University Course

ECE 719
Optimal Systems

University of Wisconsin, Madison
Spring 2016

My Class Notes
Nasser M. Abbasi

Spring 2016

Contents

[l _Introduction 1
1.1 syllabus|. 2
M2 Referencesl 3
(L3 Organization|, 4
M4 Cardinalruleslot 5

2 Class notes| 7
2.1 Lecture 1. Tuesday, January 19, 2016, 11
2.2 Lecture 2. Thursday, January 21, 2016). 14
2.3 Lecture 3. Tuesday, January 26,2016 17
2.4 Lecture 4. Thursday, January 28, 2016{. 22
2.5 Lecture 5. Tuesday, February 2, 2016| 25
2.6 Lecture 6. Thursday, February 4, 2016/. 29
2.7 Lecture 7/, Tuesday, February 9, 2016, 32
[2.8 Lecture 8. Thursday, February 11, 2016 35
2.9 Lecture 9. Tuesday, February 16, 2016 39
2.10 Lecture 10. Thursday, February 18, 2016 (Exam 1)[. 41
2.11 Lecture 11. Tuesday, February 23,2016 42
[2.12 Lecture 12. Thursday, February 25,2016 44
[213 Lecture 13. Tuesday, March 1,2016] 48
[2.14 Lecture 14. Thursday, March 3,2016] 53
[2.15 Lecture 15. Tuesday, March 8,2016] 56
[2.16 Lecture 16. Thursday, March 10, 2016]. 59
Wuesday, March 15,@ 64
[2.18 Lecture 18. Thursday, March 17,2016]. 68
|2.19 Lecture 19. Tuesday, March 22, 2016 (Noclass)| 72
[2.20 Lecture 20. Thursday, March 24, 2016 (No class)] 73
[2.21 Lecture 21. Tuesday, March 29, 2016]. 74
[2.22 Lecture 22. Thursday, March 31, 2016. Second midterm exam|. 78
2.23 Lecture 23. Tuesday, April 5, 2016/ 79
[2.24 Lecture 24. Thursday, April 7, 2016 (No class)|. 82
[2.25 Lecture 25. Tuesday, April 12,2016 83
[2.26 Lecture 26. Thursday, April 14,2016 85
[2.27 Lecture 27. Tuesday, April 19, 2016 91
[2.28 Lecture 28. Thursday, April 21, 2016 105

iii

Contents CONTENTS
[2.29 Lecture 29. Tuesday, April 26, 2016 109
[2.30 Lecture 30. Thursday, April 28,2016 111
2.31 Lecture 31. Tuesday, May 3, 2016(. 114
2.32 Lecture 32. Thursday, May 5, 2016(. 115

3 _Handouts| 117
[3.1 Real analysis. January 21, 2016[. 118
We Matrices. January 26, 2016[. 119
3.3 Coercivity Theorem. January 27,2016). 120
[3.4 Hessian Theorem. February 8,2016] 121
|3.5 Proof of Hessian theorem. February 8, 2016[. 122
.6 Handout circuit. February 23,2016 123
3.7 Handout Newton. February 26, 2016]. 124
[3.8" Handout polytopes, march 32016 125
3.9 Sector patrol. March 8,2016] 130
3.10 Handout Extreme. March 15, 2016|. 131

4_HW;l 133
BITHWI. ... 134
B2 HW. ... 152
B3 HW 3. . .o 167
BATHW. ... 193
.. 266
4.6 HW e 302
M7 HWZ . ..o 335
4.8 HW special problem| o o o o 366

1 study notes| 387
5.1 Some HOWTO questions| 388
5.2 Some thingstoremember] L L 390
5.3 Example using conjugate directions| 393
6.4 collection of definitions 400
[0.5 Summary of iterative search algorithms| 0000 402

iv

Chapter 1

Introduction

Instructor web page: Professor B Ross Barmish|

http://directory.engr.wisc.edu/ece/Faculty/Barmish_B/

1.1. syllabus CHAPTER 1. INTRODUCTION

1.1 syllabus

Barmish

ECE 719 - Handout Syllabus
Course Description

Audience: This course is intended for graduate students interested in the systems sci-
ences. The course concentrates on finite-dimensional parameter optimization methods
with examples in the context of static and dynamic systems. Coverage of the material
will be suitable for students both inside and outside ECE.

Prerequisites: ECE 334 or consent of instructor.

Topics: Preliminaries; Formulation of parameter optimization problems for static and
dynamic systems; Common sense optimization; Existence and uniqueness; Convex opti-
mization; Optimal gain control and other dynamic systems problems; Line search meth-
ods; Steepest descent, Newton-Raphson and conjugate direction algorithms; Convergence
issues; Linear Programming with control applications; Discrete-time dynamic program-
ming; Optimization of Linear Quadratic Regulators; Identification and Kalman filtering
in an optimization context.

Lectures: Professor B. R. Barmish
Grading: The grade will be based on three midterm tests @ 25%, homework and a

special problem (25%). The instructor may exercise discretion up to 10% in each of the
grading categories.

1.2. References CHAPTER 1. INTRODUCTION

1.2 References

Some Initial References

D. P. Bertsekas, Conver Analysis and Optimization, Athena Scientific, Belmont, 2003.

S. Boyd and C. Barratt, Linear Controller Design, Limits of Performance, Prentice-
Hall, New York, 1991.

S. Boyd and L. Vandenberghe, Introduction to Conver Optimization With Engineering
Applications, Stanford University, 1999.

E. K. P. Chong and S. H. Zak, Introduction to Optimization, Wiley-Interscience, New
York, 2001.

R. Fletcher, Practical Methods of Optimization, John Wiley & Sons, New York, 1980.

D. G. Luenberger, Optimization by Vector Space Methods, John Wiley & Sons, New
York, 1968.

J. Nocedal and S. J. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.

R. T. Rockafellar, Conver Analysis, Princeton University Press, Princeton, 1970.

1.3. Organization CHAPTER 1. INTRODUCTION

1.3 Organization

Barmish

ECE 719 — Handout Organization

e Lectures

B. R. Barmish

Office: 3613 Engineering Hall

E-mail: barmish@engr.wisc.edu

Office Hours: Wednesday 1:00-3:00 PM

o Textbook

None: Lecture Notes and Readings

e Grading
Per Handout Syllabus

e Test Scheduling Information

First Midterm Test: Thursday, February 18, 2016

Second Midterm Test: Thursday, March 31, 2016

Third Midterm Test: Thursday, May 5, 2016

Midterms held in class period unless rescheduled; see below.

e Course Schedule Information

No Office Hours during Spring Recess and Wednesday, April 6, 2016
Reserved Time @ 6 PM on Wednesdays February 17, March 30 and May 4.
Times above for Make-up Lectures or Midterm Test Rescheduling.

e Discussion of Prerequisites
e Discussion of Matlab

e Discussion of Homework and Grading

1.4. Cardinal rules CHAPTER 1. INTRODUCTION

1.4 Cardinal rules

Barmish

ECE 719 — Handout Cardinal
Use of References and the Cardinal Rule

Some Comments on the References: There are a number of good
books on the reference list for ECE 719. I recommend the book by Chong
and Zak in that it covers many of the topics in this course and is well
written. The books by Rockafellar and Bertsekas tell you everything you
ever wanted to know about convexity. Rockafellar covers the material in
greater depth but is more time consuming to read. This course covers
finite-dimensional optimization. The reader who is interested in a lu-
cid presentation of infinite-dimensional analogues of many of these results
should consult the book by Luenberger. The book by Fletcher provides a
concise summary of classical numerical algorithms used in iterative opti-
mization. For the uninitiated, I would recommend the well-written text-
book by Nocedal and Wright on numerical optimization. For the reader
interested in optimization with a control-theoretic slant, the book by Boyd
and Baratt is nice to read.

The Cardinal Rule: In homework assignments, students should only
rely on results given in class, basic mathematical facts, assigned readings
and results developed in previous homework sets. That is, one should not
pull results out of reference books on optimization and cite them in order
to attain the result being sought. To this end, the course instructor will
serve to interpret what mathematical facts qualify as “basic.”

1.4. Cardinal rules CHAPTER 1. INTRODUCTION

Chapter 2

Class notes

Local contents

2.1 Lecture 1. Tuesday, January 19, 2016(. 11
2.2 Lecture 2. Thursday, January 21, 2016|. 14
2.3 Lecture 3. Tuesday, January 26, 2016{. 17
2.4 Lecture 4. Thursday, January 28, 2016). 22
2.5 Lecture 5. Tuesday, February 2,2016. 25
2.6 Lecture 6. Thursday, February 4, 2016|. 29
2.7 Lecture 7/, Tuesday, February 9, 2016, 32
2.8 Lecture 8. Thursday, February 11, 2016 35
2.9 Lecture 9. Tuesday, February 16,2016 39
|2.10 Lecture 10. Thursday, February 18, 2016 (Exam I)] 41
|2.11 Lecture 11. Tuesday, February 23, 2016| 42
[212 Lecture 12. Thursday, February 25,2016] 44
[2.13 Lecture 13. Tuesday, March 1, 2016] 48
|2.14 Lecture 14. Thursday, March 3, 2016 53
[2.15 Lecture 15. Tuesday, March 8, 2016] 56
[2.16 Lecture 16. Thursday, March 10, 2016 59
[2.17 Lecture 17. Tuesday, March 15,2016]. 64
[2.18 Lecture 18. Thursday, March 17,2016] 68
@ectnre 19. Tuesday, March 22, 2016 (No class)| 72
[2.20 Lecture 20. Thursday, March 24, 2016 (No class)] 73
[2.21 Lecture 21. Tuesday, March 29,2016]. 74
[2.22 Lecture 22. Thursday, March 31, 2016. Second midterm exam|. 78
2.23 Lecture 23. Tuesday, April 5, 2016 79
2.24 Lecture 24. Thursday, April 7, 2016 (Noclass)| 82
[2.25 Lecture 25. Tuesday, April 12,2016 83
[2.26 Lecture 26. Thursday, April 14,2016). 85
2.27 Lecture 27. Tuesday, April 19, 2016 91
2.28 Lecture 28. Thursday, April 21, 2016. 105

CHAPTER 2. CLASS NOTES

2.29 Lecture 29. Tuesday, April 26, 2016

.......................... 109
2.30 Lecture 30. Thursday, April 28, 2016]. 111
2.31 Lecture 31. Tuesday, May 3, 2016(. 114
[2.32 Lecture 32. Thursday, May 5,2016] 115

CHAPTER 2. CLASS NOTES

Summary table

These are my class lecture notes written from the lectures of ECE 719 optimal systems
course given by Professor B. Ross Barmish at University of Wisconsin, Madison in Spring
2016. Any errors in these notes, then all blames to me and not to the instructor.

date event Topic
Tuesday, 1/19/2016 | First class Introduction, handouts

2 Thursday, 1/21/2016 | Multilinear Tractable, Farming example, Multilinear, det(M)
example

3 Tuesday, 1/26/2016 | Real analysis Reader on Farming, level sets, Pareto, Existence
of optimal, real analysis, B-W, sub-sequences

4 Thursday, 1/28/2016 | Quadratic Coercivity, classical existence theorem, Quadratic

forms forms, starting convex sets

5 Tuesday, 2/2/2016 Mixtures Polytope, Mixtures, Extreme points, Started con-
vex functions, maximum of collection of convex
functions is convex function. epi graph.

6 Thursday, 2/4/2016 | Convex Convex functions, properties, indexed collection,
Hessian theorem: J(u) is convex iff, the Hessian is
positive semi-definite.

7 Tuesday, 2/9/2016 Hessian Bridging lemma. Proof of Hessian theorem for n >
1. Strong local minimum theorem.

Thursday, 2/11/2016 | optimal gain optimal gain problem.
Tuesday, 2/16/2016 | Gradient Gradient based optimization

10 Thursday, 2/18/2016 | Exam 1

11 Tuesday, 2/23/2016 | Steepest Handout amplifier. Finish Steepest descent. Start
on Newton-Raphson

12 Thursday, 2/26/2016 | Convergence Handout Newton. Derivation of step size for
Newton-Raphson. Super-linear convergence.

13 Tuesday, 3/1/2016 Gradient direc- | Gradient direction, quadratic convergence, mutu-

tion ally conjugate vectors, quadratic convergence the-
orem

14 Thursday, 3/3/2016 | LP Starting linear programming

15 Tuesday, 3/8/2016 LP patrol sector problem, mechanics of LP

16 Thursday, 3/10/2016 | LP Squeeze method, basic and feasible solutions

17 Tuesday, 3/15/2016 | LP simplex optimality theorem, extreme point theorem, unit
simplex, mechanism of simplex

18 Thursday, 3/17/2016 | Complete LP | Tableau method with optimality

19 Tuesday, 3/22/2016 No class. Thanks giving

20 Thursday, 3/24/2016 No class. Thanks giving

9

CHAPTER 2. CLASS NOTES

21 Tuesday, 3/29/2016 | LP in control | Example using LP in control, minimum fuel. End-
ing LP, starting dynamic programming, review.
22 Thursday, 3/31/2016 | Exam 2
23 Tuesday, 4/5/2016 Dynamic pro- | First example in dynamic programming, trip from
gramming NY to San Francisco. Toll fee optimization.
24 Thursday, 4/7/2016 | No class
25 Tuesday, 4/12/2016 | D.P. and spe- | describe special problem. Dynamic programming.
cial problem
26 Thursday, 4/14/2016 | D.P. LOR example. Oil and real estate example
27 Tuesday, 4/19/2016 | D.P. and LOR | LOR using D.P., long example
28 Thursday, 4/21/2016 | D.P. floor func- | D.P. examples for variation of dynamic program-
tion ming
29 Tuesday, 4/26/2016 | Steady state Finish Floor problem. Start on steady state, itera-
tive method
30 Thursday, 4/28/2016 | Steady state, | Closed form, guess method, infinite time LQR, Ric-
Riccati cati.
31 Tuesday, 5/3/2016 Review of | Special problem review, class review and prep for
course final exam
32 Thursday, 5/5/2016 | Final exam Exam

10

2.1. Lecture 1. Tuesday, January 19, 2016 CHAPTER 2. CLASS NOTES

2.1 Lecture 1. Tuesday, January 19, 2016

This course is on finite dimensional optimization, which means having finite number of
parameters. We now went over the syllabus. Here is a summary:

1. Convex sets and functions

2. How to certify your solution?

3. Linear programming.

4. Dynamic programming (at end of course)

5. Three exams and a final special project/problem.

Homeworks will be graded using E,S,U grades. Most will get S, few will get E. Matlab will
be used.

Cardinal rule Develop an answer using given material in class only. Can use other basic
things like Laplace transform, etc...

A wise person once said: “Fundamental difficulties are invariant under reformulation”.

2.1.1 Opbjective functions, constraints and variables

In a problem, identify the objective function, constraints and variables. Optimization prob-
lems from different fields can be formulated into a common framework for solving using
optimization methods.

Ingredients in this case: Set U C R", the constraint set. Problem has n parameters (the
decision variables). Therefore u € U. One dimensional problem has n = 1. An example is to
find optimal resistor value where U =100 ---200 Ohms. For n = 2, an example is to find two

u
! with 100 < u; < 200 and 300 < u, < 400.

resistors u =
Uy

Reader Often we describe U graphically in R". Typically for only n =1,2,3. Do this for the
above example.

100 200

Figure 2.1: Set U with constraints

11

2.1. Lecture 1. Tuesday, January 19, 2016 CHAPTER 2. CLASS NOTES

Reader design a bandpass filter with passband from w; to w, with w;,w, > 0. Describe
graphically the set U.

w2 set U

Figure 2.2: Lecture one, set U second diagram

n
2
Reader Often U is sphere in R" described by E (ul- - ”i,o) < R where u;,(are coordinates
i=0
of center of sphere.

Reader Suppose we are designing an input voltage u (t) on t € [0,1] such that Ll u? (t)dt < 5.
This does not fit in above framework. This is function space problem.

An important class of U: A generalization of rectangle in 2D to hypercube in R" with
|ui - ”i,ol <rifori=1---n.

1/[1,0 1
Reader For n =3 and uy = |u,o| = 1| and 7y =1,7, = 2,73 = 3, then sketch U.

u 3,0 1

2.1.2 Constrained and Unconstrained problems

Unconstrained problem is one when we say U = R". There are no constraints on U. These
are easier to solve than constrained problems. In practice, there will always be constraints. U
is sometimes called the set of decision variables, or also called the input. The other criteria,
is the objective function] (1), or more formally | : R” — R. The objective function] (u) is
obtained from your goals.

Example we want to go from A to B in least time. Often the selection of] (1) is not straight
forward. Selection of | (1) can be difficult in areas such as social or environmental science.

In stock markets, J(u) is given and we just use it. Example is J(u) = u? + 6u + ¢ in R". Often
we test the algorithm first in R! or %2 before going to higher dimensions. In R* an example
is

J(u) = uquy — 3uquguy + 6uxuz — 611 —4uy — Uz +12
This has 16 vertices.
Reader Can you find max J(u) subject to U described by |u;| < i using common sense?

Answer It will be on the vertices of hypercube.

12

2.1. Lecture 1. Tuesday, January 19, 2016 CHAPTER 2. CLASS NOTES

In VLSI, with hundreds of resistors, there are 2" vertices, so the problem becomes computa-
tionally harder to solve very quickly. To proof that the optimal value is at a vertex, the idea
is to freeze all other variables except for one at a time. This gives a straight line in the free
variable. Hence the optimal is at ends of the line.

J(u)

max here

min here

» Ui

The main case problem: Find u* that minimizes | (1) with the constraints u € U. " might
not exist. When it exists, then

J(W) =] = min] (u)
uel
When we begin, we do not know if u* exist. We write
J) = inf] (0

Example U = R",] (u) = e™. So u* do not exist. We do not allow u" to take values +co. But
we allow | (u*) itself to become +co. For example, if | (1) = u? then u* = 0.

13

2.2. Lecture 2. Thursday, January 21, 2016 CHAPTER 2. CLASS NOTES

2.2 Lecture 2. Thursday, January 21, 2016

2.2.1 Ecxistence of optimal solution, explicit and implicit J(u)

Tractability. U C R", the decision variables. | : R" — R. Problem: find u* such that J(u*) =
infyer J ().

u*, when it exists, is called the optimal element. We do not allow u* = +co, but allow
J(u*) = +oo. For example. | (u) = % on U = (0,0). We say supueu](u) =]*=0 but u* =
do not exist. Hence J* is a limiting supremum value. Another example is [(1) = —u on R.
Therefore [* = —oco but u* do not exist.

Reader: We can consider max,¢;;J (1) = sup,_,,J(u). Note that
u) =—minJ(u
max J(u) = —minJ ()
But i, # Uiax-

Some problems will be tractable and some are not. Some problems will not have defined
algorithms and some might not have certified algorithms. Some problems have algorithms
but are not tractable. NP hard problems can be either tractable or not tractable. What about
stochastic problems? If u is random variable, we can not write] (). But instead we work with
J (u) = E (J (u)) where E is expectation. So now J (u) fits in the frameworks we used earlier.

We also need to make distinction between explicit and implicit | (). When we write] (1) =
u%+e”2 cos up +1y, then | (1) here is explicit. But if we have a circuit as below, where [(1) = V,;,
then here] (1) is implicit, since we have to solve the complicated RLC circuit to find J (), so
we implicitly assume] (1) exists.

load
Vi Q)mplicated RILC J(1) = Vi

Figure 2.3: Complicated RLC

2.2.2 Farming problem

First detailed example Optimal farming example. Let y (k) be the annual crop value where
k is the year. This is the end of year value of the crop. At end of year, we use some of this
to invest and the rest we keep as profit. Let u (k) € [0,1] be the fraction of y (k) invested
back. Therefore (1 —u (k)) is the fraction of y (k) which is taken out as profit. Dynamics of

14

2.2. Lecture 2. Thursday, January 21, 2016 CHAPTER 2. CLASS NOTES

the problem are: y (k + 1) = y (k) if we invest nothing (i.e. u = 0). But if we invest, then

amount invested
—N—

yk+)=yk) +wk) u)yk)
Where w (k) is an independent and identically distributed (i.i.d.) random variable which
depends on the weather and other variables. Let E (w (k)) = @. We have N years planning
horizon. What about] (#)? If we model things as a convex problem, we can solve it, but if
we do not, it becomes hard to solve.

N-1
Jw)=Ely &)+ Dy k) A -u (k))) (1)
k=0

The set U here is {£(0),u (1), ---,u (N —1)}. In this example] (1) is implicit. We need to make
J (u) explicit. Let us now calculate J(u) for N = 2

Y1 = Yo + @oloYo
= Yo (1 + wotp)
In class, we assumed that y, = 1. But will keep it here as Y, which is the initial conditions.
y1 =Y (1 + woitp) (2)
Now for the second year, we have
Y2 =y +wrthl
=y1 (I + wquy)
Substituting (2) into the above gives
Yo = Y(l + a)ouo) (1 + a)lul)
=Y+ Ya)ouo + Yw1u1 + Yw0w1u0u1
Therefore from (1) we have for N = 2
1
J()=E (3/2 + 2= uk>)

k=0

Y
=E [Y + onuo + Ya)lul + Yw0w1u0u1 + [Y (1 - uo) +1 (1 - ul)]
2

= E(Y + Ywgug + Ywiuq + Yogwiuguqy + [Y (1 —ug) + Y (1 + woug) (1 — uq1)])

= E(Y + Ywgug + Ywiuy + Yogwiuguy + Y = Yug + Y — Yuy + Ywgug — Ywgugity)
=Y (3 + QU + OUy + D Uglly — Uy — Ug + DUy — cDuOul)

=Y (3 + 20Uy + uq (@ — 1) + @ uguy — g — cauoul)

:Y(3+M0(2(D—1)+M1((D—1)+u0M1 ((DZ—CD))

Reader Use syms to find [(1) for N = 4.

If we want maximum profit, then common sense says that @ should be large (good weather).
Then u* = (1,1). This says 1y =1 and u; = 1. In other words, we invest everything back into
the crop each year. The above was obtained by maximizing term by term since all terms

are positive. If @ < % (bad weather), then u* = (0,0) and all coefficients are negative.
15

Cu s W N =

2.2. Lecture 2. Thursday, January 21, 2016 CHAPTER 2. CLASS NOTES

In the above, (1) is multilinear function in 1y, u;. If all u; are held constant except for one
at a time, then J (1) becomes linear in the free parameter. In HW 1, we need to proof that
extreme point of a multilinear function is at a vertex. So for this problem, the possible
solutions are (0,0),(0,1),(1,0),(1,1).

Reader Is there a value of @ that gives (1,0) and (0,1)?

For arbitrary N there are 2V vertices in hypercube for a multilinear J (1) where u € R".So for
large 7, a multilinear problem is much harder to solve than a convex optimization problem.
Even simple problems demonstrate intractability. Let M = N X N matrix. Let each every
m;; be known within bounds m;; < m;; < mj;. The question is: What are the bounds on the
determinant of matrix M?

Reader ponder this question in the context of multilinear problem. To determine this for
small # in Matlab, here is some code for n = 4 (uses allcomb which is a file exchange file)

a = repmat({[-1 1]1},16,1);

v = allcomb(a{:1});

arrayfun(@(i) det(reshape(v(i,:),4,4)),1:size(v,1));
max(r)

min(r)

r

Running the above gives
ans =
16

ans =
-16

16

S s W N

2.3. Lecture 3. Tuesday, January 26, 2016 CHAPTER 2. CLASS NOTES

2.3 Lecture 3. Tuesday, January 26, 2016

2.3.1 Multilinear functions, level sets, contours

Today will be on multilinear functions, then back to infimum of] (u). Then we will go over
real analysis to see when a min is reached. We need to find first if there exists a minimum
before starting to search for it. For the farming problem we looked at, say @ = 2. We want
to look at contours in 2 and R3. Try first in R2.

Reader Obtain level sets, contour lines, defined as A, = [u 2 (u) = 7/]. In words, contour

line is curve of equal values of] (). For farming problem, show contour lines of J (1) looks
like

Figure 2.4: Level sets

For @ = 2, and using results from last lecture, where we had
J(u) = Y(3+MO(Z(D—1) +uy (@ —1) + uguy (LDZ—(D))
Where Y =y (0) =1, the above becomes

](u):3+u0(2®—1)+u1((D—1)+u0u1((Dz—(D) (1)

Reader Use Matlab syms to obtain | («) for any N

Answer Below is a function which generates] (1) for any N. Function called nma_farm(N,y0),
takes in N, which is how many years and y (0), the initial value. 0 below is @, the mean of
the w random variable).

function nma_farm(N,initial)

%reader anwer for farming problem, lecture 1/21/16, ECE 719
%N is number of years

%Initial, is y(0). See class notes for ECE 719 for
%description of the problem. Second lecture.

#Nasser M. Abbasi

17

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

2.3. Lecture 3. Tuesday, January 26, 2016 CHAPTER 2. CLASS NOTES

y=[; w=[1; uw=01;

idx = [1;
syms y(idx) w(idx) u(idx)
tot = 0;

for k = 0:N-1 Ymain loop

tot = tot + Y(k)*x(1-u(k));
end
J = Y(N)+ tot;

0:N Y%use mean
subs(J,w(i),'w0');

for i
J

end

J=subs(J,y(0),initial);
expand (J)

yA recursive function internal function
function r = Y(k)
if k ==
r = y(0);
else
r = Y(k-1)*(1+w(k-1)*u(k-1));
end
end

end

Here are example run outputs
>> nma_farm(2,1)
2xw0*u(0) - u(l) - u(0) + wO*xu(1l) + w0™2*u(0)*u(l) - wO*u(0)*u(l) + 3

>> nma_farm(4,1)

4xw0*u(0) - u(l) - u(2) - u(d) - u(0) + 3*wOxu(l) + 2*wO*u(2)

+ wOxu(3) + 3*w0~2xu(0)*u(l) + 2*xw0~2*u(0)*u(2) + w0~ 2*xu(0)*u(3)
+ 2xw0"2xu (1) *u(2) + w0 ™2*u(1)*u(3) + w0~ 2xu(2)*u(3) -
wOxu(0)*u(1) - wOo*u(0)*u(2) - woxu(0)*u(3) - woxu(l)*u(2) -
wOxu(1)*u(3) - wOo*u(2)*u(3) - w0~ 2xu(0)*u(1)*u(2) -

w0~ 2xu(0)*xu(1)*u(3) + 2*xw0~3*xu(0)*u(1)*u(2) - wo~2*u(0)*u(2)*u(3)
+ w0 3*xu(0)*u(1)*u(3) - wo™2*u(1)*u(2)*u(3) + w0~ 3*u(0)*u(2)*u(3)
+ w0~ 3*xu(1)*u(2)*u(3) - w0~ 3*xu(0)*u(1)*u(2)*u(3) +
w0™4*u(0)*xu(1)*u(2)*u(3) + 5

>> nma_farm(5,1)

18

2.3. Lecture 3. Tuesday, January 26, 2016 CHAPTER 2. CLASS NOTES

5xw0*u(0) - u(1l) - u(2) - u(3) - ul4) - u(0) + 4*xwO*u(1)

+ 3xw0xu(2) + 2xwO*xu(3) + wOxu(4) + 4*w0~2xu(0)*u(l) +

3*xw0"2xu(0) *u(2) + 2*xw0~2*u(0)*u(3) + 3*w0~2*xu(1)*u(2) +

w0~ 2+xu(0)*u(4) + 2*xw0~2*xu(1)*u(3) + w0~ 2*xu(1)*u(4) +

2+xw0"2+%u(2) *u(3) + w0~ 2*xu(2)*u(4) + w0~ 2*u(3)*u(4) - wO*xu(0)*u(1l)

- wOxu(0)*u(2) - wOxu(0)*u(3) - wO*u(1)*u(2) - woO*xu(0)*u(4)

- wO*xu(1)*u(3) - woxu(1l)*u(4) - wo*xu(2)*u(3) - woxu(2)*u(4)

- wOxu(3)*u(4) - wo™2xu(0)*u(1)*u(2) - wo™2*xu(0)*u(1)*u(3) +
3*xw0"3*xu(0)*u(1)*u(2) - wo™2*u(0)*u(1)*u(4) - w0~2*xu(0)*u(2)*u(3)

+ 2xw073*u(0)*u(1)*u(3) - w0~ 2*u(0)*u(2)*u(4) - w0~ 2*u(1)*u(2)*u(3)
+ w0~ 3*xu(0)*u(1)*u(4) + 2*w0~3*u(0)*u(2)*u(3) - w0™2xu(0)*u(3)*u(4)
- wO™2xu (1) *xu(2)*u(4) + wo0~3*xu(0)*u(2)*u(4) + 2*xw0~3*u(1)*u(2)*u(3)
- w0 2xu (1) *u(3)*u(4) + wO~3*xu(0)*u(3)*u(4) + w0~ 3*xu(1)*u(2)*u(4)

- wO0™2xu(2)*u(3)*u(4) + w0~ 3*xu(1)*u(3)*u(4) + w0~ 3*u(2)*u(3)*u(4)

- w0~ 3*u(0)*u(1)*u(2)*u(3) - w0~3*u(0)*u(l)*u(2)*u(4)

+ 2%w0~4*xu (0) *u (1) *u(2) *u(3) - w0~ 3*u(0)*u(l)*u(3)*u(4)

+ wO~4xu(0)*u (1) *u(2)*u(4) - wo0~3*u(0)*u(2)*u(3)*u(4)

+ w0T4xu(0) *u(1)*u(3)*u(4) - wo~3*u(1)*u(2)*u(3)*u(4) +

w0~ 4xu(0)*u(2)*u(3)*u(4) + w0™4*xu(1)*u(2)*u(3)*u(4)

- w0™4*u(0) *u (1) *u(2)*u(3)*u(4) + wo~5+u(0)*u(1)*u(2)*u(3)*ul4d) + 6

At u* = (ug,uq1) = (1,1) then (1) becomes
I'=3+@A-1)+2-1)+4-2)
=9

Reader Look at] (1) in 3 for the farming problem. Today’s topic: When does the optimal
element u* exist?

2.3.2 Pareto optimality

When we have more than one objective function, J; (1) : U CR" - R, for i =1---m. We call
u* € U a Pareto optimal, if the following holds: Given any other u € U, we can not have the
following two relations be true at the same time:

L i) <Ji(),i=1--m
2. Ji () < Ji (u*) for some k.

This is related to efficiency in economics. So something that is not Pareto optimal, can be
eliminated.

Reader Say U = (0,0), J; (u) = u+1,], (u) = ﬁ, describe the set of Pareto optimal solutions.

Reader By creating J (1) = a1/ (1) + ayJ, (1), with a; > 0, show the solution (optimal J (1)),
depends on a; which reflects different utility functions.

19

2.3. Lecture 3. Tuesday, January 26, 2016 CHAPTER 2. CLASS NOTES

2.3.3 compact and bounded sets, open and closed sets

Now we will talk about existence of optimal element u*. We will always assume that [(u) is
continuous function in u € U. Two different conditions on the set U can be made

1. Is the set compact?
2. Is the set Unbounded?

In both cases, we still want conditions on] (u) itself as well. We begin with the definition of

J'=nf](w)

Remember that we do not allow u = +co0, but J* can be +oo.

Example | (1) = —u on R. Then J* = —co, but there is no optimal element 1" = —co. But it is
always true that there is a sequence [uk]:1 = u* such that | (uk) — J* even though there is no
u* element. We write

fn)=
A bad set U is often one which is not closed. Example is of a gas pedal which when pressed
to the floor will cause the car to malfunction, but the goal is to obtain the shortest travel

time, which will require one to press the gas pedal to the floor in order to obtain the highest
car speed.

This shows that there is no optimal u* but we can get as close to it as we want. This is an
example of a set U that is not closed on one end. We always prefer to work with closed sets.
An open set is one such as U = (0, %], and a closed set is one such as U = [0, g]

Definition of continuity If u* — u, then](uk) — J(ug), we write](uo) = limk_,oo](uk). This is

for every sequence u*.

Equivalent definition: There is continuity at #° if the following holds: Given any ¢ > 0 there
exists 6 such that |] (1) —](u0)| < ¢, whenever |u —u®| < 6.

Closed sets Includes all its limit points. Examples:
1. [0,1] is closed set.
2. [0,1) not closed. Because we can approach 1 as close as we want, but never reach it.

3. [0,00) is closed. Since it includes all its limit points. Remember we are not allowed to
use u* = oo,

4. R is closed and open at same time.

A set can be both open and closed. R is such a set. To show a set is closed, we need to show
that the limit of any sequence is also in the set.

The intersection of closed sets remains closed, but the union can be an open set. This
is important in optimization. If U; represent constraint sets, then the intersection of the

20

2.3. Lecture 3. Tuesday, January 26, 2016 CHAPTER 2. CLASS NOTES

constraints remain a closed set. Closed sets also contain its boundaries.

Now we will talk about boundness of set. A set is bounded if we can put it inside a sphere
of some radius. We always use the Euclidean norm. If a set is bounded, using one norm,
then it is bounded in all other definitions of norms. There is more than one definition of a
norm. But we will use Euclidean norm.

We like to work with compact sets. A Compact set is one which is both bounded and closed.
These are the best for optimization.

2.3.4 B-W (The Bolzano-Weierstrass) theorem

Each bounded sequence in R” has a convergent sub-sequence. This is useful, since it says if
the sequence is bounded, then we can always find at least one sub-sequence in it, which is
convergent. For example u* = cosk. This does not converge, but is has a subsequence in it

which does converge. The same for u = (—1)k.

21

2.4. Lecture 4. Thursday, January 28, 2016 CHAPTER 2. CLASS NOTES

2.4 Lecture 4. Thursday, January 28, 2016

2.4.1 Existence of optimal solutions

We will spend few minutes to review existence of optimal solutions then we will talk about
computability and convexity. We know now what] (1) being continuous means. Closed sets
are very important for well posed optimization problems. Typical closed set is u < k, where
k is constant. If the function] (z) where u € U, is a continuous function, then the set U must
be closed.

Reader Give a proof.

We talked about U being closed and bounded (i.e. compact). Compact sets are best for
optimization. We talked about sequence [uk]k_l = u¥ and a subsequence in this sequence

[uki]oo = uki. If uF converges to u* then we say limy_, [|uf — u*|| = 0. Finally, we talked about

=1
Bolzano-Weierstrass theorem.

2.4.2 Classical existence theorem

Suppose] : U — R is continuous and assume U is compact (i.e. bounded and closed) and
non-empty, then there exists an optimal element u* € U such that | (u*) = J* = min,¢;] ().
This does not say that u* is unique. Just that it exists.

Proof Let u* € U be a sequence such that](uk) — J*, then by Bolzano-Weierstrass u*i be a
convergent subsequence with limit u* € U.

Reader Show that | (ukf) also converges to J*. Note: | (uki) is sequence of real numbers, which
converges to a real number J*.

Example uk = (—1)k. Let [(u) = ¢ then J (u) converges, but u* does not. Hence we need to

look for subsequence uki in u*. Now, by continuity, | (1*) = lim; ., | (uki) =J.

There are many problems where the set is open, as in unconstrained problems. These are
called open cone problems.

2.4.3 Coercive functions and Coercivity theorem

Coercive function Suppose U c R" and] : U — R. We say that] is positive coercive if

lim J(u) = o0 (*)

[[u]|—00

Initially, think of U as the whole R” space. So] (1) blows up at co. Note: there is a type of
uniform continuity implied by Eq (*). What Eq (*) means is that given any y > 0, arbitrarily
large, there exists radius R such that [(i) > y, whenever [|u|| > R. This basically says that for
a Coercive function we can always find a sphere, where all values of this function are larger
than some value for any ||u|| > R. This is useful, if we are searching for a minimum, in that
we can obtain a cut off on the values in U to search for.

22

2.4. Lecture 4. Thursday, January 28, 2016 CHAPTER 2. CLASS NOTES

Example] (1) = u? is positive coercive, but] (1) = ¢" is not (since we can’t find a sphere to
limit values within it to some number), since as u — —oo, the function ¢ does not blow up.

Ju) = au® +bu +c

Is coercive only when a > 0. The most famous coercive function is the positive definite
quadratic form. Let A be n X n symmetric and positive definite matrix and let b € R". Let
¢ be any real number, then] (1) = u” Au + b'u + c is coercive. This is essential to quadratic
programming.

Why is u” Au + bTu + ¢ coercive? From matrix algebra, if A is 7 X n symmetric and x € R",

then A, Ixl? < xTAx < A nax lIx|I*. For x,y € R", by Schwarz inequality, |<x, y)|2 <,)y, y)
or xTy < I/l |y|, to establish J (u) = uT Au+bTu +c notice then J (1) = Ay (A) llull® = [16]] [uall +c.
Since A is positive definite, then A,,;, (A) > 0 (smallest eigenvalue must be positive). So this
is the same as scalar problem au? + by + c. Hence] () is coercive function in u.

Reader What if we have a physical problem, leading to u” Au+b"u+c, but A is not symmetric,
what to do? Solution: We can always work with the symmetrical part of A using u’Au =

%uT (A + AT) u, hence we work with

1
J(u) = EuT(A+AT)u+bTu+c

Instead.

2.4.4 Convex sets and Coercivity theorem

Coercivity theorem Suppose | : U — R is a continuous function and coercive. And U € R"
is closed. Then an optimal element u* € U exist minimizing | (1). Reader Consider the
maximization problem instead of minimization.

Now we start on a new topic: Convexity. Toward finding optimal. A set U C R" is said to
be convex set if the following holds: For any u%,u! € U, and A € [0,1] then it follows that
A%+ (1 - A)ul € U. In words, this says that all points on the straight line between any points
in the set, are also in the set. Examples:

convex convex
not convex

Figure 2.5: Convex sets

23

2.4. Lecture 4. Thursday, January 28, 2016 CHAPTER 2. CLASS NOTES

Reader If U;, U, are both convex then show the intersection is also convex.
What about countable intersections N2, U; ?
Answer Yes. Example U, = [u e R lu|l < e‘i}. The union is not a convex set.

Constraints using OR are union. So harder to work with OR constraints, since union of
convex sets is not convex.

Reader Describe all possible convex sets on R!.

Reader Suppose U, is defined by set of inequalities alu < b;, i = 1--- m, these are intersections
of sets. This is used in Linear programming.

interesection of constraints

Figure 2.6: Intersection of constraints

24

2.5. Lecture 5. Tuesday, February 2, 2016 CHAPTER 2. CLASS NOTES

2.5 Lecture 5. Tuesday, February 2, 2016

Back to the most important topic in optimization, which is convexity. We want to build on
convex sets.

Definition A set U C R" is convex if the following holds: Given any 1% u! € U and A € [0,1],
then u* = (1 = A)u® + Au! is also in U. We will discuss convex function also soon.

Reader Show that the set {u € R”,||u|| < r} is convex.

Answer: Let |[uq]| < 7,|lupl < r. Then [|[1 - A)uy + Auy|l < |1 = A)uyll + [[Auy]| by triangle
inequality. Hence

N = A)uy + Aupll < (1 = A) [Juqll + Al

If some center point, say @ is given, then {u: |lu— 1| <r} is convex set. The translation
n

u + i is also convex set. Other norms on R" are important. |lul, = 2 lu;| and |jull , =
i=1

max {luq], ||, -+, luyl}.

Reader In R2, sketch unit ball {u : |ju]| < r} using norms |[ul|; and [jul| |

L1 norm L, norm

Figure 2.7: L; and L., norms

Reader Do the above for R3.

m
Reader Suppose U is convex, and u%,u!,---,u™ € Uand Ay, Ay, -+, A,, > 0 with E/\l- =1, then
i=1
m m
show that Y A’ € U. (See HW 2). For three points, u,u!,u2, then Y A’ is the mixture,

i=1 i=1
which is convex set between all the three points:

25

2.5. Lecture 5. Tuesday, February 2, 2016

CHAPTER 2. CLASS NOTES

The set of

1l points
1)\OUO ‘|‘
U

u2)\1u1 +)\2u2

2.5.1 Polytope

In words, these are flat sided shapes, which are convex. Let vl v

2

7

-, 0" € R be given. We

call set U a polytope generated by o' if U is a set of mixtures of ¢’. That is,

m .
U= {ZA{UZ . /\i
i=1

m
>0and YA =1}

i=1

The following are some illustration. Given these points

The generated polytope is

Notice that the points ©°,v

2
’Ul 1).
°
U60 ° U3
° e 7
5
°
U4
2
Ul v
U3
U5
’U4

are redundant and have not been used. In higher dimensions,
it will be harder to know which are the vertices of the extreme points.

Extreme points Let U C R” be convex set. A point u € U is said to be an extreme point if

the following holds: u can not be written as a convex combination of other points 1%, u

Examples:

26

1

PREEN

2.5. Lecture 5. Tuesday, February 2, 2016 CHAPTER 2. CLASS NOTES

'/mpoints on this

p edge are points

All boundary
points are
extreme points

2.5.2 Convex functions

So far we talked about convex sets. Now we will talk about convex functions. [(u) : R" - R
is said to be convex function is the following is satisfied. Given any u,ul € U C R" and
A €10,1] then

]((1 - ul + Aul) <@1- /\)](MO) + A](ul)

In words, it means the function value | (1) between 2 points, is always below the straight

cord points joining](uo) and](ul)

For example, the following is not a convex function.

J(u)

But the above is convex over some regions. But overall, it is not a convex function. We can
not use this definition to check if a function is convex for higher dimensions. In that case,
we have to use the Hessian to check.

Reader A function J(u) is concave if —] (1) is convex. Example: ¢** is convex. Any linear
function is convex function. a’u + b is convex. Also —log (1) is a convex function. And

27

2.5. Lecture 5. Tuesday, February 2, 2016 CHAPTER 2. CLASS NOTES

J (u) = au? + bu + ¢ with a > 0 is a convex function. What about the following?

max {]1,]2} = max [(ﬂ1)TM + bl/ (Elz)TM + bz]

Is it convex function? The pointwise maximum of two or more convex functions is a convex
function.

Max of Ji, J2 is convex function

J2

Reader Suppose J; : R" — R are convex functions, not necessarily linear, fori =1, ---m, then
J (1) = max {J; (u),---,],, (u)} is convex function. Hint, use (1 — A) J (u)+A] (1) = (1 = A) max (---)+

Next is to connect convex functions to convex sets.

28

2.6. Lecture 6. Thursday, February 4, 2016 CHAPTER 2. CLASS NOTES

2.6 Lecture 6. Thursday, February 4, 2016

2.6.1 Convex functions and convex sets

An interpretation of convex function in 1D is bowl shaped. But pictures are only for low
dimensions. Convex applications have taken off in the last 15 years. For example, CVX
software. Why is convex so great? There are useful properties of convex functions

1. Every local minimum is also global. This is important, since once we converge to a
minimum, we can stop, as there will not be any better.

2. If the objective function is strict convex, then the minimum found is unique. If it is not
strict convex, then there are other minimums of the same value, hence the minimum
is not unique.

3. In quadratic programming, positive definite is the same as convex.

Reader Suppose U C R" is convex set, and | : U — R is convex function. Then show the
set of minimizer elements U* = [u elU,](u) = minueu](u)} is a convex set.

Other nice properties of convex functions is that point wise maximum of convex functions is
also a convex function. The maximum over an indexed collection is also a convex function.
Let I be a set, perhaps uncountable, for each i € I, suppose we have a convex function
Ji " — RN is convex. Let J(u) = sup,_, J; (u) and assume J (1) < 0.

Reader Show that] (1) is convex function. Example:], (u) = 6u® + (6q — Ccos q) + 1. Where
||q|| <1. Then J(u) = maxj,]q (u).

2.6.2 convex functions and convex sets relation

Given | : R" — R, define epi] as set

{(u,0) e R 20> ()]

J (u) is convex function and epif is a convex set. See HW2 epi problem.

2.6.3 Ciriterion for convexity, Gradient and Hessian

Begin with] : " — R. How to check] (1) is convex? We assume | () is twice differentiable,
called C2. And also assume U is open and convex set.

T
Definition: Gradient V] (u) = [i L/ i] € R".

du; duq duy,

29

2.6. Lecture 6. Thursday, February 4, 2016 CHAPTER 2. CLASS NOTES

The Hessian

RG] ?]

au% aulauz Qulz}’un
%] I* %]

VZI(U) — | dupduq Jud dupduy,
0’)2] 32] 0’)]2

| duy,duy Jdu,duy ou? |

Reader Why the Hessian is always symmetric? (Order of differentiation does not matter).

Positive definite Hessian is the same as saying second derivative is greater than zero.

2.6.4 Hessian theorem

Suppose | : R" — R is C2. Then | is convex function in U iff V2] (u) is positive semi-definite
matrix for all u € U.

Proof We first proof for n = 1. Sufficiency: Suppose V2] (u) > 0 for all u € U, (i.e. this is the
2

same as saying % > 0, and let 4%, u! be given in U. We need to show that for A € [0,1], that

J(Au® + (1= A)ut) < AT () + (1 = A)] (u?). We write

J) =1 (@) + [7 ©a

Since |’ (£) non-decreasing and J” (£) > 0, so the above can be upper bounded as

J() < () + 1 () (u* = %) 1)
Similarly,

1) =1)+ [" r e

J() 2] () + 7 () (! - o)

) <1 6) 7 o) o -) 2

1) (2)

—_——

Therefore AJ (uA) +@1- /\)](u/‘) using (1) and (2) gives

A1)+ @ =21 () < A0+ () (1 =00 [+ @ =D r (1) +77 (') (" =)]

Hence

J () < AL () + g () =) () [+ [1 () 77 () (=)] = A [T () + 77 () (u? =)

30

2.6. Lecture 6. Thursday, February 4, 2016 CHAPTER 2. CLASS NOTES

Therefore
() = A7 () Ay () = Ay ()] () ety (ut) = o) = []
= AJ (1) + Aur] (u?) = A0 () +] (ud) +) (uh) =] (uh) = AJ (ut) =t A)7 (u?) + utA) ()
= AJ (1) + @ = A)J (u') = Au®T (ut) +] (uh) =] () + ulA) (u)
= [V(0)+ Q=])]+ A7 () (! =a) 4 () (" =)

But ! = Au® + (1 - A) u!, hence the above becomes

)+ () (ut - u)

J () < [A7 (1) + @ =)] ()] + A) () (' =) + 7 () (Au® + (1 = Ayt -)
= [](uo) +(1- A)](ul)] + Al (u)‘) (ul - uo) +J (u)‘) (Auo +ul — Aut - ul)
= [](uo) +(1- A)](ul)] +AJ (uA) (ul - uo) +J (MA) (Auo - /\ul)
= [uo) +(1-21)] ul)] +AJ (uA) (ul -~ uo) - A (u/‘) (u1 - uo)

Hence we showed that](u}‘) < AJ (uo) +(1- A)](ul). Same idea can be used to establish

necessity. We now establish V2] (1) > 0 and convexity next time. We carry this to n dimen-
sions.

31

2.7. Lecture 7, Tuesday, February 9, 2016 CHAPTER 2. CLASS NOTES

2.7 Lecture 7, Tuesday, February 9, 2016

For n =1, Let | : U — R", where U is open set (so that we can differentiate on it), and

2
convex set. Let [is C2. | is convex iff ;% > 0 for all u € U. We are trying to establish the
Hessian theorem. Now we want to show the above for n > 1. We start with the bridging
lemma, which will use to proof the Hessian theorem.

2.71 The Bridging Lemma

Given | : U — R", and U is convex set, we want to know if | is a convex function. The lemma
says that | is convex iff the following condition holds:

Given any u € U, z € R", then the function J(A) = J(u + Az) is convex on the set A =
{u, Az € U}. Notice that the function J(A) is scalar valued. It depends on scalar A. Hence we
say] (A) = R — R. This lemma says that the function J (1) is convex in any direction we
move to from u in the direction of z within the set U iff | is convex function.

Bridging
lemma: function
J is convex in
any direction, iff
J is convex.

convex set U

JO\) = J(+ A7)

Figure 2.8: Bridging lemma

Proof See also the handout. Necessity: Assume | is convex function. We must show that [is
convex function. Pick z € R and A € [0,1] and any scalars a°,a! € A. We must show that

J(Aa®+ @ -A)at) < AT (o) + (1 - 1) (a!)
Indeed, from J (1) =] (u + Az), then
J(Aa®+@-Aat) =] (u+(Aa®+(1-21)a')z) 1)
=](A (u + aoz) +(1-A) (u + alz)) (2)

Reader Going from (1) to (2) above is just a rewriting and manipulation only. Now since |
is assumed convex, then

]()\(u+aoz)+(1—/1)(u+alz))SA]<u+aoz)+(l—/\)](u+alz)

32

2.7. Lecture 7, Tuesday, February 9, 2016 CHAPTER 2. CLASS NOTES

Therefore (1) becomes
T(Aao +(1-21) al) <AJ (u + aoz) +(1- A)](u + alz)
< /\]~(a0) +(1- /\)T(al)

Hence | is convex function. QED. Now to proof sufficiency. Assume that | is convex, we
need to show that this implies that | is convex on U. Since | then

T(@=2a®+2at) <@ -)] (a%) + AT (')

=1 =A)] (u+a%) + AJ (u+ a'z) (3)

But
J(@=Ma®+Aat) =] (u+[1-2)a® + Aat]z) (4)
=]((1 -A) (u + aoz) +A (u + alz)) (5)

Where the main trick was going from (4) to (5) by just rewriting, so it match what we have

in (3). Now replacing (5) into LHS of (3) we find
]((1—/\)(u+aoz)+/\(u+alz)) < (1—/\)](u+aoz)+A](u+alz)
Let (u + aoz) = 1% u+ a'z = u!, both in U, then the above becomes
J(@=A)u® + Aut) <@ =)] () + AJ (u?)

Hence] is convex function. QED. Now the bridging lemma is proved. we use it to proof the
Hessian theorem.

2.7.2 The Hessian Theorem, strong local minimum

Let] = U — R, where U is open set in R". Hessian theorem says that | is convex function
on U iff V2] (u) is PSD (positive semi-definite) evaluated at each u € U.

Reader Suppose V2] (1) is PSD, does this imply strict convexity on J (1)? Answer: No. Need
an example.

See handout Hessian for proof.

Algorithms We will now start new chapter. Looking at algorithms to find optimal of J(u).
Preliminaries: Begin with | : R" — R.

Strong local minimum " is strong local minimum if there exists 6 > 0 such that | (u*) < J ()
for all u such that |[u* — u|| < 9.

We say u* is global minimum if [(u*) < J (1) for all u. Henceforth, J (1) is C2. From undergrad-
uate calculus, u* is strong local minimum if the following is satisfied: (for n = 2)

1. L il

: =0, 2| =0
‘91’[1 u* ! ‘9”2 u*
%] 2T\ [9% %] 2

2. - >0, |\ >0
Jdug dug) \ duf duqduy

ut

33

2.7. Lecture 7, Tuesday, February 9, 2016 CHAPTER 2. CLASS NOTES

For] : R" — R, in other words, in higher dimensions, define gradient

,iﬁ
c9u1
Lk

(VI(w)" = |7
9

Normally we consider gradient as column vector. Then we say that a point u* € R” is strong
local min. if VJ (1) = 0, and V?] (1) > 0.

Proof: Suppose u* is strong local min. Then looking at neighborhood of u*, let v € R" be
arbitrary. Look at] (u* + v) and expand in Taylor series.

Jw +0) =] @)+ V]@)o+0"V2 (u)v+HO.T(O(|ll’))

Since u* is strong local min. then V] (u*) = 0. Hence J (u* +v) = J(u*) + v'V?] (u)v + H.O.T.
Since | (u* +v) > J (u*) (since strong local minimum), then this implies that

V2] (u)v >0
Since vV ?] (u) v dominate over H.O.T.. This complete the proof.

34

2.8. Lecture 8. Thursday, February 11, 2016 CHAPTER 2. CLASS NOTES

2.8 Lecture 8. Thursday, February 11, 2016

Reminder, test 1 next Thursday Feb. 18, 2016. Up to and including HW 3. Today’s lecture
on gradient based optimization. We developed two conditions. u* is strong local minimum
when V] (1) = 0 and V?](u*) < 0.

2.8.1 gradient based optimization and line searches

We mention line searches. It is about optimization for one variable functions only. There
will be reading assignment on line search. Some methods used are

1. Golden section.
2. Fibonacci.
3. Bisection

And more.

2.8.2 Optimal gain control problems, Lyapunov equation

We will now set up application areas. Optimal gain control and circuit analysis problems.
In general we have

X =Ax+ Bu

Where i is n X1, Ais nXn, Bis nxXm and u is m x 1. System has n states. u is the input. This
can be voltage or current sources. u is the control and x is the state. We want to select u so
that x () behaves optimally. Classical setup is to use state feedback

u=kx+v

Where k is m X n is called the feedback gain matrix and v is extra input but we will not use
it. It is there for extra flexibility if needed. We use optimization to determine k. Entries of
ki; are our optimization variables.

Figure 2.9: State feedback

Often, with u = 0, the system ¥ = Ax may be unstable or have overshoot. We will set up a
performance objective aimed at reducing or eliminating the badness of the original response

35

2.8. Lecture 8. Thursday, February 11, 2016 CHAPTER 2. CLASS NOTES

(with no feedback control). Let

2
- 1]
(k) = f 2T (8) x (Dt
0
In the above, J (k) is implicit function of k. This cost function was found to work well in
practice. We now want to make] (k) explicit in k. We can solve for x (f) from
%= (A+Bk)x
X =x (0) e(A+Bk)t

Then J (k) = KO xT(0) A+BO td; But this is not practical to use. This is not closed form and

hard to compute. So how can we come up with closed form for] (k) which is easier to work
with? Let us look at the closed loop. Let v =0 and we have

% = Ax + Bkx
= (A + Bk)x
=Ax
Where A, is the closed loop system matrix. Let us find a matrix P if possible such that
d(xT(t) Px(t)) = =xT () x (t)

So that now

T(k) = fbe(t)x(t)dt

- —fhd(xT(t)Px(t))

- fb "d (T (1) Px (1)

= xT (a) Px (a) — xT (b) Px (b)
Can we find P?

d (xTPx) = xTP + iTPx £ —xTx

= xTP (Ax) + (Ax)" Px A

=xTP(Ax) + (xTACT) Px % —xTx
Bring all the x to LHS then

Alx+PA, = -1

Where [is the identity matrix. This is called the Lyapunov equation. This is the equation to
determine P. Without loss of generality, we insist on P being symmetric matrix. Using this

36

2.8. Lecture 8. Thursday, February 11, 2016 CHAPTER 2. CLASS NOTES

P, now we write

T (k) :j:oxT(t)x(t)dt

= —j:od(xTPx)

= xTPx|20
= xT(0) Px (0) — xT (c0) Px (c0)

For stable system, x (c0) — 0 (remember that we set v = 0, so there is no external input,
hence if the system is stable, it must end up in zero state eventually). Therefore

J (k) = xT (0) Px (0)
With k satisfying
AL (k)x + PA. (k) = -1

Example Let y” = u. Hence x] = x,,x; = u. Note, this is not stable with u = 0. Using linear
state feedback,

u=kx
x
u= [kl k2]|: 1}
X2
Hence
x' = Ax + Bu
= Ax + Bkx
=(A+ Bk)x
By
x4 01 0 X
1 = + [kl kz] !
X 00 1 X
o 1] [o ol)[x
= +
00 k1 k2 XZ_
Ac
—N—

o2

For stable closed loop, we need k; < 0,k, <0 by looking at characteristic polynomial roots.

37

AW JO ks W N

2.8. Lecture 8. Thursday, February 11, 2016 CHAPTER 2. CLASS NOTES

Now we solve the Lyapunov equation.

ATP + PA, = -1
T oL o } _ _
0 1 [pu1 P2 N pin pi2||0 1 _ -1 0
ki k| |p21 p2| |Pa 2|l k2| |0 -1

0 ki|lpi1 piz2| |pPu1 p12||0 1 1 0
P21 P22| [P p2flki k2] [0 -1
Solving for P gives

P — Zklkz 2k1
1

kZ—kq+k? 1]

% 2kiky
1
With x (0) = L}, then

J (k) = x(0)" Px(0)

KBkt 1 1
2kiky 2k []
1

=1 1

1 1-kq
2kq 2k1ky
_ k%+k%—2k1—2k2 +1

Here is Matlab script to generate the above
syms k1l k2 pll pl2 p21 p22;

Ac = [0 1;k1 k2];

P = [p11 p12;p21 p22];

eq = Ac.'*P+PxAc==-eye(2);

sol = solve(eq,{pl1,pl12,p21,p22});
P = subs(P,sol)

x0 = [1;1];

JJ = simplify(x0'*P*x0)

Let k; = k, = k < 0, we obtain

2k% — 4k +1
](k)—T

As k — —oo then |* — 1. Therefore J* can never get to zero. This means there is no kj, k5
such that V](k*) = 0. Set k is not compact. Not coercive either. This is ill posed problem.
This can be remedied by changing the control to

(k) = f Txdt + A f uTudt
0 0

38

2.9. Lecture 9. Tuesday, February 16, 2016 CHAPTER 2. CLASS NOTES

2.9 Lecture 9. Tuesday, February 16, 2016

2.9.1 keywords for next exam 1
1. Common sense optimization. Farming problem. Explicit vs. Implicit.
2. Minimizing | (u), inf, sup
3. We want to know ahead of time if minimum can be attained. [* but #* might not exist.
4

. Multilinear function. u* is at a vertex. But they grow as 2" where n is number of
variables.

5. When can we be sure u* exist? if the set is compact, we talked about W-B theory, which
is used to show u* exist always for compact sets. If the set is not compact but coercive,
then we can compact it.

6. Convex sets and convex functions. For convex sets, when we find u* then the local
minimum is also a global minimum.

7. Special case of convex sets is polytope. Polyhedron is a polytope but can be unbounded.

8. Strong local minimum is when V] (x) = 0 and V?] () > 0. To test for convexity, find
the Hessian. If the Hessian is semi positive definite, then it is convex.

9. Optimal gain control, Lyapunov equation.

10. If there are proofs, they will be simple, such as show the sum of two convex functions
is also convex function.

2.9.2 Gradient based optimization

Starting new chapter. Gradient based optimization. Many algorithms involve line searches.
In other words, optimization in R” is often solved by performing many optimization (line
searches) in R.

Optimization algorithm: Starting with #* and direction v we study | (uk + hv) where h is
the step size. This is called line search. i € [0, hy,,]. We want to use optimal step size h".
Once found, then

k1l = 4k 4 o

Reader Read and learn about line search. Bisection, Golden section, Fibonacci and many
more. We will not cover this in this course. We also want to minimize the number of function
evaluations, since these can be expensive.

One way to do line search, is to do & = 06 h;,, and then evaluate] () and pick the minimizing
h*. For stopping criteria, we can check for the following

1. ||l -uk|| <6

39

2.9. Lecture 9. Tuesday, February 16, 2016 CHAPTER 2. CLASS NOTES

2. (1) -1 (| < 0

](ukﬂ)—](uk)
](uk+1)

i o) <o

3. <o

We also need to pick a starting point for the search. This is #°. What if we do not know
where to start? We can pick multiple starting locations. And pick the best result obtained.

Reader Find miny,-;] (u + v). Show optimal v is

o VW
V] @l

This is called myopic local terrain. Gets us to local minimum. The steepest descent algorithm
is the following:

1. Select u° (starting point)

2. Find step size h

0
IVl

3. Iterate. While ”V](uk)” > 6 then | uf*! =y

4. Update counter and go back to step 3 above.
See my class study notes for detailed algorithm of all search methods we did in this course.
Later we will study conjugate gradient methods.
Example: Let 1% = [1,1]. Let h = 0.1. Let J (1) = U2 + 2uZ — 6uq1y + 2uq + 1y + 4. Then
2uq — 6uy + 2
61Uy — 61Uy + 1}

V] (u) = [

So V](uo) = [_12] and "V] (uo)” = % Hence

2| 1

u=u®—n —

1|45

B MEE

11 |1|+5
[1.0894
0.95528

Reader Find 2.

40

2.10. Lecture 10. Thursday, February 18, ... CHAPTER 2. CLASS NOTES

2.10 Lecture 10. Thursday, February 18, 2016 (Exam 1)

Exam 1

41

2.11. Lecture 11. Tuesday, February 23, 2016 CHAPTER 2. CLASS NOTES

2.11 Lecture 11. Tuesday, February 23, 2016

Watch for HW4 going out today. Implementation of steepest descent with optimal step size.
See handout circuit for 2 stage amplifier.

2111 Steepest descent

As the number of stages increases it becomes harder to analytically determine the optimal
capacitance of each stage to produce maximum power. For two stages, by direct circuit
analysis we obtain

](1/[) = (11 — U - Mz)z + (1 +u;+ 101/12 - 1/[11/[2)2

Where u; is capacitance. There are two optimal values, they are u* = (10,1) which is a
maximum and u* = (13,4) which is a minimum. There is also a minimum at (7, -2).

Geometric insight on what might go wrong with steepest descent: Gradient algorithms work
best from a far but as they get close to the optimal point, there are better algorithms such
as the generalized Newton Raphson method which works best when close to the optimal
point. If the step size & is big, we approach the optimal fast, but because the step size is
large, we can overshoot and will end up oscillating around the optimal point. If & is too
small, the search will become very slow. Hence we use steepest descent but with optimal
step size, where the step size is calculated at each step. Ingredients of the steepest descent
algorithm are:

1. Initial guess u°

2. maximum step size H. Here we have h; which is the step size used at each iteration.

_ V] (uk
3. Iteration step. When at u* define | J (k) =][uk - hﬁ] and carry a line search
u
to find optimal / which minimized J (h), then hy = h,
4 R = gk gy V()
V764

5. Stopping criteria. Decide how to stop the search. ”V](uk)” <e¢
Reader: Consider oscillation issue.

Convergence result. From Polak. Let J (1) be smooth and differentiable. Let u* be strong
local minimum. Assume constant 0 < m < M s.t.

muTm < uTV2] (u)u < Mu™M

In neighborhood of u*. This criteria says that there is a good convexity and a bad convexity.

What does this mean? We’ll say more about this. In the neighborhood of u* let 6 =]\%

42

2.11. Lecture 11. Tuesday, February 23, 2016 CHAPTER 2. CLASS NOTES

Interpretation:

J(u) good for steepest descent

\\\\///fﬁﬁﬁw
__/

V@ﬁr steepest descent
=1

small 0 is better for steepest descent

Figure 2.10: Steepest descent diagram

Define E =](uo) —J (u*) then Polak says

0 <J(uk) - J () < EO%

Best case is when E is small and 6 is small. This is local result.

2.11.2 Classifications of Convergence
Convergence can be

1. Linear

2. Quadratic

3. Superlinear

These are the three convergence types we will cover. The second algorithm has quadratic
convergence, which is the generalized Newton-Raphson method. We will start on this now
but will cover it fully next lecture.

The idea is to approximate] (1) as quadratic at each step and obtain /. By assuming] (k)
is quadratic locally, we approximate | (1) using Taylor and drop all terms after the Hessian.
Now we find where the minimum is and use the step size to find u**1. More on this next
lecture.

43

2.12. Lecture 12. Thursday, February 25, ... CHAPTER 2. CLASS NOTES

2.12 Lecture 12. Thursday, February 25, 2016

2.12.1 OQuadratic optimization, superlinear convergence
We will start the class with a reader problem. Consider
J(u) = %uTAu +bTu+c (1)
V)= Auk +b (2)

with A being symmetric positive definite (PSD) matrix. This is classic quadratic objective
function. You can take a complete course on quadratic optimization. The global optimal is
at the solution for VJ(u) = 0. Hence we write

VJu)=0
Au*+b=0
w=-A"1p (3)

Note that since A is PSD (the Hessian is PSD), then we know that | (1) is convex. Hence the
local minimum is also a global minimum. Now we imagine we are doing steepest descent
on this function and we are at iterate u* with optimal step size, which we can make as large
as we want. Hence we need to optimize

Ty = (uk = [V @w)])
for h. Notice we did not divide by ||V] (u)|| here, since the step size is free to be as large as
needed. Expanding the above using (2) gives

J () =J (k=1 (Auk + b))
= J((T - hA)u¥ - hb)
Using (1) for RHS of the above gives
- 1
T = 5 (- hAYuk = Hb) A((1 =AYk =) + BT (1 = hA) = hb) +
The above is quadratic in 4. The optimal & we are solving for. Simplifying gives
- 1 T T
- k k k k
J(h) = 5 (Au + b) A (Au + b) h? — (Au + b) (Au + b) h + constant terms
To find optimal #, then

df (h) _
a0
(At +b)" A(Auk +b)h— (Auk +b)' (Awk+b) =0
T
= (Auk + bg (Auk + b)
(Auk+b) A(Auk +b)

d?J(h . .o .
d;g) also to make sure / is minimizer.

In practice, we would need to check

Reader Why does it take multiple iterations to get the common sense answer u* = —A~1p?

44

2.12. Lecture 12. Thursday, February 25, ... CHAPTER 2. CLASS NOTES

For quadratic objective function J (1) we can obtain u* in one step, using u* = —A~!b. This is
the idea behind the generalized Newton-Raphson method. | (uk) is approximated as quadratic
function at each step, and /" is found from above. To elaborate, expanding by Taylor

J(uk + Au) =] (uk) + v](uk)T Au + %AuTVZI (") Au+ HOT

We approximate as quadratic by dropping higher order terms and optimize for Au (same
as h used earlier), and here V?] (uk) is same as the A above also. Therefore we find

-1
At ==V (uF)] V()
This converges in one step Au* if] (1) was actually a quadratic function. Notice that Newton
method is expensive if used repeatedly, as it requires finding Hessian at each step and also
finding the inverse of it. The algorithm is: Initialize u°. Then iterate, where
-1

Ukl = gk — [VZI (uk)] V] (uk) (4)

Then check for convergence. If Hessian fails to be PSD, in this case](uk+1) can end up

increasing not decreasing. How to stop? We can try more iterations to see if | (uk) will
decrease again.

Example Let
Jw) =11 —uy - uz)2 + (1 +10uy +uy — uluz)z
Pick u° = (18,3) then

[40
)|
10 44
e[o]

We see here that V?] (uo) is not PSD (determinant is negative). Now we do the iterate

equation (4), obtaining
A0 10 44|40
44 130|100

[18] |10 44][40
3| |44 130|[100
19.3
1.8

If we look at the contour plot, we will see this point made] () larger (away from optimal)
but if we let it iterate more, it will turn and move back to the optimal point.

45

2.12. Lecture 12. Thursday, February 25, ... CHAPTER 2. CLASS NOTES

itnal If Hessian not
PSD, we can end
up moving away
from u°

Figure 2.11: Hessian and optimal solution diagram

Now we will start on the third algorithm. Conjugate gradient algorithms (CG) are family of
algorithms with property of superlinear convergence. It also has quadratic convergence.

2.12.2 Quadratic convergence

Quadratic convergence says the following: If J(u) is positive definite quadratic form, the
iterate u* — u* completes in finite number of steps N. This means if we give the algorithm a
quadratic form function, it will converge in N steps to the optimal. The difference between
this and Newton-Raphson, is that there is no Hessian to be calculated using this algorithm
as the case was with Newton-Raphson. The conjugate direction algorithms work well from
far away and also when close to the optimal point. (note: Steepest descent worked well from
a far, but not when getting close to the optimal point #*). The CG algorithms also have the
property of superlinear convergence. This property do not apply to steepest descent.

2.12.3 Superlinear convergence

What is superlinear convergence? A sequence {uk] in R" is said to converge super-linearly

k_
to u” if the following holds: Given any 6 € (0,1], then ”ue—ku” — 0. The important part of this
definition is that the above should go to zero for any 6 € (0,1] and not some 6. Examples
1
EI
goes to u* = 0. Does it converge super-linearly to u*? Applying the definition

below illustrate this. Let {uk} = % Hence the sequence is {1, %, } Clearly this sequence

ok kot
If we can find one 6 that do not converge to zero, then we are done. Trying 0 = Z, then the
4 . - .
above becomes — which do not go to zero as k — co. Hence this is not superlinear. How

about {uk] = kl—z This is still not superlinear. Similarly {uk } = leH What about {uk] = elk Here
we get

2.12. Lecture 12. Thursday, February 25, ... CHAPTER 2. CLASS NOTES

k
Trying 0 = % gives i—k which is not superlinear (do not go to zero for large k). But if 0 = g it

. . 1. . 1
will converge. But it has to converge for all 9, so % is not superlinear. How about [uk] ==
e
K2
here we find it is superlinear. We obtain % and this goes to zero for any 6. To show this,

use log on it and simplify. (Reader).

Next time we will go over conjugate direction algorithm in more details.

47

2.13. Lecture 13. Tuesday, March 1, 2016 CHAPTER 2. CLASS NOTES

2.13 Lecture 13. Tuesday, March 1, 2016

2.13.1 Conjugate direction algorithms

Today lecture will be devoted to conjugate direction (C.D.) algorithms. We will start by
remembering that there are many C.D. algorithms. From last lecture, be aware of: Superlinear
convergence and quadratic convergence. The quadratic convergence concept is that on a
P.S.D. (positive symmetric definite) form, the algorithm will converge in n steps or less
(where 7 is the size A). Using exact arithmetic (not counting for floating point errors). We
will proof this today. We will some preliminaries, then go over ingredients and go over
examples, then go over properties of conjugate gradient.

Preliminaries: Let A" be positive definite symmetric, then the pair of vectors u, v are said
to be mutually conjugate w.r.t. A if

ulAv =0
This is generalization of orthogonality. Because we can take A = I,, which is PSD.

Reader A set of distinct mutually conjugate vectors always exist for A. These are the
eigenvectors of A. The proof starts with writing Av = A, and Au = A,u, then applying
ulAv =0.

We will use this set of vectors as search directions. We will generate these vectors on the fly
during the search and do line search along these directions. So instead of using V] (1) as the
direction we did line search on when using steepest descent, we will now use the conjugate
vectors instead.

Properties: Suppose ©°,0!, -, 0" ! is a set of mutually conjugate vectors w.r.t A. (A is PSD).

First step is to show these vectors are linearly independent.

