = getframe(1);
151 im = frame2im(frame);
152 [imind,cm] = rgb2ind(im,256);
153 if k ==1
154 imwrite(imind,cm,filename,'gif', 'Loopcount',0);
155 else
156 if mod(k,2)==0
157 imwrite(imind,cm,filename,'gif',...
158 'WriteMode','append');
159 end
160 end
161 end
162 end
163 if opt.STEP_SIZE==-1,

201

4.4. HW 4 CHAPTER 4. HWS

164 title(sprintf(...
165 'starting from [%4.3f,%4.3f], optimal step. f(u)=[%3.3f], step [%d], tolerance[%2.3f]',...
166 opt.u(1),opt.u(2),norm(opt.objectiveFunc(pts(k,:))),...
167 k,opt.gradientNormTol),...
168 'FontSize', 8);
169 else
170 title(sprintf(...
171 'From [%2.1f,%2.1f], step h[%2.2f], f(u) [%3.3f], step [%d], tolerance[%2.3f]',...
172 opt.u(1),opt.u(2),opt.STEP_SIZE ,...
173 norm(opt.objectiveFunc(pts(k,:))),k,opt.gradientNormTol),...
174 'FontSize', 8);
175 end
176 end
177 end
178

179 figure('Units','pixels','position',...
180 [from_pix*pix_count from_pix 400 300]);
181 pix_count = pix_count+1;
182

183 stairs(levelSets);
184 grid;
185 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
186 title({'Showing value of objective function at each step',...
187 sprintf('Step size [%3.3f], number of steps needed [%d]',...
188 opt.STEP_SIZE,length(pts)-1),...
189 sprintf('convergence tolerance [%2.3f], starting point [%2.1f,%2.1f]',...
190 opt.gradientNormTol,opt.u(1),opt.u(2))},...
191 'FontSize', 8);
192 xlabel('step number');
193 ylabel('value of objective function');
194

195

196 figure('Units','pixels','position',...
197 [from_pix*pix_count from_pix 400 300]);
198 pix_count = pix_count+1;
199

200 stem(gradientNormTol,'.');
201 grid;
202 title({'Showing gradient Norm at each step',...
203 sprintf('Step size [%3.3f], number of steps needed [%d]',...
204 opt.STEP_SIZE,length(pts)-1),...
205 sprintf('tolerance for convergence [%2.3f], starting point [%2.1f,%2.1f]',...
206 opt.gradientNormTol,opt.u(1),opt.u(2))},'FontSize', 8);
207

208 xlabel('step number'); ylabel('Norm of gradient');
209 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
210

211 if opt.STEP_SIZE == -1
212 figure('Units','pixels','position',...
213 [from_pix*pix_count from_pix 400 300]);
214 pix_count = pix_count+1;
215 stem(steps,'.');
216 grid;
217 title({'Showing size of each optimal step found using golden section',...
218 sprintf('line search at each iteration. number of steps[%d]',...
219 length(pts)-1),...
220 sprintf('tolerance for convergence [%2.3f], starting point [%2.1f,%2.1f]',...
221 opt.gradientNormTol,opt.u(1),opt.u(2))},'FontSize', 8);
222 xlabel('iteration number'); ylabel('optimal step size');
223 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
224 end
225

226 end

202

4.4. HW 4 CHAPTER 4. HWS

227

228 %-------------------------
229 %Evaluate J(u) at u
230 function f = objectiveFunc(u)
231 x = u(1);
232 y = u(2);
233 f = 100*(y-x.^2).^2 + (1-x).^2;
234 end
235

236 %---------------------
237 %Evaluate grad(J(u)) at u
238 function g = gradientFunc(u)
239 x = u(1);
240 y = u(2);
241 g = [200*(y-x.^2)*(-2*x)-2*(1-x);...
242 200*(y-x.^2)];
243 end
244

245 %---------------------
246 %Evaluate Hessian(J(u)) at u
247 function g = hessian_func(u)
248 x = u(1);
249 y = u(2);
250 g = [1200*x^2 - 400*y + 2, -400*x;
251 -400*x, 200];
252 end� �

4.4.3.7 Problem 2 part b� �
1 function nma_HW4_problem_2_part_b(u)
2 %finds the min value of
3 %
4 % f(u) = sum i=1..N-1 100(u(i+1)-u(i)^2)^2 + (1-u(i))^2
5 %
6 % for any N.
7 %
8 % over range ui=-2.5..2.5
9 %
10 % Solves part (b) of problem 2
11 %
12 % ECE 719, SPring 2016
13 % Matlab 2015a
14 %Nasser M. Abbasi
15 %
16 % INPUT:
17 % u: vector N by 1, represent starting point u_0. Example call
18 % nma_HW4_problem_2_part_b([-2;-2;-2])
19

20 %These are the options struct used by call to
21 %nma_steepest_descent_multi()
22 close all;
23 opt.u = u; %starting guess x-coordinate
24 opt.MAX_ITER = 1*10^6; %maximum iterations allowed
25 opt.STEP_SIZE = 0.01; %set to -1 to optimal step
26 opt.objectiveFunc = @objectiveFunc; %see function definition
27 opt.gradientFunc = @gradientFunc; %see function definition
28 opt.gradientNormTol = 0.0001; %used to determine when converged
29 opt.accumulate = false;
30

31 %Find the minumum using Matlab build-in, in order
32 %to compare with in plot optimalValue =
33 %fminsearch(opt.objectiveFunc, opt.u);
34

203

4.4. HW 4 CHAPTER 4. HWS

35 format long g;
36 tic;
37 [status,pts,levelSets, gradientNormTol,steps] = �...
38 nma_steepest_descent(opt);
39 time_used = toc;
40 fprintf('\nCPU time %3.6f\n',time_used);
41

42 switch status
43 case 0, status = ...
44 'successfull completion. Converged before maximum iterations';
45 case 1, status = ...
46 'failed to converge before maximum iterations due to oscillation';
47 case 2, status = ...
48 'failed to converge before maximum iterations';
49 end
50

51 fprintf('%s\n',status);
52

53 figure();
54 stem(levelSets,'.'); title('J(u)');
55 figure();
56 stem(steps,'.'); title('step size');
57 format short;
58 fprintf('Number of coordinates used %d\n',size(opt.u,1));
59 fprintf('optimal point found is\n'); disp(pts(end,:));
60 if opt.accumulate
61 fprintf('\nNumber of steps used [%d]',length(steps));
62 else
63 fprintf('\nNumber of steps used [%d]',steps);
64 end
65 fprintf('\nJ(u) at optimal [%3.6f]',levelSets(end));
66 fprintf('\n**** done *******\n');
67

68

69 end
70

71 %-------------------------
72 %Evaluate J(u) at u
73 function f = objectiveFunc(u)
74 u=u(:);
75 N = size(u,1);
76 f = 0;
77 for i = 1:N-1
78 f = f + 100*(u(i+1)-u(i)^2)^2 + (1-u(i))^2;
79 end
80 end
81

82 %---------------------
83 %Evaluate grad(J(u)) at u
84 function g = gradientFunc(u)
85 u = u(:);
86 N = size(u,1);
87 g = zeros(N,1);
88 for i = 1:N
89 if i==1 || i==N
90 if i==1
91 g(i)=-400*(u(i+1)-u(i)^2)*u(i) - 2*(1-u(i));
92 else
93 g(i)=200*(u(i)-u(i-1)^2);
94 end
95 else
96 g(i) = 200*(u(i)-u(i-1)^2)-...
97 400*(u(i+1)-u(i)^2)*u(i)-2*(1-u(i));

204

4.4. HW 4 CHAPTER 4. HWS

98 end
99 end
100 end� �

4.4.3.8 Problem 2 part b CPU time program� �
1 function nma_HW4_problem_2_part_b_CPU()
2 %Does CPU testing on problem 2 by calling
3 %nma_HW4_problem_2_part_b() on larger and larger N and
4 %recording the CPU time used.
5 %
6 % ECE 719, Spring 2016
7 % Matlab 2015a
8 %Nasser M. Abbasi
9 clear; close all;
10

11 opt.STEP_SIZE = 0.01; %step size. set to -1 to use optimal
12 save_file = 'fixed.mat';
13 N = 10:20:1000;
14 data = zeros(length(N),4);
15 opt.MAX_ITER = 1*10^6; %maximum iterations allowed
16

17 opt.objectiveFunc = @objectiveFunc; %see function definition
18 opt.gradientFunc = @gradientFunc; %see function definition
19 opt.gradientNormTol = 0.0001; %used to determine when converged
20 opt.accumulate = false;
21

22 for i=1:length(N)
23 opt.u = repmat(-2,N(i),1); %starting guess x-coordinate
24 tic;
25 [status,~,levelSets, ~,number_of_steps_used] = �...
26 nma_steepest_descent(opt);
27 time_used = toc;
28 switch status
29 case 0, status = ...
30 'successfull completion. Converged before maximum iterations';
31 case 1, status = ...
32 'failed to converge before maximum iterations due to oscillation';
33 case 2, status = ...
34 'failed to converge before maximum iterations';
35 end
36 fprintf('%s\n',status);
37

38 data(i,1) = N(i);
39 data(i,2) = time_used;
40 data(i,3) = levelSets;
41 data(i,4) = number_of_steps_used;
42 fprintf('\n****Number of coordinates used %d\n',...
43 size(opt.u,1));
44 fprintf('\nCPU time %3.6f\n',time_used);
45 fprintf('\nJ(u) at optimal [%3.6f]\n',levelSets(end));
46 end
47

48 close all;
49 reset(0);
50 set(groot,'defaulttextinterpreter','Latex');
51 set(groot, 'defaultAxesTickLabelInterpreter','Latex');
52 set(groot, 'defaultLegendInterpreter','Latex');
53

54 figure();
55 plot(N,data(:,2),'ro',N,data(:,2),'-');
56 title('CPU time as N changes for fix step steepest descent');
57 xlabel('N'); ylabel('CPU time (sec)');

205

4.4. HW 4 CHAPTER 4. HWS

58 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
59

60 save(save_file,'data');
61

62 %-----------------------------
63 figure;
64 load('optimal');
65 optimal=data;
66 load('fixed')
67 fixed=data;
68 plot(optimal(:,1),optimal(:,2),'k.-')
69 hold on;
70 plot(fixed(:,1),fixed(:,2),'r.-')
71 title('Comparing CPU time, using optimal vs. fixed step')
72 xlabel('N, the number of coordinates');
73 ylabel('CPU time in seconds');
74 grid
75 end
76

77 %-------------------------
78 %Evaluate J(u) at u
79 function f = objectiveFunc(u)
80 u=u(:);
81 N = size(u,1);
82 f = 0;
83 for i = 1:N-1
84 f = f + 100*(u(i+1)-u(i)^2)^2 + (1-u(i))^2;
85 end
86 end
87

88 %---------------------
89 %Evaluate grad(J(u)) at u
90 function g = gradientFunc(u)
91 u = u(:);
92 N = size(u,1);
93 g = zeros(N,1);
94 for i = 1:N
95 if i==1 || i==N
96 if i==1
97 g(i)=-400*(u(i+1)-u(i)^2)*u(i) - 2*(1-u(i));
98 else
99 g(i)=200*(u(i)-u(i-1)^2);
100 end
101 else
102 g(i) = 200*(u(i)-u(i-1)^2)-400*(u(i+1)- ...
103 u(i)^2)*u(i)-2*(1-u(i));
104 end
105 end
106 end� �

206

4.4. HW 4 CHAPTER 4. HWS

4.4.4 HW 4 key solution

. Y I C

l - 1 W A r r p l r l r e r

/

i (u \ = (t t - u ' - u z) t + (r + 1 o t) z * t J , - t t , t J r \ z

. \ f

o . t

) t l i

\ T
(J J

) CI-r

- 2 (l l - , u ' - U ,) + 2 (t + l o t t ' t * L l t * i l , t) z \ (t - U ,)

- z (u - , t 1 , * i , t i) + z (t f r o u z l U , - / J , t 1 ,) (, - - o ,)

o.t r o Ir - !
" . i
Lv", (.'

rY)

7 . :

[,.)']rp- rr ,n , l', o\ I,,,,dc'lit' p"tr', t *.*r rl
I

iJ", .{.-,: ci sL,^1 loc^l -i,,i 14 u,?n
v

$ r - l e
' { [. ' t " i h e i e i : i . . , , o - { n s r p i , l n t l 1 , [, , h v J =

I
A n r l

' , t
i i (1 , - e ; - i - h i t

7 . , , , { l : c , l l s , c l e o r f

c t r e a o {
^ , , r l r , r

r l r t , U t > o , U t 2 C .

(o u, , , ,c" i l : .

Sa "oe i n i l ^ ^ l (u ' n ,L t , " o , r o r ; r , j , t , t l , l o . . i

S i - , , , , e r ' \ ' , ' l - , 1 { r n , , L , ' l ' o * r c o , i y : r . € { , 1 f , . r s * j d l n

O l f . n , 1
- i . . ^ d t " , * , , , n , d n t i (1 . - z S , / b r l D r r

[c s t r , , t , o ' l r u r?o] (. , t - t ^ * ' \ . . , ' g o ') x - ax ' , l ,

S n o l \ : i c 1 : s , r e E a o l r . / * J n
' 1 . - g i { r " . . r r * - { i i i

i 1 ; J ' : - i . r ' , i l ' ' r ' ! 6 ' ' ' r C i 1 c ^ r E l U n ' q t , ,

\ o , , e s l e ? s ' z € \ " c o , , r v Q , ' , e "
J . / i c \ - " r , ' ,

" i , " - 1 i . ,
J , \ i

(0 , ^ l h , n i , r , r , r (4 , b i c , j t t i i r J e . a r c t t t v ' r l ; t

{/ -,
Y J - a) r r : ' i

l ' l
I + i
L ' J

il
L,t ,*- \l

I

L

t ' \ .. i t\ J 14

I
t'-

207

4.4. HW 4 CHAPTER 4. HWS

.Note s on Ho (es
t l
H orn L uJor K

Stud evlb: dr d,.
t h e c o n t o u r 5

M on1
ncLur e oJ
tO sge the oPtt*uu'n an d

5u{ f r r ,ent c \ar t ty ; 5€ebe louJ

q, ,orK COtlAoar and"
SteeW sb Deecnt

not Capt rt (€
r {^ t Ju f f rc tenb d

5 A d d (e
[2 c , n t

the
e ba] |

tr-r ru h

1 0
u1

Wc h oue Used

S ' f e e p c l e , r e n t o l S u r , t h , n w i ' l l . { r e , l s - l e p : i e e

Ugoi . te eo l -q , r t , i i t , , " i i

)A i i 1 r = ,11 u C V : - {ua" t

[;V 11, / r ,]] l '

w }ie, q o{ i s t
' t"(

{-, *rJ .{ul siz e

T e t * i n a - [, a " r r n a d r , n t - l n a n r r l r t * o l l - \ e r " t . " o r , , , I O o o D p

o (J (u n , ,) - f [r ^ , .) I L ^ \ o t e

I i s { j * {o le r r , , *e

(o'n v en
J*,,e

S lo,^t a^rl l ,n*o, C trt t tetf i(h'r t .8

208

4.4. HW 4 CHAPTER 4. HWS

ul=5,u2 = 1O,Step Size = 0.01

of iterations = 1109

u1=12,u2 = 14,Step Size = 0.1

of iterations = 100000

u1

{ \ * - l o [o , r y ((i ,
" '^ lq ' : ' ' { h *5 r 4 € , - { h

J -
'YYto4 r at n 4 +t . t but o{ ,1r ,^ l ro* r

6 t O u v t c l - { t { v ' a i n i m { . / / n -

s,"o. l lo t I .th* J l '..e

oI _f 1".

S i n c e

:ilc p, r'{r;gr","l
r l I

J + o l c i l l q l € s

209

4.4. HW 4 CHAPTER 4. HWS

u1=12,u2 = 1O,Step Size = 1

of iterations = 1

210

4.4. HW 4 CHAPTER 4. HWS

211

4.4. HW 4 CHAPTER 4. HWS

212

4.5. HW 5 CHAPTER 4. HWS

4.5 HW 5

4.5.1 Problem 1

Barmish

ECE 719 – Homework Freudenstein

When one wishes to solve a set of nonlinear equations

fi(x) = 0; i = 1, 2, . . . , N,

one can consider an optimization problem with cost function

J(x) =
N∑

i=1
f 2

i (x)

to be minimized.

(a) Explain the relationship between the optimization problem and the
original nonlinear equation solving problem.

(b) For the two nonlinear functions of Freudenstein and Roth given by

f1(x) = x2 − x3
1 + 5x2

1 − 2x1 − 13;

f2(x) = x2 + x3
1 + x2

1 − 14x1 − 29,

generate some contours for J(x) over the interesting region described
by |x1| ≤ 10; |x2| ≤ 50.

(c) Write a program which implements the Polyak-Ribiere Algorithm (look
up the iterative procedure) including your optimal line search method to
minimize J(x) using f1 and f2 above. In reporting your results, describe
the performance of the algorithm from a variety of initial conditions x0

including some illustrative iteration pathes superimposed on the J con-
tours. Also indicate what line type of line search and stopping criterion
you used.

Figure 4.39: problem 1 description

4.5.1.1 part(a)

Let 𝑓𝑖 (𝑥) ∶ ℜ𝑛 → ℜ. We want to solve

𝑓𝑖 (𝒙) = 0 𝑖 = 1, 2,⋯𝑁 (1)

Which means finding 𝒙∗ which makes value of 𝑓𝑖 (𝒙∗) be zero. If we consider the vector 𝐹 (𝒙)
of functions 𝑓𝑖 (𝒙)

𝐹 (𝒙) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑓1 (𝒙)
𝑓2 (𝒙)
⋮

𝑓𝑁 (𝒙)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Then the square of the Euclidean norm of 𝐹 (𝒙) is

‖𝐹 (𝒙)‖2 =
𝑁
�
𝑖=1
𝑓2𝑖 (𝒙)

The minimum value of ‖𝐹 (𝒙)‖ is zero since it is a norm. Which is the same as ‖𝐹 (𝒙)‖2 = 0.
213

4.5. HW 5 CHAPTER 4. HWS

This means 𝐹 (𝒙) = 0 occurs when ‖𝐹 (𝒙)‖2 = 0. So the solution to (1) is the same 𝒙∗ as
finding the minimizer 𝒙∗ which makes ‖𝐹 (𝒙)‖2 minimum.

Therefore minimizing 𝐽 (𝑥) = ‖𝐹 (𝒙)‖2 = ∑𝑁
𝑖=1 𝑓

2
𝑖 (𝒙) will give the solution to (1). This is similar

to finding least squares solution to set of linear equations, except now the set of equations
𝐹 (𝒙) are non-linear in 𝒙.

4.5.1.2 part b

𝑓1 (𝑥) = 𝑥2 − 𝑥31 + 5𝑥21 − 2𝑥1 − 13
𝑓2 (𝑥) = 𝑥2 + 𝑥31 + 𝑥21 − 14𝑥1 − 29

Hence

𝐽 (𝑥) = 𝑓21 (𝑥) + 𝑓22 (𝑥)

= �𝑥2 − 𝑥31 + 5𝑥21 − 2𝑥1 − 13�
2
+ �𝑥2 + 𝑥31 + 𝑥21 − 14𝑥1 − 29�

2

= 2𝑥61 − 8𝑥51 + 2𝑥41 − 80𝑥31 + 12𝑥21𝑥2 + 12𝑥21 − 32𝑥1𝑥2 + 864𝑥1 + 2𝑥22 − 84𝑥2 + 1010 (1)

𝐽 (𝑥) is non-linear function. The above is the ‖𝐹 (𝒙)‖2 where now 𝐹 (𝒙) =

⎛
⎜⎜⎜⎜⎜⎝
𝑓1 (𝒙)
𝑓2 (𝒙)

⎞
⎟⎟⎟⎟⎟⎠. We will

use optimization to find the solution 𝒙 to 𝐹 (𝒙) = 0 by finding the minimizer of (1). The
solution will turn out to be

𝒙∗ = (𝑥1 = 4, 𝑥2 = 5)

At this point 𝐽 (𝑥∗) = 0 and also 𝑓1 (𝑥∗) = 0 and 𝑓2 (𝑥∗) = 0. So the above is the true solution
to 𝑓𝑖 (𝑥) = 0. But there is also another local minimum close to it located at

𝒙 = (𝑥1 = −0.8968, 𝑥2 = 11.4128)

where here 𝐽 (𝑥) = 48.98 and not zero. At this second local minimum, the corresponding
values for 𝑓𝑖 are 𝑓1 (𝒙) = 4.949 and 𝑓2 (𝒙) = −4.949. These were found by running the
conjugate gradient algorithm with Polyak-Ribiere stepping as given below.

The following is contour plot of the full range given in the problem statement, showing
there are two local minimums, one around point 𝑥1 = 4.5, 𝑥2 = 8 and another around
𝑥1 = −1.3, 𝑥2 = 10

contour plot, default setting
(x2 ! x3

1 + 5x2
1 ! 2x1 ! 13)2 + (x2 + x3

1 + x2
1 ! 14x1 ! 29)2

5080

80

20
0

20
0

200

40
0

40
0

400

40
0

70
0

700

70
0

700

70
0

10
00

1000

1000

1000

10
00

2000

2000

20
00

20
00

20
00

30
00

30
00 3000

30
00

3000

30
00

70
00

70
00

70
00

7000

70
00

10
00

0

10
00

0

100
00

10000

10
00

0

30
00

0

30
00

0
30000

30000

60
00

0
60

00
0

60000
60000

10
00

00
10

00
00

100000
100000

25
00

00
25

00
00

250000
250000

50
00

00
50

00
00

500000
500000

10
00

00
0

10
00

00
0

1000000
1000000

20
00

00
0

20
00

00
0

-10 -8 -6 -4 -2 0 2 4 6 8 10

x1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
#106

Figure 4.40: contour plot, full range

This is zoomed version of the above to show more clearly the area around the variations

214

4.5. HW 5 CHAPTER 4. HWS

contour plot, default setting
(x2 ! x3

1 + 5x2
1 ! 2x1 ! 13)2 + (x2 + x3

1 + x2
1 ! 14x1 ! 29)2

50

50

80

80

200

20
0

200 20
0

40
0

40
0

40
0

400

40
0

70
0

700

70
0

70
0

700

700

70
0

1000

10
00

1000

1000

10
00

1000

10
00

10
00

2000

2000

2000

2000

20
00

20
00

20
00

30
00

30
00

3000

30
00

3000

300
0

7000

7000

70
00

10
00

0
10000

10
00

0

-3 -2 -1 0 1 2 3 4 5

x1

-30

-20

-10

0

10

20

30

40

x
2

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
#106

Figure 4.41: contour plot, zoomed version

This is filled contour version of the above.

-lled contour plot, small region
(x2 ! x3

1 + 5x2
1 ! 2x1 ! 13)2 + (x2 + x3

1 + x2
1 ! 14x1 ! 29)2

-3 -2 -1 0 1 2 3 4 5

x1

-30

-20

-10

0

10

20

30

x
2

500

1000

1500

2000

2500

3000

Figure 4.42: contour plot, filled zoomed version

This is 3D plot of the function 𝐽(𝑥)

215

4.5. HW 5 CHAPTER 4. HWS

4
0

1000

30

2000

20 2

3000

10

x1

3D plot
(x2 ! x3

1 + 5x2
1 ! 2x1 ! 13)2 + (x2 + x3

1 + x2
1 ! 14x1 ! 29)2

x2

4000

0 0

5000

-10

6000

-20 -2
-30

Figure 4.43: contour plot, filled zoomed version

4.5.1.3 part(c)

A Matlab program is given in the appendix which implements Polyalk-Ribiere (and it also
supports Fletcher-Reeves). The result is given below, with discussion following each result.
One result also shows an interesting di�erence found between Polyalk-Ribiere and Fletcher-
Reeves when starting from some random found 𝑢0 point. In all runs, Matlab fminsearch
was also used to compare the minimizer found. In some cases, this algorithm found the
same minimum as Matlab’s fminsearch, and in other cases it did not.

The result shows each point 𝑢𝑘 visited with the value of 𝛽𝑘 and 𝛼𝑘 found, and the value of
the objective function and the gradient at each step.

For the line search, golden section search was used to find 𝛼𝑘 with maximum step size
𝐻max = 1. The stopping criteria used for all these runs is |∇ 𝐽 (𝑢)| ≤ 0.001.

4.5.1.3.1 The algorithm The following is the outline of general algorithm expressed
as pseudo code.

For the line search, golden section search was used to find αk with maximum step size Hmax = 1. The
stopping criteria used for all these runs is |∇J (u)| ≤ 0.001.

The algorithm

The following is the outline of general algorithm expressed as pseudo code.

Algorithm 1 Conjugate gradient using Polyalk-Ribiere or Fletcher-Reeves

1: procedure C O N J U G AT E _ G R A D I E N T

2: . Initialization
3: ε← minimum convergence limit on ‖∇J(u)‖
4: k ← 0
5: u← u0

6: max_iterations← max iterations allowed
7: gcurrent ← ∇J(u)
8: vcurrent ← −gcurrent

9: while ‖gcurrent‖ > ε do
10: . do line search, using golden section, maximum step size is one
11: α← minα J̃(α) = J(u+ α vcurrent)
12: gprevious ← gcurrent
13: u← u+ αvcurrent
14: gcurrent ← ∇J(u)
15: if Fletcher-Reeves then
16: β ← ‖gcurrent‖2

‖gprevious‖2
17: else if Polyalk-Ribiere then
18: β ← gTcurrent(gcurrent−gprevious)

‖gprevious‖2
19: end if
20: vcurrent ← −gcurrent + β vcurrent
21: end while
22: end procedure

Test 1 starting from (−5.49, 23.05)

7

Figure 4.44: Conjugate gradient using Polyalk-Ribiere or Fletcher-Reeves

216

4.5. HW 5 CHAPTER 4. HWS

-6 -4 -2 0 2 4

-10

0

10

20

30

40

Showing uk path on top of contour plot. Problem 1, part (c)
u0 = [!5:59140; 23:05447], J(u) = 48:984, iterations [8]

convergence criteria jr(J(u))j 5 0:001
successfull completion. Converged before maximum iterations

50

50

80

80

20
0

200

200

20
0

40
0

40
0

40
0

40
0

400

70
0

70
0

70
0

70
0

700

700

70
0

10
00

1000

10
00

1000

10
00

2000

2000

2000

20
00

30
00

3000

30
00

70
00

10
00

0

30
00

0

60
00

0

10
00

00

Figure 4.45: test case 1, problem 1, part c

4.5.1.3.2 Test 1 starting from (−5.49, 23.05) Matlab fminsearch found 𝐽(−0.8968, 11.4128) =
48.9843. This program found 𝐽(−0.8968, 11.4128) = 48.9843. since 𝑢∗ = (4, 5) we see that the
search did not find 𝑢∗ but found the other local minimum near it, since the search was
started from a point closer to the second one. Also we see Matlab fminsearch result
matched our result. So this is good. It took 8 steps. We also notice that ∇𝐽 �𝑥𝑘� increased at
one step (step 3) during the search. This is indication that this is not a quadratic function
(which we already know this), but ∇𝐽 �𝑥𝑘� started to decrease again after that.

𝑘 𝑥𝑘 𝐽 �𝑥𝑘� �∇𝐽 �𝑥𝑘�� 𝛼𝑘 𝛽𝑘
1 (−5.59, 23.05) 129231.19 116683.427 0.000046 −0.000003
2 (−0.20, 23.028) 122.99 15.12 0.273 86.62
3 (−0.2227, 18.9) 91.83 140.56 0.003958 0.3535
4 (−0.8, 13.72) 52.15 39.059 0.00394 0.4082
5 (−0.855, 11.885) 49.16 12.1855 0.00236 0.05
6 (−0.896, 11.436) 48.98 0.583 0.00238 0.0094
7 (−0.8968, 11.4129) 48.98 0.00545 0.002095 0.00123
8 (−0.8968, 11.4128) 48.98 0.000007 0.000000 0.000000

4.5.1.3.3 Test 2 starting from (5.8, 35.89)

217

4.5. HW 5 CHAPTER 4. HWS

-3 -2 -1 0 1 2 3 4 5 6

-30

-20

-10

0

10

20

30

40

Showing uk path on top of contour plot. Problem 1, part (c)
u0 = [5:80645; 35:89494], J(u) = 48:984, iterations [9]

convergence criteria jr(J(u))j 5 0:001
successfull completion. Converged before maximum iterations

5080
80

20
0

20
0

200

40
0

400

40
0

400

40
0

700

70
0

70
0 70
0

700

10
00

100
0

1000

1000

100
0

10
00

2000

2000

20
00

20
00

30
00

30
00

3000
3000

70
00

70
00

7000

10
00
0

10
00
0

10000

30000

60000

Figure 4.46: test case 2, problem 1, part c

Matlab fminsearch found 𝐽(−0.8968, 11.4128) = 48.9843. This program found 𝐽(−0.8968, 11.4128) =
48.9843. since 𝑢∗ = (4, 5) we see again that the search did not find 𝑢∗ but found the other
local minimum. Also we see Matlab fminsearch result matched our result. So this is good.
It took 9 steps. We also notice that ∇𝐽 �𝑥𝑘� increased at one step (step 3) during the search.

𝑘 𝑥𝑘 𝐽 �𝑥𝑘� �∇𝐽 �𝑥𝑘�� 𝛼𝑘 𝛽𝑘
1 (5.806, 35.895) 24303.88 32066.72 0.000170 0.000011
2 (0.353, 35.847) 520.53 49.582 0.2299 36.96
3 (0.435, 24.448) 238.41 301.265 0.00356 0.28
4 (−0.59, 17.92) 71.95 69.317 0.0079 1.3363
5 (−0.686, 13.789) 53.18 52.828 0.0028 0.1788
6 (−0.883, 11.7991) 49.08 8.1969 0.00295 0.06401
7 (−0.895, 11.4284) 48.98 0.4961 0.00193 0.00629
8 (−0.896801, 11.412913) 48.98 0.003106 0.002634 0.000101
9 (−0.896805, 11.412779) 48.98 0.000000 0.000000 0.000000

-4 -3 -2 -1 0 1 2 3 4 5 6

-30

-20

-10

0

10

20

30

40

Showing uk path on top of contour plot. Problem 1, part (c)
u0 = [5:59140;!19:55253], J(u) = 48:984, iterations [9]

convergence criteria jr(J(u))j 5 0:001
successfull completion. Converged before maximum iterations

5080

80

20
0

20
0

200

40
0

400

40
0

400

40
0

700

70
0

70
0

700

700

10
00

10
00

1000

100
0

100
0

10
00

2000

20
00

2000

20
00

20
00

20
00

30
00

30
00

3000

30
00

3000

70
00

70
00

7000

70
00

10
00
0

10
00
0

10000

10
00
0

30
00
0

30000
30000

Figure 4.47: test case 3, problem 1, part c

4.5.1.3.4 Test 3 starting from (5.59, −19.55) Matlab fminsearch found the true mini-
mum 𝐽(4, 5) = 0. This program did not do as well, and went for the second local minimum
at 𝐽(−0.8968, 11.4128) = 48.9843, which has the corresponding solution 𝑓1(𝑥) = 4.9490, 𝑓2(𝑥) =
−4.9490.

218

4.5. HW 5 CHAPTER 4. HWS

One surprising thing to note, is that Matlab fminsearch uses simplex method according to
the help. But this problem is not linear. It turns out that Matlab fminsearch uses a modified
version of simplex method, called the Nelder-Mead simplex (direct search). It seems to do
better than algorithm implemented in this problem. But in the next test case, we will see
that this algorithm evens the score with Matlab’s and in the next test case it is we who will
do better.

It took 9 steps. Again as before, ∇𝐽 �𝑥𝑘� increased at one step during the search (at step 3
also).