Lemma: ¢’ are linearly independent. Proof: Suppose

n-1 ‘
Eaivl =0 (1)
i=0
For scalars «;. We must show that all a; = 0. Let use consider a;. If we can show that a; =0
T
for any k, then we are done. Multiply (1) by (vk) A. Then

(Uk)TAn}_:laivi =0
Zal (vk) Av' =

T
By mutual conjugate property, then all terms above vanish except a; (vk) Av*. Hence

ay (vk)T AF =0

But A is PSD and o* # 0, therefore a; = 0 is only choice. QED. We have proved that

00,01, .-+, 0" are linearly independent So we can expand any vector u € R" using these as

48

2.13. Lecture 13. Tuesday, March 1, 2016 CHAPTER 2. CLASS NOTES

basis vectors
n-1
u= Zuivi (2)
i=0
T
Let us find the coefficients 4;. Premultiply by (vk) A both sides
T -l T
(vk) Au = Zai (vk) Av
i=0
T
As before, by mutual conjugate, the RHS becomes a; (vk) Avk. Solving for a; gives
T
(vk) Au
T
(vk) Aok

ai =

Hence (2) becomes

This gives any vector u in terms of set of vectors ¢’ that are linearly independent
Conjugate directions algorithm ingredients are:
1. Initially given u°. The starting guess vector

2. Tterative step u*: Generate v* a mutual conjugate vector to previous 1 — 1 vectors v'.
For ¢° use —V] (1). Same as steepest descent.

3. Form line search with Max step H. To minimize J (k) = | (uk + hvk). Notice there we
used + sign and not — as with steepest descent. The direction takes care of the sign
in this case.

4. Stopping criteria.

Example: Fletcher Reeves.
o =-V])

2
o= v () + ||V](”k+l)|| o

lvs)l

[

Reader Normalize above for implementation.

Reader What is A above? Where are these o* vectors mutually conjugate? A is the Hessian.
Note: These algorithms (C.D.) converge for convex] (u). If] (1) is not convex or we do not
know, we need to put conditions to make sure it is converging.

For Polyak-Ribieve, see homework.

49

2.13. Lecture 13. Tuesday, March 1, 2016 CHAPTER 2. CLASS NOTES

2.13.2 Quadratic convergence theorem

Consider quadratic form
1
J(u) = EuTAu +bTu+c

With A = AT and positive definite 7 x n matrix. Let ¢°, ---,v"*! be mutually conjugate w.r.t. A.
Let step size be as large as we want. The conjugate direction algorithm converges to optimal
u* = —A71b in n steps or less

Proof

Let u* be the k" iterate. If u¥ = u* and k < n then we are done. Without loss of generality,
assume u* # u*. We must show that u" = u*. We first find Jy, the step size at iterate k. From

J () = J (u* + hok)
= % (uk + hvk)TA (uk + hvk) +bT (uk + hvk) +c

This is quadratic in .

constant term
- 1 1
T = SR A + (09 A+ BT0) o+ Sk A+
Now taking derivative gives

% = (vk)T Avfh + ((vk)T Auk + bTvk)

Setting this to zero and solving for h gives

(o) Auk + Tk
(%) Aok

(%) (au +1)

= (3)
(Uk)T Aok

[—

Hence

u" =10+ hgt® + - + o1
n-1
= ul + Yyt
k=0
Using (3) in the RHS of above, replacing each h; with the optimal & at each iterate gives

o § (o) (At + b)})k

= (@) A

2.13. Lecture 13. Tuesday, March 1, 2016 CHAPTER 2. CLASS NOTES

k-1
Replacing #* in the second term above in the RHS with u° + Ehivi gives
i=0

k-1
. n-1 (vk)Tb . n—l(vk)TA(u0+§%hivi) .
n_,,0_ _ - = 4
) () Ao’ 2) Ak ()
But
k-1 T k-1 T
()" 4w+ Tt) = (o) a0+ B ()
i=0 i=0

k-1
T .
Since all terms in Ehi (vk) v’ vanish by mutual conjugate property. Using this to simplify

_ (Uk)T Au’] &
kz% [(o) Ack

n-1 (vk T(Au +b)

(4) gives

T
n—-1 (vk

k=0 (vk)T Avk
)

k=0 (vk) Avk
T
Reader (vk) Aul is expansion of u°. Using this in the above reduces it to
T
n-1 ('Uk) b
U =— — o
k=0 (vk) Avk

Insert AA™! into the above gives

L (vk)TAA b
kzzl (vk) Aok]
g,

(vk) Aok

=-A"1
But -A~'b = u*. QED.

Following some extra remarks added later from An introduction to optimization by Ching
and Zak, 1996:

1. Conjugate direction algorithms solve quadratics of n variables in n steps
2. Algorithm does not require calculation of Hessian.

3. Algorithm requires no matrix inverse and no storage for the A"™" matrix.

51

2.13. Lecture 13. Tuesday, March 1, 2016 CHAPTER 2. CLASS NOTES

4. C.D. Algorithms perform better than steepest descent but not as well as Newton-
Raphson (when close to optimal).
5. For quadratic J(u) = LT Ax - x'h, the best direction at each step is the mutually
conjugate direction w.r.t. A.
See Example 10.1, page 133 of the above text for illustrations how to determine each of v’

vectors for given A matrix.

52

2.14. Lecture 14. Thursday, March 3, 2016 CHAPTER 2. CLASS NOTES

2.14 Lecture 14. Thursday, March 3, 2016

2.14.1 Constraints and linear programming

We are about to enter new phase of the course with constraints and linear programming.
Until now we used iterative methods to solve unconstrained problems. These are gradient
based. Also looked at Newton-Raphson. We used steepest descent and conjugate directions.
These methods are mainly applied to problem without constraints. i.e. u is free, where u
are the variables. But in HW4 we had problem where u was the capacitance. This can not
be negative. But we did not account for this. When we have constraints and want to use
the above iterative methods, there are ad hoc methods to handle this, but we will not cover
these ad-hoc methods in this course, but will mention some of them.

We can check that no constraint is violated during the search and start a new search. There
are literature on what is called “projection methods” and other names.

constraint boundary

~

~N
N

N

\

search path

Figure 2.12: Search path near constraint

One good method is called the “penalty function method”. This works as follows

](M) =](u) +]penalty (u)

The original objective function is J (1) and e, (4) is function we add such that it becomes
very large when u constraint is violated (u ¢ U). (assuming we are minimizing [(u)).

This method works on many problems. For example, if we do not want u; to be negative,
we can add

]penulty (u) = -100 min (0, 1)

This way, when u; < 0, the result will be very large and positive. Hence J (1) will become
very large and the search will avoid this region and turn away during the line search.

But a theory with name of “Kohn Tucker” is the main way to handle such problems under
heading of “non-linear programming”.

Now we go back to linear programming which we will cover over the next 4-5 lectures. key
points of linear programming are

53

2.14. Lecture 14. Thursday, March 3, 2016 CHAPTER 2. CLASS NOTES

1. Objective function is linear in ut

2. Linear inequality constraints on u'’

2.14.2 History of linear programming

1. Dantzing introduced simplex algorithm. Matlab linprog implements this to find solu-
tion to L.P. problems.

2. Simplex algorithm has some problems related to what is called “klee-type pathologies”.
These days, L.P. have millions of variables. These days we want to solve many large
scale L.P. The “Klee-type pathologies” says that there are some bad input to L.P. which
causes it to become very slow. L.P. visits vertices of polytopes. We can do billion and
more vertices these days on the PC with no problem. 10®° vertices is a small L.P.
problem these days.

L.P. works fast by not visiting each vertex. But with some input L.P. can become slow
and force it to visit all vertices.

3. Khachian: 1970’s. Front page of NY times. Introduced ellipsoidal algorithm to solve
L.P. (Faster than L.P. on the worst case problems). But it turns out that in real world
problems, simplex was still faster, unless the problem had “Klee-type pathologies”.

4. Small. Gave a probabilistic explanation of the “magic of simplex algorithm”. Consid-
ering average probabilities. In computer science, computational complexity is defined
in terms of worst case.

5. Kharmarker, from Bell Labs. Came up with new approach. Developed scaling to L.P.

2.14.3 Polytopes

Polytopes are central to L.P since polytopes are described by constraints. See handout
“Polytopes” taken from textbook Barmish, Robust Control.

Polytope is convex hull of finite point set. These are the generators o', ---,oV. Polytopes have
extreme vertices. L.P. visits vertices. If the set is bounded, we call it polytope, else we call it
polyhedron. So with linear inequalities constraints and bounded, we have polytopes.

Reader A linear function] (1) = a’u on polytope P achieves its Max. or Min. at an extreme
point. We showed that the Max. of convex function is at a vertex. we can also show that
Min. of concave is at a vertex. Linear functions are both concave and convex. QED.

54

2.14. Lecture 14. Thursday, March 3, 2016 CHAPTER 2. CLASS NOTES

J(u) increasing

Figure 2.13: Increasing J(u) diagram

Often we do not have list of vertices. Need to first generate them. They are generated from
the constraint inequalities.

How many vertices to search? McMullen’s Upper Bound Theorem gives us the answer.
Assuming we have m constraints and n variables, where m > n. Then

m— E(n +1)J (- E(n +2)J

m-n m-n

Vim,n) =

Example for m =20,n =10 we get 4004 vertices. So this is a small problem.

Reader Consider n = 500,m = 2000 which is very modest in terms of current technology,
assuming it takes 1 microsecond per vertex, then it will take order of 10%°® years to search
all the vertices.

[v:= (m,n) ->binomial (m-floor (1/2* (n+l)) ,m-n)+binomial (m-floor(1/2* (n+2)) ,m-n) ;

V:=(m,n) —>binomia1(m = ﬂoor(% n+ %J] m— HJ + binomia.l(m = ﬂoor(% n+ 1]} m— ﬂ)

[v(20,10) ;

4004

r:=v(2000,500) :

r:=r/10%6: #one vertix per microsecond

r:=r/(60*60%24*365) ; #convert to years

r=
1003599475182749621231798724057592176482444159718101526011597685026978866279866645603577683855312281542457483
3159211881774896561845021514686591218341334501687832308621944111850762456732901474867598052465396371743300105
77053824349953244008'7940494070691523237297059378823208886603193998769538065917249447812239/20531250000

evalf (r) ;

4.888155739 107%

Figure 2.14: Verification of number of vertices using Maple

Up to last few years, L.P. was considered a completed research. But in the last 5-10 years,
there is new L.P. research starting. Modern L.P. solvers use linear inequalities description
as input. This is expressed and formulated as Ax = b. What if vertices or some vertices
generating mechanism was given as input instead of the constraints themselves? How to
convert the vertices to constraints? This is a difficult problem.

55

2.15. Lecture 15. Tuesday, March 8, 2016 CHAPTER 2. CLASS NOTES

2.15 Lecture 15. Tuesday, March 8, 2016

2.15.1 Mechanism of linear programming

Today we will begin the mechanism of doing L.P. (linear programming). We know the
extreme points is where the optimal will occur. But searching all extreme points is not
practical for large N as shown before. One can take a whole course just on L.P. but here
we will cover the main ideas. We basically have a linear objective function in u and linear
constraints in u where u are the variables. This is called the raw L.P. formulation. This is
converted to standard form L.P. and solved using the simplex method.

simplex ”
raw L.P. 1 [P solver x
solution
create standard
form LP and
solve

Figure 2.15: Simplex solver diagram

The solver finds the first vertex then in a clever way moves to another until it finds the
optimal one. The solver solves two linear programming problems and these are:

1. First finds a feasible solution (basic)

2. moves from one vertex to another.

Standard form LP is

min ¢

st Ax=0b

X

Notice that solution might be infimum above. Example.

min X1
Xy < 5
st
X1 < 0

The solution is x; = —co. This is closed by unbounded.

Ingredients of Linear programming are:

1. n > m (number of variable is larger than number of constraints.). The matrix A is of
order m by n. So A matrix is fat matrix and not thin.

2. No columns of A can all be zeros (non-degenerate).

56

2.15. Lecture 15. Tuesday, March 8, 2016 CHAPTER 2. CLASS NOTES

3. Rank of A is m
4. b>0
5. x>0

What if we have some variables x; which we want to be negative? We replace x; with new
variable x; = —x;. Now x; > 0. Now in each place we have x; which is negative and can’t use,
then we replace it with —x;. This is now the same as before, but x; is gone and replaced with
—x; and x; is now positive. So it is standard form.

At the end, when we obtain the solution, we replace x; back to —x;. (what about free vari-
ables?).

What if we have inequality in the raw L.P.? how to convert to equality for standard form?
We use Slack variables and Surplus variables .

Example given x; + 2x, — x3 < 6, then introduce new slack variable x, and rewrite the
constraint as x; + 2x, —x3 + x4 = 6.

If we have constraint x; + 2x, — x3 > 6, then we need surplus variable x,. Rewrite as x; +
2x; — x3 — x4 = 6. Once we solve the LP problem and obtain x*, we need to recover from
this solution the actual variables of the raw LP (these are the u variables) and these do not
contain any slack nor surplus variables.

2.15.2 Example, the sector patrol problem

uq up

CY Y u u :
2 4+ 2 = 212 Constraints

See also handout sector patrol. The objective function is E (T) = TR RETE

are u; > 0,u, >0 and
21y + 2uy > 4
2uq +2uy <10
And as per handout, we need to add this constraint in order to obtain a realistic solution
Uy > 1.5
The above is the raw LP. Convert to standard form, using x as variables. It becomes
2x1+2x, — x4 =4
2x1 4+ 2xy, +x3 =10
-1.5x1 +x,—x5=0

57

2.15. Lecture 15. Tuesday, March 8, 2016

CHAPTER 2. CLASS NOTES

Where x3,x,4, x5 above were added to make it standard form. Writing it as Ax = b, the
constraint equation is (we put the slack variables first by convention)

2 21 0
2 20 -1
-15 1 0 O

0
0
-1

X1

X4

X2
X3

X4

10
4

And c’x becomes (this is the objective function, notice we added the slack and surplus

variables to it, but they are all zeros).

[llooo]xg,

X2

X4

X4

X1

Reader find common sense solution working in u;,u, domain. (will do this next lecture).

2.15.3 Basic and Feasible solutions

We will define two solutions: The basic solution, and basic feasible solution.

A vector x is said to be basic solution if it solves Ax = b and the non-zeros elements of x
correspond to the linearly independent columns of A.

Reader Is there a basic infeasible solution?

58

2.16. Lecture 16. Thursday, March 10, 2016

CHAPTER 2. CLASS NOTES

2.16 Lecture 16. Thursday, March 10, 2016

Recall, the standard LP problem is

st

Ax=Db

We talked about transforming the problem from raw LP to standard LP. The patrol sector
problem, solved using common sense graphical approach is given below

Uz
5 Ug = 1. 5U1
feasible \;/ J
/ 2uq + 2us = 10
2 W
~
///' \2 \ Uy
2U1 -+ 2U2 =4 5

Figure 2.16: Patrol problem

The optimal u* has to be at one of the vertices of the feasible region. It will be at the vertex

shown

feasible

Figure 2.17: Patrol problem solution

Using Matlab, the above is solved as follows

2 210
2 20 -1
-1.5 1 0 0

59

0
0
-1

X1

X2
X3

X4

X4

10

S o W N

2.16. Lecture 16. Thursday, March 10, 2016 CHAPTER 2. CLASS NOTES

And cTx becomes (this is the objective function, notice we add the slack and surplus variables
to it, but they are all zeros).

X1

X2
1 1
[% E 0 0 0] X3
Xg
Xq
The code is
f=[1/30,1/15,0,0,0];
A=[2,2,1,0,0,;
2,2,0,-1,0,;
-1.5,1,0,0,-11;
b=[10,4,0];

[X,FVAL,EXITFLAG,OUTPUT]=linprog(f, [1,[],A,b,zeros(size(£f)), [1)

Result of above run
Optimization terminated.

X

0.799999999994766

1.20000000008299

5.99999999984448
1.55520543353025e-10
9.08450336982967e-11

FVAL =

0.106666666672025

EXITFLAG =

1

OUTPUT =

iterations: 7

algorithm: 'interior-point-legacy'
cgiterations: O

message: 'Optimization terminated.'
constrviolation: 8.88178419700125e-16
firstorderopt: 5.07058939341966e-12

In the above, we only need to map x(1) to u; and x(2) to u, to read the result. We see that
Matlab result matches the graphical solution.

definition For LP, we say x is feasible if x satisfies the constraints.

For example, for the sector patrol, let U be the feasible set in R? (raw LP). However, in
standard LP, the feasible set is in R°.

Reader Obtain feasible set in R°. Obtain feasible point with either x3, x4, x5 nonzero.

60

2.16. Lecture 16. Thursday, March 10, 2016 CHAPTER 2. CLASS NOTES

Basic solution A vector x is basic solution if the non-zero components of x corresponds to
the linearly independent columns of A. We do not require feasibility to be basic solution).

The difference in LP and standard Ax = b solution we have seen before many times in linear
algebra, is that in LP, we want to solve Ax = b but with x > 0 and at same time have x be
optimal. This what makes LP different from standard methods of solving this problem.

The algorithm takes a solution which is feasible and makes it feasible basic solution. Then
after that, we move from one basic feasible solution to another basic feasible solution while
at the same time making (1) smaller until it reaches the optimal value.

Reader LP has at least one basic solution.

A has m linearly independent columns, since it has rank m.

Ax=0Db
Xbasic b basic
[Abasic Anotbasic] =
Xnotbasic b notbasic

2.16.1 Linear programming feasible and basic solutions

Theorem Suppose LP has feasible solution, then it has a basic feasible solution. Remember:
x is feasible if it is in the feasible region (satisfies constraints), and x is basic solution if the
non-zero elements of x correspond to linearly independent columns of A.

Proof say x is feasible. Let a!, 42, ---, a” denote columns of A corresponding to nonzero entries
of x. Without loss of generality, say the first p columns of A. (we can always rearrange A to
make it so). There are two cases:

case one The a' above are linearly independent. We are done. x is therefore basic by
definition.

case two The a' are linearly dependent. Therefore there exist scalars y;, not all zero, such
that 33/’ | y;a' = 0. (this is the definition of linearly dependent columns).

Now we do the squeezing process. For ¢ > 0 define vector n° with components

. xi—ey; fori<p
m= .
0 i>p

61

2.16. Lecture 16. Thursday, March 10, 2016

CHAPTER 2. CLASS NOTES

Reader 1 is feasible for small ¢. Hence

n
Y2

An® = Ax - eAly,

O

Let ¢ = min {E;yi > 0}. Reader 71 is basic and has at least one more zero entry than x. So

now x has p—1 columns of A corresponding to non-zero entries in x. Continuing this process,
we keep finding other basic feasible solutions.

example

Let starting x =

0
0
1
1

1

»
1 2 12 ol|x| [3
1 1 1 2 1f|xs|=14
2 -1 1 2 1||x| |4

X5

This is feasible since it satisfies Ax = b with x > 0. But not basic, since

the last 3 columns are not linearly independent. (the last three columns of A. Since these
are the ones that correspond to non-zero elements of x. we now write

Y30° + yaa* +ys5a° =0

Where 4%, a*, a° represent the last three columns of A and ' are the scalars we want to solve
for. Solving, gives

Yz =2
yg=-1
y5=0

62

2.16. Lecture 16. Thursday, March 10, 2016 CHAPTER 2. CLASS NOTES

Hence, first find ¢ = min {%;y > O}, which we find to be ¢ = % Now we find
—xl - eyl- [0- % 0) 1 ol
Xy — €Yy 0- % 0) 0
X" =10t =|x3—eyz| = 1—%(2) =0
xy-eyg| [1- 31(—1> :
(s—eys| |1-50)] |1

4 5

Since now a*,a” are linearly independent (these are the fourth and fifth columns of A) and
these correspond to the non zero of the new x = n°, then the new x is basic and feasible. So
we have started with feasible solution, and from it obtained a basic feasible solution. This
is not the final optimal solution x but we repeat this process now.

63

2.17. Lecture 17. Tuesday, March 15, 2016 CHAPTER 2. CLASS NOTES

2.17 Lecture 17. Tuesday, March 15, 2016

If we have a feasible solution, we can obtain a basic feasible solution from it using the
squeezing method. We have not talked about optimality yet. The next thing to consider
is optimality. We will proof if we have an optimal feasible solution, then by obtaining a
basic solution from it, the basic solution will remain optimal. This is called the optimality
theorem. Then we will talk about extreme points.

2.17.1 Optimality theorem

If an optimal feasible solution exist, then an optimal feasible and basic solution exist as
well.

Proof Suppose x is optimal and feasible. If x is basic, we are done. If not, now we need to
do the squeeze process to make it basic, but now we have to do the squeeze making sure it
remains optimal. Say al,a?,---,a” are the columns associated with non-zero entries in x. As
before, we way, WLOG these are the first p columns in A. Hence there exist scalars y;, not
all zero, such that Zle y;a’ = 0. Define n¢ for scalar ¢ such that

= x;—ey; fori<p
0 i>p
Reader For small ¢, say |¢|] < 6, then n° is still feasible. Claim: For ¢ suitable small, n° is
optimal. It suffice to show that ¢’y = 0 with y; = 0 for i > p. This being the case, then
c'n® = c’x = J*. By contradiction: Say c'y # 0. Let ¢ = dsgn (cTy). Let us show that 1¢ is better
than x. This contradicts optimality. Now
cnt=cl (x - ey)

=clx-cT (6sgn (cTy)y

= clTx - 6sgn (cTy) (cTy)

=J" =5 [c"y]

<J
This contradicts optimality. QED.

Now we will talk about extreme points. Extreme points and basic feasible solution are the
same thing.

2.17.2 The extreme point theorem

Let P = {x € R",x > 0, Ax < b}. This polyhedron is the feasible set. The set of extreme points
of P are the basic feasible solution.

Proof See handout extreme send today. We need to get to the first feasible solution. This
can be hard to obtain. Once we find a feasible solution, then we use it to find the first basic
feasible solution, and from them we repeat the process (using the squeeze method). As we
move from one basic feasible solution to another, we do this by making J (1) smaller.

64

2.17. Lecture 17. Tuesday, March 15, 2016 CHAPTER 2. CLASS NOTES

Example Consider LP with constraints
x>0,i=1,2,3
2x1 +3x, =1
X1+x+x3=1

Note that x; + x, + x3 =1 is common in LP optimization. It is called unit simplex. Here is a
plot of the above.

2x1+3x2=1
xl+x2+x3 =1

Out[430}=

Figure 2.18: Unit simplex

Reader Plane for 2x; + 3x, = 1 intersect the unit simplex else no feasible region exist. So

1

there are two basic feasible solutions at (O, %, g) and (—

2,0, %) These are the two red points

shown in the above plot.

2.17.3 Mechanism the simplex method

We will use the sector patrol problem to show the mechanisms of simplex.
Ax=1D

_x1,

2 21 0 0llx| |10
2 20 -1 0f|x|=
=151 0 0 -1f|x

X5

65

2.17. Lecture 17. Tuesday, March 15, 2016 CHAPTER 2. CLASS NOTES

Step 1. Form partial tableau.

2 21 0 0 10 |n
[Ab]:220—104—>r2
1510 0 -1 0 ra

We need to identify an identify matrix. By row operations we obtain

7 2 2 1 00 10]
=2 201 0 -4|->|n 1)
-3 1.5 -1 0 01 O A

Now we can read out x' and we see that x; = 10,x, = —4,x5 = 0. These are the entries in

x which corresponds to the columns of the unit matrix inside A. All other entries in x are
assumed zero. Hence

X1
X2

xl = x| = (10
X4 -4
X5 0

Note this is not feasible but basic. Now we go to next step. We have to remove an entry from
x! and move in its place another entry. Let us pick x3 to kick out and move in x;. By row
operations applied to (1) we obtain

1 1 17
4 11 2 o0 5| |x

rp+2r{ [=]0 O 1 1.0 6 |—|r
r5—-15r [0 =25 -075 0 1 -75 ry

1 4

Hence the new identity matrix is a', a ,a° and therefore x; = 5,x, = 6,x5 = -7.5, These are
the entries in x which corresponds to the columns of the unit matrix inside A. All other
entries in x are assumed zero. Hence

x1 _ s -
Xp 0

2=|xl=| 0
X4 6
.X'5 _—7.5_

This is the second basic x we found.

Reader Find basic solution via pivoting row operations. Now we want to redo the above,
with feasibility in mind which we did not consider above when moving elements out and
selecting which one to move in.

Example
66

2.17. Lecture 17. Tuesday, March 15, 2016 CHAPTER 2. CLASS NOTES

Ax=b
_xlﬁ
X2
1 00 4 3 2
X3
010 2 -1 2 =12

Xq
001 -1 2 1
X5

[%6 |
too0 4 3 21
[Ab:0102—122
“loo1 1 2 13

Now we need to start with feasible solution. Last example we did not care about this, but
now we need the first solution to be feasible. Here x; = 1,x, = 2,x3 = 3 (read out, from
the identity matrix, since the first three columns are linearly independent). We we use the
squeeze process, to decide which one to kick out and which to move in. Let us for now
choose arbitrarily x, (fourth column) to move in and we have to kick out a column. Need

&* to decide.
X (11 1
& =min{ -, —p = —
4’2 4

Hence it is the first column to kick out. Remember that when doing the above to determine
which x to kick out, we only divide by those entries in the column which are positive. If
there is a negative entry, then do not use it. That is why in the above, we did not write

11) .
3 } We will continue next lecture.

* 3 _ - =
&= m1n{4, > T

67

2.18. Lecture 18. Thursday, March 17, 2016 CHAPTER 2. CLASS NOTES

2.18 Lecture 18. Thursday, March 17, 2016

Class planning:
1. special problem towards end of course
2. Test 2 after spring break. Up to and including LP.
3. HW 6 will be send soon, due right after spring break.

Exercise to do

A good exercise, to be done by hand, is the following: For the sector patrol
problem which we considered in class, solve the Phase One LP to obtain
a basic feasible solution.

Then, use this first basic feasible solution as a starting point for the original
LP and solve it via a sequence of tableau. Since you already know the
answer, you will get feedback whether your calculations produce the right
result.

2.18.1 Simplex method examples

We still need to know how to find first feasible solution. In the following example

X1 X2 X3 X4 X5 Xg

b
1 0 0 2 4 6|4
3
1

o 1 0 1 2 3
0O 0 1 -1 2 1

A solution which is basic and feasible is x; = 4,x, = 3,x3 =1 and all others x; =0,i =4---6.

O O O F W

This was just read out from the identity matrix in the first 3 columns above. Let us now
assume we want fourth column to be in the basis. We have to remove one of the current
columns in the basis in order to let another column in. min ;% = 2. This means the first

row is the pivot row. Notice we do not consider _il when doing the minimum operation. Any
negative value in a column is bypassed. Now we know that first row is pivot row and that

68

2.18. Lecture 18. Thursday, March 17, 2016 CHAPTER 2. CLASS NOTES

we want fourth column in. This is all what we need to go to the next step. We know need to
normalize entry (1,4) to one. (before it was 2). After normalizing the pivot row (by dividing

the whole row by 2) we obtain

X1 Xp X3 X4 X5 Xg | b
> 0 0 1 2 3|2
o 1 0 1 2 3|3
O o 1 -1 2 1|1

Only now we start applying row operations, with row one as pivot row, we make all other
entries in fourth column below (1,4) zero, This gives the following

X1 Xo X3 X4 X5 Xg b

no o, 0 0 1 2 3

2
rz—f1—§100001
3

trn 5 0 1 0 4 4

Now that we have a new identity matrix, we read out the new solution which is x, =1,x, =
2,x3 = 3 and all other x entries zero.

S O N W = O

We will now revisit this, with optimality in mind. This means we need to know which column
to bring into the basis. The question is, which x; to bring in. Set up this tablea

b

—_——
y(1,0)
1 --- 0 1, 1 1,
o 0 el a6 o)
0 - 1 , 1 , E
a(m,m+1) a(m,n) y(m,0)

Therefore, the current feasible and basic solution is x; =y (1,0),x, =y (2,0), -+, x,, = y (m,0).
All other x; = 0. We need now to do a feasibility preserving perturbation.

Lin class, we used y (1,m + 1) etc.. for entries in A matrix. I changed it in these notes to a (1,m + 1) etc... not
to confuse myself with the RHS y(1,0), etc.. entries in the b vector.

69

2.18. Lecture 18. Thursday, March 17, 2016 CHAPTER 2. CLASS NOTES

Allow x,,,1, X142, -+, X, to be part of the solution.

we allow this in

X1+ i a(l,7)x;=y(@1,0)

i=m+1

Xy + zn: a2,i)x; =y(2,0)

i=m+1

Xy + 211: a(m,i)x; =y(2,0)

i=m+1

T
Now x = (xl Xp o Xy O e O) is still feasible, but no longer basic. We know that

J = c'x, hence
n n n
] =0 (y(lr 0) - E a(l, i)xi) + C (3/(2/ 0) - Z a(Z, i)xi) + -t Cm (y(m/ 0) - 2 ﬂ(m, i)xi) + Cn+1Xm+1 + -t Cy?
i=m+1 i=m+1 i=m+1
Hence

current Jpvalue
—N—

m m m m
J= ey, 0) —c1 Y, al,i)x; = cp D3 a(2,i)x; =+ =y D, (M, DX; + Cppa1Xppaq + -+ + 0y,
i=1 i=1 i=1 i=1
Therefore

J=Jo—-(—cpr1+cra@,m+1)+ca(2m+1)+ - +cpaimm+1))x,01 — (—Cpyy1 +c1a2,m+1) + -+ + c,,a (m, m-

Define cost coefficients, for j=m +1,---,n

m
ri=ci— Y, cali,j)
i=1
Hence
n
J=Jo+ 2 17
j=m+1
To minimize | we need to pick the most negative 7;. This tells us which x; we need to bring

into the basis in order to reduce |. Now we add extra row (last row) which is J(u) to the
table, to keep cost in it. Here is the table with the cost coefficient row added

A b
1 - 0 a@,m+1) - a@,n)|(y@,0)
P : y(2,0)
0 - 1 amm+1) --- a(m,n)
000 - n JU o

state street vendor example Selling rings and bracelets. Ring has 3 oz. gold., 1 oz. silver.
Bracelet has 1 oz. gold, 2 oz. silver. Profit on ring is $4 and profit on bracelet is $5. Initially
we have 8 oz. gold and 9 0z silver. How many rings and bracelets to produce to maximize
profit? This is the heart of many production problems. Note: we need integer LP to solve

70

2.18. Lecture 18. Thursday, March 17, 2016 CHAPTER 2. CLASS NOTES

this. But if the quantities are very large, it will make little difference. So for now we can
ignore the issue of integer programming.

1y = number of rings
1, = number of bracelets
J(u) = 4uq + 5u,
Since we want to maximize this, then
J(u) = —4uq — 5u,

With u; > 0. Constraints are 3u; + up, < 8 and u; + 2u, < 9. We convert to standard LP with
slack variables and make the first table

X1 Xp X3 Xy

b
rowl| 3 2 1 0|8
row2 |1 2 0 119

0

Jw) | -4 -5 0 0

The first basic feasible solution is x3 = 8,x, = 9. To decide which column to bring in, we see
the most negative is column 2 (last row is -5). To find the pivot row, we see it is first row

since min{g, g} = {4,4.5} = 4. Now we do the first stage.
Reader obtain the following

X1 Xy X3 X4 b
rowl| 25 0 1 -05| 35
row2| 05 1 0 05 4.5

Jw) | -15 0 0 25 |225

Hence x, = 4.5, x3 = 3.5. Since there is still a negative entry in the last row we need to repeat
the process again. We Keep doing this until there are no negative entries in the last (third)
TOwW.

Now we will now talk about how to find the first basic feasible solution. There are two cases.
If the number of slack variables is m then first basic feasible solution can be read out. This
means there is no phase one LP. Case two. The number of slack variables is z < m. Now we
need to solve the first phase LP. Then use its result to solve second phase LP. In phase one,
we introduce new artificial variables y; as many as m —z and new artificial cost function | (y)
which we want to minimize to zero.

See HWG6, first problem for an example of how to solve first phase LP.

71

2.19. Lecture 19. Tuesday, March 22, 2016... CHAPTER 2. CLASS NOTES

2.19 Lecture 19. Tuesday, March 22, 2016 (No class)

No class.

72

2.20. Lecture 20. Thursday, March 24, ... CHAPTER 2. CLASS NOTES

2.20 Lecture 20. Thursday, March 24, 2016 (No class)

No class.

73

2.21.

Lecture 21. Tuesday, March 29, 2016 CHAPTER 2. CLASS NOTES

2.21 Lecture 21. Tuesday, March 29, 2016

Coming up soon is the special problem. It is like one HW but can count up to two HW’s
weight. Note: Possible rescheduling for April 6, 2016 remain in place.

2.21.1 Second exam keywords

1.
2.
3.

8.

Test two will be more application oriented.
local minimum. Strong and weak. We had sufficient conditions. Gradient, Hessian.

If we have convexity, we can do much better. If not, we need iterative algorithms. Line
search is central to iterative search. Step size, optimal step size.

. we looked at steepest descent with and without optimal step size. For simple problems

we can easily find optimal step size.

. We talked about convergence for iterative algorithms. For steepest descent we talked

about EOk,

. We talked about generalized Newton-Raphson. We talked about quadratic conver-

gence. Conjugate direction method has quadratic convergence (we proved this). It will
converge in N steps or less, where N is A matrix size. Newton-Raphson will converge
in one step for quadratic function. We also talked about superlinear convergence.

This brought us to the end of iterative algorithms. Then we went to Linear program-
ming. The number of vertices is large. So trying to check them all is not possible.
Polytope is central to LP. The basic theory of LP

(a) Feasible solutions

(b) Basic solutions

(c) basic and feasible solutions

(d) The method of squashing using n°
(e) Basic feasible & extreme points.
(f) Relative cost coefficients.

Then we talked about simplex algorithm.

Now we will start on today lecture. Often a problem is given to you, but it is not an LP
problem. Sometimes it is not obvious how to convert it to an LP problem. Sometime we need
algebra or cleaner reformulation of the problem to make it an LP problem. For example, in
HW6, we had a min-max problem but it is was possible to convert it to an LP problem. See
key solution for HW6.

74

2.21. Lecture 21. Tuesday, March 29, 2016 CHAPTER 2. CLASS NOTES

2.21.2 Application of Linear programming to control problems

Another application area for LP is control. Example is the minimum fuel problem. In this,
we want to go from some state to final state with minimum control effort. The control effort
is generic name which can mean many things depending on the problem itself. We also
want to do this in minimal time. We begin with the discrete state equation

x(k +1) = Ax(k) + Bu(k)

With x(0) given as the initial state. In the above, x is an n x 1 vector, and A is n X n and B is
n x m where m is number of inputs, and u is m X 1 input vector.

We want to select u(k) sending x(0) to some target x* at some future time k = N. With N
being minimal, and control effort minimum. Assume for now that u is scalar, which means
one input, then an energy measure is

N-1)
D lu(k)l
k=0
On the other hand, a peak measure is
max{u(k),k=0,..,N -1}

But we will consider the fuel measure given by
N-1

3 lu(k)l

k=0
We will use fuel measure in the LP problem. The constraint is
lu(l < U (+)

Which says that control is bounded. Note that is (A, B) is controllable, we can get from initial
state to final state in one step if we want, but the effort will be very large. We also want
x(N) = x*. The above two are the constraints in this problem. The objective function is

N-1
JGu) =Y u(k)l
k=0

Therefore
x(1) =Ax(0) + Bu(0)
x(2) =A%x(0) + ABu(0) + Bu(1)
x(3) =A3x(0) + A2Bu(0) + ABu(1) + Bu(2)

N-1
x(N) = ANx(0) + Y, AN-1-kBu(k)
k=0

x*This is the linear constraint

Now we rewrite the constraint |u(k)| < U as
u(k) = uy(k) — 1, (k)

with u,(k), u,(k) being positive. The objective function becomes (where we now put N as

75

2.21. Lecture 21. Tuesday, March 29, 2016 CHAPTER 2. CLASS NOTES

parameter, to say this is for a specific value of N

N-1
In@) = D] lu(k)
k=0
N-1
=Y (k) + 1, (k)
k=0

Equation * above becomes
up(k) <U
u,(k) < U

So minimizing Jy(u) is now an LP problem in 2N raw variables (we still need to add the
needed slack variables). So by doubling the number of variables, we were able to convert
this control problem to an LP problem. Let

N* = inf{N : LPy feasible}
Reader Argue that /* measure also lead to an LP problem. [* measure is max{u(0), u(1), ... }.

1-eT
T] where T =1 is the sample time. And let B =

e

0
N The bound

1
Example Let A = [0

-40.91 0
on u(k) = 1. This means U = 1. Let x(0) = 13.50 and let the target x* = ol Find u* and N*.

Running LP for different values of N from 1, ..., 4 we find the first feasible solution at N = 4.
These is the resulting optimal effort u(k)

u(0) = —-0.3009
u(l) =-1
u(2) = -0.2999
u3) =-1

And the corresponding optimal objective function J* = 2.6008. In the above, we have priorities
on minimal time first.

2.21.3 Starting dynamic programming

Now we will start on the next topic, which is dynamic programming. This involves discrete
decisions. In this course we will cover only discrete dynamic programming and not continu-
ous dynamic programming. We will be making sequential decisions in time. For example, if
u(k) = {-1,0,1} then the decision tree will look like

76

2.21. Lecture 21. Tuesday, March 29, 2016 CHAPTER 2. CLASS NOTES

Figure 2.19: decision tree

We will get tree with potentially large number of branches. Combinatories arise. We get the
curse of dimensionality problem again. For dynamic programming, Bellman is considered
the person who originated the subject.

77

2.22. Lecture 22. Thursday, March 31, ... CHAPTER 2. CLASS NOTES

2.22 Lecture 22. Thursday, March 31, 2016. Second
midterm exam

Exam.

78

2.23. Lecture 23. Tuesday, April 5, 2016 CHAPTER 2. CLASS NOTES

2.23 Lecture 23. Tuesday, April 5, 2016

For steepest descent problem, with optimal step size, max is 1, need to use |kt — k|| < 1.
Next we will have special problem. Expect it next week.

Back to dynamic programming. Bellman secret is simple but theory is powerful. Main things
to take from this course are

1. Linear programming.
2. Iterative solutions to optimization problems

3. dynamic programming

2.23.1 First dynamic programming problem, trip from NY to SFO

Suppose we want to take trip from NY to San Francisco, such that the total toll is minimum.
We also must go west at each step we take once we start from NY. Not allowed to go east
direction, even if the cost might be lower.

This diagram shows the possible routes and the cost (toll) for each segment.

BUTE ORD

PHX

Figure 2.20: NY to SF tree one

Dynamic programming is now used to find optimal route in the above problem. (i.e. the
route with least toll (cost) from NY to SFO). Dynamic programming is based on what if
decisions. Instead of starting from NY and trying every possible route, we instead start
backwards, and ask, what if we were in PORT, which route would we take?

Clearly the only route PORT to SFO with cost of 5 exist. Then we ask, what if we were in
LV, which route would we take? we see it is LV to SFO with cost of 3. Then we ask what if
we were in SNY? Then since LV had cost 3, then the route SNY — LV — SFO would be the
one to take, with cost of 2+ 3 = 5. Each time we find the cost from one city to SFO, we label

79

2.23. Lecture 23. Tuesday, April 5, 2016 CHAPTER 2. CLASS NOTES

the city with this cost. We keep moving back to the east, doing the same. When we arrive
all the way to JFK, then we see that the lowest cost is

J* =JFK - NO — PHX — LV — SFO

The following diagram shows the route above, with the cost of moving from each city to
SFO given next to each city name on the diagram.

BUTE ORD

Figure 2.21: NY to SF tree two

If we were to solve the above problem using direct evaluation the number of computations is

of order (assuming even 7 is (nn_ '1,3!'"! while with dynamic programming method as explained

22

2
above, it is = + n. For 20 cities, this given 220 for dynamic programming compare to over
one million computation for the direct approach (trying all the possible routes).

We will only consider discrete dynamic programming. This is an optimization problem. The
variables are not continuous. The variable take in discrete fixed values of choices each time.
These applications are useful for integrate programming problems. An integer programming
problem is much harder than continuous ones with much larger complexity.

When we are given an integer programming problem which is hard, we can try to approxi-
mate it to continuous programming problem and solve it more easily that way. For example
min ¢’

X
where x is allowed to be integers, is a hard problem. But if we relax it and allow x to take
any value so that the problem becomes continuous, then it will become much easier to solve

using Linear Programming.

x subjectto Ax=0»

There are papers written on when we can approximate integer programming problems as
continuous.

We will be making sequential decisions. ug, uy, ..., un_1 i.e. N decisions where u € R". If we
are given a problem which is not sequential, we can treat it as one for this purpose. For

80

2.23. Lecture 23. Tuesday, April 5, 2016 CHAPTER 2. CLASS NOTES

example, the car toll problem above, we formulate it to sequential but we did not have to
do this. But the final answer J* should come out the same no matter how it was formulated
of course.

There will be states x(k), k = 0,1, ..., N where x(N) is the terminal state. The constraints are
state dependent. Because it depends on where we are when making the decision. For the
car toll problem above, the decision depended on which city we were in. We denote the
decision as u(k) € Q) and the state equation is

x(k +1) = f(x(k), uk), k)
and the objective function is
N-1
J@) = 25 JCel), ulk), k) + p(x(N))
k=0

————
terminal cost

stage cost

The terminal cost, is a cost applied once we reach the terminal state.

2.23.2 Subproblem in dynamic programming

Now we need to define a subproblem. Notion of subproblem: Will begin at k = L and will
be in state x(L). The cost when in state L is therefore

N-1
To(u) = Y] J(x(k), u(k), k) + P(x(N))

k=L

Suppose u* is the optimal decision when we are at state x(k). Let x*k be the optimal trajectory
from x(k). i.e. x*(k) is corresponding state path beginning at given x(0). Hence

2k +1) = (), k), k), k=0,1,..,N-1

2.23.3 Bellman principle of optimality

If the subproblem begins at x(L) = x*(L) i.e. we being subproblem along optimal trajectory
of the original problem, then u*(L), u*(L +1), ..., u*(N —1) is optimal for the subproblem.

What all this means, is that if the subproblem is optimal, then its trajectory has to be part of
the overall problem optimal trajectory. An optimal subproblem, can not become sub-optimal
when viewed as part of the main problem.

81

2.24. Lecture 24. Thursday, April 7, 2016... CHAPTER 2. CLASS NOTES

2.24 Lecture 24. Thursday, April 7, 2016 (No class)

No class.

82

2.25. Lecture 25. Tuesday, April 12, 2016 CHAPTER 2. CLASS NOTES

2.25 Lecture 25. Tuesday, April 12, 2016

The first part of the lecture was on describing the special problem we have to do. This is
described in the special problem HW itself included in HW chapters, under special problem.

2.25.1 Dynamic programming state equation
Now we go back to dynamic programming. The state equation is
x(k+1) = f(x(k),u(k), k) k=0,1,---N and u(k)eQ

And the objective function is
N-1

J=W M)+ 2 Ji (e k), u k)
k=0

Where VW (x (N)) is the cost of the terminal stage.

We always start from this stage,
and move left, using the Ballman
dynamic equations
z(N —1)
L !

terminal stage

initial state

0 1 e o o k e o o N
! ! i
x(k— L) z(k) z(N)

Figure 2.22: Showing dynamic programming block diagram

2.25.2 Subproblems and principle of optimality (POO)
A subproblem is defined at intermediate point.

P.O.O. (principle Of optimality): if initial state of a subproblem is on the optimal trajectory
of original problem, then the subproblem is also optimal.

Proof by contradiction Let

wk) k=0,--,L-1
u (k) =
Weo® — k=L,--N-1

Plug the above in the original problem. We will get a suboptimal solution.

Translating POO. to dynamic programming.

83

2.25. Lecture 25. Tuesday, April 12, 2016 CHAPTER 2. CLASS NOTES

cost of one step

Ix(N-1),1) = u(N—m1)ieIg1)N,1 Jx(N-1),u(N-1))+ W (x(N))

The above is the optimal cost with one step to terminal stage. This is similar to what we
did for the routing problem from NY to San Francisco before. The above is when we are
standing in Portland and looking for the last step to take to San Francisco.

To minimize the above, we have to express everything in the same state x (N —1). So we
write the above, using the state equation, as

I(x(N—l),l):M(N_nlnie%N_l[](x(N—l),u(N—l))+\I/(f(x(N—1),u(N—1)))} 1)
Now we find u* (N —1) of the above, using
dl(x(N-1),1) d
du(N-1) — du(N-1)

Jae(N=1),u(N-1))+ W (f (x(N-1),u(N-1))) =0

And solve for u (N —1) using standard calculus. Once we find u* (N - 1), we plug it back into
(1) and obtain

F(N-1),1)=]@xN-1),u5"(N-1)+ ¥ (f (N -1),u" (N -1)))

Notice now there is no min,y_1)eq, , since we already done this. We now apply POO. again
to find cost from stage N —2

I(x(N-2),2)= min {J&(N-2),u(N-2)+I"(x(N-1),1)}
u(N-2)eQn_»

Notice the difference now. For all stages back, beyond N -1, we use the cost found from the

ahead stage, which is I" (x (N - 1),1) in the above case. We now repeat the process, and find

optimal u* (x (N - 2),2). See HW 7, problem 2 for detailed example how to do this. More

generally,

I(x(L),N-L)= (IB]% JxL),ul)+I'(x(L+1),N-L-1)}

The above is called the dynamic programming equation.

84

2.26. Lecture 26. Thursday, April 14, 2016 CHAPTER 2. CLASS NOTES

2.26 Lecture 26. Thursday, April 14, 2016

2.26.1 Stages in dynamic programming

At stage L the optimal cost from stage L with N — L steps to go is

I(x;,N-L) = u(NryLi)réQL G, u (L)) + Ixpeq, N = (L + 1))}

With appropriate initialization.

Some comments: The trickiest part is how to use this equation. Must be careful. Think of
u (L) as feedback. We call the optimal u*(L).

Warning. There is a constraint on #. Do not use derivative to find optimal without being
careful about the limits and constraints. For example, if |u(L)| <1 and we have quadratic
form. We will now use an example to show how to use these equations. Let

Xk+1 = Xk — Ug (1)

Where uy is free to take any value. Let the objective function be

N-1
J G) = 3, (er —) + 12 (2)
k=0

Reflecting a simple tracking mechanism. We always start at x (N —1) with one stage to go.
Hence the optimal cost from xy_; with one step to go is

I(xn-1,1) = . (Nf{lli)féol {J (xn-1, un-1) + W (xn)}

W (xy) is the terminal cost. Let us now remove it from the rest of the computation to simplify
things. We also replace] in the above from (2) and obtain

2
Ix_,lzmin{x _ —Un_q) + U2 }
(xn-1,1) nin (((N 1)+1) Nl) N-1

. 2 2
= min {(xy —tun_1)" +1u
i, {(N~ UN-1) N—l]

. 2 2 }
= 1min {X — Un_ + Uy_
W(N-1) (N N 1) N-1

We want everything in terms of xy_;. So we use (1) to write x5 = xy_1 — #y_1 and plug it
back in the last equation above to obtain
. 2
I(xn-1,1) = min [(xN—l — Uy —UN-1) F u%\,_ll
UN-1
. 2
= 1min [(xN—l — 2”N—1) + M%\]_ll (3)
UN-1

Only now to take derivative, in order to find u};_;. therefore
dl (xn-1,1)

UN-1 -

2(xN-1 = 2un-1) (=2) +2un_1 =0

. 2
UN-1 = 5¥N-1

0

85

2.26. Lecture 26. Thursday, April 14, 2016 CHAPTER 2. CLASS NOTES

Now that we found the optimal u};_; we go back to (3) and replace uy_; in (3) by uy_;.

Hence
2) 2
I(xn-1,1) = |xn-1 -2 SIN-1)| 5N

1
= gxzzxf—l

Now we backup one step. We need to find
I(xn-2,2) = min {] (xn—, ty-1) + I (-1, 1)} (4)

Notice that we used I(xy_1,1) in place of what we had before, which was the terminal cost
W (x (N)). Since now we are two steps behind. All the work before was for finding optimal
I(xn-1,1). So now (4) becomes

) 1
I(xn-2,2) = min {f (tn-1, Un-1) + gx%v—l} ()

But from (2)

2
J ey, un—2) = (Xno1 — Un—)” + ”12\7—2

Hence (5) becomes

1

. 2

I(xN—ZI 2) = min {(xN—l - MN_Z) + MIZ\]_Z + —x%\,_l}
UN-2 5

We need to use the state equation x;,; = x; — 1y to rewrite xy_; in the above, since we want
everything in N - 2 terms. Therefore the above becomes

) 1
I(xn_p,2) = min {((XN—z ~Un_g) — o)+ Uy + 5 (xN-2 = ”N—Z)Z}

= g}}]{rzl {25—6M2N_2 - %MN—Z-XN—Z + gx%\,_z} (6)
Now we take derivative, to find u},_,
dl (XN—Z/ 2) -0
UN-2
52 22
SN2 FAIN2 = 0

. 11
UN-2 = 5 ¥N-2

Now that we found the optimal u},_,, we go back to (6) and replace uy_, there with u},_,

26 (11 * 22(11 6,
I(xn-2,2) = 5 (2gN2) ~ 5 | ggin2) N2+ 52
7

=% 2

Reader Carry out one more stage and obtain J* = (x(0),3)

86

2.26. Lecture 26. Thursday, April 14, 2016 CHAPTER 2. CLASS NOTES

Answer
I(xn-3,3) = {R]lg {J (enoz un-3) + 1 (xn—2, 2)}
. 7 5

=min J (xn-3,un-3) + 26 N-2
But from (2) [(xn_s, tin-3) = (tn_o — tin_3)* + u%,_s, hence the above becomes

7

I(xy-3,3) = mins (v — tin-s) + 135 + ==
UN-3 26

We need to use the state equation x;,; = x; — 1y to rewrite xy_, in the above, since we want
everything in N — 3 terms. Therefore the above becomes

. 7
I (xn-3,3) = min { (Xn_3 — tn_3) = tin-z)" + 115 + = (Xn_3 — Un-3)"
llN,3 26

137 59 33,
'ﬂ%{% 31?MWH+%W% @
Now we take derivative, to find u};_5
dI(en-3,3) _
UN-3
274 59
g UN-3 T3N3 = 0

. 59
Un-_3 = 13_7xN—3

Replace this back in (7)

137 (59 2 59 (59 33
I(xn-3,3) = 26 \137N-3] ~ 13 | 37 N3 | -3 + 5p s
40

= 13_7951\1—3
Let us do one more one, N = 4.

I(xN-4,4) = {[l}g {] ena, un—a) + I (xn_3,3)}

— i 40 ,
= min J (N4, Un-g) + 137N

But from (2) [(xn_yg, Un-4) = (Xn_3 — uN_4)2 +u%_,, hence the above becomes

40
i _ 2, 2 2
I(xn-44) = min {(XN—s UN-4)” + UN_y + 137XN—3}

We need to use the state equation x;,; = x; — 1y to rewrite xy_3 in the above, since we want
everything in N — 4 terms. Therefore the above becomes

137
725 628 177 5
137 N 47 137 e UN-4XN-4 T 13—73(1\1—4

—O (xn-4 — UN—4)2}

. 2
I(xN-4,4) = min {((XN—4 —UN_g) —Un-g)” FUN 4+

(8)

= min
UN-4

87

2.26. Lecture 26. Thursday, April 14, 2016 CHAPTER 2. CLASS NOTES

Now we take derivative, to find u};_4

dl (xN—4/ 4) -0
UN-4
1450 628 .
137 N4 7 3y N-4 T
314

*

UN-4 = opAN-4
Therefore (8) becomes
Loy 2 725 (314 628 (314 L177,

N2 = 137 \ 725" N4) T 137 \ 725 N4 N4 T 377N

217 ,
= %XN%

A table of the summary

I(xn-1,L)
0.2 x% 4
0.2692 x%, ,
0.29197 x%,_,
0.29931 x%,_,

N R e

So for N =4

I(x4-p,L)
0.2 x3
0.2692 x3
0.29197 x?
0.29931 x3

W | NP

Using xy,1 = X — 1 to write everything in terms of xg

I(x4-1,L)

0.2 (((xg = ttg) = 117) =)’
0.2692 ((xo — t1g) — 141)°
0.29197 x2 (xo — uo)2
0.29931 x3

B>l | N |-

So total cost is

I=0.2 (((xg -) — 11) — 1p)* +0.2692 ((xg — ttg) — 117)* + 0.29197 22 (xo — 14)* + 0.29931 ¥

This example is special case of LOR. What happens in this example above, or more
generally when N — co? As N — oo we will see later that the feedback gains become time

88

2.26. Lecture 26. Thursday, April 14, 2016 CHAPTER 2. CLASS NOTES

invariant. This is called steady state LOR and will we arrive at the Riccati equations.

2.26.2 Allocation problem, applying DP to investment problem

Next example is allocation problem We will do it in two steps. We can solve this without
using D.P. but will use D.P. to illustrate the method. Consider two investments.

1. Invest $1 in real estate, with return of $2.
2. Invest $1 in oil, with return of $4.

Let say with start with fixed amount of money k dollars. We have constraint: b, is maximum
allowed amount of investment in real estate, b, is the maximum amount allowed for oil
investment. To avoid trivial solution, assume also that b, + b, > k. Let u, the amount invested
in real estate, and let u, amount invested in oil.

Common sense solution is uj = k—b, and u] = b, since investment in oil has higher return. 1,
is investment in oil, and 1 is investment in real estate. Let do this using D.P. The objective
function is

](u) = 21/[0 + 41/11
And the state equation is (we only have two states x;, x()
X1 =X~ U

Initial state is x; = k which is the money we have at the start. There are two stages. Hence
N = 2. We start with

I(xN—lll) = I(xlll)

= max {J ()}

i.e. we assume we have one stage to go, and that we have made initial investment in real
estate and now we are making investment in oil. Hence

Qq =[0---min {b,, x1}]
Hence u] = min {b,, x;} and
I(xq,1) = 4min {b,, x;}
Now backup one step.
I(xo,2)

max {J (u) +I(x1, 1)}

= max {2110 +4 miIl {bo/ xl}}
M0€QO

Where Qg =[0---b,]. Therefore since x; = xg — 1y the above becomes

I(xo,2) = max {2ug + 4 min {b,, xo — uo}}

Let
F (ug) = 2ug + 4 min {b,, xg — ug}
= 2uy + 4min {b,, k — ug}

89

2.26. Lecture 26. Thursday, April 14, 2016

CHAPTER 2. CLASS NOTES

Find the maximum using graphics method. This gives u; = k — b, which is the same using

the common sense approach.

The following diagram shows the solution of the above using the dynamic graph method.

stage 0 (invest in oil)

stage 1 (invest in real estate)

equal or less than bg.

we allowed to invest.

=k 0 z=FkK 0 k
=k
i i i t nothin,
| invest nothing --2 bo |1 inves g
I I
I I
| | 2bo z=Fk—bo
I I invest all we can (bg)
| |
| |
I 4by z=k—>bp! 0
| n N z=k— bl
| invest all we can (b1) 2(k —b1)|, invest nothing
| |
| |
I ‘ 2(k —b1)
| | T =
| I Invest all we can. What is
I ' left must be less than or
‘ : equal than bpand it can not
! be larger than bg
The constriants are
bg+by >k
bo <k
b <k

Note also, if we invest by in stage 0, what is left is £ — b1 and this amount can not be larger than bg. It can only be

The maximum path is taken by investing b; in stage zero, and then investing what is left in stage one. This is
becuase we had to decide if 2bg is larger than 4b1 + 2(k — b1) to decide which path to take.

It is clear than 2b; + 2k > 2bg since k > bg, hence the path selected is the one shown.

In the above, b1 is amount to invest in oil and by is amount to invest in real estate, and k is maximum total amount

Figure 2.23: Solution to the oil and real estate problem using Branch and Bound

graph method

90

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

2.27 Lecture 27. Tuesday, April 19, 2016

2.27.1 LOQR and dynamic programming

In the following, some of the terms were re-written with the index being as subscript, as it
is easier to see on the screen, Hence instead of x (k) as was done in the lecture, it becomes
X, and u (k) becomes u; and so on.

Now we start with the state equation

Xj41 = Axk + Buk

In the above, A is n X n and B is n X m where m is the number of inputs, and u; is column
vector of size m, and similarly for x;,; and x;. In continuous time, the above is

X (t) = Ax () + Bu(t)

We can also allow time varying A, B in the above, but in this discussion we assumed these
are constant matrices. The goal is to make x (k) track, or approach some desired x4 (k) with
as little effort u (k) as possible (what about also as fast as possible at same time?). u (k) is
called the control effort. This diagram illustrates this

desired path

(k)

Figure 2.24: Goal is to track desired path

When 7 (c0) = 0, this means we want to bring the system to stable state. We want now to
quantify the goal] (1). So the problem is to bring the state x (k) to zero using as small effort
u as possible. We write the cost J (1) as

N-1

J) =] xt 1 Qxpyq + uf Ry
k=0

This is just something we have to accept as given. We did not derive this, but it makes sense.
Notice for example, when x (k) is small, then | () is small. But from now on, we just use the
above as given. In the above, Q and R are called weighting matrices. For example, if (1)

91

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

is more important than u (2), we adjust the values in Q to reflect different weights we want
to assign. In the above, Q is n X m and R is m x m. Both Q and R are positive definite and
symmetric. Now we start using the Bellman dynamic equations.

I(xn-1,1) = MNIfleiélN 1 {J (enor, un-1) W (o)}

= min {x{,QxN+u{,_1RuN_1} (1)
uUN-1€QN-1

We ignore the terminal cost W (xy) for now. Be careful with the indices. Notice in the above,
after replacing J (1), that x has index N and the u has the N -1 index on it. This is due to
how] (u) is given to us to use, which has x;,; in it already. EQ (1) is our starting point. Now
we start applying the dynamic equations recursively. First , we replace the state equation in
the above and obtain

I(xy-1,1) = min {(AxN—l +Bun_1)' Q(Axy_y + Buy_) + M§_1R“N—1} (2)

UN-1€QN-1

Notice that now all indices on x are N -1, this is because the state equation being x;,; = Ax;+
Buy. Notice that (2) is quadratic in uy_;. This is important. Doing one more simplification
on (2) gives (where the leading min, ., , is now removed, just to make the equations fit),
but it is assumed to be on each equation on what follows

I(xn-g, 1) = ((AxN D'+ (Buy- 1)T) Q (Axy_y + Buy_y) + ufyRuy_y
(xN AT+ 1BT) Q (Axy_y + Buy_y) + uy_g Ruy
(XN 1ATQ +ufi 1BTQ) (Axy_q + Buy_q) + uf;_1Ruy 4
(1 ATQ + ul 1BTQ) (Axyq) + (xl\] 1ATQ + uf,_ 1BTQ) (Bun-1) + ty_1 Ruty 4
=xl_1ATQAxN_1 + ul_;BTQAxN_1 + x5 _ATQBuN_; + uk_1BTQBuy_1 + uk_;Ruy_;
= (uN-1BTQBuy_1 + uy_ 1RMN—1) + 1y BTQAxN 1 + {1 ATQBuy_; + x_1 ATQAXy

%1 (BTQB + R) uy_y + (ul1BTQAxN_y + X[ATQBuy_) + (x§ 1 ATQAxXy_1)

= M BTQB + R Un- 1+ MN 1BTQAJCN 1 + ((QBMN 1) (XN_lAT)))+ XII\}_lATQAxN,l

I
:
S

2

Q
=
+
=

s + (1 1BT QAR 1 + ((QBuy) (A)) +xE s ATQAxN

)
A)
N () (
= ul; (B"QB + R) uy_; + u}1B"QAxy_; + ((uf_1 (QB))(AxN_l))T) + x5 ATQAxy_;
= ull_y (BTQB + R uty_y + (i BT QA + (. (BTQT) (Axy_y)))+xg_1ATQAxN,1
|)itng s (uN,lBTg;),AxN_1 + (ul,BTQT Axy 4))+x§,1ATQAxN_1
But QT = Q and the above becomes
I(xn-1,1) = uky 4 (BTQB + R) uy_; + (uﬁ_lsTQAxN_l + (uITV_lBTQAxN_l)T)
+ x5 ATQAxy 2)
Using

H:%(H+HT)

92

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

T
On the middle term (u{,_lBTQAxN_l + (u{,_lBTQAxN_l)), where H = u},_BTQAxy_; reduces
) to

I(ry-1, 1) = min {ul_; (BTQB+ R)uy_q +2 (uf_1BTQAxN_1) + x§ 1 ATQAxy_ | 3)

UN-1€QN-1

The above is in the form I = a;u? + 2a,u + as, therefore it is quadratic in uy_;. Taking
derivative w.r.t. uy_; since this is what we are minimizing I with respect to, we obtain from

(3)

0=2(BTQB + R)uy_; +2 (BTQAxy_1)
R is positive definite, and Q is positive definite. Solving for uy_; gives
-1
uy_y =-(BTQB+R) (BTQAxy_;)
-1
=—(BTQB+R) BTQAxy_; (4)
Reader (BTQB + R) is the Hessian. Show it is positive definite matrix. Since the Hessian is
P.D., then u},_; is global min. Eq (4) is linear feedback on state (N —1). i.e. we write
w(N-1)=KN-1)x(N-1)
Where K(N —1) is called the gain matrix which is
-1
K(N-1)=-(B"QB+R) BTQA

In all the expressions below, we see the term (BTQB + R) repeating. So to simplify things
and make the equations smaller, let

® = BTQB + R

Hence
K(N-1)=-®1BTQA
And therefore
uy 4 = (-P1BTQA) xy_y
= —(BTQB+R) " BTQAxy.,

Now we go back to (3) and replace the uy_; in that expression with u},_; we found in (4).

93

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

(we remove the min we had in (3), since it is now the minimum)

UN_1€QN-1
I (N1, 1) = up g Duyy_y + 2 (1] 1 BTQAxN_,) + x5 ATQAxN 4
= ((~0~1BTQA) xy 1) @ (-0~1BTQA) xy 4
+2((-@'BTQA) xN_l)T (BTQAxy_1) + xk 3 ATQAxy_
= i, (©71B7QA) @ (<0 1BTQA) xy; - 24, (®~1BTQA) (BTQAxy. 1)

+ x{,_l ATQAXN_l

A [(@718704)" (BTQA) -2 (01B7QA) (BTQA) + ATQA]xN_1

=i [(B7Q4) (071)' (B7Q4) ~2(B7Q4) (@) (BQ4) + ATQA |1x s
=2l :(QA)T B(01)' (BTQA)-2(QA) B(01) (BTQA) + ATQA] N1

s :ATQTB (1) (B7Q4) -247Q"B (0-1)' (BTQA) + ATQA]xN_1

T
But Q = QT and (CD‘l) = @1, Note that @ is the Hessian matrix, and it is positive

T
definite, and assumed symmetric. That is why ((D ‘1) = @1 But we did not proof this. It
was a reader to show this is positive definite. The above therefore becomes

I (xn-1,1) = 2§y [ATQB®TBTQA - 2ATQTB®1BTQA + ATQA]xy 4

= x} 1 [ATQ - ATQBO'BTQAxy

= x4 ATQ[I - BO'BTQA | xy_4

= 2,1 ATQ[Q7! - BO1BT | QAxy_y
Let

My = ATQ[Q! - BO'BT|QA
Then
I* (xn-1,1) = x;_1Mn_1Xn-1

Now that we found I* (xy_1,1), we go back one more step

I(xn2,2)= min {J(xn_2 un-2) + " (xn-1, 1}
UN-2€0N-2
= min {x{,_l QxN—l + MZY\}_ZRMN_Z + I (xN—lll)}
UN-2€QN-2
— : T T T
= i [xN—leN—l +un_pRun + xN—lMN—lxN—l]
UN-2€QN-2
. T T
= min [XN—l (Q + MN—l) XN-1t l/lN_le/lN_z] (6)
UN-2€QN-2

Think of (Q + My_) as the new Q matrix at stage N —2. We need to replace everything to
be at N -2 stage, using the state equation x;,; = Axy + Buy then

XN-1 = Axy_p + Bun
Hence (6) becomes
I(xy-2,2) = min [(Axwfz + Biin_p) (Q + My_1) (Axy_p + Buy5) + ”KJ-ZR”NQ]

UN2€QN 2
94

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

As above, remove min,, ..o, ,

Q' =Q+My-1

Then

I(xn-2,2) = ((Axy-p)" + (Buy_2)") Q' (Axy_p + Buuy_p) + uly_oRuy_
= ((Axwfz)T Q' + (Buy-p)' Q/) (Axy_p + Buy) + upRuy 5
= (Axy_p)" Q' (Axy_p + Biiy_5) + (Bunp)" Q' (Axn_p + Buinp) + 1§ ,Ruy 5
= (Axy_o)" Q' Axy_p + (Axy2)" Q'Buun_p + (Bun_p)' Q' Axy_ + (Buy_,)' Q'Buy o+
u-oRuy_,
= XN ATQ Axy o + X ATQ'Buy_p + uly_oBTQ Axy_p + uly_,BTQ'Buy 5 + ufy_pRuy_,

= ul, (BTQ'B+R)uy_p +x}_, (ATQ'A) xy_p + x%_,ATQ'Buy_, + uly ,BTQ Axy_,

But

(442
= (”Kl-z ((ATQ,B)T xN—z))T +uj,B"Q Axy 5

(”1{7—2 ((Q'B)T AxN—Z))T +ul_,BTQ Axy_,
= (4o (B7 (@) Axy2)) + BT Q Axy
But Q' = (Q’)T since symmetri then the above becomes

W2 ATQ Buy 5 + uf_,B'Q Axy = (”Kr—zBTQ’AxN—z)T +uj BT Q' Axy 2
=2 (u{,_ZBTQ’AxN_Z)

Using H = %(H + HT). Replacing (8) into (7) gives

I(XN_z, 2) = uZY\}—Z (BTQ/B + R) Un-_p + x]T\,_z (ATQ’A) XN—2 + 2 (MIY;I—ZBTQ/AxN—Z)

*
We now find u},_,

0 =2uy_, (BTQ'B + R) + 2BTQ Axy._,
Hence
uy ., = (— (BTQ'B + R)_l BTQ’A) N2
Where Q" = Q + My_;. Hence
K(N-2)=-(BTQ'B+R) B'Q'A
= —(BT(Q+My.1)B+R) BT (Q+Myy)A

2Need proof

95

in what follows so that equations fit on the page and let

(2.1)

(7)

(8)

9)

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

Now we go back to I (xy_p,2) and replace uy_, with uj,_, we just found. From (9)
I (xn_p,2) = (— (BTQ'B + R)_l BTQ’AxN_z)T (BTQ'B+R) (— (BTQ'B + R)_l BTQ’AxN_Z) +

o (ATQ'A) xy_p +2 ((— (BTQ'B + R)_l BTQ’AxN_z)T BTQ’AxN_Z)

= (B'Q'Axy.,) (BTQ'B+R) (BTQ'B+R)(B'Q'B+R) BIQ Axy o+
iy (ATQ A) xy o -2 ((BTQ’B +R) BTQ’AxN_z)T BTQ! Axy_,

= (BTQ’AxN_z)T (BTQ'B + R)_l BTQ Axn_p + xky o (ATQ'A) 2y,

T -1

-2(BTQ'Axy_,) (BTQ'B+R) BTQ Axy,

=0, (B'Q'A) (BTQ'B+R) " BTQ Axy_p + x5 (ATQ'A) xy.,

=xl, [(ATQ’TB) (BTQ'B+ R)_l BTQ'A + (ATQ'A)]xN_2

Reader Argue that I" (xy_p, 2) looks like
I* (¥n-2,2) = X§_,Mn_oXN_2
Reader Find My_,

My = (ATQ'"B) (BTQ'B + R)_l BTQ A+ (ATQ'A)
- (AT(Q+MN—1)TB) (BT(Q+My-1)B +R)_1BT(Q+MN—1)A
+(AT(Q+My-1)A)

But My -1 = ATQ[Q! - BO~'BT| QA, hence

My_p = (AT (Q+(ATQ[Q - Bo-1BT] QA))TB) (BT(Q+My-1)B+R) BT
(Q+(ATQ[Q ' - B 'BT|QA)) A+ (AT(Q+ (ATQ[Q! - B&'BT|QA)) A)
But ® = BTQB + R, hence the above becomes
-1 T -1
My o= (AT (Q + (ATQ [Q-l - B(B"QB +R) BT] QA)) B) (BT(Q+My-1)B+R) BT (Q - (ATQ [Q-l -B(B

Summary

uy_; = Kynoixn-i

* T
I (xn=i) = Xy Mn—iXn-i

96

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

Reader Find a formula for K(N - 3).
The expression for Ky_; is

Ky.1 =-(BTQB+R) BTQA

Kyp=—(BT(Q+My_1)B+R) " BT(Q+My.1)A

=-(BTQB+R + BTMN_1B)_1 (BTQA + B"™My_;A)
Where My_; = ATQ[Q! - BO~'BT| QA and @ = BTQB + R, hence
Ky-p = —(B"QB + R + BT (ATQ[Q" - BO'BT| QA) B)_l
(BTQA + BT (ATQ[Q™' - BO~1BT|QA) A)
__ (BTQB +R+BT (ATQ [Q—l ~B(BTQB+R) " BT] QA) B)_l
(BTQA + BT (ATQ [Q‘l ~B(BTQB+R) BT] QA) A)
The final optimal cost will be

* T
J* = xoMoxo

2.27.2 Example LOR using dynamic programming

-1 3 1 1
find K(2),K (1), K (0) solving for LOR problem. We will get optimal gain K (i) and these will
not be the same. We do not like time varying gains, as in this case. We like the gain matrix
to be constant, as it is easier to manger and more safe to use. If we make N very large, then
gain will become constant. We start from very large N and go back to zero.

1 -2 0 21
Reader Let A =],B = [],Q = [2] and R =1, the weight on input. For N = 3,

Solution
N=3,
K(N-1)=-(BTQB + R)_l BTQA

w8 0T B
=-@Q+1)" (—1 4)
3

£

97

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

Hence

K(2) = (% g‘) = (0.33333 ~1.333 3)

Will do things from now on using the state equations directly, as it seems easier. Starting
again

I(x(3-1),1) = min {J (xp, up)}
u(2)
I(x,1) = min [ngx;,; + u%Ruz}
Uup
But x3 = Ax, + Bu, from state equation, hence the above becomes

I(xy,1) = mln (sz + Buz) Q(Axp + Buz) + quuz}

1 -2 0 2 1 1 -2 0 T

= min X+ | |uo X+ | Juo | +us Duy
2 -1 3 1 1 2J{l-1 3 1
T

1 =2)(xa) (0)) (2 1)([1 =2)(x3) (O)
= InlIl + + + U3

-1 3 X21 Up 1 2 -1 3 X21 Uy

T
X11 — 2X21 21 X11 — 2X21 2
= mln + u;
Uy — X171 + 3.7(21 1 2 Uy — X171 + 39(21

(r11 = 2001) (u + X771 = x21) + (20 — 317 + 421) (up — X737 + 3xp1) + u%}

= rm {
= ml {Zug 2ux11 + SuipXoy + 2x3; — 10xq1 X1 + 14x3; + uz}
2
(33

= mm 3usz — 2uyxq1 + Suyxpy + Zx%1 —10x71x01 + 14x%1}
Hence
dl (.Xz,]_) =0
&Mz
0= 61/[2 - 2x11 + 8x21
X
0 = 6y + (—2 8) "
X21
0= 61/12 + (—2 8) X1
=52 9
Uy = —=|— X
2 6 1
2
6 &)1
Therefore

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

And

K@) = (% g‘) - (0.33333 1333 3)

-1
Which is the same as above using — (BTQB + R) BTQA.
Now we find I* (x;,1) by using u; found above back in I (x,,1)

1 -2 X11 0 ! 21
G BN RN
-1 3 X721 1 1 2
[2l
-1 3 X1 1
T
_ 1 -2 X11 + 0 (1 il) X11
-1 3 X21 1 3 3 X21
21 1 -2 X11 + 0 (1 __4) X11
1 2 -1 3 X21 1 3 3 X21
T
1 -4\|*11 1 -4\[*n
G 6 L)
{ X11 = 2%]T 2 1)[X11 = 2% J
=15 2 5 2
3%21 = 3%1) (1 2f(3%1 — 3%

1 4 4 16
+ X1 §x11 - §x21 — X1 §x11 - 3x21

4 7 1 4 2 5
= (211 — 2x21) gxll - §x21 + §X11 - §x21 §x11 - §x21

1 4 4 16
+ X711 §x11 - §xz1 — X2 §x11 - 39621

5, 22 26 ,
= gxn - ?xllxﬂ + gle

We have to convert this to x1x; to be able to use it in the next stage since we need to apply
the state equation to it. We see that

5, 22 26 , €11 Ci2|[*11
X171 — FX11Xo1 t X5 = (x11 le)
3 3 3 C12 Cx2)\ X21

99

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

o 5 22

oo 1 C12 3 "%

Solving gives =1 3, ,&| hence
€12 C22 % 3

6 3

5 2
3 6
2 26 |*2

r (x2/1) = x%[

Now we find I(x(N -2),2) =1(x(3-2),2) =1(xy,2)
I(x1,2) = Htlén {J (1, uq) + I" (2, 1)}

= min {x%sz +ulRuqy + T (xz,l)]
u3
But x, = Ax; + Bu, from state equation, hence the above becomes

I(x1,2) = min {(Ax; + Buy)" Q (Axy + Buy) + uf Ruy +I* (x,1)}
us

P R

R
+x7 [2 2]XZ
6 3
Now we have to use the state equations in I* (x,,1) to update the last term above, this is
important, since everything should be at the same state

I(xl,Z) = 31/[% - 21113('11 + 81/!13(21 + Zx%l - 1OX113C21 + 143('%1
T

g AR R (B MR

= 3uZ — 2uyxyy + 8uyxyy + 2x3; — 10x11xp, + 1453,
T

(K s R] (O

= 3uZ — 2uyxy1 + 8uyxpy + 2x3; — 10x1xp, + 1453,

2 , 74 200 53, 286 , 386,

— U — —uqx —uyx —X§ — —X11X —x

3 1T gttt i A T et gy
35 , 80 224 59 , 316 428

= 3“1 - ?“13&1 + Tu1x21 + gxu - Txnle + szl

100

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

Now we take derivative to find optimal 1]

A (x1,2) 0
duy
0= E”l - @xll + %le
3 3 3
3 (80 224
=7 (gxn - 79(21)

X21
Hence
« _ (8 16 | ¥11
=7 7w
X21
And

K@) = (§ —§) = (1.1429 —3.2)

Therefore, we find I* (xq,2) using u]

T
1 -2 2 1 1 -2 0
I (x,,2) = M i Y e e Y
-1 3 Xo1 1 1 2 -1 3 X21 1
X
But u; = (; —15—6)[11], hence the above becomes
X21
T T
. X11—2%1 | (2 1|[x11 — 2% 8 16)|X11 8 16)|X11
I (xl’z):[l 1] {1 NIk 1 + (5 _€) (? _?)
7X11 ~ 5X21 7X11 ~ 5X21 X21 X21
1

15 21 1 9 12
= (11 = 2xp) T g | g T (g T g

7 7
64 128 128 256
+ X171 Exn - gle —X21 Exn - Ele
178 , 82 478

= Ex” - gxnxm + Ex%

We have to write the above as x”Cx in order to update the state the next stage. As before,
we solve for C from

178x2 82x . +478x2 () 11 C12|| X1
0 1 T e T oA = (X X
49 117 5 o5 21 11 X21 A |

_ 2 2
= C11X71 + 2012X11X21C20X5;

101

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

178 478 82
Hence C11 = E,sz = E, C1p = —E, therefore
178 82 X
29 10 11
* _ 49 10
I"(x1,2) = (xn le) 82 478
0 25/2

Now we back one more final step to find K(0). We find I (x (N -3),3) =1(x(0),3)
I(xo,3) = min {J (xo, uo) +I' (x1, 2)}
= n%n [xlTQxl +ulRuy + I* (xl,Z)}
But x; = Axy + Bug from state equation, hence the above becomes

1(xg,3) = min {(Axo + Bug)" Q(Axo + Bug) + uf Rug + I (x1,2)}
U

(Efm 51%:1%[2)%)1? 0)

10 25
Now we have to use the state equations in I* (x;,2) to update the last term above, this is
important, since everything should be at the same state

T

S I S L

Tz s
+ 1 -2 X11 + 0 4—9 E 1 -2 X11 + 0
1 3)|x u I 3|« u
21 0 o = 21 0
= (w11 — 2xp1) (g + X11 = Xp1) + U + (ug — X171 + 4xp1) (g — Xy1 + 3%1)

41 1119 4247
+ (17 — 2x21) R YR eyl

(478 273 1024

Euo - Exn + Exm) (1o — x11 + 3x21)

553 , 5% 2248 10232 , 70132 125208 ,
= —U[y — — —_— —_ _—
25 0 o5 MO Tog H0T2L T Tyoo5 1L o5 THA2LT Typo5 21

Now we take derivative to find optimal uj

dl (xOl 3)
0
é?uo
553 596 2248
e e L T
Hence
596 2248

Ug = @xu T 603 X1
102

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

Therefore

. _ (596 2248\[X11| _ X1
Ug = (@ —m) [XZJ = (0.98839 —3.728) [xzj

And
K(0) = (0.988 39 —3.728)

Matlab dlqr gives a slightly different result and the signs are switched. This needs to be
looked at it more. Let us verify K (1) using the Bellman dynamic equations we derived earlier
which is

K1) =- (BTQB +R+BT (ATQ [Q-l - B(B"QB + R)_l BT] QA) B)_l
(BTQA + BT (ATQ [Q-1 ~B(BTQB+R) BT] QA) A) (10)
Let A = BT (ATQ [Q—l ~B(BTQB+R) BT] QA), hence
K(1)=-(BTQB+R+ AB)_l (BTQA + AA)

We already found K(1) = (1.1429 —3.2) using the direct method. Just need to verify using

the dynamic equations found.
T T
0 1 -2) (2 1
A=
1 P
1 B

(.o 2%
“\3 3

Hence (10) becomes 7
SR R e P T

()

= (1.142 9 —3.2)

T

Which matches the direct method used above. Similar results are obtained using Matlab.
Matlab has the signs reversed, this needs to be investigated to find out why.
>> A=[1,-2;-1,3];

>> B=[0;1];

>> Q=[2,1;1,2];

>> R=1;

>> [k,s,e]l=dlqr(A,B,Q,R)
k =

-1.3195 3.6050

s =

7.0346 -10.3887
103

[

2.27. Lecture 27. Tuesday, April 19, 2016 CHAPTER 2. CLASS NOTES

-10.3887 28.3824
e =

0.2679

0.1270

In Mathematica:

ssm = StateSpaceModel [{{{1, -2}, {-1, 3}}, {{0}, {13}3}}1;
q = {{1, -2}, {-1, 3}};

r = {{1}};

DiscreteLQRegulatorGains[ssm, {q, r}, 1.0]

{{-1.44328, 3.8633}}

Next we will talk about variations of dynamic programming. Floor and ceiling. We might
want to optimize for maximum of some variable. For economy, this could be ceiling of
unemployment. We can modify the dynamic equations to handle these problems. Floor
and ceiling violate the additive process we used in D.P. but we can still manage to use the
dynamic equations with some modifications.

104

2.28. Lecture 28. Thursday, April 21, 2016 CHAPTER 2. CLASS NOTES

2.28 Lecture 28. Thursday, April 21, 2016

2.28.1 Variations of dynamic programming, floor and ceiling

Today’s lecture is on variations of dynamic programming. Many integer programming
problem can be cast as D.P. The emphasis will be heuristics more than proofs.

One such variation is when the objective function is in terms of the floor or ceiling of variable.
Another variation is steady state (this is when the number of stages becomes very large and
goes to infinity).

Floor and ceiling To begin, say that x; is scalar. We are interested in the floor of x;. This is
min x,. We can also talk about ceiling. This is max; x (k). More formally

Xk+1 = f (g, Ug)

Where u (k) € Q. We introduce a monitoring function g (x (k)). Therefore, the floor problem
can be stated as

max min g (x;)
uker kleg k

For example, the ceiling problem could be to minimize the maximum of unemployment,
stated as

min max ¢ (x
e k:1~-~Ng(k)

Modeling our D.P. analysis Assume we are doing the floor problem now. Then we write

I(xn-1,1) = max g (xy)
uUN-1€QN-1
And for the ceiling
I(xn-1,1) = min g (xy)
uN-1€QN-1

From now on, we continue with the ceiling problem. For the next stage we obtain

I(xn_p,2) = min {max[g(xN),I*(xN_l,l)”

UN-2€QN-2

And the recursion formula becomes

105

2.28. Lecture 28. Thursday, April 21, 2016 CHAPTER 2. CLASS NOTES

[0t N = L) = min {max {g (xg.), I (.0, N = L= D]

When applying the above, we see one difference from previous examples of D.P., now we have
Q); which might depends on u;_1,u;_5,---. Now we will go over one example. A simplified
economy model example. Let N be the years of horizon planning. Let y; be the national
income for the k year. Let c; be the consumer expenditure. Let I; be the business investment.
And let u; be the government expenditure. The constraint is

N-1
2 Uy < u
k=0

Where U is the budget given and 1 > 0. Hence in a given year we have

Yi = Ok + I + g (1)
Ck = QY (2)
Where « is propensity factor to consume.
I = B (cx = C-1) 3)
Reader Eliminate ¢, [, from (1,2,3) to obtain
Y = (1 + .3) Y1 — APY— + U1 (4)

Our goal is to control the output y; using the input ;.
Reader Let z; = vy — i1
Therefore, now
Yi-2 = Yk-1 ~ Zk1
Substituting the above in (4) gives
ye=(1+ 5) ko — af (Yot = Ze1) + i
= aYy-1 + afzi-q + Uk
We have state equation
Vi1 = QY + afzy + Uy

Next we want state equation for z;

Reader

Zke1 = (@ =Dy + afzi + uy

Now define state x; (k) = y, and x, (k) = z;, hence the state equation in matrix form becomes

X = ¢ aﬁx+1u
k+1—0(_1 Ocﬁk 1k

106

2.28. Lecture 28. Thursday, April 21, 2016 CHAPTER 2. CLASS NOTES

We want to maximize the floor of the national income y; using D.P. To illustrate two stages,
ie. N=2,let U=1dollar, and let « = 8 = % Hence

nk+1)) (5 1|[x®) [1
=15 1 + Uy
X (k+1) - 1)\x (k) 1
Monitor function is g (x (k)) = x; (k)

Begin with one stage to go

I(x(1),1) = Jnax x (2) (%)
We know u (1) <1 -u(0)
Hence (5) becomes
e %1 (1) + 23 (1) + (1)
¥ = u(l)e%@f(—u(m] oM 12 "

The minimizer is u* (1) =1 — u (0), therefore

1 1
r (X(l),l) = Exl (1) + sz (1) +1- M(O)

Now we go back one more step

1(x(0),2) = i 1),I(x(1),1
(x(0),2) Ahax min {gx@),1(x(1),1)
Where QQp = [0...1] since we have one dollar to start with. Hence
1(x(0),2) i 1) . @+ - 1) +1-u(0)
= m min - - -
. u(O)e?O)f.l] . ah 4™ !

Back everything to get an equation in u (0)

1 1 1/(1 1 1(1 1
I(X (O) ,2) = u(g)ré?f)xl] min {Exl (0) + sz (0) +u (0) , E (Exl (O) + ZXZ (0) +u (O)) + 4_1 (—Exl (0) + sz (0) +u (0)) 1

This reduces to

I(x(0),2) = max min{A+u(0),B}
u(0)€[0..1]

107

2.28. Lecture 28. Thursday, April 21, 2016 CHAPTER 2. CLASS NOTES

Where
1 1
A= Exl (0) + sz (0) +u (O)

1 3 1
B= gX(O)+1—6X2(O)+1—ZM(O)

Hence the function to minimize is

F(u(0)) = min{A+u(0), B}

Consider case when A > B and case A < B.

Reader work out the different cases.

108

2.29. Lecture 29. Tuesday, April 26, 2016 CHAPTER 2. CLASS NOTES

2.29 Lecture 29. Tuesday, April 26, 2016

2.29.1 Detailed example for a floor problem

We will start today with one more dynamic problem which will be useful for HW problem.
Then we will start on steady state. Example is a floor problem.

x1 (k +1) = min {xq (k), x, (k)} + u (k)
X (k+1) = xq (k) u (k)
And initial state is
x1(0) =1
X, (0) = -1
And
J= ?ﬂ% x (k)
With |u (k)] < M. One step to go is

I(x(1),1) = hax {min J}
1
= 2
ur(lll)eetél xp (2)

xq7 (1 1
|J(%?§<M 1(Mu@)

Hence u* = M sign(x; (x)), therefore
I*(x(1),1) = M abs (x; (1))
With two steps
I(x(0),2) = max {min{J(x(1),I(x(1), 1)}
u(0)eQg

= max min {x, (1), M |x; (1)|}

M(O)EQO

= max min {x; (0) # (0), M [min {x; (0), x5 (0)} + u (0)|}
M(O)GQO

= max min {u (0), M |u (0) — 1|}
M(O)EQO

Where F (1) = min {u (0), M |u (0) - 1|}. Consider the case 0 < M < V2 and case M > V2. See
key solution for HW 7 for the solution.

We now start talking about steady state. Notion of functional equations., then iterative
solution to steady state problem, then Riccati equation. We begin with

X1 = f (%k, k)
With a constraint on u; given by u € ;. The branch cost is
N-1

J="(n) + Y i (e ag)
k=0

Then let N — co. We are hoping to get [y and obtain uy, = ug, uj, ---, ujy_; optimal controls
at each stage. Notice that when N changes, then the whole sequence u}; changes also, and

109

2.29. Lecture 29. Tuesday, April 26, 2016 CHAPTER 2. CLASS NOTES

not just one term. We now ask, does Jy converge? does uj; converge? To make sense of the
above, we remove the terminal cost W (xy) from this analysis. We also want Q; to be fixed
for any N. This means we have the same constraints all the time.

If steady state solution exist, then it satisfies
I(x) = min {] (x,u) +1(f (x,u)| (1)

This is a functional equation. Solving it means finding u*. The solution »* in (1) is a function
of x. i.e.. u at state x is a feedback. Say u* = o (x). Substitute this in (1) gives

1) =min] (x,0 () +I(f (x,0 ()]
We do not know I(x) here. Before, we knew I, but now we do not know I. So we have a

function space issue to find I(x).

Example
J(x,u) = x% + xu + u?
flou)=xu+x+u
x(k+1)=x(k)uk)+x(k)+uk)
Let u be free variable with no constraints. Hence (1) becomes

I(x):min{x2+xu+u2+l(xu+x+u)}
u

2.29.2 Functional equations in dynamic programming

This is a functional equation since I(x), appears on both sides of the equation. There are
two famous methods to solve functional equations. The first is the iterative method. Begin
with initial I, (x), then 1 (x) = min,,g {] (x,u) + I, (f(x, u))}. We get sequence of solutions of
u (k) and I (x (k)) and check for convergence.

Example
J (1) = 1 + (x — u)°
x(k+1)=x(k)—uk)
Iy (x) = 0, hence

L (x) = min {uz +(x - u)z}

L _ 0 gives u* = & henceI*(x)—x—zwLx—z—x—2 Next stage becomes
a8 T2 1W =T =7 & g
I, (x) = min [u2 + (x— u)2 + II}
u

2
:muin{u2+(x—u)2+ (x—zu) }

d o . . 3 v/n 3.0
™ =0 gives u* = =% hence [(x) = =X

Reader Continue this process. Does it converge? It will converge eventually leading to
u — kx

110

2.30. Lecture 30. Thursday, April 28, 2016 CHAPTER 2. CLASS NOTES

2.30 Lecture 30. Thursday, April 28, 2016

The special problem will be returned next Tuesday.

2.30.1 Steady state and functional equations

The plan for today: we have been talking about steady state. This lead to functional equations
in D.P. so far, we talked about iterative solution. Today we will talk about closed form solution.
Analogy between differential equations and functional equations. In differential equations,
the iterative method is called Picard iterations method.

For linear state equations, we can get closed form solution for the functional equation. We
start with a guess of the solution with a parameter to find. Now we will use our main example
to illustrate this.
Y+l = X — Uk
2
J= Y ub + (Xpar — 1)
Notice the cross term with x and u in it. Now we guess a form for I. Let I = px* and then we

try to find p. First write | above so that all indices are the same with the help of the state
equation. This will reduce the chance of error later on

J=) u2 + (v —) -)
= Y uZ +x2 + 4u? — dxguy
= E xi + Su% — 4dxuy

Consider
1) = min {] (c,u) +1(f (x,u))]

px? = min [(Suz +x2 - 4xu) +p(x— u)z] 1)

d(5u2 +x? —4xu) +p (x - u) .
du B

0=2u—-4(x-2u)-2p(x-u)

Solving gives u* = gx. Substitute back in (1)

2
px? = |5u? + x? — 4x 2+px +plx- Zﬂx
5+p 5+p

And obtain an equation in p and solve for p. We find roots are p = 0.302 and p = -3.3. If
everything was done correct, there should be a positive root. Always pick the positive one.
This is special case of LOR. In LOR there is no cross term between x, u. While in the above
there was. Reader For x(0) =1 find J*.

Example Consider
x(k+1)=x(k)+ 2u (k)

111

2.30. Lecture 30. Thursday, April 28, 2016 CHAPTER 2. CLASS NOTES

With constraint u (k) € [-1,1]

J = E ex(k+1)
k=0
Guess I = a¢* then

I(x) = min (ex+2“ + aex+2“)
ue[-1,1]

Reader u* = -1

Therefore
ae* = (e"‘z + ae"‘z)

Solving gives

! >0
a=—--:
e2-1
For LOR, the steady state is given by
x (k+1) = Ax (k) + Bu (k)
J=Y,xT (k+1)Qu(k +1) + uT (k) Ru (k)
k=0

Where Q, R are weight matrices and are positive definite symmetric. I should be quadratic
in the state x (k).

I(x) = min xTQx + u"Ru
Guess I = xTPx and now solve for P, this leads to Riccati matrix equation.
I(x) = min [xTQx +uTRu + (Ax + Bu)" P(Ax + Bu)] (2)
Taking gradient w.r.t. # and setting to zero, gives

2Ru + 2BTPBu + 2BTPAx =0
-1
uw =-(R+B"PB) BTPAx
Back to (2) we find

xTPx = xTQx + (— (R+ BTPB)_l BTPAx)T R (— (R+ BTPB)_l BTPAx)
+ (Ax +B (— (R + BTPB)_l BTPAx))TP (Ax +B (— (R + BT PB)_l BTPAx))

Solving to P, we obtain the Riccati matrix equation

-1
P = ATPA- A"PB(R+B"PB) BTPA+Q

In Matlab, use dare () to solve this for P.

Remarks Are we sure the solution exist? i.e. does there exist positive definite P that satisfies
the Riccati equation above? Yes, a solution exist if (A4, B) is controllable system. Notice that
the Riccati equation is not linear in P. This is solved numerically. Consider the special

112

2.30. Lecture 30. Thursday, April 28, 2016 CHAPTER 2. CLASS NOTES

case of LOR with one state and one input. Hence everything is scalar. We obtain

— 2,
p=a‘wp apbr+b2pbpa+q

Solving for p, show that there is solution p > 0. Assume b > 0 for controllability.

113

2.31. Lecture 31. Tuesday, May 3, 2016 CHAPTER 2. CLASS NOTES

2.31 Lecture 31. Tuesday, May 3, 2016

This is the last lecture. Final exam is next lecture. Review of special problem and results
obtained by different reports. General approaches to solving the special problem included:
Cluster analysis, noisy gradient and random search.

2.31.1 Final review for final exam

We talked about steady state. Quadratic regulator has no cross coupling terms between x
and u

] = ExT(x+1)Qx(k+1) +uRu
k=0
For general regulator, one can get a cross term as in]| = ax?+ bxu + cu but we did not discuss
this.

Test 3, will have 4 questions on dynamic programming. With dynamic programming, one
can solve the problem using the Bellman equations or using the graphical method. If there
are finite stages, and the state x is discrete x (k + 1) = f (x (k) ,u (k)) and if u is discrete, then a
graphical method can be used. If there are constraints, this will reduce the size of the tree
more.

Course review

We can take an integer linear programming problem, which is hard to solve and treat it as
continuous problem under special conditions and solve it much easier. We did not discuss
non-linear programming and kuhn-Tucker conditions. But for many non-linear programming
problem, it is possible to use the penalty method. There is also large scale linear program-
ming, where sparsity becomes important. Also parallel programming become important for
these problems. For dynamic programming, most of the books are on continuous time, and
very few discusses discrete dynamic programming problems.

114

2.32. Lecture 32. Thursday, May 5, 2016 CHAPTER 2. CLASS NOTES

2.32 Lecture 32. Thursday, May 5, 2016

Final exam

115

2.32. Lecture 32. Thursday, May 5, 2016 CHAPTER 2. CLASS NOTES

116

Chapter 3

Handouts

Local contents

13.1 Real analysis. January 21, 2016 118
3.2 Positive-Definite Matrices. January 26, 2016/. 119
3.3 Coercivity Theorem. January 27, 2016|. 120
3.4 Hessian Theorem. February 8, 2016 121
|3.5 Proof of Hessian theorem. February 8, 2016/ 122
.6 Handout circuit. February 23,2016 123
3.7 Handout Newton. February 26, 2016]. 124
3.8 Handout polytopes, march 32016 125
3.9 Sector patrol. March 8,2016] 130
[3.10 Handout Extreme. March 15, 2016]. i i 131

117

3.1. Real analysis. January 21, 2016 CHAPTER 3. HANDOUTS

3.1 Real analysis. January 21, 2016

Barmish

ECE 719 — Handout Real Analysis
Real Analysis Preliminaries

There are just few concepts from real analysis which will be used in ECE
719. The concepts below will be discussed in class. If supplementation of
lecture material is needed, an elementary introduction to the ideas below
can be found in the textbooks by Lang or Roydon. Alternatively, another
resource is http://mathworld.wolfram.com/ClosedSet.html

Continuity: A function J : R" — R is said to be continuous at the
point u° if limy_,., J(u*) = J(u°) for all sequences {u*}3°; which converge
to u’. If J is continuous at every point u € R", then we simply say that
J is continous. (Examples and discussion in class.)

Closedness: A set U in R" is said to be closed if it contains all its
limit points; i.e., if {u*}3°, is a sequence of points in U converging to
some point u’, then it follows that " € U. (Examples and discussion in
class.)

Boundedness: A set U in R" is said to be bounded if there exists some
f > 0 such that ||u|| < S for all u € U. (The choice of norm above does
not matter; discussion and examples in class.)

Compactness: A set U in R" is said to be compact if it is closed and
bounded. (Discussion and examples in class.)

Reader: Given a function J : R" — R, what does it mean when we
say that J is bounded on U?

Bolzano-Weierstrass Theorem: Suppose {u*}3°, is a sequence of points
in in a compact set U. Then there exists a subsequence {u*}2°, of {u*}%°,
which converges to some point v* € U.

Lemma (Proof in class): Suppose U is a compact set in R™ and the
function J : R™ — R is continuous. Then it follows that J is bounded
on U.

118

3.2. Positive-Definite Matrices. January 26, ... CHAPTER 3. HANDOUTS

3.2 Positive-Definite Matrices. January 26, 2016

ECE 719 — Handout PD Matrices
Positive Definite Matrices

Definitions: An n x n matrix A is said to be positive-definite if
T Az > 0
for all vectors z # 0. We call A positive-semidefinite if
2 Az >0
for all vectors z.
Discussion: Define negative-definiteness and negative-semidefiniteness.

Sylvester’s Theorem: A square matriz A is positive-definite if and only
if all the leading principal minors of A are positive.

Discussion: Application of Sylvester’s Theorem for negative-definitess.
Beware of a common pitfall!

Examples: In class.

119

3.3. Coercivity Theorem. January 27, 2016 CHAPTER 3. HANDOUTS

3.3 Coercivity Theorem. January 27, 2016

Barmish

ECE 719 — Handout Coercivity Theorem

We now provide a result on existence of an optimal element in the absence
of a compactness assumption on U.

Theorem: Suppose J : U — R is continuous and (positively) coercive
and U C R" is non-empty and closed. Then an optimal element u* € U
exists which minimizes J.

Proof: Select any point v’ € U. Now, by coercivity, there exists some
radius R > 0 such that
J(u) > J(u°)

for all w € U with ||u|| > R. Hence,

inf J(u) =

inf J(u).
uelU uel,||ul|<R
Notice that the new constraint set on the right hand side above, described
by v € U and ||u|| < R, is the intersection of the closed set U and the
compact set given by ||u|| < R. Hence, this set is compact. Now using the
previous existence theorem, an optimal element u* € U exists minimizing
the objective function J(u).

Reader: For maximization problems, define negative coercivity and note
that a similar result holds.

120

3.4. Hessian Theorem. February 8, 2016 CHAPTER 3. HANDOUTS

3.4 Hessian Theorem. February 8, 2016

Barmish

ECE 719 — Handout Hessian Theorem
A Criterion for Convexity

The result below will be proven in class. It is often quite helpful in deciding if a function
is convex.

Hessian Theorem: Assume U C R" is open and convex and that the
function J : U — R is twice continuously differentiable. Define the n X n
Hessian matriz V*J (u) with (i, j)-th entry

0*J

2 R S
[v J(U)]Z,J 8ulauj

Then J is convex on U if and only if V?J(u) is positive semi-definite for
allu e U.

Reader: Provide a counterexample to show that the theorem cannot be
strengthened to assure equivalence between strict convexity and positive-
definiteness of the Hessian.

121

3.5. Proof of Hessian theorem. February... CHAPTER 3. HANDOUTS

3.5 Proof of Hessian theorem. February 8, 2016

Barmish

ECE 719 — Handout Proof of Hessian Theorem

Preamble: Before proving the theorem, we review two results. The first, already covered
in class, is for n = 1. That is, we already know that convexity of J on U = («, 3) is
equivalent satisfaction of the condition

The second result, to be proven in class, is for the n-dimensional case: It will be shown
that that J(u) is convex on the open convex set U if and only if the following condition
is satisfied: Given any point v € U and any direction z € R", the function

J(A) = J(u+ Az)
is convex for A in the set

A,={N:u+ Iz eU}.

Proof of Hessian Theorem: Using the result for n = 1, we know that for u € R", the
function J(u) is convex if and only if

d*J(u+ Az)

>0
d\? -
for all z € R™ and all A € A,. Taking the first derivative above and using the chain rule,
we have
iJ(u—i—)\z)—ﬁ z+ﬂ 29 + +ﬂ| z
dA - 8u1 utrz <1 au2 utrz <2 aun utAz <N

Similarly, by differentiating once again, we obtain

d2 n o n aQJ
_— A — o
gt A2) ;; Fusdg e

= V2 (u+Az2)z.

Now, to complete the proof, we observe the following: Satisfaction of the necessary and
sufficient convexity condition
VI (u+ A2)z >0

for all admissible (u, z, \) triples is equivalent to
V2 J(u)z >0

for all u € U. Now, this condition is equivalent to the requirement that V2.J(u) is positive
semi-definite for all u € U.

122

3.6. Handout circuit. February 23, 2016 CHAPTER 3. HANDOUTS

3.6 Handout circuit. February 23, 2016

ECE 719 - Handout Circuit

o @
e B k)
- q s o +
i ‘)\Y R, 2? | ¢ G & Vo(s)

W (€,C,) capaciter selbwps o

Node £: L) + B s Bl . Els)-Vols) = O

' |/C'5 s
Node 20 W) | Vols) + Vols)-EulS) = O
) es [
Reader: £t T-£6 am Ty £,C.. Now show
:L(S) -

LTGS2 M(TeT)S s (1R T, s ,T) s AReB)
- R w)
Lant to mox¥imize Ootpot RBasec¥ st a Swenf(caoer)cj.

P@Oder: Show

Polw) = Ne(jwd]* £/

. X000
- 'Y s
d = |+ B -wiLt, - WLls,
& e, A
ﬁ) = wl + BILOUZ r T, —L\JBLC.Ez
e, e,

”Saj 'B./El =10 wk -1

o U,

Take w2 LOC.N

iy

_k)eaderf Arguo, £hat an @pf;ropr-ati,

Pe(j\ofmq,nce index. o

Jw): (-u-u) + (10 loulm,'-u.u;)z

‘o ke MpiMiZED !

123

3.7. Handout Newton. February 26, 2016 CHAPTER 3. HANDOUTS

3.7 Handout Newton. February 26, 2016

Barmish
ECE 719 - Handout Newton

@ ,Lﬁerota,bjor 2 Stage ﬂn‘)pl:j';eﬁ'
FRecall that J(w) = - u,-u,)+ (1+10 U, + U.~?f,ua.)2
Now compute Vj'(u) = [=20 +4u,+ 20U, - U, -200; + 2UY;
-2 +200+ 202U, -40ul, -2u,"+ 2u/Y,
T*3(u) = | 4- 20, + 2u2 20 -4U,- 90U, *4u, U
20-41U,-4100Dq+40, U, 22-40u; 424
ﬂpp{tj G€n€ra||32d Newtom Cophsan : Begno at W’ = ’3]
Readec: V3 (ud- OO] 5 V() [O ‘*"]

)L a 60
(] |

O{Qg'ggsélorbi Poor 5rom “j-a(au)fj“ ’J
* Pant QGJI) 7Jw)=0 “get stuck’

e

124

3.8. Handout polytopes, march 3 2016 CHAPTER 3. HANDOUTS

3.8 Handout polytopes, march 3 2016

ECE 719 - Handout Polytopes

A Primer on Polytopes and Polygons

8.3.2. Polytopes and Polygons

A polytopeP in R¥ is the convex hull of a finite set of poinfp!, p?,...,p"}. We
write

P=con{p'}

and call{p!, p?,..., p"} the set of generatorsNote that the set of generators car
highly nonunique. For example, in Figure 8.3.3, the pojitsp® and p’ are optiona

Figure 8.3.3. Polytope iR?

for inclusion in a generating set f&% The extreme point concept, covered in the 1
subsection, enables us to identify a unique set of generators.

In the sequel, it is important to make a distinction between polytop&iand
polytopes inRK with k > 2. When manipulating value sets, we work with polyto
in the two-dimensional complex plar@ which we identify withR2 whenever con
venient. Henceforth, we refer to a polytopeR? as apolygon According to thi
convention, both polytopes and polygons are automatically convex. We make |
this point because many authors make a distinction between a polygon and a
polygon. For example, according to some authors, a star-shaped figure can be
gon without necessarily being a convex polygon.

8.3.3. Extreme Points

SupposeP = conv{p'} is a polytope inRX. Then a pointp € P is said to be a
extreme poinbf P if it cannot be expressed as a convex combination of two dis
points inP. That is, there does not exipt, p° € P with p* # p° andA e (0,1) such
thatA p?+ (1— A)pP = p. For example, in Figure 8.3.4, the extreme pointsgtep?,
p3, p* and p®. Although the interior poinp® might be included in a generating sef

125

3.8.

Handout polytopes, march 3 2016 CHAPTER 3. HANDOUTS

Figure 8.3.4. Polytope iR3

is not an extreme point. Given a finite set of generafg@'$ for a polytopeP, the se
of extreme points is a subset of the set of generators. Furthermore, the set of :
points can be calledminimal generating sah the sense that any other generating
contains the set of extremes.

In many applications, generators or extreme points of a polytope are specif
plicitly rather than explicitly. A prime example occurs in the theory of linear prog
ming where polytopes are described by a set of linear inequalities in the matri
Ax<b.

8.3.4. Convex Combination Property

Given a polytopd® = cony{ pt, p?,...,p"}, every pointp € P can be expressed
a convex combinationf the p'; that is, there exist real scalaks,Ao,...,An > 0 suct

that o
p="3 Aip
2,

m
i;)\i =1

In the sequel, it is sometimes convenient to describe the constraint Seufing the
notation

and

m
AN={X e R™: A 20fori:1,2,...,mandzl)\i:1}.
i=

For such caseg) is called aunit simplex

126

3.8. Handout polytopes, march 3 2016 CHAPTER 3. HANDOUTS

Primer on Polytopes and Polygons

To illustrate the notion of convex combinations, consider the polygom Fig-
ure 8.3.3. Observe th&tis the union of three triangles given By = con{ p*, p®, p},
P, = conv{ pt, p?, p®} andPs = conv{ p?, p*, p®}. Now, any pointp € P; can be ex
pressed as a convex combinatibyp® + Agp® + Agp8. For example, a point such
p’ might be obtained with; = Ag = Ag = 1/3, a point such ag® is generated wit
A1 # 0, Ag # 0 andAg = 0 and finally, an extreme point such p&is obtained witl
A =1 andA; = Ag = 0. To conclude, we observe that the description of a pomnt?
as a convex combination of extreme points is nonunique. For example, a point
p’ can be expressed as a convex combinatioptpp® andp® or p?, p® andp®.

The fact that we can describe every pgirg P in Figure 8.3.3 as a convex com
nation of three or less extreme points is not particular to the example at hand.
Cartheodory’s Theorem tells us: Every point in a polyt®pe RK is expressible as
convex combination df+ 1 extreme points at most; e.g., see Rockafellar (1970)

8.3.5. Edges of a Polytope

Given any two points® andx® in R¥, we denote the straight line segment joir
these points byx?,x°]. Notice that every poirk € [x®,x°] can be expressed uniqu
as a convex combination af andx?; that is,

X=A+ (1—A)x°

for some uniqua < [0, 1]. Furthermore, ik® = x°, [x2, x°] degenerates togointwhich
is viewed as a special case of a line.

We now consider lines of the forfip't, p'2], wherep't and p'2 are extremes of
given polytopeP andp't # p'2. We say thafp't, p'2] is anedgeof P if the following
condition holds: Given anp? pP € P with p?, p°® ¢ [p', p'2], it follows that[p?, p°] N
[p'1, p'2] = @. In two or three dimensions, the edges of a polytope are appar
inspection. For example, in Figure 8.3.3, edges of the polyRoaes[p, p?], [p?, p*,
[p*, p®], [p%, p®] and[p®, pt] and in Figure 8.3.4, the edges of the polydgare[pt, p?],
[P, %L [Pt P, [Pt P01 %, P%), (PP, PO, [P%, p*] and[p*, p°].

8.3.6. Operations on Polytopes

In this subsection, we provide a number of basic facts about operations ol
topes.

LEMMA 8.3.7 (Direct Sum for Two Polytopes)Given two polytopeB; = cony pti1}
andP, = cony{ p>2} in R¥, the direct sum

P1+P2={p'+p”: p' € Py;p® € P2}
is a polytope. Moreover,

P1+ P, = cony{ ptit 4 p?i2}.
127

3.8. Handout polytopes, march 3 2016 CHAPTER 3. HANDOUTS

REMARKS 8.3.8 (Direct Sum for Polytope and Point): For the special case WAk
consists of a single poin®; + P, corresponds to a translation Bf In the lemmi
below, we provide another useful characterizatioRo# P».

LEMMA 8.3.9 (Another Direct Sum Description)Given two polytopeB; = cony p*'}
andP, in R, it follows that

P1+ P, = conv|_J(p*' + Py).

ExAMPLE 8.3.10 (lllustration of Direct Sum): To illustrate formation of the direct <
via application of the lemma above, suppose that con{2+2j,4—2j,6+ 6]} anc
P, is the unit square in the complex plane. Then, the lemma leads to the dire:
which is shown in Figure 8.3.5.

Im p1’3—|— P,

Boundary of
P1+ P2

Re

Figure 8.3.5. Formation of Direct Sum in Example 8.3.10

EXERCISE 8.3.11 (Less Restriction o?»): Argue that Lemma 8.3.9 remains ve
when P, is an arbitrary convex set which is not necessarily polytopic. lllustra
considering Example 8.3.10 with, being the unit disc rather than the unit squ
Sketch the resulting direct suR + P».

128

3.8.

Handout polytopes, march 3 2016 CHAPTER 3. HANDOUTS

A Primer on Polytopes and Polygons

PiNPy

Figure 8.3.6. New Extreme Points Created by Intersection

LEMMA 8.3.12 (Intersection of Two Polytopes):Let P, and P, be two polytopes |
RK. Then it follows thaP; (P, is a polytope.

REMARKS8.3.13 (Intersection): IfP; andP, are polytopes?: (P> may have extren
points which are not extreme points of eitti@aror Py; e.g., in Figure 8.3.6, the poir
p? and P are extreme points ¥ (P, but are not extreme points &% or P,.

LEMMA 8.3.14 (Multiplication of a Scalar and a Polytope)Given a polytope® =
con{ p'} and a real scalam, it follows that the set

aP={ap:peP}

is a polytope. Moreover, _
aP=conj{ap'}.

LEMMA 8.3.15 (Convex Hull of a Union): Given any two polytope?; = cony{ pli1}
andP, = con{ p_27'2} in RX, it follows that conyP; |JP,) is a polytope with generatir
set{pt1}U {p>"2}.

REMARKS 8.3.16 (Loss of Extreme Points): Given two polytopBs and P,, the
geometry associated with formation of coRy|JP») is depicted in Figure 8.3.7. Nc
that some of the extreme points®f andP; are no longer extremes of caiy |JP2).

LEMMA 8.3.17 (Affine Linear Transformation of a Polytope): Suppose thaP =
con{p'} is a polytope inRX and T: R4 — Rk is an affine linear transformatio

129

3.9. Sector patrol. March 8, 2016 CHAPTER 3. HANDOUTS

3.9 Sector patrol. March 8, 2016

ECE 719 - Handout Sector Patrol

Thus far, our sector patrol optimization problem is described by the non-negativity con-
straints

u; >0, up >0,

the perimeter constraints

2uy + 2uy < 10,

2U1 + 2U2 2 4
and the objective function
(51 Uo
Ju)=—=+4+—=
W=+

We found the optimum (minimizer) to be
(u, uz) = (2,0).
Reader: Suppose the model, based on traffic analysis, is enhanced to include constraint
Uy > 1.5u;.
Carry out a simple graphical analysis in the (u;,us2) plane to obtain optimum

(u3,u3) = (0.8,1.2).

130

3.10. Handout Extreme. March 15, 2016 CHAPTER 3. HANDOUTS

3.10 Handout Extreme. March 15, 2016

Barmish

ECE 719 — Handout Extreme

We begin with a standard form LP and want to establish the following: A wvector x is an
extreme point of the constraint set if and only if x is basic and feasible.

To establish sufficiency, we assume z is basic and feasible. We must show z is extreme.
Without loss of generality, say xi,xs,..., %, are the potentially non-zero components
of z. Hence, with a’ being the i-th column of A, we have

xiat + z9a® + - 4 xa™ = b.

Now proceeding by contradiction, say x is not extreme. Then, there exist two points v°, v! €
P, different from =, and A € (0, 1) such that

r=(1-M"+ M (%)

Since, v!' and v? are feasible, their components are non-negative. Using this non-negativity,
the fact that (*) holds and the fact that z; = 0 for ¢ > m, it follows that for ¢ > m,

:O:fy2

1
v; ;

(2

for i > m. Furthermore, by feasibility of v' and v?, we also have

11, 1.2 1 2.1, .22 2
via +vya’ + - Fua™ =b; via +vzat 4 - +via™ =b.

Therefore, from the equations above,

(v] — x1)a" + (vy — x)a* + - + (v}, — m,,)a™ = 0.
Now, by linear independence of columns a', a2, ..., a™, the equality above forces z = v?.
By a similar argument, we also get z = v2. We have now contradicted the fact that the v*
differ from z.

To establish necessity, we now assume x is extreme and must show z is basic and feasi-
ble. Again proceeding by contradiction, without loss of generality, say x1,xs,...,T) are
the non-vanishing components of z and assume that the corresponding columns of A,
a',a?,...,a", are linearly dependent. Now, pick vector y with first & components, not
all zero, and satisfying

ya' +ypa® + .. ypa® =0

and last n — k components y; being zero. Now, since x; > 0 for i < k, using the definition
of y, the two points v! = z+ ey and v?z — ey are feasible for suitably small € > 0. Noting
that z can be expressed as the convex combination

1 1

_ 11, 12
acfzv +2v7

we have contradicted the extremality of x.

131

3.10. Handout Extreme. March 15, 2016 CHAPTER 3. HANDOUTS

132

Chapter 4

HWs

Local contents

I HWIl. ..o 134
M2 HW2 . ..o 152
.. 167
HAHWA 193
4.5 HW . . e 266
4.6 HWOl. 302
47 HW 7. .. 335
4.8 HW special problem| 366

133

41. HW 1 CHAPTER 4. HWS

41 HW1

411 Problem1

PROBLEM DESCRIPTION

Barmish

ECE 719 — Homework Multilinear

Suppose U is a hypercube in R" and J : U — R is multilinear function.
Argue that the maximum of J(u) over U is attained at a vertex of U.
Remarks: If your argument involves working with one coordinate at a
time, I suggest you review your solution to this problem to see if it is
consistent with your solution to the next problem called “Homework Mul-
tilinear Revisited.” Also note that the minumum of J is also attained at
a vertex.

SOLUTION

A multilinear function f (x1,---,x,) is one which is linear with respect to each of its inde-
pendent variables taken one at a time. In other words, when fixing all the independent
variables except for one, then it reduces to a linear function in the one variable which is
free to change. For an example, for n = 2,

f(x,y) =ax + by + cxy

is a multilinear function in x,y. When fixing x to some specific value xy in R, the above
becomes

f(xy)

= axy + by + cxpy
X=X0

=y (b + cxg) + axg

=Ay+B
Where all the constants g, b, c, xy have been combined into A and B. Similarly when fixing
Y = Yo, then

f (x, y)| =Cx+D

y=Yo
A linear function has it extreme values at the start or at the end of its allowed range of
values (The function can be either increasing or decreasing or a constant), this shows that
f (x1, -+, x,) will have its extreme values at one end of the boundaries of each of its variables
X1, Xy

To illustrate what was said so far, taking n = 2 and fixing x = x, then the function will be
f (x, y) and when fixing y = y, the function will be f (x, y)l
Y

X=X0

=Yo

134

41. HW 1 CHAPTER 4. HWS

function multili.near function multilinear
F(z,y) f(z,y) when z is fixed f(z,y) when y is fixed
’ to xg to yo
7/
T

o) x

To show that the extreme points must be at a "corner” or a vertex, is now straight forward.
From the above, the extreme value of the multilinear function must be on an edge. But on any
edge, only one of the coordinates is free to change while all the others are fixed. Therefore
on any edge of the hypercube (when in higher dimensions) the multilinear function is linear
in only one of the parameters at an edge. Hence the function must be either increasing or
decreasing on that edge (or be constant). Therefore the function extreme values on the edge
is where the edge starts or ends, which is a vertex node. This is illustrated by this diagram
for the R2case.

f(z,y) at f(x,y) at
f(z,v) another edge one edge

A

f(x,y) at vertex
> has an extreme
value

domain of f

The following illustrates the case for %% by showing few edges and (the function value
f (x, Y, z) is hard to show here, since we would need fourth dimension).

135

41. HW 1 CHAPTER 4. HWS

on this edge,
_x,y are fixed,
_ - but z is free

to change
y «— - ~
adi V

T / on this edge,
x, z are fixed,
but y is free

to change

on tflliS edge,
Y, z are fixed,
but x is free

to change

This process carry over to higher dimensions hypercube.

41.2 Problem 2

PROBLEM DESCRIPTION

Barmish

ECE 719 — Homework “Multilinear Revisited”

For the three-variable multilinear function
J(u) = 8ujugus — dugus — duyug — 4dusus + 2uy + 2ug + 2uz — 1

with constraints |u;| < 1 for i = 1,2, 3, let

w’ = (1,1,1)

be an initial guess for the minimizer. Now carry out a sequence of one-
variable optimizations beginning with u; and obtain successive refinements
of the solution; i.e., hold us = uz = 1 and optimize u; to obtain 4. Then
with u1 = 47 and uz = 1 held fixed, optimize uy. Continue this process
to optimize us. Finally, begin additional one-variable optimization cycles
by returning to wy, etc. Does this process converge to a minimizer u*?
Discuss.

136

41. HW 1 CHAPTER 4. HWS

SOLUTION

The function [(1) is defined on a cube. Since it is multilinear in uq, uy, u3, the minimizer
point must be at one of the 8 vertices of the cube as shown in problem one. The optimization
method the problem asks to perform does not converge to a minimizer u* in general. And it
does not in this problem. The value of | at each corner areE| as shown below

Jy = =3 Ji=1
|
— |

Jr=9 | T = —3

I us

|

| u9

I Q‘Ul

J4:/9)——__ _____ Jz3 = -3

Je = =27 Js =9

In the first stage, we select between [; and J,, (this is the result of fixing 1, = u3 =1 and
optimizing] (u) to find #1;). We find that], wins, since it is smaller. Then we select between
], and J; and find that], still wins. Then we select between |, and J,, and find that |, also
wins. So at the end of the first phase we mark], as the winner (the minimum so far).

Now we go back to J; but select the second edge leaving this node, and select between J;
and Jg, and find that Jg wins. Now we select between Jg and J,, and find that 3 wins. Then
select between Jg and J5, and Jg still wins. This ends the second phase.

Between Jg = -3 and], = -3 (winner of phase one), there is a tie so far.

We go back to J; (this is the final stage) and now take the third edge leaving this node, and
select between [; and J3. J3 wins. Then select between 3 and J, and 3 wins. Then select
between [; and J5 and J; = -3 still is the winner.

From vertex J; we have followed this algorithm over all the three edges leaving it, and found
that overall minimum is J (1) = -3. If we continue this process, it will just repeat all over.

But [(1) = -3 is not the correct value for the global minimum, since the global minimum is
at vertex J; = —27, which we never got the chance to compare with due to the nature of how
this algorithm works. If, for example, J; had been smaller than J,, say —4, then we would
had the chance to select J; and then compare J¢ with J; to find that it is the overall minimum.
So this algorithm is not guaranteed to converge to the global minimum in general.

Here is the decision tree used for the above process.

Ismall matlab script in the appendix

137

41. HW 1

CHAPTER 4. HWS

winner of
8 |second stage

winner of
Ji first stage Ji

J winner of
1 third stage
J P - ’ .]2 J P ’ J8 P f Jg;
1 N 1 - - Jl -
‘\/ .., '\/ -, . ‘\/ .
Jo N N
2 . . 57 J8 \ . ;].7 J3 N . J4
\‘(,/ \‘(// \\‘ //f
J7 > - y J7 ~ J4(N
o Jg o, J§ A, Jg

We see that the global minimum at vertex J; = —27 was not visited. Wrong turn was taken
in each stage.

41.21 Appendix

This appendix can be skipped. It shows the basic calculations for the first phase for illustra-
tion, and Matlab code used. Starting at (1,1,1), and fixing u; = uz =1.

on this edge ug =1
and uz = 1 but u;
is free to change

/ (1,1,1)

u3

u2

(_17_17_1) b

Hence on the first edge above, we have
J (uq, uy, uz) = 8uqupuz — 4uquy — duquz — 4uyus + 2uq + 2uy + 2uz — 1
Fixing u; = uz =1 gives
J(uq,1,1) = 8uy —4uy —4uy —4+2uy +2+2-1
=2u; -1

This is minimum when u; = —1. Hence #i; = —1. Now we see that on the above edge, | is
smaller on vertex (-1,1,1) than on (1,1,1). Now we look at the next edge, where 1; = -1 and
Uz = 1

138

41. HW 1 CHAPTER 4. HWS

on this edge us =1
and u1 = —1 but
ug is now free to

change \ (-1,1,1)
i SL'U,Q
—

ul

Fixing u3 at 1 and u; = i1; = -1 then

J By, up,u3) = J (=1, 1,1)
= 8l upuz — 4l uy — 4ty ug — 4upus + 2417 + 2uy + 2uz — 1
=-8uy +4uy +4—-4u, -2 +2u, +2-1
=3-6u,
Hence] (i11,uy,1) is minimum when u, = 1. Therefore i, = 1. This tells us that | at vertex

(-1,1,1) is smaller than on (1,1, -1). Traveling down the edge between (-1,1,1) and (1,1, -1),
which is done by fixing u,, #; and changing u3 gives

on this edge ug =1

and u; = —1 but

u3 is now free to

change (—1,1,1)

S~

i

Y

_y ™~

Now we need to find i3
](ﬁll ﬁ21 uS) =](_1/ 1/ Ll3)
= 8ﬁ1ﬁ2u3 - 41’/\111,/\12 - 4ﬁ1u3 - 4ﬁ2u3 + Zﬁl + 21:22 + 21/[3 -1
= —8M3 +4+4M3—4M3—2+2+2M3—1
=3- 67/[3

This is minimum at u3 = 1, Therefore #i; = 1. This means that | is still smallest at vertex
(-1,1,1). We have so far visited 3 edges, and looked at 4 vertices and found that | is smallest

139

© 0NN A W N

[I N R = T e e o T T
W B B S © ©® N O s w N = o

41. HW 1

CHAPTER 4. HWS

at (-1,1,1).

](—1, 1,1) = 8u1u2u3 —4uquy — 41411/{3 - 4u2u3 +2uq + 2uy + 2143 -1

=-8+4+4-4-2+2+2-1
=-3

Here is a diagram to illustrate what we did so far

we visited these 4 edges and
found that J = —3 is
smallest on this yextex

1,1,1)

we now need to start
on this side of the cube

We now repeat the process starting from (1,1,1). Fixing u; = 1, u3 = 1, but vary u,. The
calculation is similar to the above, and will not be shown. A small Matlab script is given

below that was used to verify the results.

function nma_HW1_problem2_ ECE719
%function to evaluate J at corner of the cube and do

%some syms caluclations.
%1/22/16

syms ul u2 u3;
J = 8xulxu2*%u3-4*xul*u2-4*ul*xud-4*xu2*u3d+2*ul+2*xu2+2*%u3-1;

%#first find J value at all the corners, the coordinates are
a = {[-1 1] [-1 11 [-1 11%};
coords = allcomb(a{:});

%function to evalute J at each coordinate
f = @(c)subs(J,{ul,u2,uld’},c);

%print values at each corner of the cube

vpa(arrayfun(@(i) f(coords(i,:)),1l:1length(coords),'Uni',false))

JO = subs(J,{u2,u3},{1,1});

ulHat = getuHat(JO,ul)

JO = subs(J,{ul,u3},{ulHat,1});
u2Hat = getuHat (JO,u2)

JO = subs(J,{ul,u2},{ulHat,u2Hat});

u3Hat

getuHat (JO,u3)

140

25
26
27
28
29
30
31
32
33
34

41. HW 1 CHAPTER 4. HWS

end

function uHat = getuHat(JO,u)
uHat = 1;
u0 = subs(JO,u,-1);
if u0<subs(JO,u,1)
uHat = -1;
end
end

Output of the above is

>> nma_HW1_problem2 ECE719

[-27.0, 9.0, 9.0, -3.0, 9.0, -3.0, -3.0, 1.0]
ulHat =

-1
u2Hat
1
u3Hat
1

41.3 Problem 3

PROBLEM DESCRIPTION

Barmish

ECE 719 — Homework Quotient

Suppose U C R" is a hypercube and let

J(u) =];; ((@3

where N(u) and D(u) are multilinear functions with D(u) non-vanishing
on U. Argue that the maximum of J(u) over U is achieved by an extreme
point of U. (Note: The same result holds for the minimum).

SOLUTION

Since N (u) is multilinear, its maximum and minimum values will be on a vertex. Similarly for

D (u). Therefore, we only need to compare the ratios 11\)% on the vertices to find the largest
ratio. For example, for n = 2, we look at the four ratios, N N2 Ns Ni where N; means the

Dy’ Dy’ D3’ Dy
value of N (u) at vertex i, and similarly for D;.

141

41. HW 1 CHAPTER 4. HWS

Since one of these N; will be the largest value that N (1) can take, and one of these D; values

will be the smallest D (#) can take, then the maximum of | (u) = % will be one of these four

values.

It can not be at any other u; location. Proof by contradiction: Let us assume there is a point
. . . . N; .
somewhere else in the domain of | (1), say an internal point u; where Bf was the largest. This

would imply that N; is so large as to make % larger than any value at the vertices regardless
of what D; happened to be at u;, which means that N; is the maximum of N (u), but this is
not possible since the maximum of N (1) must be at a vertex.

Or it could mean that D; is so small such that % is larger than any value at the vertices
regardless of what N; happened to be, which means that D; is the minimum of D (u), but
this is also not possible, since the minimum of N (u) is at a vertex. Therefore the maximum

of J (1) must be at a vertex and can not be at any other point.

41.4 Problem 4

PROBLEM DESCRIPTION

Barmish

ECE 719 — Homework Ladder
For the ladder network below with n = 9 and input voltage Vj,, = 1, use symbolic ma-
nipulation in Matlab to find the output voltage Vo, (R) as a function of the R;.

For resistor values with bounds 90 < R; < 110 for ¢ = 1,2,...,9, find the maximum
value of the output voltage V,u(R).

R1 Ry Rn-ﬁ

Ry Rs Ryl

SOLUTION

142

41. HW 1 CHAPTER 4. HWS

Ry Ry R7
— AW A
|
+ |
Vou
‘/in /ID R3 é /ID R6 /I; RQ : t
|
\/

—AMW —AW —AMW
Rs Rs Rg

The total network resistance (Input impedance) is

Ziy = Ry + Ry + R3[| (Rg + Rs5 + Rg|| (R7 + Ry + Rg))

Using X||Y = XY since in parallel the above become

X+Y
R3 (R4 + Rs + Rgll (Ry + Rg + Rg))
R3 + (Rg + Rs + Rg|l (R7 + Rg + Rg))

R6(R7+R9+Rg)
R3 (R4 + R5 + R6+(R7+R9+R8))

Zin:R1+R2+

:R1+R2+

R3 + (R4 + R5 + —R6(R7+R9+R8))

Ré +(R7+R9 +R8)
R6 (R7+R9 +Rg)

The above is the overall ladder network resistance. Let X = Ry + R5 +
R6+(R7+R9+R8)

to simplify

the equation

XRy
Zin = Rl +R2 +
R3+X

The output impedance is

Zout = R3ll (Rg + R5 + Rg|l (R7 + Rg + Rg))

_ XRy
T Ry+ X
Hence V,,; is now found, using V;, =1, from
Vout — Zout
Vin Zin
XR3
Ra+X XRj
Vout = XR =
Ry + Ry + ——> Ri(R3 +X) + Ry (R3 + X) + XR3
3
XR,

"~ X(Ry+ Ry +R3) +RiR3 + RyR,
Since V,,; multilinear function in R;,i =1 ---9, the maximum and minimum will occur at the
end range values of each resistance, which is 90 and 110. so there are 22 different cases to
check. A small script is below which calculate these vertex values and shows the maximum

V,ut found. The maximum is
V, = 0.3147 volt

stinq R; and R, at 90 ohm, and the rest of the resistors using 110 ohm.

Utmax

143

© O NN W N

[I N R T e o o
W B B S © ®©® N O s w N = o

41. HW 1

CHAPTER 4. HWS

function nma_HW1_problem4_ECE719

%function to evaluate Vout at corners of the R™9
%Nasser M. Abbasi

%1/23/16

a = repmat({[90 110]},9,1);
= allcomb(a{:});
arrayfun(@(i) vOut(v(i,:)),l:size(v,1));

R <
o

%done. Now print min and max, and the vertix at each
[maxValue,indx] = max(r);

fprintf('max is %f at U=\n',maxValue);

v(indx, :)

[minValue,indx] = min(r);
fprintf('min is %f at U=\n',minValue);
v(indx, :)

end

function r = v0Out(R)

%hevaluate objective function at vertex. See HW

X = R(4)+R(5)+R(6)*(R(7)+R(9)+R(8))/ (R(6)+(R(7)+R(9)+R(8)));
r = XxR(3)/(X*(R(1)+R(2)+R(3))+R(1)*R(2)+R(2)*R(3)) ;

end

Which generates when run:

>> nma_HW1 problem4 ECE719

max is 0.314732 at U=

90 % 110 110 110 110 110 110 110
min is 0.225627 at U=

110 110 90 90 90 90 90 90 90

41.5 Problem 5

PROBLEM DESCRIPTION

144

41. HW 1 CHAPTER 4. HWS

Barmish

ECE 719 — Homework Common Sense

For constraint set U C R" and J : U — R suppose that fork =1,2,...,n
the following condition is satisfied: With all u; frozen except for i = k,
the resulting one variable J function is minimized over U by u, = uj,
independently of the frozen values of the remaining ;.

(a) Argue that v* = (uj,ul,...,u}) minimizes J(u) over U with all w;

being allowed to vary simultaneously.

(b) Give an example with n = 2 for which the result in Part (a) ap-
plies.

(c) Give an example with n = 2 for which the result in Part (a) does
not apply.

SOLUTION

4.1.5.1 Part(a)

Since u; minimizes f (u) when all u; are fixed except for 1, then this is the same as saying

. dJ . Qs .. e .

that solving for % = 0 gives uj. Since this is the necessary condition for an extreme point
k

from unconstrained calculus (we still need to check the Hessian for u; being the minimum

or the maximum, but we are told here it is a minimizer).

But ;Tf is partial derivative of f (1) w.r.t. to u; when all other u; are fixed (by definition). For
k
R" this carries over and becomes the gradient. Therefore
Vf=0
of
Jug
of
uy | =

i

duy,

.. . . J .
Leads to minimum being at since we are told that each % = 0 results in u} as the
. k

solution.

145

41. HW 1 CHAPTER 4. HWS

4.1.5.2 Part(b)

An example where the above applies is](x, y) =xy on U = [0,1] Since
Vf=0

20

x=0
Hence a minimizer is u* = [O) and] (u*) = 0 is the global minimum.
y =

4.1.5.3 Part(c)

0
An example where part (a) does not apply is](x, y) =xy on U =[-1,1]. Now u* = 0 is not

the minimizer, since if x=-1and y=1orif x=1and y = -1, we find J (") = -1 < 0.

The following is a plot of J(x,y) = xy of different sets of constraints to illustrate part(b) and
(c).

part(a). min J(u)=0 at (0,0) h part(b). min J(u)=0 at (-1,1) and at (1,-1) not at (0,0)

0.5

0.8

146

41. HW 1 CHAPTER 4. HWS

41.6 HW 1 key solution

Barmish

ECE 719 — Solution Multilinear

Let J* denote the maximum value and take the hypercube U described
by u; <wu <wu) fori=1,2,...,n and let u* be an optimal element. We
begin with the first coordinate. If u} equals either uy or uy, we let @} = u?
and we proceed to the second coordinate. Otherwise, we define the one
variable function

Ji(ur) = J(uq, us, usz, ..., u;,).

For this single variable case, since Jj is linear, it maximized with u; equal
to either u; or uj. Let @} denote this optimal scalar and note that

J(uy, uy, us, .. uy) > J(u') = J

Next we consider the second coordinate uj and repeat the argument above;
i.e., If u} equals either uy or u3, we let @5 = u} and proceed to the third
coordinate. Otherwise, we define the one variable function

JQ(UQ) = J(?f{, UQ,U;, C. ,u;kl)

and again using the linearity, this function is maximized with us equal to
either uy or uy. With @ being this optimal scalar, we now have

J(@ @il) > J(u) = J*.

By continuing in this manner, we can perturb all coordinates to their ex-
treme values while assuring that the function value for J does not decrease.
Letting u* denote the final vector obtained, we have

J(@) > J*) = J*.

Hence, we have substituted u* with another vector @* which is a vertex
and also maximizes J. In other words, the maximum of J is attained at a
vertex.

147

41. HW 1 CHAPTER 4. HWS

Barmish

ECE 719 — Solution Multilinear Revisited

Fixing us = uz = 1, we obtain the single variable function
J(u, 1,1) =2uy — 1
which is minimized with u; = —1. Hence the next solution is
u' = (—1,1,1)

with associated cost
J(u') = —3.
For the next step, we minimize the single variable function
J(=1,u2,1) = —6us + 3

and obtain us = 1 as the minimizer. Hence u? = u! and we obtain cost

given by
J(u?) = J(u') = =3,

By continuing the iteration we see that
ub =ty J(Wh) = -3

for all £ > 3. That is, the algorithm gets stuck at (—1,1,1) whereas the
optimal element, obtainable via substitution of vertices, is

ut = (-1,—-1,-1)
with associated optimal cost
J = Ju") = -27.

This example shows one potential pitfall associated with the solution of
an n-variable problem via a sequence on one-dimensional optimizations.
Notice for the multilinear case above, each new iterate is a “nearest vertex
neighbor” of its predecessor.

148

41. HW 1 CHAPTER 4. HWS

Barmish

ECE 719 — Solution Quotient

Given any arbitrary u" € U, it suffices to show that
J(v) < J(u°)
for some vertex (extreme point) v of U. Indeed, letting
Yo = J(u),
we form the function
J(u) = N(u) = 7D(u)

and note that it is multilinear with .J(u’) = 0. Noting that D(u) is non-
vanishing on Uit must have one sign. Now, there are two cases to consider:

Case 1: D(u) > 0on U. In view of multilinearity of .J on the hypercube U,
it follows that there is an optimal minimizing element minimizing J which
corresponds to some vertex v € U. That is,

J(v) < J(u)
for all w € U. In particular, we have
J(v) < J(u).
Recalling J(u°) = 0, it follows that
J(v) <0.
Dividing by D(v) > 0, we obtain
J(v) <0 = J(u’)

as required.

Case 2: When D(u) < 0 on U. In view of multilinearity of J on the
hypercube U, it follows that there is an optimal minimizing element maz-
imizing J which corresponds to some vertex v € U. That is,

J(v) > J(u)

149

41. HW 1 CHAPTER 4. HWS

for all w € U. In particular, we have
J(v) > J(u).
Recalling J(u’) = 0, it follows that
J(v) > 0.

Now, dividing by the negative quantity D(v), the inequality above reverses
to become
J(v) <70 = J(u")

as required.

Barmish

ECE 719 — Solution Ladder

For the ladder network with n = 9, the solution of the circuit equation is

N(R)
Vour(R) = 2
where
N(R) = R3R¢Ry
and

D(R) = RoR4Rg+ RgR3Rs + R3R9R1 + R¢RsR1 + R3R7Rs + R7R4Ro + RoRgR1 + R4RsRs
+RyR9R1 + R3RgRy + R3R¢ Ry + ReR7Ry + RgR4R1 + R3RgRg + R7R4R1 + RoR4R»
+Re Ry + Re Ry By + ReRgRo + RyReRo + RgRr Ry + R3Rg Ry + R3RoRo + R3 R Iy
+RsR3Rs + RsR7R4 + R3RsRy + RsRoRy + R3R7Rs + RsR7R1 + RsR7Ro + Rs Rg Ry
+RsR3Rs + RyRsR1 + RyRs Ry + ReRs R1 + ReRsRo + R3R7Rs + R3RgRs + R3RoRs
+R3RgR5.

Now, from Homework Quotient, we know the maximum is attained in the
vertices of the hypercube. Hence R; can only take values {90,110}. Now
by exhaustive search of the 2% vertices, we obtain V5, ~ 0.0350, with the
choice of R* = (90,90, 110,90, 90, 110, 90, 90, 110).

150

41. HW 1 CHAPTER 4. HWS

Barmish

ECE 719 — Solution Common Sense

(a) Given any v’ = (u{,ud,...,ud) € U, it suffices to show that

J(u) < J ().

Indeed, with

oot = (u’{,ug, uo),

it follows, from the definition of uJ, that
Ja) < J(u).

Similarly, for

~ k2

a 0 0),

. * %
= (uj, uy, ug, ..., u,

we have
Ja?) < Jath) < J(u0).

Continuing the same reasoning, one arrives at
Jw) < J@") << J@th) < JW0),
i.e., v* minimizes J(u) over U.

(b) Let U = [-1,1] x [-1,1], and J(u) = u? + u3. For wu; fixed, u} = 0;
For s fixed, u; = 0. The minimum of J(u) is also attained at u* = (0, 0).

(¢) Let U = [-1,1] x [—1,1], and J(u) = ujug. For uy fixed, u} is ei-
ther +1 or —1, dependent on the value of u;. For uy fixed, uj is either +1
or —1, dependent on the value of uy. This violates the assumption on
in part (a).

151

4.2. HW 2 CHAPTER 4. HWS

42 HW 2

421 Problem1

PROBLEM DESCRIPTION

Barmish
ECE 719 — Homework Epigraph

Give a function J : R" — R, we recall that its epigraph is the a set in R"*!
given by
epi J = {(u,a) € R"™ 1 a > J(u)}.

Now prove that J is a convex function if and only if epi J is a convex set.

SOLUTION The following diagram illustrates epi | for n = 1. In words, it is the set of all
points above the curve of the function J (1)

J(u) '/The set epiJ

This is an iff proof, hence we need to show the following
1. Given | is convex function, then show that epi] is a convex set.
2. Given that epi] is a convex set, then show that] is a convex function.

Proof of first direction We pick any two arbitrary points in epi J, such as py = (1%, %) and
p1 = (!, y'). To show epi J is a convex set, we need now to show that any point on the
line between py, p; is also in epi J. The point between them is given by p, = (u}‘, y/\) where
A €[0,1]. The following diagram helps illustrates this for n = 1.

152

4.2. HW 2 CHAPTER 4. HWS

‘We need to

show that py \
is also in epi J
J(w) PN e = {uly)
'

The point p, is given by
(u,y) = A= D) po + Aps

=(1-A) (uo,yo) +A (ul,yl)

= (@=)u® + Aul, (1 - 1)y + Ay)
Therefore y* = (1 - 1)y° + Ay'. Since py, p; are in epi], then by the definition of epi J, we
know that y° > J (uo) and y! >] (ul). Therefore we conclude that

y' > (1- /\)](uo) +A] (ul) 1)
But since we assumed | is a convex function, then we also know that (1 — A)](uo) + A (ul) >
](uA) where u* = (1 — A)u® + Au'. Therefore (1) becomes
This implies the arbitrary point p, is in epi J.
We now need to proof the other direction. Given that epi | is a convex set, then show that |
is a convex function. Since epi | is a convex set, we pick two arbitrary points in epi J, such

as po, p1- We can choose py = (uo,](uo)) and p; = (ul,](ul)). These are still in epi], but on
the lower bound, on the edge with] (1) curve.

J(u)
Pr1 = {ulayl}
p* = {ut, y*} X
J(u
o = {u0, 40} (u')
J(u0)
® » U

u’ u ul

w = (1 — AN + Aul
Since po, p; are two points in a convex set, then any point p* on a line between them is also

153

4.2. HW 2 CHAPTER 4. HWS

in epi] (by definition of a convex set). And since p* = (1 - 1) py + Ap; this implies
ph = (u/lly)l)
= (A= A)po+Ap1)
= (W= (0,7 (1)) + A (ul,] (u)))

A

Y
=@ =)+ Aut, @A)] (0) +] (u?) 1)
Since p” is in epi] then by definition of epi |
vt =] (ut) (2)
But from (1) we see that y}‘ =(1- A)](uo) +](ul), therefore (2) is the same as writing
A=) () +J (u) >] (u?) (3)

But u! = (1 - A)u® + Au!, hence the above becomes
@ =A)] (u0) +J () 2 (@ - D) u® + Aut)

But the above is the definition of a convex function. Therefore | (1) is a convex function.
QED.

4.2.2 Problem 2

PROBLEM DESCRIPTION

Barmish

ECE 719 — Homework Unique Minimum

Suppose J : R" — R is strictly convex. Then prove the following: If a
minimizing element u* € R" exists, it must be unique.

SOLUTION Let uj and u] be any two different minimizing elements in R” such that | (uB) <

J (uj). We will show that this leads to contradiction. Since u; is a minimizer, then there exists
some R > 0, such that all points u that satisfy |[u* — u|| < R also satisfy

J(45) < ()

154

4.2. HW 2 CHAPTER 4. HWS

all points u
here satisfy
J(ug) < J(u)

We will consider all points along the line joining u§, u], and pick one point " that satisfies
u - uA” < R, where A € [0,1] is selected to make the convex mixture ut = (1 - A) uf + Au]

satisfied. Therefore any A < m will put u” inside the sphere of radius R.
07 "1

M= (1 - Nuf + \uj

Hence now we can say that

] (up) <J (u) (1)
But given that] (u) is a strict convex function, then
Ty < (@ = A)] (up) + AT (117) 2)

Since we assumed that](“5) <](u]), then if we replace](u’i) by](ua) in the RHS of (2), it
will change from < to < resulting in

Jty < = A)] (up) + A (1)
Jwh) < (up) 3)

We see that equations (3) and (1) are a contradiction. Therefore our assumption is wrong
and there can not be more than one minimizing element and uj must be the same as u].

4.2.3 Problem 3

PROBLEM DESCRIPTION

155

4.2. HW 2 CHAPTER 4. HWS

Barmish

ECE 719 — Homework Global Minimum

Preamble: Suppose J : R" — R. A point v* € R" is said to be a
local minimum of J if there exists some suitably small § > 0 leading to
satisfaction of the following condition:

J(u?) < J(u)
for all w such that ||lu — u*||] < §. Said another way, u* is a mini-
mizing element over a suitably small open neighborhood. For the case
when J(u*) < J(u) for all u, we call u* a global minimum of J.