𝑘 𝑥𝑘 𝐽 �𝑥𝑘� �∇𝐽 �𝑥𝑘�� 𝛼𝑘 𝛽𝑘
1 (5.5914, −19.553) 10150.82 19380.2 0.000397 −0.000023
2 (−2.107, −19.566) 585.39 41.5373 0.2127 423.717
3 (−2.142, −10.731) 401.83 854.79 0.001138 −0.213
4 (−1.247, 9.303) 79.34 264.025 0.000619 −0.14389
5 (−1.1875, 6.974) 57.85 46.1832 0.00822 −0.2476
6 (−0.9218, 11.436) 49.30 24.1288 0.001065 −0.02258
7 (−0.9046, 11.29) 48.99 0.56707 0.0389 −0.0926
8 (−0.8969, 11.4131) 48.98 0.05981 0.001129 −0.000415
9 (−0.896806, 11.412772) 48.98 0.000025 0.000000 0.000000

-3 -2 -1 0 1 2 3 4 5 6 7

-30

-20

-10

0

10

20

30

Showing uk path on top of contour plot. Problem 1, part (c)
u0 = [7:43472; 16:05058], J(u) = 0:000, iterations [6]

convergence criteria jr(J(u))j 5 0:001
successfull completion. Converged before maximum iterations

50 80
80

20
0

20
0

200

20
0

40
0

400

40
0

400

40
0

70
0

70
0

70
0

70
0

700

700

70
0

10
00

10
00

1000

1000

1000

10
00

10
00

2000

20
00

200020
00

20
0030

00

3000

3000

30
00

7000
10000

30000

60000

100000

Figure 4.48: test case 4, problem 1, part c

4.5.1.3.5 Test 4 starting from (7.43472, 16.05058) Matlab fminsearch here did not find
the true minimum 𝐽(4, 5) = 0 while this algorithm did.

It took 6 steps only. Again as before, ∇𝐽 �𝑥𝑘� increased at one step during the search (at
step 2).

𝑘 𝑥𝑘 𝐽 �𝑥𝑘� �∇𝐽 �𝑥𝑘�� 𝛼𝑘 𝛽𝑘
1 (7.435, 16.05) 143368.39 143787.679 0.000025 0.000002
2 (3.78, 16.04) 172.57 30.799 0.2696 200.218
3 (3.84, 7.74) 44.74 435.9738 0.000433 0.00797
4 (3.999778, 5.066770) 0.01 3.455556 0.001349 0.009287
5 (3.999989, 5.000154) 0.00 0.031875 0.000336 −0.000038
6 (4.000000, 5.000000) 0.00 0.000001 0.000000 0.000000

4.5.1.3.6 Test 5 starting from (3.809, −8.46)

219

4.5. HW 5 CHAPTER 4. HWS

-2 -1 0 1 2 3 4 5

-15

-10

-5

0

5

10

15

20

25

Showing uk path on top of contour plot. Problem 1, part (c)
u0 = [3:80952;!8:46304], J(u) = 0:000, iterations [6]

convergence criteria jr(J(u))j 5 0:001
successfull completion. Converged before maximum iterations

50

50
80

80

80
80

20
0

20
0

20
0

200

20
0

40
0

40
0

40
0

400

400

40
0

700

70
0

70
0

70
0

700

700

700

70
0

10
00

1000

1000

1000

1000

10
00

2000

20002000

20
00

20
00

30
00

3000

3000

Figure 4.49: test case 5, problem 1, part c

Here both Matlab fminsearch and this algorithm, found the true minimum.

It took 6 steps only. Again as before, ∇𝐽 �𝑥𝑘� increased at one step during the search (at
step 3).

𝑘 𝑥𝑘 𝐽 �𝑥𝑘� �∇𝐽 �𝑥𝑘�� 𝛼𝑘 𝛽𝑘
1 (3.809524, −8.463035) 580.29 1386.28 0.000285 0.000784
2 (4.204487, −8.444322) 267.86 40.2297 0.33335 14.037757
3 (3.958554, 4.969723) 3.20 150.186235 0.000278 −0.009224
4 (3.997429, 5.127561) 0.02 1.447732 0.022782 0.258685
5 (4.000078, 5.000400) 0.00 0.316225 0.000273 0.000175
6 (4.000000, 5.000004) 0.00 0.000057 0.000000 0.000000

4.5.1.3.7 Test 6 (�rst strange one) starting from (6.63594, −14.29961) This test case
and the second one are pathological cases, in the sense that this algorithm did find the
true minimum, but the path taken headed first to the second local minimum and was very
close to it, before turning and going to the true minimum at (4, −5). At this time, I am
not able to explain this and more time needed to investigate. It does however find the
true minimum eventually, so this is good result even if the path taken looks very strange
compared to all the other tests above. The main di�erence between this test case and the
last ones, is that here the objective function 𝐽 (𝑥) increased at one point during the search
(at step 6 as shown below).

220

4.5. HW 5 CHAPTER 4. HWS

-3 -2 -1 0 1 2 3 4 5 6 7

-40

-30

-20

-10

0

10

20

30

Showing uk path on top of contour plot. Problem 1, part (c)
u0 = [6:63594;!14:29961], J(u) = 0:000, iterations [14]

convergence criteria jr(J(u))j 5 0:001
successfull completion. Converged before maximum iterations

5080
80

20
0

20
0

200

40
0

400

40
0

400

40
0

700

70
0

70
0

700

700

10
00

1000

10
00

1000

10
00

2000

20
00

2000

20
00

20
00

30
00

3000

30
00

3000

30
00 7000

70
00

7000

70
00

100
00

10000

10
00

0

30000
30000

60000
60000

100000
100000

Figure 4.50: test case 6, Polyak-Ribiere, problem 1, part c

Here both Matlab fminsearch and this algorithm, found the true minimum.

It took 14 steps. Here ∇𝐽 �𝑥𝑘� increased and decreased more than one time during the
search.

𝑘 𝑥𝑘 𝐽 �𝑥𝑘� �∇𝐽 �𝑥𝑘�� 𝛼𝑘 𝛽𝑘
1 (6.63594, −14.29961) 52701.77 67823.57 0.000127 0.000002

2 (−1.970382, −14.321801) 393.95 31.646 0.221630 385.651

3 (−1.991739, −7.308131) 282.95 621.5254 0.001424 −0.217509

4 (−1.159618, 10.073263) 67.36 199.4501 0.000696 −0.132737

5 (−1.109423, 8.218728) 53.56 31.5552 0.009140 −0.241872

6 (−0.908598, 11.459289) 49.08 13.239 0.662964 22576.86

7 (4.328897, −45.933286) 4299.56 1995.887 0.000000 −0.009991

8 (4.333267, −45.980644) 4299.50 1975.7426 0.001732 3.309271

9 (4.620182, −11.840013) 883.28 2743.2211 0.000271 −0.051462

10 (4.024522, 5.862406) 3.99 149.444 0.000338 −0.154415

11 (4.012227, 4.726667) 0.22 28.564 0.000532 −0.010341

12 (4.000032, 5.002778) 0.00 0.299 0.000518 −0.004453

13 (4.000001, 4.999987) 0.00 0.00134 0.000550 0.001374

14 (4.000000, 5.000000) 0.00 0.000002 0.000000 0.000000

The above was re-run again, starting from the same 𝑢0, but now using Fletcher-Reeves
formula. The result was surprising. Now the algorithm did not show the strange path as
above, however, it also did not find the true minimum at (4, −5) and instead went for the
second local minimum as shown below. This shows, at least in this test, that Polyak-Ribiere
formula did a better job, even though it took more steps.

221

4.5. HW 5 CHAPTER 4. HWS

-3 -2 -1 0 1 2 3 4 5 6 7

-20

-10

0

10

20

30

Showing uk path on top of contour plot. Problem 1, part (c)
u0 = [6:63594;!14:29961], J(u) = 48:984, iterations [9]

convergence criteria jr(J(u))j 5 0:001
successfull completion. Converged before maximum iterations

50

50

80

80
20

0

20
0

200

20
0

40
0

40
0

40
0

400

40
0

70
0

70
0

70
0

700

700

70
0

10
00 1000

1000
10
00

10
00

2000

2000

20
00

20
00

20
00

30
00

30
00

3000

30
00

3000

30
00

70
00

7000
7000

10
00

0

10000
10000

30000
30000

60000
60000

100000
100000

Figure 4.51: test case 6, using Fletcher-Reeves, problem 1, part
c

𝑘 𝑥𝑘 𝐽 �𝑥𝑘� �∇𝐽 �𝑥𝑘�� 𝛼𝑘 𝛽𝑘
1 (6.63594, −14.29961) 52701.77 67823.57 0.000127 0.000000
2 (−1.970382, −14.321801) 393.95 31.646 0.2519 393.1282
3 (−1.968895, −6.351520) 267.83 627.462 0.001362 0.07595
4 (−1.111164, 10.592228) 63.10 172.916 0.001001 0.000010
5 (−0.890514, 11.528839) 48.99 0.5567 0.001137 0.03014
6 (−0.889896, 11.528704) 48.99 0.0967 0.888831 202.77
7 (−0.893567, 11.441590) 48.99 1.3763 0.001469 0.000012
8 (−0.896818, 11.412476) 48.98 0.00481 0.001101 0.002681
9 (−0.896823, 11.412476) 48.98 0.000249 0.000000 0.000000

4.5.1.3.8 Test 7 (second strange one) starting from (0.5837, −46.595) This test case
also showed di�erence between Polyak-Ribiere and Fletcher-Reeves.

With Polyak-Ribiere, it found the same minimum as Matlab fminsearch using a strange
path where 𝐽(𝑢) did increase at one point before decreasing again.

However, it did a better job than Fletcher-Reeves.

-3 -2 -1 0 1 2 3 4 5 6

-40

-30

-20

-10

0

10

20

Showing uk path on top of contour plot. Problem 1, part (c)
u0 = [0:58372;!46:59533], J(u) = 48:984, iterations [13]

convergence criteria jr(J(u))j 5 0:001
successfull completion. Converged before maximum iterations

5080

80

20
0

20
0

20040
0

40
0

400

40
0

70
0

70
0

70
0

700

70
0

1000

10
00

1000

1000

10
00

2000

2000

20
00

2000

20
00

3000

30
00

3000

3000

300
0

30
00

70
00

7000

70
00

7000

70
00

100
00

10000

10
00
0

30000
30000

Figure 4.52: test case 7, Polyak-Ribiere, problem 1, part c

Here both Matlab fminsearch and this algorithm did not find the true minimum.

222

4.5. HW 5 CHAPTER 4. HWS

It took 13 steps. Here ∇𝐽 �𝑥𝑘� increased and decreased more than one time during the
search. Also 𝐽(𝑢) increased during the search before decreasing again.

𝑘 𝑥𝑘 𝐽 �𝑥𝑘� �∇𝐽 �𝑥𝑘�� 𝛼𝑘 𝛽𝑘
1 (0.583720, −46.595330) 10438.38 1656.968 0.001966 0.003862

2 (−2.624791, −46.035172) 2450.06 103.007 0.564906 2.002

3 (3.819328, 11.909200) 72.20 148.967 0.000257 −0.1194

4 (3.863288, 11.957784) 69.31 28.774 0.163101 7.727

5 (4.016286, 5.132002) 0.67 70.2157 0.098572 18.327

6 (−2.188772, −26.898544) 959.12 336.852 0.000017 −0.183

7 (−2.213801, −26.997880) 958.16 255.113 0.025963 3.785

8 (−1.599015, 2.551447) 123.88 387.315 0.001099 0.179

9 (−1.074840, 7.277357) 57.59 60.1637 0.004433 0.517

10 (−0.961876, 10.715217) 49.45 22.635 0.001854 −0.0502

11 (−0.895537, 11.456508) 48.99 1.2014 0.002193 −0.01161

12 (−0.896851, 11.412270) 48.98 0.014138 0.002174 0.000948

13 (−0.896805, 11.412779) 48.98 0.000013 0.000000 0.000000

4.5.1.4 Appendix. Source code for problem 1� �
1 function nma_HW5_problem_1_part_b
2 %Solves problem 1, part b, HW5
3 %ECE 719, UW Madison, Spring 2016
4 %
5 %
6

7 close all; clc;
8 cd(fileparts(mfilename('fullpath')));
9

10 %reset(0);
11 xlimits = [-10 10]; %x limits, for plotting, change as needed
12 ylimits = [-50 50]; %y limits, for plotting, change as needed
13 myTitle = �...
14 '$$(x_2-x_1^3+5x_1^2-2x_1-13)^2+(x_2+x_1^3+x_1^2-14x_1-29)^2$$';
15 [u1,u2,z] = nma_makeContourData(0.05,xlimits,ylimits);
16

17 figure(1);
18 v =[50 80 200 400 700 10^3 2*10^3 3*10^3 7*10^3 10^4 ...
19 3*10^4 6*10^4 10^5 2.5*10^5 ...
20 5*10^5 10^6 2*10^6];
21 [C,h] = contour(u1,u2,z,v);
22 colorbar
23 %[C,h] = contour(u1,u2,z);
24

25 clabel(C,h,v,'Fontsize',7,'interpreter','Latex','Color','red');
26 nma_setMyLabels('$$x_1$$','$$x_2$$',...
27 {'\makebox[4in][c]{contour plot, default setting}',...
28 sprintf('\\makebox[4in][c]{%s}',myTitle)});
29

30 figure();
31 xlimits = [-3 6]; %x limits, for plotting, change as needed
32 ylimits = [-30 35]; %y limits, for plotting, change as needed
33 [X,Y,Z] = nma_makeContourData(.95,xlimits,ylimits);
34 v =[80 300 700 900 1500 2000 3000];
35 [C,h] = contourf(X,Y,Z,v);
36 colorbar;
37 nma_setMyLabels('$$x_1$$','$$x_2$$',...
38 {'\makebox[4in][c]{filled contour plot, small region}',...
39 sprintf('\\makebox[4in][c]{%s}',myTitle)});
40

223

4.5. HW 5 CHAPTER 4. HWS

41 figure();
42 xlimits = [-2.5 5]; %x limits, for plotting, change as needed
43 ylimits = [-30 30]; %y limits, for plotting, change as needed
44 [X,Y,Z] = nma_makeContourData(.95,xlimits,ylimits);
45 %surfl(X,Y,Z);
46 surf(X,Y,Z);
47 colormap(hsv);
48 %view([154,46]);
49 hold on;
50 contour(X,Y,Z,'Linecolor',[0 0 1]);
51 nma_setMyLabels('$$x_1$$','$$x_2$$',...
52 {'\makebox[4in][c]{surf plot}',...
53 sprintf('\\makebox[4in][c]{%s}',myTitle)});
54

55 end� �� �
1 function nma_HW5_problem_1_part_c()
2 %finds the min value of
3 %
4 % J(x) = f1^2 + f2^2 where
5 % f1 = x2-x1^3+5*x1^2-2x1-13
6 % f2=x2+x1^3+x1^2-14x1-29
7 %
8 % over range x1=-10..10 and x2=-50..50 using steepest descent
9 %
10 % ECE 719, Spring 2016
11 % Matlab 2015a
12 %Nasser M. Abbasi
13

14 if(~isdeployed)
15 baseFolder = fileparts(which(mfilename));
16 cd(baseFolder);
17 end
18

19 close all;
20 set(groot,'defaulttextinterpreter','Latex');
21 set(groot, 'defaultAxesTickLabelInterpreter','Latex');
22 set(groot, 'defaultLegendInterpreter','Latex');
23

24 %paramters, change as needed
25 %select the algorithm to use. Either 'conjugate gradient'
26 %or 'steepest descent'
27 METHOD = 'conjugate gradient';
28

29 DO_GUI = false; %set to true to get input from GUI
30 DO_ANIMATE = true; %set to true to see animation
31 DO_GIF = false; %set to true to make animation gif
32 DO_3D = false; %if we want to show 3D search path.
33 xlimits = [-20 20]; %x limits, for plotting
34 ylimits = [-90 90]; %y limits, for plotting
35 del = 0.05; %grid size, used for making meshgrid
36 fixed_levels = [50 80 200 400 700 10^3 2*10^3 3*10^3 �...
37 7*10^3 10^4 3*10^4 ...
38 6*10^4 10^5 2.5*10^5 5*10^5 10^6 2*10^6];
39 CONTOUR_LINES_AUTO = 'fix'; %set to 'auto', to see matlab contour
40 % %set to 'full' to see each step level set
41 % %set to 'limited' to see every other level
42 % %set to 'fix' to use pre-specificed
43 %
44

45 %---
46 %These are the options struct used by call to
47 %optimization function
48 %opt.u = [6.63594;-14.29961]; %starting guess x-coordinate

224

4.5. HW 5 CHAPTER 4. HWS

49 %selection of tough ones: This gives very different
50 % result from fletcher and polak.
51 %opt.u = [6.63594;-14.29961]; %starting guess x-coordinate
52 opt.u = [0.58372;-46.59533]; %starting guess x-coordinate
53

54 opt.MAX_ITER = 10^4; %maximum iterations allowed
55 opt.STEP_SIZE = -1; %step size. set to -1 to use optimal
56 opt.objectiveFunc = @objectiveFunc; %see function definition
57 opt.gradientFunc = @gradientFunc; %see function definition
58 opt.gradientNormTol = 0.001; %used to determine when converged
59 opt.hessian = @hessian_func; %see function definition
60 opt.accumulate = true;
61 opt.stop_on_oscillation = false;
62

63 %--
64 %data
65 [u1,u2,z] = nma_makeContourData(del,xlimits,ylimits);
66 figure();
67 if DO_GUI %check if GUI input is asked for, if so, wait for user
68 plot(0,0);
69 xlim(xlimits); ylim(ylimits);
70 hold on;
71 [x,y] = ginput(1);
72 opt.u=[x;y];
73 end
74

75 %Find the minumum using Matlab build-in, in order to
76 %compare with in plot
77 optimalValue = fminsearch(opt.objectiveFunc, opt.u);
78 objectiveAtOptimal = objectiveFunc(optimalValue);
79 fprintf('Matlab found J(%5.4f,%5.4f)=%5.4f\n',optimalValue(1),...
80 optimalValue(2),objectiveAtOptimal);
81

82 %mark location of minimum found by fminsearch on plot
83 hold on;
84 plot(optimalValue(1),optimalValue(2),'*r');
85

86 %plot starting point
87 plot(opt.u(1),opt.u(2),'or');
88 xlim(xlimits); ylim(ylimits);
89 grid;
90 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
91

92 %make the call to find search path.
93 if strcmp(METHOD,'steepest descent')
94 [status , pts,levelSets, gradientNormTol,steps] = ...
95 nma_steepest_descent(opt);
96 else
97 [status,pts,levelSets, gradientNormTol,steps,betaK]=...
98 nma_polyak_ribiere(opt);
99 end
100 fprintf('HW5 found J(%5.4f,%5.4f)=%5.4f\n',pts(end,1),...
101 pts(end,2),levelSets(end));
102

103 %check if search was success or not.
104 switch status
105 case 0, status = ...
106 'successfull completion. Converged before maximum iterations';
107 case 1, status = ...
108 'failed to converge before maximum iterations due to oscillation';
109 case 2, status = ...
110 'failed to converge before maximum iterations';
111 end

225

4.5. HW 5 CHAPTER 4. HWS

112

113 %use output from above call to make the plots
114 switch CONTOUR_LINES_AUTO
115 case 'auto',
116 [C,h] =contour(u1,u2,z,'Linecolor',[0 0 1],'LineWidth',0.1);
117 case 'limited',
118 lev = round(length(levelSets)/20);
119 %[C,h] = contour(u1,u2,z,levelSets(1:lev:end),'Fill','off');
120 %[C,h] = contourf(u1,u2,z,levelSets(1:lev:end));
121 [C,h] = contour(u1,u2,z,levelSets(1:lev:end));
122 %colormap(hsv);
123 %colorbar;
124 %'Linecolor',[0 0 1],'LineWidth',.2);
125 case 'full'
126 [C,h] = contour(u1,u2,z,levelSets,'LineWidth',.2);
127 clabel(C,h,'Fontsize',8,'interpreter','Latex',...
128 'Color','blue');
129 case 'fix'
130 [C,h] = contour(u1,u2,z,fixed_levels);
131 h.LineWidth = .1;
132 %h.LineColor = [190/255 190/255 190/255];
133 clabel(C,h,fixed_levels,'Fontsize',8,...
134 'interpreter','Latex','Color','blue');
135 end
136

137 %animate the steepest descent search
138 if length(pts(:,1))>1
139 filename = 'anim.gif';
140 for k=1:length(pts)-1
141 %draw line between each step
142 %skip case if 'full' mode or if too many points.
143 %if (opt.STEP_SIZE == -1 || ...
144 %strcmp(CONTOUR_LINES_AUTO,'limited') || ...
145 %strcmp(CONTOUR_LINES_AUTO,'auto')||length(pts)<100)
146 line([pts(k,1),pts(k+1,1)],[pts(k,2),pts(k+1,2)],...
147 'LineWidth',1,'Color','red');
148 %end
149 %plot([pts(k,1),pts(k+1,1)],[pts(k,2),pts(k+1,2)],'.r');
150 if DO_ANIMATE
151 drawnow;
152 if DO_GIF
153 frame = getframe(1);
154 im = frame2im(frame);
155 [imind,cm] = rgb2ind(im,256);
156 if k ==1
157 imwrite(imind,cm,filename,'gif','Loopcount',0);
158 else
159 if mod(k,4)==0
160 imwrite(imind,cm,filename,'gif',...
161 'WriteMode','append');
162 end
163 end
164 end
165 end
166 title(format_plot_title(...
167 'Showing u^k path on top of contour plot. Problem 1, part (c)',...
168 opt,pts,k,status),'FontSize', 8);
169 end
170 end
171 title(format_plot_title(...
172 'Showing u^k path on top of contour plot. Problem 1, part (c)',...
173 opt,pts,size(pts,1),status),'FontSize', 8);
174

226

4.5. HW 5 CHAPTER 4. HWS

175

176 %plot J(x) changes
177 figure();
178 stairs(levelSets);
179 %stem(levelSets,'ro');
180 grid;
181 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
182 title(format_plot_title(...
183 'Showing $J(u^k)$ progress. Problem 1, part (b)',...
184 opt,pts,size(pts,1),status),'FontSize', 8);
185 xlabel('step number');
186 ylabel('value of objective function');
187

188 %Plot gradient change
189 figure();
190 stairs(gradientNormTol);
191 %stem(levelSets,'ro');
192 grid;
193 title(format_plot_title(...
194 'Showing $|\nabla J(u^k)|$ progress. Problem 1, part (c)',...
195 opt,pts,size(pts,1),status),'FontSize', 8);
196

197 xlabel('step number'); ylabel('Norm of gradient');
198 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
199

200 %Plot betaK
201 if strcmp(METHOD,'conjugate gradient')
202 figure();
203 stem(betaK);
204 grid;
205 title(format_plot_title(...
206 'Showing $\beta(k)$ progress. Problem 1, part (c)',...
207 opt,pts,size(pts,1),status),'FontSize', 8);
208 xlabel('step number'); ylabel('β_k');
209 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
210 end
211

212 %Plot alpha
213 if strcmp(METHOD,'conjugate gradient')
214 figure();
215 stem(steps);
216 grid;
217 title(format_plot_title(...
218 'Showing $\alpha(k)$ progress. Problem 1, part (c)',...
219 opt,pts,size(pts,1),status),'FontSize', 8);
220 xlabel('step number'); ylabel('α_k');
221 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
222 end
223

224 format long g;
225 fprintf('x1\t\t\tx2\t\t\tJ(x1,x2)\tgrad(J(u))\talpha\t\tbeta\n');
226 for i=1:length(steps)
227 fprintf('%7.6f\t%7.6f\t%5.2f\t%7.6f\t%7.6f\t%7.6f\n',...
228 pts(i,1),pts(i,2),...
229 levelSets(i),gradientNormTol(i),steps(i),betaK(i));
230 end
231

232 f1 =@(X1,X2) X2-X1^3+5*X1^2-2*X1-13;
233 f2 = @(X1,X2) X2+X1^3+X1.^2-14*X1-29;
234

235 fprintf('f1(x)=%5.4f,f1(x)=%5.4f\n',...
236 f1(pts(end,1),pts(end,2)),f2(pts(end,1),pts(end,2)));
237

227

4.5. HW 5 CHAPTER 4. HWS

238 end
239 %-------------------------
240 %Evaluate J(u) at u
241 function f = objectiveFunc(u)
242 X1 = u(1);
243 X2 = u(2);
244 f1 = X2-X1.^3+5*X1.^2-2*X1-13;
245 f2 = X2+X1.^3+X1.^2-14*X1-29;
246 f = f1.^2+f2.^2;
247 end
248 %---------------------
249 %Evaluate grad(J(u)) at u
250 function g = gradientFunc(u)
251 x1 = u(1);
252 x2 = u(2);
253 g1=2*(3*x1^2 + 2*x1 - 14)*(x1^3 + x1^2 - 14*x1 + x2 - 29) +...
254 2*(3*x1^2 - 10*x1 + 2)*(x1^3 - 5*x1^2 + 2*x1 - x2 + 13);
255 g2=12*x1^2 - 32*x1 + 4*x2 - 84;
256 g=[g1;g2];
257 end
258 %---------------------------
259 %set title
260 function formatted_title = format_plot_title(main_title,opt,pts,k,status)
261 formatted_title = {sprintf('\\makebox[5in][c]{%s}',main_title),...
262 sprintf('\\makebox[5in][c]{$u^0=[%6.5f,%6.5f]$, $J(u)=%3.3f$, iterations [$%d$]}',...
263 opt.u(1),opt.u(2),norm(opt.objectiveFunc(pts(k,:))),k),...
264 sprintf('\\makebox[5in][c]{convergence criteria $| \\nabla(J(u)) | \\leq %1.3f $}',...
265 opt.gradientNormTol),...
266 sprintf('\\makebox[5in][c]{%s}',status)};
267 end
268 %---------------------
269 %Evaluate Hessian(J(u)) at u (not used, for practice)
270 function g = hessian_func(u)
271 x1 = u(1);
272 x2 = u(2);
273

274 g11=2*(6*x1 - 10)*(x1^3 - 5*x1^2 + 2*x1 - x2 + 13) + ...
275 2*(3*x1^2 - 10*x1 + 2)^2 ...
276 + 2*(3*x1^2 + 2*x1 - 14)^2 + ...
277 2*(6*x1 + 2)*(x1^3 + x1^2 - 14*x1 + x2 - 29);
278 g12=24*x1 - 32;
279 g21=24*x1 - 32;
280 g22=4;
281 g=[g11,g12;g21,g22];
282 end� �� �
1 function [status,pointsFound,levelSets,gradientNormTol,steps,betaK]= �...
2 nma_polyak_ribiere(opt)
3 % This function performs conjugate gradient search
4 % starting from a point looking for point which minimizes a
5 % function. Supports multi-variable function. It needs handle
6 % of the funtion and handle to the gradient. It reurns all
7 % points visited in the search. This supports Fletcher-Reeves
8 % and Polyalk-Ribiere
9 %
10 % Typical use of this function is as follows:
11 %
12 % opt.field = ...%fill in each field of the struct.
13 % [pointsFound,levelSets,gradientNormTol,steps] =
14 % nma_steepest_descent(opt);
15 % [C,h] = contour(.....,levelSets);
16 %
17 % INPUT fields in opt struct are:
18 % ======

228

4.5. HW 5 CHAPTER 4. HWS

19 % u vector of coordinates starting guess
20 % MAX_ITER an integer, which is the maximium iteration
21 % allowed before giving up the search.
22 % gradientNormTol small floating point number. The tolerance
23 % to use to decide when to stop the search.
24 % Example 0.001
25 % stepSize A floating point number, which is the step
26 % size to take. If stepSize=-1 then an optimal
27 % step size is found and used
28 % at each step using golden section line search.
29 % objectiveFunc handle to the objective function, which
30 % accepts a row vector, that contain [x y]
31 % coordinate of the point and return the
32 % numerical value of objectiveFunc at this point.
33 % gradientFunc handle to the gradiant of f. Same input
34 % and output as objectiveFunc
35 % accumulate flag. If true, then all points u^k and J(u)
36 % at each are collected during search. Else they
37 % are not.
38 % stop_on_oscillation flag. Set to true to stop when objective
39 % function detected to be increasing. Else set
40 % to false if you do not want to stop when J(u)
41 % increases at any point
42 %
43 % OUTPUT:
44 % =======
45 % status can be 0,1 or 2.
46 % 0 means success, It converged before MAX_ITER
47 % was reached.
48 % 1 means failed, did not converge due to
49 % oscillation, which can happen when step size
50 % is too large. When oscillation detected, the
51 % search will stop.
52 % 2 means failed: did not oscillate but also
53 % did not converge before hitting MAX_ITER.
54 % Caller can try with larger MAX_ITER
55 % pointsFound n by 2 matrix, as in [x1 y1; x2 y2;]
56 % which contain coordinates of each point
57 % visited during steepestDescent the length is
58 % the same as number of points visited.
59 % This will be last point only if
60 % opt.accumlate=false
61 % levelSets vector, contains the value of the objective
62 % function at each point. Last value of J(u)
63 % if opt.accumlate=false
64 % gradientNormTol vector, contains the norm of gradient after
65 % each step. This will be last value only if
66 % opt.accumlate=false
67 % steps vector. The optimal step used at each
68 % iteration, used golden section to find optimal
69 % step size.
70 % This will be last value only if
71 % opt.accumlate=false These are the alpha_k
72 % values.
73 % betaK vector contains values of beta found at
74 % each step
75 %
76 % by Nasser M. Abbasi ECE 719, UW Madison, HW 5
77

78 %pre-allocate data for use in the main loop below
79 N = size(opt.u,1);
80 fLambda = @(alpha,u,s) opt.objectiveFunc(u+alpha*s);
81

229

4.5. HW 5 CHAPTER 4. HWS

82 %collect data only if user asked for it.
83 if opt.accumulate
84 pointsFound = zeros(opt.MAX_ITER,N);
85 levelSets = zeros(opt.MAX_ITER,1);
86 gradientNormTol = zeros(opt.MAX_ITER,1);
87 steps = zeros(opt.MAX_ITER,1);
88 betaK = zeros(opt.MAX_ITER,1);
89 end
90

91 % initialize counters before main loop
92 k = 1;
93 currentPoint = opt.u;
94 keep_running = true;
95 status = 0;
96 steps_in_oscillation = 0;
97 last_level = 0;
98 current_grad = opt.gradientFunc(currentPoint);
99 current_v = -current_grad;
100

101 while keep_running
102

103 update_accumlate();
104

105 if k>1 && current_level>last_level% check for oscillation
106 if opt.stop_on_oscillation
107 steps_in_oscillation = steps_in_oscillation + 1;
108 end
109 end
110

111 check_convergence();
112

113 if keep_running
114

115 %A = opt.hessian(currentPoint);
116 %lam = - dot(current_grad, current_v)/...
117 % (current_v.'*A*current_v);
118

119 %do not use norm on current_v here!
120 alpha = nma_golden_section(...
121 fLambda,currentPoint,current_v,0,1,sqrt(eps('double')));
122

123 % make step towards min
124 currentPoint = currentPoint + alpha* current_v;
125 last_grad = current_grad;
126 current_grad = opt.gradientFunc(currentPoint);
127

128 %fletcher
129 %beta = norm(current_grad)^2/norm(last_grad)^2;
130

131 %polyak
132 beta = (current_grad.' * (current_grad-last_grad))/...
133 norm(last_grad)^2;
134

135 current_v = -current_grad + beta * current_v;
136 if opt.accumulate
137 steps(k) = alpha;
138 betaK(k) = beta;
139 end
140

141 k = k + 1;
142 end
143 end
144 %done. Chop data to correct number of steps used before returning

230

4.5. HW 5 CHAPTER 4. HWS

145 if opt.accumulate
146 pointsFound = pointsFound(1:k,:);
147 levelSets = levelSets(1:k);
148 gradientNormTol = gradientNormTol(1:k);
149 steps = steps(1:k);
150 betaK = betaK(1:k);
151 else
152 pointsFound = currentPoint ;
153 levelSets = current_level;
154 gradientNormTol = current_grad_norm;
155 steps = k;
156 betaK = beta;
157 end
158

159 %-----------------------------
160 %internal function. Check if still need to keep iterating
161 function check_convergence()
162 % check if we converged or not
163 % Last check below can lead to termination too early for the
164 % banana function. Since at one point, J(u(k+1)) will get
165 % larger than J(u(k)) using bad step size. So it is
166 % commented out for now.
167 if k == opt.MAX_ITER || ...
168 current_grad_norm <=opt.gradientNormTol || ...
169 steps_in_oscillation>4
170 %let it run for 2 more steps to see the oscillation
171 %stop loop and set the status to correct reason
172 %why loop stopped.
173 keep_running = false;
174 if steps_in_oscillation>0
175 status = 1;
176 else
177 if k == opt.MAX_ITER
178 status= 2;
179 end
180 end
181 end
182 end
183 %--
184 %internal
185 function update_accumlate()
186 if k>1
187 last_level = current_level;
188 end
189

190 current_level = norm(opt.objectiveFunc(currentPoint));
191 current_grad_norm = norm(current_grad);
192

193 if opt.accumulate
194 pointsFound(k,:) = currentPoint;
195 levelSets(k) = current_level;
196 gradientNormTol(k) = current_grad_norm;
197 end
198 end
199 end� �� �
1 %------------
2 %helper function to set plot attributes.
3 function nma_setMyLabels(varargin)
4

5 myXlabel = varargin{1};
6 myYlabel = varargin{2};
7 if nargin ==4
8 myZlabel = varargin{3};

231

4.5. HW 5 CHAPTER 4. HWS

9 end
10 myTitle = varargin{end};
11 h = get(gca,'xlabel');
12 set(h,'string',myXlabel,'fontsize',10,'interpreter','Latex') ;
13

14 h = get(gca,'ylabel');
15 set(h,'string',myYlabel,'fontsize',10,'interpreter','Latex') ;
16

17 if nargin ==4
18 h = get(gca,'zlabel');
19 set(h,'string',myZlabel,'fontsize',10,'interpreter','Latex');
20 end
21

22 h = get(gca,'title');
23 set(h,'string',myTitle,'fontsize',10,'interpreter','Latex',�...
24 'HorizontalAlignment','center') ;
25

26 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
27 end� �� �
1 %====================================
2 %helper function to generate Contour data
3 function [X1,X2,Z] = nma_makeContourData(del,xlimits,ylimits)
4

5 x1 = xlimits(1):del:xlimits(2);
6 x2 = ylimits(1):del:ylimits(2);
7 [X1,X2] = meshgrid(x1,x2);
8 f1 = X2-X1.^3+5*X1.^2-2*X1-13;
9 f2 = X2+X1.^3+X1.^2-14*X1-29;
10 Z = f1.^2+f2.^2;
11 end� �

4.5.2 Problem 2

Barmish

ECE 719 – Homework Dog Food

This problem is a “linear program preview.” You should solve (b) with the
Matlab LP routine; we will subsequently cover underlying theory in class.