The Homework Problem: Suppose J : R" — R is convex. Prove
that every local minimum of J is a global minimum.

SOLUTION We are given that [(u*) < J(u) for all u such that ||u* — ul| < 6. Let us pick any
arbitrary point u!, outside ball of radius 6. Then any point on the line between u* and u! is
given by

W =1-A)u + Aul

In picture, so far we have this setup

J(u") < J(u)
inside this ball of
radius §

We now need to show that | (u*) <](ul) even though u! is outside the ball. Since J is a convex
function, then

J(ut) < @=A)J @)+ AJ (u) 1)

We can now select A to push u” to be inside the ball. We are free to change A as we want
while keeping u! fixed, outside the ball. If we do this we then we have

J) <] (ut)

156

4.2. HW 2 CHAPTER 4. HWS

J(u*) < J(u?)
inside this ball of
radius ¢

Hence (1) becomes
Jar) < @=A)] @) + AT (u?) 2)

Where we replaced | (uA) by J (1*) in (1) and since | (u*) <] (uA) the < relation remained valid.
Simplifying (2) gives

J) <])= AJ)+ AJ (ut)
A) < AJ (u?)

For non-zero A this means [(u*) <](ul). This completes the proof, since u
point anywhere. Hence " is global minimum. QED

! was arbitrary

424 Problem 4

PROBLEM DESCRIPTION

Barmish

ECE 719 — Homework Multiple Combinations

For a convex function J : R" — R, prove the following condition is satis-
fied: Given any points u', u?, ...,u"" € R" and any scalars A\, Ay, ..., Ay > 0
such that

N
A= 1,

~
[

it follows that

SOLUTION

N N N

We need to show that](E/\iui) < EAZ-] (ui) where ZAZ- = 1. Proof by induction. For N =1
=1 =1 =1

and since A; =1, then wel have l :

4.2. HW 2 CHAPTER 4. HWS

The case for N = 2 comes for free, from the definition of | being a convex function
J(@=Mut+02) <@ =A)] (u) + A] () (A)
By making (1 - 1) = Ay, A = A,, the above can be written as

](/\11/[1 + /\21/[2) < AqJ (Ml) + A,] (Mz)
We now assume it is true for N = k — 1. In other words, the inductive hypothesis below is
given as true

k-1) k-1 ‘
J(Ew) < YA () (*)
i=1 i=1
Now we have to show it will also be true for N = k, which is
EM() = A0) (1) Aa] (1) -+ A ()
M M Ak—1 _ Ak
-~ ((1 i)+ oy)+ g) g k))
M M Akt _
=0 ((1 T/) gy) g 1)) + 4w ()

k-1

=(1- M) (E a f;k)f (uf)) + Ay () (1)

i=1

Now we take advantage of the inductive hypothesis Eq. (*) on k -1, which says that

k-1
](2;(1 4) (1 »)) (Z'). Using this in (1) changes it to > relation
1=

k-1

Z)\J() >(1- /\k)](z; a jtl/\k) ui) + ArJ (uk) (2)

We now take advantage of the case of N =2 in (A) by viewing RHS of (2) as (1 - /\k)](ul) +

k-1
AJ (uz), where we let u! = Ziui, u? = u*. Hence we conclude that
P (1-4g)

k-1

A
(1—Ak)1(2(1 K)+Ak1()>]((1 Ak>§](1 A)umkuk) 3)

Using (3) in (2) gives (the > relation remains valid, even more now, since we replaced
something in RHS of (2), by something smaller)

k
;w()>1((1 Ak>2(1 -
k-1
=]((E/\iui) + Akuk)
i=1

Zk;/\i] () >](g/\iui)

)u + Akuk)

Hence

QED.
158

4.2. HW 2

CHAPTER 4. HWS

4.2.5 Problem 5

PROBLEM DESCRIPTION

Barmish

ECE 719 — Homework Hessian

For u € R", define

J(u) =

Prove that J(u) is convex on the positive orthant
Z e

is ¢
by u; > 0 for 1,2,.

., the set defined

SOLUTION

Assuming] (u) is twice continuously differentiable (C?) in uy,uy, -,

u,, then if we can show

that the Hessian V2] (u) is positive semi-definite on u; > 0, then this implies J (1) is convex.

The first step is to determined V2] (u).

J 1 Ly 1 -
h :_;(u1u2'”un)" ' H Ug = LW __ H Ue =

Qui k=1,k¢i n (”1”2 e ui’l)k:l,k;ti
1w
n u;
And
1@
8_2] 1 n u; l](u)
o nou onou?
17w 1]
"2 2 n u?

_ 1]
Srany
I’ 1] (w)
du;du; 8u (n u;)

lﬂ_”)
_17[14]'

And the cross derivatives are

n u;
_ 1]

"2 uju

159

LW 1,

Hukk Lk#i

4.2. HW 2 CHAPTER 4. HWS

Therefore
1 J() 1 Jw) 1 Jw)
ﬁu_%(l _n) ﬁuluz o Fulun
1 J(u) 1 J(u) 1 J(u)
V=] dmn g0 R,
1) 1) 1) |
ol w2 17N

Now we need to show that V2] (u) is positive semi-definite. For n =1, the above reduces to

V2] (u) =](—Z)(l -1)=0
Uy

Hence non-negative. This is the same as saying the second derivative is zero. For n = 2

) Jw= W) (g —Jw
u) = 1 L= 1 1
e UQIICE 3 Bl P U O S0

The first leading minor is ﬁ] (1), which is positive, since J (1) < 0 and u; > 0 (given). The

second leading minor is

11 11

~ u—%;](u) EZ](M) ~

2= -
e KON S0

Usuq 4

Hence all the leasing minors are non-negative. Which means V2] (1) is semi-definite. We will
look at n =3

25l 00 gl g

11 u13219 u11u3?
V2] (u) = o 5] (u) ;—%5] (u) 103 5] (u)
) W ;—ggf (u)

The first leading minor is 9_—52] (1), which is positive again, since | (1) < 0 for u; > 0 (given).
1

2

u

2,2
ujuy

And the second leading minor is 21—7]2

which is positive, since all terms are positive. The third leading minor is

;—;] (1) ulluz é] (1) L111u3 %)
Az = uzl—ulé] (1) ;—;] (1) uzlu3 é] W) =0
S 25 2w

Hence non-of the leading minors are negative. Therefore V2] (1) is semi-definite. The same
pattern repeats for higher values of n. All leading minors are positive, except the last leading
minor will be zero.

160

4.2. HW 2 CHAPTER 4. HWS

4.2.51 Appendix

Another way to show that V2] (u) is positive semi-definite is to show that x” (V 2y (u)) x>0
for any vector x. (since V2] (u) is symmetric).

Mw@l_q) Lo LI
nut \n n2 uquy n2 uqu, X1
1w ATy iR
T (VZI (I/l)) x = (xl Xy - xn) n? l-lzul nu} \n n? uyu, 2
1 J(u) 1 J(u) 1Jw) (1
2 om0 G

Now the idea is to set n =1,2,3,--- and show that the resulting values > 0 always. For
n =1, we obtain 0 as before. For n = 2, let

Ha(ig) L
nu \n n? uqu X1 . .
A= (x1 xz) ullm 160 (i 2_1) (xz]' Expanding gives

2

12 uptig nug \n

X2

1 1 1 1 1) (1
= X%—](—Z) (— - 1) + 36'136'2—2M + xle_ZM + X%—](—Z) (— —1)
n uj n n< usUq ne Uy n 25 n

ERIC 0 P L IR L[BT

- X1X9 X2X1 X
242 \2 41y duguy "2 ud \2

The RHS above becomes, and by replacing | (1) = —+/uqu, for n =2

(110 (1 LJw o LJw o 10 (1)) [
N e e R e e T € 1))[]

=X

1L 1@ 1,J) 1, 1y 1+,
4 uf 2upuy 4 " uy 4 ug 2 uu; 4 u;

2

Vi um N uw

Where we completed the square in the last step above. Hence x' (sz(u)) x > 0. The same

_ (L(uluz)}‘x _ L(“luz)}‘xz]

process can be continued for n higher. Hence V?] (1) is positive semi-definite.

161

4.2. HW 2 CHAPTER 4. HWS

4.2.6 HW 2 key solution

Barmish

ECE 719 — Solution Epigraph

We want to show that J is a convex function if and only if epi J is a convex
set. To establish necessity, we assume convexity of J and must show epi J
is a convex set. Indeed, let (u’, ag) and (u!, ;) be two points in epi J
and, for A € [0, 1], consider the convex combination

(1 =N’ ag) + Aut,) = (1 = Nu® + M, (1 — Nag + Aog)

To complete the proof of necessity, we must show this combination is
in epi J. Indeed, using the convexity of J we have

J((1 = Nu + 2) < (1= N)J®) + AT (uh).
Now using the fact that
ag > J(u'); ay > J(ub),

we have

J((1 =N’ + ') < (1 - Nag + .

Hence,
(1= Xu” + M, (1 — Nag + Aay) € epi J.

To establish sufficiency, we assume epi J is a convex set and must show J
is a convex function. Indeed, for any two points u°,u! and X\ € [0, 1],
with ag = J(u) and oy = J(u'), we have two points (u’, ag) and (u', ay)
in the epigraph. By convexity of the epigraph we have

(1= Mu® + A, (1= Nag + Aay) € epi J.

Therefore
(1—Nag+ dag > (1= N)J(@’) + A (ub).

Substituting for ayg, a1 above then yields the desired result.

162

4.2. HW 2 CHAPTER 4. HWS

Barmish

ECE 719 — Solution Unique Minimum

With J being strictly convex, either no minimizer exists (for example, con-
sider the function J(u) = e~ with « € R) or the minimum is unique. To
consider the case of uniqueness, suppose at least one minimizer u* exists.
We claim there can be no other minimizer. Proceeding by contradiction,
suppose 4 is a second minimizer. So we have J(u*) = J(u) = J*. Now
define

N S n 1.
U= Sut i
Now, by strict convexity of J, with A = 1/2, we have
1 1 1 1
J(u) = J(iu* + 571) < §J(u*) + §J(€L) =J".

This contradicts the optimality of u*. That is, we have found another
element with a lower J value.

Barmish

ECE 719 — Solution Global Minimum

Assume J is convex and u* is a local minimum. We must show that u* is
also a global minimum. Proceeding by contradiction, suppose that J(a) <
J(u*). That is, say u* is a local minimum but not a global minimum. Now
for positive integers k, define the sequence of points

1 1
and note that convexity assures that
k 1 ~ 1 *
Ty < I+ (1-)W),

and using the fact that J(u) < J(u*), the inequality above becomes
J(ub) < J(u)

for all k. Also notice that this sequence converges to u*. Hence, no matter
how small a neighborhood we take around u*, there is a point in it with
a smaller J value. This contradicts the assumption that u* is a local
minimum.

163

4.2. HW 2 CHAPTER 4. HWS

ECEHT— Solution * Mulliple Combinations.”

n

Suppere T R SR i (ovex- Than, given w®u' ER
and A, A 20, Atd =1, We hawe Fhat
T AW’ + A, u') £ Ay Il ——X; :I'(u.') . =
: We __\lw'qn'f‘ b show dhat aien Wl .., u” eRS and
Moshiey Ao, At Ak + A, <t Hat

T %J\;u;‘) < 2“2": ?\;:F{_u"‘)_ (%)

:NE prove (%) L"?r induchon on w,
g cvex = (¥ holds ,'f..,- me 2 -

.)B(Smnqe (%) holds for wm= k. Then,

—t k
(E:Au) = ;r(%:w £)
k ;
((l }“m)z Ai ‘lri-» + >\k-ir u)
ivo 1-Apy,
k : ke
T T W T
(e)l.tm) (% :xﬂl) *)\k -‘:m:n'ﬁ ﬁf:l'
¥ 1“ A‘lﬁs {:i 1)\ ..T'[U } + }\‘hﬂ :T[‘LL “)
.l : =0 1=y (b‘f Sduachion hﬂnﬂﬂuis
ﬁ . k{' 'fﬂ\’ m;k)
= =N T 4 Ny, T(e),

164

4.2. HW 2 CHAPTER 4. HWS

Barmish

ECE 719 — Solution Hessian

To show that

3=

J(u) = —(ugug - - - up)

is convex on the positive orthant, we compute its Hessian. Indeed, taking
two derivatives, we obtain
?J (n—1)J(u)

H;; = = —
ou? n2u?

for diagonal terms of the Hessian and

oo ?J J(u)
Y QuiOuy; nPugug

for off-diagonal terms. Now, for arbitrary x € R", we consider the
quadratic form

ITV2J(U)CL‘ = ZHijxixj
]

_ vizjJ(u) > (n—1)J(u)z;
iz nPuiug ; n?u?
iy (u) J(u)a?
N sz: n2u;u; zzj nu?
Now defining the real numbers
)
o = —
U;

for : = 1,2,...,n and noting that J(u) < 0 over the positive orthant, to
establish positive semi-definiteness of the Hessian, it suffices to show that

ny_ o? > > oy
i i.j

Now recognizing that the right hand side is

Z OéiOéj = (Z 052')2,
1,J i

165

4.2. HW 2

CHAPTER 4. HWS

positive semi-definiteness is equivalent to
nYal> (Sa? ()
1 2

To establish (x), let

Ql
I

o
1

S|

and observe that

0 < Y(ai—a)

i

= Yo -2ad o; +na’
i i

= Y of —nat?

— Yai- i(Zai)Q.

Now, inequality (*) immediately follows.

166

4.3. HW 3 CHAPTER 4. HWS

43 HW3

431 Problem1

PROBLEM DESCRIPTION

Barmish

ECE 719 — Homework Hyperplane

Given a continuously differentiable convex function J and any pair of
points u!, u? in R", prove that the inequality

J(W?) > J(u') + [VI ()] (u® = u')
must hold.

SOLUTION
Since [(#) is a convex function | : R” — R, then by definition of convex functions we write
J(@=A)ut +Au2) <@ - A)] () + A] (u?)

Where A € (0,1). Rewriting the above as follows
J(u' = Aut + A2) < J(ut) = AT (u?) + A] ()
(a2~ 0) £ 162) 1)
Dividing both sides by A # 0 gives
(o2 =) 1 o)
A

<J () -1 ()
Taking the limit A — 0 results in
](u1 +A (u2 - ul)) —](ul)

D
But lim,_,](ulﬂ(uz;ul))_](ul) = a(iﬁil) = [V J (ul)]T (u2 - ul) (appendix below shows how
1

u
this came about). Therefore the above becomes

V7 ()] (2 - 0) <1 (12) -] ()
1(02) 21 (1) + [V ()] (12 -)
QED.

167

4.3. HW 3 CHAPTER 4. HWS

4311 Appendix

More details are given here on why

/l\i_r%](ul +A (u2 /—\ ul)) —](ul) _ [V] (ul)]T (u2 _ ul)

Let u?> —u! = d. This is a directional vector, its tail starts at u! going to tip of u? point.
J(u*+Ad)-](u?)
A

Evaluating lim,_,, is the same as saying

3] (u) J (' +Ad) -] (u')
Wul_/\—w A

= %](ul +Ad)

=0
Using the chain rule gives

%](ul PAd)| = [V (w4 Ml)]Ti (! + 7d)

dA

A=0 A=0

= [v) (! +Ad)] d|
=[71()] d
Replacing #? — u! = d, the above becomes

-](u1 +A (u2 - ul)) —](ul) _ dJ (u)
A—0 A P (uz - u1) 1

= [V1 ()] (2 -)

Where V] (ul) is the gradient vector of] () evaluated at u = u'.

A=0

4.3.2 Problem 2

PROBLEM DESCRIPTION

Barmish
ECE 717 — Homework Eigenvalue
Let M(q) be an n x n symmetric matrix with entries A; ;(q) which depend

convexly on a vector ¢ € R”. Show that the largest eigenvalue of M (q),
call it \a2(q), also depends convexly on g.

SOLUTION

Since each m;; (q) is convex function in g, then
m;; ((1 —a)qgt+ aqz) < (1 -a)ym; (ql) +am;; (qz) (1)

168

4.3. HW 3 CHAPTER 4. HWS

For @ € [0,1]. We also know by Rayleigh quotient theorem which applies for symmetric
matrices that largest eigenvalue of a symmetric matrix is given by

A= max xIMx
A e |xl=1

Therefore, evaluated at point ¢* = (1 — @) g' + a4?, the above become
n
Amax (1= @) + ag?) = masx 3y (1= @) " + ag?) xix; 2)
X||= l,]
Applying (1) in RHS (2) changes = to < giving

Amax ((1 —a)g' + aqz) < max %: ((1 —) mj (ql) + am; (qz)) XiX;j

s So-ome]

i i
= (1-a) (ﬁfiﬁ}f E] mii (') xixf] ta (ﬁ%ﬁi’f E] i (7°) xl-x]-] (3)
Since
max 2}] i (7') 2% = A (0')
And

n
max Z i (%) %% = Amax (47)
i
Then (3) becomes
Amax (1= @) " + ag?) < (1= @) Ay (1) + @A (72)

This is the definition of convex function, therefore A,,,, is a convex function in 4.
Note: I tried also to reduce this to a problem where I could argue that the pointwise
maximum of convex functions is also a convex function to solve it. I could not get a clear

way to do this, so I solved it as above. I hope I did not violate the cardinal rule by using
/\max = maxxemn/”xnzl .XTMX.

169

4.3. HW 3 CHAPTER 4. HWS

4.3.3 Problem 3

PROBLEM DESCRIPTION

Barmish

ECE 717 — Homework Polytope

Let U be a polytope in R" with generators u', u?,...,u™. We often de-
scribe U by writing

U = conv{u', v?, ..., u™

and say the U is the convez hull of the u’. Show that U is compact.

SOLUTION

This is the convex hull of GG, which is
the set U = conv(G) that contains all
points generated by convex

set G that contains
the generator

eleiner;ts . combinations of the generator points
{u",u,...;u™}
°
\' e® ¥ convex Hull(G) |[—»
® i
[] u

We need to show U is compact

To show U is bounded, a proof by induction is used. From the definition of constructing U

m
U:{xei}?”:x:EAiui}

i=1
Where Zﬁl A;=1and A; > 0.

For m = 1, x = Aul. So U contains just one element u!. Since A =1 and u! is given and
bounded, then this is closed and bounded set with one element. Hence compact. Now we
assume U is compact for m = k —1 and we need to show it is compact for m = k. In other
words, we assume that each x* € U generated using

k-1
X = E Aut
i=1

Is such that [[x*|]| < co and x* € U. Now we need to show that U is bounded when generator
contains k elements. Now

= Aul + Au2 + o+ A+ Ak

170

4.3. HW 3 CHAPTER 4. HWS

Multiply and divide by (1 — Ay)

Aqul Ay Apquk? Ak)
x=(01-A + U2+ .-+ + le
—— ((1 -A) T A=A T-4) A=A
k-1
A , Ak
=(1-A)(Lt + uk)
¢ Z}(l—m (- A)
k-1 A] L
:(1—/\)(: u’)+/\u
Nga-a7) ™
But Zlf_l _Ai_4i = y* which we assumed in U. Hence the above becomes

=1 (1-Ay)
x=(1-A)x" + Ak
Since u* is element in the generator set G and it is in U by definition, then the above is
convex combination of two elements in U. Hence x in also in U (it is on a line between

x* and ¥, both in U). Therefore U is closed and bounded for any m in the generator set.
Hence U is compact.

4.3.4 Problem 4

PROBLEM DESCRIPTION

Barmish

ECE 717 — Homework Maximum

Let P be a polytope in R" with generators v!,v?%, ..., v" and assume J(u)

is convex. Prove that the maximum of J subject to u € P is attained at
one of the generators.

Note: this type of result does not hold for the minimum as evidenced
by the simple example J(u) = u? on [—1,1].

171

4.3. HW 3 CHAPTER 4. HWS

SOLUTION
This is the polytope set P = {u',...,uM} which
is the set that contains all points generated by
convex combinations of the extreme points subset
set G that contains of the generator points in set G. The extreme
the generator points are subset of the generators v!, ..., v for
elements k < N. The rest of the generator points are not
{vl, 02, o ,UN} used and are redundant

\A. °.) o e+ —extreme point € P.
_ _ . .
LI polytope(G) 4 This point must be

® %" one of the
K3
These points are * generators v € G4
from G but not
used to generate J(u) |convex function
P. These are not
extreme points. ¢

we need to show

J* = max,J(u) is at one of
the generators. In
otherwords, u* = v* for
some? € 1...N.

The extreme points of P are subset of G. They are the points used to generate P. The set P
is compact (by problem 3) and convex set (by construction, since it is convex combinations
of its extreme points). If we can show that J* is at an extreme point of P, then we are done,
since an extreme point of P is in G.

Let u* € P be the point where | (1) is maximum. u* is a convex combinations of all extreme
points of P, (these are also subset from G but they can be the whole set G also if there were
no redundant generators), Therefore

k
U= Z/\ivl
i=1

where k < N and o € G. If it happens that all points in G are extreme points of P, then
k = N. Therefore

k
=] = J(ZAivl’)
i=1

Where E;{:l A;=1and A; > 0. But] is convex function (given). Hence by definition of convex
function

k k
J'= J(Zaivf) < M A (o) (1)
i=1 i=1

The above is generalization of]((1 - Nul + Auz) <(1- A)](ul) +AJ (uz) applied to convex

mixtures. Now we look at | (vi) term in the above. We pick the maximum of | over all '

172

4.3. HW 3 CHAPTER 4. HWS

There must be a point in G where] (v) is largest. We call this value Ji. This is the value of |
where it attains its maximum over generator elements v’ :i=1---k. Eq (1) becomes

k
I < Y ATE
i=1

Where we replaced | (Ui) by one value, the maximum Ji. But J;; does not depend on i now,
and can take it outside the sum

k
I <TJs (2&)
i=1

k
But E}Li =1 by definition. Therefore the above becomes
i=1
I <Jg
We now see that the maximum of] (1) over P is smaller (or equal) than the maximum of | (1)
over the generator set G. Hence a maximum occurs at one of the extreme points ¢, since
these are by definition taken from G. which is what we are asked to show.

173

4.3. HW 3 CHAPTER 4. HWS

4.3.5 Problem 5

PROBLEM DESCRIPTION

Barmish

ECE 717 — Homework Optimal Gain

In this homework problem, we consider a modification of the optimal gain
scenario defined in class. Now, the performance index includes weighting
not only on the state z(¢) but also on the on the control u(t). That is, we
consider

J= [T 2T (@)w(t) + M (#)u(t)dt
where A > 0 is a given weighting factor.

(a) Generalizing upon the approach taken in class, find an expression for
the performance J(K) and the associated Lyapunov function which must
be satisfied.

(b) Now, using the result from Part (a), we revisit the double integra-
tor problem from class with weighting A = 1, initial condition given
by £1(0) = 1, 25(0) = 0 and feedback K = [k; k] to be found by optimiza-
tion. Assuming the two feedback gains are equal (that is, ky = ko = k),
find the optimum k& = k*, the associated cost J* and verify that your con-
troller stabilizes the system.

(c) Consider the scenario in Part (b) with the following change: Instead
of taking initial condition x(0) as given, assume that each of its compo-
nents x1(0) and x2(0) are independent random variables which are uni-
formly distributed over [—1,1]. Now find the optimal gain & = k* mini-
mizing J(K) and the associated optimal cost J*.

SOLUTION

4.3.51 Part (a)

V—ote >

+T @4

Let us look at the closed loop. Let v = 0 and we have, since u (t) = kx (t)
X = Ax + Bkx
=(A+Bk)x
=Ax

174

4.3. HW 3 CHAPTER 4. HWS

Where A, is the closed loop system matrix. Since | (k) = KO xT () x (t) + AuT (t) u (t) dt, where
u(t) = kx (t), then

T(k) = fo T4 A () (k) dit
= fo Ty AT (ka) xdt
Let us find a matrix P, if possible such that
d (xTPx) =- (xTx + AxT (ka) x)
Can we find P? Since
d (xTPx) = xTPx + " Px
Then we need to solve
xTPi + #TPx = — (xTx + AxT (ka) x)
xTP (Ax) + (Ax) Px = - (xTx + AxT (ka) x)
xTP(Ax) + (xTACT) Px = - (xTx + AxT (ka) x)
Bring all the x to LHS then
xTx + AxT (ka) x+xTP(Aux) + (xTACT) Px =0
A(KTk) + PA, + AIP = -1

Hence the Lyapunov equation to solve for P is

A(KTk) + PA. + AIP = -I

Where [is the identity matrix. This is the equation to determine matrix P. Without loss of
generality, we insist on P being symmetric matrix. Using this P, now we write

T (k) = fo T+ A o) (k) dt

= —j:od(xTPx)

= xTPx|So
= xT(0) Px (0) — xT (c0) Px (c0)

For stable system, x(c0) — 0 (since we set v = 0, there is no external input, hence if the
system is stable, it must end up in zero state eventually). In part (b) we check for k range
so that the roots are in the left hand side. Therefore

J (k) = xT(0) P (k) x (0)
With P (k) satisfying solution of Lyapunov equation found above.

175

4.3. HW 3 CHAPTER 4. HWS

4.3.52 Part(b)

1
For k = [kl kz],x(O) = [O] and system y” = u. Hence x} = x,,x} = u. Since

U= [k1 kz] tj

x' = Ax + Bu
= Ax + Bkx
=(A+ Bk)x

The system % = Ax + Bu becomes

o |

o2

For stable system, we need kq,k, < 0 from looking at the roots of the characteristic equation.
Now we solve the Lyapunov equation.

A(K'k) + PA. + AIP = -1

T : _ :
T 0 1 0 1 -1 0

A[kl kz] [kl k2]+ P11 P12 4 P Prz| _
P Pa|lki ko ki kp P21 P22 _0 —1_
k 0 1] Jo Kl| | [-1 o]

Al [kl k2]+ P11 P12 N 1P Pz _
ka pn paf|ki k| |1 kf|pa p2| |0 -1
1 k% kqky N kipiz P11 +kopi2 N

kiky, k3 kipao P21 + kopao

kipa1 kipan -1 0
pi1 +kopor pi2 kzpzz_ i 0 —1_

k1 (P12 + P + Aky) P+ kipao + kopip + Akrky [(-1 0
pu +kipo +kopoy + Akiky ARG+ 2ppoky +pratpm | [0 -1

176

© 0 J O G LWON -

i
WK RO

4.3. HW 3 CHAPTER 4. HWS

Hence we have 4 equations to solve for py; p1, p21 p22. (but we know also that p;; = py;). Now
let A =1 per the problem, and we obtain the four equations from above as

k3 + kypio + kipy = -1
p11 + kiky + kipoy + kop1p = 0

pi1 + kiky + kipay + kopo1 = 0
k5 + 2paoky + p1a + p2 = -1

Solution is (Using Matlab syms).

clear;

syms k1 k2 pll pl2 p21 p22;

k = [k1,k2];

A = [0,1;0,01;

B = [0;1];

Ac = A+Bxk;

P = [p11l p12;p21 p22];

lam = 1;

eq = lam*(k.')xk + (Ac.')*P + PxAc == -eye(2);
sol = solve(eq,{pll,pl2,p21,p22});
P = simplify(subs(P,sol))

x0 = [1;0];

J1 = simplify(x0'*P*x0)

Gives

P =

[-(k173 - k172 + k1 - k272)/(2xk1*k2), -(k172 + 1)/(2¥k1)]
[-(k172 + 1)/(2xk1), -(- k172 + k1¥k2"2 + k1 - 1)/(2%k1*k2)]
J1 =

-(k173 - k172 + k1 - k272)/(2%k1xk2)

kiR k1
— 2kiky 2k
P= B+t _ kytki kK1
2k 2kiky
Hence
J (k) = xT (0) P (k) x (0)
k=K -k KB+t ,
_ 2kqky 2k
- [1 0] k1 _khtkak-K-111,
2k 2k1ky
Therefore

1
J() =~ (K = K + k1 = K3)

177

© 0 J O Ok WN -

—
o

4.3. HW 3 CHAPTER 4. HWS

For k; = k, = k, the above becomes

(k3 - 2k% + k)
2k2

(k2 -2k +1)
2k

J (k) = -

J(k) = =5 (k= 1)°

Now we find the optimal J*. Since

k) _ (k-1 (k-2
dk 22 2%

djtk) _ .
Then —= =0 gives

k=1,-1

Since k must be negative for stable system, we pick

k*=-1
And
Ik _ (k-1 20-k 1
k2 kS Kok
Atk =-1
@] (k)
o 1>0

Hence this is a minimum. Therefore

1 2
J= o (k=1)

2k ko1
Hence

J=2

J* do not get to zero. (same as in the class problem we did without Au'u term. I thought we
will get J* = 0 now since this I thought it was the reason for using Au’u. I hope I did not
make mistake, but do not see where if I did. Below is a plot of [(k).

clear k;

close all;

reset (0);

set (groot, 'defaulttextinterpreter', 'Latex');
set(groot, 'defaultAxesTickLabelInterpreter', 'Latex');
set(groot, 'defaultLegendInterpreter', 'Latex');

f=0(k) (-1./(2xk).*(k-1).72)

k=-4:.1:4;

plot(k,f(k));

text(-1,f(-1),'o','color', 'red')

178

11
12
13

4.3. HW 3

CHAPTER 4. HWS

title('$J(k)$ cost function and location of optimal k');

xlabel('k'); ylabel('$J(k)$');
grid;

J(k) cost function and location of optimal k

-6

At k =1 then J(1) = 0, but we can not use k =1 since this will make the system not stable.
The system now using k* = -1 becomes

x| (0 1 X1
xé _kl kz Xp
o 1]fm

-1 -1f|x

(A=A =A2+A+1

To verify it is stable. Since

The roots are
1 + 1z\/§
2 2
Hence the system is stable since real part of roots are negative. If we had used k =1, the
roots will be —0.618,1.618, and the system would have been unstable.

4.3.5.3 Part(c)

From last part, we obtained P

B ky—k3+k3—k3 B K2+1
_ 2kiky 2k
b= KB+t kytki kK1
2k 2kiky

179

4.3. HW 3 CHAPTER 4. HWS

When k; = k, = k the above becomes

—k+2k2-k3 _k2+1
_ 2k2 2
P = _k§+1 l—k—k§+k2
2k 2k2

Now since x (0) is random variable, then

J (k) = E (xT (0) Px (0))
—k+2k2-I3 K2+1
T Bl
- || 0)

=E[[x1 © %0

E (—21? (k3x§ (0) + 2k3x7 (0) x5 (0) + k3x3 (0) — 2k2x2 (0) — k?x3 (0) + kx? (0) + 2kx1 (0) x5 (0) + kx5 (0) — x3 (0)))
@)
Let E (x1 (0)) = X4 and E (x5 (0)) = X, Then
J (k) = _2_k2 (k333 + 232, %, + K°x3 — 2223 — k223 + kX3 + 2k X, + ki — X3)
But E (x; (0)) = 0, hence ¥; = 0 and similarly ¥, = 0, but ¥ = % since

1 1 ! 12\ 1
2 S 20y = Z = = —
flxp(x)dx—zf_lxdx 2(3)_1 3

Similarly %5 = % and ¥1X, = 0 (since i.i.d, then E (x; (0) x5 (0)) = E (x; (0)) E (x5 (0)) = 0. Using
these values of expectations, Eq (1) becomes

1 1 1 1 1 1
k |3 3__22__ 2 Z4+k==Z
J (k) = 2k2(k +I02 -2k K22 kg kg 3)

—2k3+3k2 2k+1

J(k) = ——77—— (2)

To find the optimal:
dk 1 1 1

=t —
dk 3 3k3 3Kk?
% = 0 gives 3 roots. The only one which is real and negative (the other two are complex)
is

k* = -1.325

At this k*, we check dg) and find it is 0.611 > 0, hence | is minimum at k*. The value J* at
k* is found to be from substituting k* in (2)

' =1.28817

180

© 00 J O G Wi

i W W g
RS ESESR Rt T s

4.3. HW 3 CHAPTER 4. HWS

J(k) plot for part (c). J*=1.28817 at k=—1.325
T T

IS
T

W
T

J
&)
T

Out[262]=

We now check if the system is stable. (it should be, since k* <1). The system now is

x| 0 1 X

Xé Lkl kz X

| o 1 |[n
-1.325 -1.325||x,

(AT = A,)| = A2 +1.325) +1.325

Hence

The roots are
-0.6625 + i0.941

The system is stable since real part of roots are negative. The following is the step response
for system in part(b) and part(c) to compare.

/show step responses
close all;

figure();

close all

A [0 1;-1 -11;

B [1;0]

sys = ss(A,B, [1 0], [0])
step(sys)

hold on;

A [0 1;-1.325 -1.325];

B [1;0]

sys = ss(4,B,[1 0], [0])

step(sys)

legend('part(b) step response', 'part(c) step response')
xlabel ('time');

ylabel('y(t)');

grid

181

4.3. HW 3

CHAPTER 4. HWS
Step Response
1.4 : ‘
part(b) step response
1.2+ part(c) step response
T T /OSSO O OOION oe- NSO S
0.8
=
0.6
0.4}
0.2
0 I I I I
0 2 4 6 8 10
time (seconds)

182

4.3. HW 3 CHAPTER 4. HWS

4.3.6 HW 3 key solution

Solutlor) H\iperpque
ﬂss‘orﬂmg 3 convex and U, WeER" show
Tu) v S - (Weu) VI
Indeed for any Me (0p), we have
T (WU~ aw?) ¢ (-0 Fw) A T(u)
D J(ua@l-u') - sa) < APulsw)

= g(us A S
A
Sine the Gloove holds forall A €(o,1) let A=

< I’ -S)

and obtawn heit
f'-u') VOwW) ¢) - Ty
That 15,
Juy) v) u-ulSvIu')

183

4.3. HW 3 CHAPTER 4. HWS

Barmish

ECE 719 — Solution Eigenvalue

With M(q) being an n X n symmetric matrix having entries which are
convex in ¢, a counterexample can be given. Reader: If you proved this
case, you should identify where in proof you are in error. Hint: Consider
a 2 x 2 matrix, and notice 27 M (q)z may not be convex with negative z;.
Henceforth, we assume M (q) is linear in q. This makes 27 M (q)z linear
and hence convex. Now, we want to show that the maximum eigenvalue

J(q) = Amaa[M (q)]

is a convex function of ¢q. To establish this desired convexity, we first
view X = {x € R" : ||z|| = 1} as an index set. Now, we define an indexed
collection of convex functions as follows: For each x € X, let

To(q) = &' M(q)a.

Since this function is linear, hence convex, in ¢, J, is convex. Recalling
from matrix algebra that

Aaa M (q)] = max x" M(q)z,
it follows that
7(g) = max J.(g)

reX

Now, using the class result that the supremum over an indexed collection
of convex functions is convex, we conclude that J(q) is convex.

184

4.3. HW 3

CHAPTER 4. HWS

Solution PolﬂtOpe

%@5\0 with U:= Conv{u') u <u3r”‘um}

Wont to Show U s compact .

TPovndedness: For any UEL , write

CAe]

W] .
u - 8 AW ;o Aiwo
Lot :

M

HQ()LB) ‘ u/\LUj u -

ulf

A

BN

‘fm (wl

v

"

-

{
™

~

el

(5/\(.)

max u? ll

Jém

J<m

il

:)Sm

(1)

Henace - Max lull

J:m

LS

NOr boound 1£0r s Set.

L\ max (Ul

max U

G

185

4.3.

HW 3 CHAPTER 4. HWS

Closedness « Soppese {U°J,, s a seguence
n U comJergmg to ¥ We must Show UYre U.

Indeed , we wnte
UE: ZAb,iu’L }\,_fiijo S/\m;l
L (Ly _)
)\ c € A" 1)1:,\'/‘ /\i""\
Reader: e € i lwg' 3
Notice that A s compact (Gfl 1S G 00 bovad

for A and the lime of Sequen tes Sommmj to 17
Stoll soms to one — the fonction 5()\) ‘i‘h LS cmbnodus)

By compactaess of A, select o supseguence

Com}erg.oj to some ATe A | M., M,

o)

We now clawm that
S & 9
W= oratu’

To estgbhish thu] fiest avte thatsne uts a’;

it follows ehat ukiﬁ W' too. Hence,

186

4.3. HW 3

CHAPTER 4. HWS

|||'Y) g)\V(,J U/J

Lo 5
, 3
Since j(x)= SX}U s & cotinvoss fun ctioa of A,
JLI
the L.t cbove becomes

uxa: lien 5(/\m)

L9 @
- 500)
. S/\; U
bt

1o other words Ute U

187

4.3. HW 3

So!utrun Maxinmom

Wuh @ - conv {\/‘) Ve . VN} , Snce
every U e @ can be expressed. as a

“convex Ccombunatien” of the yi, we have

¥ - N B
9T M Ty) s mex T(Zav)
Ue @ Mo o
bY(onmuw \ o
\(’ ‘MNa6x ’ _)) & "
Yon® g’\° Iy < Moy A f“ﬁ*{f"(tf”)}
8)1,"1 J\\."/” o LE
= max J(vY)
L$N

SO the M Grimum valve GJL J 4t a generato(v
an U pper \oouqo\ ¥or U‘*

. To complete the proof,
WE Gegve that this vpper Dovnd s attained; e,

Prek Gay <N suh that max 3(y')= (s
teae 5% 5(1*) . That s,
T o (v

LN

188

CHAPTER 4. HWS

4.3. HW 3 CHAPTER 4. HWS

With .
J(K) = /0 2T)z (t) + Ml (#)u(t)dt,

we substitute u = Kz and obtain
J(K) = [T 2T (O + AKT K]z (t)dt.
Now expressing the integrand as the exact differential
o' () [I + \KTK]x(t) = —d(2" Px),

we substitute the dynamics into the expression above and proceed exactly
as in class. This yields Lyapunov equation

ATP + PA=—(I1 + \KTK)
to be solved for P.

189

4.3. HW 3

CHAPTER 4. HWS

A- A+ BK = [0 l]f[o][Q eJ
o 6 ' l)
é,=bz=fe
= [O ‘J . Evalude T+ KK = [1+48% F
bk o (a=1) ek
fook at
(O raj[p., Pu] . [e P]fO 1]_ NS
'k Rz Pn» 2 Pzz [f?, B) 2 [+b2

)

|

See Next poq ¢

Reader: Please note that solotion

to follow s Soe Xio) -
« X(0) G)] . Seme 1deus apply

for X(o):[',]

190

4.3. HW 3 CHAPTER 4. HWS

v

(DZhRZ = ‘('*ba) 2 IDIZ = - |+ b) | (!,;)eofzrj

——

Cpar i Bpe s oE ()
@ 3 Rkp,tp, = I-° G
Pt kp, rbp, - ja @
> pothp, : 1 [repeat o (2]
@ 2p, +2kp,, - —Z(H £ (2.2) entry

D 2ep, = -(1+0) ¢ (1E) 5 B, + ~Eikbel
b 2k
TSt py e @ 3

Fv’zb /82"’ /
and T(K) = x@G%Oxw)= . Jor mw[]
= 2p - B%-1 St 9 =0
2b oK

3 2}af2 2k] -Z[z;a }22-;]
4R
F W:-2 > =1 oe -1 [Musrdu.de]
- Chde O . 4k'[-q4e] -[2eh2]8k . -32k°-ick
2

e 6" oe!
Since %Zg; 0 ab le-t e Sues . souap 1ol ma

191

4.3. HW 3 CHAPTER 4. HWS

_ Now JF(K)= B 2'(0) @K) 29
J{xf (o) Pyt 2%, (9%, (o) Py * 142’ CO)Fn}
: PEXO)+r REXBER[Q)rp, ExX} () #
Gwen that X, (0 and Diz(o; are un;form)j
diotributed, we have

Ex?(0): E X3 = 4\ \x'Au- !t
(0) = EX; (o) Z‘I 3
Solvtrn kambde

Aeace, us:gm{

T(K)« L(2b-B-t) « 1/ Bk b
3(2k 3(2B*

= -2B2.3p%-2k4 |
T ok’

SQL_dl .0 9 k’-kBsy1:=0
dk

Cornputa a real root ot E*z -1,325
which leqdr €o %2 13

Notice €hat S*hab lncreased aver \‘Vﬁf\’

192

4.4. HW 4 CHAPTER 4. HWS

44 HW 4

441 Problem1

Barmish

ECE 717 — Homework Amplifier

In this homework problem, we consider the 2-stage amplifier described in
class with objective function

J(u) = (11 —uy — U2)2 + (1 +uy + 10uy — uluz)Q

to be minimized.

(a) Generate a contour plot for the region in R? of interest described
by 0 <wu; <20 and 0 < up < 15.

(b) Write your own Matlab code to implement the steepest descent al-
gorithm with fixed step size. Include your code as an appendix.

(¢) Run your algorithm from a variety of initial conditions which include

oo [S1 1312 2]

and experiment with step sizes which include A = 0.01,0.10,1.0 and in-
clude comments about convergence, number of iterations, stopping crite-
rion and oscillations. In each case, show the progress of your iterations by
superimposing the iterative path u* on the contour plot. Annotate your
plots with relevant comments.

r-[2)

we see VJ(u) = 0. Might your algorithm begin with u; > 0,us > 0 and
converge too this point? Discuss briefly.

(d) Notice that at the point

Figure 4.1: problem 1 description
4411 part(a)

Matlab was used to generate the contour plots. The plots generated are given below and
the source code used is listed in the appendix.

193

4.4. HW 4 CHAPTER 4. HWS

=TF —Iolx|
File Edit View Insert Tools Desktop Window Help > File Edit View Insert Tools Desktop Window Help ~
contouruplot, default setting , contour plot, filled, with colorbar
_ (11 — g — w2)? + (1 + w1 + 10us — wyus)? (11— —we)? (1w + 0w — wus)?
15 : . . 20 18000
16000
a s 14000
12000
10
o 10000
= 9 =z
o8, 8000
il)l‘mﬂ“ 04 2
604,50
6000
0 4000
2000
5
U 5 0 5 10 15 20
2wy Uy
| contour plot, problem 1 | | contour plot, filled, with colorbar problem 1 |

-IBlx] =T

> File Edit View Insert Tools Desktop Window Help -
Another 3D over contour view (no labels)
(11 — g — wo)? + (1 + 2wy + L0us — wyun)?

Eile Edit View Insert Tools Desktop Window Help
Labeled 3D over contour view
(11 — g — u2)? + (L + uy + 10us — uwyus)?

x10*

| Another 3D view with contour plot, problem 1 |

=10 x|

~

File Edit View Insert Tools Desktop Window Help
contour plot (enlarged limits 3D over contour view (enlarged limits)
(ll.m_ w —wz)? + (1 +w + 10w — wu)fll — wy — u)? + (1 + wy + 10us — wyus)®

x10°

N0
ooy ___|
=

%]
en

J(uy, ug)

-10

| Combined 3D view and contour plot, problem 1 |

Figure 4.2: Matlab outputlﬂ)‘ir part(a) problem 1, HW4

4.4. HW 4 CHAPTER 4. HWS

441.2 part(b)

Matlab 2015a was used to implement steepest descent algorithm. Listing is given in the
appendix. The following is the outline of general algorithm expressed as pseudo code.

Algorithm 1 Steepest descent with fixed step size search algorithm

1: procedure STEEPEST_DESCENT
2: > Initialization

3 h < step size

4: € + minimum convergence limit on ||V.J(u)]|
5

6

7

k<+ 0
uk —

max_iterations <+ max iterations allowed

8 while |VJ(u)|> ¢ do

k
o ut b = by
10: k+—k+1
11: > check for oscillation
12: if & > max_iterations or J(uy) > J(ug—1) then
13: exit loop
14: end if
15: end while

16: end procedure

Figure 4.3: Steepest descent with fixed step size search algorithm

4.41.3 part(c)

In all of the following results, the convergence to optimal was determined as follows: First
a maximum number of iterations was used to guard against slow convergence or other
unforeseen cases. This is a safety measure. It is always recommended to use in any iterative
method. This number was set very high at one million iterations. If convergence was not
reached by this count, the iterations stop.

The second check was the main criteria, which is to check that the norm of the gradient
[V (J(u))| has reached a minimum value. Since |V (J(u))| is zero at the optimal point, this
check is the most common one to use to stop the iterations. The norm was calculated after
each step. When |V (J(1))| became smaller than 0.01, the search stopped. The value 0.01 was
selected arbitrarily. All cases below used the same convergence criterion.

A third check was added to verify that the value of the objective function J(u) did not increase
after each step. If J(u) increased the search stops, as this indicates the step size taken is too
large and oscillation has started. This condition happened many times when using fixed
step size, but it did not happen with optimal step size.

The relevant Matlab code used to implement this convergence criteria is the following:

195

4.4. HW 4 CHAPTER 4. HWS

%check if we converged or not
if k>opt. MAX ITER Il gradientNormTol(k)<=opt.gradientNormTol ...

I (k>1 && levelSets (k)> levelSets (k-1)) % check for getting worst
keepRunning = false;
else

end

The result of these runs are given below in table form. For each starting point, the search
path u* is plotted on top of the contour plot. Animation of each of these is also available
when running the code. The path u* shows that search direction is along the gradient vector,
which is perpendicular to the tangent line at each contour level.

196

4.4. HW 4 CHAPTER 4. HWS

Table 4.1: Starting point [8,12]

h # steps comments
0.01 | 1087 Converged with no oscillation detected. Below are the last few values
of J(u)

K>> levelSets(end-10:end)
40.000847560444
40.0002241269404
40.0000006868238

Below are the corresponding values of |V (J(u))]
K>> gradientNormTol (end-6:end)
0.122339282346846
0.0823426325071764
0.042343897716672
0.00234405713552924

0.1 129 Failed to converge. Oscillation started when near optimal point. Below

are the last few values of J(1) that shows this.
K>> levelSets(end-10:end)

40.0906178557323

40.0146606611128

40.0906176333215

These are the corresponding values of |V (J(u))]
K>> gradientNormTol (end-6:end)
1.0342875633952
2.51122413813222
1.03429217902894
2.51122268542765

1 14 Early termination as the objective function started to increase as the
step size was large. Oscillation started early. Below are the last few

values of (1) recorded that shows this.
K>> levelSets(end-10:end)
43.8208310324077
45.023624369293
43.781716244717
45.006474191836

Below are the corresponding values of |V (J(u))]
K>> gradientNormTol (end-6:end)
18.2210845193641
16.4816791388241
18.1783873100515
16.4576741878144

197

4.4. HW 4

CHAPTER 4. HWS

gure 1
File Edit View Insert Tools Desktop Window Help

=1olx]

Eile Edit View Insert Tools Desktop Window Help

Showing u* path on top of contour plot. Problem 1, part (b)
u’ = [8.0,12.0], step [0.01]. .J () = 40.000, iterations [1087]
comvergence criteria [V(J(u))| < 0.010

successfull completion. Converged before maximum iterations

15

File Edit View Insert Tools Desktop Window Help

Showing «* path on top of contour plot. Problem 1, part (b)
uf = [8.0,12.0], step [0.01], J(u) = 40.000, iterations [1087]
convergence criteria [V(.J(u))| < 0.010
successfull completion. Converged before maximum iterations

s

/ \\? %&

&

=
=

Showing #* path on top of contour plot. Problem 1, part (b)
u’ = [8.0,12.0], step [0.01], .J(u) = 40.000, iterations [1087]
convergence criteria [V (J(u))| < 0.010
successfull completion. Converged before maximum iterations

15 /

10

o

Search path on top of filled contour plot

ure 5

File Edit View Insert Tools Desktop Window Help

=1o] %]

1

D En e ot Al esAr s erform) Probl e N astI(D)
u' = [8.0,12.0], step [0.01]. J(u) = 40.000, iterations [1087]
convergence criteria [V(.J(u))| < 0.010
Wt BT (el . (ORrsy i) [t et v oo o e

File kdit View Insert lools Desktop Window Help

=ofx|

Showing u* path

om top of contour plot. Problem 1, part (b)

w! — [8.0,12.0], step [0.01], J(u) — 40.000, iterations [1087]
convergence criteria [V (J(u))| < 0.010
successfull completion. Converged before maximum iterations

N

Zoag
are
clog
sing

File Edit View Insert Tools Desktop Window Help
Do MR OUDExX-|E|(0E[=DO
Showing J(u«") progress. Problem 1, part (b)
u! = [8.0,12.0], step [0.01], J (u)} = 40.000. iterations [1087]
convergence eriteria [V (.7(u))| < 0.010
successfull completion. Converged before maximum iterations

1000 Rapid improvement 1

when far away Convergence slows

=00 \ own near optimal 1
/ /
600 / \ R
it \
» \

400
\

4

800

400 600

step number

1000 1200

Objective function getting smaller during search

Figure 4.4: Result fo

ming to 5how there

3D view of search path
NO osci}llation

e to optimal point N

e step/size is small Fixed step h = 0.01 results
/
/

/
/ ure 3
/

File Edit View Insert Tools Desktop Window Help

=10l x|

~

Showing |V.J(u*)| progress. Problem 1, part (b)
u’ = [8.0,12.0], step [0.01], J(u) = 40.000, iterations [1087]
convergence criteria [V(.J(u))| < 0.010

Rapid improvement
when far away

400 Convergence slows
own near optimal

300

Norm of gradient

200

100

successfull completion. Converged before maximum iterations
T T T T

600
step mumber

400 800 1000

1200

Gradient norm approaching convergence limit

r usind 9¢p 0.01 starting from (8,12)

4.4. HW 4 CHAPTER 4. HWS

—Io)x| _lo/x]
File Edit View Insert Tools Desktop Window Help D File Edit View Insert Tools Desktop Window Help L
Showing u* path on top of contour plot. Prablem 1, part. (b) Showing u* path on top of contour plot. Problem 1, part (b)
u’ = [8.0,12.0], step [0.10], J(u) = 40.091, iterations [129] u’ = [8.0,12.0], step [0.10], .J(u) = 40.091, iterations [129]
convergence criteria [V(.J(x))| < 0.010 convergence criteria |[V(.J(u))| < 0.010
s failed to converge before maximum iterations due to oscillation - failed to converge before maximum iterations due to oscillation
5 5
-
5 5 _
o @§§ S % ' *%b
& =, >
SE8s2 “,
T RES = .
10 = g 5P
= P
P
‘ng
‘o
= 7
50 a
27)
600, g%
A0 200 5)
0 140
L = =
N il ~
4553 e RN
o = LA SN @
L8y, WA
5 i 1 i |
\ 0 5 10 15 \ 20
\ \
| \
|
Search path on top of contour plot | Search path on top of labeled contour plot ;
EN Figure 1 = /
Hle Edit View Insert lools Desktop Window Help ~ " /I ;IEILI
515“;“'[@_5 1‘;?5? :i;‘,”[‘g_‘f;f’, _’,‘:3‘)"}’:’0‘_'@;’1‘_";‘:5;;;,:“[‘1‘2;}’) | zoom File Edit View Insert Tools Desktop Window Help / b
e reencelcaanl (7)) [ES{0:010) 1l 3D mesh view of the search performed. Problem 1, fart (b)

failed to converge before maximum iterations due to oscillation N N
u® = [8.0,12.0], step [0.10], J(u) = 40.091, iteratidns [129]
convergence eriteria [V(.J(u))| < 0.01
failed to converge before maximum iterations dug to oscillation

/
/
/
/

x10* %

gure 1
Edit View Insert Tools Desktop Window Help
Showing «* path on top of contour plot. Problem 1, part (b)
u¥ = [8.0,12.0], step [0-10], J(u} = 40.091, iterations [129]
convergenee criteria [V (.J(x))] < 0.010
failed to converge before i i i due to oscillation

- B
. {
- Jelx

/
/

»
Zooming to show
oscillation are starting Fixed step h = 0.1 results
when getting close to
optimal ppint

3D view of search path

BFigues =18l
File Edit View Insert Tools Desktop Window Help £l
| Showing |VJ(u")| progress. Problem 1, part (b)
il u! = [8.0,12.0], step [0.10], .J(u) = 40.091, iterations [117]
convergence criteria [V(J{u))| < 0.010
300 failed to converge before maximum iterations due to oscillation
T T T T T
(=]
File Edit View Insert Tools Desktop Window Help = T00 - B
; [Showing]; J(u")[prog]z;n&(‘.)Pmblcm 1, part (b) - Rapid improvement
u® = [8.0,12.0], step [0.10]. J(u) = 40.091, iterations [129]
convergence criteria [V(J(x))| < 0.010 600 - when far away b
failed to converge before maximum iterations due to oscillation
1200 5 \
T 500 - ! 4
] /
=
1000 |- 1 =% 7
= - o 400 - A/ 7
2 Rapid improvement ; Convergence slows
£ "0 § whenfaraway Convergence slows] = 300 | own near optimal |
o \ own near optimal = /
£ oo 1 200 |- | d
= \
P N
g doof 1 100 - N |
2 14
B
200 |- 1 0 n
0 20 40 60 80 100 120
0 step number
0 20 40 60 80 100 120 140
step number

Gradient norm approaching convergence limit
Objective function getting smaller during search pp e g

Figure 4.5: Result for using%tep 0.1 starting from (8,12)

4.4. HW 4 CHAPTER 4. HWS

rel -0 ﬂ rel - O il
File Edit View Insert Tools Desktop Window Help £ File Edit View Insert Tools Desktop Window Help ~
Showing #" path on top of contour plot. Problem 1, part (b) Showing «* path on top of contour plot. Problem 1, part (b)
u' = [8.0,12.0], step [1.00], J(u) = 86.403, iterations [14] u = [8.0,12.0], step [1.00], J(u) = 86.403, iterations [14]
convergence criteria |[V(J(u))| < 0.010 convergence criteria [V{.J(u))| < 0.010
failed to converge before maximum iterations due to oscillation failed to converge before maximum iterations due to oscillation

Search path on top of contour plot, Search terminated early. Large step size
oscillation due to large step size caused oscillation. No convergence possible
Figure 2 - |0 ﬂ EN Figure 3 _I— _|E| H
File Edit View Insert Tools Desktop Window Help ~ | File Edit View Insert Tools Desktop Window Help =
Showing J(u*) progress. Problem 1, part (b) Showing |V.J(u*)| progress. Problem 1, part (b)
u’ = [8.0,12.0], step [1.00], .J(u) = 86.403, iterations [14] u’ = [8.0,12.0]. step [1.00], J(u) = 86.403, iterations [14]
convergence criteria [V(J{u))| < 0.010 convergence criteria [V(J(x))| < 0.010
1200 failed to converge before maximum iterations due to oscillation 1200 failed to converge before maximum iterations due to oscillation
2 O T T . : . 2 o T T T : T
Rapid improvement
1000 - when far away 1 1000 - Rapid improvement 1
g \ when far away
E 800 | /’ E = 800} \ 1
E L/ Objective function ﬁ /’ Norm of gradient
600} y 3 increased due to large J B a0l 34 increased due to large
o fixed step size E y3 fixed step size
k=] / 5
g 400 | / . 1 Z 400 b ,/ 1
E / oscillation /
’@D f ’
: I7] : BASANAEEE;
0 2 4 6 bﬁ 10 12 14 g 7 7 7 2 s e .
e step number
Objective function progress using large fixed size Gradient norm approaching convergence limit

Fixed step h = 1 results

Figure 4.6: Result for using step 1 starting from (8,12)

200

4.4. HW 4 CHAPTER 4. HWS
Table 4.2: Starting point [5,10]
h steps to | comments
converge
0.01 | 1311 Search reached optimal point (13,4), but skipped over it and started

to oscillate back and forth around the optimal point due to using
large fixed step size. Below are the last few values of J(u) recorded

showing this.
K>> levelSets(end-10:end)

40.000714475783
40.0002484312073
40.0007127154844
40.0002478317567
40.0007121302667

The above shows that J(u) is oscillating around J*, while the |V (J(u))|
has not yet become small enough to stop. These are the corresponding

values of |V (J(u))|
K>> gradientNormTol (end-6:end)

0.226174843552625
0.133516310474324
0.226094172083413
0.133583571337061
0.226067390166402

Even though this test used a small step size and the algorithm con-
verged when starting from (8,12) as shown in the earlier case, but
this time it did not converge.

This shows that the search is sensitive to the starting point when
using fixed step size. One way to correct this problem is to relax the
convergence criteria.

Continued on next page

201

4.4. HW 4

CHAPTER 4. HWS

Table 4.2 — continued from previous page

0.1

123

Failed to converge. Oscillation detected near optimal point. Below

are the last few values of (1) recorded showing this.
K>> levelSets(end-10:end)

40.1256594812986

40.0053368705834

40.1256594634014

40.0053368695271

40.1256594618631

Below are the corresponding values of |V (J(u))]
K>> gradientNormTol (end-6:end)

3.06656767477006
0.61736163474876
3.06656750731774
0.617361766949031
3.06656749292543

19

Early termination due to the objective function starting to increase
since the step size was too large. Oscillation started early in the search.

Here are the last few values of J(1) showing this
K>> levelSets(end-10:end)

43.0823019294829

45.7913265189839

43.0266791615351

45.7622114747819

Below are the corresponding values of |V (J(u))|
K>> gradientNormTol (end-6:end)

16.1440020280613
17.487837406306
16.092991548592

17.4442963174089

202

4.4. HW 4

CHAPTER 4. HWS

Figure 1
File Edit View Insert Tools Desktop Window Help

=10] x|

Showing «* path on top of contour plot. Problem 1. part (b)
u’ = [5.0,10.0], step [0.01], J(u) = 40.001, iterations [1311]
convergence criteria |V(.J(u))| < 0.010

-
=

10

o

Search path on top of contour plot

FEile Edit View Insert Tools Desktop Window Help

‘Izoom

Showing u* path on top of contour plot. Problem 1, part (b)
u® = [5.0,10.0], step [0.01], J(u) = 40.001, iterations [1311]
convergence criteria |[V(.J(u))| < 0.010
failed to converge bcfcégc maximum iterations due to oscillation

N\

I
!

/

NOU®R. B[00 /
Showing u* path on top of contour plot. Problem 1, part (b) /
= [5.0,10.0], step [0.01], 7 (u) = 40.001, ilerations [1311]
convergence criteria [V(J(w))| < 0.010
failed to converge before maximum iterations due to oscillation , /
a.02 : - /
oscillation 4
4.015 - v e
Optimal s
4.01 L 7z
point T
4.005 -
~
V.
o Zooming to shpw search
| reached optimal point,
so0 but started to jpscillate
el aroundit.
12,99 12.995 13 13.005 13.01 13.015 13.02 13.025

File Edit View Insert Tools Desktop Window Help

=1o]x|

File Edit View Insert Tools Desktop Window Help -

File Edit View Insert Tools Desktop Window Help

=10] x|

Showing #* path on top of contour plot. Problem 1, part (b)
u’ = [5.0,10.0], step [0.01], .J(u) = 40.001, iterations [1115]
convergence criteria [V (J{u))| < 0.010
failed to converge before maximum iterations due to oscillation

10 l / ‘ 3000
8 2500
6

2000
1
1500
2
. 1000
-2 500
-4
4 6 8 10 12 14 16

Search path on top of filled contour plot

File Edit View Insert Tools Desktop Window Help

=10]x]

Showing |V.J(u*)| progress. Problem 1, part (b)
) = [5.0,10.0], step [0.01], J(u) = 40.001, iterations [1115]
comvergence criteria [V(J(u))| < 0.010

10y _failed to converge before maximum iterations due to oscillation
1000 B
5 800 b 1
2
=)
]
<7600 | |
g
=
2400 b 1
200 | 1
-~
’ N
0 I \ \ [)
0 200 400 600 800 in\nn 200
step number ~—<
\
Gradient norm approaching convergence limit \
\
-1ofx| |
Insert Tools Desktop Window Help - |
Showing |V.J(u)| progress. Problem 1, part (b)]
w0 = [5.0,10.0], step [0.01], J (u) = 40.001, iterations [1121]
e (J(w))| = 0.010 /
L il o convere before maximun itetations due to oxcilltion ,
Zoom view of gradient //
norm when oscillation ;
1
= arts
2 /
o . v
g o5 LL‘“M »
Z

et
et s

1110

1085 1090 1095 1100 1105

step number

115 1120

=1olx]|

Showing J (") progress. Problem 1, part (b)
u® = [5.0,10.0], step [0.01], .J (u) = 40.001, iterations [1115]
convergence criteria [V(J ()| < 0.010
failed to converge before maximum iterations due to oscillation

3500
3000 Rapid improvement |
= when far away
Z 2500 Convergence slows
k!) own near optimal
; 2000 Vi 4
£ e / Oscillation arqund
B 1500 - X 1
© Ls0o \ optimal poipt
z \
= 1000 + B
E \ y
500 \\ 1. e
) h |
0 200 400 600 800 1000 1200

step number

Objective function getting smaller during search

Showing J(u*) progress. Problem 1, part (b)
u' = [5.0,10.0], step [0.01], J(u) = 40.001, iterations [1121]
convergence criteria |V(J(u))| < 0.010
failed to converge before maximum iterations due to oscillation

] h=0

1095 1100 1105 1110

step number

1115 1120

Zoom view of J(u) near optimal. Oscillation. No
convergence

Figure 4.7: Result for using@€p 0.01 starting from (5,10)

.01

results

4.4. HW 4

CHAPTER 4.

HWS

igure 1
File Edit View Insert Tools Desktop Window Help

=1ofx]

Showing u* path on top of contour plot. Problem 1, part (b)
u” = [5.0,10.0], step [0.10], J(u) = 40.126, iterations [123]
convergence criteria [V(J(u))| < 0.010
failed to converge before maximum iterations due to oscillation

=|0x|

¥

~ File Edit View Insert Tools Desktop Window Help
Showing «* path on top of contour plot. Problem 1, part (b)
u’ = [5.0,10.0], step [0.10], J(u) = 40.126, iterations [123]
convergence criteria [V(J(u))| < 0.010
failed to converge bcforémm(hmun iterations due to oscillation
§ \
10 S
9
8
7
6
=]
&
5
ab
bl G 7 8 9 10 1 12 13

Search path on top of contour plot

_ X Bl Figure 3 Ol x
=10/x| — archpath ontop o d contour x|
File Edit View Insert Tools Desktop Window Help > File Edit View Insert Tools Desktop Window Help 2
Showing |V.J(u*)| progress. Problem 1, part (b) Showing |V.J(u*)| progress. Problem 1, part (b}
u = [5.0,10.0], step [0.10], J () = 40.126, iterations [123] u” = [5.0,10.0], step [0.10], J (u) = 40.126, iterations [123]
convergence criteria [V(.J(u))| < 0.010 convergence criteria [V(J(u))| < 0.010
T failed to converge before maximum iterations due to oscillation failed to converge before maximum iterations due to oscillation
50 - 1
1000 - 1
40 - |
= 800 | =
g B
£ £ s0f E
o600 1 e Zoom view of gradient
g g . norm when oscillation
5 g 20+
Z 400 1 z starts
10+]
200 - g L
—
_-
7N 8
@ | | | /] - o . ‘ . . C
0 20 10 60 80 100 120 14)1// 70 80 90 100 110 120
step number \ 4 step number
N z

Gradient norm approaching convergence limit

File Edit View Insert Tools Desktop Window Help

5= S

_Iox|

File Edit View Insert Tools Desktop Window Help Bl

Showing J(u*) progress. Problem 1, part (b)
u" = [5.0,10.0], step [0.10], J(x) = 40.126, iterations [123]
comvergence criteria |[V(.J(u))| < 0.010
failed to converge before maximum iterations due to oscillation

Rapid improvement
when far away]

3000

El |
g w0r // Convergence slows
s 2000| // own near optimal
& / o
& / Oscillation around
£ 1500 . |
ok ‘\ optu{nal point]
2 oo \ \ i
= \ \
500 |- | - T =4
7 \
4 R
0 | | I ; .
0 20 40 60 80 100N 120 ur
step mumber S —_ -

Showing .J (u*) progress. Problem 1, part (b)
! = [5.0,10.0], step [0.10], .J(x) = 40.126, iterations [123]
convergence criteria [V(J(u))] < 0.010
failed to converge before maximum iterations due to oscillation

step number

Objective function getting smaller during search

Zoom view of J(u) near optimal. Oscillation. No convergence

Figure 4.8: Result for using step 0.1 starting from (5,10)

204

h =

0.1

sl]
44 .
Zooming to show problem
a3 area of oscillation and :
g divergence
2 er] results
E 41
=l
Z Aol
39+
Ed L L L L
~ - 110 115

4.4. HW 4 CHAPTER 4. HWS

M=IFY ol
(Elle [Zl M= Gssic Mewls D=ty Wiy EEp *| Hle Edit View Insert Tools Deskiop Window Help -
Showing «* path on top of contour plot. Problem 1, part (b)

0 . h Showing #* path on top of contour plot. Problem 1, part (b)

u? = [5.0, 10.0], step [1.00], J (u) = 46,408, iterations [19] u’ = [5.0,10.0], step [L.00], .J (u) = 46.408, iterations [19]
convergence criteria |V (J(u))| < 0.010

failed to converge before maximum iterations due to oscillation

convergence criteria [V(J{u))| < 0.010
failed to converge before maximum iterations due to oscillation

11+ / ! Jl

c

k@ ,-"; {

10

Search path on top of contour plot

-0 CITEESRRERERIGR G iled contou dp X

File Edit View Insert Tools Desktop Window Help = File Edit View Insert Tools Desktop Window Help
Showing |V.J(u*)| progress. Problem 1, part (b) Showing |V.J(u*)| progress. Problem L, part (b)
w0 = [5.0,10.0], step [1.00], J(u) = 45.762, iterations [25] u® = [5.0,10.0], step [1.00], .J(u) = 45.762, iterations [23]
convergence criteria [V(.J(u))| < 0.010 convergence criteria |V(J(u))| < 0.010
1200 failed to converge before maximum iterations due to oscillation failed to converge before maximum iterations due to oscillation
2 T T T T T T T T T T T T T
80 - L 8
1000 -

Zoom view of gradient
norm when oscillation]
starts

Norm of gradient
=
2
E]
T
Norm of gradient
g =]
T

400

- | L 4A—["-—==
P! L—]
200 - - 20 - i
-~
-

. I I . I I I . .

0 P) . 3 2 22 2

0 25 8 10 12 14 16 18 20 22 24

P2 step number

step number ~ -

Gradient norm approaching convergence limit

-1ofx|
_iojx] Fle it View Isert Tols Dektop Window e .
File Edit View Insert Tools Desktop Window Help ¥ . Showing J (u*) progress. Problem 1, part (b)
Showing J (u*) progress. Problem 1, part (b) u = [5.0,10.0], step [L00], 7 (u) = 45,762, iterations [25]
T e i D 000 ot P VT e
comvergence criteria [V(.J(u))| < 0. . ! r i
3500 failed to converge before maximum iterations due to oscillation
5 s ; :
Rapid improvement i 1
3000 F when far away i .
| £ 80 - i
L l Convergence slows 1 i Zooming to show problem h=1
/ - < illati l =
, own near optimal £ area ?osullatlon and
[7 / 7 < ivergence
&~ / Oscillation afound Eeol results
r | optimal point 8
\ \ 2l
101 e i
500 | -
~
_ sl s .
0 ' 10 15 20 25
o ~ - step number
step number ==

Objective function getting smaller during search Zoom view of J(u) near optimal. Oscillation. No convergence

Figure 4.9: Result for using step 1 starting from (5,10)
205

4.4. HW 4 CHAPTER 4. HWS

Table 4.3: Starting point [12,14]

h steps to | comments
converge
0.01 | 1130 Search reached optimal point (13,4) and did converge. No oscillation

were detected. Here are the last few values of J(u) recorded
K>> levelSets(end-10:end)
40.0034914479994
40.002020228495
40.0009489569455
40.0002776602642
40.0000063555764

The above shows that J(u) did not oscillate and continued to become
smaller with each step. These are the corresponding values of [V (J(1))]

showing it reached convergence criteria and stopped.
K>> gradientNormTol (end-6:end)

0.167118334256662
0.127125180003955
0.0871288452215103
0.047130308356715
0.00713054850822947

0.1 131 Failed to converge due to oscillation Below are the last few values of

J(u) recorded showing that it has increased.
K>> levelSets(end-10:end)
40.1051079160718
40.0105348693244
40.1051060970453
40.0105346146167
40.1051057241206

The above shows that J(u) started to oscillate near the optimal point
since the step size was large. These are the corresponding values of

V@)l

K>> gradientNormTol (end-6:end)

2.80005566566667
0.865917403257339
2.80004081985152
0.865928703656839
2.8000377762892

Continued on next page

206

4.4. HW 4

CHAPTER 4. HWS

Table 4.3 — continued from previous page

Early termination due to the objective function increasing since the
step size was too large. Below are the last few values of J(i) recorded

showing this

K>> levelSets(end-10:end)

136.
147.
125.
133.
115.
120.

Below are the corresponding values of |V (J(u))|
K>> gradientNormTol (end-6:end)

111.

072742913828
365512785727
964493512448
478776121489
810171973447
277823711614

538416550055

76.4541018810368
98.2477444652928
70.7519791844584
85.8602921445108

207

4.4. HW 4

CHAPTER 4. HWS

ure 1

File Edit View Insert Tools Desktop Window Help

=10/ x|

ure 1
~

Showing u path on top of contour plot. Problem 1, part (b)
u’ = [12.0,14.0], step [0.01], J(u) = 40.000, iterations [L130]
convergence criteria [V (.J(u))| < 0.010
suceessfull completion. Converged before maximum iterations

File Edit View Insert Tools Desktop Window Help

=[olx]

Y

Showing «* path on top of contour plot. Problem 1, part (b)
! = [12.0,14.0], step [0.01], J(u) = 40.000, iterations [1130]
convergence criteria [V(.J(u))| < 0.010
suceessfull completion. Converged before maximum iterations

zoom

Search path on top of contour plot

File Edit View Insert Tools Desktop Window Help

=10|x]

File Edit View Insert Tools Desktop Window Help

Showing |V.J(u*)| progress. Problem 1, part (b)
u' = [12.0,14.0], step [0.01], J(u) = 40.000, iterations [1130]
ria [V(.J(u))| < 0.010
successfull completion. Converged before maximum iterations
T T T T T

450

Norm of gradient

0 L L L 4
0 200 400 600 800 100 12[](])

step number AN

=10/

Showing |V.J(u")| progress. Problem 1, part (b)
u = [12.0,14.0], step [0.01], J(u) = 40.000, iterations [1130]
convergence criteria [V(J(u))| < 0.010
successfull completion. Converged before maximum iterations
T T T T

Zoom view of gradient
norm. No oscillation.]|

Norm of gradient

\
d o
S

\
o

1125
step number

1120

Gradient norm approaching convergence limit

-lo/x|

File Edit View Insert Tools Desktop Window Help Ll

Showing .J (u") progress. Problem 1, part (b)
' = [12.0,14.0], step [0.01], J () = 40.000, iterations [1130]
convergence criteria [V(J{u))| < 0.010
suceessfull completion. Converged before maximum iterations

450
0 Rapid improvement
when far away 1
o 350 \ 4
2 a0l / Convergence slows |
& ; own near optimal
£ o250 s g
= / . .
2 »* / No Oscillation.
= 200 F 9
o | Converged OK
S 1m0t \ T
5 \ \
= 100 \ o
| e TT=~
50 q
4 Y
0 L I I L \
0 200 400 600 800 1000 1200
~ —

step mmmber

Objective function getting smaller during search

File Edit View Insert Tools Desktop Window Help E

Showing .J(u*) progress. Problem 1, part (b}
u’ = [12.0,14.0], step [0.01], J(u) = 40.000, iterations [1130]
convergence eriteria [V(J(u))| < 0.010
successfull completion. Converged before maximum iterations

40.08

40.07

40.06 .
Zooming to show no

oscillation. Good
convergence

40.05

40.04 -

40.03

40.02

40.01

value of objective function

1120
step number

1125

Zoom view of J(u) near optimal. converged

Figure 4.10: Result for using step 0.01 starting from (12,14)

208

h=0.01
results

4.4. HW 4

CHAPTER 4. HWS

gure 1

File Edit View Insert Tools Desktop Window Help £

=|o]x]

Showing u* path on top of contour plot. Problem 1, part (b)
u? = [12.0,14.0], step [0.10], J(u) = 40.105, iterations [131]
convergence criteria [V(J(u))| < 0.010
failed to converge before maximum iterations due to oscillation

/”‘

igure 1

File Edit View Insert Tools Desktop Window Help

=1olx|

Showing «* path on top of contour plot. Problem 1, part (b)
u' = [12.0,14.0], step [0.10], J(u) = 40.105, iterations [131]
convergence criteria [V(J(u))| < 0.010
. failed to converge before maximum iterations due to oscillation

Showing
oscillation. No
convergence.

Search path on top of contour plot

Figure 3
Eile Edit View Insert Tools Desktop Window Help
Showing |V.J(u*)| progress. Problem 1, part (b}
u® = [12.0,14.0], step [0.10], J(u) = 40.105, iterations [131]
convergence criteria [V(.J(u))| < 0.010

failed to converge before maximum iterations due to oscillation

=1olx|

500

400

300

200

Norm of gradient

100

[] L L L I
0 20 40 60 80 100 1\)\0
~

step number =

pm

Gradient norm approaching convergence limit

File Edit View Insert Tools Desktop Window Help E
Showing .J(u*) progress. Problem 1, part (b)
u® = [12.0,14.0], step [0.10], J(x) = 40.105, iterations [131]
convergence criteria [V(.J(u))| < 0.010
failed to converge before maximum iterations due to oscillation

Rapid improvement
L when far away Convergence slows
} own near optimal

[/
/ / Oscillation started
here
\ |

0 20 40 60 80 1
step number A 4

Objective function getting smaller during search

File Edit View Insert Tools Desktop Window Help

Showing |V.J(u*)| progress. Problem 1, part (b)
u' = [12.0,14.0], step [0.10], J(u) = 40.1035, iterations [131]
convergence criteria [V(.J(u))| < 0.010
failed to converge before maximum iterations due to oscillation
T T T T T T

30 + 4
g 20} 4
42
ins)
«
= P S —
& |- T T T = —
=10 - S
= Zoom view of gradient
5 norm. Oscillation.
z,
0t 4
-10 k. . | | | |]
105 110 115 120 125 130

step number

File Edit View Insert Tools Desktop Window Help 3

Showing .J(u*) progress. Problem 1, part (b)
u’ = [12.0,14.0], step [0.10], J(x) = 40.105, iterations [131]
convergence criteria |V(J(u))| < 0.010
failed to converge before maximum iterations due to oscillation

43 + 1
a5 1
al Zooming to show no i
s oscillation. Good

5 i

convergence

value of objective function

L
125

120
step number

Zoom view of J(u) near optimal. Oscillation detected

Figure 4.11: Result for using step 0.1 starting from (12,14)

209

h=0.1
results

4.4. HW 4 CHAPTER 4. HWS

B Figure 1 =Iolx| —_[olx|
File Edit View Insert Tools Desktop Window Help ~ File Edit View Insert Tools Desktop Window Help ~
Showing «* path on top of contour plot. Problem 1, part (b}

ﬂ 5 ? Showing u* path on top of contour plot. Problem 1, part (b)
u' = [12.0,14.0], step [1.00], J(u) = 120.278, iterations [19] u? = [12.0,14.0], step [1.00], J(x) = 120.278, iterations [19]
convergence criteria [V(J(u))| < 0.010
failed to converge before maximum iterations due to oscillation

convergence criteria [V(J(x))| < 0.010
failed to converge before maximum iterations due to oscillation

. Showing
N\ oscillation.
_ Starting early

>
]
=

12.5 13

Search path on top of contour plot

= -oure _Inix

File Edit View Insert Tools Desktop Window Help ~ File Edit View Insert Tools Desktop Window Help B
Showing .J{u") progress. Problem 1, part (b) Showing |V.J(u*)| progress. Problem 1, part (b)
u’ = [12.0,14.0], step [L.00], .J(x) = 120.278, iterations [19] u’ = [12.0,14.0], step [L.00], .J(x) = 120.278, iterations [19]
convergence criteria [V(J(w))| < 0.010 convergence criteria [V(J(u))| < 0.010
a9 failed to converge before maximum iterations due to oscillation 500 failed to converge before maximum iterations due to oscillation
5l T T T bl T T T
400 + q ©
o 30} — 400]
o= =
=
E 300 + 1 E
= = 300 g
£ gl o b | , & .
2120 J(u) became larger B Gradient also
Z o due to large step size = seen to
= L]
= g 200 increase 1
s ot T T c =
5 () g
=100 ~-F1r1 100 > “1
50 B
0 0
0 bl 10 15 20 0 5 10 15 20
step number step number
Objective function. Oscillation detected Norm of gradient.

Figure 4.12: Result for using step 1 starting from (12,14)

210

4.4. HW 4 CHAPTER 4. HWS

Table 4.4: Starting point [12,10]

h steps to | comments
converge
0.01 | 691 Converged with no oscillation. Here are the last few values of J(u)

recorded confirming this.

K>> levelSets(end-10:end)
40.0046068598544
40.0028871867126
40.0015674398797
40.0006476523458
40.0001278473181
40.0000080382134

Below are the corresponding values of |V (J(u))]
K>> gradientNormTol (end-6:end)

0.151971746241737
0.111977272332977
0.0719799883799201
0.0319808731053423
0.00801909420920947

0.1 87 Did not converge. Oscillation was detected. Below are the last values

of J(u) recorded confirming this.

K>> levelSets(end-10:end)
40.0940178225724
40.0143577207974
40.0940127829831
40.0143567476265
40.0940114931914

Below are the corresponding values of |V (J(u))| showing it is diverging.
K>> gradientNormTol (end-6:end)

1.00986396810643
2.64564970050157
1.00989167493457

2.6456402389648

Continued on next page

211

4.4. HW 4 CHAPTER 4. HWS

Table 4.4 — continued from previous page

1 24 Did not converge. Oscillation was detected early in the search due to
using large step size. Below are the last few values of (1) recorded

confirming this.

K>> levelSets(end-10:end)
45.2261295001543
43.5283233241446
45.2260318140989
43.5282741210766
45.2260091586802

These are the corresponding values of |V (J(u))| showing it is diverging.
K>> gradientNormTol (end-6:end)

16.7542019931462
17.5230111072761
16.7540613766743
17.5229596031784
16.7540287643191

212

4.4. HW 4

CHAPTER 4. HWS

a Figure 1
Eile Edit View Insert Tools Desktop Window Help

=10

u

Showing u* path on top of contour plot. Problem 1, part (b)
u’ = [12.0,10.0], step [0.01]. J(u) = 40.000, iterations [691]
convergence criteria [V(J(w))| < 0.010
suceesstull completion. Converged before maximum iterations

1=

23

E Figure 1

File Edit View Insert Tools Desktop Window Help

=] x|

Showing «* path on top of contour plot. Problem 1, part (b)
u’ = [12.0,10.0], step [0.01], 7 (u) = 40.000, iterations [691]
comvergence eriteria [V(J(u))| < 0.010
successfull completion. Converged before maximum iterations

N

.

13.05 131 1315

1285 129 1295 13

Search path on

_lox|

File Edit View Insert Tools Desktop Window Help

top of contour plot

File Edit View Insert Tools Desktop Window Help

=[olx]

~

igure 3

Showing |V J(u")| progress. Problem 1, part (b)
u’ = [12.0,10.0], step [0.01], J{u) = 40.000, iterations [691]
convergence criteria [V(J(u))| < 0.010
successfull completion. Converged before maximum iterations

DEds AR O9EL- 208 aD
Showing |V.J(u*)| progress. Problem 1, part (b)
u’ = [12.0,10.0]. step [0.01], J(u) = 40.000, iterations [691]

160 convergence criteria [V(.J(u))] < 0.010
successfull completion. Converged before maximum iterations
05— . : k r ;
04k -
E
g 1 5 03 . .
;[= o Zoom view of gradient
= 5 norm. No oscillation.
g S 02l i
5 H
< B
Z
01t -
zoon 4= o=
PO =
7 \ -~ ok J
e
[] i i L i L \ N 7 | | | | | |
0 100 200 300 400 500600 /7)@’ e i w0 w5 o o
-_

step mumber

step number

Gradient norm approaching convergence limit

E’ Figure 2
Eile Edit View Insert Tools Desktop Window Help
Showing .J(u*) progress. Problem 1, part (b)
u’ = [12.0,10.0], step [0.01], J(u) = 40.000, iterations [691]
convergence criteria [V(J(u))| < 0.010
snccessfull completion. Converged before maxinmm iterations

=|ofx]

Rapid improvement
when far away

|
!

—-
I
S

Convergence slows
own near optimal

-
2
S

No OsciIIation:
Conv\erged OK]

=
=
S

value of objective function

\
80 - q
ST T~
60 - q
r~
0 ‘ ‘ . ‘
0 100 200 300 400 500 oo T 700

step mumber

h=0.01

ﬂ Figure 2
FEile Edit View Insert Tools Desktop Window Help
Showing J (u") progress. Problem 1, part (b)
u’ = [12.0,10.0], step [0.01], J () = 40.000, iterations [691]
convergence criteria [V(J(u))| < 0.010

snecessfull completion. Converged before maximum iterations
T T T T

Si=ipd

¥

40.07

40.06

40.05 Zooming to show no

oscillation. Good
convergence

40.04

value of objective function

10.03 | ~< E
7 - ~
7
10.02 - E
7
7
woll 7]
re
~
_
— — =] 1
675 650 685 690

step number

Objective function getting smaller during search

Zoom view of J(u) near optimal. converged

Figure 4.13: Result for using step 0.01 starting from (12,10)

213

4.4. HW 4

CHAPTER 4. HWS

File Edit View Insert Tools Desktop Window Help

=0l

e

Sh:rwing u* path on top of contour plot. Problem 1, part (b)
u’ = [12.0,10.0], step [0.10], .J (1) = 40.094, iterations [87]
convergence criteria [V(J(u))| < 0.010
failed to converge before maximum iterations due to oscillation

10

=
=}

S

o

3

160

140

120

00 ~
8

60

=1olx|
File Edit View Insert Tools Desktop Window Help £l
Showing u* path on top of contour plot. Problem 1, part (b)
u’ = [12.0, 10.0], step [0.10], .J (1)) = 40.094, iterations [87]
convergence criteria [V{.J(1))| < 0.010
failed to converge before maximum iterations due to oscillation
43t
Oscillation starts near
optimal point
42t
) Op.tlmal
T point
4+
390
12.7 12.8 12,9 13 13.1

Search path on top of contour plot

File Edit View Insert Tools Desktop Window Help

=[olx]

Showing |V.J(u")| progress. Problem 1, part (b)
= [12.0,10.0], step [0.10], J(u} = 40.094, iterations [87]
convergence criteria [V(.J(u))| < 0.010
failed to converge before maximum iterations due to oscillation

=
L&}
= 100 1
&
i
6D
2
g -
E
S = -
50 A
“ 7
— < /
~N
\
|
U L L n \ +
0 20 40 60 ' 80 , 100
~ -

step number

Gradient norm approaching convergence limit

File Edit View Insert Tools Desktop Window Help

=0l

Showing J (u") progress. Problem 1, part (b)
u = [12.0,10.0], step [0.10], J(u) = 40.094, iterations [87]
convergence criteria [V(.J(u))| < 0.010
failed to converge before maximum iterations due to oscillation

180 T T T T
Rapid improvement

160 - when far away 1
o \
£ M0r // Convergence slows 1
=1 "
& ; own near optimal
g 120¢ s ; 1
= Oscillation.
2100 | 4
= \
e \
2 80 | \ R
& LT T

60 | 4\

N
\ T
/
40
0 80~ — — —100

step number

Ell Figure 3 =ofx]
File Edit View Insert Tools Desktop Window Help E
REERINREY TP
Showing |VJ(u*)| progress. Problem 1, part (b}
= [12.0,10.0], step [0.10], .J(u) = 40.094, iterations [87]
convergence criteria |V(J(u))| < 0.010
failed to converge before maximum iterations due to oscillation
10} 1
. 8r Zoom view of gradient
2 norm. Showing
= .
£ 6F problem due to 1
== - oscillation. Diverges.
- [=}
g 4r 1
£
c
Z
2L 4
0L]
70 75 80 85
step number
=[olx]
File Edit View Insert Tools Desktop Window Help £l
Dﬁﬂe\ﬁ\ﬁ%ﬂ@@%ﬂ@\ﬂ@\lg
Showing J(u*) progress. Problem 1, part (b)
= [12.0,10.0], step [0.10], J(x) = 40.094, iterations [87]
convergence criteria |V(J(x))| < 0.010
failed to converge before maximum iterations due to oscillation
af g
2 415 g
‘é Zooming to show
=l oscillation. Bad
& convergence
cu —
£z _
E 0.5 - RN 1
ERn g
~ —— —susT |

65 0 75 80 85
step number

Objective function getting smaller during search

Zoom view of J(u) showing oscillation

Figure 4.14: Result for using step 0.1 starting from (12,10)

214

0.1

4.4. HW 4 CHAPTER 4. HWS

_oixl|
Kl Fig _I_l_l BN Figure 1 -0 i‘
File Edit View Insert Tools Desktop Window Help ~

File Edit View Insert Tools Desktop Window Help E

Showing u* path on top of contour plot. Problem 1, part (b)

0 = [12.0.10.0], step [L.00]. .7 (u) = 45.226. iterations [34] Showing «* path on top of contour plot. Problem 1, part (b}
convergence Griteria |V (J(2))] < 01010 ul = [12.0,10.0], step [1.00], J () = 45.226, iterations [34]
failed to converge before maximum iterations due to oscillation convergence criteria [V(J(u))| < 0.010

failed to converge before maximum iterations due to oscillation

“Oscillation starts to
early due to large step

>
1l

1

Search path on top of contour plot

EA Figure 3 -0 il Figure 2 _I— _ID ﬂ
File Edit View Insert Tools Desktop Window Help w | File Edit View Insert Tools Desktop Window Help -
Showing |V.J{u")| progress. Problem 1, part (b) Showing J(u*) progress. Problem 1, part (h)
u® = [12.0, 10.0], step [1.00], J(u) = 45.226, iterations [34] u” = [12.0,10.0], step [1.00], J{u) = 45.226, iterations [34]
convergence criteria [V(.J(u))| < 0.010 convergence criteria [V(.J(u))| < 0.010
failed to converge before maximum iterations due to oscillation 180 failed to converge before maximum iterations due to oscillation
| |)) | T . : T T :
150 =
160 — R
Rapid improvement
=]
e 2 o] when far away |
.% 100 L Showing problem due g I\ c |
T & onvergence slows
g: to oscillation. ¢ 120 - / e neiroptimal i
. i3 P
= Diverges. i , ,
5 L -
g g Oscillation.
= =
= 50¢ b
£ 80r y
g
60 3.
\
0 " L7
[[b D14 b ar 4 L
0 5 10 15 20 25 30 35 0 5 10 15 20 3~ — —39—— 35
step number step number
Gradient norm showing divergence Objective function getting smaller showing

oscillation early on

Figure 4.15: Result for using step 0.1 starting from (12,10)

4414 Part(d)

When trying different values of starting points, all with 17 > 1, u; > 0, the search did converge
to u* = [7,-2], but it also depended on where the search started from. When starting close
to u*, for example, from u° = [6.5,1] the search did converge using fixed step size of & = 0.01
with no oscillation seen. Below shows this result

215

4.4. HW 4 CHAPTER 4. HWS

Showing u* path on top of contour plot. Problem 1, part (b)
u® = [6.5,1.0], step [0.01], J(u) = 40.000, iterations [337]
convergence criteria |V(J(u))| < 0.010
successfull completionoConverged before maximum iterations

Figure 4.16: Converging to (7,-2) using step size 0.01 starting from (6.5,1)

216

4.4. HW 4

CHAPTER 4. HWS

However, when starting from a point too far away from (7,-2), it did not converge to (7, -2),
but instead converged to the second local minimum at u* = [13,4] as seen below. In this case
the search started from [20, 20].

If the starting point was relatively close to one local minimum than the other, the search
will converge to nearest local minimum.

20

15

10

0

-5

Figure 4.17:

From [20.0,20.0], step h[0.20], f(u) [40.009], step [127]

N

6 8 10 12 14 16 18 20 22

Missing u* = [7,-2] when starting too far it. Starting from (20, 20) using

step size 0.01

In this problem there are two local minimums, one at (7,-2) and the other at (4,13). It
depends on the location of the starting point u° as to which u* the algorithm will converge

to.

4.4.2 Problem 2

217

4.4. HW 4 CHAPTER 4. HWS

Barmish

ECE 719 — Homework Rosenbrock

For n > 2, consider Rosenbrock’s Banana

n—1
J(u) = 3 100(uiyy — u?)* + (1 — u;)?
i—1

1=

with interesting domain
—25<u; <25 1=1,2,...,n.

This is a commonly used benchmark testing function with known global
minimum J* = 0 which is attained with all v; = 1. Note that this function
also has local minima.

(a) For n = 2, use the steepest descent algorithm to study the minimiza-
tion of the function above. Consider both the fixed and optimal step size
cases. Provide a simple-to-read report on the performance including com-
mentary and trajectories of the iterates u* superimposed on the contour
plot from a variety of initial conditions u’. Also indicate the line search

method which you used.

(b) Repeat the study in Part (a) for larger values of n. How large can
you push n and still achieve reasonable performance? Discuss how com-
putational effort grows as a function of n. Note that for n > 2, you need
not display trajectories and contours.

Figure 4.18: problem 2 description

218

4.4. HW 4 CHAPTER 4. HWS

Labeled 3D over contour view
100(ug — ui)?* + (1 — uy)?

J(’U,], UQ)

Figure 4.19: 3D view of J(u)

4421 Part(a)

The steepest descent algorithm used in the first problem was modified to support an optimal
step size. The following is the updated general algorithm expressed as pseudo code. The
optimal step line search used was the standard golden section method. (Listing added to

appendix).

219

4.4. HW 4 CHAPTER 4. HWS

1: procedure STEEPEST_DESCENT_OPTIMAL
2 > Initialization

3 H < maximum step size

4: max_iterations < max iterations allowed

5 € + minimum convergence limit on ||V.J(u)]|
6 k<0

.

uf — 9

while ||VJ(u*)||> ¢ do

o

o: > do line search

10: h* « call golden_section(H, .J(u)) to find optimal 2* of function J(h*) = J(u* — h*V.J (u*))
k

11: ubF — uF — h* |‘§§Ezk§‘|

12: k< Ek+1

13: > detect oscillation

14: if k& > max_iterations or J(ug) > J(ug—1) then

15: exit loop

16: end if

17: end while

18: end procedure

Figure 4.20: Steepest descent, optimal step size algorithm

For n = 2, the Rosenbrock function is

J() =100 (11 - 12) + (1 = y)?

A —400 (uz - uz) u;p —201 —uyq)
VW) =% = !)
o 200 (u, - u3)

For

—25<u; <25

The steepest algorithm was run on the above function. The following is the contour plot.
These plots show the level set by repeated zooming around at (1,1), which is the location of

the optimal point. The optimal value is at u* = (1,1) where J* = 0.

220

4.4. HW 4 CHAPTER 4. HWS

contour plot
100(us — u?)? + (1 — uy)?

contour plot

Uz

1.5

Figure 4.22: Zooming on Contour
Figure 4.21: Contour J(u)

J(u)
contour plot contour plot
, 100(up — u?)? + (1 — uy)? . 100(uz — u?)? + (1 — ur)?
= T T T T k; o T T — T
2 o / oo NS4 0 0 < N
/)

20

AW L)
1F
B\
DN

U2

A0
)

1.1

Figure 4.23: More zooming. Con- Figure 4.24: More zooming. Con-
tour J(u) tour J(u)

In all of the results below, where fixed step is compared to optimal step, the convergence
criteria was the same. It was to stop the search when

IVJ(u)|| < 0.001

The search started from different locations. The first observation was that when using
optimal step, the search jumps very quickly into the small valley of the function moving
towards u*. This used one or two steps only. After getting close to the optimal point, the
search became very slow moving towards " inside the valley because the optimal step size
was becoming smaller and smaller.

221

4.4. HW 4 CHAPTER 4. HWS

Uz

contour plot contour plot

100(up — ud)? + (1 — uy)? ‘ - 100(uy — u?)? 4+ (1 — uy)?

o/
L

1.06 +

1.04 +
0.9 F

1.02 +
0.8 f N 31

0.98 +
0.7 F v

© -]
NN 0

0.96
/

Q- 0941/
0.6 i /
o
1 oA ‘ 0.92 - /63 N \,52
Q c v
s ‘ ‘ | | | 0o i\ // |
1

0.8 0.85 0.9 0.95 1 1.05 1.1 0.9 0.95 1.05 1.1
uy Uy

Figure 4.25: More zooming on Con- Figure 4.26: More zooming on Con-

tour J(u) tour J(u)

The closer the search was to u”, the step size became smaller. Convergence was very slow
at the end. The plot below shows the optimal step size used each time. Zooming in shows
the zigzag pattern. This pattern was more clear when using small but fixed step size. Below
is an example using fixed step size of /1 = 0.01 showing the pattern inside the valley of the
function.

From [0.4,0.6], step h[0.01], f(u) [0.048], step [500]

: [\/]
0.54 \\/
0.535
0.53
0.525
0.52
0.515
0.51
0.505
0.5 F I I) I
0.68 0.7 0.72 0.74 0.76 0.78

Figure 4.27: Zoom view of search when inside valley, showing the small steps and
zig-zag pattern

Here is a partial list of the level set values, starting from arbitrary point from one run using
optimal step. It shows that in one step, [(1) went down from 170 to 0.00038, but after that the
search became very slow and the optimal step size became smaller and the rate of reduction
of J(u) decreased.

‘ K>> levelSets

222

4.4. HW 4

CHAPTER 4. HWS

170.581669649628
.000381971009752197
.000380732839496915
.000379498903384167
.000378228775184198
.000376972670237551
.000375564628332407
.00037415586062171

O O O O O O o

Golden section line search was implemented with tolerance of +/(eps(double)) and used for

finding the optimal step size.

if opt.STEP_SIZE == -1 %are we using optimal step size ?

h = nma_golden_section(fLambda,currentPoint,...

s,0,1, sqrt(eps('double’)));

else

h = opt.STEP_SIZE; %we are using the fixed step size .

end

The following plot shows how the optimal step size changed at each iteration in a typical
part of the search, showing how the step size becomes smaller and smaller as the search
approaches the optimal point u*. The plot to the right shows the path u* taken.

Showing size of each optimal step found using golden section
line search at each iteration. number of steps[499]

x10~* tolerance for convergence [0.001], starting point [-2.0,0.8]

15 -

optimal step size

L L L L L L L
270 280 290 300 310 320 330
iteration number

Figure 4.28: Showing how optimal
step size changes at each iteration
during typical search

starting fromi—Z,O,OB]7>thimal step. f(u)=[0.000], step [4089], tolerance[0.001]
2 (2

2 Q S
e s o S8
2 2 N
< S o

2 e v
=N
% S
S

1.5 ¢

1009

0.5 1

Figure 4.29: Typical search pattern
using optimal step size from arbi-
trary starting point

To compare fixed size step and optimal size /, the search was started from the same point
and the number of steps needed to converge was recorded.

In these runs, a maximum iteration limit was set at 10°.

4.4. HW 4 CHAPTER 4. HWS

Starting from (-2,0.8)

step size | number of iterations to converge

optimal | 4089

0.1 Did not converge within maximum iteration limit

0.05 Did not converge within maximum iteration limit, but stopped closer
to u* than the above case using h = 0.1

0.01 Did not converge within maximum iteration limit, but stopped closer
to u* than the above case using & = 0.05

Table 4.5: comparing optimal and fixed step size. Starting from (-2, 0.8)

The following shows the path used in the above tests. The plots show that using fixed size
step leads to many zigzag steps being taken which slows the search and is not efficient as
using optimal step size.

Using fixed size i = 0.1 resulted in the search not making progress after some point due to

oscillation and would be stuck in the middle of the valley.

Following is partial list of the values of J(u) at each iteration using fixed size &, showing that
the search fluctuating between two levels as it gets closer to optimal value u* but it was not
converging.

.0125058920858913
.0123566727077954
.0125058573101063
.0123566379524329
.0125058226516176
.0123566033142948
.0125057881100252
.0123565687929828
.0125057536849328
.0123565343880989

O O O O OO OO o O -

Search was terminated when oscillation is detected. Search stopped far away from u* when
the fixed step was large. As the fixed step size decreased, the final u* that was reached was
closer to u* but did not converge to it within the maximum iteration limit as the case with
optimal step size.

The optimal step size produced the best result. It converged to u* within the maximum
iteration limit and the zigzag pattern was smaller.

224

4.4. HW 4 CHAPTER 4. HWS

From [-2.0,0.8], step h[0.10], f(u) [0.745], step [4999], tolerance[0.001]

starting from [-2.0,0.8], optimal step. f(u)=[0.000], step [4089], tolerance[0.001] 19|
1.2 +
n T % i
08l 0.8 F C QL?
0.6 -
0.6 -
04l 04
0.2 + 0.2 -
)
N
0 ‘ of
2 1.5 1 0.5 0 0.5 1 L L L L L L L
2 1.5 1 0.5 0 0.5 1
Figure 4.30: path of u* using opti- . P
. Figure 4.31: path of u* using fixed
mal step starting from (-2,0.8) .
step h = 0.1 starting from (-2,0.8)
From [-2.0,0.8], step h[0.05], f(u) [0.260], step [4999], tolerance[0.001] L 2From [-2.0,0.8], step h[0.01], f(u) [0.013], step [4999], tolerance[0.001]
12} -1
o Z * i 5© :
08 ¢ o 0.8 [C
s
0.6 0.6 |
0.4 F 0.4
0.2 |
%Q 0.2 F
of ; S
ok
)
2 a5 a1 w5 0 05 1 2 a5 a1 w05 0 o051
Figure 4.32: u¥ path, fixed step Figure 4.33: uf path, fixed step
h = 0.05 from (-2,0.8) h =0.01 from (-2,0.8)

Starting from (-1.4,-2.2)

225

4.4. HW 4 CHAPTER 4. HWS
step size | number of iterations to converge
optimal | 537
0.1 Did not converge within maximum iteration limit
0.05 Did not converge within maximum iteration limit, but stopped
closer to u* than the above case using # = 0.1
0.01 Did not converge within maximum iteration limit, but stopped
closer to u* than the above case using & = 0.05
Table 4.6: comparing optimal and fixed step size. Starting from (-1.4, -2.2)

The following plots show the path used in the above tests. Similar observation is seen as
with the last starting point. In conclusion: One should use an optimal step size even though
the optimal step requires more CPU time.

starting from [-1.4,-2.2], optimal step. f(u)=[0.000], step [537], tolerance[0.001]

2

%

2
%

N
Qo

N ® Sy

N\ Qi

o S
» o)

-1.5 -1 -0.5

0 0.5 1

Figure 4.34: u* path, optimal
step from at (-1.4,-2)

226

From [-1.4,-2.2], step h[0.10], f(u) [0.821], step [4999], tolerance[0.001]

2
Lr % ®

0.5 F

Figure 4.35: u* path, fixed step
h =0.1 from (-1.4,-2)

4.4. HW 4 CHAPTER 4. HWS

From [-1.4,-2.2], step h[0.05], f(u) [0.266], step [4999], tolerance[0.001] From [-1.4,-2.2], step h[0.01], f(u) [0.012], step [4999], tolerance[0.001]

o
Ly o *

‘g,
9

Figure 4.36: u* path, fixed step Figure 4.37: u* path, fixed step
h =0.05 from (-1.4,-2) h =0.01 from (-1.4,-2.0)
4.4.2.2 Part(b)
A program was written to automate the search for arbitrary n. For example, for n =3

J () =100 (uy - u%)2 + (1= uy)® +100 (13 — ug)2 +(1-up)?

Z
™ 400 (1 - u8) 1y = 2(1 - uy)
V](u) = ;_u]z = 1200 (uz - u%) —400 (uz — uy) up — 2 (1 — uy)
I 2
F 200 (u3 - uz)

And forn=4

2 2 2
J(u) =100 (1, = 122)” + (1 = 11)” +100 (u3 — 13)" + (1 - up)* +100 (g — 1) + (1 - u3)”
Kl

S -400 (uz - u%) up =20 - uq)

K 2 2

- 200 (1 — u3) — 400 (13 — u3) 1, = 2(1 - uy)
V()= «9I2 - 2 2

P 200 (u3 - uz) —-400 (u4 - u3) uz —2 (1 —us)

;—1{4 200 (u4 - u%)

The pattern for V() is now clear. Let i be the row number of V] (1), where i =1---N,
then the following will generate the gradient vector for any N

o — -400 (uiﬂ —~ ulz) ui—2(1-u;)
a—ii 200 (ul- - “12—1) - 400 (ul-+1 - ulz) u; =21 -u;)
Vi =|:|= :
L1 1200 (1~ 12 1) = 400 (14541 - 1) ;= 2 (1 -)
9 200 (ui —~ ”12—1)
| du; | -

The program implements the above to automatically generates V] (u) and J(u) for any N,
then perform the search using steepest descent as before. The function that evaluates J(u)

227

O© 0 J O G W0 N -

© 0 J O O LN

W U
SRS RS R T G Sy

= W N

4.4. HW 4 CHAPTER 4. HWS

is the following

/#Evaluate J(u) at u
function f = objectiveFunc(u)

u=u(:);
N = size(u,1);
f =0;

for i = 1:N-1

f =f + 100x(u(i+1)-u(i)~2)"2 + (1-u(i))~2;
end
end

And the function that evaluates V](u) is the following

Z#Evaluate grad(J(u)) at u
function g = gradientFunc(u)

u=u(:);
N = size(u,1);
g = zeros(N,1);
for i = 1:N
if i==1 || i==
if i==
g(1)=-400* (u(i+1)-u(i)"2)*u(i)-2*(1-u(i));
else
g(1)=200* (u(i)-u(i-1)"2);
end
else

g(i) = 200*(u(i)-u(i-1)"2)-...
400* (u(i+1)-u(i)"2)*xu(i)-2*(1-u(i));
end
end

4.4.2.3 Results

Two runs were made. One using fixed step size & = 0.01, and one using optimal step size.
Both started from the same point (-2,-2, ...,-2). Each time N was increased and the CPU
time recorded. The same convergence criteria was used: [V](u)| < 0.0001 and a maximum
iteration limit of 10°.

Only the CPU time used for the steepest descent call was recorder.

tic;
[status,pts,levelSets, gradientNormTol,steps] = ...
nma_steepest_descent (opt) ;

228

4.4. HW 4 CHAPTER 4. HWS

5 |time_used = toc;

A typical run is given below. An example of the command used for N = 8 is
>> nma_HW4_problem_2_part_b([-2;-2;-2;-2;-2;-2;-2;-2])

CPU time 13.180029
successful completion. Converged before maximum iterations
Number of coordinates used 8
optimal point found is
1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999

Number of steps used [13550]

The program nma_HW4_problem_2_part_b_CPU was run in increments of 20 up to N = 1000.
Here is the final result.

229

4.4. HW 4 CHAPTER 4. HWS

600Comparing CPU time, using optimal vs. fixed step

optimal
500 L fixed step |
0N
=
s 400
O
%
k=
o 300
E
)
)
oY 200
@)
100
0 1 1 1 1
0 200 400 600 800 1000

N, the number of coordinates

Figure 4.38: Comparing CPU time, optimal step and fixed step

230

® N e W N

[T e S o SN e SO S o S S S S Gy S Ot
H S © 0 N o A W N R o ©

4.4. HW 4 CHAPTER 4. HWS

Discussion of result The fixed step size i = 0.01 was selected arbitrarily to compare
against. Using fixed step size almost always produced oscillation when the search was near
the optimal point and the search would stop.

Using an optimal step size, the search took longer time, as can be seen from the above plot,
but it was reliable in that it converged, but at a very slow rate when it was close to the
optimal point.

Almost all of the CPU time used was in the line search when using optimal search. This
additional computation is the main difference between the fixed and optimal step size
method.

In fixed step, |VJ(u)| was evaluated once at each step, while in optimal search, in addition
to this computation, the function J(u) itself was also evaluated repeated times at each step
inside the golden section line search. However, even though the optimal line search took
much more CPU time, it converged much better than the fixed step size search did.

Using optimal line search produces much better convergence, at the cost of using much
more CPU time.

The plot above shows that with fixed step size, CPU time grows linearly with the N while
with optimal step size, the CPU time grew linearly but at a much larger slope, indicating it
is more CPU expensive to use.

4.4.3 Source code listing

4.4.3.1 steepest descent function

function [status,pointsFound,1evelsets,gradientNormTol,steps]§
nma_steepest_descent (opt)

% This function performs steepest descent search starting from

% a point looking for point which minimizes a function. Supports

% multi-variable function. It needs handle of the funtion and

% hand to the gradient. It reurns all points visited in the

% search. The points can then be used by client for plotting.

% Below is description of input and output.

o

% Typical use of this function is as follows:

b

% opt.field = ...%fill in each field of the struct.

% [pointsFound,levelSets,gradientNormTol,steps] = ...

yA nma_steepest_descent (opt) ;
yA

% [C,h] = contour(..... ,levelSets);

b

% INPUT fields in opt struct are:

Y ======

% ou vector of coordinates starting guess

% MAX_ITER an integer, which is the maximium iteration

231

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

4.4. HW 4

CHAPTER 4. HWS

o
b
o
h
b
b
b
o
b
o
b
o
b
o
h
b
h
2
b
b
o
ho
o
b
o
h
b
/.
/.
/.
/.
/.
/.
/.
/.
.
/.
/.
/.
/.
/.
/.
/.
/.
/.
/.
/.

gradientNormTol

stepSize

objectiveFunc

gradientFunc

accumulate

OUTPUT:

status

pointsFound

levelSets

gradientNormTol

steps

allowed before giving up the search.

Example 500

small floating point number. The tolerance
to use to decide when to stop the search.
Example 0.001

A floating point number, which is the step
size to take. If stepSize=-1 then an optimal
step size is found and used at each step
using golden section line search.

handle to the objective function which accepts
a row vector, that contain [x y] coordinate
of the point and returns the numerical value
of objectiveFunc at this point.

handle to the gradiant of f. Same input and
output as objectiveFunc

flag. If true, then all points u~k and J(u)
at each are collected during search. Else
they are not.

can be 0,1 or 2.

0 means success, It converged before MAX_ITER
was reached.

1 means failed, did not converge due to
oscillation, which can happen when step size
is too large. When oscillation detected, the
search will stop.

2 means failed: did not oscillate but also
did not converge before hitting MAX_ITER.
Caller can try with larger MAX_ITER

n by 2 matrix, as in [x1 y1; x2 y2;]
which contains coordinates of each point
visited during steepestDescent the length is
the same as number of points visited. This
will be last point only if opt.accumlate=false
vector, contains the value of the objective
function at each point. Last value of J(u) if
opt.accumlate=false

vector, contains the norm of gradient after
each step. This will be last value only if
opt.accumlate=false

vector. The optimal step used at each
iteration, used golden section to find optimal
step size. This will be last value only

if opt.accumlate=false

232

69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115

4.4. HW 4

CHAPTER 4. HWS

% by Nasser M. Abbasi ECE 719, UW Madison

%pre-allocate data for use in the main loop below
N = size(opt.u,1);

%collect data only if user asked for it.
if opt.accumulate

pointsFound = zeros(opt.MAX_ITER,N);
levelSets = zeros(opt.MAX_ITER,1);
gradientNormTol = zeros(opt.MAX_ITER,1);
steps = zeros (opt.MAX_ITER,1);

end

%function to find optimal step size at each step,

%This is used only if client asked for optimal

%step size, which is set when opt.setSize=-1

%This is same J tilde(u) function from class lecture notes
fLambda = @(lam,u,s) opt.objectiveFunc(u-lam*s);

% initialize counters before main loop

k =1;
currentPoint = opt.u;
keepRunning = true;
status = 0;

steps_in_oscillation = O;
last_level = 0;

while keepRunning
if k>1
last_level = current_level;
end
current_level norm(opt.objectiveFunc(currentPoint));
current_grad opt.gradientFunc(currentPoint) ;
current_grad_norm = norm(current_grad);

if opt.accumulate
pointsFound(k, :)
levelSets (k)
gradientNormTol (k)

currentPoint;
current_level;
current_grad_norm;

end

if k>1 && current level>last level), check for oscillation
if opt.stop_on_oscillation
steps_in_oscillation = steps_in_oscillation + 1;
end
end

233

4.4. HW 4 CHAPTER 4. HWS

116 % check if we converged or not

117 % Last check below can lead to termination too early for the
118 % banana function. Since at one point, J(u(k+1)) will get
119 % larger than J(u(k)) using bad step size. So it is

120 %commented out for now.

121 if k == opt.MAX_ITER ||

122 current_grad_norm <=opt.gradientNormTol ||

123 steps_in_oscillation>4 Jlet it run for 2 more steps
124 %»to see the oscillation stop loop and set the

125 %status to correct reason why loop stopped.

126 keepRunning = false;

127 if steps_in_oscillation>0

128 status = 1;

129 else

130 if k == opt.MAX_ITER

131 status= 2;

132 end

133 end

134 else

135 if current_grad_norm > eps('double') Jdirection vector
136 s = current_grad / current_grad_norm;

137 if opt.STEP_SIZE == -1 j,are we using optimal size?
138 lam = nma_golden_section(...

139 fLambda, currentPoint,s,0,1,sqrt(eps('double')));
140

141 %below for verification of golden section result
142 %using matlab fminbd. I get similar results. so
143 %this is good.

144

145 %lam=fminbnd (@(lam) fLambda(lam,currentPoint,s),0,1);
146 else

147 lam = opt.STEP_SIZE; %using the fixed step size.
148 end

149

150 Jprotect aginst long step,just in case?

151 %lam = min([1,lam]);

152

153 % make step towards minumum

154 currentPoint = currentPoint - lam*s;

155

156 if opt.accumulate

157 steps(k) = lam;

158 end

159

160 k =k +1;

161 else

162 keepRunning = false; % |grad| < eps, stop.

234

4.4. HW 4 CHAPTER 4. HWS

163 end

164 end

165

166 | end

167

168 | %hdone. Chop data to correct number of steps used before returning
169 |if opt.accumulate

170 pointsFound = pointsFound(1l:k,:);
171 levelSets = levelSets(1:k);

172 gradientNormTol = gradientNormTol(1:k);
173 steps = steps(1:k);

174 | else

175 pointsFound = currentPoint ;

176 levelSets = current_level;

177 gradientNormTol = current_grad_norm;
178 steps = k;

179 | end

180

181 | end

4.4.3.2 golden section line search

1 |function h_optimal = nma_golden_section(f,u,s,a,b,tol)

2 | % standard golden section function (see numerical recipes)

3 | hconverted to Matlab to use for HW 4. This finds the optimal

4 |%step size to use with the steepest descent algorithm.

5 h

6 | %ANasser M. Abbasi, ECE 719 spring 2016

7| %

8 | %

9 | AINPUT:

10 |% f: The function to minimize

11 |% u and s: These are specific parameters for f() used only

12 | % for HW4 problem and not part of the general algorithm
13 | % itself. These are used in calling f(). u is the

14 | % current point and "s" is the gradiant vector. in the
15 | % direction we want to minimize J(u)

16 | % a: Starting search point

17 |% b: ending search point.

18 |% tol: tolerance to use to stop the line search. Such as 107(-6)
19 | %

20 | % OUTPUT:

21 |% h_optimal: This is the optimal step size h to use

22 | %

23 | golden_ratio = (sqrt(5)-1)/2;

2 | c = b-golden_ratiox*(b-a);

25 | d = at+golden_ratiox(b-a);

235

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

© 0NN W N

I N N N N N e e e T T e T = T
DN S N S NG SU N R O < T =B <IN (R N S N OO JUR O S =

4.4. HW 4 CHAPTER 4. HWS

while abs(c-d)>tol
fc = f(c,u,s);
fd = f(d,u,s);

if fc<fd

b = d;

d = c;

¢ = b-golden_ratiox*(b-a);
else

a=c;

c = d;

d = atgolden_ratio*(b-a);
end

end

%done. Return the optimal step size to use.
h_optimal = (b+a)/2;

end

4.4.3.3 Problem 1 part a

function nma_HW4_problem_1_part_a()

%Plots a contour of

A

7 f(u) = (11-ul-u2)"2 + (1+ul+10*u2-ui*u2) "2
b

% over range ul=0..20 and u2=0..15

% Matlab 2015a

% by Nasser M. Abbasi

close all; clc;
cd(fileparts(mfilename('fullpath')));

%reset (0);

xlimits = [-5 20]; Y%x limits, for plotting, change as needed

ylimits = [-5 15]; %y limits, for plotting, change as needed

myTitle = '$$(11 - u_ 1 - u_2)72 +(1+ u_1+10 u_2-u_1 u_2)723%3%"';

[ul,u2,z] = makeContourData(0.05,xlimits,ylimits);

figure(1);

v =[40 60 90 140 200 400 600 1000 1500 2000 300Q ...
4000 6000 8000 10000 12000 15000 18000];

[C,h] = contour(ul,u2,z,v, 'Linecolor',[0 0 1]);

clabel(C,h,v, 'Fontsize',8, 'interpreter', 'Latex', 'Color','red');
setMyLabels('$$u_18$', '$Su_288"',. ..
{'\makebox[4in] [c]{contour plot, default setting}',...
sprintf (' \\makebox[4in] [c]{%s}"' ,myTitle)});

236

28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

4.4. HW 4 CHAPTER 4. HWS

saveas(gcf, 'problem_1/part_a/figl', 'pdf');

figure(11);

xlimits = [-5 20]; Y%x limits, for plotting, change as needed
ylimits = [-5 20]; %y limits, for plotting, change as needed
myTitle = '"$$(11 - u_1 - u_2)"2 +(1+ u_1+10 u_2-u_1 u_2)"2%$"';

[ul,u2,z] = makeContourData(0.1,xlimits,ylimits);
[C,nh] contourf (ul,u2,z,v);

%icolorDepth = 10000;

%colormap (jet (colorDepth));

%colormap (parula(300));

colormap (hsv) ;

colorbar;

setMyLabels('$$u_18$$', '$$u_28$"',...
{'\makebox[4in] [c]{contour plot, filled, with colorbar}',...
sprintf (' \\makebox[4in] [c]{%s}',myTitle)});

%saveas(gcf, 'problem_1/part_a/figll', 'pdf');

%print -painters -dpdf -r600 'problem_1/part_a/figll.pdf'

figure(12);
contour3(ul,u2,z,v);

figure(2);

[ul,u2,z] = makeContourData(2,xlimits,ylimits);
surf (ul,u2,z);

colormap (hsv) ;

view([-156.5,42]);

hold on;
v = [200 600 1000 1500 2000 4000 6000 8000 12000];
[C,h] = contour(ul,u2,z,v, 'Linecolor',[0 0 1]);

clabel(C,h,v, 'Fontsize',10, 'interpreter', 'Latex', 'Color', 'red');

setMyLabels('$$u_1$$', '$$u_2%$', '$$J(u_1,u_2)$$',...
{'\makebox[4in] [c]{Labeled 3D over contour viewl}',...
sprintf (' \\makebox[4in] [c]{%s}"' ,myTitle)})

%hsaveas(gcf, 'problem_1/part_a/fig2', 'pdf');

figure(3);

surf (ul,u2,z);

colormap (hsv) ;

view([154,46]);

hold on;

contour(ul,u2,z,v, 'Linecolor',[0 0 1]);

clabel(C,h,v, 'Fontsize',10, 'interpreter', 'Latex', 'Color', 'red');

237

75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

4.4. HW 4 CHAPTER 4. HWS

setMyLabels ('$$u_1$$', '$$u_28$', '$$J(u_1,u_2)83$"',...

{'\makebox[4in] [c]{Another 3D over contour view (no labels)}',...
sprintf (' \\makebox [4in] [c]{%s}',myTitle)})

%hsaveas(gcf, 'problem_1/part_a/fig3', 'pdf');

figure(4);
xlimits = [-10 30]; Y%x limits, for plotting, change as needed
ylimits = [-10 30]; %y limits, for plotting, change as needed

[ul,u2,z] = makeContourData(.5,xlimits,ylimits);

subplot(1,2,1);

v =[50 200 600 2000 4000 8000 16000 30000];
[C,n] = contour(ul,u2,z,v, 'Linecolor',[0 0 1]);
grid; %hget(h, 'Levellist')

clabel(C,h,v, 'Fontsize',8, 'interpreter', 'Latex', 'Color', 'red');
setMyLabels('$$u_1$$', '$$u_28$"',...
{'\makebox[4in] [c]{contour plot (enlarged limits}',...
sprintf (' \\makebox[4in] [c]{%s}',myTitle)});

subplot(1,2,2);

[ul,u2,z] = makeContourData(4,xlimits,ylimits);

surf (ul,u2,z);

colormap (hsv) ;

view([154,46]);

hold on;

contour(ul,u2,z, 'Linecolor',[0 0 1]);

setMyLabels('$$u_1$$', '$$u_2%$"', '$$J(u_1,u_2)$3%"',...

{'\makebox [4in] [c]{3D over contour view (enlarged limits)}',...
sprintf (' \\makebox[4in] [c]{%s}',myTitle)});

hsaveas(gcf, 'problem_1/part_a/figd', 'pdf');

end

Jhelper function to set plot attributes.
function setMyLabels(varargin)

myXlabel = varargin{1};
myYlabel = varargin{2};
if nargin ==

myZlabel = varargin{3};

end
myTitle = varargin{end};
h = get(gca, 'xlabel');

set(h, 'string' ,myXlabel, 'fontsize',10, 'interpreter', 'Latex') ;

h = get(gca, 'ylabel');

238

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

© O NN s W N

N T e = T < T T o T
H S © N A W N RO

4.4. HW 4 CHAPTER 4. HWS

set(h, 'string',myYlabel, 'fontsize',10, 'interpreter', 'Latex') ;

if nargin ==

h = get(gca, 'zlabel');

set (h, 'string',myZlabel, 'fontsize', 10, 'interpreter', 'Latex');
end

h = get(gca,'title');
set(h, 'string' ,myTitle, 'fontsize',10, 'interpreter', 'Latex',...
'HorizontalAlignment', 'center') ;

set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);

end

%helper function to generate Contour data
function [ul,u2,z] = makeContourData(del,xlimits,ylimits)

ul = x1limits (1) :del:x1imits(2);

u2 = ylimits(1):del:ylimits(2);

[ul,u2] = meshgrid(ul,u2);

z = (11-ul-u2).72 + (1+ul+10.*u2-ul.*u2)."2;
end

4.4.3.4 Problem 1 partb

function nma_HW4_problem_1_part_b()

%finds the min value of

o

% f(uw) = (11-ul-u2)"2 + (1+ul+10*u2-ul*u2)~2

o

% over range ul=0..20 and u2=0..15 using steepest descent
b

%This file is only the driver for function nma_steepestDescent.m
%ECE 719, Spring 2016

%Matlab 2015a

%Nasser M. Abbasi Nov 25, 2016

if (~isdeployed)
baseFolder = fileparts(which(mfilename));
cd(baseFolder);

end

close all;

Y%reset(0);

set(groot, 'defaulttextinterpreter', 'Latex');
set(groot, 'defaultAxesTickLabelInterpreter', 'Latex');

239

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

4.4. HW 4

CHAPTER 4. HWS

set(groot, 'defaultLegendInterpreter','Latex');

from_pix
pix_count =

100;
i

Jparamters, change as needed

METHOD
DO_GUI
%

DO_ANIMATE

DO_GIF
DO_3D
xlimits
ylimits
del

fixed_levels

% 'conjugate gradient'
= 'steepest descent'; 7%'steepest descent';
= false; Yset to true to get input starting point
from GUI
= true; %set to true to see animation
= false; %set to true to make animation gif
= false; %if we want to show 3D search path. Set to true
= [-20 20]; Y%x limits, for plotting
= [-15 15]; %y limits, for plotting
= 0.05; %grid size, used for making meshgrid
[40 60 90 140 200 400 600 1000 1500 2000
3000 4000 6000 8000,10000 12000 15000 18000];

CONTOUR_LINES_AUTO = 'fix'; %set to 'auto', to see matlab contour

b
h
o
b

lines, set to 'full' to see each step level set
set to 'limited' to see every other level
set to 'fix' to use pre-specificed

% ___

%These are the options struct used by call to

h
opt.u

opt .MAX_ITER

nma_steepestDescentPoints ()
[16.805;13.245] ; Ystarting guess x-coord
1073; %maximum iterations allowed

%step size. set to -1 to use an optimal step

opt.STEP_SIZE

_1;

%see function definition at end of file
opt.objectiveFunc = QobjectiveFunc;

%see function definition at end of file

opt.gradientNormTol
opt.hessian

opt.gradientFunc = @gradientFunc;
= 0.001; %used to determine when converged
= @hessian_func; Ysee function definition
= true;

opt.accumulate

opt.stop_on_oscillation = false;

x1limits (1) :del:x1imits(2);
ylimits(1):del:ylimits(2);
meshgrid(ul,u2);

240

4.4. HW 4 CHAPTER 4. HWS

69 | %z =3+ (ul - 1.5%xu2).72 + (u2 - 2).72;
70 |z = (11-ul-u2).72 + (1+ul+10.*u2-ul.*u2). 2;
71

72 |figure('Units', 'pixels', 'position’', [from_pix from_pix 600 500]);
73 | pix_count = pix_count+l;
74 |if DO_GUI Ycheck if GUI input is asked for, if so, wait for user

75 plot(0,0);

76 xlim(x1limits); ylim(ylimits);
77 hold on;

78 [x,y] = ginput(1);

79 opt.u=[x;y];

80 | end

81

82 | %4mark location of starting point

83 | %t text (0.8*opt.u(1),1.1*o0pt.u(2),...

84 | % sprintf (' [%42.1£,%2.1f]" ,opt.u(l),opt.u(2)));
85 | %t .FontSize = 8;

86 | %t.Color
87
88 | %4Find the minumum using Matlab build-in, in order

89 | %to compare with in plot

90 | optimalValue = fminsearch(opt.objectiveFunc, opt.u);
91 |objectiveAtOptimal = objectiveFunc(optimalValue);

92
93 | %mark location of minimum found by fminsearch on plot

94 | %This min, can be different that one converged to by

95 | %hsteepest descent! so we also plot the converged to value found
96 | hold on;

97 | hplot (optimalValue (1) ,optimalValue(2), '*r');

98
99 |plot(opt.u(l),opt.u(2),'or'); Ystarting point

100 | xlim(x1imits); ylim(ylimits);

101 | grid;

102 | set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);

103 | make the call to implement steepest descent, different m file.
104 | if strcmp(METHOD, 'steepest descent')

'red';

105 [status , pts,levelSets, gradientNormTol,~] = ...

106 nma_steepest_descent (opt) ;
107 | else

108 [status,pts,levelSets, gradientNormTol,~] = ...

109 nma_fletcher_reeves(opt) ;
110 | end

111 |plot (13,4, '*#r'); %known u* at top location.
112 | switch status

113 case 0, status = ...
114 'successfull completion. Converged before maximum iterations';
115 case 1, status = ...

241

4.4. HW 4 CHAPTER 4. HWS

116 | 'failed to converge before maximum iterations due to oscillation';
117 case 2, status =

118 'failed to converge before maximum iterations';

119 | end

120
121 | %plot the value found by steepest descent
122 | %plot (pts(end, 1) ,pts(end,2), 'ok');

123
124 | iuse output from above call to make the plots
125 | switch CONTOUR_LINES_AUTO

126 case 'auto',

127 [C,h] = contour(ul,u2,z, ' 'Linecolor',[0 O 1], 'LineWidth',0.1);
128 case 'limited’',

129 lev = round(length(levelSets)/20);

130 %[C,h] = contour(ul,u2,z,levelSets(l:lev:end), 'Fill','off"');
131 %[C,h] = contourf (ul,u2,z,levelSets(1l:1lev:end));

132 [C,h] = contour(ul,u2,z,levelSets(l:1lev:end));

133 %colormap (hsv) ;

134 %colorbar;

135 %'Linecolor',[0 O 1],'LineWidth', .2);

136 case 'full'

137 [C,h] = contour(ul,u2,z,levelSets, 'LineWidth', .2);

138 case 'fix'

139 [C,h] = contour(ul,u2,z,fixed_levels);

140 h.LineWidth = .1;

141 %h.LineColor = [190/255 190/255 190/255];

142 clabel(C,h,fixed_levels, 'Fontsize',8,...

143 'interpreter', 'Latex','Color', 'blue');
144 | end

145

146 | hanimate the steepest descent search
147 |if length(pts(:,1))>1

148 filename = 'anim.gif';

149 for k=1:length(pts)-1

150 %draw line between each step

151 %skip case if 'full' mode or if too many points.

152 %if (opt.STEP_SIZE == -1 |]|...

153 | % strcmp (CONTOUR_LINES_AUTO, 'limited') ||

154 yA strcmp (CONTOUR_LINES_AUTO, 'auto') | | length(pts) <100)
155 if strcmp(CONTOUR_LINES_AUTO, 'full')|]...

156 strcmp (CONTOUR_LINES_AUTO, 'limited')
157 line([pts(k,1),pts(k+1,1)], [pts(k,2),pts(k+1,2)],...
158 'LineWidth',1, 'Color','red');
159 else

160 line([pts(k,1),pts(k+1,1)]1, [pts(k,2),pts(k+1,2)],...
161 'LineWidth',1, 'Color','red');
162 end

242

4.4. HW 4 CHAPTER 4. HWS

163 %end

164 hplot ([pts(k,1),pts(k+1,1)], [pts(k,2),pts(k+1,2)],"'.r');
165 if DO_ANIMATE

166 drawnow;

167 if DO_GIF

168 frame = getframe(1);

169 im = frame2im(frame);

170 [imind,cm] = rgb2ind(im,256);

171 if k ==

172 imwrite(imind,cm,filename, 'gif', 'Loopcount',0);
173 else

174 if mod(k,4)==0

175 imwrite(imind,cm,filename,...

176 'gif','WriteMode', 'append');
177 end

178 end

179 end

180 end

181 title(format_plot_title(...

182 ['Showing $u~k$ path on top of contour plot.'

183 '"Problem 1, part (b)'],...

184 opt,pts,k,status), 'FontSize', 8);

185 end

186 | end

187 | title(format_plot_title(['Showing $u~k$ path on top of'...

188 'contour plot. Problem 1, part (b)'],...
189 opt,pts,size(pts,1),status), 'FontSize', 8);

190

191

192 |figure('Units', 'pixels', 'position', [from_pix from_pix 400 300]);
193 | pix_count = pix_count+1;

194

195 | stairs(levelSets);

196 | %stem(levelSets, 'ro');

197 | grid;

198 | set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);

199 |title(format_plot_title(...

200 'Showing $J(u"k)$ progress. Problem 1, part (b)',...
201 opt,pts,size(pts,1),status), 'FontSize', 8);

202 | xlabel('step number');

203 | ylabel('value of objective function');

204

205 | figure('Units', 'pixels', 'position’', [from_pix from_pix 400 300]);
206 | pix_count = pix_count+l;

207

208 | stairs(gradientNormTol) ;

209 | hstem(levelSets, 'ro');

243

4.4. HW 4 CHAPTER 4. HWS

210 | grid;

211 | title(format_plot_titleC(...

212 'Showing $|\nabla J(u"k)|$ progress. Problem 1, part (b)',...
213 opt,pts,size(pts,1),status), 'FontSize', 8);

214

215 | xlabel('step number'); ylabel('Norm of gradient');

216 | set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);

217

218 |if DO_3D

219 figure('Units', 'pixels', 'position',...

220 [from_pix from_pix 400 300]);
221 pix_count = pix_count+i;

222

223 del =1;

224 ul = x1limits(1):del:x1imits(2);

225 u2 = ylimits(1):del:ylimits(2);

226 [ul,u2] = meshgrid(ul,u2);

297 z = (11-ul-u2).72 + (1+ul+10.*u2-ul.*u2).72;

298 h = mesh(ul,u2,z);

229

230 view(gca,-13.5,42);

231 set(h, 'LineWidth', .25, 'LineStyle','-', 'EdgeAlpha’',.5);

232 shading(gca, 'flat');

233 hold on;

234

235 %plot the optimal point found by Matlab

236 plot3(optimalValue(1l) ,optimalValue(2) ,objectiveAtOptimal,. ..
237 'ws—-', 'MarkerEdgeColor', 'r', 'MarkerFaceColor', 'r');
238

239 %plot the optimal point found by steepest descent

240 plot3(pts(end, 1) ,pts(end,2),levelSets(end),...

241 'ws—-', 'MarkerEdgeColor', 'b', 'MarkerFaceColor', 'b');
242

243 %plot the starting point

244 plot3(pts(1,1),pts(1,2),levelSets(1),...

245 'ws—-', 'MarkerEdgeColor', 'k', 'MarkerFaceColor', 'k');
246

247 if size(pts,1)>1

248 for k = 1:length(pts)-1

249 %draw line between each step

250 line([pts(k,1),pts(k+1,1)], [pts(k+1,2),pts(k+1,2)],...
251 [levelSets(k),levelSets(k+1)], 'LineWidth',1);
252 drawnow;

253 end

254 end

9255 xlabel('u_1');ylabel('u_2"');

256 zlabel('objective function $J(u_1,u_2)$');

244

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

4.4. HW 4 CHAPTER 4. HWS

title(format_plot_title(...
'3D mesh view of the search performed. Problem 1, part (b)',...
opt,pts,size(pts,1),status), 'FontSize', 8);

set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);
end
end

%Evaluate J(u) at u

function f = objectiveFunc(u)

x = u(l);

y = u(2);

B =3+ (x - 1.5xy)72 + (y - 2)72;
f = (11-x-y)72 + (1+x+10*y-x*y)~2;
end

%Evaluate grad(J(u)) at u
function g = gradientFunc(u)
x = u(l);
y = u(2);
hg =[2%(x-1.5%y) ;2% (x-1.5%y)*(-1.5)+2* (y-2)1;
g = [-2%(11-x-y)+2* (1+x+10*y-x*y) * (1-y) ;
-2% (11-x-y) +2% (1+x+10*y-x*y) * (10-x)] ;
end

%set title
function formatted_title = format_plot_title(main_title,opt,pts,k,status)

formatted_title = {sprintf ('\\makebox[5in] [c]{%s}',main_title),...
sprintf (' \\makebox [6in] [c]{$u~0=[%4.3f,%4.3£]$, step [$%2.2f$], $J(w)=%3.3f$, i
opt.u(1),opt.u(2),opt.STEP_SIZE,...
norm(opt.objectiveFunc(pts(k,:))) k), ...
sprintf (' \\makebox [5in] [c]{convergence criteria $| \\nabla(J(u)) | \\leq %1.3f
opt.gradientNormTol),. ..
sprintf (' \\makebox [5in] [c]{%s}"',status)};
end

%Evaluate Hessian(J(u)) at u
function g = hessian_func(u)
x =u(l);

y = u(2);

hg = [2,-3;-3,13/2];

245

terations [$

$+',. ..

4.4. HW 4 CHAPTER 4. HWS

304 ‘g =[2%(y - 1)72 + 2, 2x(x - 10)*(y - 1) - 20%xy - 2%x + 2*x*y;
305 | 2%(x - 10)x(y - 1) - 20%y - 2%x + 2kxky,2%(x - 10)72 + 2];
306 ‘ end

4.4.3.5 Problem 2 contour

1 |function nma_HW4_problem_2_contour ()

2 | %Plots a contour of

3%

4 | % f(u) = 100(u2-u1~2)"2 + (1-ul)~2

5 1%

6 | % over range ul=-2.5..2.5

7 |% Matlab 2015a

8 | % by Nasser M. Abbasi

9

10

11 |reset(0); close all; clear;

12 | k=0;

13 |myTitle = '$$100(u_2 - u_172)"2 +(1- u_1)"2$$";

14 | makeContour(-2.5,2.5,-2.5,2.5,[1 10 50 100 200 300\

15 500 1000 2000 3000] ,myTitle);
16 | k=k+1; saveas(gcf, sprintf('’d',k), 'pdf');

17 | makeContour(-1,1.5,-1,2,[0.5 1 5 15 30 50 100 200 300 400 500],...
18 myTitle);
19 | k=k+1; saveas(gcf, sprintf('’d',k), 'pdf');

20 | makeContour(0.2,1.5,-0.5,2,[0.5 2.5 5 10 20 35 50 100 200 300],...
21 myTitle);
22 | k=k+1; saveas(gcf, sprintf('Jd',k), 'pdf');

23 | makeContour(0.4,1.1,0,1.5,[0.2 0.3 0.5 2.5 5 10 20 30 50 ...

24 75 100 150 200] ,myTitle);
25 | k=k+1; saveas(gcf, sprintf('%d',k), 'pdf');

26 | makeContour(0.8,1.1,0.5,1.1,[0.1 0.2 0.3 0.5 1 2 3 ...

97 4 8 12 20] ,myTitle);
28 | k=k+1; saveas(gcf, sprintf('’/d',k), 'pdf');

29 | makeContour(0.9,1.1,0.9,1.1,[0.01 0.05 0.1 0.2 ...

30 0.3 0.5 1 1.5 2 3],myTitle);
31 | k=k+1; saveas(gcf, sprintf('’d',k), 'pdf');

32

33 | figure;

34 | [ul,u2,z] = makeContourData(0.3,[-2,2],[-2,2]);

35 | surf (ul,u2,z);

36 | colormap (hsv) ;

37 |view([-156.5,42]);

38

39 | hold on;

40 |v=[10 100 200 300 500];

41 | [C,h] = contour (ul,u2,z,v);

246

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88

4.4. HW 4 CHAPTER 4. HWS

clabel(C,h,v, 'Fontsize',10, 'interpreter', 'Latex', 'Color', 'red');
setMyLabels ('$$u_18$$', '$$u_28$', '$$J(u_1,u_2)3"',...
{'\makebox[4in] [c]{Labeled 3D over contour viewl}',...
sprintf (' \\makebox[4in] [c]{%s}',myTitle)})
k=k+1; saveas(gcf, sprintf('jd',k), 'pdf');
end

%helper function to set plot attributes.
function setMyLabels(varargin)

myXlabel = varargin{1};
myYlabel = varargin{2};
if nargin ==

myZlabel = varargin{3};

end
myTitle = varargin{end};
h = get(gca, 'xlabel');

set (h, 'string' ,myXlabel, 'fontsize',10, 'interpreter', 'Latex') ;

h = get(gca, 'ylabel');
set(h, 'string' ,myYlabel, 'fontsize',10, 'interpreter', 'Latex');

if nargin ==

h = get(gca, 'zlabel');

set (h, 'string',myZlabel, 'fontsize', 10, 'interpreter', 'Latex');
end

h = get(gca, 'title');
set(h, 'string' ,myTitle, 'fontsize',10, 'interpreter', 'Latex',...
'HorizontalAlignment', 'center') ;

set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);

end

%helper function to generate Contour data
function [ul,u2,z] = makeContourData(del,xlimits,ylimits)

ul = xlimits(1):del:x1limits(2);

u2 = ylimits(1) :del:ylimits(2);
[ul,u2] = meshgrid(ul,u2);

z = 100%x(u2-ul1.”2).72 + (1-ul)."2;
end

247

89
90
91
92
93
94
95
96
97
98
99

© NN e W N

W W W W NN N NN NDNDNDNN e
W N H S © 0N R W HEO O 0NN R w N o

4.4. HW 4 CHAPTER 4. HWS

%helper function to generate Contour data
function [ul,u2,z] = makeContour(xMin,xMax,yMin,yMax,v,myTitle)

figure();
[ul,u2,z] = makeContourData(0.05, [xMin,xMax], [yMin,yMax]) ;
[C,h] = contour(ul,u2,z,v); grid;

clabel(C,h,v, 'Fontsize',8, 'interpreter', 'Latex', 'Color', 'red');
setMyLabels('$$u_1$$', '$$u_28$"',...
{'\makebox [4in] [c]{contour plot}',...
sprintf (' \\makebox[4in] [c]{¥%s}',myTitle)});
end

4.4.3.6 Problem 2 part a

function nma_HW4_problem_2_part_a()

%finds the min value of

b

b f(u) = 100(u2-u1~2)"2 + (1-ul)~2

b

% over range ul=-2.5..2.5

b

% This file is only the driver for function
% nma_steepest_descent.m Solves part (a) of problem 2
/A

% ECE 719, SPring 2016

% Matlab 2015a

/Nasser M. Abbasi

if (~isdeployed)
baseFolder = fileparts(which(mfilename));
cd(baseFolder) ;

end

close all;
reset(0);
set(groot, 'defaulttextinterpreter','Latex');
set(groot, 'defaultAxesTickLabelInterpreter', 'Latex');
set(groot, 'defaultlLegendInterpreter', 'Latex');
from_pix = 100;
pix_count = 1;
%paramters, change as needed

% 'conjugate gradient'

METHOD = 'steepest descent'; 7 'steepest descent';

DO_GUI = false; J%set to true to get input starting point GUI
DO_ANIMATE = true; Y%set to true to see animation of the search
DO_GIF = false; Y%set to true to make animation gif
%xlimits = [0 20]; Y%x limits, for plotting, change as needed

248

34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

4.4. HW 4 CHAPTER 4. HWS

%hylimits = [-5 15]; %y limits, for plotting, change as needed
xlimits = [-2.5 2.5]; %x limits, for plotting, change
ylimits = [-2.5 2.5]; %y limits, for plotting, change

del = 0.01; %grid size, used for making meshgrid
CONTOUR_LINES_AUTO = 'fix';

% set to 'auto', to see matlab contour lines

yA set to 'full' to see each step level set

/A set to 'limited' to see every other level

b set to 'fix' to use pre-specificed

% set to 'fullO', to see each level, no labels

%level set for 'fix' option
vFixed = [.5 10 50 100 200 300 1000 2000 3000] ;

%These are the options struct used by call to
%nma_steepestDescentPoints() try [-2,.8]

opt.u = [1.828;-1.878]; %starting guess x-coord
opt.MAX_ITER = 1076; Ymaximum iterations allowed
opt.STEP_SIZE = -1; %step size. set to -1 for optimal step
opt.objectiveFunc = @objectiveFunc; ’%see function definition
opt.gradientFunc = QgradientFunc; Y%see function definition
opt.hessian = Qhessian_func; Y%see function definition

opt.gradientNormTol = 0.01; %used to determine when converged

opt.accumulate true;
opt.stop_on_oscillation = false;

fdata

ul = xlimits(1):del:x1limits(2);

u2 = ylimits(1) :del:ylimits(2);
[ul,u2] = meshgrid(ul,u2);

z = 100*x(u2-ul.”2).72 + (1-ul)."2;

figure('Units', 'pixels', 'position', [from_pix from_pix 400 300]);
pix_count = pix_count+l;

if DO_GUI Ycheck if GUI input is asked for, if so, wait for user

plot(0,0);

xlim(x1imits); ylim(ylimits);
hold on;

[x,y] = ginput(1);
opt.u=[x;y];

end
Jmark location of starting point

%t = text(0.8%opt.x,1.1xopt.y,sprintf (' [%2.1f,%2.1£f]"',0opt.x,0pt.y));
%t .FontSize = 8;

249

4.4. HW 4 CHAPTER 4. HWS

81 | %t.Color = 'red';

82

83 | #Find the minumum using Matlab build-in, in order to compare with
84 |optimalValue = fminsearch(opt.objectiveFunc, opt.u);

85 |objectiveAtOptimal = objectiveFunc(optimalValue);

86

87 | %tmark location of minimum found by fminsearch on plot

88 | %#This min, can be different that one converged to by steepest

89 | hdescent! so we also plot the converged to value found

90 |hold on;

91 | plot(optimalValue(1l),optimalValue(2),'*r')

92 | plot(opt.u(1),opt.u(2),'or'); Ystarting point

93 |xlim(xlimits); ylim(ylimits);

94 | hgrid;

95 | set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);

96 | if strcmp(METHOD, 'steepest descent')

97 [status , pts,levelSets, gradientNormTol,steps] =

98 nma_steepest_descent (opt) ;
99 | else

100 [status,pts,levelSets, gradientNormTol,steps] = ...

101 nma_fletcher_reeves (opt) ;
102 | end

103

104 | %4plot the value found by steepest descent

105 | %plot(pts(end,1) ,pts(end,2),'ok');

106

107 | use output from above call to make the plots

108 | switch CONTOUR_LINES_AUTO

109 case 'auto',

110 [C,h] = contour(ul,u2,z); %, 'ShowText','on');

111 clabel(C,h, 'Fontsize',8, 'interpreter', 'Latex','Color','red');
112

113 case 'limited',

114 lev = round(length(levelSets)/20);

115 [C,h] = contour(ul,u2,z,levelSets(l:lev:end),...

116 'Fill','off"', 'ShowText', 'off');
117 %clabel(C,h); %, 'Fontsize',8,'interpreter',...

118 %'Latex', 'Color', 'red');

119 case 'full'

120 [C,h] = contour(ul,u2,z,levelSets); %, 'ShowText','on');
121 clabel(C,h,levelSets, 'Fontsize',8, ...