Two types of dog food (Gaines and Kennel Ration) need to be mixed
in order to feed a pair of Siberian Huskies. The dogs require 48 units
of nutritional factor (NF) A, 165 units of NF B and 150 units of NF C.
Gaines supplies 8 units of NF A per gram, 11 units of NF B per gram and
25 units of NF C per gram. Kennel supplies 3 units of NF A per gram,
15 units of NF B per gram and 6 units of NF C per gram. Gaines costs
$1.20 per kilogram and Kennel costs $1.00 per kilogram.

(a) Formulate an appropriate objective function and constraints for the
mixing problem and obtain a graphical solution in the plane.

(b) Use the Matlab LP routine to solve this problem.

Figure 4.53: problem 2 description

4.5.2.1 part a

We need to minimize the cost of 48𝐴+ 165𝐵 + 150𝐶 by finding the optimal mix (quantities)
of 𝐴,𝐵, 𝐶 obtained from Gaines and Kennel supply as shown in the following diagram

232

4.5. HW 5 CHAPTER 4. HWS

8
un
its

of
A

11 units of B

25 units of C

content of one gram of Gaines

3
un
its

of
A

15 units of B

6 units of C

content of one gram of Kennel

Need to minimize the cost of 48A+ 165B + 150C

cost $1.20 per kg cost $1.00 per kg

Figure 4.54: problem 2, part a

Let the amount (in grams) from Gaines be 𝑢1 and let the amount of grams from Kennel
be 𝑢2. Therefore, we need to minimize

𝐽 (𝑢) = (0.0012) 𝑢1 + (0.001) 𝑢2 (1)

Since this is the cost. Since there are 8 units of 𝐴 in each gram from Gaines, and there are
3 units of 𝐴 in each gram from Kennel, then we have the first restriction which is

8𝑢1 + 3𝑢2 ≥ 48

Similarly, we find for 𝐵 and 𝐶 the following

11𝑢1 + 15𝑢2 ≥ 165
25𝑢1 + 6𝑢2 ≥ 150

Convert to equality, and now use 𝑥 instead of 𝑢 since now we are converting to standard
form

8𝑥1 + 3𝑥2 − 𝑥3 = 48

Similarly, we find for 𝐵 and 𝐶 the following

11𝑥1 + 15𝑥2 − 𝑥4 = 165
25𝑥1 + 6𝑥2 − 𝑥5 = 150

Now we write the above in the standard form

min 𝑐𝑇𝑥
𝐴𝑥 = 𝑏

Or

min �0.0012 0.001 0 0 0�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

8 3 −1 0 0
11 15 0 −1 0
25 6 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

48
165
150

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A graphical solution was found by plotting the three constraints. Since the extreme point
must be at a vertex of the feasible region, we see that it is at 𝑢∗ = (4, 8) which is confirmed
using Matlab LP in the second part.

233

4.5. HW 5 CHAPTER 4. HWS

0 1 2 3 4 5 6
u1 amount of Gaines

0

5

10

15

20

25

u
2

a
m

o
u
n
t
o
f
K

en
n
el

minimum u$ = (4; 8)

feasible region

8u1 + 3u2 6 48
11u1 + 15u2 6 165
25u1 + 6u2 6 150

Figure 4.55: Graphical solution

Now contour lines are added to the above plot. Since the objective function is linear, the
contour will be straight line, showing how 𝐽(𝑢) increases. The smallest value of 𝐽(𝑢) level
set line which touches the first vertex of the feasible region will be the optimal point. Here
is the result of the above plot, with contour lines added:

0 1 2 3 4 5 6
u1 amount of Gaines

0

5

10

15

20

25

u
2

am
ou

n
t
of

K
en

n
el

HW5, problem 2, part a, adding contour lines

0.0025905

0.0038857

0.005181

0.0064762

0.0064762

0.0077714

0.0077714

0.0090667

0.0090667

0.010362

0.010362

0.011657

0.011657

0.012952

0.012952

0.014248

0.014248

0.015543

0.015543

0.016838

0.016838

0.018133

0.018133

0.019429

0.019429

0.020724

0.020724

0.022019

0.023314

0.02461

8u1 + 3u2 6 48
11u1 + 15u2 6 165
25u1 + 6u2 6 150

0.005

0.01

0.015

0.02

0.025

Figure 4.56: Graphical solution with contour lines added

234

4.5. HW 5 CHAPTER 4. HWS� �
1 clear; close;
2 x=0:6;
3 plot(x,(48-8*x)/3);
4 hold on;
5 plot(x,(165-11*x)/15);
6 hold on;
7 plot(x,(150-25*x)/6);
8 h=legend('$8u_1+3u_2\geq 48$','$11u_1+15u_2\geq 165$',...
9 '$25u_1+6u_2\geq 150$');
10 set(h,'Interpreter','latex')
11 xlabel('u_1 amount of Gaines','Interpreter','latex');
12 ylabel('u_2 amount of Kennel','Interpreter','latex');
13 plot(4.077,8.0097,'ro');
14 text(4.2,8.3,'minimum $u^{\ast}=(4.077,8.0097)$',...
15 'Interpreter','latex');
16 text(4.2,12.3,'feasible region','Interpreter','latex');
17 grid
18
19 %add contour lines
20 x1 = 0:0.1:6;
21 x2 = 0:0.1:20;
22 [X1,X2] = meshgrid(x1,x2);
23 Z = 0.0012*X1+0.001*X2;
24 [C,h]=contour(X1,X2,Z,20,'--');
25 clabel(C,h,'Fontsize',7,'interpreter','Latex');
26 title('HW5, problem 2, part a, adding contour lines')
27 colorbar� �

˙

4.5.2.2 Part b

Matlab linprog was used to solve the above to find 𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6. Here is the result for
𝑥∗

𝑥1 = 4.0777
𝑥2 = 8.0097
𝑥3 = 8.6505
𝑥4 = 0
𝑥5 = 0

Mapping this back to 𝑢, we see that 𝑢1 = 𝑥1 and 𝑢2 = 𝑥2. Hence the minimum cost in
dollars is from (1)

𝐽(𝒖) = (0.0012) 𝑢1 + (0.001) 𝑢2
= (0.0012) 4.0777 + (0.001) 8.0097
= 0.01290 3

The above is the cost of 4 grams from Gaines and 8 grams from Kennel. The above basically
says to buy twice as much from Kennel as from Gaines.

4.5.2.3 Source code for problem 2� �
1 c1=0.0012;
2 c2=0.001;
3 f=[c1,c2,0,0,0];
4 A=[8,3,-1,0,0;
5 11,15,0,-1,0;
6 25,6,0,0,-1];
7 b=[48,165,150];
8 [X,FVAL,EXITFLAG,OUTPUT]=linprog(f,[],[],A,b,zeros(size(f)),[])� �

˙

Result of above run
c1=0.0012;

235

4.5. HW 5 CHAPTER 4. HWS

c2=0.001;
f=[c1,c2,0,0,0];
A=[8,3,-1,0,0;
11,15,0,-1,0;
25,6,0,0,-1];
b=[48,165,150];
[X,FVAL,EXITFLAG,OUTPUT]=linprog(f,[],[],A,b,zeros(size(f)),[])
Optimization terminated.
X =
4.0777
8.0097
8.6505
0.0000
0.0000
FVAL =
0.0129
EXITFLAG =
1
OUTPUT =
iterations: 6
algorithm: 'interior-point-legacy'
cgiterations: 0
message: 'Optimization terminated.'
constrviolation: 8.5265e-14
firstorderopt: 4.0665e-10

236

4.5. HW 5 CHAPTER 4. HWS

4.5.3 HW 5 key solution

237

4.5. HW 5 CHAPTER 4. HWS

238

4.5. HW 5 CHAPTER 4. HWS

239

4.5. HW 5 CHAPTER 4. HWS

240

4.5. HW 5 CHAPTER 4. HWS

Barmish

ECE 719 – Solution Dog Food

Taking variables u1 = x1 = number of grams of Gaines and u2 = x2 =
number of grams of Kennel Ration, we obtain inequalities for the three
nutrient factors as follows:

8x1 + 3x2 ≥ 48;

11x1 + 15x2 ≥ 165;

25x1 + 6x2 ≥ 150.

In addition, converting kilogram cost of food to cost per gram, we obtain
objective function

J = 0.0012x1 + 0.001x2.

Now, to obtain a standard form LP , we add surplus variables and obtain
the triple (A, b, c) given in Matlab form by

A = [8 3 − 1 0 0 0; 11 15 0 − 1 0; 25 6 0 0 − 1];

b = [48; 165; 150];

c = [0.0012; 0.001; 0; 0; 0].

Now running Matlab, the optimal solution is obtained as

u∗1 ≈ 4.1; u∗2 ≈ 8.01

with remaining surplus variables being zero and optimal cost in dollars
per day being

J∗ ≈ 0.0129.

241

4.6. HW 6 CHAPTER 4. HWS

4.6 HW 6

4.6.1 Problem 1

Barmish

ECE 719 – Homework Patrol Phase One

For the Sector Patrol Problem described in class, solve, by hand, the
artificial LP which is needed to obtain a first basic feasible solution.

Figure 4.57: problem 1 description

The patrol problem is given by

𝑢𝑖 ≥ 0
2𝑢1 + 2𝑢2 ≤ 0
2𝑢1 + 2𝑢2 ≥ 0

𝑢2 ≥ 1.5𝑢1
And the objective function which we want to minimize is

𝐽 (𝑢) =
1
30
𝑢1 +

1
15
𝑢2

The above is the raw LP. We convert it to standard LP by introducing slack and surplus
variable and rename the variables to 𝑥𝑖 from 𝑢𝑖. Therefore the first table of the initial
phase is

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑏
row 1 2 2 1 0 0 10
row 2 2 2 0 −1 0 4
row 3 −1.5 1 0 0 −1 0
𝐽 (𝑥) 1

30
1
15 0 0 0 0

4.6.1.1 Phase one

Since there are two surplus variables (these are the ones associated with −1 entries), we have
to start with phase one LP. If there were no surplus variables (i.e. only slack variables), then
we go directly to phase two. Phase one is only needed when there are surplus variables. We
introduce two new artificial variables 𝑦1, 𝑦2 and an artificial objective 𝐽 �𝑦� function which
we want to minimize over 𝑦 to zero,

min
𝑦≥0,𝑥≥0

𝐽 �𝑦� = 𝑦1 + 𝑦2

The first table of first phase is (where we now use the artificial objective function 𝐽 �𝑦� in
place of 𝐽 (𝑥).)

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 𝑦2 𝑏
row 1 2 2 1 0 0 0 0 10
row 2 2 2 0 −1 0 1 0 4
row 3 −1.5 1 0 0 −1 0 1 0

row 4, 𝐽 �𝑦� 0 0 0 0 0 1 1 0

We start by making last row canonical (this means we need to zero out last row entries
under 𝑦1, 𝑦2 columns). Doing row(4) = row(4)-row(2) gives

242

4.6. HW 6 CHAPTER 4. HWS

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 𝑦2 𝑏
row 1 2 2 1 0 0 0 0 10
row 2 2 2 0 −1 0 1 0 4
row 3 −1.5 1 0 0 −1 0 1 0

row 4, 𝐽 �𝑦� −2 −2 0 1 0 0 1 −4

To zero out last row under 𝑦2, row(4)=row(4)-row(3) applied to the above gives

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 𝑦2 𝑏
row 1 2 2 1 0 0 0 0 10
row 2 2 2 0 −1 0 1 0 4
row 3 −1.5 1 0 0 −1 0 1 0

row 4, 𝐽 �𝑦� −0.5 −3 0 1 1 0 0 −4

We see that the artificial basic feasible solution 𝐽 �𝑦� is not optimal, since there are negative
values on the last row. second column has the largest negative value in the last row, at −3.
So we need to move this column in the basis vectors. To decide on the pivot row we look

at ratio of 𝑏
second column

which gives min �102 ,
4
2 ,

0
1� = 0 which is associated with the third row.

So the third row is the pivot row. Now we need to zero out all other entries in the second
column. To make (1,2) zero: row 1 = row(1) - (2 × row(3)) gives

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 𝑦2 𝑏
row 1 5 0 1 0 2 0 −2 10
row 2 2 2 0 −1 0 1 0 4

row 3 (pivot) −1.5 1 0 0 −1 0 1 0
row 4, 𝐽 �𝑦� −0.5 −3 0 1 1 0 0 −4

To make (2,2) zero, row (2) = row(2) - 2 row(3) gives

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 𝑦2 𝑏
row 1 5 0 1 0 2 0 −2 10
row 2 5 0 0 −1 2 1 −2 4

row 3 (pivot) −1.5 1 0 0 −1 0 1 0
row 4, 𝐽 �𝑦� −0.5 −3 0 1 1 0 0 −4

Finally to make (4,2) entry zero, row(4)=row(4)+3 row(3) gives

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 𝑦2 𝑏
row 1 5 0 1 0 2 0 −2 10
row 2 5 0 0 −1 2 1 −2 4

row 3 (pivot) −1.5 1 0 0 −1 0 1 0
row 4, 𝐽 �𝑦� −5 0 0 1 −2 0 3 −4

We see that the artificial basic feasible solution is still not optimal since there is negative
values on last row. The most negative is in first column. This is the column to move in.

Taking the ratio of 𝑏
first column

gives min �105 ,
4
5� =

4
5 (we do not divide by negative entries).

This minimum is associated with second row. So the second row is the pivot row. We start
by normalizing the second row (the pivot row) so that entry (2, 1) is one (it is 5 now).
Row(2) = row(2)/5

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 𝑦2 𝑏
row 1 5 0 1 0 2 0 −2 10

row 2 (pivot) 1 0 0 −1
5

2
5

1
5

−2
5

4
5

row 3 −1.5 1 0 0 −1 0 1 0
row 4, 𝐽 �𝑦� −5 0 0 1 −2 0 3 −4

243

4.6. HW 6 CHAPTER 4. HWS

To make (1, 1) entry zero, then row(1)=row(1)-5 row(2)

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 𝑦2 𝑏
row 1 0 0 1 1 0 −1 0 6

row 2 (pivot) 1 0 0 −1
5

2
5

1
5

−2
5

4
5

row 3 −1.5 1 0 0 −1 0 1 0
row 4, 𝐽 �𝑦� −5 0 0 1 −2 0 3 −4

To make (1, 3) zero, then row(3)=row(3)+1.5 row(2)

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 𝑦2 𝑏
row 1 0 0 1 1 0 −1 0 6

row 2 (pivot) 1 0 0 −1
5

2
5

1
5

−2
5

4
5

row 3 0 1 0 − 3
10 −2

5
3
10

2
5

6
5

row 4, 𝐽 �𝑦� −5 0 0 1 −2 0 3 −4

To make (4, 1) zero, row(4)=row(4)+5 row(2)

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑦1 𝑦2 𝑏
row 1 0 0 1 1 0 −1 0 6

row 2 (pivot) 1 0 0 −1
5

2
5

1
5

−2
5

4
5

row 3 0 1 0 −3
10

−2
5

3
10

2
5

6
5

row 4, 𝐽 �𝑦� 0 0 0 0 0 1 1 0

We have driven 𝐽 �𝑦� to zero with no positive entries in last row. This completes phase one.
Now we remove the last row and also remove the 𝑦1, 𝑦2 columns from the above table, and
put back the 𝐽 (𝑥) in its place in last row. This next tableau is the starting of phase 2.

4.6.1.2 Phase 2

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑏
row 1 0 0 1 1 0 6
row 2 1 0 0 −1

5
2
5

4
5

row 3 0 1 0 −3
10

−2
5

6
5

𝐽 (𝑥) 1
30

1
15 0 0 0 0

We see that all entries in the last row positive, therefore phase two is now complete. There
is nothing to do in phase two. All the hard work was done in phase one. This is special
case and we were lucky. Note: The text book says that we should now zero out the last row
so that zeros appear under the basis columns. But I find this not needed, since it does not
change the optimal 𝑥∗. We can always calculate 𝐽(𝑥) once we know 𝑥∗, and there is no need
to have 𝐽(𝑥) show up in the bottom right corner of the tableau really. Therefore, I did not
do this extra step as not needed.

Now we read out the solution from the above tableau

𝑥 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
5
6
5
6
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.8
1.2
6
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

To find the corresponding 𝐽∗(𝑢), since 𝑥1 = 𝑢1 and 𝑥2 = 𝑢2 and 𝐽(𝑢) =
1
30𝑢1 +

1
15𝑢2, then

𝐽∗ =
1
30
(0.8) +

1
15
(1.2)

= 0.10667

244

4.6. HW 6 CHAPTER 4. HWS

4.6.1.3 Veri�cation

Using Matlab linprog� �
1 function nma_HW6_problem_1
2 %Solves first problem, HW 6, ECE 719
3 %Nasser M. Abbasi
4

5 f=[1/30,1/15,0,0,0];
6 A=[2,2,1,0,0;
7 2,2,0,-1,0;
8 -1.5,1,0,0,-1];
9 b=[10,4,0];
10 [X,FVAL,EXITFLAG,OUTPUT]=linprog(f,[],[],A,b,zeros(size(f)),[])
11

12 end� �
The output from the above is
Optimization terminated.

X =
0.8000
1.2000
6.0000
0.0000
0.0000

FVAL =
0.1067

EXITFLAG =
1

OUTPUT =
iterations: 7
algorithm: 'interior-point-legacy'
cgiterations: 0
message: 'Optimization terminated.'
constrviolation: 8.8818e-16
firstorderopt: 5.0706e-12

Using my own nma_simple.m which prints all the intermediate tableau and solutions 𝑥
during the search� �

1 f=[1/30,1/15,0,0,0];
2 A=[2,2,1,0,0;
3 2,2,0,-1,0;
4 -1.5,1,0,0,-1];
5 b=[10,4,0];
6 nma_simplex(A,b,f,true)� �

˙

The output from the above is

>>>>Current tableau [phase one]
2.0000 2.0000 1.0000 0 0 1.0000 0 0 10.0000
2.0000 2.0000 0 -1.0000 0 0 1.0000 0 4.0000

-1.5000 1.0000 0 0 -1.0000 0 0 1.0000 0
0 0 0 0 0 1.0000 1.0000 1.0000 0

Current tableau [phase one]

2.0000 2.0000 1.0000 0 0 1.0000 0 0 10.0000
2.0000 2.0000 0 -1.0000 0 0 1.0000 0 4.0000

-1.5000 1.0000 0 0 -1.0000 0 0 1.0000 0

245

4.6. HW 6 CHAPTER 4. HWS

-2.5000 -5.0000 -1.0000 1.0000 1.0000 0 0 0 0

pivot row is 3
current basic feasible solution is

0
0
0
0
0

10
4
0

Current tableau [phase one]

5.0000 0 1.0000 0 2.0000 1.0000 0 -2.0000 10.0000
5.0000 0 0 -1.0000 2.0000 0 1.0000 -2.0000 4.0000

-1.5000 1.0000 0 0 -1.0000 0 0 1.0000 0
-10.0000 0 -1.0000 1.0000 -4.0000 0 0 5.0000 0

pivot row is 2
current basic feasible solution is

0.8000
1.2000

0
0
0

6.0000
0
0

Current tableau [phase one]

0 0 1.0000 1.0000 0 1.0000 -1.0000 0 6.0000
1.0000 0 0 -0.2000 0.4000 0 0.2000 -0.4000 0.8000

0 1.0000 0 -0.3000 -0.4000 0 0.3000 0.4000 1.2000
0 0 -1.0000 -1.0000 0 0 2.0000 1.0000 8.0000

pivot row is 1
current basic feasible solution is

0.8000
1.2000
6.0000

0
0
0
0
0

Current tableau [phase one]

0 0 1.0000 1.0000 0 1.0000 -1.0000 0 6.0000
1.0000 0 0 -0.2000 0.4000 0 0.2000 -0.4000 0.8000

0 1.0000 0 -0.3000 -0.4000 0 0.3000 0.4000 1.2000
0 0 0 0 0 1.0000 1.0000 1.0000 14.0000

Current tableau [phase two]

0 0 1.0000 1.0000 0 6.0000
1.0000 0 0 -0.2000 0.4000 0.8000

0 1.0000 0 -0.3000 -0.4000 1.2000
0.0333 0.0667 0 0 0 0

ans =
0 0 1.0000 1.0000 0 6.0000

1.0000 0 0 -0.2000 0.4000 0.8000
0 1.0000 0 -0.3000 -0.4000 1.2000

0.0333 0.0667 0 0 0 0

Which gives same answer.

4.6.2 Problem 2

246

4.6. HW 6 CHAPTER 4. HWS

Homework Minimax

Consider the four objective functions

J1(x) =
1

30
x1 +

1

15
x2;

J2(x) =
3

10
x1 +

1

5
x2;

J3(x) = 2x1 +
1

2
x2;

J4(x) = x1 + x2

with constraints x1 ≥ 0 and x2 ≥ 0. Now let

J(x) = max
i=1,2,3,4

Ji(x)

and consider the problem of minimizing J(x) subject to linear inequality constraints

2x1 + 2x2 ≤ 10; −2x1 − 2x2 ≤ 0; x2 ≥ 1.5x1 + 4.

Solve this problem as a linear program and use the Matlab routine linprog. HINT: Before
computing, introduce one extra variable z and obtain a “pure” LP in (x, z)

Figure 4.58: problem 2 description

4.6.2.1 Initial Graphical view

This section shows di�erent views of the problem. In the next section, the solution itself
is given. Under each plot, the small code used to generate the plot is shown. First, the
feasibility region given by the constraints is plotted.

Out[797]=

0.1 0.2 0.3 0.4 0.5 0.6
x1

4.2

4.4

4.6

4.8

5.0

x2
Feasibility region for problem 2, HW 6

Figure 4.59: Region defined by constraints

1 RegionPlot[
2 2 x1 + 2 x2 <= 10 && -2 x1 - 2 x2 <= 0 && x2 >= 1.5 x1 + 4 && x1 >= 0 &&
3 x2 >= 0, {x1, 0, 0.6}, {x2, 4, 5}, BoundaryStyle -> {Red, Dashed},
4 Mesh -> 10, AxesLabel -> {x1, x2}, Axes -> True, Frame -> None,
5 PlotLabel -> Style["Feasibility region for problem 2, HW 6", 14]]

˙

This plot shows each constraint, superimposed on top of the feasibility region.

Out[843]=

-3 -2 -1 1 2 3 4
x1

-2

2

4

6

x2
Feasibility region problem 2, HW 6, with constraint shown

2x1 + 2x2 ≤ 10

-2x1 - 2x2 ≤ 0

x2 ≥ 1.5 x1 + 4

Figure 4.60: Region shown with con-
straints superimposed� �

1 p1 = RegionPlot[
2 2 x1 + 2 x2 <= 10 && -2 x1 - 2 x2 <= 0 && x2 >= 1.5 x1 + 4 && x1 >= 0 &&
3 x2 >= 0, {x1, 0, 0.6}, {x2, 4, 5}, BoundaryStyle -> {Red}, Mesh -> None,

247

4.6. HW 6 CHAPTER 4. HWS

4 AxesLabel -> {x1, x2}, Axes -> True, Frame -> None];
5 p2 = ContourPlot[{2 x1 + 2 x2 == 10, -2 x1 - 2 x2 == 0,
6 x2 == 1.5 x1 + 4}, {x1, -3, 4}, {x2, -3, 6},
7 PlotLegends -> {2 x1 + 2 x2 <= 10, -2 x1 - 2 x2 <= 0, x2 >= 1.5 x1 + 4}];
8 Show[p2, p1, AxesLabel -> {x1, x2}, Axes -> True, Frame -> None,
9 PlotRange -> All,
10 PlotLabel ->
11 Style["Feasibility region problem 2, HW 6, with constraint shown", 14]]� �

˙

The following is 3D plot, showing the four objective functions

Out[989]= Out[989]=

Figure 4.61: 3D plot of the four objective functions

1 funs = {1/30 x1 + 1/15 x2,3/10 x1 + 1/5 x2, 2 x1 + 1/2 x2,x1 + x2};
2 mesh = 10
3 g1 = Plot3D[funs[[1]], {x1, 0, 2}, {x2, 0, 5}, PlotStyle -> Yellow,
4 Mesh -> mesh, Lighting -> {{"Ambient", White}}];
5 g2 = Plot3D[funs[[2]], {x1, 0, 2}, {x2, 0, 5},PlotStyle -> Magenta,
6 Mesh -> mesh, Lighting -> {{"Ambient", White}}];
7 g3 = Plot3D[funs[[3]], {x1, 0, 2}, {x2, 0, 5},PlotStyle -> Red,
8 Mesh -> mesh, Lighting -> {{"Ambient", White}}];
9 g4 = Plot3D[funs[[4]], {x1, 0, 2}, {x2, 0, 5}, PlotStyle -> Cyan,
10 Mesh -> mesh, Lighting -> {{"Ambient", White}}];
11 Show[g1, g2, g3, g4, AxesLabel -> {x1, x2, "f(x)"}, PlotRange -> All,
12 SphericalRegion -> True]

˙

The following is same 3D plot, but now with the constraints added

Out[1029]=

Figure 4.62: 3D plot of the four ob-
jective functions with constraint im-
posed

1 funs = {1/30 x1 + 1/15 x2, 3/10 x1 + 1/5 x2,2 x1 + 1/2 x2,x1 + x2};
2 mesh = 10;
3 reg = RegionFunction ->

248

4.6. HW 6 CHAPTER 4. HWS

4 Function[{x, y},
5 x >= 0 && y >= 0 && 2 x + 2 y <= 10 &&
6 -2 x - 2 y <= 0 && y >= 1.5 x + 4];
7 g1 = Plot3D[funs[[1]], {x1, 0, 2}, {x2, 0, 5},
8 PlotStyle -> Yellow, Mesh -> mesh,
9 Lighting -> {{"Ambient", White}}, Evaluate@reg];
10

11 g2 = Plot3D[funs[[2]], {x1, 0, 2}, {x2, 0, 5},
12 PlotStyle -> Magenta, Mesh -> mesh,
13 Lighting -> {{"Ambient", White}}, Evaluate@reg];
14

15 g3 = Plot3D[funs[[3]], {x1, 0, 2}, {x2, 0, 5},
16 PlotStyle -> Red, Mesh -> mesh,
17 Lighting -> {{"Ambient", White}}, Evaluate@reg];
18

19 g4 = Plot3D[funs[[4]], {x1, 0, 2}, {x2, 0, 5},
20 PlotStyle -> Cyan, Mesh -> mesh,
21 Lighting -> {{"Ambient", White}}, Evaluate@reg];
22

23 Show[g1, g2, g3, g4, AxesLabel -> {x1, x2, "f(x)"},
24 PlotRange -> All, SphericalRegion -> True,
25 PlotLabel -> Style["3D plot with constraint imposed", 14],
26 BaseStyle -> {Bold, 14}]

˙

The solution found is now added the above plot., which is 𝑥1 = 0, 𝑥2 = 4 with the min max
value of 𝐽(𝑢) = 4 marked with small red point below.

Out[1045]=

Figure 4.63: 3D plot of the four objective functions with constraint imposed with
optimal solution

1 funs = {1/30 x1 + 1/15 x2, 3/10 x1 + 1/5 x2, 2 x1 + 1/2 x2, x1 + x2};
2 mesh = 10;
3 reg = RegionFunction ->
4 Function[{x, y},
5 x >= 0 && y >= 0 && 2 x + 2 y <= 10 && -2 x - 2 y <= 0 && y >= 1.5 x + 4];
6 g1 = Plot3D[funs[[1]], {x1, 0, 2}, {x2, 0, 5}, PlotStyle -> Yellow,
7 Mesh -> mesh, Lighting -> {{"Ambient", White}}, Evaluate@reg];
8 g2 = Plot3D[funs[[2]], {x1, 0, 2}, {x2, 0, 5}, PlotStyle -> Magenta,
9 Mesh -> mesh, Lighting -> {{"Ambient", White}}, Evaluate@reg];
10 g3 = Plot3D[funs[[3]], {x1, 0, 2}, {x2, 0, 5}, PlotStyle -> Red, Mesh -> mesh,
11 Lighting -> {{"Ambient", White}}, Evaluate@reg];
12 g4 = Plot3D[funs[[4]], {x1, 0, 2}, {x2, 0, 5}, PlotStyle -> Cyan,
13 Mesh -> mesh, Lighting -> {{"Ambient", White}}, Evaluate@reg];
14 Show[g1, g2, g3, g4,
15 Graphics3D[{Red, PointSize[.05], Point[{0, 4, 4}]}, Axes -> True],
16 AxesLabel -> {x1, x2, "f(x)"}, PlotRange -> All, SphericalRegion -> True,
17 PlotLabel ->
18 Style["3D plot with constraint imposed with solution given", 14],
19 BaseStyle -> {Bold, 14}]

249

4.6. HW 6 CHAPTER 4. HWS

˙

4.6.2.2 Solution using Matlab linprog

The first step is to convert this multi-objective minimax problem with constraints, to a
pure linear programming problem so that Matlab linprog can be used. Introducing extra
variable 𝑧 the problem can be written as

min
𝑧

̃𝐽 (𝑧) = 𝑧

𝑠.𝑡. 𝑧 ≥ 𝐽𝑖 (𝑥) 𝑖 = 1⋯4
2𝑥1 + 2𝑥2 ≤ 10
−2𝑥1 − 2𝑥2 ≤ 0
𝑥2 ≥ 1.5𝑥1 + 4

Using the 𝐽𝑖 (𝑥) given, the above becomes

min
𝑧

̃𝐽 (𝑧) = 𝑧

𝑠.𝑡. 1
30𝑥1 +

1
15𝑥2 − 𝑧 ≤ 0

3
30𝑥1 +

1
5𝑥2 − 𝑧 ≤ 0

2𝑥1 +
1
2𝑥2 − 𝑧 ≤ 0

𝑥1 + 𝑥2 − 𝑧 ≤ 0
2𝑥1 + 2𝑥2 ≤ 10
−2𝑥1 − 2𝑥2 ≤ 0
𝑥2 ≥ 1.5𝑥1 + 4

To use Matlab linprog, we first convert the above to the standard form. We do this by
introducing slack and surplus variables. The above becomes (added tilde on top of the 𝑥
to make it clear which one variables are the original raw LP variables, and which is ones
are the new variables).

min
𝑧

̃𝐽 (𝑧) = 𝑧

𝑠.𝑡. 1
30𝑥1 +

1
15𝑥2 − 𝑧 + �̃�3 = 0

3
30𝑥1 +

1
5𝑥2 − 𝑧 + �̃�4 = 0

2𝑥1 +
1
2𝑥2 − 𝑧 + �̃�5 = 0

𝑥1 + 𝑥2 − 𝑧 + �̃�6 = 0
2𝑥1 + 2𝑥2 + �̃�7 = 10
−2𝑥1 − 2𝑥2 + �̃�8 = 0
−1.5𝑥1 + 𝑥2 − �̃�9 = 4

For 𝑥, �̃� ≥ 0. Hence 𝐴𝑥 = 𝑏 becomes

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
30

1
15 1 0 0 0 0 0 0 −1

3
30

1
5 0 1 0 0 0 0 0 −1

2 1
2 0 0 1 0 0 0 0 −1

1 1 0 0 0 1 0 0 0 −1
2 2 0 0 0 0 1 0 0 0
−2 −2 0 0 0 0 0 1 0 0
−1.5 1 0 0 0 0 0 0 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

𝑥1
𝑥2
�̃�3
�̃�4
�̃�5
�̃�6
�̃�7
�̃�8
�̃�9
𝑧

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
10
0
4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

250

4.6. HW 6 CHAPTER 4. HWS

And min 𝑐𝑇𝑥 becomes

min �0 0 0 0 0 0 0 0 0 1�

⎛
⎜⎜⎝

𝑥1
𝑥2
�̃�3
�̃�4
�̃�5
�̃�6
�̃�7
�̃�8
�̃�9
𝑧

⎞
⎟⎟⎠

Therefore, using the above, we can write the first tableau table. Then use Matlab to solve
it.

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑧 𝑏

row 1 1
30

1
15 1 0 0 0 0 0 0 −1 0

row 2 3
30

1
5 0 1 0 0 0 0 0 −1 0

row 3 2 1
2 0 0 1 0 0 0 0 −1 0

row 4 1 1 0 0 0 1 0 0 0 −1 0
row 5 2 2 0 0 0 0 1 0 0 0 10
row 6 −2 −2 0 0 0 0 0 1 0 0 0
row 7 −1.5 1 0 0 0 0 0 0 −1 0 4
̃𝐽 (𝑥, 𝑧) 0 0 0 0 0 0 0 0 0 1 0

Below is the Matlab code used to solve the above. The solution is
⎛
⎜⎜⎝

𝑥1
𝑥2
�̃�3
�̃�4
�̃�5
�̃�6
�̃�7
�̃�8
�̃�9
𝑧

⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

0
4

3.7333
3.2
2
0
2
8
0
4

⎞
⎟⎟⎠

And minimum of the maximum of 𝐽𝑖 (𝑥) is

min max 𝐽𝑖 (𝑥) = 4� �
1 function nma_HW6_problem_2
2 %Solves second problem, HW 6, ECE 719
3 %Nasser M. Abbasi
4

5 f = [0 0 0 0 0 0 0 0 0 1];
6 A = [1/30 1/15 1 0 0 0 0 0 0 -1;
7 1/30 1/5 0 1 0 0 0 0 0 -1;
8 2 1/2 0 0 1 0 0 0 0 -1;
9 1 1 0 0 0 1 0 0 0 -1;
10 2 2 0 0 0 0 1 0 0 0;

251

4.6. HW 6 CHAPTER 4. HWS

11 -2 -2 0 0 0 0 0 1 0 0;
12 - 1.5 1 0 0 0 0 0 0 -1 0];
13 b=[0 0 0 0 10 0 4];
14

15 [X,FVAL,EXITFLAG,OUTPUT]=linprog(f,[],[],A,b,zeros(size(f)),[])
16 end� �

The output from the above is
>> nma_HW6_problem_2
Optimization terminated.
X =
0.0000
4.0000
3.7333
3.2000
2.0000
0.0000
2.0000
8.0000
0.0000
4.0000
FVAL =
4.0000
EXITFLAG =
1
OUTPUT =
iterations: 7
algorithm: 'interior-point-legacy'
cgiterations: 0
message: 'Optimization terminated.'
constrviolation: 1.4211e-14
firstorderopt: 7.8638e-13

This was also solved using Mathematica. Here is the result, which confirms the above as
well. This command is from Mathematica help, and used it to apply to this problem:

1 SetAttributes[FindMinMax, HoldAll];
2 FindMinMax[{f_Max, cons_}, vars_, opts___?OptionQ] :=
3 With[{res = iFindMinMax[{f, cons}, vars, opts]}, res /; ListQ[res]];
4 iFindMinMax[{ff_Max, cons_}, vars_, opts___?OptionQ] :=
5 Module[{z, res, f = List @@ ff},
6 res = FindMinimum[{z, (And @@ cons) && (And @@ Thread[z >= f])},
7 Append[Flatten[{vars}, 1], z], opts];
8 If[ListQ[res], {z /. res[[2]], Thread[vars -> (vars /. res[[2]])]}]];
9 FindMinMax[{Max[{1/30 x + 1/15 y, 3/10 x + 1/5 y, 2 x + 1/2 y, x + y}], {x >=
10 0, y >= 0, 2 x + 2 y <= 10, -2 x - 2 y <= 0, y >= 1.5 x + 4}}, {x, y}]

˙

And the output is
{4., {x -> 0., y -> 4.}}

Which is the same.

4.6.3 Problem 3

252

4.6. HW 6 CHAPTER 4. HWS

Barmish

ECE 719 – Homework Diet

The table on the page to follow comes from a bestseller of the sixties,
“Let’s Eat to Keep Fit,” by Adelle Davis. Let ui, per labelling in the
table, be the number of measures (quarts, cups cubes, etc.) of food i to be
consumed. Now formulate a standard form linear programming problem
to minimize the total cost of daily feeding while satisfying the following
conditions:

(i) Minimum and maximum daily allowances should be met; see table.

(ii) Daily potassium intake should be within 15% of sodium intake.

(ii) Daily calcium intake should be at least 75% of daily phosphorous
intake.

(a) Solve the LP above, indicating both the optimal solution and opti-
mal cost.

(b) Davis recommends that greater amounts of fat in the diet should be
accompanied by greater vitamin B intake. To incorporate such a con-
straint let the amount of B1 and B2 be γ(the amount of fat). Now, with
this added constraint, re-run your LP for various values of γ.

Summarize all your work with appropriate commentary.

B o.

t
o €
?

.
t\

<
g o 1 x

a.
r

f| o o o D t

4'

o l
f

5
P o t o :

6 o o t o o o :. o o

o
 o

'
5

t

= o I 9, c t o

F
C

t
l

o
o

c
t

{
lt -

o
=

0
,

o o - o o t
6

o
r

@

i,
ar

l

8
d

E

- rO
C

'
C

'

o
o

u
g

l
c,

ct P

o
t

s

(r
l m G
I

G
I 6 U
I o ol 3 g |D C
\ o =
.

o o a!

! o , o o U
t o r| t .D cl c\ D I

3 o : o o, f :- 2 o g C
T

o

c
t

{6
t

ft
I ir

iP
e

F
S

-
!

5
-

9
.

.
r

-

d
3

I
E

;
1

6
'=

i6
:

.

e
-

:
'

c

I
i

e
a

8

[
g

s .D
o

t
'

6

:
:

:
o

.

i
 :

:
:

l,
lJ

ur

c
,

ia
o

o

9
.

o
!.

I

3
I

o o

f t D
' g o t O
l t o o L c, c,

3 .|
.

X

o
C

I
r

3
l

t
=

o
<

!
o

:
i

'
D

o
t

t
o

'
o

g
.

o
.

o a L .c c { t o c t ? U t o q - o ; E r! t

'6 I

oE
5

8
8

a F
o

o

P
P

h

6
b

i3

i
o

o
(.

,
C

,
C

'
!

l
j

l
l

l
c

t @

l
8

l
1

l
l

l
l

c
to

c
.

ct

ut

gt

o
o

o
J

V
P

A
'

ltr

t\,

an

o
aE

3r

t
ct

It

C
^

U
N

N
C

'
U

&

o
r

g
O

L
'-

b

tv

ct

ct

@
N

r
F

5
l

,
l

U
5

C
l

a
o

o

t
l

s

gr

cr

c,

N cr
i

o
c)

N
'

g
t

N
O

C
'

C
'

o
o

o

C
'

o
i

-
o

C
'

C
'

C
I

E
H

S
u

o
rt

\,

g
r

o
c

,

r,
J

P
P

N
F

} -
F

B
d

t

N
g

E

3
d

E

H
5

;

P
o

o
B

o
P

r
-

b
L

r
i.

o
G

tc
r

o o C
'

o
c

t
br

b.

ir

3 :r o I ,a 3 a

oi rO

t
;

ex
b B

e
5 I

!'l
.E

E

l
8

s s 3 f h

s ae

s
td

o
se

61
s

-E
/ ?*

l
se

l
$9

 I
$

@
l

A
J

E o C
'

h, C
'

3
g

s

ao
cl

C
I

l
d

l
o

Figure 4.64: problem 3 description

253

4.6. HW 6 CHAPTER 4. HWS

4.6.3.1 Part(a)

The variables are given in this table

variable description cost per unit calories potassium (mg) sodium (mg) calcium (mg) phosphorus (mg)

𝑢1 whole milk 0.4 660 210 75 1140 930
𝑢2 ice cream 0.35 300 170 140 175 150
𝑢3 Eggs 0.15 220 140 338 60 222
𝑢4 Cheese 0.05 70 30 180 133 128
𝑢5 Beef 0.25 185 340 110 10 158
𝑢6 Broiled chicken 0.12 185 350 50 10 250
𝑢7 Baked vegetable 0.25 200 585 235 22 344
𝑢8 French fried 0.07 155 510 6 9 6
𝑢9 Frozen Grain 0.30 330 1315 4 69 115
𝑢10 Rice 0.25 677 300 6 53 244

Since the goal is to minimize the total cost of daily feeding, then

𝐽 (𝑢) = 0.4𝑢1 + 0.35𝑢2 + 0.15𝑢3 + 0.05𝑢4 + 0.25𝑢5 + 0.12𝑢6 + 0.25𝑢7 + 0.07𝑢8 + 0.30𝑢9 + 0.25𝑢10

To be able to express the constraints, we need to first convert the minerals to same units
used in 𝐽 (𝑢). For example, one 𝑢1 is one qt, which is 976 grams. The mineral calcium is 1.14
gram, therefore in units of 𝑢1 it becomes 1.114

976 𝑢1, the same for all other minerals. Hence
the above table becomes (where now each mineral is fraction of unit)

variable description cost per unit calories potassium) sodium (mg) calcium (mg) phosphorus (mg)

𝑢1 whole milk 0.4 660 0.210
976

0.075
976

1.140
976

0.930
976

𝑢2 ice cream 0.35 300 0.17
188

0.14
188

0.175
188

0.15
188

𝑢3 Eggs 0.15 220 0.14
128

0.338
128

0.06
128

0.222
128

𝑢4 Cheese 0.05 70 0.03
17

0.18
17

0.133
17

0.128
17

𝑢5 Beef 0.25 185 0.34
85

0.11
85

0.01
85

0.158
85

𝑢6 Broiled chicken 0.12 185 0.35
85

0.05
85

0.01
85

0.25
85

𝑢7 Baked vegetable 0.25 200 0.585
100

0.235
100

0.022
100

0.344
100

𝑢8 French fried 0.07 155 0.51
60

0.006
60

0.009
60

0.006
60

𝑢9 Frozen Grain 0.30 330 1.315
210

0.004
210

0.069
210

0.115
210

𝑢10 Rice 0.25 677 0.3
187

0.006
187

0.053
187

0.244
187

Now we formulate each constraint. Let 𝐴 be the total daily calories given by

𝐴 = 660𝑢1 + 300𝑢2 + 220𝑢3 + 70𝑢4 + 185𝑢5 + 185𝑢6 + 200𝑢7 + 155𝑢8 + 330𝑢9 + 677𝑢10

Hence constraint (i) in the problem becomes

𝐴 ≥ 2400
𝐴 ≤ 2800

For formulating constraint (ii), let 𝐵 be the daily potassium and 𝐶 be the daily sodium

𝐵 =
0.210
976

𝑢1 +
0.17
188

𝑢2 +
0.14
128

𝑢3 +
0.03
17

𝑢4 +
0.34
85

𝑢5 +
0.35
85

𝑢6 +
0.585
100

𝑢7 +
0.51
60

𝑢8 +
1.315
210

𝑢9 +
0.3
187

𝑢10

𝐶 =
0.075
976

𝑢1 +
0.14
188

𝑢2 +
0.338
128

𝑢3 +
0.18
17

𝑢4 +
0.11
85

𝑢5 +
0.05
85

𝑢6 +
0.235
100

𝑢7 +
0.006
60

𝑢8 +
0.004
210

𝑢9 +
0.006
187

𝑢10

Hence constraint (ii) in the problem becomes

𝐵 ≤ 1.15𝐶
𝐵 ≥ 0.85𝐶

For formulating constraint (iii), let 𝐷 be the daily calcium and 𝐸 be the daily phosphorus

𝐷 =
1.140
976

𝑢1 +
0.175
188

𝑢2 +
0.06
128

𝑢3 +
0.133
17

𝑢4 +
0.01
85

𝑢5 +
0.01
85

𝑢6 +
0.022
100

𝑢7 +
0.009
60

𝑢8 +
0.069
210

𝑢9 +
0.053
187

𝑢10

𝐸 =
0.930
976

𝑢1 +
0.15
188

𝑢2 +
0.222
128

𝑢3 +
0.128
17

𝑢4 +
0.158
85

𝑢5 +
0.25
85

𝑢6 +
0.344
100

𝑢7 +
0.006
60

𝑢8 +
0.115
210

𝑢9 +
0.244
187

𝑢10

Hence constraint (iii) in the problem becomes

254

4.6. HW 6 CHAPTER 4. HWS

𝐷 ≥ 0.75𝐸

Therefore the LP problem is

min 𝐽 (𝑢)
𝑠.𝑡. 𝐴 ≥ 2400

𝐴 ≤ 2800
𝐵 ≤ 1.15𝐶
𝐵 ≥ 0.85𝐶
𝐷 ≥ 0.75𝐸

Converting to standard form and using 𝑥𝑖 instead of 𝑢𝑖 the above becomes

min 𝐽 (𝑥) = 0.4𝑥1 + 0.35𝑥2 + 0.15𝑥3 + 0.05𝑥4 + 0.25𝑥5 + 0.12𝑥6
+0.25𝑥7 + 0.07𝑥8 + 0.30𝑥9 + 0.25𝑥10

subject to 𝐴 − �̃�11 = 2400
𝐴 + �̃�12 = 2800

𝐵 + �̃�13 − 1.15𝐶 = 0
𝐵 − �̃�14 − 0.85𝐶 = 0
𝐷 − �̃�15 − 0.75𝐸 = 0

In full form, the above is

min 𝐽 (𝑥) = 0.4𝑥1 + 0.35𝑥2 + 0.15𝑥3 + 0.05𝑥4 + 0.25𝑥5 + 0.12𝑥6 + 0.25𝑥7 + 0.07𝑥8 + 0.30𝑥9 + 0.25𝑥10
𝑠.𝑡. 660𝑥1 + 300𝑥2 + 220𝑥3 + 70𝑥4 + 185𝑥5 + 185𝑥6 + 200𝑥7 + 155𝑥8 + 330𝑥9 + 677𝑥10 − �̃�11 = 2400

660𝑥1 + 300𝑥2 + 220𝑥3 + 70𝑥4 + 185𝑥5 + 185𝑥6 + 200𝑥7 + 155𝑥8 + 330𝑥9 + 677𝑥10 + �̃�12 = 2800
0.210
976 𝑥1 +

0.17
188 𝑥2 +

0.14
128 𝑥3 +

0.03
17 𝑥4 +

0.34
85 𝑥5 +

0.35
85 𝑥6 +

0.585
100 𝑥7 +

0.51
60 𝑥8 +

1.315
210 𝑥9 +

0.3
187𝑥10 + �̃�13 − 1.15 �

0.075
976 𝑥1 +

0.14
188 𝑥2 +

0.338
128 𝑥3 +

0.18
17 𝑥4 +

0.11
85 𝑥5 +

0.05
85 𝑥6 +

0.235
100 𝑥7 +

0.006
60 𝑥8 +

0.004
210 𝑥9 +

0.006
187 𝑥10� = 0

0.210
976 𝑥1 +

0.17
188 𝑥2 +

0.14
128 𝑥3 +

0.03
17 𝑥4 +

0.34
85 𝑥5 +

0.35
85 𝑥6 +

0.585
100 𝑥7 +

0.51
60 𝑥8 +

1.315
210 𝑥9 +

0.3
187𝑥10 − �̃�14 − 0.85 �

0.075
976 𝑥1 +

0.14
188 𝑥2 +

0.338
128 𝑥3 +

0.18
17 𝑥4 +

0.11
85 𝑥5 +

0.05
85 𝑥6 +

0.235
100 𝑥7 +

0.006
60 𝑥8 +

0.004
210 𝑥9 +

0.006
187 𝑥10� = 0

1.140
976 𝑥1 +

0.175
188 𝑥2 +

0.06
128 𝑥3 +

0.133
17 𝑥4 +

0.01
85 𝑥5 +

0.01
85 𝑥6 +

0.022
100 𝑥7 +

0.009
60 𝑥8 +

0.069
210 𝑥9 +

0.053
187 𝑥10 − �̃�15 − 0.75 �

0.930
976 𝑥1 +

0.15
188 𝑥2 +

0.222
128 𝑥3 +

0.128
17 𝑥4 +

0.158
85 𝑥5 +

0.25
85 𝑥6 +

0.344
100 𝑥7 +

0.006
60 𝑥8 +

0.115
210 𝑥9 +

0.244
187 𝑥10� = 0

Simplifying gives

min 𝐽 (𝑥) = 0.4𝑥1 + 0.35𝑥2 + 0.15𝑥3 + 0.05𝑥4 + 0.25𝑥5 + 0.12𝑥6 + 0.25𝑥7 + 0.07𝑥8 + 0.3𝑥9 + 0.25𝑥10
𝑠.𝑡. 660𝑥1 + 300𝑥2 + 220𝑥3 + 70𝑥4 + 185𝑥5 + 185𝑥6 + 200𝑥7 + 155𝑥8 + 330𝑥9 + 677𝑥10 − �̃�11 = 2400

660𝑥1 + 300𝑥2 + 220𝑥3 + 70𝑥4 + 185𝑥5 + 185𝑥6 + 200𝑥7 + 155𝑥8 + 330𝑥9 + 677𝑥10 + �̃�12 = 2800
1.268 × 10−4𝑥1 + 4.787 × 10−5𝑥2 − 1.943 × 10−3𝑥3 − 1.041 × 10−2𝑥4 + 2.512 × 10−3𝑥5 + 3.441 × 10−3𝑥6 + 3.148 × 10−3𝑥7 + 8.385 × 10−3𝑥8 + 0.006𝑥9 + 1.567 × 10−3𝑥10 + �̃�13 = 0
1.499 × 10−4𝑥1 + 2.713 × 10−4𝑥2 − 1.151 × 10−3𝑥3 − 7.235 × 10−3𝑥4 + 0.003𝑥5 + 3.618 × 10−3𝑥6 + 3.853 × 10−3𝑥7 + 8.415 × 10−3𝑥8 + 6.246 × 10−3𝑥9 + 1.577 × 10−3𝑥10 − �̃�14 = 0
4.534 × 10−4𝑥1 + 3.325 × 10−4𝑥2 − 8.32 × 10−4𝑥3 + 2.176 × 10−3𝑥4 − 1.277 × 10−3𝑥5 − 2.088 × 10−3𝑥6 − 0.002𝑥7 + 7.5 × 10−5𝑥8 − 8.214 × 10−5𝑥9 − 6.952 × 10−4𝑥10 − �̃�15 = 0

255

4.6. HW 6 CHAPTER 4. HWS

Therefore 𝑐𝑇𝑥 becomes

min 𝑐𝑇𝑥 = �0.4 0.35 0.15 0.05 0.25 0.12 0.25 0.07 0.3 0.25 0 0 0 0 0�

⎛
⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9
𝑥10
�̃�11
�̃�12
�̃�13
�̃�14
�̃�15

⎞
⎟⎟⎟⎠

subject to 𝐴𝑥 = 𝑏

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

600 300 220 70 185 185 200 55 330 677 −1 0 0 0 0
600 300 220 70 185 185 200 55 330 677 0 1 0 0 0

1.267 × 10−4 4.787 × 10−5 −1.943 × 10−3 −1.041 × 10−2 2.512 × 10−3 3.441 × 10−3 3.148 × 10−3 8.385 × 10−3 0.006 1.567 × 10−3 0 0 1 0 0
1.498 × 10−4 2.712 × 10−4 −1.150 × 10−3 −7.235 × 10−3 0.003 3.617 × 10−3 3.852 × 10−3 8.415 × 10−3 6.245 × 10−3 1.577 × 10−3 0 0 0 −1 0
4.534 × 10−4 3.324 × 10−4 −8.320 × 10−4 2.176 × 10−3 −1.276 × 10−3 −2.088 × 10−3 −0.002 7.5 × 10−5 −8.214 × 10−5 −6.952 × 10−4 0 0 0 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9
𝑥10
�̃�11
�̃�12
�̃�13
�̃�14
�̃�15

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2400
2800
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The above is now solved using Matlab linprog. The following is the result, followed by the
Matlab code used.

𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =

⎛
⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9
𝑥10
�̃�11
�̃�12
�̃�13
�̃�14
�̃�15

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0
0
0

1.0792
0
0
0

0.2889
0
3.41
0
400
0.0035
0
0

⎞
⎟⎟⎟⎠

In terms of raw 𝑢𝑖 variables, the above says to buy 2

1.0792 cube of cheese, and 2.889 pieces of french fried and 3.41 rice cups

2This seems to meet the requirements, but it does not look like a healthy diet actually?

256

4.6. HW 6 CHAPTER 4. HWS

4.6.3.1.1 Veri�cation: Calories from the above is

(1.0792) (70) + (0.2889) (155) + (3.41) (677) = 2428.9

Which is within daily allowance OK. Potassium from the above is

(1.0792) �
0.03
17 � + (0.2889) �

0.51
60 �

+ (3.41) �
0.3
187�

= 9.831 mg

While sodium from the above is

(1.0792) �
0.18
17 �

+ (0.2889) �
0.006
60 � + (3.41) �

0.006
187 � = 10.1565 mg

Hence Potassium is within 15% of sodium OK. Daily calcium from above is

(1.0792) �
0.133
17 � + (0.2889) �

0.009
60 � + (3.41) �

0.053
187 � = 9.453 mg

While daily phosphorus is

(1.0792) �
0.128
17 � + (0.2889) �

0.006
60 � + (3.41) �

0.244
187 � = 12.6 mg

Hence Daily calcium is at least 75% of daily phosphorus OK. All verified OK. The corre-
sponding optimal daily cost is

𝐽∗ = 0.9267 dollars� �
1 function nma_HW6_problem_3
2 %Solves third problem, HW 6, ECE 719
3 %Nasser M. Abbasi
4

5 c = [0.4 0.35 0.15 0.05 0.25 0.12 0.25 0.07 0.3 0.25 0 0 0 0 0];
6 A = [600 300 220 70 185 185 200 55 330 677 -1 0 0 0 0;
7 600 300 220 70 185 185 200 55 330 677 0 1 0 0 0;
8 1.2679*10^(-4),4.7872*10^(-5),-1.9430*10^(-3),�...
9 -1.0412*10^(-2),...
10 2.5118*10^(-3),3.4412*10^(-3),3.1475*10^(-3),8.385*10^(-3),...
11 0.00624,1.5674*10^(-3),0, 0, 1, 0, 0;
12 1.4985*10^(-4),2.7128*10^(-4),-1.1508*10^(-3),...
13 -7.2353*10^(-3),...
14 0.0029,3.6176*10^(-3),3.8525*10^(-3),8.415*10^(-3),...
15 6.2457*10^(-3),...
16 1.577*10^(-3),0, 0, 0, -1, 0;
17 4.5338*10^(-4),3.3245*10^(-4),-8.3203*10^(-4),...
18 2.1765*10^(-3),...
19 -1.2765*10^(-3),-2.0882*10^(-3),-0.00236,7.5*10^(-5),...
20 -8.2143*10^(-5),...
21 -6.9519*10^(-4), 0, 0, 0, 0, -1];
22 b=[2400 2800 0 0 0];
23 options = optimset('LargeScale','off','Simplex','on');
24 [X,FVAL,EXITFLAG,OUTPUT]=linprog(c,[],[],A,b,zeros(size(c)),...
25 [],[],options)
26 end� �

The output from the above is
Optimization terminated.
X =
0
0
0
1.0792
0
0
0
0.2889
0
3.4100

257

4.6. HW 6 CHAPTER 4. HWS

0
400.0000
0.0035
0
0
FVAL =
0.9267
EXITFLAG =
1
OUTPUT =
iterations: 0
algorithm: 'simplex'
cgiterations: []
message: 'Optimization terminated.'
constrviolation: 4.3368e-19
firstorderopt: 5.5511e-17

4.6.3.2 part(b)

Now we add a new constraint, which is 𝐵1 + 𝐵2 = 𝛾(𝑓𝑎𝑡). In terms of 𝑢𝑖, this becomes

𝐵1 =
0.00032
976

𝑢1 +
0.0006
210

𝑢9 +
0.0003
187

𝑢10

And

𝐵2 =
0.0017
976

𝑢1 +
0.0003
188

𝑢2 +
0.0004
128

𝑢3 +
0.0001
17

𝑢4 +
0.0001
85

𝑢6 +
0.0001
210

𝑢9

And

𝑓𝑎𝑡 =
40
976

𝑢1 +
18
188

𝑢2 +
16
128

𝑢3 +
6
17
𝑢4 +

10
85
𝑢5 +

9
85
𝑢6 +

8
100

𝑢7 +
7
60
𝑢8

Hence the new constraint is

(𝐵1 + 𝐵2) − 𝛾 �𝑓𝑎𝑡� = 0

Converting to standard LP form, the above becomes

�2.06976 × 10−6 −
5
122

𝛾� 𝑥1 + �1.59574 × 10−6 −
9
94

𝛾� 𝑥2 + �3.125 × 10−6 −
1
8
𝛾� 𝑥3 + �5.88235 × 10−6 −

6
17

𝛾� 𝑥4

−
2
17

𝛾𝑥5 + �1.17647 × 10−6 −
9
85

𝛾� 𝑥6 −
2
25

𝛾𝑥7 −
7
60

𝛾𝑥8 + 3.33333 × 10−6𝑥9 + 1.604 × 10−6𝛾𝑥10 = 0

Now the new 𝐴𝑥 = 𝑏 becomes (𝑐𝑇𝑥 do not change from part(a) and remain the same).

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

600 300 220 70 185 185 200 55 330 677 −1 0 0 0 0
600 300 220 70 185 185 200 55 330 677 0 1 0 0 0

1.268 × 10−4 4.787 × 10−5 −1.943 × 10−3 −1.041 × 10−2 2.512 × 10−3 3.441 × 10−3 3.148 × 10−3 8.385 × 10−3 0.006 1.567 × 10−3 0 0 1 0 0
1.499 × 10−4 2.713 × 10−4 −1.151 × 10−3 −7.235 × 10−3 0.003 3.618 × 10−3 3.853 × 10−3 8.415 × 10−3 6.2467 × 10−3 1.577 × 10−3 0 0 0 −1 0
4.534 × 10−4 3.325 × 10−4 −8.32 × 10−4 2.177 × 10−3 −1.277 × 10−3 −2.088 × 10−3 −0.003 7.5 × 10−5 −8.214 × 10−5 −6.952 × 10−4 0 0 0 0 −1

2.06976 × 10−6 − 0.03279𝛾 �1.59574 × 10−6 − 0.031915𝛾� �3.125 × 10−6 − 0.1016𝛾� �5.88235 × 10−6 − 0.2353𝛾� −0.28235𝛾 �1.17647 × 10−6 − 0.27058𝛾� −0.3𝛾 −0.01667𝛾 �3.33333 × 10−6 − 0.00953𝛾� −0.0749𝛾 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9
𝑥10
�̃�11
�̃�12
�̃�13
�̃�14
�̃�15

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2400
2800
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

258

4.6. HW 6 CHAPTER 4. HWS

The above was solve in Matlab for di�erent values of 𝛾.For 𝛾 = 0.00001, the optimal 𝑥 was

𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =

⎛
⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9
𝑥10
�̃�11
�̃�12
�̃�13
�̃�14
�̃�15

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0
0
0

4.2150
6.8174
0
0

3.0043
0

1.0022
0
400
0

0.0161
0

⎞
⎟⎟⎟⎠

With optimal 𝐽∗ = 2.376 dollars. For 𝛾 = 0.00002, the optimal 𝑥 was

𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =

⎛
⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9
𝑥10
�̃�11
�̃�12
�̃�13
�̃�14
�̃�15

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0
0
0

2.0750
0
0
0

1.1779
0

3.2348
0
400
0.0067
0

0.0024

⎞
⎟⎟⎟⎠

259

4.6. HW 6 CHAPTER 4. HWS

With optimal 𝐽∗ = 0.9949 dollars. For 𝛾 = 0.00003, the optimal 𝑥 was

𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =

⎛
⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9
𝑥10
�̃�11
�̃�12
�̃�13
�̃�14
�̃�15

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0
0
0

1.0712
0
0
0

0.2078
0.1119
3.3629
0
400
0.0034
0
0

⎞
⎟⎟⎟⎠

With optimal 𝐽∗ = 0.9424 dollars. For 𝛾 = 0.00004, the optimal 𝑥 was

𝑥𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =

⎛
⎜⎜⎜⎝

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9
𝑥10
�̃�11
�̃�12
�̃�13
�̃�14
�̃�15

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

0.3431
0
0

0.8519
0
0
0

0.7094
2.8071
0
0
400
0

0.0027
0

⎞
⎟⎟⎟⎠

With optimal 𝐽∗ = 1.0944 dollars.When going more than 𝛾 = 0.00004, say 𝛾 = 0.00005,
Matlab was not able to obtain solution using simplex method. The message was "Exiting:
The constraints are overly stringent; no feasible starting point found"
Exiting: The constraints are overly stringent;

no feasible starting point found.
X =
0
0
0
0
0
0
0
0
0
0
-2400

260

4.6. HW 6 CHAPTER 4. HWS

2800
0
0
0
FVAL =
0
EXITFLAG =
-2
OUTPUT =
iterations: 0
algorithm: 'simplex'
cgiterations: []
message: 'Exiting: The constraints are overly stringent;

no feasible starting\U{2026}'
constrviolation: 2400
firstorderopt: 0.4000

When going smaller than 𝛾 = 0.00001 same problem was seen. Out of these 𝛾 values,
𝛾 = 0.00003 gave the least cost of 0.9424 dollars.� �

1 function nma_HW6_problem_3_part_b
2 %Solves third problem, HW 6, ECE 719
3 %Nasser M. Abbasi
4

5 lam=0.00001;
6 c = [0.4 0.35 0.15 0.05 0.25 0.12 0.25 0.07 0.3 0.25 0 0 0 0 0];
7 A = [600 300 220 70 185 185 200 55 330 677 -1 0 0 0 0;
8 600 300 220 70 185 185 200 55 330 677 0 1 0 0 0;
9 1.2679*10^(-4),4.7872*10^(-5),-1.9430*10^(-3),�...
10 -1.0412*10^(-2),...
11 2.5118*10^(-3),3.4412*10^(-3),3.1475*10^(-3),...
12 8.385*10^(-3),...
13 0.00624,1.5674*10^(-3),0, 0, 1, 0, 0;
14 1.4985*10^(-4),2.7128*10^(-4),-1.1508*10^(-3),...
15 -7.2353*10^(-3),...
16 0.0029,3.6176*10^(-3),3.8525*10^(-3),8.415*10^(-3),...
17 6.2457*10^(-3),...
18 1.577*10^(-3),0, 0, 0, -1, 0;
19 4.5338*10^(-4),3.3245*10^(-4),-8.3203*10^(-4),...
20 2.1765*10^(-3),...
21 -1.2765*10^(-3),-2.0882*10^(-3),-0.00236,7.5*10^(-5),...
22 -8.2143*10^(-5),...
23 -6.9519*10^(-4), 0, 0, 0, 0, -1;
24 (2.0697*10^(-6)-5/122*lam),(1.5957*10^(-6)-9/94*lam),...
25 (3.125*10^(-6)-1/8*lam),(5.8824*10^(-6)-6/17*lam),...
26 (-2/17*lam),(1.1765*10^(-6)-9/85*lam),-2/25*lam,-7/60*lam,...
27 3.3333*10^(-6),1.60428*10^(-6),0,0,0,0,0];
28 options = optimset('LargeScale','off','Simplex','on');
29 b=[2400 2800 0 0 0 0];
30 [X,FVAL,EXITFLAG,OUTPUT]=linprog(c,[],[],A,b,zeros(size(c)),...
31 [],[],options)
32 end� �

261

4.6. HW 6 CHAPTER 4. HWS

4.6.4 HW 6 key solution

{ . ?