122 'interpreter', 'Latex', 'Color','red');
123 case 'fullO'

124 [C,h] = contour(ul,u2,z,levelSets); %, 'ShowText','on');
125 case 'fix'

126 [C,h] = contour(ul,u2,z,vFixed);

127 h.LineWidth = .1;

250

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174

4.4. HW 4

CHAPTER 4. HWS

h.LineColor =
h.Fill='off';
clabel(C,h,vFixed, 'Fontsize',8,...

[190/255 190/255 190/255];

'interpreter', 'Latex','Color', 'blue');

end

%animate the steepest descent search
hold on;

if length(pts(:,1))>1

filename = 'anim.gif';
for k=1:length(pts)-1
%hdraw line between each step
%if (opt.STEP_SIZE -1 11
%strcmp (CONTOUR_LINES_AUTO, 'limited') ||
% strcmp(CONTOUR_LINES_AUTO, 'auto') | |length(pts)<100)
% line([pts(k,1),pts(k+1,1)], [pts(k,2),pts(k+1,2)],...
%'LineWidth',1');

%end
plot ([pts(k,1),pts(k+1,1)], [pts(k,2),pts(k+1,2)],"'-r');
hplot(pts(k,1),pts(k,2),"'.");
if DO_ANIMATE
drawnow;
if DO_GIF
frame = getframe(1);
im = frame2im(frame);

[imind,cm] = rgb2ind(im,256);
if k ==

imwrite(imind,cm,filename, 'gif', 'Loopcount',0);
else

if mod(k,2)==0
imwrite(imind,cm,filename, 'gif’',...
'WriteMode', 'append');
end
end
end
end
if opt.STEP_SIZE==-1,
title(sprintf (...
'starting from [%4.3f,%4.3f], optimal step. f(u)=[%3.3f], step [/d], tolerancel
opt.u(1),opt.u(2),norm(opt.objectiveFunc(pts(k,:))),...
k,opt.gradientNormTol), ...
'FontSize', 8);
else
title(sprintf(...
'From [%2.1f,%2.1f], step h[%2.2f], f(u) [%3.3f],
opt.u(l),opt.u(2),opt.STEP_SIZE ,...
norm(opt.objectiveFunc(pts(k,:))) ,k,opt.gradientNormTol),. ..
'FontSize', 8);

251

%h2.3f1', ...

step [%d], tolerancel%2.3f]',| ..

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

4.4. HW 4 CHAPTER 4. HWS

end
end
end

figure('Units','pixels','position',...
[from_pix*pix_count from_pix 400 300]);
pix_count = pix_count+l;

stairs(levelSets);

grid;

set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);

title({'Showing value of objective function at each step',...
sprintf ('Step size [%3.3f], number of steps needed [%d]',...
opt.STEP_SIZE,length(pts)-1),...
sprintf ('convergence tolerance [%2.3f], starting point [%2.1f,%2.1f]"',...
opt.gradientNormTol,opt.u(l),opt.u(2))3},...
'FontSize', 8);

xlabel('step number');

ylabel('value of objective function');

figure('Units', 'pixels', 'position',...
[from_pix*pix_count from_pix 400 300]);
pix_count = pix_count+l;

stem(gradientNormTol,"'."');

grid;

title({'Showing gradient Norm at each step',...
sprintf ('Step size [%3.3f], number of steps needed [%d]',...
opt.STEP_SIZE,length(pts)-1),...
sprintf ('tolerance for convergence [%2.3f], starting point [%2.1f,%2.1f]',...
opt.gradientNormTol,opt.u(l),opt.u(2))}, 'FontSize', 8);

xlabel('step number'); ylabel('Norm of gradient');
set(gca, 'TickLabellnterpreter', 'Latex','fontsize',8);

if opt.STEP_SIZE == -1
figure('Units',‘pixels','position',...
[from_pix*pix_count from_pix 400 300]);

pix_count = pix_count+l;

stem(steps,'.");

grid;

title({'Showing size of each optimal step found using golden sectiomn',...
sprintf('line search at each iteration. number of steps([/d]',...
length(pts)-1),...
sprintf ('tolerance for convergence [%2.3f], starting point [}2.1f,%2.1f]',..|
opt.gradientNormTol,opt.u(l),opt.u(2))}, 'FontSize', 8);

252

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252

© NN s W N

[T S
w N = o

4.4. HW 4

CHAPTER 4. HWS

xlabel('iteration number'); ylabel('optimal step size');
set(gca, 'TickLabelInterpreter', 'Latex', 'fontsize',8);
end

end

%Evaluate J(u) at u
function f = objectiveFunc(u)

x = u(l);
y = u(2);
f = 100%x(y-x.72).72 + (1-x).72;

end

%Evaluate grad(J(u)) at u
function g = gradientFunc(u)

x = ul);
y = u(2);
g = [200%(y-x. 2)*(-2*%x)-2%(1-x); . ..

200*(y-x."2)];
end

%Evaluate Hessian(J(u)) at u
function g = hessian_func(u)

x = u(l);

y =u(2);

g = [1200*x"2 - 400*y + 2, -400%*x;
-400%*x, 200] ;

end

4.4.3.7 Problem 2 partb

function nma_HW4_problem_2_part_b(u)
%finds the min value of

b

% f(u) = sum i=1..N-1 100(u(i+1)-u(i)~2)72 + (1-u(i))~2
A

% for any N.

b

% over range ui=-2.5..2.5

b

% Solves part (b) of problem 2

b

% ECE 719, SPring 2016

% Matlab 2015a

253

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

4.4. HW 4 CHAPTER 4. HWS

/Nasser M. Abbasi

b

% INPUT:

% u: vector N by 1, represent starting point u_O. Example call
b nma_HW4_problem_2_part_b([-2;-2;-2])

%These are the options struct used by call to
%nma_steepest_descent_multi()

close all;

opt.u = u; %hstarting guess x-coordinate
opt.MAX_ITER 1¥1076; Y%maximum iterations allowed
opt.STEP_SIZE 0.01; %set to -1 to optimal step
opt.objectiveFunc Q@objectiveFunc; Y%see function definition
opt.gradientFunc Q@gradientFunc; Ysee function definition
opt.gradientNormTol = 0.0001; %used to determine when converged
opt.accumulate false;

%Find the minumum using Matlab build-in, in order
%»to compare with in plot optimalValue =
%fminsearch(opt.objectiveFunc, opt.u);

format long g;

tic;

[status,pts,levelSets, gradientNormTol,steps] =.
nma_steepest_descent (opt) ;

time_used = toc;

fprintf ('\nCPU time %3.6f\n',time_used);

switch status
case 0, status = ...
'successfull completion. Converged before maximum iterations';
case 1, status = ...
'failed to converge before maximum iterations due to oscillation';
case 2, status = ...
'failed to converge before maximum iterations';
end

fprintf('Y%s\n',status);

figure();

stem(levelSets,'.'); title('J(u)");

figure();

stem(steps,'."'); title('step size');

format short;

fprintf ('Number of coordinates used %d\n',size(opt.u,1));
fprintf('optimal point found is\n'); disp(pts(end,:));

if opt.accumulate

254

4.4. HW 4 CHAPTER 4. HWS

61 fprintf ('\nNumber of steps used [%d]',length(steps));
62 | else

63 fprintf (' \nNumber of steps used [%d]',steps);

64 | end

65 | fprintf ('\nJ(u) at optimal [%3.6f]',levelSets(end));
66 | fprintf ('\n**x** done **x***xx\n');

67
68
69 | end
70
2 S

72 | %Evaluate J(u) at u

73 | function f = objectiveFunc(u)

74 |u=u(:);

75 |N = size(u,1);

76 | £ = 0;

77 |for i = 1:N-1

78 f =1 + 100x(u(i+1)-u(i)"2)"2 + (1-u(i))~2;
79 | end

80 | end

81
I s

83 | %Evaluate grad(J(u)) at u

84 | function g = gradientFunc(u)

85 |u = u(:);

8 |N = size(u,1);

87 |g = zeros(N,1);

88 |[for i = 1:N

89 if i==1 || i==

90 if i==

91 g(1)=-400* (u(i+1)-u(i)"2)*u(i) - 2*(1-u(i));

92 else

93 g(1)=200* (u(i)-u(i-1)"2);

94 end

95 else

96 g(i) = 200*%(u(i)-u(i-1)"2)-...

97 400* (u(i+1)-u(i)"2)*u(i)-2*(1-u(i));
98 end

99 | end

100 | end

4.4.3.8 Problem 2 part b CPU time program

function nma_HW4_problem_2_part_b_CPU()

%Does CPU testing on problem 2 by calling
%nma_HW4_problem_2_part_b() on larger and larger N and
%recording the CPU time used.

N =

aw

255

© 0NN G

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

4.4. HW 4

CHAPTER 4. HWS

yA

% ECE 719, Spring 2016
% Matlab 2015a
%Nasser M. Abbasi
clear; close all;

opt.STEP_SIZE =
save_file =
N =
data =
opt .MAX_ITER =

0.01; Y%step size. set to -1 to use optimal
'fixed.mat';

10:20:1000;

zeros (length(N) ,4);

1*%1076; Y%maximum iterations allowed

opt.objectiveFunc = QobjectiveFunc; %see function definition
opt.gradientFunc = Q@gradientFunc; Y%see function definition
opt.gradientNormTol = 0.0001; %used to determine when converged
opt.accumulate = false;
for i=1:length(N)
opt.u = repmat(-2,N(i),1); %starting guess x-coordinate
tic;

[status,~,levelSets, ~,number_of_steps_used] 54
nma_steepest_descent (opt) ;
time_used = toc;
switch status
case 0, status = ...
'successfull completion. Converged before maximum iterations';
case 1, status = ...
'failed to converge before maximum iterations due to oscillation';
case 2, status = ...
'failed to converge before maximum iterations';
end
fprintf('%s\n',status);

data(i,1) = N(i);

data(i,2) = time_used;

data(i,3) = levelSets;

data(i,4) = number_of_steps_used;

fprintf (' \n****Number of coordinates used %d\n',...
size(opt.u,1));
fprintf ('\nCPU time %3.6f\n',time_used);
fprintf('\nJ(u) at optimal [%3.6f]\n',levelSets(end));
end

close all;

reset(0);

set(groot, 'defaulttextinterpreter', 'Latex');
set(groot, 'defaultAxesTickLabelInterpreter', 'Latex');

256

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

4.4. HW 4

CHAPTER 4. HWS

set(groot, 'defaultLegendInterpreter','Latex');

figure();

plot(N,data(:,2),'ro',N,data(:,2),'-"');

title('CPU time as N changes for fix step steepest descent');
xlabel('N'); ylabel('CPU time (sec)');

set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);

save(save_file, 'data');

figure;

load('optimal');

optimal=data;

load('fixed')

fixed=data;
plot(optimal(:,1),optimal(:,2),'k.~")
hold on;
plot(fixed(:,1),fixed(:,2),'r.~-")
title('Comparing CPU time, using optimal vs. fixed step')
xlabel('N, the number of coordinates');
ylabel('CPU time in seconds');

grid

end

%Evaluate J(u) at u
function f = objectiveFunc(u)

u=u(:);
N = size(u,1);
f:

0;
for i = 1:N-1
f =1 + 100*x(u(i+1)-u(i)~2)"2 + (1-u(i))~2;
end
end

%Evaluate grad(J(u)) at u
function g = gradientFunc(u)

u=u(:);
N = size(u,1);
g = zeros(N,1);
for i = 1:N
if i==1 || i==
if i==
g(1)=-400* (u(i+1)-u(i)~"2)*u(i) - 2*x(1-u(i));
else

257

99
100
101
102
103
104
105
106

4.4. HW 4

CHAPTER 4. HWS

end
end

else

end

end

g(i)=200% (u(i)-u(i-1)"2);

g(i) = 200*(u(i)-u(i-1)"2)-400* (u(i+1)- ...

u(i)"2)*xu(i)-2x(1-udi));

258

4.4. HW 4 CHAPTER 4. HWS

4.4.4 HW 4 key solution

Mo Arghhec

. a
—'—(M)—a ([!— H,,Ul) +(|'* JoM2 +UI—U;M7§’2
e _v2(|_u,,k)l) -+ 2(/%/04»(1 —#u.~M.U2>(" UZ)

—— 2 —2 (- M) 42 (1t jourpld -HlMe) (1o -4,

Vi=o Of [B : Lw(i Ue = M3
- L+
h)i}\? I3 Ay v @ T ﬁd'ﬁi’ {).‘)"*'/ﬂ t G- e
U £ G 5‘\um1 IO(J il mum
J

pole dhel thee o L oTher %alnt o whien V3=

ond b e (F-2) T, poat s outade oo

crea of et . Wizo U, > 0

(o m...xe».r\"l; :

- Some [q'{l,(g\ (dy\(\,*{om Con 04 “ e J[u + \H Jd(ﬁi en "y
V)

|
N

ame el Lo {A% Ony Convyiice '{,o - &c\({(“e Lo /(
1

C
N D”\W’, "{de 1o (/MN(J(\ t [7,-2) Y bnﬂ

our

ﬂ(‘&‘th‘(t'OV\ ‘Q W‘%OSE l{ "L) Svr‘\'w‘; (o8] X - 0\)('(<

- S el ‘S{C? Sizeg cor /é’je ’{fv‘ eithe O" T

.3 s‘.;:zgx,,.»'\v;‘(f i ff;‘ 5 anc ’iak((Cvﬁc’ 2y
J
I " t . 4
- \«&va‘e slcfl) Sizes Convlis & qd.(\\tﬁ Ly BN

J
J
ID(A‘ Wiimgm L)\ﬂ Q;(Jﬁi‘@f@s ﬁ!(){)w(l il

259

4.4. HW 4 CHAPTER 4. HWS

15 T »‘ T T T

{0l B e N o T SR STiEY =

u2

0 2 4 6 8 10 12 14 16 18 20
ut

260

4.4. HW 4 CHAPTER 4. HWS

We kave med

-~ f>+({€[> C‘\QSCEﬂt a‘ﬁo("e{\hm wid b ‘(;\xec' de\» size

— UFQ“M{{ c«,‘ga{;"’f " P

S

/l/(,&f\ = /u& -~ A Vj {'a,é)

WV T{wil”
whee o s e W(:xec\ &'PZF SizZe
l@(ml/\attm WK im O m YW"‘/‘L"’{ 04 ;'\Q(‘{"'““S/ 100od0

or J (Mps,) - Tl ¢ € where
g—' i; “”\l 40;6#.,,,(@»

— (‘owe.,jame Slow amd /meu (cmm&;ame

ul=5,u2 = 10,Step Size = 0.01

uz

Migimum 13,4)

of iterations = 1109

0 5 10 15
ul

261

4.4. HW 4

CHAPTER 4. HWS

ut=12,u2 = 14,Step Size = 0.1

u2

linimum —W¥ 3,4)

of iterations = 100000

0 5 10 15
ul

Since AW doletome s smeller Ahen dhe
:‘:}czp size, Abe 0\5(')1)";3»1 s."onjwaj at Al
Wioks mum quw bot of d‘em[éom Tt oscillates

Ground ARt wirimym-

262

4.4.

HW 4

CHAPTER 4. HWS

u1=12,u2 = 10,Step Size = 1

263

4.4. HW 4 CHAPTER 4. HWS

Consider the Rosenbrock function (banana) described by

N
J(u) = Z 100(i41 — ﬂ?)z + (1 - ui)ﬂ (7)

=1

with interesting domain described by |u;| < 2,4 = 1,2,..., N + 1. Clearly a
global minimum, J* = 0, is attained with all u; = 1.

1. (Case I: N = 1) The steepest descent algorithm with optimal step size is
employed to minimize J(u). The results are captured below:

e Starting with u" = [g], the steepest descent slowly reaches uf =

[gg?gg] after 2000 iterations.

1
1l there are oscilla-
tions as the contours get much closer to each other - in other words
the “bananas™ get thin and long.

e As we reach closer to the optimum i.e. u* —

¢ The algorithm converges to the optimum if allowed to run for suf-
ficient time - the convergence is slow because of the search in the
negative gradient direction. A conjugate direction algorithm will
ouperform optimal descent by far.

05

Figure 6: Trajectory of u*

264

4.4. HW 4 CHAPTER 4. HWS

e Another interesting starting point is (-1,2). The algorithm takes an
initial big leap into one of the thin bananas and slowly crawls towards
the optimum along the contours. And on transition to another sharp
thin contour along its trajectory, it again takes a big leap closer to
the optimum. Thereon it slowly attains the optimum. The trajectory
is shown below in figure 7. The number of steps taken to converge
were 1000 and the final solution is (1.0050,1.0124).

contour plot

Figure 7: Trajectory of u*

265

4.5. HW 5 CHAPTER 4. HWS

45 HW)5

451 Problem1

Barmish

ECE 719 — Homework Freudenstein

When one wishes to solve a set of nonlinear equations
filx)=0; i=1,2,..., N,

one can consider an optimization problem with cost function

N
J(x) = ; fi(x)
to be minimized.

(a) Explain the relationship between the optimization problem and the
original nonlinear equation solving problem.

(b) For the two nonlinear functions of Freudenstein and Roth given by
filz) = 29 — 23 4 50} — 22 — 13;

fo(x) = 9 + 2} + 2] — 142y — 29,

generate some contours for J(x) over the interesting region described
by |z1] < 10; |zo| < 50.

(c) Write a program which implements the Polyak-Ribiere Algorithm (look
up the iterative procedure) including your optimal line search method to
minimize J(z) using f; and fy above. In reporting your results, describe
the performance of the algorithm from a variety of initial conditions "
including some illustrative iteration pathes superimposed on the J con-
tours. Also indicate what line type of line search and stopping criterion
you used.

Figure 4.39: problem 1 description

4.51.1 part(a)

Let f; (x) : R" — R. We want to solve

fi)=0 i=1,2,N 1)

266

4.5. HW 5 CHAPTER 4. HWS

Which means finding x* which makes value of f;(x*) be zero. If we consider the vector F (x)
of functions f; (x)

f1 (x)
F(x) = fzi(x)

fn(x)

Then the square of the Euclidean norm of F (x) is

N
IE@IP =] 2 (%)
i=1

The minimum value of ||F (x)|| is zero since it is a norm. Which is the same as ||F (x)||2 =0.
This means F (x) = 0 occurs when ||F (x)||2 = 0. So the solution to (1) is the same x* as finding
the minimizer x* which makes ||F (x)||2 minimum.

Therefore minimizing J (x) = [|[F (x)||2 = Zf\il flz (x) will give the solution to (1). This is similar
to finding least squares solution to set of linear equations, except now the set of equations
F (x) are non-linear in x.

4512 partb

f1(x) =x, — x5 +5x% —2x; - 13
fo(x) =2 + 23 + x5 —14x; — 29

Hence
J(x) = f7 (@) + f5 (%)

= (xz — x5 +5x% = 2x; - 13)2 + (x2 +x3 +x% —14x; - 29)2

= 2x8 — 8x3 + 2x} — 80x3 + 12x3x, + 12x3 — 32xx, + 864x; + 2x3 — 84x, + 1010 (1)

f1(x)
f2 (%)
optimization to find the solution x to F (x) = 0 by finding the minimizer of (1). The solution
will turn out to be

J (x) is non-linear function. The above is the ||F (x)||2 where now F (x) = . We will use

x=(x1=4,x =5)

At this point J(x*) = 0 and also f; (x") =0 and f;, (x*) = 0. So the above is the true solution
to f; (x) = 0. But there is also another local minimum close to it located at

x = (x; = —0.8968, x, = 11.4128)

where here [(x) = 48.98 and not zero. At this second local minimum, the corresponding

267

4.5. HW 5

CHAPTER 4. HWS

values for f; are f7 (x) = 4.949 and f, (x) = —4.949. These were found by running the conjugate

gradient algorithm with Polyak-Ribiere stepping as given below.

The following is contour plot of the full range given in the problem statement, showing
there are two local minimums, one around point x; = 4.5,x, = 8 and another around

X1 = —1.3, Xy = 10

-10

-20

-30

contour plot, default setting
+5a] — 2m; — 13)° + (22 + &} + 2] — lay
T

B
sl

—29)°
T

x10°

2000000

-40

1000000 ———|

2000000
1000000

000 —_]
—

00000 —]

60000 — o
60

7000

30000
1000y

000004

500000 ——M8— 500000 —|
250000 —4——m8o 250000
————————— 100000 -

118

116

114

— 0000001

112

0.8

0.6

0.4

0.2

This is zoomed version of the above to show more clearly the area around the variations

Figure 4.40: contour plot, full range

Ty

contour plot, default setting
(w2 — 2% + 527 — 221 — 13)* + (25 + 2} + 2} — 142, — 29)*
T T T T

2009,

ST

N
’ 10gg

0.8

0.6

0.4

0.2

Figure 4.41: contour plot, zoomed version

This is filled contour version of the above.

268

4.5. HW 5 CHAPTER 4. HWS

filled contour plot, small region
(xg — 3 + 522 — 22; — 13)% + (22 + 23 + 27 — 142, — 29)?

3000
30

2500

20

2000
10 |-

T2

ol 1500
-10 1000
-20 500

Figure 4.42: contour plot, filled zoomed version

This is 3D plot of the function J(x)

3D plot
Ty — &} + 5af — 23 — 13)% + (22 + 2} + 2] — 142, — 29)°
1 1

6000
5000
4000
3000
2000

1000

Figure 4.43: contour plot, filled zoomed version

269

4.5. HW 5 CHAPTER 4. HWS

4.51.3 part(c)

A Matlab program is given in the appendix which implements Polyalk-Ribiere (and it also
supports Fletcher-Reeves). The result is given below, with discussion following each result.
One result also shows an interesting difference found between Polyalk-Ribiere and Fletcher-
Reeves when starting from some random found u° point. In all runs, Matlab fminsearch was
also used to compare the minimizer found. In some cases, this algorithm found the same
minimum as Matlab’s fminsearch, and in other cases it did not.

The result shows each point u* visited with the value of g; and a; found, and the value of
the objective function and the gradient at each step.

For the line search, golden section search was used to find @, with maximum step size
Hpax = 1. The stopping criteria used for all these runs is [V] ()| < 0.001.

4.5.1.3.1 The algorithm The following is the outline of general algorithm expressed as
pseudo code.

Algorithm 1 Conjugate gradient using Polyalk-Ribiere or Fletcher-Reeves

procedure CONJUGATE_GRADIENT

1:
2 > Initialization
3 € <— minimum convergence limit on ||V.J(u)]|
4 k<« 0
5: U $— uO
6 max_iterations < max iterations allowed
7 Jeurrent < VJ(U)
8 Veurrent < —Ycurrent
9: while ||geurrent] > € do
10: > do line search, using golden section, maximum step size is one
11: o+ ming J (@) = J(u + @ Veyrrent)
12: Gprevious < YJeurrent
13: U < U + QVUcyrrent
14: Jeurrent < VJ(U)
15: if Fletcher-Reeves ghen
churrcntH
16: — o3
ﬁ. ng'reviou.,sH.Q
17: else if Polyalk-Ribiere then
T _ .
18: B — gcurrent(gcuv‘re.nt gzprekus)
. ”gpreuzn'u,s H
19: end if
20: Ucurrent <~ —Yeurrent 1 ﬁ Veurrent
21: end while

22: end procedure

Figure 4.44: Conjugate gradient using Polyalk-Ribiere or Fletcher-Reeves

4.51.3.2 Test 1 starting from (-5.49,23.05)

270

4.5. HW 5 CHAPTER 4. HWS

Showing «* path on top of contour plot. Problem 1, part (c)
u® = [—5.59140, 23.05447), J(u) = 48.984, iterations [8]
convergence criteria |V (J(u))| < 0.001
successfull completion. Converged before maximum iterations

T T T

40 FT

30 -

20 -

10 -

100000

—————————— 60000 — |
400
%5_\
pre———{[1(1[2

000 goL
0002

=}
T

[30000 — |

=3
'
A F

Figure 4.45: test case 1, problem 1, part ¢

Matlab fminsearch found J(-0.8968,11.4128) = 48.9843. This program found J(-0.8968,11.4128) =
48.9843. since u* = (4,5) we see that the search did not find u* but found the other local
minimum near it, since the search was started from a point closer to the second one. Also
we see Matlab fminsearch result matched our result. So this is good. It took 8 steps. We also
notice that V] (xk) increased at one step (step 3) during the search. This is indication that
this is not a quadratic function (which we already know this), but V] (xk) started to decrease
again after that.

AN @ TME W | e

1 (=5.59,23.05) 129231.19 | 116683.427 | 0.000046 | —0.000003
2 (-0.20,23.028) 122.99 15.12 0.273 86.62

3 (-0.2227,18.9) 91.83 140.56 0.003958 0.3535

4 (-0.8,13.72) 52.15 39.059 0.00394 0.4082

51 (-0.855,11.885) 49.16 12.1855 0.00236 0.05

6 | (-0.896,11.436) 48.98 0.583 0.00238 0.0094
7 | (-0.8968,11.4129) 48.98 0.00545 0.002095 0.00123
8 | (-0.8968,11.4128) 48.98 0.000007 | 0.000000 | 0.000000

4.51.3.3 Test 2 starting from (5.8, 35.89)

271

4.5. HW 5 CHAPTER 4. HWS

Showing «* path on top of contour plot. Problem 1, part (c)
u® = [5.80645, 35.89494], J(u) = 48.984, iterations [9]
convergence criteria |V (J(u))| < 0.001
successfull completion. Converged before maximum iterations

o

A0
3"
[~
R
(=1
. g
N
o = g
28 g
SAE -k
— M
1 1

\
»)QQ
3000

1000

2
¥
(2
%

Figure 4.46: test case 2, problem 1, part ¢

Matlab fminsearch found J(-0.8968,11.4128) = 48.9843. This program found J(-0.8968,11.4128) =
48.9843. since u* = (4,5) we see again that the search did not find u* but found the other
local minimum. Also we see Matlab fminsearch result matched our result. So this is good.
It took 9 steps. We also notice that V] (xk) increased at one step (step 3) during the search.

k i) VI e | A

1 (5.806, 35.895) 24303.88 | 32066.72 | 0.000170 | 0.000011
2 (0.353,35.847) 520.53 49.582 0.2299 36.96

3 (0.435,24.448) 238.41 301.265 | 0.00356 0.28

4 (-0.59,17.92) 71.95 69.317 0.0079 1.3363
5 (-0.686,13.789) 53.18 52.828 0.0028 0.1788
6 (-0.883,11.7991) 49.08 8.1969 0.00295 | 0.06401
7 (—0.895,11.4284) 48.98 0.4961 0.00193 | 0.00629
8 | (—0.896801,11.412913) 48.98 0.003106 | 0.002634 | 0.000101
9 | (-0.896805,11.412779) 48.98 0.000000 | 0.000000 | 0.000000

4.51.3.4 Test 3 starting from (5.59, -19.55)

272

CHAPTER 4. HWS

4.5. HW 5

Showing u* path on top of contour plot. Problem 1, part (c)
i = [5.5 (u) = 48.984, iterations [9]
|V (J(u))| < 0.001
ed before maximum iteratio

— - 30000"3
1009y]

7000

N N
5 2 7
2 3
000§ (‘wnus |

& &
T T
[——————— 10000
L

Figure 4.47: test case 3, problem 1, part ¢

Matlab fminsearch found the true minimum J(4,5) = 0. This program did not do as well,
and went for the second local minimum at [(-0.8968,11.4128) = 48.9843, which has the
corresponding solution f(x) = 4.9490, f,(x) = —4.9490.

One surprising thing to note, is that Matlab fminsearch uses simplex method according to
the help. But this problem is not linear. It turns out that Matlab fminsearch uses a modified
version of simplex method, called the Nelder-Mead simplex (direct search). It seems to do
better than algorithm implemented in this problem. But in the next test case, we will see
that this algorithm evens the score with Matlab’s and in the next test case it is we who will

do better.
It took 9 steps. Again as before, V] (xk) increased at one step during the search (at step 3

also).
k v @) W] o | s
1 (5.5914, -19.553) 10150.82 | 19380.2 | 0.000397 | —0.000023
2 (-2.107,-19.566) 585.39 | 41.5373 0.2127 423.717
3 (-2.142,-10.731) 401.83 854.79 | 0.001138 -0.213
4 (-1.247,9.303) 79.34 264.025 | 0.000619 | —0.14389
5 (-1.1875,6.974) 57.85 46.1832 | 0.00822 -0.2476
6 (-0.9218,11.436) 49.30 241288 | 0.001065 | —0.02258
7 (-0.9046,11.29) 48.99 0.56707 | 0.0389 —-0.0926
8 (—0.8969,11.4131) 48.98 0.05981 | 0.001129 | —0.000415
9 | (-0.896806,11.412772) | 48.98 | 0.000025 | 0.000000 | 0.000000
4.51.3.5 Test 4 starting from (7.43472,16.05058)

273

4.5.

HW 5

CHAPTER 4. HWS

Showing u* path on top of contour plot. Pr
0

J(u) = 0.000, i

oblem 1, part (c)
i ions [6

00009
00000T

Figure 4.48: test case 4, problem 1, part ¢

Matlab fminsearch here did not find the true minimum J(4,5) = 0 while this algorithm did.

It took 6 steps only. Again as before, V] (xk) increased at one step during the search (at step

2).

4.51.3.6 Test 5 starting from (3.809, —8.46)

K)) I« B

1 (7.435,16.05) 143368.39 | 143787.679 | 0.000025 | 0.000002
2 (3.78,16.04) 172.57 30.799 0.2696 200.218
3 (3.84,7.74) 44.74 435.9738 | 0.000433 | 0.00797
4 | (3.999778,5.066770) 0.01 3.455556 | 0.001349 | 0.009287
51 (3.999989, 5.000154) 0.00 0.031875 | 0.000336 | —0.000038
6 | (4.000000,5.000000) 0.00 0.000001 | 0.000000 | 0.000000

274

4.5.

HW 5

CHAPTER 4. HWS

Showing u* path on top of contour plot. Problem 1, part (c)
u® = [3.80952, —8.46304], J(w) = 0.000, iterations [6]
convergence criteria |V (J(u))| < 0.001
successfull completion. Converged before maximum iterations

25 -

2{)00

20 8
i
15 |

10

-10

-15 1

OUZT

Figure 4.49: test case 5, problem 1, part ¢

Here both Matlab fminsearch and this algorithm, found the true minimum.

It took 6 steps only. Again as before, V] (xk) increased at one step during the search (at step

3).

k

k x JE) VI]« B

1 | (3.809524,-8.463035) | 580.29 | 1386.28 | 0.000285 | 0.000784
2 | (4.204487,-8.444322) | 267.86 40.2297 0.33335 | 14.037757
3 | (3.958554,4.969723) 3.20 | 150.186235 | 0.000278 | —0.009224
4 | (3.997429,5.127561) 0.02 1.447732 | 0.022782 | 0.258685
5| (4.000078,5.000400) 0.00 0.316225 | 0.000273 | 0.000175
6 | (4.000000,5.000004) 0.00 0.000057 | 0.000000 | 0.000000

4.5.1.3.7 Test 6 (first strange one) starting from (6.63594,-14.29961) This test case
and the second one are pathological cases, in the sense that this algorithm did find the true
minimum, but the path taken headed first to the second local minimum and was very close
to it, before turning and going to the true minimum at (4, -5). At this time, I am not able to
explain this and more time needed to investigate. It does however find the true minimum
eventually, so this is good result even if the path taken looks very strange compared to all
the other tests above. The main difference between this test case and the last ones, is that
here the objective function] (x) increased at one point during the search (at step 6 as shown

below).

275

4.5. HW 5

CHAPTER 4. HWS

30 /
Z

e

Showing u* path on top of contour plot. Problem 1, part (c)
u® = [6.63594, —14.29961], J(u) = 0.000, iterations [14]

convergence criteria |V (J(u))| < 0.001

successfull compl%ion Converged before maximu

%)

m iterations

\

-40

00009 ——————————————00009 —~

0000€

|

000007 ———————————————— 000001

Figure 4.50: test case 6, Polyak-Ribiere, problem 1, part ¢

Here both Matlab fminsearch and this algorithm, found the true minimum.

It took 14 steps. Here V] (xk) increased and decreased more than one time during the search.

k i) L VIE | @ B
1 (6.63594, —14.29961) 52701.77 | 67823.57 | 0.000127 | 0.000002
2 | (-1.970382,-14.321801) | 393.95 31.646 0.221630 385.651
3 (-1.991739, -7.308131) 282.95 621.5254 | 0.001424 | —-0.217509
4 (-1.159618,10.073263) 67.36 199.4501 | 0.000696 | —0.132737
5 (-1.109423, 8.218728) 53.56 31.5552 0.009140 | —-0.241872
6 | (—0.908598,11.459289) 49.08 13.239 0.662964 | 22576.86
7 | (4.328897,-45.933286) | 4299.56 | 1995.887 | 0.000000 | —0.009991
8 | (4.333267,-45.980644) | 4299.50 | 1975.7426 | 0.001732 | 3.309271
9 (4.620182,-11.840013) 883.28 2743.2211 | 0.000271 | —0.051462
10 (4.024522,5.862406) 3.99 149.444 0.000338 | —0.154415
11 (4.012227,4.726667) 0.22 28.564 0.000532 | —0.010341
12 (4.000032,5.002778) 0.00 0.299 0.000518 | —0.004453
13 (4.000001, 4.999987) 0.00 0.00134 | 0.000550 | 0.001374
14 (4.000000, 5.000000) 0.00 0.000002 | 0.000000 | 0.000000

The above was re-run again, starting from the same u°, but now using Fletcher-Reeves
formula. The result was surprising. Now the algorithm did not show the strange path as

276

4.5. HW 5

CHAPTER 4. HWS

above, however, it also did not find the true minimum at (4,-5) and instead went for the
second local minimum as shown below. This shows, at least in this test, that Polyak-Ribiere

formula did a better job, even though it took more steps.

20

7000

o
— 10000 '

convergence criteria ‘V
successfull completion. Converged before maximum iterations

2000

bh()wmg u* path on top of (ontuur plot. Problem 1, part (c)
u® = [6.63594, —14.29961], J (u

48 984, iterations [9]

)| < 0.001

0000€

00009 ————————— 00009

-20

N ———
f——————1— 0000€

8

000007 — 000001

-~

Figure 4.51: test case 6, using Fletcher-Reeves, problem 1, part c

: ; T 7
1 (6.63594,-14.29961) 52701.77 | 67823.57 | 0.000127 | 0.000000
2 | (-1.970382,-14.321801) 393.95 31.646 0.2519 393.1282
3 | (-1.968895,-6.351520) 267.83 627.462 | 0.001362 | 0.07595
4 (-1.111164,10.592228) 63.10 172916 | 0.001001 | 0.000010
5 (-0.890514,11.528839) 48.99 0.5567 0.001137 | 0.03014
6 (-0.889896,11.528704) 48.99 0.0967 0.888831 202.77
7 | (-0.893567,11.441590) 48.99 1.3763 0.001469 | 0.000012
8 (-0.896818,11.412476) 48.98 0.00481 0.001101 | 0.002681
9 (—-0.896823,11.412476) 48.98 0.000249 | 0.000000 | 0.000000

4.51.3.8 Test 7 (second strange one) starting from (0.5837,-46.595) This test case
also showed difference between Polyak-Ribiere and Fletcher-Reeves.

With Polyak-Ribiere, it found the same minimum as Matlab fminsearch using a strange path
where J(1) did increase at one point before decreasing again.

However, it did a better job than Fletcher-Reeves.

277

4.5. HW 5

CHAPTER 4. HWS

Here both Matlab fminsearch and this algorithm did not find the true minimum.

It took 13 steps. Here V] (xk) increased and decreased more than one time during the search.

Showing u* path on top of contour plot. Problem 1, part (c)
u® = [0.58372, —46.59533), J(u) = 48.984, iterations [13]

convergence criteria |V (J(u))| < 0.001

successfull completion. Converged before maximum iterations

-

0004
00001

e
10000 —4—M———

[7000

Figure 4.52: test case 7, Polyak-Ribiere, problem 1, part ¢

Also J(u) increased during the search before decreasing again.

k

k x) [VIE] B

1 (0.583720,—46.595330) | 10438.38 | 1656.968 | 0.001966 | 0.003862
2 | (-2.624791,-46.035172) | 2450.06 | 103.007 | 0.564906 2.002

3 (3.819328,11.909200) 72.20 148.967 | 0.000257 | -0.1194
4 (3.863288,11.957784) 69.31 28.774 0.163101 7.727

5 (4.016286,5.132002) 0.67 70.2157 | 0.098572 18.327
6 | (-2.188772,-26.898544) | 959.12 336.852 | 0.000017 | -0.183
7 | (-2.213801,-26.997880) | 958.16 255.113 | 0.025963 3.785

8 (-1.599015,2.551447) 123.88 387.315 | 0.001099 0.179

9 (-1.074840,7.277357) 57.59 60.1637 | 0.004433 0.517
10 | (-0.961876,10.715217) 4945 22.635 0.001854 | —0.0502
11 | (-0.895537,11.456508) 48.99 1.2014 | 0.002193 | -0.01161
12 | (-0.896851,11.412270) 48.98 0.014138 | 0.002174 | 0.000948
13 | (-0.896805,11.412779) 48.98 0.000013 | 0.000000 | 0.000000

4.5.1.4 Appendix. Source code for problem 1

278

© O NN s W N

AR R R R R A A W 0 W W W W W W W W NN NN NN NN NN e e e e e e
T o bk RO 8 I3 R B0 R3S ®IS O RO RS © 00N ks W o = o

4.5. HW 5 CHAPTER 4. HWS

function nma_HW5_problem_1_part_b
%Solves problem 1, part b, HW5
%ECE 719, UW Madison, Spring 2016
o

h

close all; clc;
cd(fileparts(mfilename('fullpath')));

%reset (0);

xlimits = [-10 10]; %x limits, for plotting, change as needed
ylimits = [-50 50]; %y limits, for plotting, change as needed
myTitle =

'$$(x_2-x_173+bx_172-2x_1-13)"2+(x_2+x_1"3+x_1"2-14x_1-29)"2$$';
[ul,u2,z] = nma_makeContourData(0.05,x1limits,ylimits) ;

figure(1);

v =[50 80 200 400 700 1073 2x1073 3%1073 7%*1073 1074 ...
3%x1074 6%1074 1075 2.5%1075 ...
5%x1075 1076 2%1076];

[C,h] = contour(ul,u2,z,v);
colorbar
%[C,h] = contour (ul,u2,z);

clabel(C,h,v, 'Fontsize',7, 'interpreter', 'Latex', 'Color', 'red');
nma_setMyLabels('$$x_1$$", '$$x_2%8", ...
{'\makebox[4in] [c]{contour plot, default setting}',...
sprintf (' \\makebox[4in] [c]{%s}"' ,myTitle)});

figure();

xlimits = [-3 6]; ¥%x limits, for plotting, change as needed
ylimits = [-30 35]; %y limits, for plotting, change as needed
[X,Y,Z] = nma_makeContourData(.95,x1imits,ylimits);

v =[80 300 700 900 1500 2000 3000];

[C,h] = contourf(X,Y,Z,v);

colorbar;

nma_setMyLabels('$$x_1$$"', '$$x_2%8", ...
{'\makebox[4in] [c]{filled contour plot, small region}',...
sprintf (' \\makebox[4in] [c]{%s}"' ,myTitle)});

figure();
xlimits = [-2.5 5]; Y%x limits, for plotting, change as needed
ylimits = [-30 30]; %y limits, for plotting, change as needed

[X,Y,Z] = nma_makeContourData(.95,x1imits,ylimits);
hsurfl(X,Y,2);

surf (X,Y,2);

colormap (hsv) ;

279

48
49
50
51
52
53
54
55

© 0NN s W N

W W W W W W W W W W NN NN NN DNDNDNDN R
© X N s W H O O 0NN R W NN HO O NN W Ny RO

4.5. HW 5 CHAPTER 4. HWS

hview([154,46]);
hold on;
contour(X,Y,Z, 'Linecolor', [0 0 1]);
nma_setMyLabels('$$x_1$$', '$$x_28$',. ..
{'\makebox[4in] [c]{surf plot}',...
sprintf (' \\makebox[4in] [c]{%s}',myTitle)});

end

function nma_HW5_problem_1_part_c()
%#finds the min value of

/A

% J(x) = f172 + £272 where

yA f1l = x2-x173+b*x172-2x1-13

% f2=x2+x173+x172-14x1-29

b

% over range x1=-10..10 and x2=-50..50 using steepest descent
/A

% ECE 719, Spring 2016

% Matlab 2015a

/%Nasser M. Abbasi

if (~isdeployed)
baseFolder = fileparts(which(mfilename));
cd(baseFolder);

end

close all;

set(groot, 'defaulttextinterpreter', 'Latex');
set(groot, 'defaultAxesTickLabelInterpreter', 'Latex');
set(groot, 'defaultLegendInterpreter', 'Latex');

%paramters, change as needed
%select the algorithm to use. Either 'conjugate gradient'
%or 'steepest descent'

METHOD = 'conjugate gradient';

DO_GUI = false; %set to true to get input from GUI
DO_ANIMATE = true; %set to true to see animation

DO_GIF = false; %set to true to make animation gif
DO_3D = false; %if we want to show 3D search path.
xlimits = [-20 20]; %x limits, for plotting

ylimits = [-90 90]; Y’y limits, for plotting

del = 0.05; %grid size, used for making meshgrid

fixed_levels = [50 80 200 400 700 1073 2%1073 3%1073

7*1073 1074 3%1074 ...

61074 1075 2.5%1075 5%1075 1076 2*x1076] ;
CONTOUR_LINES_AUTO = 'fix'; %set to 'auto', to see matlab contour

280

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

4.5. HW 5 CHAPTER 4. HWS

b %set to 'full' to see each step level set
A %set to 'limited' to see every other level
b hset to 'fix' to use pre-specificed

h

e
%These are the options struct used by call to

%optimization function

hopt.u = [6.63594;-14.29961]; Ystarting guess x-coordinate
%selection of tough ones: This gives very different

b result from fletcher and polak.
hopt.u = [6.63594;-14.29961]; Ystarting guess x-coordinate
opt.u = [0.58372;-46.59533]; ’%starting guess x-coordinate

opt .MAX_ITER = 1074; Jmaximum iterations allowed
opt.STEP_SIZE = -1; Ystep size. set to -1 to use optimal
opt.objectiveFunc = @objectiveFunc; Y%see function definition
opt.gradientFunc = @gradientFunc; Y%see function definition
opt.gradientNormTol = 0.001; Yused to determine when converged
opt.hessian = Qhessian_func; Y%see function definition
opt.accumulate = true;

opt.stop_on_oscillation = false;

%data
[ul,u2,z] = nma_makeContourData(del,xlimits,ylimits);
figure();
if DO_GUI Ycheck if GUI input is asked for, if so, wait for user
plot(0,0);
xlim(x1limits); ylim(ylimits);
hold on;
[x,y] = ginput(1);
opt.u=[x;y];
end

%Find the minumum using Matlab build-in, in order to

Jicompare with in plot

optimalValue = fminsearch(opt.objectiveFunc, opt.u);

objectiveAtOptimal = objectiveFunc(optimalValue) ;

fprintf('Matlab found J(%5.4f,%5.4f)=%5.4f\n',optimalValue(l),...
optimalValue(2),objectiveAtOptimal) ;

Jmark location of minimum found by fminsearch on plot
hold on;
plot (optimalValue (1) ,optimalValue(2), '*r');

%plot starting point

281

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

4.5. HW 5 CHAPTER 4. HWS

plot(opt.u(l),opt.u(2),'or');

xlim(xlimits); ylim(ylimits);

grid;

set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);

%make the call to find search path.
if strcmp(METHOD, 'steepest descent')
[status , pts,levelSets, gradientNormTol,steps] = ...
nma_steepest_descent (opt) ;
else
[status,pts,levelSets, gradientNormTol,steps,betaK]=...
nma_polyak_ribiere(opt);
end
fprintf ('HW5 found J(%5.4f,%5.4f)=)%5.4f\n',pts(end,1),...
pts(end,2),levelSets(end));

%check if search was success or not.

switch status
case 0, status = ...

'successfull completion. Converged before maximum iterations';
case 1, status = ...

'failed to converge before maximum iterations due to oscillation';
case 2, status = ...

'failed to converge before maximum iterations';

end

%use output from above call to make the plots
switch CONTOUR_LINES_AUTO
case 'auto',
[C,h] =contour(ul,u2,z,'Linecolor',[0 O 1], 'LineWidth',0.1);
case 'limited',

lev = round(length(levelSets)/20);
%[C,h] = contour(ul,u2,z,levelSets(l:lev:end),'Fill', 'off');
%[C,h] = contourf(ul,u2,z,levelSets(l:lev:end));
[C,h] = contour (ul,u2,z,levelSets(1l:lev:end));
%colormap (hsv) ;
%colorbar;

%'Linecolor',[0 O 1], 'LineWidth',.2);
case 'full'
[C,h] = contour(ul,u2,z,levelSets, 'LineWidth', .2);
clabel(C,h, 'Fontsize',8, 'interpreter', 'Latex',...
'"Color', 'blue');
case 'fix'
[C,h] = contour(ul,u2,z,fixed_levels);
h.LineWidth = .1;
%h.LineColor = [190/255 190/255 190/255];
clabel(C,h,fixed_levels, 'Fontsize',8,...

282

4.5. HW 5 CHAPTER 4. HWS

134 "interpreter', 'Latex', 'Color', 'blue');
135 | end

136

137 | hanimate the steepest descent search

138 |if length(pts(:,1))>1

139 filename = 'anim.gif';

140 for k=1:length(pts)-1

141 %draw line between each step

142 %skip case if 'full' mode or if too many points.

143 %if (opt.STEP_SIZE == -1 ||

144 %strcmp (CONTOUR_LINES_AUTO, 'limited') ||

145 %strcmp (CONTOUR_LINES_AUTO, 'auto') | | length(pts)<100)

146 line([pts(k,1),pts(k+1,1)], [pts(k,2),pts(k+1,2)],...

147 'LineWidth',1, 'Color', 'red');
148 hend

149 hplot([pts(k,1),pts(k+1,1)], [pts(k,2),pts(k+1,2)],"'.r"');
150 if DO_ANIMATE

151 drawnow;

152 if DO_GIF

153 frame = getframe(1);

154 im = frame2im(frame) ;

155 [imind,cm] = rgb2ind(im,256);

156 if k ==

157 imwrite(imind,cm,filename, 'gif', 'Loopcount',0);
158 else

159 if mod(k,4)==0

160 imwrite(imind,cm,filename, 'gif',...

161 'WriteMode', 'append');
162 end

163 end

164 end

165 end

166 title(format_plot_title(...

167 | 'Showing $u~k$ path on top of contour plot. Problem 1, part (c)',...
168 opt,pts,k,status), 'FontSize', 8);

169 end

170 | end

171 | title(format_plot_title(...

172 | 'Showing $u~k$ path on top of contour plot. Problem 1, part (c)',...
173 | opt,pts,size(pts,1),status), 'FontSize', 8);

174

175

176 | %hplot J(x) changes

177 | figure();

178 | stairs(levelSets);

179 | hstem(levelSets, 'ro');

180 | grid;

283

4.5. HW 5 CHAPTER 4. HWS

181 | set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);

182 |title(format_plot_titleC(...

183 'Showing $J(u"k)$ progress. Problem 1, part (b)',...
184 opt,pts,size(pts,1),status), 'FontSize', 8);

185 | xlabel('step number');

186 | ylabel('value of objective function');

187
188 | %Plot gradient change

189 | figure();

190 | stairs(gradientNormTol) ;
191 | %stem(levelSets, 'ro');

192 | grid;

193 | title(format_plot_titleC(...

194 'Showing $|\nabla J(u~k)|$ progress. Problem 1, part (c)',...
195 opt,pts,size(pts,1),status), 'FontSize', 8);

196

197 | xlabel('step number'); ylabel('Norm of gradient');

198 | set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);
199
200 | %Plot betak

201 |if strcmp(METHOD, 'conjugate gradient')
202 | figure();

203 | stem(betak) ;

204 | grid;

205 | title (format_plot_title(...

206 'Showing $\beta(k)$ progress. Problem 1, part (c)',...
207 opt,pts,size(pts,1),status), 'FontSize', 8);

208 | xlabel('step number'); ylabel('β_k');

209 | set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);
210 | end

211
212 | 4,Plot alpha

213 | if strcmp(METHOD, 'conjugate gradient')
214 | figure();

215 | stem(steps) ;

216 | grid;

217 | title(format_plot_titleC(...

218 'Showing $\alpha(k)$ progress. Problem 1, part (c)',...
219 opt,pts,size(pts,1),status), 'FontSize', 8);

220 | xlabel('step number'); ylabel('α_k');

221 | set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);
222 | end

223
224 | format long g;

225 | fprintf ('x1\t\t\tx2\t\t\tJ(x1,x2)\tgrad(J(u))\talpha\t\tbeta\n');
226 | for i=1:length(steps)

297 fprintf ('%7.6£\t%7.6£\t%5.2£\t%7.6£\t%7.6£\t%7.6f\n", ...

284

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

4.5. HW 5 CHAPTER 4. HWS

pts(i,1),pts(i,2),...
levelSets(i),gradientNormTol(i),steps(i),betakK(i));
end

f1 =0(X1,X2) X2-X173+5%X172-2%X1-13;
f2 = @(X1,X2) X2+X173+X1.72-14%X1-29;

fprintf ('£f1(x)=%5.4f,f1(x)=4%5.4f\n", ...
f1(pts(end,1),pts(end,2)),f2(pts(end,1),pts(end,2)));

end

%Evaluate J(u) at u

function f = objectiveFunc(u)
X1 = u(l);

X2 = u(2);

f1 = X2-X1.73+5%X1.72-2xX1-13;
£f2 = X2+X1.73+X1.72-14%X1-29;
f = f1.72+£2.72;

end

%Evaluate grad(J(u)) at u

function g = gradientFunc(u)

x1 = u(l);

x2 = u(2);

gl=2%(3*x172 + 2xx1 - 14)*(x173 + x172 - 14*xl + x2 - 29) +...
2% (3*x172 - 10*x1 + 2)*(x173 - 5%x172 + 2*x1 - x2 + 13);

g2=12%x1"2 - 32xx1 + 4*xx2 - 84;

g=[g1;g2];

end

%set title
function formatted_title = format_plot_title(main_title,opt,pts,k,status)
formatted_title = {sprintf ('\\makebox[5in] [c]{%s}',main_title),...
sprintf (' \\makebox [5in] [c]{$u~0=[%6.5f,%6.5f18, $J(u)=Y%3.3f$, iterations [$%d$
opt.u(1),opt.u(2) ,norm(opt.objectiveFunc(pts(k,:))) ,k),...
sprintf (' \\makebox[5in] [c]{convergence criteria $| \\nabla(J(u)) | \\leq %1.3f
opt.gradientNormTol), ...
sprintf (' \\makebox [5in] [c]{%s}',status)};
end

%Evaluate Hessian(J(u)) at u (not used, for practice)
function g = hessian_func(u)

x1 =u(1l);

x2 = u(2);

gl1=2%(6*x1 - 10)*(x173 - 5*x172 + 2*xl1 - x2 + 13) + ...

285

r',...

$F',. ..

4.5. HW 5 CHAPTER 4. HWS

275 2% (3*x172 - 10*x1 + 2)72
276 + 2% (3*x172 + 2*x1 - 14)72 +
277 2% (6xx1 + 2)*%(x173 + x172 - 14xx1 + x2 - 29);
278 | g12=24%x1 - 32;
279 | g21=24%x1 - 32;
280 | g22=4;
281 | g=[gll,g12;g21,g22];
282 | end
1 | function [status,pointsFound,leveISets,gradientNormTol,steps,betaK]=\
2 nma_polyak_ribiere(opt)
3 |% This function performs conjugate gradient search
4 |% starting from a point looking for point which minimizes a
5 |% function. Supports multi-variable function. It needs handle
6 |% of the funtion and handle to the gradient. It reurns all
7 | % points visited in the search. This supports Fletcher-Reeves
8 | % and Polyalk-Ribiere
9 | %
10 | % Typical use of this function is as follows:
1 | %
12 |% opt.field = ...%fill in each field of the struct.
13 |% [pointsFound,levelSets,gradientNormTol,steps] =
14 | % nma_steepest_descent (opt) ;
15 |% [C,h] = contour(..... ,levelSets);
16 | %
17 | % INPUT fields in opt struct are:
18 | % ======
19 |% u vector of coordinates starting guess
20 | % MAX_ITER an integer, which is the maximium iteration
21 |% allowed before giving up the search.
92 | % gradientNormTol small floating point number. The tolerance
23 | % to use to decide when to stop the search.
24 | % Example 0.001
25 | % stepSize A floating point number, which is the step
26 | % size to take. If stepSize=-1 then an optimal
27 | % step size is found and used
28 | % at each step using golden section line search.
29 | % objectiveFunc handle to the objective function, which
30 | % accepts a row vector, that contain [x y]
31 | % coordinate of the point and return the
32 | % numerical value of objectiveFunc at this point.
33 | % gradientFunc handle to the gradiant of f. Same input
34 | % and output as objectiveFunc
35 | % accumulate flag. If true, then all points u”k and J(u)
36 | % at each are collected during search. Else they
37 |'h are not.
38 | % stop_on_oscillation flag. Set to true to stop when objective
39 |% function detected to be increasing. Else set

286

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

4.5. HW 5

CHAPTER 4. HWS

o
h
o
h
o
o
b
o
b
b
b
o
b
o
h
o
o
b
o
b
o
b
o
b
o
b
o
o
b
o
b
o
b
o
h
o
h

OUTPUT:

status

pointsFound

levelSets

gradientNormTol

steps

betakK

to false if you do not want to stop when J(u)
increases at any point

can be 0,1 or 2.

O means success, It converged before MAX_ITER
was reached.

1 means failed, did not converge due to
oscillation, which can happen when step size
is too large. When oscillation detected, the
search will stop.

2 means failed: did not oscillate but also
did not converge before hitting MAX_ITER.
Caller can try with larger MAX_ITER

n by 2 matrix, as in [x1 y1; %2 y2;]
which contain coordinates of each point
visited during steepestDescent the length is
the same as number of points visited.

This will be last point only if
opt.accumlate=false

vector, contains the value of the objective
function at each point. Last value of J(u)
if opt.accumlate=false

vector, contains the norm of gradient after
each step. This will be last value only if
opt.accumlate=false

vector. The optimal step used at each
iteration, used golden section to find optimal
step size.

This will be last value only if
opt.accumlate=false These are the alpha_k
values.

vector contains values of beta found at

each step

by Nasser M. Abbasi ECE 719, UW Madison, HW 5

hpre-allocate data for use in the main loop below

N

fLambda =

size(opt.u,1);
@(alpha,u,s) opt.objectiveFunc(u+alphax*s) ;

%hcollect data only if user asked for it.
if opt.accumulate

pointsFound
levelSets

zeros (opt .MAX_ITER,N);
zeros (opt .MAX_ITER,1);

gradientNormTol = zeros(opt.MAX_ITER,1);

287

4.5. HW 5 CHAPTER 4. HWS

87 steps = zeros(opt.MAX_ITER,1);

88 betak = zeros(opt.MAX_ITER,1);

89 | end

90

91 |% initialize counters before main loop

92 |k =1;

93 | currentPoint = opt.u;

94 | keep_running = true;

95 | status = 0;

96 | steps_in_oscillation = O;

97 | last_level = 0;

98 | current_grad = opt.gradientFunc(currentPoint);

99 | current_v = —-current_grad;

100

101 |while keep_running

102

103 update_accumlate();

104

105 if k>1 && current_level>last_level), check for oscillation
106 if opt.stop_on_oscillation

107 steps_in_oscillation = steps_in_oscillation + 1;
108 end

109 end

110

11 check_convergence() ;

112

113 if keep_running

114

115 %A = opt.hessian(currentPoint);

116 %lam = - dot(current_grad, current_v)/...

117 % (current _v.'xAkxcurrent V) ;
118

119 %do not use norm on current_v here!

120 alpha = nma_golden_section(...

121 flambda, currentPoint,current_v,0,1,sqrt(eps('double')));
122

123 % make step towards min

124 currentPoint = currentPoint + alpha* current_v;

125 last_grad = current_grad;

126 current_grad = opt.gradientFunc(currentPoint);

127

128 %fletcher

129 %beta = norm(current_grad) “2/norm(last_grad) ~2;

130

131 %polyak

132 beta = (current_grad.' * (current_grad-last_grad))/...
133 norm(last_grad) ~2;

288

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

4.5. HW 5 CHAPTER 4. HWS
current_v = -current_grad + beta * current_v;
if opt.accumulate
steps(k) = alpha;
betaK(k) = beta;
end
k=k + 1;
end
end
%done. Chop data to correct number of steps used before returning

if o

else

end

pt.accumulate

pointsFound = pointsFound(1l:k,:);
levelSets = levelSets(1:k);
gradientNormTol = gradientNormTol(1:k);
steps = steps(1l:k);

betaK = betaK(1:k);
pointsFound = currentPoint ;
levelSets = current_level;
gradientNormTol = current_grad_norm;
steps = k;

betakK = beta;

%internal function. Check if still need to keep iterating
function check_convergence()
% check if we converged or not
% Last check below can lead to termination too early for the
% banana function. Since at one point, J(u(k+1)) will get
% larger than J(u(k)) using bad step size. So it is
% commented out for now.
if k == opt.MAX_ITER ||
current_grad_norm <=opt.gradientNormTol ||
steps_in_oscillation>4
%let it run for 2 more steps to see the oscillation
%stop loop and set the status to correct reason
%why loop stopped.
keep_running = false;
if steps_in_oscillation>0
status = 1;
else
if k == opt.MAX_ITER
status= 2;
end
end

289

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

© 0O NN s W N

RN NN NN NN e e e e e e
IR WD RS © 0N R WD H O

4.5. HW 5 CHAPTER 4. HWS

end

J%internal
function update_accumlate()
if k>1
last_level = current_level;
end

current_level = norm(opt.objectiveFunc(currentPoint));
current_grad_norm = norm(current_grad);

if opt.accumulate
pointsFound(k, :)
levelSets(k)
gradientNormTol (k)
end

currentPoint;
current_level;
current_grad_norm;

end
end

%helper function to set plot attributes.
function nma_setMyLabels(varargin)

myXlabel = varargin{1};
myYlabel = varargin{2};
if nargin ==
myZlabel = varargin{3};
end
myTitle = varargin{end};
h get(gca, 'xlabel');
set(h, 'string' ,myXlabel, 'fontsize',10, 'interpreter', 'Latex') ;

h = get(gca, 'ylabel');
set(h, 'string' ,myYlabel, 'fontsize',10, 'interpreter', 'Latex') ;

if nargin ==

h = get(gca, 'zlabel');

set (h, 'string',myZlabel, 'fontsize',10, 'interpreter', 'Latex');
end

h = get(gca, 'title');
set(h, 'string' ,myTitle, 'fontsize',10, 'interpreter', 'Latex’
'HorizontalAlignment', 'center') ;

’\

set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);
end

290

© O NN W N

—
= o

4.5. HW 5 CHAPTER 4. HWS

yA
%helper function to generate Contour data
function [X1,X2,Z] = nma_makeContourData(del,xlimits,ylimits)

x1 = xlimits(1):del:x1limits(2);
x2 = ylimits(1) :del:ylimits(2);
[X1,X2] = meshgrid(x1,x2);

f1 = X2-X1.73+5%xX1.72-2%xX1-13;
£f2 = X2+X1.73+X1.72-14%xX1-29;
Z = f1.72+f2.72;

end

4.5.2 Problem 2

Barmish

ECE 719 — Homework Dog Food

This problem is a “linear program preview.” You should solve (b) with the
Matlab LP routine; we will subsequently cover underlying theory in class.

Two types of dog food (Gaines and Kennel Ration) need to be mixed
in order to feed a pair of Siberian Huskies. The dogs require 48 units
of nutritional factor (NF) A, 165 units of NF B and 150 units of NF C.
Gaines supplies 8 units of NF A per gram, 11 units of NF B per gram and
25 units of NF C per gram. Kennel supplies 3 units of NF A per gram,
15 units of NF B per gram and 6 units of NF C per gram. Gaines costs
$1.20 per kilogram and Kennel costs $1.00 per kilogram.

(a) Formulate an appropriate objective function and constraints for the
mixing problem and obtain a graphical solution in the plane.

(b) Use the Matlab LP routine to solve this problem.

Figure 4.53: problem 2 description
4521 parta

We need to minimize the cost of 48A +165B + 150C by finding the optimal mix (quantities)
of A,B,C obtained from Gaines and Kennel supply as shown in the following diagram

291

4.5. HW 5 CHAPTER 4. HWS

content of one gram of Gaines content of one gram of Kennel

11 units of B 15 units of B

cost $1.20 per kg cost $1.00 per kg

Need to minimize the cost of 484 + 165B + 150C

Figure 4.54: problem 2, part a

Let the amount (in grams) from Gaines be u; and let the amount of grams from Kennel be
u,. Therefore, we need to minimize

T (1) = (0.0012) 1 + (0.001) 1, 1)

Since this is the cost. Since there are 8 units of A in each gram from Gaines, and there are
3 units of A in each gram from Kennel, then we have the first restriction which is

8uy +3u, > 48
Similarly, we find for B and C the following
11uy +15u, > 165
25u; + 61, > 150

Convert to equality, and now use x instead of u since now we are converting to standard
form

8x1 + 3x, — x3 = 48
Similarly, we find for B and C the following
11x; + 15x, — x4 = 165
25x1 + 6x5 — x5 =150
Now we write the above in the standard form
min ¢’
Ax=Db

X

292

4.5. HW 5 CHAPTER 4. HWS

xl
X2
min[0.00lz 0001 0 O 0] X3

Xq

X5

8 3 -1 0 0|xy] |48
11 15 0 -1 0 ||x|=|165
25 6 0 0 -1||xs| [150

X5

A graphical solution was found by plotting the three constraints. Since the extreme point
must be at a vertex of the feasible region, we see that it is at u* = (4, 8) which is confirmed
using Matlab LP in the second part.

25 T
8uy + 3up > 48
11uq + 15uge > 165
25uy + 6ug > 150
20 r 7
g
g
> 15+ 7
o
5
g feasible region
2
g 10 r R ——— i
3 g minimum u* = (4,8)
5| |
O Il Il Il Il Il
0 1 2 3 4 5 6
u; amount of Gaines

Figure 4.55: Graphical solution

Now contour lines are added to the above plot. Since the objective function is linear, the
contour will be straight line, showing how J(u) increases. The smallest value of J(u) level set
line which touches the first vertex of the feasible region will be the optimal point. Here is
the result of the above plot, with contour lines added:

293

© 00 J O s Wi

NI R NG T N N T N R NN NG S S Gy VO U Gy G W G S g
ISR ONNR SOOI b W R o

4.5. HW 5 CHAPTER 4. HWS
- HWS5, problem 2, part a, adding contour lines
8uy + 3uy > 48 10025
11uy + 15us > 165
25u; + 6ug > 150
20 00
022 1 0.02
0. 02075, 019 0. 0246,
?é 0.019, 2 0. 02331,
= 0'018133
[}
10 O0lasss o 40.015
1< 00155, 019429
= 001515
=} 0.
g - 952 o_Zi?gg&
® _ I e 00““ 0.01
3 __ . 0'010362 R _— - 14245
__ T~ _ o 0‘0090567 _ -
[0.0) T :
\\\%?ﬁ& ‘\???‘\‘*\\\ 0.005
M~ : e 0~0r)259\0; i 0003885; N
0 e =+ -~
0 1 2 3 4 5 6
u; amount of Gaines
Figure 4.56: Graphical solution with contour lines added
clear; close;
x=0:6;
plot(x,(48-8%x)/3);
hold on;
plot(x, (165-11*x)/15) ;
hold on;

plot(x,(150-25%x)/6) ;

h=legend ('$8u_1+3u_2\geq 48$','$11u_1+15u_2\geq 165%',...

'$25u_1+6u_2\geq 150%');

set(h, 'Interpreter', 'latex')
xlabel('u_1 amount of Gaines','Interpreter', 'latex');
ylabel('u_2 amount of Kennel','Interpreter','latex');
plot(4.077,8.0097,'ro');
text(4.2,8.3, 'minimum $u~{\ast}=(4.077,8.0097)$',...

'Interpreter', 'latex');
text(4.2,12.3, 'feasible region', 'Interpreter', 'latex');
grid

Jadd contour lines

x1 = 0:0.1:6;
X2 = 0:0.1:20;
[X1,X2] = meshgrid(x1,x2);

Z = 0.0012%X1+0.001*X2;
[C,h]=contour(X1,X2,Z,20,'--"');

clabel(C,h, 'Fontsize',7,'interpreter', 'Latex');
title('HW5, problem 2, part a, adding contour lines')
colorbar

294

W JO O W N

4.5. HW 5 CHAPTER 4. HWS

4522 Partb

Matlab linprog was used to solve the above to find x7, x5, x3, x4, X5, x¢. Here is the result for x*

x, =4.0777
x, = 8.0097
x3 = 8.6505
x4 =0
x5 =0

Mapping this back to u, we see that u; = x; and u; = x,. Hence the minimum cost in dollars
is from (1)
J(u) = (0.0012) u; + (0.001) u,
= (0.0012) 4.0777 + (0.001) 8.0097
=0.012903

The above is the cost of 4 grams from Gaines and 8 grams from Kennel. The above basically
says to buy twice as much from Kennel as from Gaines.

4.5.2.3 Source code for problem 2

c1=0.0012;
c2=0.001;
f=[c1,c2,0,0,0];
A=[8,3,-1,0,0;
11,15,0,-1,0;
25,6,0,0,-11;
b=[48,165,150] ;
[X,FVAL,EXITFLAG,OUTPUT]=linprog(f, [1,[],A,b,zeros(size(£)), [1)

Result of above run
c1=0.0012;

c2=0.001;
f=[c1,c2,0,0,0];
A=[8,3,-1,0,0;
11,15,0,-1,0;
25,6,0,0,-1];
b=[48,165,150] ;
[X,FVAL,EXITFLAG,OUTPUT]=1linprog(f, [1,[],A,b,zeros(size(£)), [1)
Optimization terminated.
X =

4.0777

8.0097

8.6505

0.0000

295

4.5. HW 5 CHAPTER 4. HWS

0.0000

FVAL =

0.0129

EXITFLAG =

1

OUTPUT =

iterations: 6

algorithm: 'interior-point-legacy'
cgiterations: O

message: 'Optimization terminated.'
constrviolation: 8.5265e-14
firstorderopt: 4.0665e-10

296

4.5. HW 5 CHAPTER 4. HWS

4.5.3 HW 5 key solution

Consider two non-linear functions of Freudenstein and Roth given by

NX) = Xo—X{+5X7-2X,-13
fX) = Xo+ X+ X7 —14X,-29 (1)
We seek a solution to the equations
H{X) = 0
fa(X) = 0O (2)

Let u= [X; X5|7 and let J(u) = f2(u) + f3(u). The solution to the system of
equations given in (4) is given by

X =u" = argmax J(u) (3)

1. The contour plots for J(u) are pasted below in figure 1 over the interesting
region described by

[X1

| Xz

10

<
< 50 (4)

The gradient for freudenstein function goes to zero at three points shown
in figure 1. Of these, (4,5) is a global minimum with J* = 0, (-0.89,11.41)
is a strong local minimum and (2.23,23.92) is a saddle point.

2. Polak-Ribiera approach to conjugate gradient search suggests initial search
direction 1? = —V.J(u¥). The optimal step is then computed by minimiz-
ing the single variable function J{h) = J(u* + hv*) and the conjugate
directions are updated using

o = VI 4 B VI (uF) (5)

297

4.5. HW 5 CHAPTER 4. HWS

contour plot for J{u}=E(u}+(u)

-20F

Figure 1: Contour plot for J(u)

where u**t! = u* 4 hv* and

V)T VI)] .
VIO VI ()] (

Bk+1 =

The trajectories for the estimates (superimposed on contours) are pasted
below . The golden section search was used to find the optimal step size
in conjugate search direction. The stopping criterion used was [u¥*! —
u¥| < 10~3 Performance of the algorithm for various initial points can be
summarized as follows:

e For u closer to the local optimum the algorithm converges to the
local minimum as shown in figure 2 and 3.

o For initial conditions near the global optimum the algorithm con-
verges to the global minimum as shown in figure 4 and 5.

e The rate of convergence depends on the maximum step size allowed
(H) and the initial condition u?.

e The stopping criterion plays an important role too. Consider iterat-
ing through Polak Rebiera while J > 0 - we may get trapped in the
local minimum as the stopping criterion may never be met if we start
near the local minimum.

The simulation results are tabulated below

298

4.5.

HW 5

CHAPTER 4. HWS

Initial Condition u° Final Solution Number of Steps
[=2,1] [—0.8984, 11.3856] 193
[0, 40] [~0.8996, 11.3659] 64
(3.95, 8] (3.9993, 5.0384] 203
(4, —20] [3.9701, 6.6711] 90

Table 1: Simulation Results

Figure 3: Trajec288y of u*

4.5. HW 5 CHAPTER 4. HWS

contour plot lurﬁu}-tf{u]q-f:[uj

Figure 4: Trajectory of u*

contour plot hr.nup-ﬁ:upf;(u;

T T L] T

25 s 25 ‘ is
Figure 5: Trajectory of u*

300

4.5. HW 5 CHAPTER 4. HWS

Barmish

ECE 719 — Solution Dog Food

Taking variables u; = x; = number of grams of Gaines and uy = 9 =
number of grams of Kennel Ration, we obtain inequalities for the three
nutrient factors as follows:

8x1 4+ 3x9 > 48;
11z1 + 1529 > 165;

201 + 629 > 150.

In addition, converting kilogram cost of food to cost per gram, we obtain
objective function
J =0.0012z1 + 0.001 2.

Now, to obtain a standard form LP, we add surplus variables and obtain
the triple (A, b, ¢) given in Matlab form by

A=83 —-1000;11 150 —10; 2566 00 —1J;

b= [48; 165; 150];

¢ =1[0.0012; 0.001; 0; 0; 0].
Now running Matlab, the optimal solution is obtained as
uy ~4.1; u; =~ 8.01

with remaining surplus variables being zero and optimal cost in dollars
per day being
J* =~ 0.0129.

301

4.6. HW 6 CHAPTER 4. HWS

46 HW6

4.6.1 Problem1

Barmish

ECE 719 — Homework Patrol Phase One

For the Sector Patrol Problem described in class, solve, by hand, the
artificial LP which is needed to obtain a first basic feasible solution.