L-

t (

I-lw ?atro I

o p () l

Notet f r possrb)e
5 hort cu r

'.
For ?ha,Se t,

lgt" f = r1r-tjrn s*ea,r c{
Y , * Yr

''
Y; . ga(,a nale :

I
tlove y i, I o tL, ?€r
SV,rt rd, ge$.

u

& = +
x7 = / , ,
X t : - o

i- tr --1
& . i ; {

i
' t

I
L c I

I r-r
P l i i

L V

\-/ J
4 ^ l

I - \ f -)| (J \./

r 'nd

: " i- . r l
-' , l

A n r r = t A I t l

IJ n(r,.J -

l
a
\ -ned

.F\

[o c

[i , . , 1 b^s i< Jn"r , t fu so l r inn

r I l l

1kt l attlea,t

N, r -

/ /

(_ L

- / (- t\ J I

r - - - \\-/ \)

. . - l L r

L , ' - 1 q ! l p q . . l

'2_

7

- (;

z

)

l, ' ,i f

X"

I,

n

11 o
{J

X, -)

r l

I

I

-1

t o

t l

|1+ KE

O q ,

Y,

I

X q

(-

I

U I

I t

- t

t ")

o

t O O

t l *)
o

a

c r

o l

(-/ |
I

I' L l
I

l o

\-/

- trV

I

L)

7N/i

1 r (-
- l ' \

- J - l

262

4.6. HW 6 CHAPTER 4. HWS

{ i n c e

(
€ ' = . f i

5 in c-a

&
€

o

o

- l o

' I

V4 t/l \
I
t

7
-
Z-

; r
- v

anDr {

I r ')' \-/

/-) |
\J

o 0

o o

t / ,_

,
- t

, - l
- / \

1
L

I

. - t

(
r ' t 4

{

i s +La 4
vAOt I n l o U v € wtJ

:? il.;^, no I , Xx

I L / "

3 ' ,=R, - ?31, (< ' l\.::/
t I

3t = t?z "l(t
5

1 2 z - O , - l . S
, \) * l \)

t f

1 7 (t = q + s ? 1 - / o

+ l o u \ _
1 /

- T t J
f

' u

l\ 0 + I * +- - t - > Y - - .

f . s . t g

- l o
Iu l

o 0

Ki= t",
?l= Pz-f r,'

Re -- R51 v ,,'

Pl = 3+t lo|t,t

z/-
/)

- 7/,_
t >

J

I C
o o
O t- o o

- / t

Q)
- '/JP

- l

5 incq - l) r 1 1 "

Ln* * (

R,"lt, , t t<,

R t ' = [1 .

f4 , - f t r+ .L ' f t2

?*f = K** i('e

z/,-
/ >

o
- k

(,/

X t : 3

l s - ' ^

l o
3/,o - y'r

I r

I

n

O

c o / ;
o l t

I o 3/,"
o o o

Js 1,.,-i r ov'

u [. ich

j

I

I

5 = X6= X ; = X t = . ,X + = X

0i s

X r = Z

d Y 1

/ t : 6

alnol a f -

'
u/,o

rvttst ne;^'L, te

I

r 5 l L "

I

\

I

L1

l o

-t+

' 'k) +/s
)

D , (

'/r , 6/f

I t - s

u- c/

?

r

?-)

r)

ne3""il re a/Acl

o l , - , ^ . L x 6

c
I

V

- ;

o
t
I

r1

\)

- - l

o

I

eiknn d rt

263

4.6. HW 6 CHAPTER 4. HWS

Solution Minimax

Based on exposition in class, we introduce a new variable z and add the following linear
inequalities to the original problem:

cT
1
x ≤ z;

1

30
x1 +

1

15
x2 − z ≤ 0;

cT
2
x ≤ z;

3

10
x1 +

1

5
x2 − z ≤ 0;

cT
3
x ≤ z; 2x1 +

1

2
x2 − z ≤ 0;

cT
4
x ≤ z; x1 + x2 − z ≤ 0.

Letting x3 = z be the new variable, the “new” LP expressed in inequality form Ax ≤ b
is described by

cnew = [0 0 1]T ;

Anew =

2 2 0
−2 −2 0
1.5 −1 0
1/30 1/15 −1
3/10 1/5 −1
2 1/2 −1
1 1 −1
−1 0 0
0 −1 0

;

bnew = [10 0 − 4 0 0 0 0 0 0]T .

Now, using linprog(cnew, Anew, bnew). we obtain optimal solution

u∗

0
= 0; u∗

1
= 4; J∗ = 4.

Remark: The solution above is very easy to obtain by plotting the constraint region in
the (x1, x2) plane. The vertex x∗

1
= 0, x∗

2
= 4 leads to J∗ = 4.

264

4.6. HW 6 CHAPTER 4. HWS

/

Lu r+h

X > O
t l

4 v = b

I
/

/
3oo

3oo

6

n lv ' l

l ? 9

4 4 o

7 1 o

o

o , 3

t lo- r.rg tf t lo

, ' l ' o
330 6f +

33o 6?+

z rL/

o . g 1 , 6

6 1 5 3

. t 4 1 o o

l q q O o o

. o . c 0 , n o

o . t o O

j l o O o

t 3 l 5 - t . (5 l 4 ') a - t , 1 5 1 6 o

1315-o , t6 r4
3oo- t ' tg f '6 o

6?- 0.15r trs 53- 0.? f t7t l r l o

. l z

I
o

I (zuos) .

z '13
- 7 '

r l t l
- t

, - l '

r 1 6
- I

r ' 1
1 r

r l &- l

/ t q
- l

trzd
, - l

r l
J

+ l

"u l
e , /

(

66o

66o

7"

11 I

I I t {c>

| 56o

I 5 6 o

0.tz

l . +

G

- t

o

[" v

LJ

6

<)

o

I

o

o

o

o

o

o

o

0

h

C)

o

o

o

o

o

o

o

o

o

?\

o

I

a,o-l.l5r+5

7to-6,Xttrs (+o-0.88{ /q0

I lqo -0.?E{ q30 t+5-o.19tl5o

- I

(A '. 1 3 ' 2 3)

q\n ct

1r,,"" ct '-- z S 0 o I o / o 80o 5,m 40,)ott t .o l . c +o

265

4.6. HW 6 CHAPTER 4. HWS

I[, LP run.*,','. ,n Mo+tob proJuas lha * tlar,T sa/u*\o,r.

r (=
r ,
l l
I
I

l*

' 15
{6

O o

{ r x 1

. I 5qz6q C

X t

z .q4L(825

d q

o .81 o tzz
{ ? - { d

o o
lcq

A

y r o

t q t n t l 6 l , 7 t 1 g q 1

16 6 ,9{6?

1t{ , /40,031

grl, oo3z?q zv. 6218Z6 o q t+ ,0++018 8 Eq .?6 lX

I , 6 6 o 3 0 L t 4 0 0 3+9, oo(q j ' l r

I l I-l hnt t cL 11'QQu^ r

t r l
vecltlahA s

LfPgivt on| ,o^ L\. Jon t

A b.^tcur,.Jo,t,.{ .* t , blo,^o.J
*',\ \, ",1k, o\f, c hrrse.

, cw\r J J i e. ^) fl ce ,

f + ." rU h" +1r" , t"q-t ",1 [o ol,tnuJ J i..t

ta+ s\orl/ b qccornpqil,ecf I qru{n,

tht ,^[k.) < B,^[t-)[,
[* , ^

0 [r I , $qZ(oL[
f1

z . Q ? t { 8 Z E
o . B l o l LZ

o
o
b

o. lq i l }1 |6
I . ? l q t q q

Wh,rh

*ot
r

qre do,

3ay.

c(̂ol

,,1\o*

O F

\ . {^,

c) rr o.
V,lqrn, n

rC" or*l

b 'n\oke, !

0'r

&t 'n[kr) = f (ui{o^,n e'^[f*)

266

4.6. HW 6 CHAPTER 4. HWS

f,,f ,nhke= [ut rd

vr L,r,^ I-3 ,n [k =

r z
_ l z \ , - \-

I o.3a+t." o{03
L

+
F I

V = ? Y) '

= L ' x

t T
L) x < o

l4tq u6*,,1

o6a.

\ l
I L

l r \1qI 'e df

-j-
o+o { - . .

B , +

,^:-
a,G$1

oF bz

l l

J
o .. (&vt')

I t

1 o . . .

lo rl

l 1 '
o d

\ rn ulo

(o

0. \+o

. . { a n s) . .

L L 7 3
l t '
J . l
o o J

l,?
Iv

o

(a
J i .
+ - o

2 7 , 7 ,: :1,
w ,N"J t "AJ dn nqr*t,{y l" .{4..

rT
7 K

T

,') rJJ.J

To 30+ (.do,rl,g Fno-.,|o[u*[* oF V , w cavt L)ie

d
cof f espenJrs I, -{he prru,rr"! obL,^uJ rv1t4r44uyr^

k = F t x * = 3 . q Z | S l l g 1 t l ? L l 1 l ,
u € t x *

S u***, oF re:u [f g ,
a

- l- t fte. qf,*,^nto vnnSoF Vq luas oF

:, 4-

[r- rt]

= AL 'x

]- A as

, t f t " - Ut"x

r o w h V , ^ ^ J o r)

Lr -d

" {1"

+k

uhr"ln a %u,[[so[rf'o^ .r,']5

0ro ,"/urlrrn t5 ,LL,*'i
Fr t-- z hor Fo, [=

nnor€, faf Cqn f* .foken
1:u tAl-\t5* vo\w5

vt !qwu,n

rn', \k, rco ct& yvr qrl ,tlt ,

.\'+tr nu*l* o? ..qlo-.t€' t

6 F '

d < s o

./

I

5sJ

l l
*o.Yu oToF K yreqn lL{t

B

d'

t* r[
Br4

c (1

horl ,r,'J|[. ̂ ou] cq$y ye s ;

Elnq li-uu p arzr uflptr [or,t

I r 5 tncrpqeeJ

267

4.6. HW 6 CHAPTER 4. HWS

r l I
+ne AMouI4 |

so trh'n

f L* q,,nou/J'

s \ n c e ' ' + r c '

of ,nJk o"J

Jacrlq<.5t s '

oF r)ca- q lso J '^'n ' ' f'o' {t wo (o4 {= 5o)

hrg l l rA .o [r r res .

trl I I
.13: ' t flru cyt-|,'""',

,
(,l+ { = 50, }}*v a're z'uo)

,"ro frq- {*' {ACIJ"
t

no :clul 'r" '
r! i luna

!,

/\so, Qt d' ,n crQa5est +lw qvnou.l aF "h'eese

I A OPcr e4 €r ? \A c2 ' l+ | b low tn 2 . .b ' f e t '
nn ' l ca f i

.,n^p,on.ol, [t +1n" losr of "v{'a{s qs ']'I^' tnnoua{:

oF ,*,,tk *J nltt J't'n''f' ' '
'
YL:'

^i'f,*t
lL' *'-l'il

f* loq^ qror*/ k*r CrJ"' wh"'in 'e wT uths*

V -- , . r'7- Tho* ' ' o\'o a' ̂ ")wi' ;r\cJ?rr5€ i^ {'{"

* o'n{ 'F 0ru'acrr lulce
^J t'*t|. Fazg

W hon {t ,', com;"&'tl 'on cQn

r,{hn,ri v 'olal'n3 c' cc'*�['a ' n {'

(f bo h'qh or io' lo') '

268

4.7. HW 7 CHAPTER 4. HWS

4.7 HW 7

4.7.1 Problem 1

Barmish

ECE 719 – Homework City Planners

A committee of city planners are to recommend the “best” allocation of
fire stations to three districts. They will base their decision on expected
property damage which they hope will be minimal. The table below reflects
differences in districts due to factors such as population, socioeconomic
makeup, etc. The budget restricts total number of stations to five and no
more than three stations are allowed in any district.

Stations 0 1 2 3

District - - - -
1 2 0.9 0.3 0.2
2 0.5 0.3 0.2 0.1
3 1.5 1.0 0.7 0.3

Expected Property Damage in Millions of Dollars

(a) Letting u(k) be the number of stations assigned to district k, find the
optimal allocation of stations minimizing total expected damage.

(b) Suppose that the budgetary restriction is replaced by the the require-
ment 3u(0)+u(1)+2u(2) ≤ 9 (in millions of dollars) reflecting differential
costs across districts. Now find the optimal allocation of stations.

Figure 4.65: problem 1 description

4.7.1.1 part a

Before applying dynamic programming to solve the problem, the solution was first found
by brute force in order to verify that the D.P. method when completed was correct. Using
brute force, the optimal arrangement is found to be:

Assign 2 stations to the first district, and 3 stations
to third district and no stations are assigned to the
second district, for a minimum total expected property
damage of 1.1 millions.

The brute force method also generated a list of all the arrangements (44 of them) and the
cost of each. For reference, here is the complete table with the small Matlab code used
to generated it in the appendix. After this, the graphical D.P. method called branch and
bound was used to verify this result.

district 1 district 2 district 3 cost in millions

0 0 0 4.0

0 0 1 3.5

0 0 2 3.2

0 0 3 2.8

0 1 0 3.8

0 1 1 3.3

0 1 2 3.0

0 1 3 2.6

0 2 0 3.7

269

4.7. HW 7 CHAPTER 4. HWS

0 2 1 3.2

0 2 2 2.9

0 2 3 2.5

0 3 0 3.6

0 3 1 3.1

0 3 2 2.8

1 0 0 2.9

1 0 1 2.4

1 0 2 2.1

1 0 3 1.7

1 1 0 2.7

1 1 1 2.2

1 1 2 1.9

1 1 3 1.5

1 2 0 2.6

1 2 1 2.1

1 2 2 1.8

1 3 0 2.5

1 3 1 2.0

2 0 0 2.3

2 0 1 1.8

2 0 2 1.5

2 0 3 1.1∗

2 1 0 2.1

2 1 1 1.6

2 1 2 1.3

2 2 0 2.0

2 2 1 1.5

2 3 0 1.9

3 0 0 2.2

3 0 1 1.7

3 0 2 1.4

3 1 0 2.0

3 1 1 1.5

3 2 0 1.9

Let the state 𝑥 be the number of stations available to be assigned at each stage. For example,
if we are at stage 2 and 𝑥 = 5, this means all 5 stations are available to be assigned to district
two. Stage one was the decision to decide on district one, stage two for the decision to
assign for district two and the final stage, stage three is for district three. This is arbitrary,
any order will give the same answer. One can decide on district three first, and then district
one for example. This makes no di�erence to the final result.

The following diagram shows the result found which agrees with the brute force method
above. The branch cost is the number above the arrow itself. The number in the small
rectangle at the node, is the minimal cost of the branch leaving that node. For example, in
stage three, when 𝑥 = 5, there are 4 branches that leave that node where (0,1,2,3) stations
can be assigned. The lowest cost of these branches is the one with cost 0.3 and that is what

270

4.7. HW 7 CHAPTER 4. HWS

goes in the small square next to the node. This process continues moving backward. This
method is the graphical equivalent to the Bellman dynamic equations and can be used
when the number of states is finite and the number of decisions at each state is finite also.

stage 3. Decide on district 3

x = 5
(x = 5)

(x = 4)

(x = 3)

(x = 2)

1.5
1.0

0.7

0.3

x = 4
(x = 4)

(x = 3)

(x = 2)

(x = 1)

1.5
1.0

0.7

0.3

x = 3
(x = 3)

(x = 2)

(x = 1)

(x = 0)

1.5
1.0

0.7

0.3

x = 2
(x = 2)

(x = 1)

(x = 0)

1.5
1.0

0.7

x = 1
(x = 1)

(x = 0)

1.5
1.0

x = 0
(x = 0)1.5

x = 5

0.5

x = 4

0.2

x = 3

x = 2

x = 1

x = 0

stage 2. Decide on district 2

.3

.3

.3

.7

0.3

0.2
.1

.5

0.5

0.3

.1

.6

.5

0.3

0.2

.1

1.0

1.5

.8

.5

0.3

0.2
.9

.5

stage 1. Decide on district 1

x = 5

x = 4

x = 3

x = 2

x = 1

x = 0

2

0.9

0.3

0.2

1.1

2

0
3

Thick lines indicates optimal branch cost. We see that optimal
assignment is 2 stations for district 1 and 3 stations for district 3.
The numbers in the small circles is number of stations assigned in
that stage. This matches the brute force method as expected

Figure 4.66: Part (a) solution using Dynamic programming

4.7.1.2 Part b

The constraint now is

3𝑢 (0) + 𝑢 (1) + 2𝑢 (2) ≤ 9 (1)

What this means, is that 3 times the number of stations assigned to district one plus one
times the number of stations assigned to district two, plus 2 times the number of stations
assigned to district three, must be smaller than 9 stations in total (millions of dollars in
the problem was a typo).

We see that part(a) does not meet this requirement. In part(a), we found 𝑢 (0) = 2, 𝑢 (1) =
0, 𝑢 (3) = 3, which means

3𝑢 (0) + 𝑢 (1) + 3𝑢 (2) = 3 (2) + 0 + 2 (3)
= 12

Which is larger than 9. We need to find again 𝑢 (0) , 𝑢 (1) , 𝑢 (2) which still satisfies part (a)
requirements of no more than 3 stations for a district and no more than total of 5 stations,
but now with the additional constraint of (1) in place at the same time.

The search was repeated using brute force to first find the combinations that meet this
criteria, and then the one with the minimum expected damage was selected.

271

4.7. HW 7 CHAPTER 4. HWS

Here is the new table found

district 1 district 2 district 3 cost in millions 3𝑢0 + 𝑢1 + 2𝑢2
0 0 0 4.0 0

0 0 1 3.5 2

0 0 2 3.2 4

0 0 3 2.8 6

0 1 0 3.8 1

0 1 1 3.3 3

0 1 2 3.0 5

0 1 3 2.6 7

0 2 0 3.7 2

0 2 1 3.2 4

0 2 2 2.9 6

0 2 3 2.5 8

0 3 0 3.6 3

0 3 1 3.1 5

0 3 2 2.8 7

1 0 0 2.9 3

1 0 1 2.4 5

1 0 2 2.1 7

1 0 3 1.7 9

1 1 0 2.7 4

1 1 1 2.2 6

1 1 2 1.9 8

1 2 0 2.6 5

1 2 1 2.1 7

1 2 2 1.8 9

1 3 0 2.5 6

1 3 1 2.0 8

2 0 0 2.3 6

2 0 1 1.8 8

2 1 0 2.1 7

2 1 1 1.6∗ 9

2 2 0 2.0 8

2 3 0 1.9 9

3 0 0 2.2 9

We see that the combination with the minimum expected damage is when

two stations are assigned to district one, and one sta-
tion assigned to district two and one station assigned
to district three with expected damage of 1.6 million
dollars.

The following diagram illustrates the branch and bound graph with the new optimal path
now highlighted in the think line.

272

4.7. HW 7 CHAPTER 4. HWS

stage 3. Decide on district 3

x = 5
(x = 5)

(x = 4)

(x = 3)

(x = 2)

1.5
1.0

0.7

0.3

x = 4
(x = 4)

(x = 3)

(x = 2)

(x = 1)

1.5
1.0

0.7

0.3

x = 3
(x = 3)

(x = 2)

(x = 1)

(x = 0)

1.5
1.0

0.7

0.3

x = 2
(x = 2)

(x = 1)

(x = 0)

1.5
1.0

0.7

x = 1
(x = 1)

(x = 0)

1.5
1.0

x = 0
(x = 0)1.5

x = 5

0.5

x = 4

0.2

x = 3

x = 2

x = 1

x = 0

stage 2. Decide on district 2

.3

.3

.3

.7

0.3

0.2
.1

.5

0.5

0.3

.1

.6

.5

0.3

0.2

.1

1.0

1.5

.8

.5

0.3

0.2
.9

.5

stage 1. Decide on district 1

x = 5

x = 4

x = 3

x = 2

x = 1

x = 0

2

0.9

0.3

0.2

1.1

2

1

1

Thick lines indicates optimal
branch cost with new constraint
for part(b).

Figure 4.67: Part (b) solution

273

4.7. HW 7 CHAPTER 4. HWS

The code used to part(b) is in the appendix.

4.7.1.3 appendix for problem 1

code to generate the first table for part(a)� �
1 function nma_HW7_ECE_719_prob_1()
2 %find cost using brute force search, to verify DP method
3 %HW 7, ECE 719, APril 23,2016
4 %Nasser M. Abbasi
5 cost_table = zeros(100,4); %place to put the cost
6 count_so_far = 0;
7 for i=0:3
8 j = 0; k = 0;
9 if sum([i j k])<=5
10 for j=0:3
11 k = 0;
12 if sum([i j k])<=5
13 for k = 0:3
14 if sum([i j k])<=5
15 count_so_far = count_so_far+1;
16 fprintf('count_so_far=%d, [%d,%d,%d]\n',�...
17 count_so_far,i,j,k);
18 cost_table(count_so_far,1:3)=[i j k];
19 cost_table(count_so_far,4)=find_cost([i j k]);
20 end
21 end
22 end
23 end
24 end
25 end
26

27 for i=1:count_so_far
28 fprintf('%d & %d & %d & %2.1f \\\\ \\hline\n',cost_table(i,1),...
29 cost_table(i,2),cost_table(i,3),cost_table(i,4));
30 end
31

32 [~,J]=min(cost_table(1:count_so_far,4));
33 fprintf('optimal allocation is \n');
34 cost_table(J,:)
35 end
36 %==========================
37 function I=find_cost(x)
38 tbl=[2,.9,.3,.2;
39 .5,.3,.2,.1;
40 1.5,1,.7,.3];
41 I= tbl(1,x(1)+1) + tbl(2,x(2)+1) + tbl(3,x(3)+1);
42 end� �

code to generate the first table for part(b)� �
1 function nma_HW7_ECE_719_prob_1_part_b()
2 %finds lowest cost with constraint that
3 %3*u(0)+u(1)+2*u(2)<=9 to find optinal case using brute force,
4 %to verify DP method
5 %HW 7, ECE 719, APril 30,2016
6 %Nasser M. Abbasi
7 cost_table = zeros(100,5); %place to put the cost
8 count_so_far = 0;
9 for i=0:3 %this is district 1
10 j = 0; k = 0;
11 if sum([i j k])<=5
12 for j=0:3 %this is district 2
13 k = 0;
14 if sum([i j k])<=5

274

4.7. HW 7 CHAPTER 4. HWS

15 for k = 0:3 %this is district 3
16 if sum([i j k])<=5
17 %check if 3*i+j+2*k <= 9 first
18 if 3*i+j+2*k <=9
19 count_so_far = count_so_far+1;
20 fprintf('count_so_far=%d, [%d,%d,%d], (3*i+j+2*k=%d) \n',�...
21 count_so_far,i,j,k,3*i+j+2*k);
22 cost_table(count_so_far,1:3)=[i j k];
23 cost_table(count_so_far,4)=find_cost([i j k]);
24 cost_table(count_so_far,5)=3*i+j+2*k;
25 end
26 end
27 end
28 end
29 end
30 end
31 end
32

33 for i=1:count_so_far
34 fprintf('%d & %d & %d & %2.1f & %d \\\\ \\hline\n',...
35 cost_table(i,1),cost_table(i,2),cost_table(i,3),...
36 cost_table(i,4),cost_table(i,5));
37 end
38

39 [~,J]=min(cost_table(1:count_so_far,4));
40 fprintf('optimal allocation is \n');
41 cost_table(J,:)
42 end
43 %==========================
44 function I=find_cost(x)
45 tbl=[2,.9,.3,.2;
46 .5,.3,.2,.1;
47 1.5,1,.7,.3];
48 I= tbl(1,x(1)+1) + tbl(2,x(2)+1) + tbl(3,x(3)+1);
49 end� �

4.7.2 Problem 2

Barmish

ECE 719 – Homework Pattern

Similar to the example studied in class, consider the dynamic program
described by scalar state equation

x(k + 1) = x(k)− u(k)

with cost function

J =
N−1∑
k=0

[x(k)− u(k)]2 + u2(k)

to be minimized. Verify that the optimal solution is is of the form

u∗(k) = γ(k)x(N − k)

and find a description of the optimal gain γ(k).

Figure 4.68: problem 2 description

The state equation is (using indices as subscripts from now on, in all that follows as it is
easier to read. Therefore 𝑥 (𝑁) is written as 𝑥𝑁 and similarly for 𝑢 (𝑁))

𝑥𝑘+1 = 𝑥𝑘 − 𝑢𝑘 (1)

275

4.7. HW 7 CHAPTER 4. HWS

The cost function to minimize is

𝐽 =
𝑁−1
�
𝑘=0

(𝑥𝑘 − 𝑢𝑘)
2 + 𝑢2𝑘 (2)

Now we apply Bellman dynamic equation. This diagram shows the overall process.

N0 1 . . . k . . .
L

terminal stage

x(k)x(k − L) x(N)

x(N − 1)

We always start from this stage,
and move left, using the Ballman
dynamic equations

initial state

Figure 4.69: Showing dynamic programming block diagram

The branch cost from 𝑥𝑁−1 with one step to go is

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1∈Ω𝑁−1

{𝐽 (𝑥𝑁−1, 𝑢𝑁−1) + Ψ (𝑥𝑁)}

Ψ (𝑥𝑁) is the terminal cost. Removing the terminal cost from the rest of the computation
to simplify things and replacing 𝐽 in the above from (2) gives

𝐼 (𝑥𝑁−1, 1) = min
𝑢𝑁−1∈Ω𝑁−1

{𝐽 (𝑥𝑁−1, 𝑢𝑁−1)}

= min
𝑢𝑁−1∈Ω𝑁−1

�(𝑥𝑁−1 − 𝑢𝑁−1)
2 + 𝑢2𝑁−1� (3)

Taking derivative in order to find optimal 𝑢∗𝑁−1 results in

𝑑𝐼 (𝑥𝑁−1, 1)
𝑢𝑁−1

= 0

2 (𝑥𝑁−1 − 𝑢𝑁−1) (−1) + 2𝑢𝑁−1 = 0
4𝑢𝑁−1 − 2𝑥𝑁−1 = 0

𝑢∗𝑁−1 =
1
2
𝑥𝑁−1

Using the above 𝑢∗𝑁−1 in (3) gives

𝐼∗ (𝑥𝑁−1, 1) = �𝑥𝑁−1 −
1
2
𝑥𝑁−1�

2

+ �
1
2
𝑥𝑁−1�

2

=
1
2
𝑥2𝑁−1

Going back one step

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2∈Ω𝑁−2

{𝐽 (𝑥𝑁−2, 𝑢𝑁−2) + 𝐼∗ (𝑥𝑁−1, 1)}

= min
𝑢𝑁−2∈Ω𝑁−2

�(𝑥𝑁−2 − 𝑢𝑁−2)
2 + 𝑢2𝑁−2 +

1
2
𝑥2𝑁−1�

Before taking derivatives, we have to make all the stages to be at 𝑁 − 2, and for this we use
the state equation to write 𝑥𝑁−1 in terms of 𝑥𝑁−2 and the above becomes

𝐼 (𝑥𝑁−2, 2) = min
𝑢𝑁−2∈Ω𝑁−2

�(𝑥𝑁−2 − 𝑢𝑁−2)
2 + 𝑢2𝑁−2 +

1
2
(𝑥𝑁−2 − 𝑢𝑁−2)

2�

= min
𝑢𝑁−2∈Ω𝑁−2

�
5
2
𝑢2𝑁−2 − 3𝑢𝑁−2𝑥𝑁−2 +

3
2
𝑥2𝑁−2� (4)

276

4.7. HW 7 CHAPTER 4. HWS

Now we take derivative to find optimal 𝑢∗𝑁−2

𝑑𝐼 (𝑥𝑁−2, 1)
𝑢𝑁−2

= 0

5𝑢𝑁−2 − 3𝑥𝑁−2 = 0

𝑢∗𝑁−2 =
3
5
𝑥𝑁−2

We go back to (4) and update with the optimal control found to obtain

𝐼∗ (𝑥𝑁−2, 2) =
5
2 �
3
5
𝑥𝑁−2�

2

− 3 �
3
5
𝑥𝑁−2� 𝑥𝑁−2 +

3
2
𝑥2𝑁−2

=
3
5
𝑥2𝑁−2

Going back one more step

𝐼 (𝑥𝑁−3, 3) = min
𝑢𝑁−3∈Ω𝑁−3

{𝐽 (𝑥𝑁−3, 𝑢𝑁−3) + 𝐼∗ (𝑥𝑁−2, 2)}

= min
𝑢𝑁−3∈Ω𝑁−3

�(𝑥𝑁−3 − 𝑢𝑁−3)
2 + 𝑢2𝑁−3 +

3
5
𝑥2𝑁−2�

Before taking derivatives, we have to make all the states to be at 𝑁 − 3, and for this we use
the state equation to write 𝑥𝑁−2 in terms of 𝑥𝑁−3 and the above becomes

𝐼 (𝑥𝑁−3, 3) = min
𝑢𝑁−3∈Ω𝑁−3

�(𝑥𝑁−3 − 𝑢𝑁−3)
2 + 𝑢2𝑁−3 +

3
5
(𝑥𝑁−3 − 𝑢𝑁−3)

2�

= min
𝑢𝑁−2∈Ω𝑁−2

�
13
5
𝑢2𝑁−3 −

16
5
𝑢𝑁−3𝑥𝑁−3 +

8
5
𝑥2𝑁−3� (5)

Now we take derivative to find optimal 𝑢∗𝑁−3

𝑑𝐼 (𝑥𝑁−3, 3)
𝑢𝑁−3

= 0

26
5
𝑢𝑁−3 −

16
5
𝑥𝑁−3 = 0

𝑢∗𝑁−3 =
8
13
𝑥𝑁−3

We go back to (5) and update the cost to obtain

𝐼∗ (𝑥𝑁−3, 3) =
13
5 �

8
13
𝑥𝑁−3�

2

−
16
5 �

8
13
𝑥𝑁−3� 𝑥𝑁−3 +

8
5
𝑥2𝑁−3

=
8
13
𝑥2𝑁−3

Let us do one more step backward,

𝐼 (𝑥𝑁−4, 4) = min
𝑢𝑁−4∈Ω𝑁−4

{𝐽 (𝑥𝑁−4, 𝑢𝑁−4) + 𝐼∗ (𝑥𝑁−3, 3)}

= min
𝑢𝑁−4∈Ω𝑁−4

�(𝑥𝑁−4 − 𝑢𝑁−4)
2 + 𝑢2𝑁−4 +

8
13
𝑥2𝑁−3�

Before taking derivatives, we have to make all the states to be at 𝑁 − 4, and for this we use
the state equation to write 𝑥𝑁−3 in terms of 𝑥𝑁−4 and the above becomes

277

4.7. HW 7 CHAPTER 4. HWS

𝐼 (𝑥𝑁−4, 4) = min
𝑢𝑁−4∈Ω𝑁−4

�(𝑥𝑁−4 − 𝑢𝑁−4)
2 + 𝑢2𝑁−4 +

8
13
(𝑥𝑁−4 − 𝑢𝑁−4)

2�

= min
𝑢𝑁−4∈Ω𝑁−4

�
34
13
𝑢2𝑁−4 −

42
13
𝑢𝑁−4𝑥𝑁−4 +

21
13
𝑥2𝑁−4� (6)

Now we take derivative to find optimal 𝑢∗𝑁−4

𝑑𝐼 (𝑥𝑁−4, 4)
𝑢𝑁−4

= 0

68
13
𝑢𝑁−4 −

42
13
𝑥𝑁−4 = 0

𝑢∗𝑁−4 =
21
34
𝑥𝑁−4

We go back to (6) and update to obtain

𝐼∗ (𝑥𝑁−4, 4) =
34
13 �

21
34
𝑥𝑁−4�

2

−
42
13 �

21
34
𝑥𝑁−4� 𝑥𝑁−4 +

21
13
𝑥2𝑁−4

=
21
34
𝑥2𝑁−4

This is so much fun, so let us do one more step backward,

𝐼 (𝑥𝑁−5, 5) = min
𝑢𝑁−5∈Ω𝑁−5

{𝐽 (𝑥𝑁−5, 𝑢𝑁−5) + 𝐼∗ (𝑥𝑁−4, 4)}

= min
𝑢𝑁−5∈Ω𝑁−5

�(𝑥𝑁−5 − 𝑢𝑁−5)
2 + 𝑢2𝑁−5 +

21
34
𝑥2𝑁−4�

Before taking derivatives, we have to make all the states to be at 𝑁 − 5, and for this we use
the state equation to write 𝑥𝑁−4 in terms of 𝑥𝑁−5 and the above becomes

𝐼 (𝑥𝑁−5, 5) = min
𝑢𝑁−5∈Ω𝑁−5

�(𝑥𝑁−5 − 𝑢𝑁−5)
2 + 𝑢2𝑁−5 +

21
34
(𝑥𝑁−5 − 𝑢𝑁−5)

2�

= min
𝑢𝑁−5∈Ω𝑁−5

�
89
34
𝑢2𝑁−5 −

55
17
𝑢𝑁−5𝑥𝑁−5 +

55
34
𝑥2𝑁−5� (7)

Now we take derivative to find optimal 𝑢∗𝑁−5

𝑑𝐼 (𝑥𝑁−5, 5)
𝑢𝑁−5

= 0

89
17
𝑢𝑁−5 −

55
17
𝑥𝑁−5 = 0

𝑢∗𝑁−5 =
55
89
𝑥𝑁−5

We go back to (7) and update to obtain

𝐼∗ (𝑥𝑁−5, 5) =
89
34 �

55
89
𝑥𝑁−5�

2

−
55
17 �

55
89
𝑥𝑁−5� 𝑥𝑁−5 +

55
34
𝑥2𝑁−5

=
55
89
𝑥2𝑁−5

Summary table of finding

278

4.7. HW 7 CHAPTER 4. HWS

𝑘 𝑢∗ (𝑁 − 𝑘) 𝐼∗ (𝑥𝑁−𝑘, 𝑘)

1 1
2𝑥𝑁−1

1
2𝑥

2
𝑁−1

2 3
5𝑥𝑁−2

3
5𝑥

2
𝑁−2

3 8
13𝑥𝑁−3

8
13𝑥

2
𝑁−3

4 21
34𝑥

2
𝑁−4

21
34𝑥

2
𝑁−4

5 55
89𝑥𝑁−5

55
89𝑥

2
𝑁−5

This is generated using bisection of the Fibonacci sequence, let 𝛾 (𝑘) = 𝛽(𝑘)
𝛼(𝑘) where

3

𝛽 (𝑘) = 3𝛽 (𝑘 − 1) − 𝛽 (𝑘 − 2)
𝛽 (0) = 0
𝛽 (1) = 1

And4

𝛼 (𝑘) = 3𝛼 (𝑘 − 1) − 𝛼 (𝑘 − 2)
𝛼 (0) = 1
𝛼 (1) = 1

Here is program which generates up to 𝑘 = 20
1 Clear[k];
2 alpha[k_] := alpha[k] = If[k == 0 || k == 1, 1,
3 3*alpha[k - 1] - alpha[k - 2]]
4 beta[k_] := beta[k] = If[k == 0, 0,
5 If[k == 1, 1, 3*beta[k - 1] - beta[k - 2]]];
6 Table[beta[k]/alpha[k + 1], {k, 1, 20}]

˙

which gives
1
2 ,

3
5 ,

8
13 ,

21
34 ,

55
89 ,

144
233 ,

377
610 ,

987
1597 ,

2584
4181 ,

6765
10946 ,

17711
28657 ,

46368
75025 ,

121393
196418 ,

317811
514229 ,

832040
1346269 ,

2178309
3524578 ,

5702887
9227465 ,

14930352
24157817 ,

39088169
63245986 ,

102334155
165580141

or numerically

{0.5, 0.6, 0.6153846153846154, 0.6176470588235294, 0.6179775280898876, 0.6180257510729614, 0.6180327868852459, 0.6180338134001252, 0.6180339631667066, 0.618033985017358, 0.6180339882053251, 0.6180339886704432, 0.618033988738303, 0.6180339887482036}

The golden ratio is

𝜑 =
1 + √5
2

= 1.6180339887482036

Therefore in the limit, for large 𝑘

𝑢∗ (𝑁 − 𝑘) = 1
𝜑𝑥 (𝑁 − 𝑘)

4.7.3 Problem 3

3sequence is https://oeis.org/A001906
4sequence is https://oeis.org/A001519

279

https://oeis.org/A001906
https://oeis.org/A001519

4.7. HW 7 CHAPTER 4. HWS

Barmish

ECE 719 – Homework Population

A discrete-time system has two populations levels described by the state
equations

x1(k + 1) = [1 + u2(k)]x1(k);

and

x2(k + 1) =
e−u(k)x1(k)

x1(k)
+ 2x2(k); k = 0, 1, . . . , N.