Figure 4.57: problem 1 description

The patrol problem is given by
u; >0
2uq +2u; <0
2uq +2uy; >0
Uy > 1.51

And the objective function which we want to minimize is

W) = 1 N 1
J =351+ 15t
The above is the raw LP. We convert it to standard LP by introducing slack and surplus

variable and rename the variables to x; from ;. Therefore the first table of the initial phase
is

Xq Xy X3 X4 X5 b

row 1 211 101] 0|10
row 2 210 |-1]0 |4
rowd | -15| 1 | 0| 0 | -1

J6o) £ = 0 0 0 0

4.6.1.1 Phase one

Since there are two surplus variables (these are the ones associated with -1 entries), we have
to start with phase one LP. If there were no surplus variables (i.e. only slack variables), then
we go directly to phase two. Phase one is only needed when there are surplus variables. We
introduce two new artificial variables y;,1, and an artificial objective | y) function which
we want to minimize over y to zero,

ygol,ixgo] (y) =1ty

The first table of first phase is (where we now use the artificial objective function | (y) in
place of] (x).)
302

4.6. HW 6

CHAPTER 4. HWS

row 1
row 2

row 3

row 4, | (y)

X1 X2 X3 X4 X5 Y1 W2
2 21110, 0[0]O0
2 210110110

-15/1|0]|0|-1,01|1
0 o o o 0 1 1

b
10
4

0

We start by making last row canonical (this means we need to zero out last row entries

under y1,y, columns). Doing row(4) = row(4)-row(2) gives

row 1
row 2

row 3

row 4, | (y)

X1 X2 Xz X4 X5 Y1 W2
2 170[0|0]0
2 01]-1 110

-1.5 0] 0 |-1|0]1

-2 -2 0 1 0 0 1

b
10

-4

To zero out last row under y,, row(4)=row(4)-row(3) applied to the above gives

row 1
row 2

row 3

X1 X2 Xz X4 X5 Y1 Y2
2 2 1 11]0 010
2 2101 110

-15(1 (0|0 |-1|0]1
0 1 1 0 O

row 4,J(y) -05 -3

b

We see that the artificial basic feasible solution](y) is not optimal, since there are negative
values on the last row. second column has the largest negative value in the last row, at -3.
So we need to move this column in the basis vectors. To decide on the pivot row we look

at ratio of —
second column

which gives min { L

040
27271

} = 0 which is associated with the third row.

So the third row is the pivot row. Now we need to zero out all other entries in the second
column. To make (1,2) zero: row 1 = row(1) - (2 X row(3)) gives

row 1
row 2
row 3 (pivot)
row 4, | (y)

To make (2,2) zero, row (2) = row(2) - 2 row(3) gives

Xy Xp X3 X4 X5 Y1 Y2 b
5 110 (2]0-2]|10
2 O|-110 1|1 0 4

=151 0|0 |-1|0
-05 -3 0 1 1 0 0 -4

303

4.6. HW 6 CHAPTER 4. HWS

X1 Xp X3 X4 X5 Y1 Yo b

row 1 5 1102 |0]|-2]10
row 2 5 0| -1 1|-2
row 3 (pivot) | -1.5| 1 | 0| 0 |-1| 0
row4,J(y) -05 -3 0 1 1 0 0 -4

Finally to make (4,2) entry zero, row(4)=row(4)+3 row(3) gives

X1 Xy X3 X4 X5 Y1 Yo b

row 1 5 O(1]01}]20]|-2|10

row 2 5 00| 1 |-2| 4
row 3 (pivot) | <151 | 0| 0 | -1 |0

row4,J(y) -5 0 0 2 0 3 -4

We see that the artificial basic feasible solution is still not optimal since there is negative

values on last row. The most negative is in first column. This is the column to move in.
. . [10 4 4 .)]
first column S1VES mln{g, g} =z (we do not divide by negative entries).

This minimum is associated with second row. So the second row is the pivot row. We start
by normalizing the second row (the pivot row) so that entry (2,1) is one (it is 5 now). Row(2)
=row(2)/5

Taking the ratio of

X1 Xy X3 X4 X5 Y Yo b

row 1 5 Ooj1]0/|2]|0|-2/10
row 2 (pivot) | 1 010 —é g é %2 g
row 3 -15]1 0[O0 |-1{0]|1]O0
rowd,Jy) -5 0 0 1 -2 0 3 -4

To make (1,1) entry zero, then row(1)=row(1)-5 row(2)

Xq Xp X3 X4 X5 Y1 Yo b

row 1 0 0111 0 |-1]0|6
row 2 (pivot) 1 0|0 —% ; é %2 g
row 3 -15(1|0]0|-1{0]|1]|0
row4,J(y) -5 0 0 1 -2 0 3 -4

To make (1,3) zero, then row(3)=row(3)+1.5 row(2)

304

4.6. HW 6 CHAPTER 4. HWS

Xy Xy X3 X4 X5 Yy, Yo b
row 1 00|11 0|-1]0|6
row 2 (pivot) 010 —é E % %2 g
21 3 [2] 6
row 3 0Oj1/0 <l 3lwls]s
row4,J(y) -5 0 0 1 -2 0 3 -4
To make (4,1) zero, row(4)=row(4)+5 row(2)
X1 Xp X3 X4 X5 Y Yo b
row 1 o011 |0]|-1]0]6
row 2 (pivot) | 1| 0|0 |-z | 2|z |22
3 -2 3] 2|6
row 3 o110 T35l : s
row4,J(y) 0 0 0 0 0O 1 1 0

We have driven](y) to zero with no positive entries in last row. This completes phase one.
Now we remove the last row and also remove the y;,y, columns from the above table, and
put back the J(x) in its place in last row. This next tableau is the starting of phase 2.

4.6.1.2 Phase 2

X1 Xp X3 X4 X5 b

rowl | 0] 0|1 1 016
1 2 4

row 2 1 0 0 —_§ _52 g
J®) 5 = 0 0 0 0

We see that all entries in the last row positive, therefore phase two is now complete. There
is nothing to do in phase two. All the hard work was done in phase one. This is special
case and we were lucky. Note: The text book says that we should now zero out the last row
so that zeros appear under the basis columns. But I find this not needed, since it does not
change the optimal x*. We can always calculate J(x) once we know x*, and there is no need
to have J(x) show up in the bottom right corner of the tableau really. Therefore, I did not
do this extra step as not needed.

Now we read out the solution from the above tableau
0.8
1.2

R

Il
EEEEEIEE

Il

305

© 0O NN s W N

[=T
N = O

4.6. HW 6 CHAPTER 4. HWS

To find the corresponding [*(u), since x; = u; and x, = u; and J(u) = 3.1_0”1 + 11—5u2, then

1 1
= —(0. —(1.2
I = 5508+ =(12)
= 0.10667

4.6.1.3 Verification

Using Matlab linprog

function nma_HW6_problem_1

%Solves first problem, HW 6, ECE 719
%Nasser M. Abbasi

£=[1/30,1/15,0,0,0];
A=[2,2,1,0,0;
2,2,0,-1,0;
-1.5,1,0,0,-11;
b=[10,4,0];
[X,FVAL,EXITFLAG,QUTPUT]=linprog(f, [],[],A,b,zeros(size(£)),[1)

end

The output from the above is
Optimization terminated.

X

0.8000
1.2000
6.0000
0.0000
0.0000

FVAL =
0.1067

EXITFLAG =
1

OUTPUT =

iterations: 7

algorithm: 'interior-point-legacy'
cgiterations: 0

message: 'Optimization terminated.'
constrviolation: 8.8818e-16
firstorderopt: 5.0706e-12

306

SOl W N

4.6. HW 6

CHAPTER 4. HWS

Using my own nma_simple.m which prints all the intermediate tableau and solutions x

during the search

f=[1/30,1/15,0,0,0];
A=[2,2,1,0,0;
2,2,0,-1,0;
-1.5,1,0,0,-1];
b=[10,4,0];
nma_simplex(A,b,f,true)

The output from the above is

2.0000 2.0000 1.0000

2.0000 2.0000 0
-1.5000 1.0000 0
0 0 0

ok KKK KR KoK KKK kKoK oK Kk

Current tableau [phase onel
2.0000 2.0000 1.0000
2.0000 2.0000 0
-1.5000 1.0000 0
-2.5000 -5.0000 -1.0000

pivot row is 3

0

O O O O

10
4
0

KKK AR KKK KKK KKK
Current tableau [phase one]

5.0000 0 1.0000
5.0000 0 0
-1.5000 1.0000 0
-10.0000 0 -1.0000

pivot row is 2

0.8000
1.2000

>>>>Current tableau [phase one]

-1.0000

0
-1.0000
0
1.0000

current basic feasible solution is

0
-1.0000
0
1.0000

current basic feasible solution is

-1.0000

0

-1.0000
1.0000

2.0000
2.0000
-1.0000
-4.0000

307

1.0000
0
0
1.0000

1.0000

1.0000

0
1.0000
0
1.0000

0
1.0000
0
0

0
1.0000
0
0

1.0000
1.0000

1.0000

-2.0000
-2.0000
1.0000
5.0000

NS

N o

N o

000

.0000

.0000

000

000
000

4.6. HW 6

CHAPTER 4. HWS

HK KKK AR KKK KKK K
Current tableau [phase one]

pivot row is 1

0.8000
1.2000
6.0000

O O O O

0
3k >k K % K 3K 3K 3K 5k 5k 5k 5k 5k 5k >k %k %k Xk K K 3k 5k 5k

Current tableau [phase one]

KKK KK KKK KKK KK KK KK
Current tableau [phase two]

0 0 1.0000
1.0000 0 0
0 1.0000 0
0 0 -1.0000

0 0 1.0000
1.0000 0 0
0 1.0000 0
0 0 0

0 0 1.0000
1.0000 0 0
0 1.0000 0
0.0333 0.0667 0
ans =
0 0 1.0000
1.0000 0 0
0 1.0000 0
0.0333 0.0667 0

current basic feasible solution is

-0

.0000
.2000
.3000
.0000

.0000
.2000
.3000

.0000
.2000
.3000

.0000
-0.

2000

.3000

0.
-0.

0
4000
4000

.4000
.4000

.4000
.4000

.4000
.4000

1.0000
0
0
0

1.0000

1.0000

6.0000
0.8000
1.2000

6.0000
0.8000
1.2000

N O O+~

= O O =

.0000
.2000
.3000
.0000

.0000
.2000
.3000
.0000

-0.4000
0.4000
1.0000

-0.4000
0.4000
1.0000

14.

0 = OO

= O O

000
000
000
000

000
000
000
000

Which gives same answer.

4.6.2 Problem 2

308

4.6. HW 6 CHAPTER 4. HWS

Homework Minimax

Consider the four objective functions

1 1
Ji(z) = %LIT] + 1512

3 1
Jo(z) = 1—01?1 + 5152;

1
J3(z) = 2z, + %2
Jy(z) =21 + 20

with constraints x; > 0 and z, > 0. Now let

J(z) = max Ji(z)

i=1,2,3,4
and consider the problem of minimizing J(x) subject to linear inequality constraints
2wy + 2w9 < 10; —21 — 2w9 < 0; 9 > 1.521 + 4.

Solve this problem as a linear program and use the Matlab routine linprog. HINT: Before
computing, introduce one extra variable z and obtain a “pure” LP in (z, z)

Figure 4.58: problem 2 description

4.6.2.1 Initial Graphical view

This section shows different views of the problem. In the next section, the solution itself
is given. Under each plot, the small code used to generate the plot is shown. First, the
feasibility region given by the constraints is plotted.

Feasibility region for problem 2, HW 6

out(797} ISt t 4

Figure 4.59: Region defined by constraints

(S GV O

RegionPlot [

2 x1 +2x2<=10 && -2 x1 - 2x2 <=0 && x2 >= 1.5 x1 + 4 && x1 >= 0 &&
x2 >= 0, {x1, 0, 0.6}, {x2, 4, 5}, BoundaryStyle -> {Red, Dashed},

Mesh -> 10, AxesLabel -> {x1, x2}, Axes -> True, Frame -> None,
PlotLabel -> Style["Feasibility region for problem 2, HW 6", 14]]

309

©C O JO s Wi

-
_ o

=W N

4.6. HW 6 CHAPTER 4. HWS

This plot shows each constraint, superimposed on top of the feasibility region.

Feasibility region problem 2, HW 6, with constraint shown
2

/ — 2x142x2510
u(s43y: / 2 -2x1-2x250
v
! X2215x1+4

Figure 4.60: Region shown with con-
straints superimposed

pl = RegionPlot[

2 x1 +2x2<=10 && -2 x1 - 2 x2 <=0 && x2 >= 1.5 x1 + 4 && x1 >= 0 &&
x2 >= 0, {x1, 0, 0.6}, {x2, 4, 5}, BoundaryStyle -> {Red}, Mesh -> None,
AxesLabel -> {x1, x2}, Axes -> True, Frame -> None];

p2 = ContourPlot[{2 x1 + 2 x2 == 10, -2 x1 - 2 x2 == 0,

x2 == 1.5 x1 + 4}, {x1, -3, 4}, {x2, -3, 6},

PlotLegends -> {2 x1 + 2 x2 <= 10, -2 x1 - 2 x2 <= 0, x2 >= 1.5 x1 + 4}];
Show[p2, pl, AxesLabel -> {x1, x2}, Axes -> True, Frame -> None,
PlotRange -> All,

PlotLabel ->

Style["Feasibility region problem 2, HW 6, with constraint shown", 14]]

The following is 3D plot, showing the four objective functions

out[e8g}= Out[989]=

Figure 4.61: 3D plot of the four objective functions

Hh
for}
B
n
]

{1/30 x1 + 1/15 x2,3/10 x1 + 1/5 x2, 2 x1 + 1/2 x2,x1 + x2};
10

gl = Plot3D[funs[[1]], {x1, O, 2}, {x2, 0, 5}, PlotStyle -> Yellow,
Mesh -> mesh, Lighting -> {{"Ambient", Whitel}}];

310

=
[
0
(=2
]

© O NN G

11
12

© NN s W N

S S S Sy
SIS RSN TN U SUR O STy

4.6. HW 6 CHAPTER 4. HWS

g2 = Plot3D[funs[[2]], {x1, O, 2}, {x2, 0, 5},PlotStyle -> Magenta,
Mesh -> mesh, Lighting -> {{"Ambient", White}}];

g3 = Plot3D[funs[[3]], {x1, 0, 2}, {x2, O, 5},PlotStyle -> Red,
Mesh -> mesh, Lighting -> {{"Ambient", White}}];
g4 = Plot3D[funs[[4]], {x1, 0, 2}, {x2, 0, 5}, PlotStyle -> Cyan,

Mesh -> mesh, Lighting —> {{"Ambient", White}}];
Show([gl, g2, g3, g4, AxesLabel -> {x1, x2, "f(x)"}, PlotRange -> All,
SphericalRegion -> Truel

The following is same 3D plot, but now with the constraints added

3D plot with constraint imposed

out[1029)=

Figure 4.62: 3D plot of the four ob-
jective functions with constraint im-

posed

funs = {1/30 x1 + 1/15 x2, 3/10 x1 + 1/5 x2,2 x1 + 1/2 x2,x1 + x2};
mesh = 10;
reg = RegionFunction ->
Function[{x, y},
Xx>= 0 & y>= 08&% 2 x + 2y <= 10 &&
2x-2y<=0&&y>= 1.5zx+ 4];

Plot3D[funs[[1]], {x1, 0, 2}, {x2, 0, 5},

PlotStyle -> Yellow, Mesh -> mesh,

Lighting -> {{"Ambient", White}}, EvaluateQreg];

gl

Plot3D[funs[[2]], {x1, O, 2}, {x2, 0, 5},
PlotStyle -> Magenta, Mesh -> mesh,
Lighting -> {{"Ambient", White}}, Evaluate@reg];

g2

Plot3D[funs[[3]], {x1, 0, 2}, {x2, 0, 5},
PlotStyle -> Red, Mesh -> mesh,
Lighting -> {{"Ambient", White}}, Evaluate@reg];

g3

311

19
20
21
22
23
24
25
26

© O NS s W N

S S O = S
© ® N R W D = O

4.6. HW 6 CHAPTER 4. HWS

g4 = Plot3D[funs[[4]], {x1, 0, 2}, {x2, 0, 5},
PlotStyle -> Cyan, Mesh -> mesh,
Lighting -> {{"Ambient", White}}, Evaluate®reg];

Show([gl, g2, g3, g4, AxesLabel -> {x1, x2, "f(x)"},
PlotRange -> All, SphericalRegion -> True,
PlotLabel -> Style["3D plot with constraint imposed", 14],
BaseStyle -> {Bold, 14}]

The solution found is now added the above plot., which is x; = 0, x, = 4 with the min max

value of J(1) = 4 marked with small red point below.

3D plot with constraint imposed with solution given

5.0

P
LT
AT
LTSN
Passssss N
/‘""'ﬁ’"nﬁﬂf%?ﬁai, /|
A&.ﬁ!ﬁnﬁh.Ah—A.-.f

Out[1045}=

f(x)

Figure 4.63: 3D plot of the four objective functions with constraint imposed with
optimal solution

funs = {1/30 x1 + 1/15 x2, 3/10 x1 + 1/5 x2, 2 x1 + 1/2 x2, x1 + x2};
mesh = 10;

reg = RegionFunction ->

Function[{x, y},

X>=0&& y>=0&& 2x+2y<=10&& -2x -2y <=04&& y > 1.5 x + 4];
gl = Plot3D[funs[[1]], {x1, O, 2}, {x2, 0, 5}, PlotStyle -> Yellow,

Mesh -> mesh, Lighting -> {{"Ambient", Whitel}}, Evaluate@reg];

g2 = Plot3D[funs[[2]], {x1, O, 2}, {x2, O, 5}, PlotStyle -> Magenta,

Mesh -> mesh, Lighting -> {{"Ambient", Whitel}}, Evaluate@reg];

g3 = Plot3D[funs[[3]], {x1, 0, 2}, {x2, 0, 5}, PlotStyle -> Red, Mesh -> mesh,
Lighting -> {{"Ambient", White}}, Evaluate@reg];

g4 = Plot3D[funs[[4]], {x1, 0, 2}, {x2, 0, 5}, PlotStyle -> Cyan,

Mesh -> mesh, Lighting -> {{"Ambient", Whitel}}, Evaluate@reg];

Showl[gl, g2, g3, g4,

Graphics3D[{Red, PointSize[.05], Point[{0, 4, 4}]}, Axes -> True]l,
AxesLabel -> {x1, x2, "f(x)"}, PlotRange -> All, SphericalRegion -> True,
PlotLabel ->

Style["3D plot with constraint imposed with solution given", 14],
BaseStyle -> {Bold, 14}]

312

4.6. HW 6 CHAPTER 4. HWS

4.6.2.2 Solution using Matlab linprog

The first step is to convert this multi-objective minimax problem with constraints, to a pure
linear programming problem so that Matlab linprog can be used. Introducing extra variable
z the problem can be written as
min T(z) =z
s.t. z 2] (x) i=1---4
2x1 + 2x, <10
-2x1—2x, <0
Xo >1.5x; +4
Using the J; (x) given, the above becomes
min J(z) =z
s.t. 31—8x1 + 11—5362 -z<0
ot s -z< 0
2xq1 + %xz -z<0
X1+x-2z<0
2x1 +2x, <10
-2x1-2x, <0
X, >1.5x; +4

To use Matlab linprog, we first convert the above to the standard form. We do this by
introducing slack and surplus variables. The above becomes (added tilde on top of the x to
make it clear which one variables are the original raw LP variables, and which is ones are
the new variables).

min Jz) =z

z
1 1 ~

s.t. %X1+EX2—Z+X3—0
S iy -z 4% =0
2X1+5X2—Z+5C5:0
X1+XZ—Z+5C6:0
2x1+2x2+3~c7:10
—2x1—2x2+528:0

—1.5x1 + Xy — 559 =4

313

4.6. HW 6 CHAPTER 4. HWS

For x,% > 0. Hence Ax = b becomes

X1
X
2 L 100000 0 -1)[7? (o
¥ ¥ X3
w 5 010000 0 <’ fo
2 ;001000 0o -1 fo
X
1 1000100 0 -1 |=]o0
X
2 2 000010 0 o
X
2 2000001 0 71 o
X
15 1 000000 -1 0[] |4
X9
V4
And min c’x becomes
X1
X2
X3
X4
. X5
mm(ooooooooo1)~
X6
X7
Xg
Xg
z

Therefore, using the above, we can write the first tableau table. Then use Matlab to solve it.

X1 Xp X3 X4 X5 Xg X7 Xg X9 Z b
rowl| = £ 1 0 0 0 0 0 0 -1/0
row2| = - 0 1 0 0 0 0 0 -1/0
row3| 2 - 0 0 1 0 0 0 0 -1/0
row 4 1 0 0 01 0 0 0 -1]0
row 5 2 2 0 0 0 0O 1 0 0 o010
row6| -2 2 0 0 0 0 0 1 0 010
row7-15 1 0 0 0 0 0 0 -1 0| 4
Jaz)|| 0 0 0 0 0 0 0 0 0 110

314

© O NN s W N

I = T S
S 2 I U SUR C R S

4.6. HW 6 CHAPTER 4. HWS

Below is the Matlab code used to solve the above. The solution is

Xq 0

X7 4

% | |3.7333
% 32
% | 2
%, 0
%, 2
T 8
% 0

z 4

And minimum of the maximum of J; (x) is

min max J; (x) = 4

function nma_HW6_problem_2
%Solves second problem, HW 6, ECE 719
%Nasser M. Abbasi

f=[000000000 1];
A=1[1/30 1/151 0 0 O O O O ~-1;
1/30 1/6 0 1 0 O O O O -1;
2 /2 0 0 1 0 0 O 0 -1;
1 1 0 0 01 0 0 0 -1;
2 2 0 0 0 061 0 O O;
-2 -2 0 0 0 06 01 0 O
-1.5 1 0O 0 000 0 -1 0];

b=[0 0 0 0 10 0 4];

[X,FVAL,EXITFLAG,QUTPUT]=linprog(f, [1,[],A,b,zeros(size(£)), 1)
end

The output from the above is
>> nma_HW6_problem_2
Optimization terminated.

.0000
.0000
.7333
.2000
.0000
.0000

ON W W O X

315

X N s W N

=
S ©

4.6. HW 6 CHAPTER 4. HWS

2.0000

8.0000

0.0000

4.0000

FVAL =

4.0000

EXITFLAG =

1

OUTPUT =

iterations: 7

algorithm: 'interior-point-legacy'
cgiterations: 0

message: 'Optimization terminated.'
constrviolation: 1.4211e-14
firstorderopt: 7.8638e-13

This was also solved using Mathematica. Here is the result, which confirms the above as

well. This command is from Mathematica help, and used it to apply to this problem:

SetAttributes[FindMinMax, HoldAll];

FindMinMax [{f_Max, cons_}, vars_, opts___70ptionQ] :=

With[{res = iFindMinMax[{f, cons}, vars, opts]}, res /; ListQ[res]];
iFindMinMax [{ff_Max, cons_}, vars_, opts___70ptionQ] :=

Module[{z, res, f = List @@ ff},

res = FindMinimum[{z, (And @@ cons) && (And @@ Thread[z >= f])},

Append [Flatten[{vars}, 1], z], opts];

If[ListQ[res], {z /. res[[2]], Thread[vars -> (vars /. res[[2]11)]1}]1];
FindMinMax [{Max[{1/30 x + 1/16 y, 3/10 x + 1/5 y, 2 x + 1/2 y, x + y}], {x >=
0, y>0,2x+2y<=10, 2 x -2y <=0, y > 1.5 x + 4}}, {x, y}]

And the output is
{4., {x > 0.,y > 4.}}

Which is the same.

4.6.3 Problem 3

316

4.6. HW 6 CHAPTER 4. HWS

Barmish

ECE 719 — Homework Diet

The table on the page to follow comes from a bestseller of the sixties,
“Let’s Eat to Keep Fit,” by Adelle Davis. Let wu;, per labelling in the
table, be the number of measures (quarts, cups cubes, etc.) of food i to be
consumed. Now formulate a standard form linear programming problem

to minimize the total cost of daily feeding while satisfying the following
conditions:

(i) Minimum and maximum daily allowances should be met; see table.
(ii) Daily potassium intake should be within 15% of sodium intake.

(ii) Daily calcium intake should be at least 75% of daily phosphorous

intake.

(a) Solve the LP above, indicating both the optimal solution and opti-
mal cost.

(b) Davis recommends that greater amounts of fat in the diet should be
accompanied by greater vitamin B intake. To incorporate such a con-
straint let the amount of By and B, be 7(the amount of fat). Now, with
this added constraint, re-run your LP for various values of ~.

Summarize all your work with appropriate commentary.

Minerais (mg) Vitamins
Priw .y @ . N
wardamenlcp @@ @ EmEm ® @ (D@ ©
Food Measure (9) ure) jries (g) (@) @ cium phorus sium dium (units) (mg) (mg) (mg)
Dai
’ :;Jr:ole MK, cverereeenaeen l‘qt. 976 | 0.40 660 32 40 0.4 1140 930 210 s 1560 032 17 6
2 lcecream......coeeinnnne 1cup 188 | 0.35 300 6 18 0.1 175 150 170 140 740 0 03 [}
3 Eggs(scrambledorfried).. 2 128 | 015 20 13 16 2.2 60 222 140 338 1,200 0 04 0
Cheese (cheddar, .
N Amencan)..........-e0 lin. cube 17 | 0.05 0 1 6 0.1 133 128 30 180 230 0 o1 0
Meat ’
5 Leangroundbeet........ 3 oz. 85 0.25 185 24 10 3.0 10 158 340 110 :g g . 2 to)
6 Broiledchicken.......... 3oz. 85 | 012 18 23 9 1.4 10 250 350 50 2 . : .0 ’
7 Bakedtiounder.......... 3.5 oz. 100 | 0.25 200 30 8 1.4 2 34 585 235
Vegetable
® French fried potatoes.... 10 pieces 60 | 0.07 155 1 7 0.7 9 6 510 6 0 Q 0 8
Fruit
3 Frozen o........ceeceeees 6 oz. can 210 0.30 330 2 0 08 89 115 1.315 4 1,430 0.60 0.1 330
Grain
10 Convertedrice........... 1 cup uncooked 187 0.25 &77 14 0 1.6 53 244 300 6 0 0.30 Q 0
Min. daily allowance*....... 2.400 0 - 10 800 - - : 4:.% Lf 1.—5. Zg
Max. gaily aliowance*...... 280 — - — - — - 00

* For healthy men, 15-55 years old. 5’ 9" height, and 154 Ib. weignt.

Figure 4.64: problem 3 description
317

4.6. HW 6 CHAPTER 4. HWS

4.6.3.1 Part(a)

The variables are given in this table

l variable [description [cost per unit [calories potassium (mg) sodium (mg) calcium (mg) phosphorus (mg)
Uy whole milk 0.4 660 210 75 1140 930
3 ice cream 0.35 300 170 140 175 150
uz Eggs 0.15 220 140 338 60 222
1y Cheese 0.05 70 30 180 133 128
us Beef 0.25 185 340 110 10 158
ug Broiled chicken 0.12 185 350 50 10 250
uy Baked vegetable 0.25 200 585 235 22 344
ug French fried 0.07 155 510 6 9 6
ug Frozen Grain 0.30 330 1315 4 69 115
10 Rice 0.25 677 300 6 53 244

Since the goal is to minimize the total cost of daily feeding, then

J () = 0.4u; + 0.35uy + 01515 + 0.051, + 0.25u5 + 0.121 + 0.2517 + 0.07ug + 0.30ug + 0.25u1,

To be able to express the constraints, we need to first convert the minerals to same units
used in] (u). For example, one u; is one qt, which is 976 grams. The mineral calcium is 1.14
gram, therefore in units of u; it becomes %ul, the same for all other minerals. Hence the
above table becomes (where now each mineral is fraction of unit)

l variable [description [cost per unit [calories [potassium) [sodium (mg) [calcium (mg) [phosphorus (mg) l
R 0.2T0 0.075 TT40 0.930
Uy whole milk 0.4 660 3@ % % %
up ice cream 0.35 300 —8 1— —8 1—
) o " i % I 35,
” 5 ' i w o o
iy Cheese 0.05 70 - e —_= =2
o of1 o o¥5s
s Beef 0.25 185 g ? @ ?
g Broiled chicken 0.12 185 035 0% 00 %
0%?35 0,%?35 0,%32 0%44
uy Baked vegetable 0.25 200 _— T oo o0
. ¢4 080 080 o806
ug French fried 0.07 155 @ @ @ @
g Frozen Grain 030 330 % "ZJ ? 0275
. ik} 30 3 s
110 Rice 0.25 677 7 A a2 T

Now we formulate each constraint. Let A be the total daily calories given by

A = 660uq + 300uy + 220ug + 701y + 185u5 + 18514 + 200u; + 155ug + 330ug + 67714

Hence constraint (i) in the problem becomes

A > 2400
A <2800

For formulating constraint (ii), let B be the daily potassium and C be the daily sodium

_0210 017 = 014 003 034 035 0585 051 1315 03

T o976 1188 2 128 2 17 AT 85 0T 85 T 100 7 60 87 210 0 187 1O
0.075 0.14 0.338 0.18 0.11 0.05 0.235 0.006 0.004 0.006

= 976 U + U U U U

+ + + + + + + +
188 2T g BTy T g T g5 Mo T 100 7T T 8T 10 0T gy M0
318

C

4.6. HW 6 CHAPTER 4. HWS

Hence constraint (ii) in the problem becomes

B <1.15C
B >0.85C

For formulating constraint (iii), let D be the daily calcium and E be the daily phosphorus

_LM40 0175 006 0433 001 001 0022 0009 0069 0053
T 976 1T 1gg 2T o83 T Ty AT g 5T g5 e T 00 T T 8T o100 gy M0

,_0980 015 0222 0128 = 0158 025 0344 0006 0115 0244
~ 976 188 2T o8 3T Ty MaT Tgg 5T g5 e U7 T "0 18 9" g7 Mo

u; +

Hence constraint (iii) in the problem becomes

D > 0.75E
Therefore the LP problem is

min J (u)

s.t. A > 2400
A <2800
B <1.15C
B > 0.85C
D > 0.75E

Converting to standard form and using x; instead of u; the above becomes

min J(x) = 0.4x7 + 0.35x5 + 0.15x3 + 0.05x4 + 0.25x5 + 0.12x4
+0.25x7 + 0.07xg + 0.30x9 + 0.25x7,
subject to A — X1 = 2400
A+ Xqp = 2800

B+%3-115C =0
B —5514 —085C = 0
D —%15 —075E = 0

In full form, the above is

319

4.6. HW 6 CHAPTER 4. HWS

min J (x) = 0.4x; + 0.35x5 + 0.15x3 + 0.05x4 + 0.25x5 + 0.12:
s.t. 660x1 + 300x, + 220x3 + 70x4 + 185x5 + 185x4 + 200x;
66OX1 + 30()x2 + ZZOX3 + 7OX4 + 1SSX5 + 185X6 + ZOOX7

0.210 0.17 0.14 0.03 0.34 0.35 0.585 0.51 1.315 0.3 115 (0075

et TgXet e T et X5 + o Xe + o Xy + o Xs + Yo + X + Xig — 976

0.210 0.17 0.14 0.03 0.34 0.35 0.585 0.51 1.315 0.075

3
o6 1t g2t g Tt st et 7t oYt g Yot 187x10—x14—085(976
L140 0175 006 +0133x +001x +001 L0022 0009 0069 008 o (o (0930
976 X177 Tgg X2 T 1873 4 5 Yo+ T00 "7 T Te0 8T 210 Y0 T g7 X107 X5 976
Simplifying gives
min J(x) = 0.4x; + 0.35x, + 0.15x5 + 0.05x, + 0.25x5 + 0.12x¢ + 0.25x7 -
s.t. 660x7 + 300x; + 220x3 + 70x4 + 185x5 + 185x¢ + 200x; 4+ 155xg + 33

660x; + 300x, + 220x5 + 70x, + 185x5 + 185x¢ + 200x7 + 155xg + 33
1.268 x 1074x; + 4.787 x 105x, —1.943 X 1073x5 — 1.041 x 102x, + 2.512 X 103x5 + 3.441 x 103x + 3.14¢
1.499 x 10™4x1 +2.713 x 10™*x, — 1.151 X 103x5 — 7.235 x 10~3x4 + 0.003x5 + 3.618 x 10~3x, + 3.853 x 10~

4.534 x 107*x; + 3.325 x 1074x, — 8.32 x 10~*x5 + 2.176 x 1073x, —1.277 x 103x5 — 2.088 x 103x, — 0.0(

Therefore c’x becomes

minc x—(04 035 015 0.05 025 012 025 0.07 03 025 0 0 O O 0) Xg

subject to Ax =b

320

4.6. HW 6 CHAPTER 4. HWS

X
X2
X3
Xy

X5

600 300 220 70 185 185 200 55 330 677 -1 00 0 0)|x| (2400

600 300 220 70 185 185 200 55 330 677 010 0 Offx| [2800
1.267 x107* 4.787x107° -1.943x107° -1.041x102 2512x10° 3.441x107° 3.148x10° 8.385x1072 0.006 156710 0 01 0 Oflx|=]| O
1498 x107% 2.712x10™* -1150%x107® -7.235x1073 0.003 3.617x107° 3.852x107° 8415x10°% 6245x10° 1577x10°% 0 0 0 -1 0| x¢ 0
4534 x107% 3.324x107% -8.320x107* 2176x103 -1.276x10° -2.088 x1073 -0.002 75x1075 -8214x107° -6952x10™* 0 0 0 0 -1)|xy 0

Fp
Frp
Fi3

Ty

The above is now solved using Matlab linprog. The following is the result, followed by the
Matlab code used.

X1 0
X2 0
X3 0
x| [1.0792
X5 0
Xg 0
X7 0
X9 0
X10 3.41
5511 0
X1o 400
X13 0.0035
X14 0
5515 0

In terms of raw u; variables, the above says to buyﬂ

1.0792 cube of cheese, and 2.889 pieces of french fried and 3.41 rice cups

4.6.3.1.1 Verification: Calories from the above is
(1.0792) (70) + (0.2889) (155) + (3.41) (677) = 2428.9

Which is within daily allowance OK. Potassium from the above is

0.03 0.51 0.3
(1.0792) (7) +(0.2889) (E) +(3.41) (18—7) = 9.831 mg

2This seems to meet the requirements, but it does not look like a healthy diet actually?

321

el R L =2 %2 T N CUR ol

[I N N N N o ~ T e e e T e T
S AR W N RS OV ® N A W N RO

4.6. HW 6 CHAPTER 4. HWS

While sodium from the above is
0.18 0.006 0.006

Hence Potassium is within 15% of sodium OK. Daily calcium from above is

0.133 0.009 0.053
While daily phosphorus is
0.128 0.006 0.244

Hence Daily calcium is at least 75% of daily phosphorus OK. All verified OK. The corre-

sponding optimal daily cost is

J* = 0.9267 dollars

function nma_HW6_problem_3
%Solves third problem, HW 6, ECE 719
%Nasser M. Abbasi

[0.4 0.35 0.15 0.05 0.25 0.12 0.25 0.07 0.3 0.25 0 0 0 O 0O];

[600 300 220 70 185 185 200 55 330 677 -1 0 0 0 O;

600 300 220 70 185 185 200 55 330 677 0 1 0 O O;
1.2679*10A(—4),4.7872*10A(—5),—1.9430*10A(—3)N .
-1.0412%107(-2),. ..
2.5118%107(-3),3.4412%107(-3),3.1475%x107(-3),8.385%10"(-3), ...
0.00624,1.5674%x10"(-3),0, 0, 1, 0, O;

1.4985%10" (-4),2.7128%10" (-4) ,-1.1508%10~(-3) , . . .
-7.2353%107(-3), ...
0.0029,3.6176*%10°(-3),3.8525%107(-3),8.415%10°(-3), ...
6.2457%107(-3), ...

1.577%10°(-3),0, 0, 0, -1, O;

4.5338%107(-4),3.3245%x107(-4),-8.3203%10"(-4), ...
2.1765%107(-3), ...

-1.2765%107(-3),-2.0882*%107(-3) ,-0.00236,7.5%10"(-5), ...
-8.2143%107(-5), ...

-6.9519%10°(-4), 0, 0, 0, 0, -1];

b=[2400 2800 0 0 0];

options = optimset('LargeScale','off','Simplex','on');

[X,FVAL,EXITFLAG,QUTPUT] =linprog(c, [1,[],A,b,zeros(size(c)), ...

[1,[],options)

= 0
o

end

The output from the above is
Optimization terminated.
X =

0

322

4.6. HW 6 CHAPTER 4. HWS

.0792

.2889

.4100

O WO OO OO OoOOo

400.0000

0.0035

0

0

FVAL =

0.9267

EXITFLAG =

1

OUTPUT =

iterations: 0O

algorithm: 'simplex'
cgiterations: []

message: 'Optimization terminated.'
constrviolation: 4.3368e-19
firstorderopt: 5.5511e-17

4.6.3.2 part(b)

Now we add a new constraint, which is By + B, = y(fat). In terms of u;, this becomes
_0.00032 0.0006 0.0003

1= o7 1T o0 M gy M0
And
00017 00003 00004 0000 0000 0.0001
27 Tg76 T Tgg M2t g BT Ty Mt Ty Mot Tp
And
0 18 16 6 10 9 8 7
fat = §§6u1+-1§§u2+-I§§u3+-I§u4+-§gu5+-§§u6+-166u7+-gaug

Hence the new constraint is

(B +By) =y (fat) =0

323

4.6. HW 6 CHAPTER 4. HWS

Converting to standard LP form, the above becomes

5 9 1 6
(2.06976 x 1076 - ﬁy) X1+ (1.59574 x 1076 - Q)/) Xy + (3.125 x 1076 - g)/) X3 + (5.88235 x 1076 - ﬁy Xy

2 9 2 7
T2k (1.17647 x 1076 — g)/) Xo = 5 VX7 = o5V 3.33333 x 107%x9 + 1.604 X 105yx;9 = 0

Now the new Ax = b becomes (c’x do not change from part(a) and remain the same).

x
X2
3
Xy
600 300 220 70 185 185 200 55 330 677 100 0 o)™ (200
600 300 220 70 185 185 200 55 330 677 010 0 off™] |2s00
126810 4787x10° -1943%10°% -1.041x10°2 251210 3441x10° 3148x107° 8.385x10° 0.006 1s67x10° 0 01 0 of 7| | o
1499 x10* 2713x10° 1151 x10° -7235 %10 0.003 3,618 x10 3853x10° 8415x10 6246710 1577x10% 0 00 -1 off ™| 7| o
4534 x107* 3325x107* -832x107* 2177 %107 -1.277 %107 ~2.088 %107 ~0.003 75%107° -8214x10° —6952x10% 0 0 0 0 -1 0
2.06976 X107 - 0.03279y (1.59574 x 107 — 0.031915y) (3125107~ 01016y) (5.88235x 10 ~0.2353y) -0.28235y (117647 x10°-027058y) ~ -0.3y -0.01667y (3.33333x10°-0.00953y) -0.0749%y 0 0 0 0 0 ':‘" 0
i
T2
T
Ty
Tis,

The above was solve in Matlab for different values of y.For y = 0.00001, the optimal x was

X1 0
Xo 0
X3 0
X4 4.2150
Xs5 6.8174
Xe 0
Xy 0
Xoptimal = | Xg | = |3.0043
Xg 0
X10 1.0022
X 0
X12 400
X13 0
X14 0.0161
X15 0

324

4.6. HW 6 CHAPTER 4. HWS

With optimal J* = 2.376 dollars. For y = 0.00002, the optimal x was

X1 0
Xy 0
X3 0
Xy 2.0750
Xs 0
Xe 0
Xy 0

Xoptimal = | Xg | = 11779

X9 0
X10 3.2348
X11 0
X12 400
X3 0.0067
X14 0
X15 0.0024

With optimal J* = 0.9949 dollars. For y = 0.00003, the optimal x was

X1 0
Xy 0
X3 0
Xy 1.0712
X5 0
Xe 0
Xy 0
Xoptimal = | Xg | =[0.2078
Xg 0.1119
X10 3.3629
X1 0
X1o 400
X13 0.0034
X14 0
X15 0

325

4.6. HW 6 CHAPTER 4. HWS

With optimal J* = 0.9424 dollars. For y = 0.00004, the optimal x was

x| (03431
X2 0
X3 0
x| [o.8519
X5 0
Xg 0
Xy 0
x| |28071
X10 0
5('11 0
T,| | 400
.7(13 0
.| 0.0027
5('15 0

With optimal J* = 1.0944 dollars.When going more than y = 0.00004, say y = 0.00005, Matlab
was not able to obtain solution using simplex method. The message was "Exiting: The
constraints are overly stringent; no feasible starting point found"
Exiting: The constraints are overly stringent;

no feasible starting point found.

O O O O OO OO O O X

326

© 0O NN s W N

W W W NN NN NN NN NN e e e e e
B R S XX 93 G K @WK RS © N O s W N P o

4.6. HW 6 CHAPTER 4. HWS

EXITFLAG =

-2

OUTPUT =

iterations: 0

algorithm: 'simplex'

cgiterations: []

message: 'Exiting: The constraints are overly stringent;
no feasible starting\U{2026}'

constrviolation: 2400

firstorderopt: 0.4000

When going smaller than y = 0.00001 same problem was seen. Out of these y values, y =
0.00003 gave the least cost of 0.9424 dollars.

function nma_HW6_problem_3_part_b

%Solves third problem, HW 6, ECE 719

%Nasser M. Abbasi

lam=0.00001;

c =[0.4 0.35 0.15 0.05 0.25 0.12 0.25 0.07 0.3 0.25 0 0 O O 0O];

A = [600 300 220 70 185 185 200 55 330 677 -1 0 0 0 O;
600 300 220 70 185 185 200 55 330 677 0 1 0 0 O;
1.2679%107(-4) ,4.7872%107(-5) ,-1.9430%107(-3) ,,
-1.0412%10°(-2), ...
2.5118%107(-3),3.4412%107(-3),3.1475%107(-3), . ..
8.385%107(-3), ...
0.00624,1.5674%10°(-3),0, 0, 1, 0, O;
1.4985%107(-4),2.7128%107(-4) ,-1.1508%107(-3), . ..
-7.2353%107(-3), ...
0.0029,3.6176*x107(-3),3.8525%107(-3),8.415%x107(-3), ...
6.2457%10°(-3), ...
1.577x10°(-3),0, 0, 0, -1, 0;
4.5338%107(-4),3.3245%107(-4),-8.3203%10"(-4), . ..
2.1765%107(-3), ...
-1.2765%107(-3),-2.0882%107(-3),-0.00236,7.5%10"(-5), . ..
-8.2143%107(-5), ...
-6.9519%10"(-4), 0, 0, 0, 0, -1;
(2.0697%x107(-6)-5/122+1am) , (1.5957*107 (-6)-9/94*1am), . . .
(3.125%107(-6)-1/8x1am) , (5.8824%107(-6)-6/17*lam), ...
(-2/17*1am), (1.1765%10"(-6)-9/85%*1am) ,-2/25%1lam,-7/60*1lam, ...
3.3333%107(-6),1.60428*10"(-6) ,0,0,0,0,0] ;

options = optimset('LargeScale','off','Simplex','on');

b=[2400 2800 0 0 0 0];

[X,FVAL,EXITFLAG,OUTPUT]=linprog(c, [1,[],A,b,zeros(size(c)), ...

[1,[],options)
end

327

4.6. HW 6

CHAPTER 4. HWS

4.6.4 HW 6 key solution

\

Hw Yatiol -~ Fla,sh
_ . - | @]
2 2 !
| -1< | o ©
1
Aoy | AT |
Brow = B
ﬂ-\‘ - u
new — L C O o O O '
}jugf)JR Si¢ 7[Q°-SIL/'€) })"}[rm
The Aabloav
X, X+ Xy Yy Xg
2 - @) O
2 2 O ! @)
LS o o -
O @) Q~ Q ()
isf 4«“@«3
2 < - O ©
2 2 () |
?N‘ﬁ« R T ©
(s T 0 @) ~)
-5 -5 I -1 /

Ty
,i
Bl

Note: A poss i ble
Shortcue. For Phase |,
let J-= Niyinstear cf
No Vv ¥y Bobwnale:
Have y;: 10 o set
Started. @0

e

>

vl

Xe= 4
X#= /0

Xi:()

X,

o o !

[

O . 1o
QO Il o
I
o o ‘ q
IO 1o
J o o

0 o /-/54

328

4.6. HW 6

CHAPTER 4. HWS

Slice ~S is Al wos "‘pjﬁr("‘ve and
E ’F,__v mm ¢ [?L ,o v A _ LQ) ¢
(42,2 0 ke
R 2% /E) O - O 7 o o~y
Ry =7 - 20 < @) o { 2 o l -2 4 lo
Rz gy kS| o o -/ o o)0
Rﬁ/:ﬂus'lzs‘-fo o) I - -y o o S | -
Swmae 1Y s /H’" most hﬁju{{/{vc amd
k i~ |\ \o]
£ = v { ooyl olimincte x¢
< T ¢ '

B=i6 | o % O % Ve o)k
2ese’ O O (1) f o iy ! o ¢
etezn O oy, 0 T e, o T e
2, =Rp+r0r] O O - -} o 2 f [— 6

Sine - [Es dhe mos t /MZ;@'(A Ve amcl
£¥- €
’ : / A
K, —‘ln*';- RLI / @) 0 '/5 z/(; @) /S- 2/8 | 2
R = n, 0 O ! J 0 — | | o 6
7&!: {Z;*%th O j O 3/(0 ~ Y% o) 7 - 2/§ Iz
v‘/ '7\,1 o p) -
Ry = Rati 0 0 0 9 ' | | .\ o
SO“’A{“‘W’ Xa= 2 %2 = 3 x3= G K4=Xs T Xg=X3 % Xg = &
W l/\/d\ ES an OP"/QH\&)M an(/, T’F - O

329

4.6. HW 6 CHAPTER 4. HWS

Solution Minimax

Based on exposition in class, we introduce a new variable z and add the following linear
inequalities to the original problem:

cx <z xr, + T Z<0
1 > &y 30 1 15 2 >~ U,
1 < — + = —_ <O
Co 2, X X z X
2 = 3 10 1 5 2 —)

1
cgasgz; 2x1+§x2—z§0;

c4Tx§z; T+ a0 — 2 <0.

Letting x3 = z be the new variable, the “new” LP expressed in inequality form Az <b
is described by

Cnew = [00 1]7;
r2 2 07
-2 -2 0
15 —1 0
1/30 1/15 —1
Apew = | 3/10 1/5 -1 |;
2 1/2 -1
1 1 -1
-1 0 0
0 -1 0 |

bpew = [100 —4000000]7.

Now, using linprog(cew, Anew, bnew). We obtain optimal solution
uy=0; ui=4; J =4

Remark: The solution above is very easy to obtain by plotting the constraint region in
the (x1,x9) plane. The vertex =} = 0,z = 4 leads to J* = 4.

330

HW 6

CHAPTER 4. HWS

4.6.

Uy =b

wl-Hf\

col 1
b0
6bo
32

0.4

210-1I5416

200-0 864%5

Yo 0,354 930

and

\OT = [Z,QOO

E
240

4o

130-1.15¥tyg

{30-0.85% 140

1#5-0354(50

a0

2800 39O

69035445

! {
330 633~
330 633
o /L{ O
0.8 b 0
69 53 o
IH9g o ’
490 ° °
o.¢ o> ©°
. o ° °
3%0 °© o ©°

(315-1.158 Ho-ligy 0 O

(mg-0.gsu TUhiské o o

53-0.35%2yy o ©

12> C?).j

/6 800 Bpw 4o 000 (.0

[

{
Y]

331

4.6. HW 6 CHAPTER 4. HWS

. @ Th P Funchon i Motlab Pm”{w"s h Fol,

né SO[U‘("O/} ;

Xz Xy

Y= P. 154264 O 2.93Y825

—

*y

0.8%90122

Xs « *z <3 *a 16

O o 0o 5 41346 LF#19849

30%.9%% qyY,003230 23,6298 O

ql+.03#094 §59.%6/x

T
24,0031 0 [.6eo30ur O O 339 o035 o—]

0Ty sy2eH
Ve | 2ayuses which zays thd 1 ceam
E.sqo\a weat | and V‘,cjdq(o((s
g are oo ﬂ%,’w\siw, and can he JOM_
?:g‘g:j: withost. A balaadehiet canbe olodain
L | wth M]lkl‘?a&}‘bjch‘% o

vt and Hice,

Tt wedld ke Y ;wg balinad diet

C> If a 3rea&er amont oF Fat choold be qccorv\‘oqmec@ N gréaw[er
V\jﬂlmlv\ Fo) \I\Xrﬂke, J‘\Ml\f

G’!x& \A\uk&}l)(Q)\}NM\I\ B\Alab)
@qlc ‘/\lﬂke)z b/ (vhluwm\ B‘mlral(e)

332

4.6. HW 6 CHAPTER 4. HWS

(o i [k

, ., w 23
' Tab ke = [ué 5 f6.. % o o 4 Ol_,(m,g” o o] Y = f‘rx

) \/\lmm/\ % M%&Q = H\%‘u\l’% of B+ 0 \ﬂke o Bz

4 z 3 9 to " 2 22
=| T —~ [N J L l T
032413 0403 040y ... pdod 0%0 5. (®ws). 0 o | X = ﬁ X

<o We V\ﬂlj #‘O C!AJ an Qq/Ud(rL/ 'l"’ -H\{ LR.
FTy = ¥t % ; Fix— ¥t x=0 = [JC‘M;]TX o
T.
[f-)’t} o added b A as oy VM aud o 15 added &, b s He (4™ oo

To %A a s'&u\r'\'i/\ﬂ Foaslo vq(m ofF X‘ we Can Use +he owe
0’ CarresPaAJlA3 % —W@ ‘Qrekus‘y a&)lzunej MIAIMUM -

¥= FTX _ 3,92 5893809 V7Y%,
&-\XX
Sow\w\c)r 0¥ f‘eSulLs:

—T"M QWW\MQk@ VW’%OFVQ‘U@S oF 6 ;Ur u)lv\\c]/\ a Qa‘a(t;(a So{o'lidﬁ ex:a“S 'S y,

& 6é 50 (V\O 50/()’{‘\0{\ 15 oiola.imj
For = 2 vor For §= 55>

— L\\S\\ar valws of X wean that wore Fal can ke Jaken (er ke o
\}'\X’Gw\,\r\ B
— The FOOJ uu\'\"/\ VV\OsJ(Ya‘“ —I“?AO(#‘0 e 'M\E Food ‘U“H‘ W\OS"{ Cq/ﬂﬂ@ 51
Q) W\\“(’ 1 Jlam avwl ‘73%5. P_)U-L <ing VNITQ 15 an u()[lﬂf ‘VVH_T,-
'&'OJ(\NL vwmbr OP ¢q(0r\€5 I as A/ [lfonqc;eJ

333

4.6. HW 6 CHAPTER 4. HWS

Lhe amouw+ of Mi”(otnol "‘33:3 A ‘}/Lﬁ O,OJW‘%{
Sol '\'W\ Ozlcf‘eases. (/ié § = 9o, J/LL\/ e Z@‘o)

- / —)
he /\4‘ of riw qlSo Jummskg o 7o (ot (%0)
- amou.
since 4o l’\i(j\/\ \A Cq(orleﬁ.
amoumt oF c}lﬂesa

[ar;cs / a"‘o(Can

- A\S(’; q3‘ K?(\Ueases‘ '{';‘42,

i Ca
| N OMe 2B =) “\’ 19 {ow

‘M~‘g as ‘H{ amo\m‘ls
cd * for -HM ‘056 of Y“A‘"‘ L o
O;{\({:\W;i‘: j/\ok “ﬁc’ A\My/\b\/\, TL\»\S }M()]’él/\s io

MNL b,q Aro A Luf [Uus, WL'HL.L\ S BU w]/le,zq
\A) Q in \\’
X” 3.9) T‘\Qm v3 q\so oy M,ng“e N luse

, Fries
WN\OW\‘\' of C)W “bu\ce om:) Ymc\/\
Mode

can ne ’W\ij &JQ ;:awj

no C’G{u\!\im i

- Wk”\ 4‘L\\‘; Com()c,ﬁ,a-x;a,q
W "W\oﬁ v uo‘iujt(f‘ej q Cen g.ira A +,

loo I h or -‘J'Oo ldw‘).
0 4 Y

334

4.7. HW 7 CHAPTER 4. HWS

47 HW 7

471 Problem1

Barmish

ECE 719 — Homework City Planners

A committee of city planners are to recommend the “best” allocation of
fire stations to three districts. They will base their decision on expected
property damage which they hope will be minimal. The table below reflects
differences in districts due to factors such as population, socioeconomic
makeup, etc. The budget restricts total number of stations to five and no
more than three stations are allowed in any district.

Stations | 0 1 2 13

District | - - - -
1 2 109]03]0.2
2 0.5/0.3]0.2]0.1
3 1.511.010.7]0.3

Expected Property Damage in Millions of Dollars

(a) Letting u(k) be the number of stations assigned to district k, find the
optimal allocation of stations minimizing total expected damage.

(b) Suppose that the budgetary restriction is replaced by the the require-
ment 3u(0) 4+ u(1) 4+ 2u(2) < 9 (in millions of dollars) reflecting differential
costs across districts. Now find the optimal allocation of stations.

Figure 4.65: problem 1 description

4711 parta

Before applying dynamic programming to solve the problem, the solution was first found
by brute force in order to verify that the D.P. method when completed was correct. Using
brute force, the optimal arrangement is found to be:

Assign 2 stations to the first district, and 3 stations to
third district and no stations are assigned to the second
district, for a minimum total expected property damage
of 1.1 millions.

The brute force method also generated a list of all the arrangements (44 of them) and the
cost of each. For reference, here is the complete table with the small Matlab code used to

335

4.7. HW 7

CHAPTER 4. HWS

generated it in the appendix. After this, the graphical D.P. method called branch and bound

was used to verify this result.

district 1

district 2

district 3

cost in millions

4.0

3.5

3.2

2.8

3.8

3.3

3.0

2.6

3.7

3.2

2.9

2.5

3.6

3.1

2.8

2.9

2.4

21

1.7

2.7

2.2

1.9

1.5

2.6

21

1.8

2.5

2.0

2.3

NN RN NN NN NN el Bl Bl Bl Bl K= K= K=l =l el el Nl el el el el el el el i)

OO W[WIN I[N || H|H|H OO |W[W|[WINIdDIdD|ID|HIMHIRKRIRIOIOCIO|O

RO IR|IOQIN|IFH|ISQ|WWINIHICITWIN([FRIOQIND|H|OQD|WINH[SDIWIN[R[O|W|IN|KH|O

1.8

336

4.7. HW 7 CHAPTER 4. HWS

2 0 2 1.5
2 0 3 1.17
2 1 0 21
2 1 1 1.6
2 1 2 1.3
2 2 0 2.0
2 2 1 1.5
2 3 0 1.9
3 0 0 2.2
3 0 1 1.7
3 0 2 1.4
3 1 0 2.0
3 1 1 1.5
3 2 0 1.9

Let the state x be the number of stations available to be assigned at each stage. For example,
if we are at stage 2 and x = 5, this means all 5 stations are available to be assigned to district
two. Stage one was the decision to decide on district one, stage two for the decision to
assign for district two and the final stage, stage three is for district three. This is arbitrary,
any order will give the same answer. One can decide on district three first, and then district
one for example. This makes no difference to the final result.

The following diagram shows the result found which agrees with the brute force method
above. The branch cost is the number above the arrow itself. The number in the small
rectangle at the node, is the minimal cost of the branch leaving that node. For example, in
stage three, when x = 5, there are 4 branches that leave that node where (0,1,2,3) stations
can be assigned. The lowest cost of these branches is the one with cost 0.3 and that is what
goes in the small square next to the node. This process continues moving backward. This
method is the graphical equivalent to the Bellman dynamic equations and can be used when
the number of states is finite and the number of decisions at each state is finite also.

337

4.7. HW 7 CHAPTER 4. HWS

stage 1. Decide on district 1 stage 2. Decide on district 2 stage 3. Decide on district 3

=25 z=5

Thick lines indicates optimal branch cost. We see that optimal
assignment is 2 stations for district 1 and 3 stations for district 3.
The numbers in the small circles is number of stations assigned in
that stage. This matches the brute force method as expected

Figure 4.66: Part (a) solution using Dynamic programming

338

4.7. HW 7 CHAPTER 4. HWS

471.2 Partb

The constraint now is

3u©) +u(l) +2u@) <9 1)

What this means, is that 3 times the number of stations assigned to district one plus one
times the number of stations assigned to district two, plus 2 times the number of stations
assigned to district three, must be smaller than 9 stations in total (millions of dollars in the
problem was a typo).

We see that part(a) does not meet this requirement. In part(a), we found u (0) =2,u (1) =
0,u (3) = 3, which means
B3u)+u)+3u2)=312)+0+2(3)
=12

Which is larger than 9. We need to find again u (0),u (1), u (2) which still satisfies part (a)
requirements of no more than 3 stations for a district and no more than total of 5 stations,
but now with the additional constraint of (1) in place at the same time.

The search was repeated using brute force to first find the combinations that meet this
criteria, and then the one with the minimum expected damage was selected.

Here is the new table found

district 1 | district 2 | district 3 | cost in millions | 3ug + 1y + 2u,
0 0 0 4.0 0
0 0 1 3.5 2
0 0 2 3.2 4
0 0 3 2.8 6
0 1 0 3.8 1
0 1 1 3.3 3
0 1 2 3.0 5
0 1 3 2.6 7
0 2 0 3.7 2
0 2 1 3.2 4
0 2 2 2.9 6
0 2 3 2.5 8
0 3 0 3.6 3
0 3 1 3.1 5
0 3 2 2.8 7

339

4.7. HW 7 CHAPTER 4. HWS

1 0 0 2.9 3
1 0 1 2.4 5
1 0 2 2.1 7
1 0 3 1.7 9
1 1 0 2.7 4
1 1 1 2.2 6
1 1 2 1.9 8
1 2 0 2.6 5
1 2 1 21 7
1 2 2 1.8 9
1 3 0 2.5 6
1 3 1 2.0 8
2 0 0 2.3 6
2 0 1 1.8 8
2 1 0 2.1 7
2 1 1 1.6 9
2 2 0 2.0 8
2 3 0 1.9 9
3 0 0 2.2 9

We see that the combination with the minimum expected damage is when

two stations are assigned to district one, and one sta-
tion assigned to district two and one station assigned
to district three with expected damage of 1.6 million
dollars.

The following diagram illustrates the branch and bound graph with the new optimal path
now highlighted in the think line.

340

4.7.

HW 7

CHAPTER 4. HWS

stage 1. Decide on district 1

stage 2. Decide on district 2 stage 3. Decide on district 3

I:5 :
1.5 0.5 r=25 1.5 (T:5)
1.0
: 0 7™ (2 =14)
} Q3™ (z=3)
: (z=2)
=4
‘ 1.5 =4
0 ()

Thick lines indicates optimal
branch cost with new constraint

for part(b).

Figure 4.67: Part (b) solution

341

© O NN s W N

AR R W W W W W W W W W W NN NN NN NN NN
N H O © X0 N D bk W NN H O O 0O NS W H O O O NS b w NN R o

4.7. HW 7

CHAPTER 4. HWS

The code used to part(b) is in the appendix.

4.71.3 appendix for problem 1

code to generate the first table for part(a)

function nma_HW7_ECE_719_prob_1()

%#find cost using brute force search, to verify DP method
%HW 7, ECE 719, APril 23,2016

%Nasser M. Abbasi

cost_table = zeros(100,4); ’%place to put the cost
count_so_far = 0;
for i=0:3
j=0; k=0;
if sum([i j k])<=5
for j=0:3
k = 0;
if sum([i j k])<=5
for k = 0:3
if sum([i j k])<=5
count_so_far = count_so_far+1;
fprintf ('count_so_far=/d, [%d,%d,%d]\n'ﬁ
count_so_far,i,j,k);
cost_table(count_so_far,1:3)=[1i j kI;
cost_table(count_so_far,4)=find_cost([i j k1);
end
end
end
end
end
end

for i=1:count_so_far

fprintf('%d & %d & %d & %2.1f \\\\ \\hline\n',cost_table(i,1),...

cost_table(i,2),cost_table(i,3),cost_table(i,4));
end

[~,J]=min(cost_table(l:count_so_far,4));
fprintf('optimal allocation is \n');
cost_table(J,:)
end
b
function I=find_cost(x)
tbl=[2,.9,.3,.2;

.5,.3,.2,.1;

1.5,1,.7,.3];
I= tbl(1,x(1)+1) + tbl(2,x(2)+1) + tbl(3,x(3)+1);
end

342

el R O L =2 2 T N CUR ol

AR R R R R R W W W W W W W W W W NN NN NN DNNN N R e e e
S R W N H O O 0N R W HO O 0NN R WY HS O NN WD RO

4.7. HW 7 CHAPTER 4. HWS

code to generate the first table for part(b)

function nma_HW7_ECE_719_prob_1_part_b()
%#finds lowest cost with constraint that
%3xu(0)+u(1)+2+u(2)<=9 to find optinal case using brute force,
%to verify DP method
%HW 7, ECE 719, APril 30,2016
%Nasser M. Abbasi
cost_table = zeros(100,5); Jplace to put the cost
count_so_far = 0;
for i=0:3 Ythis is district 1
j=20; k=0;
if sum([i j k])<=5
for j=0:3 Ythis is district 2
k = 0;
if sum([i j k])<=5
for k = 0:3 %this is district 3
if sum([i j k])<=5
hcheck if 3xi+j+2*xk <= 9 first
if 3xi+j+2*k <=9
count_so_far = count_so_far+i;
fprintf ('count_so_far=yd, [%d,%d,%d], (3*i+j+2xk=%d)
count_so_far,i,j,k,3*%i+j+2%k) ;
cost_table(count_so_far,1:3)=[i j k];
cost_table(count_so_far,4)=find_cost([i j k]);
cost_table(count_so_far,5)=3*i+j+2x*k;
end
end
end
end
end
end
end

for i=l:count_so_far
fprintf('%d & %d & %d & %2.1f & %d \\\\ \\hline\n',...
cost_table(i,1),cost_table(i,2),cost_table(i,3),...
cost_table(i,4),cost_table(i,5));
end

[~,J]=min(cost_table(l:count_so_far,4));

fprintf('optimal allocation is \n');

cost_table(J,:)

end

b

function I=find_cost(x)

tbl=[2,.9,.3,.2;
.5,.3,.2,.1;

343

47\
48 |
49‘

4.7. HW 7 CHAPTER 4. HWS

1.5,1,.7,.3];
I= tbl1(1,x(1)+1) + tbl(2,x(2)+1) + tbl(3,x(3)+1);
end

4.7.2 Problem 2

Barmish

ECE 719 — Homework Pattern

Similar to the example studied in class, consider the dynamic program
described by scalar state equation

z(k+1) =xz(k) —u(k)

with cost function
N-1
J =3 [e(k) = u(k)]? +u(k)
k=0
to be minimized. Verify that the optimal solution is is of the form
u'(k) = v(k)z(N — k)

and find a description of the optimal gain (k).

Figure 4.68: problem 2 description

The state equation is (using indices as subscripts from now on, in all that follows as it is
easier to read. Therefore x (N) is written as xy and similarly for u (N))

X1 = X — Ug (1)
The cost function to minimize is
N-1
2
J=Y, (o —w)* +u? (2)
k=0

Now we apply Bellman dynamic equation. This diagram shows the overall process.
The branch cost from xy_; with one step to go is

Ixn-1,1) = min (] (oo, un-1) + W (xn)}
uN-1€QN-1
W (xy) is the terminal cost. Removing the terminal cost from the rest of the computation to

simplify things and replacing | in the above from (2) gives

I(xn-1,1) = min {](xn-1, un-1))
UN-1€QN-1
. 2 2
= min Xn_1— Un_1) + U 3
L [(N-1~ Un-1)" + Uy 1} (3)

344

4.7. HW 7 CHAPTER 4. HWS

We always start from this stage,
and move left, using the Ballman
dynamic equations

(N —1)
initial state L l terminal stage
o o o o o o o
0 1 e o o k e o o N
z(k— L) z(k) z(N)

Figure 4.69: Showing dynamic programming block diagram

Taking derivative in order to find optimal u};_; results in
ALyl _
UN-1
2 (N1 —un-1) (1) +2uny_1 =0
4MN_1 - ZxN—l =0
UN-1 = 5AN-1

Using the above u},_; in (3) gives

1 2 N 2
I (xn-1,1) = (XN—1 - ExN—l) + (ExN—l)

1
= Ex%\]—l
Going back one step
I(xn-2,2) = min {J (o, un-) + I (xn-1, 1)}
UN-2€QN-—2
1
. 2 .2 2
= _n = _ + + —_
HN_ZITélélN_Z {(XN 2 —UN-2)” +UN, sz—l}

Before taking derivatives, we have to make all the stages to be at N —2, and for this we use
the state equation to write xy_; in terms of xy_, and the above becomes

1
. 2 2
I(xN_p,2) = i I;élélN X {(xN—Z —UN—g) + UXp + 5 (xN-2 — Un-p) }
i > 2 3 + 32 (4)
= min —U — OUN_>XN_ =X
UN_—2€QN_2 2 N-2 N=2"N-2 2 N-=2

345

4.7. HW 7 CHAPTER 4. HWS

Now we take derivative to find optimal u},_,

Al o 1)

UN-2
5MN_2 - 3XN_2 =0
3

UN_p = ZXN-2
N2 3

We go back to (4) and update with the optimal control found to obtain

) 5(3 V' (3 3,
I"(xn-2,2) = 7 |52 -3 5N-2 | IN-2 + SN2

2
3
= gx%\f—z
Going back one more step
I(xn-3,3) = min {J(xn-3, tn-3) + " (xn-2,2)}
uN-3€QN-3

— ; 2 2 35
uUN-3€QN-_3 5

Before taking derivatives, we have to make all the states to be at N — 3, and for this we use
the state equation to write xy_, in terms of xy_; and the above becomes

. 3
I(xy-3,3) = min {(XN—s —un_g)? + ud g+ = (tnog — MN—3)2}
UN-3€QN-3 5
. 13 16 8
= uNQHélgr)lN72 {gu%\]_g - gMN_3XN_3 + 53(%]_3} (5)
Now we take derivative to find optimal u};_5
Al d
UN-3
26 16 0
—UnN_3 — —XN_3 =
5 UN-3 T 5 IN-3
8

Un_a = —XN_
N-3 = 13¥N-3

We go back to (5) and update the cost to obtain

. 13(8 \ 16(8 8
I" (xN-3,3) = T\ 3-8 T 5 |\ N8 N 5N
1_3xN—3

346

4.7. HW 7 CHAPTER 4. HWS

Let us do one more step backward,

I(xN-4,4) = uNfileiél {J (xn—a, un—g) + I7 (N3, 3))

: 8
= min <S(na-—-u) F U, —
UN-4€QN_4 { N-4 N-4 N-4 13

Before taking derivatives, we have to make all the states to be at N — 4, and for this we use
the state equation to write xy_3 in terms of xy_4 and the above becomes

) 8
I(xN-4,4) = min {(XN—4 Un_g) + 13y st 3 (XN 4— MN—4)2}
UN-4€QN-4
34 42 2,
= i 6
uNIfe%lm{m UN-4 T 3NN T N } (©)
Now we take derivative to find optimal u};_,
dl (g, 4) _
UN-4
68 42 0
—_ - —X —
13VN-4~ 3N~
21

We go back to (6) and update to obtain

. 34(21 V' 42(2 2,
I (xN—4/4):E 31°N-4] T3 | 32°N-4) N-a T 3N

21,
= 3_4’51\]—4

This is so much fun, so let us do one more step backward,

I(xN_5,5) = . I;_flelélN) {J enes, un-s) + I7 (xn—4, 4)}

) 2 5 21,
= min (xn_5 — Un_5) + UK _s + — X5
uN—SEQN—S{ N-5 ~UN-5 N-5 T 37 AN-4

Before taking derivatives, we have to make all the states to be at N -5, and for this we use
the state equation to write xy_4 in terms of xy_5 and the above becomes

347

4.7. HW 7 CHAPTER 4. HWS

I(xn-5,5) = MN_SHéglN_S {(XN—5 —uy_s) + w5+ §_411 (n-5 = MN-5)2}
= uwfsngfrlles {2—2“12\1—5 - %MN—SXN—S + g—zxzzv-5} (7)
Now we take derivative to find optimal u};_5
dl(N-s,5) _
UN-5
89 55
T7UN-5~ 77 N-5 =0

Un-5 = @xN—5

We go back to (7) and update to obtain

. 89 (55 \> 5555 55
I"(xn-5,5) = 31 | g9™N-5] ~ 17 | go N5 *N-5 + 37 %N-5
55
= 8_93(12\1—5
Summary table of finding
k| u(N=k)|I'(ng k)
1 1
1 ng—l gx%\]—l
2 gSXN_z gsx%]_z
3 EXN% %_%x%\l%
4 gx%\l—zx QXIZ\I—AL
5| 2y Sap
89" N=5 89"N-5
This is generated using bisection of the Fibonacci sequence, let y (k) = % wher
pk)=3p(k-1)-pk-2)
p0)=0
) =1

Andf

3sequence is fhttps://oeis.org/A001906
*sequence is fhttps://oeis.org/A001519

348

https://oeis.org/A001906
https://oeis.org/A001519

4.7. HW 7 CHAPTER 4. HWS

ak)=3ak-1)—a(k-2)
a(0) =1
al)=1

Here is program which generates up to k = 20

S v W N

Clear [k] ;
alpha(k_] := alphalk] = If[k == 0 || k == 1, 1,
3%alphalk - 1] - alphalk - 2]]
betalk_] := betalk] = If[k == 0, O,
If[k == 1, 1, 3xbetalk - 1] - betalk - 2]1];
Table[betalk]/alphalk + 1], {k, 1, 20}]

which gives
13 8 21 55 144 377 987 2584 6765 17711 46368 121393 317811 832040 2178309 5702887 14930352 39088169 102334155

or numerically
{0.5,0.6,0.6153846153846154, 0.6176470588235294, 0.6179775280898876, 0.6180257510729614, 0.618032786885245

The golden ratio is

1+4/5

p=—F = 1.6180339887482036

Therefore in the limit, for large k

w (N —k) = éx(N—k)

4.7.3 Problem 3

349

4.7. HW 7 CHAPTER 4. HWS

Barmish

ECE 719 — Homework Population

A discrete-time system has two populations levels described by the state
equations
r1(k+1) = [1 4+ (k))zy(k);

and
efu(k)zl(k)

1 (k)
For the final stage, find the feedback control law u(N — 1) minimizing the
the total population

ok + 1) = + 2x9(k); k=0,1,...,N.

J = xl(N) + $2(N)

Figure 4.70: problem 3 description

Given

xp (k+1) = [1+ 12 (k)] x; (k)
—u(k)xy (k)
x1 (k)

And the goal is to minimize the objective function at the terminal stage | = x1 (N) + x5 (N).

At stage N —1 with one step to go
I(x(N-1),1) = (Nmin {W (x (N))} (1)
u

—1)€QN_1

xz(k+1)= +2.X'2(k) k:0,1,"',N

Where WV (x (N)) = I(x(N),0). Hence
I(x(N-1),1) = M(anflin . {x1 (N) + x2 (N)}

e—u(N—l)xl(N—l)

= i 1+2(N-D]xy(N-1)+ ———— +2x, (N -1
W [N -D] (N -D e+ 20 (N)
dx(N-1) _ o .
Therefore D) 0 gives

O = 2‘[/[(N — 1) xl (N _ 1) _ e—u(N—l)xl(N—l)
e—u(N—l)xl(N—l) — 21/[(N _ 1) xl (N _ 1)

This is of the form ¢ = 2zx where z — u(N —-1) and x — x; (N —1), which has root at

z= 0'3?73 (using Mathematica), hence the control law is
Cin 7y _ 035173
wN=1 =80

350

4.7. HW 7 CHAPTER 4. HWS

4.7.4 Problem 4

Barmish

ECE 719 — Homework Floor

For the state equations
x1(k + 1) = min{z1(k), z2(k)} + u(k)
and
xo(k + 1) = x1(k)u(k)

with initial condition

performance index

J = foin xo(k)

and control restraint
u(k) € Qp = [—M, M|,
find the optimal control policy v*(0),u*(1) maximizing J.

Figure 4.71: problem 4 description

The following diagram shows the layout of the stages we need to use. There are three stages.
k =2 is the terminal stage, and k = 0 is the initial stage.

branch cost branch cost
I(z(0),2) I(z(1),1)
u* (0) u*(1)
@.o

k=0 k=1 k=2

initial stage Terminal stage

I(2(1), 1) = max, () {ming(x(1))}
1(2(0),2) = max, (o) {min{g(«(0)), I*{z(1), 1}}

Figure 4.72: problem 4 stages

351

4.7. HW 7 CHAPTER 4. HWS

We have

J= gg x5 (k)
x1 (k+1) = min {xq (k), x, (k)} + u (k)
xp (k+1) = xq (k) u (k)
Xq (0) =1
Xo (0) =-1

One step to go, where N =2

I(x(N-1),1)=I(x(2-1),1)
I(x(1),1)

2
ugl)gél {x; (2)}

But x; (2) = x; 1) u (1) from the state equation, hence

I(x(1),1) = Jnax for M) u ()}

We need to find u (1) which maximizes x; (1) # (1). Since u (k) € Q; = [-M, M] then

u* (1) = Msign (x (1))

Therefore

I(x@),1)=x@Q)u Q1)
= x1 (1) M sign (x (1))
= M|x; (D)

Now we go one more step backward

I1(x(0),2) = max min{x, (1),I" (x(1),1)}
u(0)eQq

But from state equation, x; (1) = x; (0) #(0) and since x; (0) = 1 then x, (1) = u(0) and the
above becomes

352

4.7. HW 7

CHAPTER 4. HWS

I(x(0),2) = max min {u(0), M |x; (1)|}
u(0)eQ)

But
x1 (1) = min {x; (0), x2 (0)} + 1 (0)
=min {1, -1} + u (0)
=-1+u(0)

Therefore (1) becomes

1(x(0),2) = m)aé min {u (0), M |-1 + u (0)|}

u(0)e

Let
F (1 (0)) = min {u (0), M|-1 + u (0)]}

(1)

We need to find max,g) min (F (4 (0))). By making small program and adjusting M, to see all

the regions, the following result was found for u* (0)

M range optimal
r o M
0<M<V2 | uy=1

V2 <M uy =M

The following is a plot of the small program written showing F (1 (0)) for first case 0 <M < V2
and another plot showing the case for V2 < M. No other cases were found. The program
allows one to move a slider to adjust M and it finds the maximizing u* for F (1) at each slider

change.

M? 1

(w]

MO=1 M/ (1+M

1
)73
1
2

Max at u0=

min{u0,M|u0-1[}

out[55]=

W u0
B M[u0o-1|

Figure 4.73: case for 0 <M < \/E

353

© O NN s W N

RO N NN NN NN R R e e
S BT SAKRK DRSO ® N R WD = O

4.7. HW 7 CHAPTER 4. HWS

M? 0 1.9
10 DS

MO=1.9 M/ (1+M)=0.655172
Max at u0=1.9

30 min{u0,M|u0-1[}
’ 3.0r

25
out[55]= 2.5

2.0
20

M uo 1.0

0.5 B M|u0-1]
0.5F

0.0 . ') U0
0 1 2 3 4 000 : . /w0

Figure 4.74: case for M > \/E

Source code for the above

Manipulate[
pO = Plot[f[u0, MO], {u0O, O, 4}, PlotRange -> {{0, 4}, {0, 3}},
PlotLabel -> "min{uO,M|u0-11]3}",
ImageSize -> 300, AxesLabel -> {"uO", None},
GridLines -> Automatic, GridLinesStyle -> LightGray];

pl = Plot[u0, {u0, O, 4}, PlotRange -> {{0, 4}, {0, 3}},
PlotStyle -> Blue, ImageSize -> 300,
AxesLabel -> {"uO", Nonel}, GridLines -> Automatic,
GridLinesStyle -> LightGray];

p2 = Plot[MO*Abs[u0 - 1], {u0, 0, 4},
PlotRange —> {{0, 4}, {0, 3}},
PlotStyle -> Red, ImageSize -> 300];

uOMax = ArgMax[{Min[uO, MO*Abs[u0 - 1]], u0 >= -MO && u0 <= MO}, uO];

p4 = Grid[{{Row[{"MO=", MO, " M/(1+M)=", MO/(1 + MO)}],
SpanFromLeft}, {Row[{"Max at u0=", uOMax}],
SpanFromLeft}, {Legended[Show[pl, p2],
Placed[SwatchLegend [{Blue, Red}, {"uO", "M|uO-1]|"}],
{{o.7, 0.1}, {0, 0}}11, pO}},
Frame -> All];

P4,
{{mo, 1, "M?"}, O, 4, 0.01, Appearance -> "Labeled"},
Initialization :> (

f[u0_, MO_] := Min[uO, MO*Abs[u0 - 1]]

354

4.7. HW 7 CHAPTER 4. HWS

4.7.5 Problem 5

Barmish

ECE 719 — Homework Steady State

A discrete time linear system is described by the state equations
r1(k+1) =z9(k); zo(k+1) =x1(k) + u(k)
and cost function

T =3 222(k) + 201 (k)wa(k) + 22(k) + 3u>(k)
k=0

With feedback control

’LL(]{?) = lel(l{,’) + Kgxg(k),

find optimal gains K7 and K5 minimizing .J.

Figure 4.75: problem 5 description

A B

—_—~ —_
(xl (k + 1)] _ [o 1] [xl (k)] . (o]u ®
Xy (k + 1) 10 Xy (k) 1

[o¢]

J= 2 2x2 (k) + 2x1 (k) x5 (k) + x5 (k) + 3u? (k)
k=0

Since] has the form x"Qx + u”Ru, then we need to find Q first. (Q is symmetric), therefore

k
220+ 20 020 + 30 = (v () x®) [‘hl qu][m)]
q12 q22)\x2 (k)

X (k)]

= (xl (®) 11+ x2 (k) g12 21 (k) g1z + x2 (k) qzz) {x ®
2

= x5 (k) q11 + 2q12%1 (k) x3 (k) + x5 (k) g2

355

4.7. HW 7 CHAPTER 4. HWS

Comparing coefficients, we see that q;1 = 2,45, =1,91, =1, hence
21
Q=
11

R=3

And R is scalar

Therefore, the discrete algebraic Riccati equation is

-1
P = APAT - ATPB(R + BTPB) BTPA+Q 1)

Small note: The above is what we had in lecture notes. Matlab has the above in its help
pages slightly different. The first term is written as ATPA instead of APAT as we had.

Using Matlab
>> A=[0,1;1,0];B=[0;1]1;Q=[2,1;1,1];R=3;
>> [P,L,G] = dare(A,B,Q,R)

P =
3.7841 1.6815
1.6815 4.4022

o _[37841 16815
“|1.6815 4.4022

Notice that P is symmetric as expected.

Let us check it is correct first. Substituting P in RHS of (1) gives
T
0 1| [3.7841 1.6815|(0
1 0) (1.6815 4.4022](1

T T
34 0] [3.7841 1.6815 |(0 0] (3.7841 1.6815|(0 1
1) 11.6815 4.4022 (1 1) 11.6815 4.4022J{1 O

T
P 0 1]/3.7841 1.6815||0 1
|1 of|1.6815 4.4022]|1 0

356

© 0 J O Ok W N

DO RO 2 1 e
H SOOI e W RO

4.7. HW 7 CHAPTER 4. HWS

3.7841 1.6815

The above gives
1.6815 4.4022

] which is P. Yes, it satisfies DARE. Now, using
-1
uw =-(R+BTPB) BTPAx

T RPN
_ |34 0] |3.7841 1.6815]|0 0| (3.7841 1.6815|(0 1]|xq (k)
1 1.6815 4.4022])|1 1 1.6815 4.4022J{1 0){x, (k)

= —0.59472x; (k) — 0.22716x, (k)

N————

Therefore, comparing the above to u* (k) = Kyxq (k) + Kyx; (k) we see that

K, = -0.59472
K, = -0.22716

To simulate the result under the new control law u*, we need some initial condition on state.
Below is small script which simulate this up to k = 20 stages with the plot generated

#simulate =1 and z2 states under optimal control law
/4found in problem 5, HW 7. Plot is attached

close all; clear;
A=[0,1;1,0];B=[0;1];
k1=-0.59472; k2=-0.22716; /found using dare()

N=20;

x=zeros(2,20) ;

x(:,1)=[1.5;1]; /need non-zero initial state!
for i=2:N

x(:,i)=A*x(:,i-1)+B*x(ki1*x(1,i-1)+k2*x(2,i-1));
end
subplot(1,2,1);
plot(1:N,x(1,:),'r',1:N,x(1,:),'r.");
title('x1l using optimal u');
grid;
subplot(1,2,2);
plot(1:N,x(2,:),'dp',1:N,x(2,:),'b.");
title('x2, using optimal u');
grid;

357

4.7.

HW 7

CHAPTER 4. HWS

16

081

0.6 [

041

02r

-0.2

x1 using optimal u

X2, using optimal u

|
1.4—\

|
|
121 |

Figure 4.76: problem 5 plot

358

4.7. HW 7 CHAPTER 4. HWS

4.7.6 HW 7 key solution

City Planners: (a) We proceed with DP graphically with four u(k) pos-
sibilities from each node. Also, below, we can simplify by pruning away
branches which cannot occur. As indicated below, we obtain optimal so-
lution

with total damage

in millions of dollars.

—

," \
/ Y > S
£)-6 ° . ©) Y=o
Can ngL oW \?)/I T

b-o 0ctd —
| i o
|

I N — S o

359

4.7. HW 7 CHAPTER 4. HWS

~— ——i
(b) Ir this case, the added constraint

3u(0) + u(l) +2u(2) <9

helps in pruning the state diagram. Letting 2(k) be the amount in millions
expended up to stage k, we have

2(0) = 0; x(1) = 2(0) + 3u(0) z(2) = 2(1) +u(l) 2(3) = 2(2) + 2u(2)
with state constraints
v(k) <9 u(k)<3; k=1,23;

As indicated below, this leads to optimal decision

and associated damage in millions given by

J*=1.6.

' 7‘6“; 4 @ 5 1) 5

-
P

-4

o

(&

S

L

4.7. HW 7 CHAPTER 4. HWS

Solutioa Pattern
X(Rr1) = X (R)-Uu(k)
T 8 (u@-xw))’s Ulr)
From h(’:;ass, T(xw-1),1): iL xz(m-.)
W)= L)

T(xw-2),2) - %%Q(N'Z) ;ou-z)s Gxge-2)

T(x92),3) = i { fuws)-x(w-3) + dw-}
U (n-3)
dﬁj. -0 = 'Lf(wJ) = 813 X(nv-3)
Uln-3) .
" Tlxw),3) = & 5" (v3)

B\’ G Similar cal tviation, Ul -y) - 2 V(r\)—q)'
T -t o _2_' z - - 3?
~(X('\) |)) L') 7 X‘ (N '-I) u*([\)'\b): 5{%)(((\)-5) Jo ¢ @t¢

W'f’,kre(ogmze" the eltfiaent Seguence
4 3, i 5
1'5 %'%:, ’%ﬁ .
Lehmg j,:l) sz:ll {3: 2) }"H :3) :FS:SI ,ré - 8.,
be the Fibonne i J‘ecé vente, we have o ()aﬂern which
1S Simply described: Uln-R)= " W (k) X (V-k)
wikh Y{0)=0 ¢nd

¥(R)= 2+2%(kR-1)

U+ 2¥(r-)

. m\/olv,ng Fib onnea NoM berg

361

4.7. HW 7 CHAPTER 4. HWS

Solubm pow!o;’czoﬂ

L (X(N-1,1) = min {X'(N)*Xq_(N)}
UN-1) € Q.

"m0 {“ W(N-1) « u‘”""“"‘)
O L U(N-1)4 (-0 eX ()‘ v X% (n- ')}
p IN-1

_Sl__ = 2UN-1) - e"u(u-')x.(u-.)

d.U(N-i) g X (x-) = O
{
5 2O X W) - guwnwy
£05) M/ o g k4 O

¥ need to [,3__, f X0
Check (€ ‘lg 0.35 L)<) Yy,
U(N-\) = "5_‘ sak z' | it
Sttt = L1 ovens

362

4.7. HW 7 CHAPTER 4. HWS

Solutio Floor

T(x,1)

max Xy (2)
iU« M

MGx X, U@) 5 let Uth) - MSS()X.(!)
i1« ™

it

Hence, T(xw,) = M[x.]

Now IT(x(9,2) = MGX mm{g(xu,x(xm,,)}

lu () 1< M
= (G mm{xi(.)) M| X0 (1) 1}
(Uly |¢ ™
= MGX mm-{u(o), M{uw;—tl}
lu)l ¢« ™ .
F('u(cs))
Cased: M« |
F (o))
f Slopel
£ Slopc M<)
Mo
"L //4ence W (v)= M
'\%ﬂ‘\ | Ulv))(‘(|): -+ P%!:—M_I;T
Mo T U (1) = Msgaxuy =-M
hece ¥ = M/ M+l

363

4.7. HW 7 CHAPTER 4. HWS

Cose 2: 1< 01 <7 For M< 7, the

F(uty) Siepe vl POt Uio)- g s
' left of of
%l/eo.

Hence solutionYehe same

as Case |
M/M”

U U) < -m

Mt |
CaSQ 3 When M- V2, as seen from ?;gure
above , obtan tuo Solutzonj

M/t
Fiest solotion: bame as case 1. U (OJW)--M
I M e w92 U0)=-V2
Mrl 1+J2
d solut 3" NZ /)
' vt ton '
Se tond so WO =G ut)- -G

I Vi)

C_C‘_S_e_q_ J2< M<2 The pomt ulv): M 1 feore

1§ left of MM-t. Heanace Uf(0)=M
X,() = -1+ Hence U) = Mosga(M1) = M
TH= M(M-1)

Cases: Mw2 Agan U()> W) M bot I M

364

47. HW 7 CHAPTER 4. HWS

Solution " Steady Stute"
L

Xl(k-l'l) =)(2_“()
X, [kt) = x, (k) + ulk).

_ Cost funchon T - = ax (k) + ax (k)% (k) + x2(k) + 3 (k)

k=0

: Feeal&ack contol ulk) = k,x,(k)-ﬁ- l(z X;“:).
Find or-{imal gains k, and k,.

| Teb %Ik = [xlm]

| X, (k)
S x(hker) = [o l]x(k)+[]um
e 5 i
1 wﬁ-}e T aﬁq_z s X(k)‘r[;lx“: + w: “<) [3:[u“‘)
1?
:.Tl\e solution o m—an‘l’& LQQ Is
H* = (BTM B+R’)-' BMA X =- Kx, wlmre,

\—’_’W\—J—J
M .Sa.'hk‘qe-i the cdgeloram ?l{,a:H" Q(i
| M-=—Q— A MA ~ATMB [BTMB+R) " BTMA,
| U-Sing [M,L, K, RRJ =A[A,B,& R |S, eye(2)) in MATLAB
L we 39'}' e ou‘i:f) ut

M:[g.}mf 1-68[5] s k= [0.59%%F o.),)_}z].
-6815 h.4022

;Since u*= -Kx = [k, klj:x, we have Hagt
bk <{[-o-5943, 02272)]

365

4.8. HW special problem CHAPTER 4. HWS

4.8 HW special problem

abstract

k-means++ cluster analysis was used to partition the population area such that the center
of each partition minimizes the within the partition sum of distance squares of each point
in the partition to the center of the partition. The number of customers that would visit our
stores located at the center of the partitions was then determined. The number of partitions
was increased and the calculation repeated on the larger set by trying all of the different
combinations of allocating the stores in the new and larger set of partitions. The largest score
was selected. Matlab’s kmeans implementation in the Statistics and Machine Learning
Toolbox was used to find the set of partitions and their centroids. kmeans++ clustering is
known to be computationally NP-hard proble In addition, the time complexity to analyze
each set of partitions is & (N(Z)) where p is the number partitions and N is the size of the
population. This number quickly becomes very large therefore the implementation limits
the number of partitions p to no more than 15. A number of small test cases with known
optimal store locations were constructed and the algorithm was verified to be correct by
direct observations. Locations of competitor stores do not affect the decision to where to
locate our stores. Competitor stores locations affects the number of customers our stores
will attract, but not the optimal locations of our stores.

481 Introduction

The problem is the following: We want to locate n stores in an area of given population
distribution where there already exists m number of competitor stores. We are given the
locations of the competitor stores. We want to find the optimal locations of our # stores such
that we attract the largest number of customers by being close to as many as possible. We
are given the locations (coordinates) of the population.

4.8.2 Analysis of the problem

The first important observation found is that the locations of the competitor stores did not
affect the decision where the location of our stores should be. This at first seemed counter
intuitive. But the optimal solution is to put our stores at the center of the most populated
partitions even if the competitor store happened to also be in the same exact location.

The idea is that it is better to split large number of customers with the competition, than
locate a store to attract all customers but in a less populated area. This was verified using
small test cases (not shown here due to space limitation).

This is where cluster analysis using the kmeans++ algorithm was used. Cluster analysis is
known algorithm that partitions population into number of clusters or partitions such that
each cluster has the property that its centroid has minimum within-cluster sum of squares of
the distance to each point in the cluster. The following is the formal definition of kmeans++
clustering algorithm taken from |https://en.wikipedia.org/wiki/K-means_clustering]

Snon-deterministic polynomial-time hard

366

https://en.wikipedia.org/wiki/K-means_clustering

4.8. HW special problem CHAPTER 4. HWS

Given a set of observations (x,xy, ..., X,,), where each observation is a d-dimensional real
vector, k-means clustering aims to partition the n observations into k < n sets S = {51, S5, ..., S}
so as to minimize the within-cluster sum of squares (WCSS) (sum of distance functions of
each point in the cluster to the K center). In other words, its objective is to find:

k
argmin 35 35 e

i=1 x€S5;

where ; is the mean of points in S;

The main difficulty was in deciding on the number of partitions needed. Should we try
smaller number than the number of stores, and therefore put more than one store in same
location? Using smaller number of clusters than the number of stores was rejected, since it
leads to no improvement in the score (Putting two stores in same location means other areas
are not served since we have limited number of stores). Or should we try more partitions
than the number of our stores, and then try all the combinations possible between these
partitions to find one which gives the larger score? This the approach taken in this algorithm.
It was found that by increasing the number of partitions than the number of stores, and
trying all possible combinations (Z), where p is the number of partitions, a set could be found
which has higher than if we used the same number of partitions as the number of stores. The
problem with this method is that it has @(fl) time complexity. This quickly becomes large
and not practical when p > 15. In the test cases used however, there was no case found where
p had to be more than two or three larger than n. The implementing limits the number of
partitions to 15.

When a score is found which is smaller than the previous score, the search stops as this
means the maximum was reached. This was determined by number of trials where it was
found that once the score become smaller than before, making more partitions did not make
it go up again. There is no proof of this, but this was only based on trials and observations.
Therefore, the search stops when a score starts to decrease.

The implementation described here is essentially an illustration of the use of cluster analysis,
as provided by Matlab, in order to solve the grocery stores location problem. The appendix
contains the source code written to solve this problem.

Before describing the algorithm below, we show an example using the early test send to us
to illustrate how this method works. This used 500,000 population with 5 competitor stores
(the black dots) in the plots that follows and n = 4 (the green dots).

367

4.8. HW special problem

CHAPTER 4. HWS

test case 2. gscatter used to show partitions found by kmeans-++
number of partitions k = 4, population size 500000

100 —

90 | 1
80|]
70 ‘ g
60 |-]
50 |- 1
a0]
30| o g
20 F ® J
101 1

0 i
0 10 20 30 40

Figure 4.77: Partitions found by
kmeans++ with centroid as green dots
and competitor sores as black dots

Test case 2. Showing our store location with competitors on density plot. score =253956.0
mmber of partitions k = 4, population size 500000

0 10 20 30 40 50 60 70 80 90 100

Figure 4.78: Density of population with
corresponding store locations found

The partitions were now increased to 5 and (i) different combinations were scored to find
the 4 best store locations out of these. This resulted in the following result

test case 2. gscatter used to show partitions found by kmeans++
number of partitions k = 5, population size 500000
y

100 —

90 - Bl

4.79:
kmeans++ with centroid as green
and competitor sores as black dots

Figure Partitions found

Test case 2. Showing our store location with competitors on density plot. score =258732.0
e of partitions k = 4, population size 500000

Figure 4.80: Density of population with

corresponding store locations found

When trying 6 partitions, the score was decreased, so the search stopped. The program then

printed the final result
Jx=[258732.0000] = [/51.75]

X y
21.356 28.929
78.378 66.732

368

4.8. HW special problem CHAPTER 4. HWS

48.212 51.197
84.078 16.864

4.8.3 Algorithm description

This is a description of the algorithm which uses the kmeans++ cluster analysis function
kmeans() as part of the Matlab Statistics and Machine Learning Toolbox toolbox,
which is included in the student version. This is not a description of the kmeans++ algorithm
itself, since that is well described and documented in many places such as in references [3,4].
This is a description of the algorithm using kmeans to solve the grocery location problem.

369

S A W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38

39
40
41

4.8. HW special problem CHAPTER 4. HWS

Algorithm 1: Cluster analysis using Kmeans++ for determining optimal store locations

Input: 1, X,Y where 1 is the number of stores to allocate, X is population coordinates, and Y is competitor store location coordinates
Output: list of coordinates to locate our n stores at, and J* which is size of population our stores will attract when placed at these
locations

currentNumberOfPartitions «— n

bestScore «— 0

keepSearching «— true

bestLocations «— {}

while keepSearching do

C «— kmeans(currentNumberOfPartitions,X) /* C now contains the centroid of partitions found by kmeans++
cluster analysis algorithm using Matlab toolbox */

partitionSets «— combnk (1:size(C,1),n) /* Find all possible combinations of partitions. Warning, this is (’;)
which will quickly grow. In practice, it was found we do not need k greater than n+4 to find a
maximum. n is limited to 10. */
partitionScore «— 0
winningCombination «— {}
foreach e € partitionSets do
score «— 0
foreach x; € X do
d; «— shortest distance of x; to any of the centroid of the partition e
d, «— shortest distance of x; to any of competitor stores in Y
if dy <d, /* win this customer or split it. Else competitor is closer */
then
if d, = d, then
‘ score «— score + %

else
‘ score «— score + 1

end
end
end
if score > partitionScore then
partitionScore «— score
winningCombination «— ¢

end
end
if partitionScore > bestScore then
/* score did not go down, keep searching. Increase number of population partitions by one and call
kmeans++ (above) for new partitions */
bestScore «— partitionScore
bestLocations «— winningCombination
if currentNumberOfPartitions = 15/* stop search if (k>:315""k) due to limitation */
then
| keepSearching «— false
else
‘ currentNumberOfPartitions «— currentNumberOfPartitions + 1
end
else
/* when score goes down, it will not improve any more */
keepSearching «— false

end

end
return bestScore,bestLocations

370

4.8. HW special problem CHAPTER 4. HWS

4.8.3.1 Description of test cases used in development

It was very important to check the correctness of the algorithm using small number of test
cases to verify it is generating the optimal store locations as it is very hard to determine
the optimal solution for any large size problem by hand. The following are some of the test
problems used and the result obtained by the implementation, which shows that the optimal
locations were found for each case.

test case 1

By direct observations, since we have one store only, then we see that by locating it in
the center of the population, the score will be 6, which is optimal. The optimal store
location found by the program is {2.333,2.222}

test case 2 This test case shows that the optimal location of our store do not change as
the competition store location is changed. Since the optimal location depends on
the clustering found and not on the competition location. In the following, the same
configuration is used, but one had the competition store is at {1.5,5} and the other at
{4.5,6.5}. We see by direct counting and observation that the optimal store location
is at {2,5} regardless. The only difference is the number of customers we attract in
each case, but not the optimal store location itself. These two plots show this, with
the score we obtain given below each configuration.

Clearly when the competitor store is away from the density area, our score will increase.
Since the competition also wants to increase its score, then it should also have to locate
its store in the same location, which is the kmeans++ optimal location.

371

4.8. HW special problem

CHAPTER 4. HWS

Many other test cases where run, using more store locations and they were verified manually
that the program result agrees with the finding. It is not possible to verify manually that the
result will remain optimal for large population and large number of stores, but these tests
cases at least shows that the algorithm works as expected. Now we will show result of large

. .
e 9+ O
. .

° 6) .
° 5 ° o @O
° 4 . .

optimal {2.667,5}

with score 6

5 6 0 1 2 3
optimal {2.667,5} with score 8

tests cases and the program output generated.

4 5

6

4.8.4 Result applying the algorithm to the supplied input

The following table summarizes the result of running the store location algorithm on the 5
test cases provided.

Table 4.9: Summary of store location score of each test case

test case n | m | X (population) | CPU time (minutes) | J* percentage
trial/earlier one 5 500,000 142 258,732 51.75%
1 500, 000 5.49 371,543 74.32%
2 10 | 10 | 1,000,000 3.38 637,413 63.74%
3 5 5 130, 000 1.16 69,093 53.15%
4 10 | 10 | 1,000,000 14.17 683,899 68.39%

For illustration, the following four plots show the locations of our stores (the green dots) for
the above final four test cases with the location of the competitor stores (black dots) and

the final partitions selected.

372

4.8. HW special problem

CHAPTER 4. HWS

test case 1. gscatter used to showpartitions found by kmeans+-+
number of partitions k = 10, population size 500000

test case 2. gscatter used to showpartitions found by kmeans++
number of partitions k = 10, population size 1000000

40 50 60
off

70 80 90 100

Figure 4.81: Test case 1 Figure 4.82: Test case 2

test case 3. gscatter used to showpartitions found by kmeans++
number of partitions k = 7, population size 130000
" r . ; .

test case 4. gscatter used to showpartitions found by kmeans+-+

00 number of partitions k = 11, population size 1000000

90 | 4

10

30

20

0k

100

off

off

Figure 4.84: Test case 4
Figure 4.83: Test case 3

4.8.5 Conclusion

kmeans++ algorithm for cluster analysis appears to be an effective method to use for finding
an optimal store locations, but it is only practical for small # as the algorithm used to obtain
the partitions is NP-hard. In addition (Z) combinations of partitions needs to be searched
to select the optimal set.

This implementation shows how kmeans++ can be used to solve these types of problems.
The location of the competitor stores has no influence on where to locate the stores, but
it only affects the final possible score. Generating more partitions (using kmeans++) than
the number of stores and selecting from them the best set can lead to improved score. It
was found in the test cases used that no more than two of three additional partitions than
the number of stores was needed to find the a combination of partitions which gave the
maximum score. Generating additional partitions made the score go lower. The score used
is the number of customers the stores attract out of the overall population. The algorithm
was verified to be correct for small number of tests cases (not shown here due to space

373

© NN s W N

W W W W W W NN NN NN DN DNNDN O e e
[U N e =R =Te I\ = R S T U I o = ‘=T <R N B> B) B G Ol

4.8. HW special problem CHAPTER 4. HWS

limitation). More research is needed to investigate how feasible this method can be for
solving similar resource allocations problems.

4.8.6 References
1 Matlab cluster analysis toolbox. Mathworks, Natick, MA

2 https://en.wikipedia.org/wiki/K-means clustering]

3 Seber, G.A.F. (1984) Multivariate Observations, Wiley, New York.

4.8.7 Appendix

function abbasi()

%Special problem. ECE 719, spring 2016
%by Nasser M. Abbasi

J%Matlab 2016a

o

clear; %hstart with clear env. just in case.
close all; ¥%is it ok to close all windows?
commandwindow; Ybring command window into focus
cd(fileparts(mfilename('fullpath')));

if license('test','Statistics_Toolbox') ~= 1
error(['Warning, the needed toolbox does not',
'seem to exist in your Matlab. This program needs',...
'the Statistics and Machine Learning Toolbox as',...
'it called kmeans++ cluster analysis\n',...
'Please use the ver command to check you the toolbox\n']);
end

%this window will close when we are done. Ok to do.

fig = figure('Position', [370 400 400 30],...

'Name', 'Optimal store locator. ECE 719. UW-Madison',...
'NumberTitle', 'off');

set(fig, 'MenuBar', 'none');

set(fig, 'ToolBar', 'none');

h = uicontrol('Style', 'text','Position',[4 7 396 15],...
'BackgroundColor','w',...
'"HorizontalAlignment', 'left');

drawnow;

DEBUG=true; %set to true to see plots
%change to false before code lockdown as plots slows down time.

OUT(h, 'Starting store location program version 1.0..... ")
0OUT(h, 'Checking for mat files..... 09 g

374

https://en.wikipedia.org/wiki/K-means_clustering

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

4.8. HW special problem CHAPTER 4. HWS

if ~exist('n.mat','file')
error(['file n.mat does not exist in current folder.',...
'Please check for lower/upper case and location']);
end
if ~exist('X.mat','file')
error(['file X.mat does not exist in current folder.',...
'Please check for lower/upper case and location'l);
end
if ~exist('Y.mat', 'file')
error(['file n.mat does not exist in current folder.',...
'Please check for lower/upper case and location']);
end

cd('../official_data/4/');

load('n');

load('X');

load('Y');

OUT(h, 'mat files read ok..... 0) g
cd(fileparts(mfilename('fullpath')));

rng(1); %for reproducabilit

KEEP_TRYING = true; Jtells when to stop search
best_score_found_so_far = 0;

best_locations = [1;

current_number_of_cluster = n;

tstart = tic; %to keep track of CPU time
test_case = 4;

MAX_CPU = 15; Yminutes CPU time limit.
status = true;

while KEEP_TRYING
OUT (h,sprintf (['Best score so far: [/d]. calling kmeans++',...

'to make %d partitions...please wait...'],...
round (best_score_found_so_far),current_number_of_cluster));
[idx,C] = make_cluster(X,current_number_of_cluster,...

'sqeuclidean');
active_C = combnk(1l:size(C,1),n);
OUT (h,sprintf ('created active_C, size is [%d,%d]....',...
size(active_C,1),size(active_C,2)));

[status,score,locations]=score_cluster(C,X,Y,active C,...
tstart,h,MAX_CPU);

if ~status

OUT (h, 'Allowed CPU time exceeded, stopping the program');
KEEP_TRYING = false;

375

4.8. HW special problem CHAPTER 4. HWS

83 else

84 if score>=best_score_found_so_far

85 best_score_found_so_far=score;

86 best_locations=locations;

87 current_number_of_cluster=current_number_of_cluster+l;
88 %stop search if size too large, or if number of

89 Jpartitions too large this is due to using k choose m.
90 %For k>15 it will need too much RAM.

91 if current number of cluster>=size(X,1)...

92 | | current_number_of _cluster>=15
93 KEEP_TRYING = false;

94 end

95 OUT (h,sprintf ('current score %6.2f',...

96 best_score_found_so_far));
97 if DEBUG

98 plot_result(test_case,best_locations,X,Y,...

99 best_score_found_so_far,C);
100 end

101 else

102 OUT (h,sprintf (...

103 'Score is %6.2f. Less than last. Terminating..',...
104 score)) ;

105 KEEP_TRYING = false;

106 end

107 telapsed = toc(tstart);

108 if telapsed>MAX_CPU*60 % CPU limit

109 OUT(h, 'CPU time exceeded');

110 KEEP_TRYING = false;

111 status = false;

112 else

113 OUT (h,sprintf (...

114 '"CPU time used to far %6.2f minutes',telapsed/60));
115 end

116 end

117 | end

118

119 | %final result

120 | fprintf ('n=%d, X=Jd, Y=V)d\n',n,size(X,1),size(Y,1));

121

192 | fprintf (' Jx=[%6.2f] = [/%Ah4.2f]\n\n',...

123 best_score_found_so_far,best_score_found_so_far/size(X,1)*100);
124 | fprintf ('optimal store coordinates\n');

125 | fprintf (' x\t\t y\n');

126

127 | for i=1:size(best_locations,1)

128 | fprintf('%3.3f\t%3.3f\n',best_locations(i,1),best_locations(i,2));
129 | end

376

4.8. HW special problem CHAPTER 4. HWS

130
131 | telapsed = toc(tstart);
132
133 | if ~status

134 fprintf ('\nCPU limit reached. Elapsed time is %6.2f minutes\n',...

135 telapsed/60) ;
136 | else

137 fprintf ('\nElapsed time is %6.2f minutes\n',telapsed/60);

138 | end

139 |if ishandle(fig)

140 close(fig);

141 | end

142 | end

143 | %

144 | function d = distance_between_2_points(ptl,pt2)
145 | %find distance between 2 points, assuming one can only
146 | fmove N-S or E-W, not diagonal.

147 |x1 = pt1(1,1);

148 |yl = pt1(1,2);

149 | x2 = pt2(1,1);

150 |y2 = pt2(1,2);

151

152 |d = abs(x1-x2) + abs(yl-y2);
153 | end

154 | %

155 | function best_score_in_cluster =

156 find_my_score_in_each_cluster(C,X,Y)
157 | %sTakes center of each cluster (C) and customers locations (X)
158 | %hand competition store locations (Y) and returns how many

159 | %icustomers I win in each cluster. Returns an array of number
160 | %0f customers we attract from competition in each cluster.

161
162 | %ito store score per cluster

163 | best_score_in_cluster = zeros(size(C,1),1);

164

165 | for i=1:size(X,1) %loop of all population to see which we win
166 %zl is competitor, z2 is our store

167 [~,z1] = shortest_distance_to_stores(X(i,:),Y);

168 [idx,z2] = shortest_distance_to_stores(X(i,:),C);

169 if z2<=z1 Ycompare with competition to see if we are closer
170 if zl==z2

171 %oh well, split this customer between us and them

172 best_score_in_cluster(idx)=best_score_in_cluster(idx)+0.5;
173 else

174 %good, we are closer, take this customer.

175 best_score_in_cluster(idx)=best_score_in_cluster (idx)+1;
176 end

377

4.8. HW special problem CHAPTER 4. HWS

177 end
178 | end

179 | end

180
181 | %
182 | function [idx,d] =shortest_distance_to_stores(pt,stores_locations)
183 | %find shortest distance from one customer to a set of stores.

184 | %#The stores can be ours or the competition. Returns the shortest
185 | %#distance in 'd' and the index of the store who is closest to

186 | this customer

187
188 |d = inf;

189 | for i=1:size(stores_locations,1)

190 current_distance = distance_between_2_points(pt,...

191 stores_locations(i,:));
192 if current_distance <= d

193 d = current_distance;

194 idx = i;

195 end

196 | end

197
198 | end
199 | %
200 | function [status,best_score,locations]=score_cluster(...

201 C,X,Y,active_C,tstart,h,MAX_CPU)
202
203 | best_score = 0;
204 | status = true;
205 | KEEP_TRYING true;
206
207 |while KEEP_TRYING

208 for i=1:size(active_C,1)

209 OUT (h,sprintf (['scoring partition %d of %d in score_cluster() ',...
210 'Current best score %d']l,...

211 i,size(active_C,1) ,round(best_score)));

212
213 score = find_my_score_in_each_cluster(...

214 C(active_C(i,:),:),X,Y);

215 score=sum(score) ;

216 if score>best_score

217 best_score = score;

218 locations = C(active C(i,:),:);

219 end

220 telapsed = toc(tstart);

221 if telapsed>MAX_CPUx*60

222 OUT (h,sprintf ('Exceeded CPU time limit in score_cluster'));
2923 KEEP_TRYING = false;

378

4.8. HW special problem CHAPTER 4. HWS

224 status = false;

225 end

226 end

227 KEEP_TRYING = false;

228 | end

229 | end

230 | %== ===

231 | function [idx,C] = make_cluster(population,how_many,the_option)
232 | icluster the population. Number of cluster is same as

233 | %hnumber of our stores. This was found to be optimal by many
234 | %trials and errors. If we use more clusters than number of
235 | istores, the score actually goes down.

236 | warning('off','all');

237 | [1dx,C] = kmeans(population,how_many, 'Replicates',5,...

238 'MaxIter',50, 'Distance',the_option);

239 |warning('on','all');

240 | end

241

242 | %

243 | function plot_result(test_case,store_locations,X,Y,...

244 overall best_score,C)
245

246 | ffigure;

247 | tmp = hist3(X, {0:100 0:100});
248 |lnl = tmp';

249 |nl(size(tmp,1), size(tmp,2)) = O;
250 | xb = linspace(0,100,101);

251 |yb = xb;

252
253 | figure;

254 | pcolor(xb,yb,nl);

255 | hold on;

256 | plot(Y(:,1),Y(:,2),'0", 'MarkerSize',9,...

257 'MarkerFaceColor', 'black',...

258 'LineWidth',1, 'MarkerEdgeColor', 'white');

259 | plot(store_locations(:,1),store_locations(:,2),...

260 'o', 'MarkerSize',9, 'MarkerFaceColor', 'green',...

261 'MarkerEdgeColor', 'black');

262 | title({sprintf(...

263 ['Test case $/d$. Showing our store location with',...
264 'competitors on density plot. score =)5.1f'],...

265 test_case,overall_best_score),...

266 sprintf ('number of partitions k = $J%d$, population size $%d$',...
267 size(store_locations,1),size(X,1))}, ...

268 'Fontsize',11,'interpreter', 'Latex');

269 | set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);
270 | drawnow;

379

271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308

N =

© NN s Ww

4.8. HW special problem CHAPTER 4. HWS

saveas(gcf, sprintf('../images/1_test_case_%d',test_case), 'pdf');
saveas(gcf, sprintf('../images/1_test_case_7d',test_case), 'png');

figure;
[x1G,x2G] = meshgrid(linspace(0,100,200),linspace(0,100,200));
XGrid = [x1G(:),x2G(:)]; % Defines a fine grid on the plot
warning('off','all');
idx2Region = kmeans(XGrid,size(C,1),'MaxIter',1,'Start',C);
warning('on','all');
cmap = hsv(size(C,1));
gscatter (XGrid(:,1) ,XGrid(:,2),idx2Region,cmap, [1,[],...
'doLeg', 'off');
hold on;
plot(Y(:,1),Y(:,2),'0o", 'MarkerSize',12,...
'MarkerFaceColor', 'black', ...
'LineWidth',1, 'MarkerEdgeColor', 'white');
plot(store_locations(:,1),store_locations(:,2),...
'o','MarkerSize',9, 'MarkerFaceColor', 'green', ...
'MarkerEdgeColor', 'black');
title({sprintf(['test case $%d$. gscatter used to show',...
'partitions found by kmeans++'],test_case),...
sprintf ('number of partitions k = $%d$, population size $%d$',...
size(C,1),size(X,1))}, 'Fontsize',11, 'interpreter', 'Latex');
set(gca, 'TickLabelInterpreter', 'Latex','fontsize',8);
drawnow;
saveas(gcf, sprintf('../images/2_test_case_Jd',test_case), 'pdf');
saveas(gcf, sprintf('../images/2_test_case_Jd',test_case), 'png');
end
%___ —_—
function OUT(h,the_string)
fprintf (the_string);
fprintf('\n');

%if ishandle(h)
% set(h,'String',the_string);
% drawnow;

%end

end

function nma_generate_output(test_case)

%Program to generate output to test special problem with

%Nasser M. Abbasi
%ECE 719, UW Madison

cd(fileparts(mfilename('fullpath')));

switch test_case
case 1

380

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

4.8. HW special problem

CHAPTER 4. HWS

h

iF

Y=[1.5,2.5];

n=1;

save('n','n');

save('X','X");

save('Y','Y");
save('test_case','test_case');

case 105
X=[1,2;
1,3;

18

Y=[1.5,2.5];

n=2;

save('n','n');

save('X','X");

save('Y','Y');
save('test_case', 'test_case');

fprintf ('best score is %3.3f\n',...
find_my_score_in_each_cluster([2.5,2.5],X,Y))

case 2

X=[1,4;
1,5;
1,6;
2,4,
2,5;
2,6;
5,6;
5,5;
5,4];

Y=[4,6.5];

n=1;

381

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

4.8. HW special problem

CHAPTER 4. HWS

save('n','n'");
save('X','X");
save('Y','Y");
save('test_case','test_case');

% fprintf ('best score is %3.3f\n',...
% find_my_score_in_each_cluster([2,5],X,Y))

case 3
X=[1,4;

1,5;

1,6;

2,4;

2,5;

2,6;

5,6;

5,5;

5,4];
Y=[1.5,5];
n=1;
save('n','n");
save('X','X"');
save('Y','Y");
save('test_case','test_case');

yA fprintf ('best score is %3.3f\n',...
% find_my_score_in_each_cluster([2,5],X,Y))

case 4
X=[1,1;

1,2;

2,1;

2,2;

4,3;

4,4,

5,3;

5,41;
Y=[3,2.5];
n=1;
save('n','n');
save('X','X");
save('Y','Y');
save('test_case', 'test_case');

% fprintf ('best score is %3.3f\n',...
% find_my_score_in_each_cluster([2,5],X,Y))

382

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

4.8. HW special problem

CHAPTER 4. HWS

A

case 5

5,2;

5,838

5,4;

5,55

6,3;

6,4;

6,5];
Y=[5,4];
n=1;
save('n','n');
save('X','X");
save('Y','Y");
save('test_case','test_case');

fprintf ('best score is %3.3f\n',...
find_my_score_in_each_cluster([2,5],X,Y))

case 6

n=2;

save('n','n");

save('X','X"');

save('Y','Y');
save('test_case','test_case');

383

4.8. HW special problem CHAPTER 4. HWS

151 | % fprintf('best score is %3.3f\n',...

152 | % find_my_score_in_each_cluster([2,5],X,Y))
153

154 case 7

155 rng default; % For reproducibility

156 N=10000;

157 X=[30 + 2*randn(N,1),30 + 8*randn(N,1);
158 40 + 2*randn(N,1),40 + 10*randn(N,1);
159 25 + 2xrandn(N,1), 50 + 4xrandn(N,1);
160 20 + 2*randn(N,1),30 + 4*randn(N,1);
161 50 + 2*randn(N,1),50 + 4*randn(N,1)];
162

163 n=9; Y%this gives 50%, since competition is allready optimal
164 Y=[41.6552 35.4282;

165 24.5046 33.8534;

166 30.5928 30.0431];

167 save('n','n'");

168 save('X','X"');

169 save('Y','Y");

170 save('test _case', 'test _case');

171

172

173 case 8

174 rng default; J For reproducibility

175 N=1000;

176 X=[30+randn(N,1),30+randn(N,1);

177 40+randn(N,1),40+randn(N,1);

178 25+randn(N, 1) ,50+randn(N, 1) ;

179 20+randn(N, 1) ,30+randn(N,1);

180 50+randn(N,1) ,50+randn(N,1)];

181

182 n=4; Ythis gives 50%, since competition is allready optimal
183 Y=[41.6552 35.4282;

184 24.5046 33.8534;

185 30.5928 30.0431];

186 save('n','n');

187 save('X','X");

188 save('Y','Y');

189 save('test_case','test_case');

190

191 case 9

192 rng default; J For reproducibility

193 N=1000;

194 X=[30+randn(N,1),30+randn(N,1);

195 40+randn(N,1) ,40+randn(N,1);

196 25+randn(N, 1) ,50+randn(N, 1) ;

197 20+randn(N,1) ,30+randn(N,1);

384

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

4.8. HW special problem CHAPTER 4. HWS

case 10

end
end

50+randn(N,1) ,50+randn(N,1)];

n=7; ‘this gives 50%, since competition is allready optimal
Y=[41.6552 35.4282;
24.5046 33.8534;
30.5928 30.04317;
save('n','n');
save('X','X");
save('Y','Y');
save('test_case', 'test_case');

rng default; J For reproducibility

N=100000;

X=[30+randn(N,1),30+randn(N,1);
40+randn(N,1),40+randn(N,1);
25+randn(N, 1) ,50+randn(N, 1) ;
20+randn(N, 1) ,30+randn(N,1);
50+randn(N,1) ,50+randn(N,1)];

n=10; Ythis gives 50%, since competition is allready optimal
Y=[41.6552 35.4282;
24.5046 33.8534;
30.5928 30.0431;
40.5928 30.0431;
70.5928 30.0431];
save('n','n');
save('X','X");
save('Y','Y');
save('test_case', 'test_case');

385

4.8. HW special problem CHAPTER 4. HWS

386

Chapter 5

study notes

Local contents

51 Some HOWTO questions| 388
5.2 Some things toremember] L Lo 390
5.3 Example using conjugate directions] 393
5.4 collection of definitions] 400
(0.5 Summary of iterative search algorithms| 00 0L 402

387

5.1. Some HOWTO questions CHAPTER 5. STUDY NOTES

51 Some HOWTO questions

This in place to keep some study notes, and other items to remember while taking this hard
course.

5.1.1 How to show that sum of two convex functions is also convex
function?

Let G (u) = g(u) + f (1) where we know g, f are two convex functions. We need to show G (uA)
is also convex. Then, pick point u* € U therefore

But the set U is convex (it must be, these are convex functions, so their domain is convex
by definition). Pick a point u* = (1 - A)u! + Au? where A € [0,1] and u!,u? € U. Hence we
can write

G (') =g (') + f (")
G(A-Nu +Au?) =g (A - A + Au?) + (1= A)ul + Au?)

But ¢ ((1 - Aul + Auz) <1-Ag (ul) +Ag (uz) and the same for f. Then the above reduces
to

G(A-Mul +Au?) <@ -N)g(u') + Ag (u2) + @ = A) f (u?) + fg (u?)
= A=) (g (') + £ (') + A (g (w?) + £ (2))
But G (u) = g(u) + f (1), then the RHS above becomes

G(A-Nu +Au2) <1 -G (ut) + AG (u?)

Therefore G is a convex function.

5.1.2 What is convex Hull?

Smallest set that contains all the sets inside it, such that it is also convex. (put a closed
convex "container" around everything)

5.1.3 Is convex full same as Polytope?

No. Polytope is region which has straight edges (flat sides) and also be convex. But
I//mathworld.wolfram.com/Polytope.html| says "The word polytope is used to mean a
number of related, but slightly different mathematical objects. A convex polytope may be
defined as the convex hull of a finite set of points” And|https://en.wikipedia.org/wiki/

388

http://mathworld.wolfram.com/Polytope.html
http://mathworld.wolfram.com/Polytope.html
https://en.wikipedia.org/wiki/Polytope
https://en.wikipedia.org/wiki/Polytope

|5.1. Some HOWTO questions CHAPTER 5. STUDY NOTES|

Polytope| says "In elementary geometry, a polytope is a geometric object with flat sides,
and may exist in any general number of dimensions n as an n-dimensional polytope or

n-polytope”

5.1.4 What is difference between polytope and polyhedron?

https://en.wikipedia.org/wiki/Polytope|says "In elementary geometry, a polyhedron
p p g yropejsay Yy g Y, a poly
(plural polyhedra or polyhedrons) is a solid in three dimensions with flat polygonal faces,
straight edges and sharp corners or vertices."

Polyhedron can be convex or not. But polyhedron can be open? While polytope not. Need
to check.

389

https://en.wikipedia.org/wiki/Polytope
https://en.wikipedia.org/wiki/Polytope
https://en.wikipedia.org/wiki/Polytope
https://en.wikipedia.org/wiki/Polytope
https://en.wikipedia.org/wiki/Polytope

5.2. Some things to remember CHAPTER 5. STUDY NOTES

5.2 Some things to remember

1. Principle of optimality, by Bellman: "An optimal policy has the property that whatever
the initial state and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first decision” Proof is by
contradiction. See page 54, optimal control theory by Donald kirk. Simplest proof
I’ve seen. An important case is when the performance index | is quadratic as with
LOR. We only looked at case where is no coupling term in the LQR in this course. | =
min, ¥,” xTQx + uTRu. This is solved for steady state by solving Riccati equation. For
discrete case, use Matlab dare() function. See Introduction to Dynamic Programming:
International Series in Modern Applied Mathematics and Computer Science, Volume
1 (Pergamon International Library ... Technology, Engineering & Social Studies)

2. Remember difference between state variables, and decision variable. There can be
more than one state variable in the problem, but the number of decisions to make at
each state is different. see problem 1, HW 7 for example. The fire stations allocation
problem. In that problem, we had one state variable, which is the number of stations
available. There more state variables there are, the harder it will be to solve by hand.

3.
_J@+Ad) -] w) _ T
lim F =[V]w)] -4
9(u)

aul
Remember, V] (u) is column vector. VJ(u) =| : |. This vector is the direction along
9Jw)

duy,
which function | (u) will increase the most, among all other directions, at the point it

is being evaluated at.

4. For polytope, this is useful trick.

The last step was done using triangle inequality.

5. Definition of continuity: If #¥ — u* then](uk) — J(u*). We write limkﬁm](uk) = J(u).
This is for all u* sequences. See real analysis handout. If u¥ — u* then this is the same
as limy_,, ||uk -u[|=0

6. closed sets is one which include all its limits points. (includes it boundaries). Use [0,1]

390

5.2. Some things to remember CHAPTER 5. STUDY NOTES

10.

11.

12.

13.

14.

15.

16.

17.

for closed. Use (0,1) for open set. A set can be both open and closed at same time
(isn’t math fun?, wish life was this flexible).

Intersection of closed sets is also closed set. If sets are convex, then the intersection
is convex. But the union of convex sets is not convex. (example, union of 2 circles).

B-W, tells us that a sequence u* that do not converge, as long as it is in a compact set,
it will contain at least one subsequence in it, 1kt which does converge to u*. So in a
compact set, we can always find at least one subsequence that converges to u* even
inside non-converging sequences.

If a set is not compact, then not all is lost. Assume set is closed but unbounded. Hence
not compact. What we do, it set some R large enough, and consider the set of all
elements ||u|| < R. Then the new set is compact.

J (1) = au® + bu + c is coercive for a > 0. Note, the function J(u) to be coercive, has
to blow up in all directions. For example, ¢" is not coercive. If A is positive definite
matrix and b € R" and c € R, then | (1) = u’ Au + b"u + c is coercive function. To
establish this, convert to scalar. Use A, [lull* < uTAu and use bTu < ||b|||lull, then
J(w) < Apin ||u||2 + ||b|| [lu]| + c. Since P.D. matrix, then A,;, > 0. Hence this is the same
as J (1) = au® + bu + c for a > 0. So coercive.

Ifin] (1) = u” Au+b"u+c the matrix A is not symmetric., write as J (1) = %uT (AT + A) u+
bTu + c. Now it expressions becomes symmetric.

X, XiXj = (Ei xi)z

Ifa= %Ziai then ¥ (a; - c‘r)z > 0. Used to show Hessian is P.D. for given | (). See
HW 2, last problem.

T - Y
x'Ax = Eij Ajixix;

To find a basic solution xz which is not feasible, just find basic solution with at least
one entry negative. Since this violates the constraints (we also use x > 0) for feasibility,

X
then xp solves Ax = b but not feasible. i.e. [I B] (f = b with some elements in

xp negative. For basic solution to also be feasible, all its entries have to be positive.

(verify).

Solution to Ax = b are all of the form x, + x, where x;, is solution to Ax =0 and x, is a
particular solution to Ax = b. This is similar to when we talk about solution to ODE.
We look for homogeneous solution to the ODE (when the RHS is zero) and add to it
a particular solution to original ODE with the rhs not zero, and add them to obtain
the general solution.

difference between Newton method and conjugate gradient, is that CG works well
from a distance, since it does not need the Hessian. CG will converge in N steps if J(u)

391

5.2. Some things to remember CHAPTER 5. STUDY NOTES

18.
19.

20.

21.

22.

was quadratic function. Newton will converge in one step for quadratic, but it works
well only if close to the optimal since it uses the Hessian as per above.

CG has superlinear convergence. This does not apply to steepest descent.

difference between steepest descent and conjugate direction is this: In SD, we use
V] () as the direction to move at each step. i.e we use

k
S N V@)
IVT @)
Where 1 above is either fixed step or optimal. But In CD we use ¥ which is the mutual

conjugate vector to all previous v'. See my table of summary for this below as they
can get confusing to know the difference.

To use Dynamic programming, the problem should have optimal substructure, and
also should have an overlapping sub-problems. Sometimes hard to see or check for
this.

Steepest descent with optimal step size has quadratic convergence property.

. ﬁ(xTQx)
For symmetric Q, then —a = 2Qx

392

5.3. Example using conjugate directions CHAPTER 5. STUDY NOTES

5.3 Example using conjugate directions

This example is solved in number of ways. Given quadratic function J (xy,x;) = %xTAx +bxT
X L 2 -1
where x = . To find x*, which minimizes] (x). Let A =) and b = .

X2

5.3.1 First method, Direct calculus

VJj(x)=0

o
Ax+b =

,OA

4 2|[x] [] Jol
+ =

2 2||x 1] (0]

4x1 + ZXZ - 1— _ -O—

2x1 + 2x2 +1 0

Solving gives
R X1 1

X = = 3
X _E

5.3.2 Second method, basic Conjugate direction
Since A is of size n = 2, then this will converge in 2 steps using conjugate directions. let

1Y =||. Let first direction be

Then

T A () Ao :|1 01[4 2”1}‘1

393

5.3. Example using conjugate directions CHAPTER 5. STUDY NOTES

Hence

xt = 20 + hyo?

1
_1|0 N 11 |z
o 4lo| |o
Second step. We need to find v'. Using conjugate mutual property of A, we solve for v! using

(Z)O)T Avl =0

b2 2o

4:'01 + 2’02 =0

Let v; =1 then v, = -2 and hence

Now we find the next optimal step

) ey ‘2][E }

@) a0t (o) a0 [1 _2][4 sz 3

Hence

[1
=1 3
)

Which is x* that we found in first method. Using n = 2 steps as expected. In implementation,
we will have to check we converged by looking at V] (xz) which will be

V] (x?) = Ax2 + b
4 2
2 2

_ .g]

394

1 -1

1

+

3
2

As expected.

5.3. Example using conjugate directions CHAPTER 5. STUDY NOTES

5.3.3 Third method. Conjugate gradient

The difference here is that we find v on the fly after each step. Unlike the conjugate direction

, -1
method, where ¢’ are all pre-computed. Let o° =V (] (xo)) = [a In this method, we always

pick o =V (] (xo)), where 10 is the starting guess vector. First step

Hence

Now we find the mutual conjugate v! as follows

(VI() 40 _ (ax! +b) (a0?) [E i”—l*
|

fo= (UO)TAZJO) (UO)TAUO) P [4 2 >—1]
2 2 »1
1 ! -2
~ 1 0 2
=5 T~z

Hence

Now that we found o', we repeat the process.

1
+
-1

(o) Aot (o) Aot [o _2][4 2”0

@) VIE) () (ax+) b _2][[;1 j _11” 21

5.3. Example using conjugate directions CHAPTER 5. STUDY NOTES

Hence
x? = x! + hyo!
1 (1) 0

+ —_
-1 4/{-2
1
|3
|72

Which is the same as with conjugate direction method. Converged in 2 steps also.

5.3.4 Fourth method. Conjugate gradient using Fletcher-Reeves
In this method

Vi) v) s
i) Vi) V()

We also start here with o® = V] (uo) = [) in this example.

IR 1][11] 2

= T = T = = 7 = —1
(UO) A0 (UO) Ar° [4 2] [—1]
- 1]
2 2|1
Hence
xt =29 + hyo
0 -1 1
= — 1 =
Now find the mutual conjugate v! as follows, using Fletcher-Reeves formula
2 2
4 2|1 -1 1
N) + 2
B L7100 v (RIS
V)

OHWMW_MﬂWW_ﬂ41H+FDZ);1

396

5.3. Example using conjugate directions CHAPTER 5. STUDY NOTES

vl = =V (x!) + Boo’
[[Hi Lol

Now that we found v, we repeat the process.

.

) - ey o 3

(vl)TAvl _ (vl)TAvl _ [_2 O] [j 2 [_02

Hence
x? = x! + hyo!
1 (1) 0
+ —_
-1 4/{-2

[1
|3
L 2

Which is the same as with conjugate direction method. It converges in 2 steps also.

5.3.5 Fifth method. Conjugate gradient using Polak-Ribiere
In this method

397

5.3. Example using conjugate directions CHAPTER 5. STUDY NOTES

Hence

1= 50 4+ hyo?

b

Now we find the mutual conjugate v! direction as follows, using Polak-Ribiere formula

Vi) (VI() -V ()

VJQN)TV]@N)

X

But
wor-f,
w6 =y 2]
Hence
D
]
Hence

“Fifis
N

Now that we found v, we repeat the process.

!

i

g 2L
(01) Aol (1) Aot [Hi

2 1
8 4

398

5.3. Example using conjugate directions CHAPTER 5. STUDY NOTES

Hence
x? = x! + hyo!
1 (1) 0

+ —_
-1 4]-2
1
|3
|72

Which is the same as with conjugate direction method. Converges in 2 steps also as expected

399

5.4. collection of definitions CHAPTER 5. STUDY NOTES

5.4 collection of definitions

Basic solution for LP This is solution ¥ which has non zero entries that correspond to
linearly independent column in A. Where the constraints are Ax = b.

feasible solution for LP This is solution X which is in the feasible region. The region that
satisfy the constraints. Feasible solution do not have to be basic.

basic and feasible solution for LP This is solution X which is both feasible and basic.
Once we get to one of these, then simplex algorithm will jump from one basic feasible
to the next, while reducing the J(u) objective function until optimal is found.

Basic but not feasible solution is there one? Need example.

Newton Raphson method Iteration is
XS N V@)
V2] (uk)
where V?2J(u¥) is the hessian. This is a A matrix in the quadratic expression
1
J(u) = EuTAu +bTu+c
Of course we can’t divide by matrix, this is the inverse of the Hessian. So the above is
-1
Ukl = gk — [sz(uk)] V](le)

See handout Newton for example with J(u) given and how to use this method to iterate
to u*. If J(u) was quadratic, this will converge in one step.

Quadratic expression An expression is quadratic if it can be written as

E E ai]»uiu]- + E biui +C
i i
For example, x3 + 9x;x, + 14x3 becomes

X% + 9X1X2 + 14x% = A11X1X1 + Ap1XoX1 + A12X1Xy + AppXpXy + b1X1 + bzXz +C

= allx% + Ar1XpXq + A1pX1Xp + ﬂzzx% + b1X1 + bzXz +C

comparing both sides, we see that by setting a;; =1,a5; = ;,am = ;azz =14 and by
setting b; = 0,b, = 0 and ¢ = 0 we can write it in that form. Hence it is quadratic and

A= (1 E}],b =(0 o)

X2 +9x1x, + 1403 = xTAx + bTx + ¢

ol B o)

400

N | ©

Therefore

5.4. collection of definitions CHAPTER 5. STUDY NOTES

Since we are able to write x? + 9x1x, + 14x5 = xT Ax + bTx + c it is quadratic. Notice that
the A matrix is always symmetric.

superlinear convergence A sequence {u*} in %" is said to converge superlinearly to u* if
the following holds. Given any 0 € (0,1] then
Jt* — w

jin B

,kZ
Example is uk = ¢ Since u* = 0 then % — 0 no matter what 0 € (0,1] is. Remember,
it has to go to zero for any 0

Quadratic convergence theorem Given quadratic
1
J(u) = EuTAu +bTu+c

And given N set of mutually conjugate vectors (with respect to A) {v°,%?, ...,oN"1} then
the conjugate direction algorithm converges to the optimal u* = —A™'b in N steps of
less. Proof in lecture 3/1/2016 (long)

A-conjugate vectors There are mutually conjugate vectors with respect to A. The direc-
tions {0%, v}, ...,vN71} are said to be mutually conjugate with respect to A if

L0
()T AV =0
For all i #j

401

5.5. Summary of iterative search algorithms CHAPTER 5. STUDY NOTES

5.5 Summary of iterative search algorithms

5.5.1 steepest descent

5.5.1.1 steepest descent, any objective function J(x)

The input is x(0) the initial starting point and J(x) itself.

1. init x0 =x(0), k=0
2. g =VJKH
k

3. o = min,, | (xk - a@) (line search)

k+1 — Kk _ &
oo =T g
5. k =k+1
6. goto

2

5.5.1.2 steepest descent, Quadratic objective function J(x)

If the objective function J(x) is quadratic J(x) = xT Ax — b’x + ¢ then there is no need to do
the line search.

The input is x(0) the initial starting point and A, b. The algorithm becomes

Init x%=x(0),k=0

2. g" = V] = Axk - b
[o4] gt
k1 = x* - oy gk
k =k+1
goto
2

5.5.2 conjugate direction, Quadratic function J(x)

For quadratic J(x) = xT Ax — bTx + ¢ the conjugate direction algorithm is as follows.

Input x(0) starting point, and A,b and set of n mutually conjugate vectors {o°, 0!, ..., 0"}
with respect to A, where 7 is the size of A. In other words, (v/)TAv/ = 0 for i # .

These o' vectors have to be generated before starting the algorithm. With the conjugate
gradient (below), these A-conjugate vectors are generated on the fly inside the algorithm as

402

5.5. Summary of iterative search algorithms CHAPTER 5. STUDY NOTES

it iterates. This is the main difference between conjugate direction and conjugate gradient.

1.
2.

3.

init 1% =x(0), k=0

gk = V](x¥) = AxF - b
B
(094 = T
[¢] At
k+1 = xk — g
k =k+1
goto
2

We see the difference between the above and the steepest descent before it, is in line 3,4.
Where now of replaces ¢* in two places.

5.5.3 conjugate gradient, Quadratic function J(x)

Conjugate direction required finding set of v vectors before starting the algorithm. This
algorithm generates these vectors as it runs.

Input x(0) starting point, and A, b.

1.

2.

Init u® =x(0), k=0, g =V]J(x% = Ax" - b, 0¥ = —¢°

g = [gkka
[¢"] Ao
X =Xk ok
gk+1 — V](xk+1) = Axk+t1 _p
~ [gk+1]T Aok
IB - [vk]TAvk
Z)k+l — _gk+l + ,ka
k =k+1
goto
2

5.5.4 conjugate gradient, None quadratic function J(x),

Hestenses-Stiefel

If we do not have quadratic function, then we can not use A,b to generate . The above
algorithm becomes using Hestenses-Stiefel

Input x(0) starting point.

403

5.5. Summary of iterative search algorithms CHAPTER 5. STUDY NOTES

1. Init u® = x(0), k=0, g° = VJ(x°), o0 = —¢°
2. = min,, J (x* + av*) (line search)
3.kl = x* + oy oF
4 gt =VjEt)
5. g _ [gk+1;T[gk+1_gk]
[4] [+ -5t]
6. o1 — _ok+1 +[)’Uk
k =k+1
8. goto

5.5.5 conjugate gradient, None quadratic function (x), Polak-Ribiere

If we do not have quadratic function, then we can not use A,b to generate 5. The conjugate
gradient algorithm becomes using Polak-Ribiere as follows

Input x(0) starting point.

1. Init u®=x(0),k=0,¢"=V]x?, " =-¢°
2. o = mina](xk + avk) (line search)
3. = x* + a0k
4. gk+l — V](xk+1)
5. g _ [gk+1]T[ng+1_gk]
[#°] &

6. of+l — _ok+1 +ﬁvk

k =k+1
8. goto

2

5.5.6 conjugate gradient, None quadratic function J(x),
Fletcher-Reeves

If we do not have quadratic function, then we can not use A,b to generate 5. The conjugate
gradient algorithm becomes using Fletcher-Reeves as follows

Input x(0) starting point.

404

5.5. Summary of iterative search algorithms CHAPTER 5. STUDY NOTES

1. Init 10 = x(0), k =0, gO = V](XO), 0 = _go
2. o = min, | (xk + avk) (line search)
3.kl = x* + oy oF
4 gt =VEt
k+1 T k+1
5 B _ks]Tg
[£"] &
6. 'Uk+1 = — k+1 + ﬁvk
k =k+1
8. goto
2

405

Index

Convexity, 23]
A-conjugate vectors, [40]]

Bolzano-Weierstrass theorem,
Bridging Lemma,

Ceiling,

Closed set,

Coercive function,
Coercivity theorem,
Compact set, [21]
Conjugate Gradient,
Constrained problem,
Convex function,
Convex Hull,
Convex set,

Convexity,
Decision tree, [76]

Dynamic programming, city planners,
Dynamic programming, floor, [109)
Dynamic programming, one step to go, [84]

Generators, [172
Global minimum,
Gradient,

Hessian, definition,
Hessian, theorem,

Hypercube,
Hyperplane,

Linear programming, @

Linear programming, basic theory, [74]
Linear programming, definition, @
Linear programming, Diet problem, @
Linear Programming, Dog food problem, 291
Local minimum,

Lyapunov equation,
Matlab, contour plot,

Matlab, linprog, 313
Minimax, [309]

Multilinear function,

Newton Raphson,

Dynamic programming, principle of optimal-

ity, [T} [83]

Dynamic programming, stages,
Dynamic programming, state equation, [83]
Dynamic programming, subproblem,

Objective function,
Objective set,

Optimal gain,

Optimal solution, Existence,

Dynamic programming, variations, [104} Optimal solution, existence,

Eigenvalue, convexity,

Epigraph,

Extreme points, [26]
extreme points,

Fletcher-Reeves,
Floor,

Freudenstein and Roth, nonlinear function

Pareto optimality,
Pointwise maximum, 28]
Polyalk- Ribiere
Polyhedron
Polytope, [26], [39} 54}, [170]
Problem, Farmmg, H
Problem, floor, [109}

> Problem, investment allocation,

406

Index

INDEX

Problem, Sector patrol,
Problem, sector patrol, [65]

Problem, state street vendor, [70]
Problem, trip from NY to SFO,

Quadratic objective function,

Riccati matrix equation, 112
Riccati, discrete algebraic equation ,
Rosenbrock Banana function, [219

Simplex,

Simplex, mechanisms, [65]
Simplex, phase one, [302]
Simplex, squeezing process,
Simplex, Unit,

Slack variable,

Steepest descent algorithm,
Steepest descent algorithm, Optimal step,
Strong local minimum,
Superlinear convergence, (401
Surplus variable,

Unconstrained problem,
Unique minimum, {154

Unit ball,

407

	Introduction
	syllabus
	References
	Organization
	Cardinal rules

	Class notes
	Lecture 1. Tuesday, January 19, 2016
	Lecture 2. Thursday, January 21, 2016
	Lecture 3. Tuesday, January 26, 2016
	Lecture 4. Thursday, January 28, 2016
	Lecture 5. Tuesday, February 2, 2016
	Lecture 6. Thursday, February 4, 2016
	Lecture 7, Tuesday, February 9, 2016
	Lecture 8. Thursday, February 11, 2016
	Lecture 9. Tuesday, February 16, 2016
	Lecture 10. Thursday, February 18, 2016 (Exam 1)
	Lecture 11. Tuesday, February 23, 2016
	Lecture 12. Thursday, February 25, 2016
	Lecture 13. Tuesday, March 1, 2016
	Lecture 14. Thursday, March 3, 2016
	Lecture 15. Tuesday, March 8, 2016
	Lecture 16. Thursday, March 10, 2016
	Lecture 17. Tuesday, March 15, 2016
	Lecture 18. Thursday, March 17, 2016
	Lecture 19. Tuesday, March 22, 2016 (No class)
	Lecture 20. Thursday, March 24, 2016 (No class)
	Lecture 21. Tuesday, March 29, 2016
	Lecture 22. Thursday, March 31, 2016. Second midterm exam
	Lecture 23. Tuesday, April 5, 2016
	Lecture 24. Thursday, April 7, 2016 (No class)
	Lecture 25. Tuesday, April 12, 2016
	Lecture 26. Thursday, April 14, 2016
	Lecture 27. Tuesday, April 19, 2016
	Lecture 28. Thursday, April 21, 2016
	Lecture 29. Tuesday, April 26, 2016
	Lecture 30. Thursday, April 28, 2016
	Lecture 31. Tuesday, May 3, 2016
	Lecture 32. Thursday, May 5, 2016

	Handouts
	Real analysis. January 21, 2016
	Positive-Definite Matrices. January 26, 2016
	Coercivity Theorem. January 27, 2016
	Hessian Theorem. February 8, 2016
	Proof of Hessian theorem. February 8, 2016
	Handout circuit. February 23, 2016
	Handout Newton. February 26, 2016
	Handout polytopes, march 3 2016
	Sector patrol. March 8, 2016
	Handout Extreme. March 15, 2016

	HWs
	HW 1
	HW 2
	HW 3
	HW 4
	HW 5
	HW 6
	HW 7
	HW special problem

	study notes
	Some HOWTO questions
	Some things to remember
	Example using conjugate directions
	collection of definitions
	Summary of iterative search algorithms