For the final stage, find the feedback control law u(N − 1) minimizing the
the total population

J = x1(N) + x2(N).

Figure 4.70: problem 3 description

Given

𝑥1 (𝑘 + 1) = �1 + 𝑢2 (𝑘)� 𝑥1 (𝑘)

𝑥2 (𝑘 + 1) =
𝑒−𝑢(𝑘)𝑥1(𝑘)

𝑥1 (𝑘)
+ 2𝑥2 (𝑘) 𝑘 = 0, 1,⋯ ,𝑁

And the goal is to minimize the objective function at the terminal stage 𝐽 = 𝑥1 (𝑁) + 𝑥2 (𝑁).
At stage 𝑁 − 1 with one step to go

𝐼 (𝑥 (𝑁 − 1) , 1) = min
𝑢(𝑁−1)∈Ω𝑁−1

{Ψ (𝑥 (𝑁))} (1)

Where Ψ(𝑥 (𝑁)) = 𝐼 (𝑥 (𝑁) , 0). Hence

𝐼 (𝑥 (𝑁 − 1) , 1) = min
𝑢(𝑁−1)∈Ω𝑁−1

{𝑥1 (𝑁) + 𝑥2 (𝑁)}

= min
𝑢(𝑁−1)∈Ω𝑁−1

�1 + 𝑢2 (𝑁 − 1)� 𝑥1 (𝑁 − 1) +
𝑒−𝑢(𝑁−1)𝑥1(𝑁−1)

𝑥1 (𝑁 − 1)
+ 2𝑥2 (𝑁 − 1)

Therefore 𝑑𝐼(𝑥(𝑁−1))
𝑑𝑢(𝑁−1) = 0 gives

0 = 2𝑢 (𝑁 − 1) 𝑥1 (𝑁 − 1) − 𝑒−𝑢(𝑁−1)𝑥1(𝑁−1)

𝑒−𝑢(𝑁−1)𝑥1(𝑁−1) = 2𝑢 (𝑁 − 1) 𝑥1 (𝑁 − 1)

This is of the form 𝑒−𝑧𝑥 = 2𝑧𝑥 where 𝑧 → 𝑢 (𝑁 − 1) and 𝑥 → 𝑥1 (𝑁 − 1), which has root at
𝑧 = 0.35173

𝑥 (using Mathematica), hence the control law is

𝑢∗ (𝑁 − 1) = 0.35173
𝑥1(𝑁−1)

4.7.4 Problem 4

280

4.7. HW 7 CHAPTER 4. HWS

Barmish

ECE 719 – Homework Floor

For the state equations

x1(k + 1) = min{x1(k), x2(k)}+ u(k)

and
x2(k + 1) = x1(k)u(k)

with initial condition

x1(0) = 1; x2(0) = −1,

performance index
J = min

k=1,2
x2(k)

and control restraint
u(k) ∈ Ωk = [−M, M],

find the optimal control policy u∗(0), u∗(1) maximizing J .

Figure 4.71: problem 4 description

The following diagram shows the layout of the stages we need to use. There are three
stages. 𝑘 = 2 is the terminal stage, and 𝑘 = 0 is the initial stage.

k = 0
initial stage

k = 1 k = 2
Terminal stage

I(x(1), 1)I(x(0), 2)
branch cost

I(x(1), 1) = maxu(1){min g(x(1))}
I(x(0), 2) = maxu(0){min{g(x(0)), I∗{x(1), 1}}

u∗(1)u∗(0)

branch cost

Figure 4.72: problem 4 stages

We have

𝐽 = min
𝑘=1,2

𝑥2 (𝑘)

𝑥1 (𝑘 + 1) = min {𝑥1 (𝑘) , 𝑥2 (𝑘)} + 𝑢 (𝑘)
𝑥2 (𝑘 + 1) = 𝑥1 (𝑘) 𝑢 (𝑘)

𝑥1 (0) = 1
𝑥2 (0) = −1

One step to go, where 𝑁 = 2

𝐼 (𝑥 (𝑁 − 1) , 1) = 𝐼 (𝑥 (2 − 1) , 1)
= 𝐼 (𝑥 (1) , 1)
= max

𝑢(1)∈Ω1
{𝑥2 (2)}

281

4.7. HW 7 CHAPTER 4. HWS

But 𝑥2 (2) = 𝑥1 (1) 𝑢 (1) from the state equation, hence

𝐼 (𝑥 (1) , 1) = max
𝑢(1)∈Ω1

{𝑥1 (1) 𝑢 (1)}

We need to find 𝑢 (1) which maximizes 𝑥1 (1) 𝑢 (1). Since 𝑢 (𝑘) ∈ Ω𝑘 = [−𝑀,𝑀] then

𝑢∗ (1) = 𝑀sign (𝑥 (1))

Therefore

𝐼∗ (𝑥 (1) , 1) = 𝑥1 (1) 𝑢∗ (1)
= 𝑥1 (1)𝑀 sign (𝑥 (1))
= 𝑀 |𝑥1 (1)|

Now we go one more step backward

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈Ω0

min {𝑥2 (1) , 𝐼∗ (𝑥 (1) , 1)}

But from state equation, 𝑥2 (1) = 𝑥1 (0) 𝑢 (0) and since 𝑥1 (0) = 1 then 𝑥2 (1) = 𝑢 (0) and the
above becomes

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈Ω0

min {𝑢 (0) ,𝑀 |𝑥1 (1)|} (1)

But

𝑥1 (1) = min {𝑥1 (0) , 𝑥2 (0)} + 𝑢 (0)
= min {1, −1} + 𝑢 (0)
= −1 + 𝑢 (0)

Therefore (1) becomes

𝐼 (𝑥 (0) , 2) = max
𝑢(0)∈Ω0

min {𝑢 (0) ,𝑀 |−1 + 𝑢 (0)|}

Let

𝐹 (𝑢 (0)) = min {𝑢 (0) ,𝑀 |−1 + 𝑢 (0)|}

We need to find max𝑢(0) min (𝐹 (𝑢 (0))). By making small program and adjusting 𝑀, to see
all the regions, the following result was found for 𝑢∗ (0)

𝑀 range optimal

0 ≤ 𝑀 ≤ √2 𝑢∗0 =
𝑀

1+𝑀

√2 < 𝑀 𝑢∗0 = 𝑀

The following is a plot of the small program written showing 𝐹 (𝑢 (0)) for first case 0 ≤
𝑀 ≤ √2 and another plot showing the case for √2 < 𝑀. No other cases were found. The
program allows one to move a slider to adjust 𝑀 and it finds the maximizing 𝑢∗ for 𝐹 (𝑢)
at each slider change.

282

4.7. HW 7 CHAPTER 4. HWS

Out[55]=

M? 1

M0=1 M/(1+M)= 1
2

Max at u0= 1
2

u0

M|u0-1|

0 1 2 3 4
u00.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4
u00.0

0.5

1.0

1.5

2.0

2.5

3.0
min{u0,M|u0-1|}

Figure 4.73: case for 0 ≤ 𝑀 ≤ √2

Out[55]=

M? 1.9

1.9

M0=1.9 M/(1+M)=0.655172
Max at u0=1.9

u0

M|u0-1|

0 1 2 3 4
u00.0

0.5

1.0

1.5

2.0

2.5

3.0

0 1 2 3 4
u00.0

0.5

1.0

1.5

2.0

2.5

3.0
min{u0,M|u0-1|}

Figure 4.74: case for 𝑀 ≥ √2

Source code for the above
1 Manipulate[
2 p0 = Plot[f[u0, M0], {u0, 0, 4}, PlotRange -> {{0, 4}, {0, 3}},
3 PlotLabel -> "min{u0,M|u0-1|}",
4 ImageSize -> 300, AxesLabel -> {"u0", None},
5 GridLines -> Automatic, GridLinesStyle -> LightGray];
6

7 p1 = Plot[u0, {u0, 0, 4}, PlotRange -> {{0, 4}, {0, 3}},
8 PlotStyle -> Blue, ImageSize -> 300,
9 AxesLabel -> {"u0", None}, GridLines -> Automatic,
10 GridLinesStyle -> LightGray];
11

12 p2 = Plot[M0*Abs[u0 - 1], {u0, 0, 4},
13 PlotRange -> {{0, 4}, {0, 3}},
14 PlotStyle -> Red, ImageSize -> 300];
15

16 u0Max = ArgMax[{Min[u0, M0*Abs[u0 - 1]], u0 >= -M0 && u0 <= M0}, u0];
17

18 p4 = Grid[{{Row[{"M0=", M0, " M/(1+M)=", M0/(1 + M0)}],
19 SpanFromLeft}, {Row[{"Max at u0=", u0Max}],
20 SpanFromLeft}, {Legended[Show[p1, p2],
21 Placed[SwatchLegend[{Blue, Red}, {"u0", "M|u0-1|"}],
22 {{0.7, 0.1}, {0, 0}}]], p0}},
23 Frame -> All];
24

25 p4,
26

27 {{M0, 1, "M?"}, 0, 4, 0.01, Appearance -> "Labeled"},
28 Initialization :> (
29 f[u0_, M0_] := Min[u0, M0*Abs[u0 - 1]]

283

4.7. HW 7 CHAPTER 4. HWS

30)
31]

˙

4.7.5 Problem 5

Barmish

ECE 719 – Homework Steady State

A discrete time linear system is described by the state equations

x1(k + 1) = x2(k); x2(k + 1) = x1(k) + u(k)

and cost function

J =
∞∑

k=0
2x2

1(k) + 2x1(k)x2(k) + x2
2(k) + 3u2(k)

With feedback control

u(k) = K1x1(k) + K2x2(k),

find optimal gains K1 and K2 minimizing J .

Figure 4.75: problem 5 description

⎛
⎜⎜⎜⎜⎜⎝
𝑥1 (𝑘 + 1)
𝑥2 (𝑘 + 1)

⎞
⎟⎟⎟⎟⎟⎠ =

𝐴

�������⎛
⎜⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1 (𝑘)
𝑥2 (𝑘)

⎞
⎟⎟⎟⎟⎟⎠ +

𝐵
⏞⎛⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠𝑢 (𝑘)

𝐽 =
∞
�
𝑘=0

2𝑥21 (𝑘) + 2𝑥1 (𝑘) 𝑥2 (𝑘) + 𝑥22 (𝑘) + 3𝑢2 (𝑘)

Since 𝐽 has the form 𝑥𝑇𝑄𝑥+ 𝑢𝑇𝑅𝑢, then we need to find 𝑄 first. (𝑄 is symmetric), therefore

2𝑥21 (𝑘) + 2𝑥1 (𝑘) 𝑥2 (𝑘) + 𝑥22 (𝑘) = �𝑥1 (𝑘) 𝑥2 (𝑘)�

⎛
⎜⎜⎜⎜⎜⎝
𝑞11 𝑞12
𝑞12 𝑞22

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1 (𝑘)

𝑥2 (𝑘)

⎞
⎟⎟⎟⎟⎟⎠

= �𝑥1 (𝑘) 𝑞11 + 𝑥2 (𝑘) 𝑞12 𝑥1 (𝑘) 𝑞12 + 𝑥2 (𝑘) 𝑞22�

⎛
⎜⎜⎜⎜⎜⎝
𝑥1 (𝑘)

𝑥2 (𝑘)

⎞
⎟⎟⎟⎟⎟⎠

= 𝑥21 (𝑘) 𝑞11 + 2𝑞12𝑥1 (𝑘) 𝑥2 (𝑘) + 𝑥22 (𝑘) 𝑞22

Comparing coe�cients, we see that 𝑞11 = 2, 𝑞22 = 1, 𝑞12 = 1, hence

𝑄 =

⎛
⎜⎜⎜⎜⎜⎝
2 1
1 1

⎞
⎟⎟⎟⎟⎟⎠

And 𝑅 is scalar

𝑅 = 3

Therefore, the discrete algebraic Riccati equation is

𝑃 = 𝐴𝑃𝐴𝑇 − 𝐴𝑇𝑃𝐵 �𝑅 + 𝐵𝑇𝑃𝐵�
−1
𝐵𝑇𝑃𝐴 + 𝑄 (1)

Small note: The above is what we had in lecture notes. Matlab has the above in its help
pages slightly di�erent. The first term is written as 𝐴𝑇𝑃𝐴 instead of 𝐴𝑃𝐴𝑇 as we had.

Using Matlab
>> A=[0,1;1,0];B=[0;1];Q=[2,1;1,1];R=3;

>> [P,L,G] = dare(A,B,Q,R)

284

4.7. HW 7 CHAPTER 4. HWS

P =

3.7841 1.6815

1.6815 4.4022

𝑃 =

⎛
⎜⎜⎜⎜⎜⎝
3.7841 1.6815
1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

Notice that 𝑃 is symmetric as expected.

Let us check it is correct first. Substituting 𝑃 in RHS of (1) gives

𝑃 =

⎛
⎜⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
3.7841 1.6815
1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

𝑇

−

⎛
⎜⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎝
3.7841 1.6815
1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝3 +

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎝
3.7841 1.6815
1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎝
0
1

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛⎜⎜⎜⎜⎜⎝
3.7841 1.6815
1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0 1
1 0

⎞
⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎝
2 1
1 1

⎞
⎟⎟⎟⎟⎟⎠

The above gives

⎛
⎜⎜⎜⎜⎜⎝
3.7841 1.6815
1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠ which is 𝑃. Yes, it satisfies DARE. Now, using

𝑢∗ = − �𝑅 + 𝐵𝑇𝑃𝐵�
−1
𝐵𝑇𝑃𝐴𝑥

= −

⎛
⎜⎜⎜⎜⎜⎜⎝3 +

⎛
⎜⎜⎜⎜⎜⎝
0

1

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝
3.7841 1.6815

1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0

1

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎟⎠

−1 ⎛
⎜⎜⎜⎜⎜⎝
0

1

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝
3.7841 1.6815

1.6815 4.4022

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
0 1

1 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1 (𝑘)

𝑥2 (𝑘)

⎞
⎟⎟⎟⎟⎟⎠

= −0.59472𝑥1 (𝑘) − 0.22716𝑥2 (𝑘)

Therefore, comparing the above to 𝑢∗ (𝑘) = 𝐾1𝑥1 (𝑘) + 𝐾2𝑥2 (𝑘) we see that

𝐾1 = −0.59472
𝐾2 = −0.22716

To simulate the result under the new control law 𝑢∗, we need some initial condition on
state. Below is small script which simulate this up to 𝑘 = 20 stages with the plot generated� �

1 %simulate x1 and x2 states under optimal control law
2 %found in problem 5, HW 7. Plot is attached
3
4 close all; clear;
5 A=[0,1;1,0];B=[0;1];
6 k1=-0.59472; k2=-0.22716; %found using dare()
7
8 N=20;
9 x=zeros(2,20);
10 x(:,1)=[1.5;1]; %need non-zero initial state!
11 for i=2:N
12 x(:,i)=A*x(:,i-1)+B*(k1*x(1,i-1)+k2*x(2,i-1));
13 end
14 subplot(1,2,1);
15 plot(1:N,x(1,:),'r',1:N,x(1,:),'r.');
16 title('x1 using optimal u');
17 grid;
18 subplot(1,2,2);
19 plot(1:N,x(2,:),'b',1:N,x(2,:),'b.');
20 title('x2, using optimal u');
21 grid;� �

˙

285

4.7. HW 7 CHAPTER 4. HWS

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x1 using optimal u

0 5 10 15 20
-0.2

0

0.2

0.4

0.6

0.8

1
x2, using optimal u

Figure 4.76: problem 5 plot

4.7.6 HW 7 key solution

City Planners: (a) We procecd with DP graphicallv with foulu(k) pos-

siluilitics frotn cer,ch tlodc. Also, bclow, we can sirnplifV bV prurrirrg awlly

bralches which cannot occur. As inclicatccl below, we obtaitr optirntrl st>

lution
u, * (0) :2 t u* (1 ; : g ' t r . (2) : 3

witlr total darrragc
,I* : I.I

in rnilliorrs of dollars.

o c c o (

286

4.7. HW 7 CHAPTER 4. HWS

(b) Ir' this case, thc addecl corrstraint

3 u (0) + z (1) + 2 u , (2) < e

hclps irr pruning the state diagranr. Lettirrg r(ft) be the arnount
expcndclcl up to stage i;, we have

r (0) : s ' : r (1) : r (0) + 3 t l (0) r (2) : r (1) + z (1) r (3) : t : (2) + h r (Z)

with state corrstrnirrts

r (k) < 9 ; u (k) < 3 ; k : 1 , 2 , 3 ;

As irrdicated bclow, this leads to optirnal clecision

t (O) : 2 ' ' u * (1) : 1 ' u * (2) : 1

arrcl associaterl clanrage in rnillions givcrr by

,J* : I .6.

--3_

ii-*_ 1

!r5 -t-

287

4.7. HW 7 CHAPTER 4. HWS

x (B ' r)

lz"

F r r t n c l

1 (

J (x

0 - ? o
d u tr,r-l)

& S r r q r l u r

(r ' , . 1 - Y) r t l)

=)

I L t (d - r) :

u(ru-l /

rJr
T (

t v ' (N ' r)

y ' (N - , ,)

u* (N -2) ,

X (ru

eL.

So lu t. t o(L PatLer o

8-' (u(w) - Y(tz))'* 'itrr)

Q,55 t J (x (n t - t) , t) '

5'

L
2-

9 v @ - z)

{&t ' ' t) - v(N'10' * . f t t ' r}

-3)

' (r ' 3)
Y

nt -3) : 6 / r :

,x (ru "l), 3) '

ff) t,'l

' { * - 2 1
;x (N -z), z) e

utru -Y/ = ?,, v (,,1 -t)
tt*(ru -g, V?^1|r.r, ,, ,

'

61

C a l (v l c * L t o f i ,

* ' x ' ' (N -q)
3'f

BY
r.,(v
W e

",
n ,o6 r ,rd' Ehe

L e h r o ; S , = t , l y = r , { J
be Lt ie Frbcnncei Seq

, '* , H,
= 2 t { g = 3 r

v(O(e i tr:O

tS S r rnp lq c lesc lbed :
I

?{.[tt-h) =

s
8q

2 + 2 E (r z - r)
t 1 + 2v (yL - t)

) (fz) =

fr.
t 3

coef(:t.r eoL S e. cdren (e

roVoIv,n(f,b onoclci nuro berJc
f , ' 5 , f 6 = 8 - . .

bave & pat[era t.rhrch

Y(rz) x (u-rz)
br rt hr (u) '0 anA

288

4.7. HW 7 CHAPTER 4. HWS

So luLr o o Pop,r lc i t rcfL

I (xcrv-r, r) : ffirfl {x,(u) + xz(ND
U(,\,_ r) e er_,

= f n r 0
{ l r . , t \ t ^ r - . \ - u t ^ r - r) v / r r - r rf f l r o
(, .

r r _ . \
' - - ' N - l

o-.r{(ol-r){ , t
l+ i l '(N- l) r i"tA(rrt 'r)

h * lVr(ru-,l

qs u(Nl) */ffi,, fi;li""7
L I orberr^rh,

:d
e(

n*r need b
ch ect{

u (N - r) :

z J - e 1g - f

0 ,l rt=
0
rI
J 1

s
X, (t t - t)

saiis frer
coq Stron b

289

4.7. HW 7 CHAPTER 4. HWS

I (x (,) rr) : c0 0x
l u (r) l 3 l Y

cn 0,x
l r j l " r) l < M

Soiuf rCI Floor

r, (z)

x t (,) " t t (,) i l . a ,L Un(,)= MS6nx , (')

HeQc(,

{S(r t ') , r (x r ' t ,oJ
l : 11

J (x (,) , t) - - J ' { f x , (') l

lu tu)
NouJ f (x (u) , L) = m a x

\ '

$ hore

l u t u) l { M

M

1 r))

s
M r l l l roce # (d=MlN,,t

u { u) X , t ') = - l + [4
M r

Ut (r) = rSEo X, t r) = - M

: 0n0X
lUtu,p l{ M

r n r d
{ x , i l ,) , M l X , (,) 0

r n l n { u (r i t M l u (o / - , 1 }

F (u

/ t
S l o P c M < I

= fficr x

l l M
t l

I M t l
L r,r - . . i

5 * * M l M t l

290

4.7. HW 7 CHAPTER 4. HWS

5 l ope > t

Cose 2
r-

F(ut

For M< , l i , Lhe
P G i n Y u (o) = | 4 6
leJL aj {

Hence sol uuoffnr scrn p
crs CAse I

(il4 lnD
1l*(o) ryr(,) = -M
U*= 14

M r l

!T
$4-l

M
Mrt

M
M t l

'{1 ,
Co* l ; Whsn M: \n , CIJ seen l rom l t5ore

q,bovp, obtr,^rn !qc; Sol lLton5

FrrsL sol uLt on : Same es
vv

ea s € | . U*10 l'Y'U" (,) =-M

l,g, tt '(o)= tQ d (') = -tfz
i+ tJ-2

Se cund 5olu Lnn 1)Y @): { i
Jt = \fZ /(L * rIZ)

i J " (,) = - \ E

5t-- Aft*,I7)

M < 2 f te PoroL u(o)= t4 ro l$tsre

, t-le nc e 1J+ (o)

Hence "u . (,)= MsdnG i l l = M ; "
M (M - r)

J * = M)
|4 r l

@-t
r$ | eJ t

T t (') :

\n
"J M/M-r

- l + M

5 * :
I1 ur2Case b : Q1c,n u'l,D)= vo(,'l' 14 but' J* = fi

291

4.7. HW 7 CHAPTER 4. HWS

292

4.8. HW special problem CHAPTER 4. HWS

4.8 HW special problem

abstract

k-means++ cluster analysis was used to partition the population area such that the center
of each partition minimizes the within the partition sum of distance squares of each point
in the partition to the center of the partition. The number of customers that would visit
our stores located at the center of the partitions was then determined. The number of
partitions was increased and the calculation repeated on the larger set by trying all of
the di�erent combinations of allocating the stores in the new and larger set of partitions.
The largest score was selected. Matlab’s kmeans implementation in the Statistics and
Machine Learning Toolbox was used to find the set of partitions and their centroids.
kmeans++ clustering is known to be computationally NP-hard problem5. In addition, the
time complexity to analyze each set of partitions is 𝒪 �𝑁�𝑝𝑛�� where 𝑝 is the number partitions
and 𝑁 is the size of the population. This number quickly becomes very large therefore
the implementation limits the number of partitions 𝑝 to no more than 15. A number of
small test cases with known optimal store locations were constructed and the algorithm
was verified to be correct by direct observations. Locations of competitor stores do not
a�ect the decision to where to locate our stores. Competitor stores locations a�ects the
number of customers our stores will attract, but not the optimal locations of our stores.

4.8.1 Introduction

The problem is the following: We want to locate 𝑛 stores in an area of given population
distribution where there already exists 𝑚 number of competitor stores. We are given the
locations of the competitor stores. We want to find the optimal locations of our 𝑛 stores
such that we attract the largest number of customers by being close to as many as possible.
We are given the locations (coordinates) of the population.

4.8.2 Analysis of the problem

The first important observation found is that the locations of the competitor stores did not
a�ect the decision where the location of our stores should be. This at first seemed counter
intuitive. But the optimal solution is to put our stores at the center of the most populated
partitions even if the competitor store happened to also be in the same exact location.

The idea is that it is better to split large number of customers with the competition, than
locate a store to attract all customers but in a less populated area. This was verified using
small test cases (not shown here due to space limitation).

This is where cluster analysis using the kmeans++ algorithm was used. Cluster analysis
is known algorithm that partitions population into number of clusters or partitions such
that each cluster has the property that its centroid has minimum within-cluster sum of
squares of the distance to each point in the cluster. The following is the formal definition of
kmeans++ clustering algorithm taken from https://en.wikipedia.org/wiki/K-means_
clustering

Given a set of observations (𝑥1, 𝑥1, … , 𝑥𝑛), where each observation is a d-dimensional real vec-
tor, k-means clustering aims to partition the 𝑛 observations into 𝑘 ≤ 𝑛 sets 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑘}
so as to minimize the within-cluster sum of squares (WCSS) (sum of distance functions of
each point in the cluster to the K center). In other words, its objective is to find:

arg min
𝑺

𝑘
�
𝑖=1

�
𝒙∈𝑆𝑖

�𝒙 − 𝜇
𝑖
�
2

where 𝜇𝑖 is the mean of points in 𝑆𝑖

The main di�culty was in deciding on the number of partitions needed. Should we try
smaller number than the number of stores, and therefore put more than one store in

5non-deterministic polynomial-time hard

293

https://en.wikipedia.org/wiki/K-means_clustering
https://en.wikipedia.org/wiki/K-means_clustering

4.8. HW special problem CHAPTER 4. HWS

same location? Using smaller number of clusters than the number of stores was rejected,
since it leads to no improvement in the score (Putting two stores in same location means
other areas are not served since we have limited number of stores). Or should we try
more partitions than the number of our stores, and then try all the combinations possible
between these partitions to find one which gives the larger score? This the approach taken
in this algorithm. It was found that by increasing the number of partitions than the number
of stores, and trying all possible combinations �𝑝𝑛�, where 𝑝 is the number of partitions,
a set could be found which has higher than if we used the same number of partitions as
the number of stores. The problem with this method is that it has 𝒪�𝑝𝑛� time complexity.
This quickly becomes large and not practical when 𝑝 > 15. In the test cases used however,
there was no case found where 𝑝 had to be more than two or three larger than 𝑛. The
implementing limits the number of partitions to 15.

When a score is found which is smaller than the previous score, the search stops as this
means the maximum was reached. This was determined by number of trials where it was
found that once the score become smaller than before, making more partitions did not
make it go up again. There is no proof of this, but this was only based on trials and
observations. Therefore, the search stops when a score starts to decrease.

The implementation described here is essentially an illustration of the use of cluster analysis,
as provided by Matlab, in order to solve the grocery stores location problem. The appendix
contains the source code written to solve this problem.

Before describing the algorithm below, we show an example using the early test send to
us to illustrate how this method works. This used 500, 000 population with 5 competitor
stores (the black dots) in the plots that follows and 𝑛 = 4 (the green dots).

Figure 4.77: Partitions found by
kmeans++ with centroid as green dots
and competitor sores as black dots

Figure 4.78: Density of population with
corresponding store locations found

The partitions were now increased to 5 and �54� di�erent combinations were scored to find
the 4 best store locations out of these. This resulted in the following result

294

4.8. HW special problem CHAPTER 4. HWS

Figure 4.79: Partitions found by
kmeans++ with centroid as green dots
and competitor sores as black dots

Figure 4.80: Density of population with
corresponding store locations found

When trying 6 partitions, the score was decreased, so the search stopped. The program
then printed the final result
J*=[258732.0000] = [%51.75]

x y
21.356 28.929
78.378 66.732
48.212 51.197
84.078 16.864

4.8.3 Algorithm description

This is a description of the algorithm which uses the kmeans++ cluster analysis function
kmeans() as part of the Matlab Statistics and Machine Learning Toolbox toolbox,
which is included in the student version. This is not a description of the kmeans++ algorithm
itself, since that is well described and documented in many places such as in references
[3,4]. This is a description of the algorithm using kmeans to solve the grocery location
problem.

295

4.8. HW special problem CHAPTER 4. HWS

Algorithm 1: Cluster analysis using Kmeans++ for determining optimal store locations
Input: 𝑛,𝑋, 𝑌 where 𝑛 is the number of stores to allocate, 𝑋 is population coordinates, and 𝑌 is competitor store location coordinates
Output: list of coordinates to locate our 𝑛 stores at, and 𝐽∗ which is size of population our stores will attract when placed at these

locations

1 currentNumberOfPartitions ⟵ 𝑛
2 bestScore ⟵ 0
3 keepSearching ⟵ true
4 bestLocations ⟵ {}
5 while keepSearching do
6 𝐶 ⟵ kmeans(currentNumberOfPartitions,X) /* 𝐶 now contains the centroid of partitions found by kmeans++

cluster analysis algorithm using Matlab toolbox */
7 partitionSets ⟵ combnk(1:size(C,1),n) /* Find all possible combinations of partitions. Warning, this is �𝑘𝑛�

which will quickly grow. In practice, it was found we do not need 𝑘 greater than 𝑛 + 4 to find a
maximum. 𝑛 is limited to 10. */

8 partitionScore ⟵ 0
9 winningCombination ⟵ {}

10 foreach 𝑒 ∈ partitionSets do
11 score ⟵ 0
12 foreach 𝑥𝑖 ∈ 𝑋 do
13 𝑑1 ⟵ shortest distance of 𝑥𝑖 to any of the centroid of the partition 𝑒
14 𝑑2 ⟵ shortest distance of 𝑥𝑖 to any of competitor stores in 𝑌
15 if 𝑑1 ≤ 𝑑2 /* win this customer or split it. Else competitor is closer */
16 then
17 if 𝑑1 = 𝑑2 then
18 score ⟵ score + 1

2
19 else
20 score ⟵ score + 1
21 end
22 end
23 end
24 if score ≥ partitionScore then
25 partitionScore ⟵ score
26 winningCombination ⟵ 𝑒
27 end
28 end
29 if partitionScore ≥ bestScore then

/* score did not go down, keep searching. Increase number of population partitions by one and call
kmeans++ (above) for new partitions */

30 bestScore ⟵ partitionScore
31 bestLocations ⟵ winningCombination
32 if currentNumberOfPartitions = 15/* stop search if �𝑘>=15𝑖𝑛𝑘𝑛 � due to limitation */
33 then
34 keepSearching ⟵ false
35 else
36 currentNumberOfPartitions ⟵ currentNumberOfPartitions + 1
37 end
38 else

/* when score goes down, it will not improve any more */
39 keepSearching ⟵ false
40 end
41 end
42 return bestScore,bestLocations

296

4.8. HW special problem CHAPTER 4. HWS

4.8.3.1 Description of test cases used in development

It was very important to check the correctness of the algorithm using small number of test
cases to verify it is generating the optimal store locations as it is very hard to determine
the optimal solution for any large size problem by hand. The following are some of the
test problems used and the result obtained by the implementation, which shows that the
optimal locations were found for each case.

test case 1 0 1 2 3 4
0

1

2

3

4

5

By direct observations, since we have one store only, then we see that by locating it
in the center of the population, the score will be 6, which is optimal. The optimal
store location found by the program is {2.333, 2.222}

0 1 2 3 4
0

1

2

3

4

5

test case 2 This test case shows that the optimal location of our store do not change as
the competition store location is changed. Since the optimal location depends on
the clustering found and not on the competition location. In the following, the same
configuration is used, but one had the competition store is at {1.5, 5} and the other at
{4.5, 6.5}. We see by direct counting and observation that the optimal store location
is at {2, 5} regardless. The only di�erence is the number of customers we attract in
each case, but not the optimal store location itself. These two plots show this, with
the score we obtain given below each configuration.

Clearly when the competitor store is away from the density area, our score will
increase. Since the competition also wants to increase its score, then it should also
have to locate its store in the same location, which is the kmeans++ optimal location.

0 1 2 3 4 5 6

4

5

6

7

optimal {2.667,5} with score 6
0 1 2 3 4 5 6

4

5

6

7

optimal {2.667,5} with score 8

Many other test cases where run, using more store locations and they were verified manually
that the program result agrees with the finding. It is not possible to verify manually that
the result will remain optimal for large population and large number of stores, but these
tests cases at least shows that the algorithm works as expected. Now we will show result
of large tests cases and the program output generated.

4.8.4 Result applying the algorithm to the supplied input

The following table summarizes the result of running the store location algorithm on the
5 test cases provided.

For illustration, the following four plots show the locations of our stores (the green dots)

297

4.8. HW special problem CHAPTER 4. HWS

Table 4.9: Summary of store location score of each test case

test case n m X (population) CPU time (minutes) 𝐽∗ percentage

trial/earlier one 4 5 500, 000 1.42 258, 732 51.75%
1 9 9 500, 000 5.49 371, 543 74.32%
2 10 10 1, 000, 000 3.38 637, 413 63.74%
3 5 5 130, 000 1.16 69, 093 53.15%
4 10 10 1, 000, 000 14.17 683, 899 68.39%

for the above final four test cases with the location of the competitor stores (black dots)
and the final partitions selected.

Figure 4.81: Test case 1 Figure 4.82: Test case 2

Figure 4.83: Test case 3
Figure 4.84: Test case 4

4.8.5 Conclusion

kmeans++ algorithm for cluster analysis appears to be an e�ective method to use for finding
an optimal store locations, but it is only practical for small 𝑛 as the algorithm used to
obtain the partitions is NP-hard. In addition �𝑝𝑛� combinations of partitions needs to be
searched to select the optimal set.

This implementation shows how kmeans++ can be used to solve these types of problems.
The location of the competitor stores has no influence on where to locate the stores, but
it only a�ects the final possible score. Generating more partitions (using kmeans++) than
the number of stores and selecting from them the best set can lead to improved score. It
was found in the test cases used that no more than two of three additional partitions than
the number of stores was needed to find the a combination of partitions which gave the
maximum score. Generating additional partitions made the score go lower. The score used
is the number of customers the stores attract out of the overall population. The algorithm
was verified to be correct for small number of tests cases (not shown here due to space
limitation). More research is needed to investigate how feasible this method can be for
solving similar resource allocations problems.

298

4.8. HW special problem CHAPTER 4. HWS

4.8.6 References

1 Matlab cluster analysis toolbox. Mathworks, Natick, MA

2 https://en.wikipedia.org/wiki/K-means_clustering

3 Seber, G.A.F. (1984) Multivariate Observations, Wiley, New York.

4.8.7 Appendix� �
1 function abbasi()
2 %Special problem. ECE 719, spring 2016
3 %by Nasser M. Abbasi
4 %Matlab 2016a
5 %
6

7 clear; %start with clear env. just in case.
8 close all; %is it ok to close all windows?
9 commandwindow; %bring command window into focus
10 cd(fileparts(mfilename('fullpath')));
11

12 if license('test','Statistics_Toolbox') ~= 1
13 error(['Warning, the needed toolbox does not',�...
14 'seem to exist in your Matlab. This program needs',...
15 'the Statistics and Machine Learning Toolbox as',...
16 'it called kmeans++ cluster analysis\n',...
17 'Please use the ver command to check you the toolbox\n']);
18 end
19

20 %this window will close when we are done. Ok to do.
21 fig = figure('Position',[370 400 400 30],...
22 'Name','Optimal store locator. ECE 719. UW-Madison',...
23 'NumberTitle','off');
24 set(fig, 'MenuBar', 'none');
25 set(fig, 'ToolBar', 'none');
26 h = uicontrol('Style','text','Position',[4 7 396 15],...
27 'BackgroundColor','w',...
28 'HorizontalAlignment','left');
29 drawnow;
30

31 DEBUG=true; %set to true to see plots
32 %change to false before code lockdown as plots slows down time.
33

34 OUT(h,'Starting store location program version 1.0.....');
35 OUT(h,'Checking for mat files.....');
36

37 if ~exist('n.mat','file')
38 error(['file n.mat does not exist in current folder.',...
39 'Please check for lower/upper case and location']);
40 end
41 if ~exist('X.mat','file')
42 error(['file X.mat does not exist in current folder.',...
43 'Please check for lower/upper case and location']);
44 end
45 if ~exist('Y.mat','file')
46 error(['file n.mat does not exist in current folder.',...
47 'Please check for lower/upper case and location']);
48 end
49

50

51 cd('../official_data/4/');
52 load('n');
53 load('X');
54 load('Y');
55 OUT(h,'mat files read ok.....');

299

https://en.wikipedia.org/wiki/K-means_clustering

4.8. HW special problem CHAPTER 4. HWS

56 cd(fileparts(mfilename('fullpath')));
57

58 rng(1); %for reproducability
59 KEEP_TRYING = true; %tells when to stop search
60 best_score_found_so_far = 0;
61 best_locations = [];
62 current_number_of_cluster = n;
63 tstart = tic; %to keep track of CPU time
64 test_case = 4;
65 MAX_CPU = 15; %minutes CPU time limit.
66 status = true;
67 while KEEP_TRYING
68 OUT(h,sprintf(['Best score so far: [%d]. calling kmeans++',...
69 'to make %d partitions...please wait...'],...
70 round(best_score_found_so_far),current_number_of_cluster));
71 [idx,C] = make_cluster(X,current_number_of_cluster,...
72 'sqeuclidean');
73 active_C = combnk(1:size(C,1),n);
74 OUT(h,sprintf('created active_C, size is [%d,%d]....',...
75 size(active_C,1),size(active_C,2)));
76

77 [status,score,locations]=score_cluster(C,X,Y,active_C,...
78 tstart,h,MAX_CPU);
79

80 if ~status
81 OUT(h,'Allowed CPU time exceeded, stopping the program');
82 KEEP_TRYING = false;
83 else
84 if score>=best_score_found_so_far
85 best_score_found_so_far=score;
86 best_locations=locations;
87 current_number_of_cluster=current_number_of_cluster+1;
88 %stop search if size too large, or if number of
89 %partitions too large this is due to using k choose m.
90 %For k>15 it will need too much RAM.
91 if current_number_of_cluster>=size(X,1)...
92 ||current_number_of_cluster>=15
93 KEEP_TRYING = false;
94 end
95 OUT(h,sprintf('current score %6.2f',...
96 best_score_found_so_far));
97 if DEBUG
98 plot_result(test_case,best_locations,X,Y,...
99 best_score_found_so_far,C);
100 end
101 else
102 OUT(h,sprintf(...
103 'Score is %6.2f. Less than last. Terminating..',...
104 score));
105 KEEP_TRYING = false;
106 end
107 telapsed = toc(tstart);
108 if telapsed>MAX_CPU*60 % CPU limit
109 OUT(h,'CPU time exceeded');
110 KEEP_TRYING = false;
111 status = false;
112 else
113 OUT(h,sprintf(...
114 'CPU time used to far %6.2f minutes',telapsed/60));
115 end
116 end
117 end
118

300

4.8. HW special problem CHAPTER 4. HWS

119 %final result
120 fprintf('n=%d, X=%d, Y=%d\n',n,size(X,1),size(Y,1));
121

122 fprintf('J*=[%6.2f] = [%%%4.2f]\n\n',...
123 best_score_found_so_far,best_score_found_so_far/size(X,1)*100);
124 fprintf('optimal store coordinates\n');
125 fprintf(' x\t\t y\n');
126

127 for i=1:size(best_locations,1)
128 fprintf('%3.3f\t%3.3f\n',best_locations(i,1),best_locations(i,2));
129 end
130

131 telapsed = toc(tstart);
132

133 if ~status
134 fprintf('\nCPU limit reached. Elapsed time is %6.2f minutes\n',...
135 telapsed/60);
136 else
137 fprintf('\nElapsed time is %6.2f minutes\n',telapsed/60);
138 end
139 if ishandle(fig)
140 close(fig);
141 end
142 end
143 %=============================
144 function d = distance_between_2_points(pt1,pt2)
145 %find distance between 2 points, assuming one can only
146 %move N-S or E-W, not diagonal.
147 x1 = pt1(1,1);
148 y1 = pt1(1,2);
149 x2 = pt2(1,1);
150 y2 = pt2(1,2);
151

152 d = abs(x1-x2) + abs(y1-y2);
153 end
154 %===
155 function best_score_in_cluster = ...
156 find_my_score_in_each_cluster(C,X,Y)
157 %Takes center of each cluster (C) and customers locations (X)
158 %and competition store locations (Y) and returns how many
159 %customers I win in each cluster. Returns an array of number
160 %of customers we attract from competition in each cluster.
161

162 %to store score per cluster
163 best_score_in_cluster = zeros(size(C,1),1);
164

165 for i=1:size(X,1) %loop of all population to see which we win
166 %z1 is competitor, z2 is our store
167 [~,z1] = shortest_distance_to_stores(X(i,:),Y);
168 [idx,z2] = shortest_distance_to_stores(X(i,:),C);
169 if z2<=z1 %compare with competition to see if we are closer
170 if z1==z2
171 %oh well, split this customer between us and them
172 best_score_in_cluster(idx)=best_score_in_cluster(idx)+0.5;
173 else
174 %good, we are closer, take this customer.
175 best_score_in_cluster(idx)=best_score_in_cluster(idx)+1;
176 end
177 end
178 end
179 end
180

181 %===============================

301

4.8. HW special problem CHAPTER 4. HWS

182 function [idx,d] =shortest_distance_to_stores(pt,stores_locations)
183 %find shortest distance from one customer to a set of stores.
184 %The stores can be ours or the competition. Returns the shortest
185 %distance in 'd' and the index of the store who is closest to
186 %this customer
187

188 d = inf;
189 for i=1:size(stores_locations,1)
190 current_distance = distance_between_2_points(pt,...
191 stores_locations(i,:));
192 if current_distance <= d
193 d = current_distance;
194 idx = i;
195 end
196 end
197

198 end
199 %==
200 function [status,best_score,locations]=score_cluster(...
201 C,X,Y,active_C,tstart,h,MAX_CPU)
202

203 best_score = 0;
204 status = true;
205 KEEP_TRYING = true;
206

207 while KEEP_TRYING
208 for i=1:size(active_C,1)
209 OUT(h,sprintf(['scoring partition %d of %d in score_cluster() ',...
210 'Current best score %d'],...
211 i,size(active_C,1),round(best_score)));
212

213 score = find_my_score_in_each_cluster(...
214 C(active_C(i,:),:),X,Y);
215 score=sum(score);
216 if score>best_score
217 best_score = score;
218 locations = C(active_C(i,:),:);
219 end
220 telapsed = toc(tstart);
221 if telapsed>MAX_CPU*60
222 OUT(h,sprintf('Exceeded CPU time limit in score_cluster'));
223 KEEP_TRYING = false;
224 status = false;
225 end
226 end
227 KEEP_TRYING = false;
228 end
229 end
230 %===================================
231 function [idx,C] = make_cluster(population,how_many,the_option)
232 %cluster the population. Number of cluster is same as
233 %number of our stores. This was found to be optimal by many
234 %trials and errors. If we use more clusters than number of
235 %stores, the score actually goes down.
236 warning('off','all');
237 [idx,C] = kmeans(population,how_many,'Replicates',5,...
238 'MaxIter',50,'Distance',the_option);
239 warning('on','all');
240 end
241

242 %===
243 function plot_result(test_case,store_locations,X,Y,...
244 overall_best_score,C)

302

4.8. HW special problem CHAPTER 4. HWS

245

246 %figure;
247 tmp = hist3(X, {0:100 0:100});
248 n1 = tmp';
249 n1(size(tmp,1), size(tmp,2)) = 0;
250 xb = linspace(0,100,101);
251 yb = xb;
252

253 figure;
254 pcolor(xb,yb,n1);
255 hold on;
256 plot(Y(:,1),Y(:,2),'o','MarkerSize',9,...
257 'MarkerFaceColor','black',...
258 'LineWidth',1,'MarkerEdgeColor','white');
259 plot(store_locations(:,1),store_locations(:,2),...
260 'o','MarkerSize',9,'MarkerFaceColor','green',...
261 'MarkerEdgeColor','black');
262 title({sprintf(...
263 ['Test case $%d$. Showing our store location with',...
264 'competitors on density plot. score =%5.1f'],...
265 test_case,overall_best_score),...
266 sprintf('number of partitions k = $%d$, population size $%d$',...
267 size(store_locations,1),size(X,1))},...
268 'Fontsize',11,'interpreter','Latex');
269 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
270 drawnow;
271 saveas(gcf, sprintf('../images/1_test_case_%d',test_case), 'pdf');
272 saveas(gcf, sprintf('../images/1_test_case_%d',test_case), 'png');
273

274 figure;
275 [x1G,x2G] = meshgrid(linspace(0,100,200),linspace(0,100,200));
276 XGrid = [x1G(:),x2G(:)]; % Defines a fine grid on the plot
277 warning('off','all');
278 idx2Region = kmeans(XGrid,size(C,1),'MaxIter',1,'Start',C);
279 warning('on','all');
280 cmap = hsv(size(C,1));
281 gscatter(XGrid(:,1),XGrid(:,2),idx2Region,cmap,[],[],...
282 'doLeg','off');
283 hold on;
284 plot(Y(:,1),Y(:,2),'o','MarkerSize',12,...
285 'MarkerFaceColor','black',...
286 'LineWidth',1,'MarkerEdgeColor','white');
287 plot(store_locations(:,1),store_locations(:,2),...
288 'o','MarkerSize',9,'MarkerFaceColor','green',...
289 'MarkerEdgeColor','black');
290 title({sprintf(['test case $%d$. gscatter used to show',...
291 'partitions found by kmeans++'],test_case),...
292 sprintf('number of partitions k = $%d$, population size $%d$',...
293 size(C,1),size(X,1))},'Fontsize',11,'interpreter','Latex');
294 set(gca,'TickLabelInterpreter', 'Latex','fontsize',8);
295 drawnow;
296 saveas(gcf, sprintf('../images/2_test_case_%d',test_case), 'pdf');
297 saveas(gcf, sprintf('../images/2_test_case_%d',test_case), 'png');
298 end
299 %==
300 function OUT(h,the_string)
301 fprintf(the_string);
302 fprintf('\n');
303

304 %if ishandle(h)
305 % set(h,'String',the_string);
306 % drawnow;
307 %end

303

4.8. HW special problem CHAPTER 4. HWS

308 end� �� �
1 function nma_generate_output(test_case)
2 %Program to generate output to test special problem with
3 %Nasser M. Abbasi
4 %ECE 719, UW Madison
5

6 cd(fileparts(mfilename('fullpath')));
7

8 switch test_case
9 case 1
10 X=[1,2;
11 1,3;
12 2,2;
13 2,3;
14 3,0;
15 3,1;
16 3,2;
17 3,3;
18 3,4];
19 Y=[1.5,2.5];
20 n=1;
21 save('n','n');
22 save('X','X');
23 save('Y','Y');
24 save('test_case','test_case');
25

26 case 105
27 X=[1,2;
28 1,3;
29 2,2;
30 2,3;
31 3,0;
32 3,1;
33 3,2;
34 3,3;
35 3,4];
36 Y=[1.5,2.5];
37 n=2;
38 save('n','n');
39 save('X','X');
40 save('Y','Y');
41 save('test_case','test_case');
42

43 % fprintf('best score is %3.3f\n',...
44 % find_my_score_in_each_cluster([2.5,2.5],X,Y))
45 case 2
46 X=[1,4;
47 1,5;
48 1,6;
49 2,4;
50 2,5;
51 2,6;
52 5,6;
53 5,5;
54 5,4];
55 Y=[4,6.5];
56 n=1;
57 save('n','n');
58 save('X','X');
59 save('Y','Y');
60 save('test_case','test_case');
61

62 % fprintf('best score is %3.3f\n',...

304

4.8. HW special problem CHAPTER 4. HWS

63 % find_my_score_in_each_cluster([2,5],X,Y))
64

65 case 3
66 X=[1,4;
67 1,5;
68 1,6;
69 2,4;
70 2,5;
71 2,6;
72 5,6;
73 5,5;
74 5,4];
75 Y=[1.5,5];
76 n=1;
77 save('n','n');
78 save('X','X');
79 save('Y','Y');
80 save('test_case','test_case');
81

82 % fprintf('best score is %3.3f\n',...
83 % find_my_score_in_each_cluster([2,5],X,Y))
84

85 case 4
86 X=[1,1;
87 1,2;
88 2,1;
89 2,2;
90 4,3;
91 4,4;
92 5,3;
93 5,4];
94 Y=[3,2.5];
95 n=1;
96 save('n','n');
97 save('X','X');
98 save('Y','Y');
99 save('test_case','test_case');
100

101 % fprintf('best score is %3.3f\n',...
102 % find_my_score_in_each_cluster([2,5],X,Y))
103

104 case 5
105 X=[1,1;
106 1,2;
107 1,3;
108 2,1;
109 2,2;
110 2,3;
111 3,2;
112 4,2;
113 4,3;
114 4,4;
115 4,5;
116 5,1;
117 5,2;
118 5,3;
119 5,4;
120 5,5;
121 6,3;
122 6,4;
123 6,5];
124 Y=[5,4];
125 n=1;

305

4.8. HW special problem CHAPTER 4. HWS

126 save('n','n');
127 save('X','X');
128 save('Y','Y');
129 save('test_case','test_case');
130

131 % fprintf('best score is %3.3f\n',...
132 % find_my_score_in_each_cluster([2,5],X,Y))
133

134 case 6
135 X=[1,1;
136 2,1;
137 3,1;
138 1,2;
139 2,2;
140 3,2;
141 1,3;
142 2,3;
143 3,3];
144 Y=[2,2];
145 n=2;
146 save('n','n');
147 save('X','X');
148 save('Y','Y');
149 save('test_case','test_case');
150

151 % fprintf('best score is %3.3f\n',...
152 % find_my_score_in_each_cluster([2,5],X,Y))
153

154 case 7
155 rng default; % For reproducibility
156 N=10000;
157 X=[30 + 2*randn(N,1),30 + 8*randn(N,1);
158 40 + 2*randn(N,1),40 + 10*randn(N,1);
159 25 + 2*randn(N,1), 50 + 4*randn(N,1);
160 20 + 2*randn(N,1),30 + 4*randn(N,1);
161 50 + 2*randn(N,1),50 + 4*randn(N,1)];
162

163 n=9; %this gives 50%, since competition is allready optimal
164 Y=[41.6552 35.4282;
165 24.5046 33.8534;
166 30.5928 30.0431];
167 save('n','n');
168 save('X','X');
169 save('Y','Y');
170 save('test_case','test_case');
171

172

173 case 8
174 rng default; % For reproducibility
175 N=1000;
176 X=[30+randn(N,1),30+randn(N,1);
177 40+randn(N,1),40+randn(N,1);
178 25+randn(N,1),50+randn(N,1);
179 20+randn(N,1),30+randn(N,1);
180 50+randn(N,1),50+randn(N,1)];
181

182 n=4; %this gives 50%, since competition is allready optimal
183 Y=[41.6552 35.4282;
184 24.5046 33.8534;
185 30.5928 30.0431];
186 save('n','n');
187 save('X','X');
188 save('Y','Y');

306

4.8. HW special problem CHAPTER 4. HWS

189 save('test_case','test_case');
190

191 case 9
192 rng default; % For reproducibility
193 N=1000;
194 X=[30+randn(N,1),30+randn(N,1);
195 40+randn(N,1),40+randn(N,1);
196 25+randn(N,1),50+randn(N,1);
197 20+randn(N,1),30+randn(N,1);
198 50+randn(N,1),50+randn(N,1)];
199

200 n=7; %this gives 50%, since competition is allready optimal
201 Y=[41.6552 35.4282;
202 24.5046 33.8534;
203 30.5928 30.0431];
204 save('n','n');
205 save('X','X');
206 save('Y','Y');
207 save('test_case','test_case');
208

209 case 10
210 rng default; % For reproducibility
211 N=100000;
212 X=[30+randn(N,1),30+randn(N,1);
213 40+randn(N,1),40+randn(N,1);
214 25+randn(N,1),50+randn(N,1);
215 20+randn(N,1),30+randn(N,1);
216 50+randn(N,1),50+randn(N,1)];
217

218 n=10; %this gives 50%, since competition is allready optimal
219 Y=[41.6552 35.4282;
220 24.5046 33.8534;
221 30.5928 30.0431;
222 40.5928 30.0431;
223 70.5928 30.0431];
224 save('n','n');
225 save('X','X');
226 save('Y','Y');
227 save('test_case','test_case');
228

229

230 end
231 end� �

307

4.8. HW special problem CHAPTER 4. HWS

308

Chapter 5

study notes

Local contents
5.1 Some HOWTO questions . 310
5.2 Some things to remember . 311
5.3 Example using conjugate directions . 313
5.4 collection of definitions . 318
5.5 Summary of iterative search algorithms . 320

309

5.1. Some HOWTO questions CHAPTER 5. STUDY NOTES

5.1 Some HOWTO questions

This in place to keep some study notes, and other items to remember while taking this
hard course.

5.1.1 How to show that sum of two convex functions is also convex
function?

Let 𝐺 (𝑢) = 𝑔 (𝑢) + 𝑓 (𝑢) where we know 𝑔, 𝑓 are two convex functions. We need to show
𝐺�𝑢𝜆� is also convex. Then, pick point 𝑢𝜆 ∈ 𝑈 therefore

But the set 𝑈 is convex (it must be, these are convex functions, so their domain is convex
by definition). Pick a point 𝑢𝜆 = (1 − 𝜆) 𝑢1 + 𝜆𝑢2 where 𝜆 ∈ [0, 1] and 𝑢1, 𝑢2 ∈ 𝑈. Hence we
can write

𝐺�𝑢𝜆� = 𝑔 �𝑢𝜆� + 𝑓 �𝑢𝜆�

𝐺 �(1 − 𝜆) 𝑢1 + 𝜆𝑢2� = 𝑔 �(1 − 𝜆) 𝑢1 + 𝜆𝑢2� + 𝑓 �(1 − 𝜆) 𝑢1 + 𝜆𝑢2�

But 𝑔 �(1 − 𝜆) 𝑢1 + 𝜆𝑢2� ≤ (1 − 𝜆) 𝑔 �𝑢1� + 𝜆𝑔 �𝑢2� and the same for 𝑓. Then the above reduces
to

𝐺�(1 − 𝜆) 𝑢1 + 𝜆𝑢2� ≤ (1 − 𝜆) 𝑔 �𝑢1� + 𝜆𝑔 �𝑢2� + (1 − 𝜆) 𝑓 �𝑢1� + 𝑓𝑔 �𝑢2�

= (1 − 𝜆) �𝑔 �𝑢1� + 𝑓 �𝑢1�� + 𝜆 �𝑔 �𝑢2� + 𝑓 �𝑢2��

But 𝐺 (𝑢) = 𝑔 (𝑢) + 𝑓 (𝑢), then the RHS above becomes

𝐺�(1 − 𝜆) 𝑢1 + 𝜆𝑢2� ≤ (1 − 𝜆)𝐺 �𝑢1� + 𝜆𝐺 �𝑢2�

Therefore 𝐺 is a convex function.

5.1.2 What is convex Hull?

Smallest set that contains all the sets inside it, such that it is also convex. (put a closed
convex "container" around everything)

5.1.3 Is convex full same as Polytope?

No. Polytope is region which has straight edges (flat sides) and also be convex. But http:
//mathworld.wolfram.com/Polytope.html says "The word polytope is used to mean a
number of related, but slightly di�erent mathematical objects. A convex polytope may
be defined as the convex hull of a finite set of points" And https://en.wikipedia.org/
wiki/Polytope says "In elementary geometry, a polytope is a geometric object with flat
sides, and may exist in any general number of dimensions n as an n-dimensional polytope
or n-polytope"

5.1.4 What is di�erence between polytope and polyhedron?

https://en.wikipedia.org/wiki/Polytope says "In elementary geometry, a polyhedron
(plural polyhedra or polyhedrons) is a solid in three dimensions with flat polygonal faces,
straight edges and sharp corners or vertices."

Polyhedron can be convex or not. But polyhedron can be open? While polytope not. Need
to check.

310

http://mathworld.wolfram.com/Polytope.html
http://mathworld.wolfram.com/Polytope.html
https://en.wikipedia.org/wiki/Polytope
https://en.wikipedia.org/wiki/Polytope
https://en.wikipedia.org/wiki/Polytope

5.2. Some things to remember CHAPTER 5. STUDY NOTES

5.2 Some things to remember

1. Principle of optimality, by Bellman: "An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision" Proof is
by contradiction. See page 54, optimal control theory by Donald kirk. Simplest
proof I’ve seen. An important case is when the performance index 𝐽 is quadratic as
with LQR. We only looked at case where is no coupling term in the LQR in this
course. 𝐽 = min𝑢∑

∞
𝑘=0 𝑥

𝑇𝑄𝑥 + 𝑢𝑇𝑅𝑢. This is solved for steady state by solving Riccati
equation. For discrete case, use Matlab dare() function. See Introduction to Dynamic
Programming: International Series in Modern Applied Mathematics and Computer
Science, Volume 1 (Pergamon International Library ... Technology, Engineering &
Social Studies)

2. Remember di�erence between state variables, and decision variable. There can be
more than one state variable in the problem, but the number of decisions to make at
each state is di�erent. see problem 1, HW 7 for example. The fire stations allocation
problem. In that problem, we had one state variable, which is the number of stations
available. There more state variables there are, the harder it will be to solve by hand.

3.

lim
𝜆→0

𝐽 (𝒖 + 𝜆𝒅) − 𝐽 (𝒖)
𝜆

= [∇𝐽 (𝒖)]𝑇 ⋅ 𝒅

Remember, ∇𝐽 (𝒖) is column vector. ∇𝐽 (𝒖) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕𝐽(𝑢)
𝜕𝑢1
⋮

𝜕𝐽(𝑢)
𝜕𝑢𝑛

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. This vector is the direction along

which function 𝐽 (𝒖) will increase the most, among all other directions, at the point
it is being evaluated at.

4. For polytope, this is useful trick.

𝒖 =
𝑚
�
𝑖=1
𝜆𝑖𝑣𝑖

‖𝒖‖ =
�
�

𝑚
�
𝑖=1
𝜆𝑖𝑣𝑖

�
�

≤
𝑚
�
𝑖=1
�𝜆𝑖𝑣𝑖�

The last step was done using triangle inequality.

5. Definition of continuity: If 𝑢𝑘 → 𝑢∗ then 𝐽 �𝑢𝑘� → 𝐽 (𝑢∗). We write lim𝑘→∞ 𝐽 �𝑢𝑘� = 𝐽 (𝑢∗).
This is for all 𝑢𝑘 sequences. See real analysis handout. If 𝑢𝑘 → 𝑢∗ then this is the
same as lim𝑘→∞ �𝑢𝑘 − 𝑢∗� = 0

6. closed sets is one which include all its limits points. (includes it boundaries). Use
[0, 1] for closed. Use (0, 1) for open set. A set can be both open and closed at same
time (isn’t math fun?, wish life was this flexible).

7. Intersection of closed sets is also closed set. If sets are convex, then the intersection
is convex. But the union of convex sets is not convex. (example, union of 2 circles).

8. B-W, tells us that a sequence 𝑢𝑘 that do not converge, as long as it is in a compact
set, it will contain at least one subsequence in it, 𝑢𝑘,𝑖 which does converge to 𝑢∗. So
in a compact set, we can always find at least one subsequence that converges to 𝑢∗
even inside non-converging sequences.

9. If a set is not compact, then not all is lost. Assume set is closed but unbounded.
Hence not compact. What we do, it set some 𝑅 large enough, and consider the set
of all elements ‖𝑢‖ ≤ 𝑅. Then the new set is compact.

10. 𝐽 (𝑢) = 𝑎𝑢2 + 𝑏𝑢 + 𝑐 is coercive for 𝑎 > 0. Note, the function 𝐽 (𝑢) to be coercive, has

311

5.2. Some things to remember CHAPTER 5. STUDY NOTES

to blow up in all directions. For example, 𝑒𝑢 is not coercive. If 𝐴 is positive definite
matrix and 𝒃 ∈ ℜ𝑛 and 𝑐 ∈ ℜ, then 𝐽 (𝑢) = 𝒖𝑇𝐴𝒖 + 𝒃𝑇𝒖 + 𝑐 is coercive function. To
establish this, convert to scalar. Use 𝜆min ‖𝒖‖

2 ≤ 𝒖𝑇𝐴𝒖 and use 𝒃𝑇𝒖 ≤ ‖𝒃‖ ‖𝒖‖, then
𝐽 (𝑢) ≤ 𝜆min ‖𝒖‖

2 + ‖𝒃‖ ‖𝒖‖+ 𝑐. Since P.D. matrix, then 𝜆min > 0. Hence this is the same
as 𝐽 (𝑢) = 𝑎𝑢2 + 𝑏𝑢 + 𝑐 for 𝑎 > 0. So coercive.

11. If in 𝐽 (𝑢) = 𝒖𝑇𝐴𝒖+𝒃𝑇𝒖+𝑐 the matrix𝐴 is not symmetric., write as 𝐽 (𝑢) = 1
2𝒖

𝑇 �𝐴𝑇 + 𝐴� 𝒖+
𝒃𝑇𝒖 + 𝑐. Now it expressions becomes symmetric.

12. ∑𝑖,𝑗 𝑥𝑖𝑥𝑗 = �∑𝑖 𝑥𝑖�
2

13. If �̄� = 1
𝑛
∑

𝑖 𝛼𝑖 then ∑𝑖 (𝛼𝑖 − �̄�)
2 ≥ 0. Used to show Hessian is P.D. for given 𝐽 (𝑢). See

HW 2, last problem.

14. 𝑥𝑇𝐴𝑥 = ∑𝑖𝑗𝐴𝑖𝑗𝑥𝑖𝑥𝑗

15. To find a basic solution 𝑥𝐵 which is not feasible, just find basic solution with at least
one entry negative. Since this violates the constraints (we also use 𝑥 ≥ 0) for feasibility,

then 𝑥𝐵 solves 𝐴𝑥 = 𝑏 but not feasible. i.e. �𝐼 𝐵�

⎡
⎢⎢⎢⎢⎢⎣
𝑥𝐵
0

⎤
⎥⎥⎥⎥⎥⎦ = 𝑏 with some elements in 𝑥𝐵

negative. For basic solution to also be feasible, all its entries have to be positive.
(verify).

16. Solution to 𝐴𝑥 = 𝑏 are all of the form 𝑥𝑝 + 𝑥ℎ where 𝑥ℎ is solution to 𝐴𝑥 = 0 and 𝑥𝑝
is a particular solution to 𝐴𝑥 = 𝑏. This is similar to when we talk about solution to
ODE. We look for homogeneous solution to the ODE (when the RHS is zero) and
add to it a particular solution to original ODE with the rhs not zero, and add them
to obtain the general solution.

17. di�erence between Newton method and conjugate gradient, is that CG works well
from a distance, since it does not need the Hessian. CG will converge in 𝑁 steps if
𝐽(𝑢) was quadratic function. Newton will converge in one step for quadratic, but it
works well only if close to the optimal since it uses the Hessian as per above.

18. CG has superlinear convergence. This does not apply to steepest descent.

19. di�erence between steepest descent and conjugate direction is this: In SD, we use
∇𝐽(𝑢𝑘) as the direction to move at each step. i.e we use

𝑢𝑘+1 = 𝑢𝑘 − ℎ
∇𝐽(𝑢𝑘)
‖∇𝐽(𝑢𝑘)‖

Where ℎ above is either fixed step or optimal. But In CD we use 𝑣𝑘 which is the
mutual conjugate vector to all previous 𝑣𝑖. See my table of summary for this below
as they can get confusing to know the di�erence.

20. To use Dynamic programming, the problem should have optimal substructure, and
also should have an overlapping sub-problems. Sometimes hard to see or check for
this.

21. Steepest descent with optimal step size has quadratic convergence property.

22. For symmetric 𝑄, then
𝜕�𝑥𝑇𝑄𝑥�

𝜕𝑥 = 2𝑄𝑥

312

5.3. Example using conjugate directions CHAPTER 5. STUDY NOTES

5.3 Example using conjugate directions

This example is solved in number of ways. Given quadratic function 𝐽 (𝑥1, 𝑥2) =
1
2𝑥

𝑇𝐴𝑥+𝑏𝑥𝑇

where 𝑥 =

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦. To find 𝑥∗, which minimizes 𝐽 (𝑥). Let 𝐴 =

⎡
⎢⎢⎢⎢⎢⎣
4 2
2 2

⎤
⎥⎥⎥⎥⎥⎦ and 𝑏 =

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

5.3.1 First method, Direct calculus

∇𝐽 (𝑥) = 0

𝐴𝑥 + 𝑏 =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
4 2
2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
4𝑥1 + 2𝑥2 − 1
2𝑥1 + 2𝑥2 + 1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

Solving gives

𝑥∗ =

⎡
⎢⎢⎢⎢⎢⎣
𝑥1
𝑥2

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
1
−3
2

⎤
⎥⎥⎥⎥⎥⎦

5.3.2 Second method, basic Conjugate direction

Since 𝐴 is of size 𝑛 = 2, then this will converge in 2 steps using conjugate directions. let

𝑥0 =

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦. Let first direction be

𝑣0 =

⎡
⎢⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎥⎦

Then

ℎ0 =
− �𝑣0�

𝑇
∇𝐽 �𝑥0�

�𝑣0�
𝑇
𝐴𝑣0

=
− �𝑣0�

𝑇
�𝐴𝑥0 + 𝑏�

�𝑣0�
𝑇
𝐴𝑣0

=

− �1 0�

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

�1 0�

⎡
⎢⎢⎢⎢⎢⎣
4 2
2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎥⎦

=
1
4

Hence

𝑥1 = 𝑥0 + ℎ0𝑣0

=

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦ +

1
4

⎡
⎢⎢⎢⎢⎢⎣
1
0

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

1
4
0

⎤
⎥⎥⎥⎥⎥⎦

Second step. We need to find 𝑣1. Using conjugate mutual property of 𝐴, we solve for 𝑣1
using

�𝑣0�
𝑇
𝐴𝑣1 = 0

�1 0�

⎡
⎢⎢⎢⎢⎢⎣
4 2
2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
𝑣1
𝑣2

⎤
⎥⎥⎥⎥⎥⎦ = 0

4𝑣1 + 2𝑣2 = 0

Let 𝑣1 = 1 then 𝑣2 = −2 and hence

𝑣1 =

⎡
⎢⎢⎢⎢⎢⎣
1
−2

⎤
⎥⎥⎥⎥⎥⎦

313

5.3. Example using conjugate directions CHAPTER 5. STUDY NOTES

Now we find the next optimal step

ℎ1 =
− �𝑣1�

𝑇
∇𝐽 �𝑥1�

�𝑣1�
𝑇
𝐴𝑣1

=
− �𝑣1�

𝑇
�𝐴𝑥1 + 𝑏�

�𝑣1�
𝑇
𝐴𝑣1

=

− �1 −2�

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
4 2

2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

1
4
0

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1

1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

�1 −2�

⎡
⎢⎢⎢⎢⎢⎣
4 2

2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1

−2

⎤
⎥⎥⎥⎥⎥⎦

=
3
4

Hence

𝑥2 = 𝑥1 + ℎ1𝑣1

=

⎡
⎢⎢⎢⎢⎢⎣

1
4
0

⎤
⎥⎥⎥⎥⎥⎦ +

3
4

⎡
⎢⎢⎢⎢⎢⎣
1
−2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
1
−3
2

⎤
⎥⎥⎥⎥⎥⎦

Which is 𝑥∗ that we found in first method. Using 𝑛 = 2 steps as expected. In implementation,
we will have to check we converged by looking at ∇𝐽 �𝑥2� which will be

∇𝐽 �𝑥2� = 𝐴𝑥2 + 𝑏

=

⎡
⎢⎢⎢⎢⎢⎣
4 2
2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1
−3
2

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦

As expected.

5.3.3 Third method. Conjugate gradient

The di�erence here is that we find 𝑣𝑖 on the fly after each step. Unlike the conjugate

direction method, where 𝑣𝑖 are all pre-computed. Let 𝑣0 = ∇ �𝐽 �𝑥0�� =

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦. In this method,

we always pick 𝑣0 = ∇ �𝐽 �𝑥0��, where 𝑥0 is the starting guess vector. First step

ℎ0 =
− �𝑣0�

𝑇
∇𝐽 �𝑥0�

�𝑣0�
𝑇
𝐴𝑣0

=
− �𝑣0�

𝑇
�𝐴𝑥0 + 𝑏�

�𝑣0�
𝑇
𝐴𝑣0

=

− �−1 1�

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

�−1 1�

⎡
⎢⎢⎢⎢⎢⎣
4 2
2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

=
−2
2
= −1

Hence

𝑥1 = 𝑥0 + ℎ0𝑣0

=

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦ − 1

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎥⎥⎦

Now we find the mutual conjugate 𝑣1 as follows

𝛽0 =
�∇𝐽 �𝑥1��

𝑇
𝐴𝑣0

�𝑣0�
𝑇
𝐴𝑣0

=
�𝐴𝑥1 + 𝑏� �𝐴𝑣0�

�𝑣0�
𝑇
𝐴𝑣0

=

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
4 2

2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1

−1

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1

1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

𝑇 ⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
4 2

2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
−1

1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

�−1 1�

⎡
⎢⎢⎢⎢⎢⎣
4 2

2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
−1

1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
1

1

⎤
⎥⎥⎥⎥⎥⎦

𝑇 ⎡
⎢⎢⎢⎢⎢⎣
−2

0

⎤
⎥⎥⎥⎥⎥⎦

2
=
−2
2
= −1

314

5.3. Example using conjugate directions CHAPTER 5. STUDY NOTES

Hence

𝑣1 = −∇𝐽 �𝑥1� + 𝛽0𝑣0

= −

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
4 2
2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ − (1)

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
0
−2

⎤
⎥⎥⎥⎥⎥⎦

Now that we found 𝑣1, we repeat the process.

ℎ1 =
− �𝑣1�

𝑇
∇𝐽 �𝑥1�

�𝑣1�
𝑇
𝐴𝑣1

=
− �𝑣1�

𝑇
�𝐴𝑥1 + 𝑏�

�𝑣1�
𝑇
𝐴𝑣1

=

− �0 −2�

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
4 2

2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1

−1

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1

1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

�0 −2�

⎡
⎢⎢⎢⎢⎢⎣
4 2

2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0

−2

⎤
⎥⎥⎥⎥⎥⎦

=
2
8
=
1
4

Hence

𝑥2 = 𝑥1 + ℎ1𝑣1

=

⎡
⎢⎢⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎥⎥⎦ + �

1
4�

⎡
⎢⎢⎢⎢⎢⎣
0
−2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
1
−3
2

⎤
⎥⎥⎥⎥⎥⎦

Which is the same as with conjugate direction method. Converged in 2 steps also.

5.3.4 Fourth method. Conjugate gradient using Fletcher-Reeves

In this method

𝛽𝑘 =
∇𝐽 �𝑢𝑘+1�

𝑇
∇𝐽 �𝑢𝑘+1�

∇𝐽 �𝑢𝑘�
𝑇
∇𝐽 �𝑢𝑘�

=
�∇𝐽 �𝑢𝑘+1��

2

�∇𝐽 �𝑢𝑘��
2

We also start here with 𝑣0 = ∇𝐽 �𝑢0� =

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦ in this example.

ℎ0 =
− �𝑣0�

𝑇
∇𝐽 �𝑥0�

�𝑣0�
𝑇
𝐴𝑣0

=
− �𝑣0�

𝑇
�𝐴𝑥0 + 𝑏�

�𝑣0�
𝑇
𝐴𝑣0

=

− �−1 1�

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

�−1 1�

⎡
⎢⎢⎢⎢⎢⎣
4 2
2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

=
−2
2
= −1

Hence

𝑥1 = 𝑥0 + ℎ0𝑣0

=

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦ − 1

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎥⎥⎦

Now find the mutual conjugate 𝑣1 as follows, using Fletcher-Reeves formula

𝛽0 =
�∇𝐽 �𝑢1��

2

�∇𝐽 �𝑢0��
2 =

�𝐴𝑥1 + 𝑏�2

�𝐴𝑥0 + 𝑏�2
=

�
�

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
4 2

2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1

−1

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1

1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠
�
�

2

�
�

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
4 2

2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0

0

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1

1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠
�
�

2 =

�
�

⎡
⎢⎢⎢⎢⎢⎣
1

1

⎤
⎥⎥⎥⎥⎥⎦
�
�

2

�
�

⎡
⎢⎢⎢⎢⎢⎣
−1

1

⎤
⎥⎥⎥⎥⎥⎦
�
�

2 =
�√2�

2

�√2�
2 = 1

315

5.3. Example using conjugate directions CHAPTER 5. STUDY NOTES

𝑣1 = −∇𝐽 �𝑥1� + 𝛽0𝑣0

= −

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
4 2
2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ + (1)

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
−2
0

⎤
⎥⎥⎥⎥⎥⎦

Now that we found 𝑣1, we repeat the process.

ℎ1 =
− �𝑣1�

𝑇
∇𝐽 �𝑥1�

�𝑣1�
𝑇
𝐴𝑣1

=
− �𝑣1�

𝑇
�𝐴𝑥1 + 𝑏�

�𝑣1�
𝑇
𝐴𝑣1

=

− �−2 0�

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
4 2

2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1

−1

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1

1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

�−2 0�

⎡
⎢⎢⎢⎢⎢⎣
4 2

2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0

−2

⎤
⎥⎥⎥⎥⎥⎦

=
2
8
=
1
4

Hence

𝑥2 = 𝑥1 + ℎ1𝑣1

=

⎡
⎢⎢⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎥⎥⎦ + �

1
4�

⎡
⎢⎢⎢⎢⎢⎣
0
−2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
1
−3
2

⎤
⎥⎥⎥⎥⎥⎦

Which is the same as with conjugate direction method. It converges in 2 steps also.

5.3.5 Fifth method. Conjugate gradient using Polak-Ribiere

In this method

𝛽𝑘 =
∇𝐽 �𝑢𝑘+1�

𝑇
�∇𝐽 �𝑢𝑘+1� − ∇𝐽 �𝑢𝑘��

∇𝐽 �𝑢𝑘�
𝑇
∇𝐽 �𝑢𝑘�

We also start here with 𝑣0 = ∇𝐽 �𝑢0� =

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦ in this example.

ℎ0 =
− �𝑣0�

𝑇
∇𝐽 �𝑥0�

�𝑣0�
𝑇
𝐴𝑣0

=
− �𝑣0�

𝑇
�𝐴𝑥0 + 𝑏�

�𝑣0�
𝑇
𝐴𝑣0

=

− �−1 1�

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

�−1 1�

⎡
⎢⎢⎢⎢⎢⎣
4 2
2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

=
−2
2
= −1

Hence

𝑥1 = 𝑥0 + ℎ0𝑣0

=

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦ − 1

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎥⎥⎦

Now we find the mutual conjugate 𝑣1 direction as follows, using Polak-Ribiere formula

𝛽0 =
∇𝐽 �𝑢1�

𝑇
�∇𝐽 �𝑢1� − ∇𝐽 �𝑢0��

∇𝐽 �𝑢0�
𝑇
∇𝐽 �𝑢0�

But

∇𝐽 �𝑢1� =

⎡
⎢⎢⎢⎢⎢⎣
4 2
2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎥⎦

∇𝐽 �𝑢0� =

⎡
⎢⎢⎢⎢⎢⎣
4 2
2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0
0

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

316

5.3. Example using conjugate directions CHAPTER 5. STUDY NOTES

Hence

𝛽0 =

�1 1�

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
1
1

⎤
⎥⎥⎥⎥⎥⎦ −

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

�−1 1�

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

=
2
2
= 1

Hence

𝑣1 = −∇𝐽 �𝑥1� + 𝛽0𝑣0

= −

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
4 2
2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ + (1)

⎡
⎢⎢⎢⎢⎢⎣
−1
1

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
−2
0

⎤
⎥⎥⎥⎥⎥⎦

Now that we found 𝑣1, we repeat the process.

ℎ1 =
− �𝑣1�

𝑇
∇𝐽 �𝑥1�

�𝑣1�
𝑇
𝐴𝑣1

=
− �𝑣1�

𝑇
�𝐴𝑥1 + 𝑏�

�𝑣1�
𝑇
𝐴𝑣1

=

− �−2 0�

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣
4 2

2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
1

−1

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎣
−1

1

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

�−2 0�

⎡
⎢⎢⎢⎢⎢⎣
4 2

2 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣
0

−2

⎤
⎥⎥⎥⎥⎥⎦

=
2
8
=
1
4

Hence

𝑥2 = 𝑥1 + ℎ1𝑣1

=

⎡
⎢⎢⎢⎢⎢⎣
1
−1

⎤
⎥⎥⎥⎥⎥⎦ + �

1
4�

⎡
⎢⎢⎢⎢⎢⎣
0
−2

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣
1
−3
2

⎤
⎥⎥⎥⎥⎥⎦

Which is the same as with conjugate direction method. Converges in 2 steps also as expected

317

5.4. collection of definitions CHAPTER 5. STUDY NOTES

5.4 collection of de�nitions

Basic solution for LP This is solution �⃗� which has non zero entries that correspond to
linearly independent column in 𝐴. Where the constraints are 𝐴𝑥 = 𝑏.

feasible solution for LP This is solution �⃗� which is in the feasible region. The region
that satisfy the constraints. Feasible solution do not have to be basic.

basic and feasible solution for LP This is solution �⃗� which is both feasible and basic.
Once we get to one of these, then simplex algorithm will jump from one basic feasible
to the next, while reducing the 𝐽(𝑢) objective function until optimal is found.

Basic but not feasible solution is there one? Need example.

Newton Raphson method Iteration is

𝑢𝑘+1 = 𝑢𝑘 −
∇𝐽(𝑢𝑘)
∇ 2𝐽(𝑢𝑘)

where ∇ 2𝐽(𝑢𝑘) is the hessian. This is a 𝐴 matrix in the quadratic expression

𝐽(𝑢) =
1
2
𝑢𝑇𝐴𝑢 + 𝑏𝑇𝑢 + 𝑐

Of course we can’t divide by matrix, this is the inverse of the Hessian. So the above
is

𝑢𝑘+1 = 𝑢𝑘 − �∇ 2𝐽(𝑢𝑘)�
−1
∇𝐽(𝑢𝑘)

See handout Newton for example with 𝐽(𝑢) given and how to use this method to
iterate to 𝑢∗. If 𝐽(𝑢) was quadratic, this will converge in one step.

Quadratic expression An expression is quadratic if it can be written as

�
𝑖
�
𝑗
𝑎𝑖𝑗𝑢𝑖𝑢𝑗 +�

𝑖
𝑏𝑖𝑢𝑖 + 𝑐

For example, 𝑥21 + 9𝑥1𝑥2 + 14𝑥22 becomes

𝑥21 + 9𝑥1𝑥2 + 14𝑥22 = 𝑎11𝑥1𝑥1 + 𝑎21𝑥2𝑥1 + 𝑎12𝑥1𝑥2 + 𝑎22𝑥2𝑥2 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑐
= 𝑎11𝑥21 + 𝑎21𝑥2𝑥1 + 𝑎12𝑥1𝑥2 + 𝑎22𝑥22 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑐

comparing both sides, we see that by setting 𝑎11 = 1, 𝑎21 =
9
2 , 𝑎21 =

9
2 , 𝑎22 = 14 and

by setting 𝑏1 = 0, 𝑏2 = 0 and 𝑐 = 0 we can write it in that form. Hence it is quadratic
and

𝐴 =

⎛
⎜⎜⎜⎜⎜⎝
1 9

2
9
2 14

⎞
⎟⎟⎟⎟⎟⎠ , 𝑏 = �0 0�

Therefore

𝑥21 + 9𝑥1𝑥2 + 14𝑥22 = 𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐

= �𝑥1 𝑥2�

⎛
⎜⎜⎜⎜⎜⎝
1 9

2
9
2 14

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎟⎠ + �0 0�

⎛
⎜⎜⎜⎜⎜⎝
𝑥1
𝑥2

⎞
⎟⎟⎟⎟⎟⎠ + 0

Since we are able to write 𝑥21 + 9𝑥1𝑥2 + 14𝑥22 = 𝑥𝑇𝐴𝑥 + 𝑏𝑇𝑥 + 𝑐 it is quadratic. Notice
that the 𝐴 matrix is always symmetric.

superlinear convergence A sequence {𝑢𝑘} in ℜ𝑛 is said to converge superlinearly to 𝑢∗ if
the following holds. Given any 𝜃 ∈ (0, 1] then

lim
𝑘→∞

‖𝑢𝑘 − 𝑢∗‖
𝜃𝑘

→ 0

Example is 𝑢𝑘 = 𝑒−𝑘2 Since 𝑢∗ = 0 then 𝑒−𝑘2

𝜃𝑘
→ 0 no matter what 𝜃 ∈ (0, 1] is. Remember,

it has to go to zero for any 𝜃

Quadratic convergence theorem Given quadratic

𝐽(𝑢) =
1
2
𝑢𝑇𝐴𝑢 + 𝑏𝑇𝑢 + 𝑐

318

5.4. collection of definitions CHAPTER 5. STUDY NOTES

And given 𝑁 set of mutually conjugate vectors (with respect to A) {𝑣0, 𝑣2, … , 𝑣𝑁−1}
then the conjugate direction algorithm converges to the optimal 𝑢∗ = −𝐴−1𝑏 in 𝑁
steps of less. Proof in lecture 3/1/2016 (long)

A-conjugate vectors There are mutually conjugate vectors with respect to 𝐴. The direc-
tions {𝑣0, 𝑣1, … , 𝑣𝑁−1} are said to be mutually conjugate with respect to 𝐴 if

(𝑣𝑖)𝑇𝐴𝑣𝑗 = 0

For all 𝑖 ≠ 𝑗

319

5.5. Summary of iterative search algorithms CHAPTER 5. STUDY NOTES

5.5 Summary of iterative search algorithms

5.5.1 steepest descent

5.5.1.1 steepest descent, any objective function 𝐽(𝑥)

The input is 𝑥(0) the initial starting point and 𝐽(𝑥) itself.

1. init 𝑥0 = 𝑥(0), 𝑘 = 0
2. 𝑔𝑘 = ∇𝐽(𝑥𝑘)

3. 𝛼𝑘 = min𝛼 𝐽 �𝑥𝑘 − 𝛼
𝑔𝑘

‖𝑔𝑘‖
� (line search)

4. 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘
𝑔𝑘

‖𝑔𝑘‖

5. 𝑘 = 𝑘 + 1
6. goto

2

5.5.1.2 steepest descent, Quadratic objective function 𝐽(𝑥)

If the objective function 𝐽(𝑥) is quadratic 𝐽(𝑥) = 𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥 + 𝑐 then there is no need to do
the line search.

The input is 𝑥(0) the initial starting point and 𝐴, 𝑏. The algorithm becomes

1. Init 𝑥0 = 𝑥(0), 𝑘 = 0
2. 𝑔𝑘 = ∇𝐽(𝑥𝑘) = 𝐴𝑥𝑘 − 𝑏

3. 𝛼𝑘 =
�𝑔𝑘�

𝑇
𝑔𝑘

�𝑔𝑘�
𝑇
𝐴𝑔𝑘

4. 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝑔𝑘

5. 𝑘 = 𝑘 + 1
6. goto

2

5.5.2 conjugate direction, Quadratic function 𝐽(𝑥)

For quadratic 𝐽(𝑥) = 𝑥𝑇𝐴𝑥 − 𝑏𝑇𝑥 + 𝑐 the conjugate direction algorithm is as follows.

Input 𝑥(0) starting point, and 𝐴, 𝑏 and set of 𝑛 mutually conjugate vectors {𝑣0, 𝑣1, … , 𝑣𝑛−1}
with respect to 𝐴, where 𝑛 is the size of 𝐴. In other words, (𝑣𝑖)𝑇𝐴𝑣𝑗 = 0 for 𝑖 ≠ 𝑗.

These 𝑣𝑖 vectors have to be generated before starting the algorithm. With the conjugate
gradient (below), these A-conjugate vectors are generated on the fly inside the algorithm as
it iterates. This is the main di�erence between conjugate direction and conjugate gradient.

1. init 𝑢0 = 𝑥(0), 𝑘 = 0
2. 𝑔𝑘 = ∇𝐽(𝑥𝑘) = 𝐴𝑥𝑘 − 𝑏

3. 𝛼𝑘 =
�𝑔𝑘�

𝑇
𝑣𝑘

�𝑔𝑘�
𝑇
𝐴𝑣𝑘

4. 𝑥𝑘+1 = 𝑥𝑘 − 𝛼𝑘𝑣𝑘

5. 𝑘 = 𝑘 + 1
6. goto

2

We see the di�erence between the above and the steepest descent before it, is in line 3,4.
Where now 𝑣𝑘 replaces 𝑔𝑘 in two places.

320

5.5. Summary of iterative search algorithms CHAPTER 5. STUDY NOTES

5.5.3 conjugate gradient, Quadratic function 𝐽(𝑥)
Conjugate direction required finding set of 𝑣 vectors before starting the algorithm. This
algorithm generates these vectors as it runs.

Input 𝑥(0) starting point, and 𝐴, 𝑏.

1. Init 𝑢0 = 𝑥(0), 𝑘 = 0, 𝑔0 = ∇𝐽(𝑥0) = 𝐴𝑥0 − 𝑏, 𝑣0 = −𝑔0

2. 𝛼𝑘 =
�𝑔𝑘�

𝑇
𝑣𝑘

�𝑔𝑘�
𝑇
𝐴𝑣𝑘

4. 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑣𝑘

5. 𝑔𝑘+1 = ∇𝐽(𝑥𝑘+1) = 𝐴𝑥𝑘+1 − 𝑏

6. 𝛽 =
�𝑔𝑘+1�

𝑇
𝐴𝑣𝑘

�𝑣𝑘�
𝑇
𝐴𝑣𝑘

7. 𝑣𝑘+1 = −𝑔𝑘+1 + 𝛽𝑣𝑘

8. 𝑘 = 𝑘 + 1
9. goto

2

5.5.4 conjugate gradient, None quadratic function 𝐽(𝑥),
Hestenses-Stiefel

If we do not have quadratic function, then we can not use 𝐴, 𝑏 to generate 𝛽. The above
algorithm becomes using Hestenses-Stiefel

Input 𝑥(0) starting point.

1. Init 𝑢0 = 𝑥(0), 𝑘 = 0, 𝑔0 = ∇𝐽(𝑥0), 𝑣0 = −𝑔0

2. 𝛼𝑘 = min𝛼 𝐽 �𝑥𝑘 + 𝛼𝑣𝑘� (line search)
3. 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑣𝑘

4. 𝑔𝑘+1 = ∇𝐽(𝑥𝑘+1)

5. 𝛽 =
�𝑔𝑘+1�

𝑇
�𝑔𝑘+1−𝑔𝑘�

�𝑣𝑘�
𝑇
�𝑔𝑘+1−𝑔𝑘�

6. 𝑣𝑘+1 = −𝑔𝑘+1 + 𝛽𝑣𝑘

7. 𝑘 = 𝑘 + 1
8. goto

2

5.5.5 conjugate gradient, None quadratic function 𝐽(𝑥),
Polak-Ribiere

If we do not have quadratic function, then we can not use 𝐴, 𝑏 to generate 𝛽. The conjugate
gradient algorithm becomes using Polak-Ribiere as follows

Input 𝑥(0) starting point.

321

5.5. Summary of iterative search algorithms CHAPTER 5. STUDY NOTES

1. Init 𝑢0 = 𝑥(0), 𝑘 = 0, 𝑔0 = ∇𝐽(𝑥0), 𝑣0 = −𝑔0

2. 𝛼𝑘 = min𝛼 𝐽 �𝑥𝑘 + 𝛼𝑣𝑘� (line search)
3. 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑣𝑘

4. 𝑔𝑘+1 = ∇𝐽(𝑥𝑘+1)

5. 𝛽 =
�𝑔𝑘+1�

𝑇
�𝑔𝑘+1−𝑔𝑘�

�𝑔𝑘�
𝑇
𝑔𝑘

6. 𝑣𝑘+1 = −𝑔𝑘+1 + 𝛽𝑣𝑘

7. 𝑘 = 𝑘 + 1
8. goto

2

5.5.6 conjugate gradient, None quadratic function 𝐽(𝑥),
Fletcher-Reeves

If we do not have quadratic function, then we can not use 𝐴, 𝑏 to generate 𝛽. The conjugate
gradient algorithm becomes using Fletcher-Reeves as follows

Input 𝑥(0) starting point.

1. Init 𝑢0 = 𝑥(0), 𝑘 = 0, 𝑔0 = ∇𝐽(𝑥0), 𝑣0 = −𝑔0

2. 𝛼𝑘 = min𝛼 𝐽 �𝑥𝑘 + 𝛼𝑣𝑘� (line search)
3. 𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘𝑣𝑘

4. 𝑔𝑘+1 = ∇𝐽(𝑥𝑘+1)

5. 𝛽 =
�𝑔𝑘+1�

𝑇
𝑔𝑘+1

�𝑔𝑘�
𝑇
𝑔𝑘

6. 𝑣𝑘+1 = −𝑔𝑘+1 + 𝛽𝑣𝑘

7. 𝑘 = 𝑘 + 1
8. goto

2

322

Index

Convexity, 19

A-conjugate vectors, 319

Bolzano-Weierstrass theorem, 17
Bridging Lemma, 25

Ceiling, 85
Closed set, 16
Coercive function, 18
Coercivity theorem, 19
Compact set, 17
Conjugate Gradient, 216
Constrained problem, 11
Convex function, 21
Convex Hull, 310
Convex set, 20
Convexity, 20

Decision tree, 62
Dynamic programming, city planners, 269
Dynamic programming, floor, 89
Dynamic programming, one step to go, 68
Dynamic programming, principle of optimal-

ity, 66, 68
Dynamic programming, stages, 70
Dynamic programming, state equation, 68
Dynamic programming, subproblem, 66
Dynamic programming, variations, 85, 86

Eigenvalue, convexity, 138
Epigraph, 125, 132
Extreme points, 21
extreme points, 112

Fletcher-Reeves, 216
Floor, 85
Freudenstein and Roth, nonlinear function,

213

Generators, 140
Global minimum, 26, 127
Gradient, 23

Hessian, definition, 23
Hessian, theorem, 23, 26
Hypercube, 11, 13
Hyperplane, 137

Linear programming, 43, 46
Linear programming, basic theory, 60
Linear programming, definition, 318
Linear programming, Diet problem, 254
Linear Programming, Dog food problem, 232

Local minimum, 127
Lyapunov equation, 142

Matlab, contour plot, 156
Matlab, linprog, 250
Minimax, 247
Multilinear function, 13, 14, 112

Newton Raphson, 318

Objective function, 10, 11, 23
Objective set, 23
Optimal gain, 141
Optimal solution, Existence, 18
Optimal solution, existence, 12

Pareto optimality, 16
Pointwise maximum, 22
Polyalk-Ribiere, 216
Polyhedron, 31
Polytope, 20, 21, 31, 43, 44, 139
Problem, Farming, 12
Problem, floor, 89, 281
Problem, investment allocation, 73
Problem, Sector patrol, 47
Problem, sector patrol, 53, 242
Problem, state street vendor, 57
Problem, trip from NY to SFO, 64

Quadratic objective function, 36

Riccati matrix equation, 92
Riccati, discrete algebraic equation , 284
Rosenbrock Banana function, 178

Simplex, 43, 46
Simplex, mechanisms, 53
Simplex, phase one, 242
Simplex, squeezing process, 50
Simplex, Unit, 52
Slack variable, 46
Steepest descent algorithm, 158
Steepest descent algorithm, Optimal step,

178
Strong local minimum, 26
Superlinear convergence, 318
Surplus variable, 46

Unconstrained problem, 11
Unique minimum, 126
Unit ball, 20

323

	Introduction
	syllabus
	References
	Organization
	Cardinal rules

	Class notes
	Lecture 1. Tuesday, January 19, 2016
	Lecture 2. Thursday, January 21, 2016
	Lecture 3. Tuesday, January 26, 2016
	Lecture 4. Thursday, January 28, 2016
	Lecture 5. Tuesday, February 2, 2016
	Lecture 6. Thursday, February 4, 2016
	Lecture 7, Tuesday, February 9, 2016
	Lecture 8. Thursday, February 11, 2016
	Lecture 9. Tuesday, February 16, 2016
	Lecture 10. Thursday, February 18, 2016 (Exam 1)
	Lecture 11. Tuesday, February 23, 2016
	Lecture 12. Thursday, February 25, 2016
	Lecture 13. Tuesday, March 1, 2016
	Lecture 14. Thursday, March 3, 2016
	Lecture 15. Tuesday, March 8, 2016
	Lecture 16. Thursday, March 10, 2016
	Lecture 17. Tuesday, March 15, 2016
	Lecture 18. Thursday, March 17, 2016
	Lecture 19. Tuesday, March 22, 2016 (No class)
	Lecture 20. Thursday, March 24, 2016 (No class)
	Lecture 21. Tuesday, March 29, 2016
	Lecture 22. Thursday, March 31, 2016. Second midterm exam
	Lecture 23. Tuesday, April 5, 2016
	Lecture 24. Thursday, April 7, 2016 (No class)
	Lecture 25. Tuesday, April 12, 2016
	Lecture 26. Thursday, April 14, 2016
	Lecture 27. Tuesday, April 19, 2016
	Lecture 28. Thursday, April 21, 2016
	Lecture 29. Tuesday, April 26, 2016
	Lecture 30. Thursday, April 28, 2016
	Lecture 31. Tuesday, May 3, 2016
	Lecture 32. Thursday, May 5, 2016

	Handouts
	Real analysis. January 21, 2016
	Positive-Definite Matrices. January 26, 2016
	Coercivity Theorem. January 27, 2016
	Hessian Theorem. February 8, 2016
	Proof of Hessian theorem. February 8, 2016
	Handout circuit. February 23, 2016
	Handout Newton. February 26, 2016
	Handout polytopes, march 3 2016
	Sector patrol. March 8, 2016
	Handout Extreme. March 15, 2016

	HWs
	HW 1
	HW 2
	HW 3
	HW 4
	HW 5
	HW 6
	HW 7
	HW special problem

	study notes
	Some HOWTO questions
	Some things to remember
	Example using conjugate directions
	collection of definitions
	Summary of iterative search algorithms

